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Abstract

Knotted fields are physical fields containing knotted, linked, or otherwise
topologically interesting structure. They occur in a wide variety of physical systems
— fluids, superfluids, electromagnetism, optics and high energy physics to name a
few. Far from being passive structures, the occurrence of knotting in a physical field
often modifies its overall properties, rendering their study interesting from both a
theoretical and practical point of view. In this thesis, we focus on knotted fields in
‘soft matter’ systems, systems which may be loosely characterised as those in which
geometry plays a fundamental role, and which undergo substantial deformations
in response to external forces, changes in temperature etc. Such systems are often
experimentally accessible, making them natural testbeds for exploring knotted fields
in all their guises.

After providing an introduction to knotted fields with a focus on soft matter
in the first chapter, in the second we introduce a method of explicitly construct-
ing such fields for any knotted curve based on Maxwell’s solid angle construction.
We discuss its theory, emphasising a fundamental homotopy formula as unifying
methods for computing the solid angle, as well as describing a naturally induced
curve framing, which we show is related to the writhe of the curve before using it to
characterise the local structure in the neighbourhood of the knot. We then discuss
its practical implementation, giving examples of its use and providing C code. In
subsequent chapters we use this methodology to initialise simulations in our study of
knotted fields in two soft matter systems: excitable media and twist-bend nematics.
In excitable media we provide a systematic survey of knot dynamics up to cross-
ing number eight, finding generically unsteady behaviour driven by a wave-slapping
mechanism. Nevertheless, we also find novel complex knotted structures and char-
acterise their geometry and steady state motion, as well as greatly expanding upon
previous evidence to demonstrate the ability of the dynamics to untangle geome-
tries without reconnection. In twist-bend nematics we describe their fundamental
geometry, that of bend. The zeros of bend are a set of lines with rich geometric and
topological structure. We characterise their local structure, describe how they are
canonically oriented and discuss a notion of their self-linking. We then describe their
topological significance, showing that these zeros compute Skyrmion and Hopfion
numbers, with accompanying simulations in twist-bend nematics.

viii



I asked him if he would like to contribute to this book. If he would, he should tell me a
story and, if he would allow me to make a suggestion, it should be our kind of story, in
which you thrash about in the dark for a week or a month, it seems that it will be dark
forever, and you feel like throwing it all up and changing your trade; then in the dark you
espy a glimmer, proceed groping in that direction, and the light grows, and finally order
follows chaos. Cerrato said seriously that indeed sometimes things went like that, and that
he would try to come up with something; but in general it was really dark all the time.
You couldn’t see the glimmer, you beat your head again and again against an ever lower
ceiling, and ended by coming out of the cave on your hands and knees and backward, a

little older than when you went in.

Primo Levi, The Periodic Table

X



Chapter 1

An introduction to knotted
fields

1.1 Kelvin’s vortex atom

The original, and perhaps most familiar, example of a knotted field is the smoke
ring. Easily made by cutting a circular hole in a rectangular box, then replacing
the opposite side entirely with a sheet of rubber, “a blow on this flexible side causes
a circular vortex ring to shoot out from the hole on the other side” [Thomson,
1867]. In 1867, exactly this demonstration was shown to Lord Kelvin by Peter
Guthrie Tait. What is generated is a tightly circulating tube of air, closed into a
ring, which propagates stably across the room, rebounding elastically from walls
and even other vortex rings (of course to see the ring one first needs to fill the box
with smoke, perhaps using dry ice or “a small quantity of muriatic acid” [Thomson,
1867]). At the time, the microscopic nature of atoms was still under debate, and the
stability of the rings, described by Helmholtz’s laws of vortex motion in an ideal fluid
[Helmholtz, 1858] (translated into English by Tait), coupled with their elasticity and
capacity for internal vibration [Lomanaco, 1996; Laan, 2012] prompted Kelvin to
suggest that “Helmholtz’s rings are the only true atoms” [Thomson, 1867]. Kelvin
hypothesised that such rings, embedded in a “perfect homogeneous liquid”!, and

92

“linked together or ... knotted in any manner”“ might form the microscopic basis

'Kelvin did not actually specify whether this fluid was the same as the ‘ether’ hypothesised to
transmit electromagnetic waves [Laan, 2012].

2Some terminology: Strictly speaking a knot consists of a single curve, and a link consists of two
or more curves. For example, a single round circle is an example of the unknot. Two round circles
disconnected from one another is the (two component) unlink. If the two circles thread each other
once, we have the Hopf link. We will often be quite loose with the distinction between knots and
links.



of matter [Thomson, 1867].

Kelvin’s “vortex atom” encountered difficulties in its mathematical content,
its falsifiability, and a lack of contemporary experimental support [Laan, 2012].
However its content, summarised as “Physics = Geometry” in [Lomanaco, 1996],
was compelling and apparently motivated Tait, in “consideration of the forms of
knots by Sir W. Thomson’s (Lord Kelvin) Theory of Vortex Atoms”, to construct
the first systematic tables of knots in 1876-1885, shown in figure 1.1 [Tait, 1876,
1883, 1884]. Tait’s articles, alongside a “very remarkable essay by Listing ... and an
acute remark made by Gauss ... with some comments on it by Clerk-Maxwell” [Tait,
1876] form the initial studies in what is now the mathematical field of knot theory
[Lickorish, 1997]. Maxwell himself, although not an active contributor to vortex
atom theory, had a clear interest in the ideas, encouraging Tait in a letter in 1867 to
“prosper and disentangle your formulae in proportion as you entangle your worbles”
(figure 1.1). Indeed the “comments by Clerk-Maxwell” referred to by Tait are in fact
Maxwell’s re-derivation of Gauss’s linking number, as presented in his A Treatise on
Electricity and Magnetism [Maxwell, 1873] in 1873, about which we will have much
more to say in §2.

Despite forming the starting point for modern knot theory, the knotted struc-
tures above are quite different to those found in your shoelaces, or in the world of
art and design outside the physics department. Rather than a single knotted curve,
we have a continuous fluid in whose structure the knot is encoded, and from which
dynamical properties of the knot (its motion, stability, a spectrum of vibrational
modes etc.) may be derived. More precisely, we have a concentrated tube of vor-
ticity in the fluid, tied into the shape of a knot. Helmholtz’s laws of vortex motion
[Helmholtz, 1858] show that, in a perfect (frictionless) fluid this tube of vorticity
is ‘frozen in’ to the fluid, unable to dissipate or cross itself. In an idealised vortex
atom, the radius of this tube would tend to zero, with the vorticity contained inside
becoming infinite, and we would have a singular linelike structure, tied into a knot
and embedded into a continuous three-dimensional medium. This structure is our
first example of what is called a knotted field. There is no strict definition of what
constitutes of a knotted field, but a sensible operational one is that they are physi-
cal fields containing knotted, linked, or otherwise topologically interesting structure,
and that this structure has some interplay with the behaviour of the whole field. As
we shall see, such fields are certainly not confined to fluids.

The disconnect between a knotted curve and a knotted field is reflected in
Tait’s work, which mentions Kelvin’s Vortex Atoms briefly as motivation, but fo-

cuses in substance on “the investigation of the essentially different modes of joining



GLENLAIR
DALBEATTIE,
Nov. 13, 1867.
Dear Tait

If you have any spare copies of your translation of Helmholtz
on “Water Twists” I should be obliged if you could send me
one.

I set [sic] the Helmholtz dogma to the Senate House in *66,
and got it very nearly done by some men, completely as to
the caleulation, nearly as to the interpretation.

Thomson has set himself to spin the chains of destiny out of
a fluid plenum as M. Scott set an eminent person Lo spin ropes
from the sea sand, and I saw you had put your calculus in
it too. May you both prosper and disentangle your formulae
in proportion as you entangle your worbles. But I fear the
simplest indivisible whirl is either two embracing worbles or
a worble embracing itself.

For a simple closed worble may be easily split and the

< D
©©©

but two embracing worbles preserve each others solidarity

thus

though each may split into many, every one of the one set
must embrace every one of the other. So does a knotted one.

<)

yours truly
C J. CLERK MAXWELL
|
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Figure 1.1: (a) 1867. Letter from Maxwell to Tait, encouraging him to “prosper
and disentangle your formulae in proportion as you entangle your worbles” and re-
questing Tait’s own translation of [Helmholtz, 1858]. (b) 1867. Letter from Maxwell
to Tait, showing a formula for Gauss’s linking number alongside two links of link-
ing number 0 and a trefoil knot. Reproduced from [Ricca and Nipoti, 2011]. (c)
1873. Page from Maxwell’s A Treatise on Electricity and Magnetism [Maxwell,
1873], giving a discussion of the Gauss linking number and the same example of
linking number zero seen in (b). (e) 1876. The first iteration of Tait’s knot tables
[Tait, 1876].



points in a plane” [Tait, 1876]. As knot theory developed, its initial connections to
hydrodynamics and electromagnetism were further abandoned. One also notes that
despite the wonderful knot tables produced by Tait (figure 1.1) and the reliance of
vortex atom theory on knotted and linked vortices, there is no mention above of any

experimental evidence of vortices tied in nontrivial knots.

(b) Micro-bubbles

(Side view)

250 ms. s 450 ms

Figure 1.2: The first experimental construction of fluid knotted vortices, in 2013.
(a) Experimental methods for making knotted vortices. The hydrofoil (bottom three
panels) is most successful. (b) Vortices produced in water from the designs of panel
(a). Microbubbles track the vortex. The mean radius of the ring is 40mm, of the
trefoil 45mm. (c) Timelines showing the evolution of a trefoil knot (top) and Hopf
link (bottom) in three dimensions. In contrast to ideal fluids, we see progressive
reconnections and simplification of the links. Figures reproduced from [Kleckner
and Irvine, 2013].

The first experimental construction of nontrivial knotted fluid vortices came
146 years after their initial theoretical investigation, from the Irvine lab in 2013.
We show in figure 1.2 several remarkable figures reproduced from [Kleckner and
Irvine, 2013], in which Kleckner and Irvine tied a single vortex loop in water into
a trefoil knot, the simplest nontrivial knot, as well as linking two vortex loops
together (Kelvin’s proposed model for a sodium atom), before tracking their full
three-dimensional evolution. [Kleckner and Irvine, 2013] is a notable example of a
more general trend; over the past ~ 10 years knotted fields have gone from being
purely theoretical constructions to being experimentally realisable in a number of
systems, and though originally conceived of in fluid dynamics, modern applications
are not limited to this context; they have been realised as nodal lines of optical

beams [Dennis et al., 2010], as disclinations in nematic liquid crystals [Tkalec et al.,



2011; Tasinkevych et al., 2014; Copar et al., 2015] and as spinor Bose-Einstein con-
densates [Hall et al., 2016]. In the following sections we will review the state of mod-
ern experiment and theory on knotted fields, beginning with fluids and superfluids,
in some sense the most developed case, before moving on to parallel developments
in liquid crystals and excitable media, which directly underlie the work presented
in §3 and §4 in this thesis; these example are certainly not exhaustive, and focus
on ‘soft matter’ systems, a point we shall discuss at the end of the chapter. We
shall see that the subject has broadened considerably since Kelvin’s atoms and his
contemporaries’ study of fluids. There will be a commonality of ideas between the

different disciplines mentioned above, but also genuine differences.

1.2 Modern knotted fields: fluids

With the decline of Kelvin’s vortex atom theory and the development of knot theory
away from its hydrodynamic origins, a resurgence of interest in knotted fields might
be dated to the years 1958-1969, with Moreau and Moffatt’s seminal papers on
helicity in ideal fluids [Moreau, 1961; Moffatt, 1969], preceded by analogous results in
magnetohydrodynamics by Woltjer [Woltjer, 1958]. Focusing on the ideal (inviscid)
fluid, both Moreau and Moffatt independently demonstrated that the helicity

H= /u~w d’r, (1.1)

where u(r,t) is the fluid velocity and w = V x u is the vorticity [Saffman, 1992],
is conserved under the Euler equations of ideal flow. Moffatt in particular gave
this invariant a topological interpretation: it measures the linking of vortex tubes
within the fluid. Given a fluid where w is d-localised along a discrete set of curves
C;, Moffatt showed that

H=> T.T;Lk(C;, C)) (1.2)
,J
where I'; = f@- u-dl = f DWW dS is the circulation around a small meridional

loop C; encircling C;, or equivalently the vorticity flux through the disk D; whose
boundary is C; — I'; is constant by Kelvin’s circulation theorem for an ideal fluid
[Moffatt, 1969]. Lk(C;,Cj),i # j, is the Gauss linking number between curves
C;, C; (this interpretation of helicity actually extends to the case where the vorticity
is not concentrated along a finite set of curves, but is distributed throughout the
fluid [Arnold and Khesin, 1999]). The meaning of Lk(C;, C;) will be clarified below.
Figure 1.3 shows several examples of vortex tubes with different linking numbers and

hence helicities. Seen in this light, the conservation of helicity is a direct consequence



of Helmholtz’s laws of vortex motion, and is equivalent to the statement that initially
linked vortex tubes remain so; in some sense it is remarkable that the result was not

known to Kelvin and Maxwell.

(@) ¢1»=0 (b) ayp=—1 () app=2

Figure 1.3: Three examples of links with different linking numbers. In the figure,
Lk(C;, Cj) is denoted «yj;. Figure reproduced from [Moffatt, 1969].

When vorticity is not concentrated along a singular curve but distributed in
a thin vortex tube, there is additional internal structure — one imagines a ribbon
(figure 1.4(a)), or braided rope (figure 1.4(b)). Flux lines may wind around the
centre-line of this tube as in figure 1.4(b), endowing it with a second linking number,
the self-linking number, which measures the linking of any flux line with the curve
centre-line. Incorporating this structure into the helicity count we find [Moffatt and
Ricca, 1992]
H= > TI;Lk(C;,C;)+ > TISL(Cy), (1.3)
0J,i#] i
where SL(C;) denotes the self-linking of each curve C; with its implicitly assumed
ribbon. Defining Lk(C;, C;) := SL(C;) this expression reduces to (1.2). In [Moffatt,
1969] Moffatt does not explicitly consider a vortex tube, but nevertheless defines
a ‘self winding number’, which with the benefit of hindsight one interprets as the
self-linking number of the simplest kind of tube, one made up of a family flux lines
running parallel to one another. As we shall see below, that the flux lines are locally
parallel does not imply SL(C;) = 0.

1.2.1 Calugareanu’s theorem, real fluids

Given a ribbon diagram like figure 1.4(a), the self-linking number may be further
decomposed as
SL=Tw+ Wr. (1.4)



Figure 1.4: A curve with internal structure: ribbons and tubes. (a) A ribbon,
defined by a centre-line (pink, say) and a second offset curve (green). The diagram
is a projection of the ribbon living in three dimensions, and each crossing may be
annotated as either a twist 7w or writhe Wr crossing, depending on its local (green
across pink, no pink across pink) or nonlocal (green across pink + pink across pink)
nature. The total count gives a self-linking number for the ribbon; see (1.4). (b) A
twisted tube, in which one particular ‘filament’ may be arbitrarily chosen to define
a ribbon. This is the situation in vortex tubes. Figures reproduced (modified)
from [Dennis and Hannay, 2005; Moffatt and Ricca, 1992].

The first term, the twist Tw, counts the local crossings of the ribbon over its centre-
line. The second term, the writhe Wr, counts non-local crossings of the ribbon
over distant parts of the centre-line. In figure 1.4 each crossing of the ribbon over
its centre-line is annotated with the nature of its contribution. Note that the Wr
count is actually independent of the choice of ribbon. For different diagrams of the
same knotted ribbon each of these contributions varies, but their sum SL does not.
Averaging over also possible diagrams, i.e. all possible projections of the genuine
three-dimensional curve, one obtains integral formulae for twist and writhe, and in
this form the result (1.4) was first discovered by Georges Calugareanu [Calugareanu,
1959, 1961] (the interpretation of it given above is however due to [Dennis and
Hannay, 2005]). Calugareanu’s Theorem is an important and influential result,
finding application in Mathematics [White, 1969; Adams, 2004; Aldinger et al.,
1995], Physics [Moffatt and Ricca, 1992; Goldstein and Langer, 1995; Berger and
Prior, 2006], Biology [Fuller, 1978; Winfree and Strogatz, 1983a; Sumners, 1995] and
beyond. It is of potential relevance whenever one studies the properties of a curve
with some internal structure, and so it naturally appears frequently in the study of
knotted fields. It will play a role in the curve dynamics studied in §3, in conservation
laws encountered in §4 and, in its close connection to Maxwell and Gauss’s work
on linking numbers and electromagnetism, in §2 as well. For the purposes of the
current discussion it enables us to speak of writhe helicity Wr and twist helicity T'w,

two separate contributions to the total helicity count. All three modes of helicity



storage are shown in figure 1.5(a). Assuming all vortices in the system have the

same flux I' we have that

H=T2> " Lk(Ci,Cy) + Tw(Ci) + Wr(Cy). (1.5)
i g

To return again to Moffatt’s original result (1.2), a locally parallel bundle of tubes
has Tw(C;) = 0, and only contains writhe helicity, as in the Wr component of figure
1.5(a) — in other words here SL(C;) = Wr(C;). In this case (1.5) reduces to (1.2).
Consistent with this fact, Wr(C;) may be computed from the curve C; only, without
the need to explicitly consider a tube at all (further, the integral formula for the
Gauss linking number reduces to the integral formula for writhe when the curves
involved coincide [Moffatt and Ricca, 1992]), and so if one neglects internal tube
structure they will pick up the Wr but not the Tw contributions to helicity; this is
referred to as the centre-line helicity H. := Lk + Wr [Scheeler et al., 2014].

In a real (viscous) fluid, helicity is not a priori conserved. The question of
whether it is in practice, and the mechanisms of its dissipation, are areas of active
research [Kleckner and Irvine, 2013; Scheeler et al., 2014, 2016]. Naively, one expects
the reconnections shown in figure 1.2 to be accompanied by jumps in the value of
helicity. However, [Scheeler et al., 2014] measured the centre-line helicity H,. across
reconnections in trefoil knots and Hopf links, as shown in figure 1.5(b), and found
that H. is in fact not dissipated in a reconnection, but rather transferred from Lk
to Wr. [Scheeler et al., 2016] measured all three contributions to H including 7w in
a system of unlinked rings (figure 1.5(c)), finding Tw to be dissipated by viscosity
on the timescale v/aZ, where v is the kinematic viscosity and ag is the vortex core
radius, but the remaining contribution H. approximately preserved over this same
timescale. These results suggest that helicity is primarily dissipated on small scales
via the T'w term, and not by topological changes as might have been expected. Note
that the experiments do not find H or H. to be exactly conserved — for example,
the Hopf link in figure 1.5(b) shows a continuous decay of H. independent of re-
connections. Investigating the mechanism of dissipation here, [Scheeler et al., 2014]
provides some evidence of a cascade of helicity from longer to shorter lengthscales
in vortex shape, and hypothesises subsequent conversion into twist and then dissi-
pation at these small scales, but does not determine a timescale associated with this

process.
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Figure 1.5: (overpage) Experimental measurement of helicity evolution in a viscous
fluid. (a) The three modes of helicity storage: linking Lk of two vortex tubes,
writhing Wr of the centre-line of a single tube, and twisting Tw of the vortex
tube about the centre-line. (b) The experimental setup allowing the measurements
shown in panels (c,d). Tangential flow resolution along the vortex core is enabled
by impregnating an aerofoil with separated blobs of dye, which are traced over time.
(c) The three contributions to helicity are experimentally tracked as a vortex ring
containing helical undulations evolves. Twist helicity T'w dissipates to zero on the
viscous timescale v/ a%, where v is the kinematic viscosity and ag sets the vortex core
radius. Over this same timescale writhe helicity Wr is approximately conserved. I"
denotes vortex strength, Ly denotes initial vortex length. (d) Experimental data
tracking centre-line helicity evolution for a trefoil knot and Hopf link, showing that
H. is conserved across reconnections. 7 denotes root mean squared vortex size.
Figures reproduced from [Scheeler et al., 2014, 2016].

1.2.2 Fluids as a case study

The hydrodynamic (and magnetohydrodynamic) story of knotted fields is well de-
veloped. We have given a sketch, but the reader is invited to find more detail in
reviews such as [Moffatt, 2014; Irvine, 2018]. Outside of hydrodynamics the above
discussion acts as a template for what one might expect in knotted fields more gen-
erally; a test case which other systems may be compared to and contrasted against.
In particular, linking and self-linking of structure occur in a variety of contexts, and
in analogy to (1.5) one might seek to connect them to conserved quantities, and use
them to understand the dynamics of the entire system under study. To give a brief
example of a system for which this template is fruitful consider superfluids, close
cousins of normal fluids described by a complex scalar field 1) = [/]e® (figure 1.6(a))
evolving via the non-linear Schrédinger equation [Kleckner et al., 2016]. Here vor-
tices are given by singular lines where the circle-valued phase field ¢ is undefined,
and about which it winds by 27. As in fluids, one may define a notion of helicity,
initialise knotted vortices and study their evolution (figure 1.6(b)) [Scheeler et al.,
2014; Kleckner et al., 2016]. The definition of centre-line helicity H. := Lk + Wr
carries through, and its evolution turns out to be similar to that of viscous fluids
[Scheeler et al., 2014; Kleckner et al., 2016]; reconnections occur in similar manner,
and they approximately preserve the centre-line helicity ..

However, it is not the case that knotted fields in all other systems may be
understood simply through the lens of fluids. In the following section we turn to
the second experimental system with which substantial work on knotted fields has

been done, the nematic liquid crystal cells of [Tkalec et al., 2011; Tasinkevych et al.,
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K3-1

Unknot(s)

Figure 1.6: Evolution of superfluid vortex knots. (a) Cross section through a super-
fluid vortex knot (light blue curve), showing the phase field ¢ winding by 27 about
the vortex. (b) A schematic illustration of a reconnection. Colour is for visuali-
sation only; note the splicing. (c¢) An example untying of a superfluid link into a
collection of unknots by progressive reconnections. Blue surfaces spanning the knot
are surfaces of constant phase. A schematic of the untying process is shown below.
Figures reproduced from [Kleckner et al., 2016].



2014; Copar et al., 2015]. There will be some crossover with the discussion above,

but also genuine differences, especially in the theoretical constructions involved.

1.3 Modern knotted fields: liquid crystals

A second experimentally constructed knotted field is shown in figure 1.7. It is quite
different to that of figure 1.2. By including microscopic colloids a few pm wide into a
thin cell of nematic liquid crystal, experimentalists [Tkalec et al., 2011; Tasinkevych
et al., 2014; Copar et al., 2015] are able to force the appearance of defect lines in
the material. These defects may then be manipulated with laser tweezers, and by
weaving them about an array of colloids, a knotted field encoding any type of knot or
link can be constructed; unlike the fluid vortices above, these structures are stable,
able to be experimentally probed in some detail. This system provides a testbed
for a series of new ideas about knotted fields, but first we step back a moment and
provide a brief description of what liquid crystals, defects and colloids etc. actually

are.

1.3.1 A brief introduction to liquid crystals

Liquid crystals are a class of materials which possess properties associated to both
liquids and solids [de Gennes and Prost, 1996]. In their most common form, the
nematic phase, they show no positional order, and flow like a liquid. However, they
do show orientational order: if one attempts to twist a portion of the liquid crystal it
will respond elastically, as a solid would?. The microscopic basis for this behaviour
comes from the type of molecules which comprise nematics, two examples of which
are shown in figure 1.8(a); they are typically thin rods which locally align themselves
along some common axis without taking on any sort of crystalline positional order.
In continuum theories this orientational order is described by a spatially varying
unit vector field n, called the director, which represents an average local molecular
orientation, as shown in figure 1.8(b).

A liquid crystalline material may only exist in the nematic phase within a
certain temperature (and pressure) range. For example, the phase diagram of the
MBBA molecule (figure 1.8(b)) is shown in figure 1.8(c). It forms a nematic between
20-47°C at atmospheric pressure. Below 20°C it forms a crystalline material, and

above 47°C it melts into an isotropic phase, in which there is no net molecular align-

3This is remarkable: imagine your surprise if, upon attempting to stir your coffee, you found it
fiercely resisted your attempts to turn the spoon, but was nevertheless happy to be poured down
the sink.
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Figure 1.7: Knotted disclination lines. (a) Nematic disclinations (dark curves) are
wrapped around silica colloids 4.72 pum in diameter (dark spheres), initially in ‘Sat-
urn’s ring’ configurations. Both disclinations and colloids may be manipulated by
laser tweezers (red dot). The figure shows controlled assembly of an array of colloids
with a single defect line wrapped about them. Black scale bar 5 pm. (b) Any knot
or link may be constructed around these colloidal arrays. The figure shows the ex-
perimental assembly of a Hopf link alongside simulation predictions of its shape at
each stage, as well as several other completed knots and links. (c¢) Within two fin-
ished links, the sense in which the director n is twisting is shown with colouring: the
background dark blue corresponds to one handedness, with regions of light colour
denoting its reversal. This visualisation allows construction of the Pontryagin-Thom
(PT) surface for the link, which in turns allows homotopy classification (1.6). Fig-
ures reproduced from [Tkalec et al., 2011; Copar et al., 2015].
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ment; this isotropic-nematic transition is a famous example of a (first-order) phase
transition [de Gennes and Prost, 1996]. If one wishes to understand the behaviour
of liquid crystals in the vicinity of this transition, a unit director n is inappropriate.
Instead, one uses a tensor order parameter = 5(3n*®n —1I), where s is the scalar
magnitude of the order, which exhibits a jumps from zero to a nonzero value as
temperature is decreased through the transition [de Gennes and Prost, 1996; Mot-
tram and Newton, 2014]. The experiments discussed in this chapter are performed
deep in the nematic phase away from such phase transitions and we may safely work
with n. Further, as we are interested in topological structures, the results are not
dependent on the precise temperatures used, although system parameters (such as
the elastic constants discussed in §1.3.3) are temperature dependent [de Gennes and
Prost, 1996].

a C L
CH3—OON=NOO—CH3 MBaA
!

o PAA e'[
CH,
o QCH—NOCHz\CH /CHZ\CH
b MMBA y
\ n £

T (0) eo0

Figure 1.8: (a) Two examples of molecules which can form a nematic liquid crys-
talline phase. p-azoxyanisole (PAA) forms a nematic between 116-135°C at atmo-
spheric pressure. N-p-methoxybenzylidene-p-butylanilinie (MBBA) forms a nematic
between 20-47°C. (b) A schematic of local molecular alignment, with the director
n giving a direction averaged over microscopic lengthscales. (c¢) Phase diagram of
MBBA. Figures reproduced (modified) from [de Gennes and Prost, 1996; Keyes
et al., 1975].

As the preceding discussion indicates, the theory of liquid crystals is rich
[de Gennes and Prost, 1996]; for an understanding of figure 1.7 we focus on a cel-
ebrated feature of nematics [Frank, 1958], their topological defects. If one shines
polarised light through a thin slice of nematic placed between crossed polarisers,

they will observe something like figure 1.9(a), a schlieren texture? [de Gennes and

4The word ‘texture’ is commonly used to describe liquid crystal configurations more generally.
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Prost, 1996]. Places in the sample where the director n is aligned with one of the
two polariser directions H and V do not transmit light, leading to the dark brushes
observed. One immediately notes points where the brushes meet, sometimes with
two brushes leading into a point, sometimes four; a point of each type is marked
in figure 1.9(a). What is the structure of the director at these points? The conflu-
ence of dark brushes implies that, in a small circle around these points, the director
winds, and that at the point itself we cannot consistently define n; these points are
topological defects, places where the order breaks down. Traversing such a circle
around a point with two brushes, the director is aligned with each of H and V only
once; in other words it makes only half a turn in a full circle around the defect. This
observation is enough to establish that the director n must in fact be non-orientable;
it should not be thought of as a vector field, but as a line field, for which n ~ —n.
In figures 1.9(b)—(e) we show qualitative configurations of the director around these
defects, with their associated schlieren texture brushes. In figures 1.9(b),(e) we
have four brushes, and a line field which can be oriented; to emphasise this fact
we have decorated the line field with one of the two possible choices of arrowheads.
Figures 1.9(c),(d) correspond to the non-orientable two brush case; here one can-
not consistently assign arrowheads to the rods (it is worth trying to imagine doing
s0). Note that from a single image such as figure 1.9(a), we cannot distinguish de-
fects winding in a right handed sense (+%, +1 etc. in the figure) from left handed
by counting brushes. In two dimensions these defects, also called disclinations or
disinclinations [Frank, 1958|, are points, but in three dimensions they are lines,
transverse cross sections of which have local profiles resembling the two dimensional
case; a schematic illustration is shown in figure 1.9(f). As with fluid vortices, these
disclination lines may be knotted and linked together, and the variation of the local
profile along the disclination (see the cross sections in figure 1.9(f)) provides internal
structure giving rise to self-linking [Copar and Zumer, 2011].

The above description of defects as genuinely point or linelike objects is an
idealisation. At these mathematical singularities in n, the liquid crystal locally melts
from the nematic into the isotropic phase, which can be described with a () tensor
approach — the defect core size, over which s decreases from its far-field value to
zero, is set by the intrinsic nematic correlation length of the material [de Gennes and
Prost, 1996] and is typically ~ 10nm. The structures discussed in this chapter have
scales 10-100pm, and we need not worry about this finite thickness, however in §4
we will see structures currently experimentally realisable only at scales comparable

to this correlation length.
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Figure 1.9: Topological defects in liquid crystals. (a) A schlieren texture, with
crossed polariser directions overlaid, and defects of winding number (denoted s)
3 and 1 highlighted (one cannot distinguish + from the picture alone). (b)-(e)
Topologically accurate director configurations around defects of winding number
:l:%, 41, with the schlieren dark brushes overlaid. For +1 defects it is possible to
orient the director, and we have made one of the two possible choices of arrowheads.
(f) Schematic of a disclination line in a three-dimensional nematic sample, with two
cross sections showing local structure. Locally, there is only one type of disclination

line (m1(RP?) ~ Z3) so a winding is not given.



Experiments on knotted disclination lines

We now return to the experiments of [Tkalec et al., 2011; Tasinkevych et al., 2014;
Copar et al., 2015]. In contrast to the situation in fluids, one of the major advan-
tages of working with liquid crystal disclinations is the control experimentalists have
over them. By including microscopic silica spherical colloids (4.72 pm diameter in
figure 1.7) into a sample of liquid crystal with specific surface anchoring conditions,
experimentalists may frustrate alignment of the director n in a controlled fashion,
necessitating the appearance of disclination lines. For example, in a thin cell of
liquid crystal treated to promote uniform alignment of n within the sample, the
inclusion of a colloid with normal anchoring conditions forces the appearance of a
defect line around it to cancel the colloid’s topological charge (it effectively acts as a
point defect) and allow n to relax to uniform at large distances. Two such “Saturn’s
ring” configurations may be seen in the first frame of figure 1.7(a). Once generated,
these disclinations, as well as the colloids they wrap around, may be further ma-
nipulated using laser tweezers [Tkalec et al., 2011], as shown in the remainder of
figure 1.7(a). When two of these colloids are brought together the disclinations, ei-
ther spontaneously or induced by the tweezers, fuse together (figure 1.7(a), top row).
Assembling an array of these colloids and weaving the disclination lines around them,
the setup of [Tkalec et al., 2011; Tasinkevych et al., 2014; Copar et al., 2015] allows
targeted construction of any knot or link; examples of some possible link topologies
are shown in figure 1.7(b). This system strikingly illustrates that knotted fields
have more structure than a single knotted curve — the curve organises the entire
field (in this case the director n) around it. Figure 1.7(c) shows the knotted liquid
crystal coloured by whether the director is twisting in a right or left handed sense.
We see that the disclinations separate the liquid crystal into alternately right and
left handed regions. In fact this division allows construction of a surface spanning
the disclinations called the Pontryagin-Thom (PT) surface [Chen, 2012; Chen et al.,
2013], shown as the coloured surfaces in figure 1.7(c), which classifies the topology
of this liquid crystal texture; we shall return to this surface in a moment.

Let us compare the phenomena seen here to those in §1.2. In contrast to fluid
vortices, it is experimentally possible to stabilise liquid crystal disclinations with
colloids. This fact alone leads to many differences in the character of theoretical work
on them. In the absence of the stabilising colloids the disclinations will shrink under
effective line tension and undergo reconnections, however there is relatively little
theoretical work on possible conservation laws analogous to (1.3) or on the structure
of these reconnections, although some results do exist [Copar and Zumer, 2011;

Machon, 2017]. In this sense the dynamics of these knotted fields is less understood
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than is the case in fluids. It turns out, however, that there is much to be understood
even about the statics of knotted liquid crystal fields. In a slice of liquid crystal we
saw there were many types of defect, indexed by the winding of the director — what
of liquid crystal textures in three dimensions? More specifically, given the knotted
disclinations shown in figure 1.7, are the liquid crystal textures corresponding to
them unique, or are there many inequivalent possibilities? Questions like these
have a long history in liquid crystal physics which, coupled with the difference in
experimental possibilities we saw above, makes some split between the character of

work on knotted fields in fluids and that in liquid crystals expected.

1.3.2 Homotopy theory of knotted disclinations and Pontryagin-
Thom surfaces

The traditional method of understanding liquid crystal textures containing defects
is the following: given a defect of dimension m in a texture of dimension n, place a
‘measuring surface’, more precisely a sphere of dimension n—m—1, around the defect
and study the possible textures on this sphere, i.e. the different classes of map from
the sphere to the space of possible values the order takes. Maps are equivalent when
a continuous deformation, called a homotopy, exists between them, and as such this
framework is known as the homotopy theory of defects [Mermin, 1979; Alexander
et al., 2012]. For point (dimension zero) defects in a two-dimensional slice of nematic,
this is what we did above, using a circle (the 1-sphere) as our ‘measuring surface’.
There, the space of possible directions n can point in is S'/{z ~ —x}, the circle
with antipodal points identified, also called the real projective line RP!. Thus the
different classes of texture are reduced to the classification of maps n : S — RP!
up to homotopy. This set of homotopy equivalence classes is denoted [S!, RP1].
Actually computing this set is the work of algebraic topology [Hatcher, 2002], in
which the set of homotopy classes of maps from a sphere S™ into a space X, [S™, X]|,
may be given a group structure after fixing a point x € X and is called the homotopy
group m,(X). It is found that 7 (RP!) ~ Z and thus there are infinitely many
types of point defect in two dimensions as far as the traditional form of the theory is
concerned; we show the four simplest in figure 1.9 but the index extends infinitely in
both + and — senses. In three dimensions, the director takes values in S?/{z ~ —z},
the sphere with antipodal points identified, also called the real projective plane RP2.
Encircling a disclination line with a measuring loop as shown in figure 1.10, one finds

71(RP?) = Zs, and thus there is exactly one type of disclination line, corresponding
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to the single nontrivial element of Z»®.

Figure 1.10: Application of the homotopy theory of defects to disclination lines.
We place a measuring loop (green) around a disclination line (red curve). We then
regard the director n (blue cylinders) as a map from this loop to the order space of
the director, in this case RP?, modelled here as a hemisphere with equatorial points
identified (pairs of red, blue, green dots indicate this identification). Homotopy
theory then classifies this map as an element of 71(RP?) ~ Z,. In this case the
green curve on RP? gives the single nontrivial element. If our measuring loop
misses the disclination (purple) it traces a trivial path in RP?.

A limitation of this approach is that, in only considering the texture on
a specific measuring surface, it discards information about the rest of the texture,
which leads to ambiguities when considering multiple defects or more complex struc-
tures such as knotted and linked disclinations [Alexander et al., 2012; Machon and
Alexander, 2014, 2016a; Machon, 2016]. A more recent, global approach [Machon
and Alexander, 2014, 2016a; Machon, 2016] does not fix a measuring surface, but
instead classifies maps into RP? where the domain is the entire liquid crystal sample
M minus some set of (possibly knotted and linked) disclination lines L. The result

is that the set of homotopy classes of the director is given by
[M — L,RP? ~ Hy(S(L); Z)/{z ~ —a}, (1.6)

where 3(L) is the branched double cover of the link complement (its appearance

in the result is a consequence of director non-orientability), and Hi(X(L);Z) is its

®One understands this difference by allowing the director in figure 1.9(b,e) to buckle out of the
plane of the paper, reducing these textures to the trivial one. This “escape in the third dimension”
causes Z to undergo a mod 2 reduction.
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first homology group®. Without going into the details of this result, it is clear
that these homotopy classes are far richer than the traditional classification scheme
for disclinations would suggest, and that they depend strongly on the knot or link
under consideration. To illustrate this point, in figure 1.11 we reproduce a ‘periodic
table’ of possible textures for (p,q) torus links from [Machon, 2016]. Taking the
simplest example from this table we see that for the Hopf link, consisting of two
curves passing through each other once and given by (p, ¢) = (2,2), there are exactly
two nonhomotopic textures. Returning to the knots shown in figure 1.7, for each
knot there may be many nonhomotopic textures, and the knot diagram alone does
not tell us which has actually been made. How should we extract this information,
and visualise distinct textures? In figure 1.9 simple pictures of the director in the
vicinity of a defect prove informative, but the same cannot be said of a swarm of
sticks in three dimensions.

One solution is a construction which generalises the dark brushes of schlieren
textures to three dimensions — the Pontryagin-Thom construction [Chen, 2012;
Chen et al., 2013; Machon, 2016; Alexander, 2018]. The idea is to extract the set
of all points in the liquid crystal domain where the director lies in the horizontal
plane — more precisely, perpendicular to some fixed direction in RP? which we call
the vertical axis. This is exactly what a schlieren textures shows in a two dimen-
sional slice using RP! instead, although schlieren textures contain some redundancy,
showing us the set where the director is along some direction (V' in figure 1.9(a),
say) and also perpendicular to that direction (H in figure 1.9(a), the analogy to
the horizontal plane in a three-dimensional texture) — we only really need half
this data. In a three-dimensional sample this ‘horizontal set’ is not comprised of
lines as in the two-dimensional schlieren texture but is a surface, the Pontryagin-
Thom (PT) surface. After finding this surface, the construction is completed by
colouring it according to the orientation in the horizontal plane that the director
takes. An illustration of this procedure is shown in figure 1.12(a). A powerful result
in Algebraic Topology called the Pontryagin-Thom correspondence [Milnor, 1997;
Hatcher, 2002] shows that these coloured surfaces, taken up to smooth deformations
(more precisely framed cobordisms), are in one-to-one correspondence with homo-
topy classes of maps, and so textures may be visually distinguished by their differing
PT surfaces. To illustrate this fact, in figure 1.12(b) we show the two distinct PT
surfaces for the two nonhomotopic Hopf link textures [Machon, 2016] (that they

are both a single colour is an indication that representatives from both homotopy

SAn aside: if the order space is RP' ~ S* i.e. if one considers a phase field or a nematic
confined to lie in a plane, then [M — L, S*] ~ H,(M — L) ~ Z'*! [Lickorish, 1997]. Such vortex
lines are simply classified by their winding number, with no more internal structure.
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Figure 1.11: A ‘periodic table’ of homotopy classes of nematic textures. Shown is

Hy(X(L)) for (p,q) torus links, 2 < (p,q) < 20. Numbers z denote the group Z,.

Note the diversity: the sets may be finite or infinite, the number of Z components

varies, and the number of elements in the finite component of each set may vary

dramatically.



classes can be chosen with the director everywhere in the domain perpendicular to
some axis, in particular one of the two horizontal axes). Returning to figure 1.7(c),
this construction provides the coloured surfaces shown; by examining the surface
and the colour windings upon it, we may place the texture in one of the classes
from (1.6). PT surfaces represent an enormous compression of information into a
visually immediate form, and their utility is far from limited to disclination lines;
we shall use them in our own work in §4.

Now that we have seen some of the theoretical developments in knotted
liquid crystals — the homotopy classification, the Pontryagin-Thom construction
— let us remark again on the similarities and differences to fluids. Topological
invariants play a vital role in both, linking and self-linking in fluids and homology
groups of the link complement in liquid crystals. Indeed, the self-linking of liquid
crystal textures will give rise to inequivalent colour windings on their PT surface
and differing elements of the homotopy classification. However in contrast to fluids,
where knot reconnections have been experimentally tracked and studied, there has
been almost no mention of dynamics and link reconnections. When this happens, the
topology of the link complement changes, and point defects may even be nucleated,
perhaps a daunting theoretical task given that existing theory primarily assumes the
domain is fixed, and even then finds a richness of possibility. We shall not develop
this line of questioning further here, but invite the reader to consult [Machon, 2017]
for theoretical developments in this direction. In summary, we simply remark that

it is increasingly clear the world of knotted fields is far broader than fluids.

1.3.3 Beyond disclination lines

The above sections focused on the knotting and nontrivial topology of disclination
lines — defects in the director n itself. Given the experimental focus on systems of
this kind, and their direct connection to the idea of a knotted field, this is natural.
However even in the absence of defects liquid crystals support an array of topolog-
ical phenomena which may also be considered examples of knotted fields, although

perhaps in a different sense to those discussed above.

Skyrmions and Hopfions

The most well known topological feature of this kind is a Skyrmion, an example of
which is shown in figure 1.13(a) given by the vector field n(r) = cos(nr)e,+sin(7r)e,
on the unit disk. Fixing the director on the disk boundary, we may wrap this

texture around a sphere (compactifying the boundary to a point) at which point

22



23

Figure 1.12: (a) The Pontryagin-Thom construction. The set where the director is
horizontal is extracted and coloured by the angle the director makes in the horizontal
plane (coloured band on RP? with corresponding colours in the domain). Note that
in contrast to the more standard picture of RP? shown in figure 1.9 here it is
‘turned on its side’ so that, visually, the horizontal plane through it (which one
should imagine as also being the horizontal plane in the liquid crystal domain), does
not coincide with the boundary of the hemisphere. The texture shown here is a
topologically nontrivial one called a toron [Smalyukh et al., 2010], containing two
strength 1 point defects at its top and bottom, each detected by two rotations of the
colour wheel on the PT surface. (b) Two distinct (noncobordant) PT surfaces for
the Hopf link, representing the two possible nonhomotopic textures of figure 1.11.
Figures reproduced from [Alexander, 2018; Machon, 2016].



its topology is captured by a map n : S? — S2, in other words an element of
72(S?) ~ Z. These textures are a well studied feature of vector and line fields in
two dimensions [Alexander, 2018]. We are primarily interested in the properties of
order in three dimensions, and as such focus on their three-dimensional ‘cousins’:
Hopfions.  An experimental image of a Hopfion is shown in figure 1.13(b)[Chen,
2012; Chen et al., 2013]. The figure shows a nematic liquid crystal texture inside
a three-dimensional cell, where the PT surface has been constructed by extracting
director orientation via three-photon fluorescence microscopy. What qualifies the
Hopfion as a knotted field becomes clear on viewing this surface: each stripe of
colour twists about a torus, linking each other colour exactly once — in a Hopf
link, no less. Skyrmions are classified by an element of m2(S5?). Hopfions are instead
classified by m3(S5?), the third homotopy group of the sphere. Heinz Hopf famously
showed that 73(S?) ~ Z, and in doing so constructed an explicit example of a
nontrivial element of this group — the celebrated Hopf fibration. For mathematical
detail on the construction of the fibration we refer to the reader to [Bott and Tu,
1982; Alexander, 2018], and for an excellent video of its structure we urge the reader
to consult [Johnson, 2011]. What figure 1.13(b) shows is an experimental image of
this fibration; the energetics of the liquid system favour a fixed far field nematic
direction, mimicking the Skyrmion boundary conditions and allowing the domain
to be compactified from R3 to R3 U pt ~ S2. The nematic texture then realises
amap n : S% — RP? and 73(RP?) ~ 73(5?) ~ Z. The fact that the order lies
in RP? not 52 is reflected in that fact that the fibration cycles through the colour
wheel twice [Chen et al., 2013; Ackerman and Smalyukh, 2017]; in figures 1.13(c)—
(d) we show a Hopfion in vector order, in which each colour is only seen once. Two

particular colours are picked out to make the linking clear.

The geometry of vector fields

The linking of inverse images is the hallmark of the Hopf texture (figure 1.13(e)).
However without data processing this linking is not an immediately apparent feature
of the director. By contrast the knotted disclinations, and even their associated
PT surface, in figure 1.7 may be clearly visualised. This is a consequence of the
coupling of these topological features to the geometry, energetics and ultimately
interaction with light of the liquid crystal, a coupling not present in the inverse
images characterising the Hopfion in figure 1.13(e). This observation invites the
question: are there ‘natural’ features of the Hopfion, or nonsingular nematic-like
liquid crystal textures in general, which can be used to infer their topology? We will

explore this question, with a particular focus on the recently discovered twist-bend
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Figure 1.13: (overpage) Defect free, topologically nontrivial textures. (a) A
Skyrmion given by n(r) = cos(nr)e, + sin(nr)e,, classified by an element of
72(S?) ~ Z, here +1. One way to visualise this is by plotting the PT surface
for the Skyrmion and noting its +1 winding. (b) An experimental image of a Hop-
fion in nematic order, with reconstructed PT surface. It is classified by an element
of m3(RP?) ~ Z, here +1, which may be computed via the linking number of the
different stripes of colour. That each colour occurs twice reflects that fact that the
order space is RP? not S? (see the following panels). (c,d) A simulation of Hopfion
in vector order (order space S?), with stripes of two colours picked out to aid visual-
isation of their linking. Note that in vector order each colour only occurs once. (d)
shows a cross section of the director field corresponding to this Hopfion. (e,f) Recent
experimental image of a Hopfion, clearly showing the telltale linking of preimages.
The first panel shows a vectorised director, i.e. a choice of arrowhead has been made.
In the second panel, it has not, and linking of two colours for antipodal vectors be-
comes linking of the same colour. (g) Polarising optical micrograph of Hopfions and
other textures. Arrows showed crossed polariser directions, and the green circled
cross denotes the size of the laser tweezer which manipulates them. Panels (b,e,f,g)
reproduced from [Chen et al., 2013; Ackerman and Smalyukh, 2017].

nematic phase [Jakli et al., 2018], in §4. The focus will be on naturally geometric
structures inside the liquid crystal which also contain some topological information,
and so we now discuss the geometry of nematic-like liquid crystals, and vector fields
more generally.

The fundamental geometry and energetics of nematics was encoded by Frank
in 1958 [Frank, 1958|, where he gave a curvature free energy for their elastic dis-
tortions. We give this free energy here first in a slightly nonstandard form, follow-
ing [Machon, 2016; Selinger, 2019]:

P /dSr %(v ‘n)2 4+ %(n .V xn)? + %((n V)n)? + %Tr(AZ), (1.7)

where the K; are nonstandard elastic constants discussed further below. Each term
in (1.7) comes from a different mode of distortion for the liquid crystal, shown in
figure 1.14:

(n-V)n Bend,

— =
© o

~— ~— ~— ~~—

n-Vxn Twist,

—_— o~~~

V -n Uniaxial splay, (1.

Ae) := %((o -Vn)+nx(nxe- Vn)) Biaxial splay. (1.11
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(a) Bend n- Vn (b) Twist n-V xn

Figure 1.14: The four modes of director deformation: Bend, twist, (uniaxial) splay
and biaxial splay. The vector plotted in (c) is the splay vector (V - n)n. Biaxial
deformations, described by a rank two tensor (not a vector as in (a),(c)) are repre-
sented by a tetrahedron corresponding to the triple {n, Ay, Ay}, where A; denotes
the ith eigenvector of A. Figures reproduced from [Selinger, 2019].



Vector order has a local rotational symmetry under which the free energy (1.7)
must remain invariant, and indeed the above terms are exactly those combinations of
gradients which respect this symmetry. More precisely, at each point in the material,
the director n splits space into a line parallel to n, L, and a plane perpendicular
toit, &, TR?® ~ L @ £ — an example of this splitting at a single point is shown
in figure 1.15(a), and for an entire Skyrmion texture in figure 1.15(b). The terms

(a) (b)

L b b ¥ o

Figure 1.15: The director n splits space into a family of lines L parallel to it, and a
family of planes ¢ perpendicular to it: TR? ~ L @ ¢. Panel (a) shows this splitting
at one point, with the director a blue arrow, L the green line and £ the orange plane.
This splitting is shown for an entire Skyrmion texture in panel (b). Compactifying
the boundary of this Skyrmion, i.e. considering the outer ring of vectors and planes
to really only be one vector and one plane, the Skyrmion texture is topologically
the family of normal vectors to S2, and € is its tangent bundle. As such, a smoothly
varying choice of vectors tangent to the family of planes £ (section of the bundle)
cannot be made (it is worth imagining trying to do so: make some choice of the
same fixed vector for all the outer ring of planes, and then try and extend inwards.
This amounts to combing one half of the sphere and finding one cannot also comb
the other).

appearing in (1.7) correspond to the magnitudes of the irreducible components of
Vn under the action of the rotation group SO(2) on £. These piece together to give
a decomposition of Vn in terms of gradients along ¢ and along L. Let E, denote
projection onto the subspace e, and V°*n = (Vn)|, denote restriction of the linear
map Vn onto the subspace o. Then Vn = VInFE}, + VEnEg, where

Vin=n*® (n-V)n, (1.12)

:v2‘nI§+n‘van+A. (1.13)

3
Vén 5
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Here I¢ is the identity transformation on § and J = n X e is rotation about n’.
The geometry of Vén, and A in particular, has been explored in [Machon and
Alexander, 2016b]. V¢én describes how n varies as one moves in directions lying in the
orthogonal plane ¢; when n is the normal to a surface, -Vén is a classical object in the
differential geometry of surfaces called the shape operator. The decomposition (1.13)
corresponds to its breakdown into an isotropic piece I¢, an antisymmetric piece
J and a traceless symmetric piece A. When n is the normal to a surface the
antisymmetric piece J vanishes, and A is just Vén with the isotropic part removed
— the eigenvectors of A then coincide with those of Vén and pick out the two
directions of principal curvature in £&. This interpretation extends to the general
case where J # 0, and the eigenvectors of Vén do not necessarily exist, motivating
the name “biaxial splay” for its mode of distortion. The geometry of VIn is less well
explored. It describes the bending of the director field: if one traces a single curve
to which n is tangent, then VXn gives the classical curvature from the differential
geometry of space curves [DoCarmo, 1976]. A more complete account of its geometry
and topology will be the topic of §4.
The Frank free energy (1.7) is more commonly written as
F= d%%(v-n)%%(n-vxn)2+%((n-V)n)2+%v-(n -Vn—n(V-n)),
(1.14)
where £ := V:(n- Vn —n (V - n)) is the saddle-splay and the K;; here are the
standard splay, twist, bend and saddle-splay elastic constants [de Gennes and Prost,
1996]. Using the relation k = (V-n)?+ 1((n-V)n)? — Tr(A?) we may bring (1.14)
into the form of (1.7) with K1 = $(K11 — $Ko4), Ko = 1(Kos — $Ko4), K3 = K33,
Ky = Koy [Selinger, 2019]. With this notation, a one-elastic constant approximation
is given by K11 = Koy = K33 = Koy = K, at which point the integrands of both
(1.14) and (1.7) reduce to K|Vn|?. We promote the use of (1.7) for the following
reasons, also argued for in [Selinger, 2019]. Firstly, each term comes directly from
the geometric decomposition (1.12), (1.13), and corresponds to a distinct mode of
bulk director deformation, in contrast to (1.14) where the saddle-splay, as a total
divergence, is often considered separate from the other elastic contributions. Second,
with this notation the free energy (1.7) is a sum of squares, and so clearly positive
definite. Third, (1.7) conceptually clarifies the meaning of saddle-splay even if, from

a computational standpoint, the fact that s is a total divergence term and hence

"That the splay term appears squared in (1.7) is because the decomposition (1.12),(1.13) is for
vector order, not nematic order. The additional symmetry n ~ —n forces us to square this term.
That the twist term is squared is because nematics are achiral. In a cholesteric liquid crystal [Beller
et al., 2014] one has (n-V x n+ qO)Q, giving a linear term on expansion of the square.
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often set by boundary conditions makes (1.14) more convenient.

Each of the pieces in (1.12), (1.13) is manifestly geometric, but they also
represent topological information as canonical sections of vector bundles defined by
the director. The families of lines L and planes £ vary smoothly with the director,
and such smoothly varying families of vector spaces are called vector bundles [Tu,
2010; Milnor and Stasheff, 1974]. The most famous example of a vector bundle,
and the interesting properties they can have, is the family of planes tangent to S?
called its tangent bundle 7'S?. A smoothly varying choice of vector in each of these
tangent planes is called a section of the tangent bundle (or more commonly simply
a vector field), with the set of all sections denoted I'(7°S?). Famously, the Poincaré-
Hopf theorem tells us one cannot ‘comb a sphere’ [Milnor, 1997], in other words one
cannot find an everywhere nonzero section of the tangent bundle to the sphere. This
failure is connected to the topology of S?; if one sums the windings of all the zeros
in any section one obtains the Euler characteristic of S2. An entirely analogous
result holds for any vector bundle; the zeros of a section of a vector bundle encode
its Euler class [Bott and Tu, 1982; Milnor and Stasheff, 1974]. Returning to (1.12),
(1.13), Vén is a section of the bundle £* ® &€ — it maps vectors orthogonal to n into
vectors orthogonal to n — and the bend V#n € I'(L* ®¢). Both probe the topology
of £ and, loosely speaking, as £ is in one-to-one correspondence with the director n
this topology carries over to n. The zeros of A, called umbilic lines in analogy to
the umbilic points of the differential geometry of surfaces, have been investigated
in [Machon and Alexander, 2016b]. The zeros of V¥n, which we will call 3 lines,
will be the subject of §4.

The umbilic and 3 lines are natural geometric structures found in any vector
field. However, they assume a particular relevance when strongly coupled to the
energetics of the liquid crystal texture. One way to do this is to frustrate the liquid
crystal with boundary conditions, as in the disclinations of figure 1.7. Another is to
pass to a different phase of liquid crystal, where such coupling exists. In the case
of umbilic lines, this setting is the cholesteric phase [Beller et al., 2014], in which
the liquid crystal has a preference for nonzero twist; A turns out to be related to
the axis of this twisting [Machon, 2016; Alexander, 2018], and its zeros thus encode
energetic frustration inside the cholesteric [Machon and Alexander, 2016b]. For
lines, the natural setting is a recently discovered phase of liquid crystal, the twist-
bend or splay-bend nematic [Cestari et al., 2011; Chen et al., 2013; Borshch et al.,
2013; Jakli et al., 2018]. These materials, comprised of banana shaped molecules,
have an energetic preference for everywhere nonzero bend. A second focus of §4 will

be on this interplay between geometry and energetics in twist-bend nematics.
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1.4 Modern knotted fields: excitable media

“In excitable media we may have a new context in which something like a vortex

atom theory can live again, strangely transfigured.”

A. T. Winfree, The Geometry of Biological Time, Chapter 9.

We now come to our final example of knotted fields, those found in excitable
media. We might have discussed them immediately after fluids and superfluids, and
indeed we will see closer similarities to those systems than to liquid crystals. That
we chose not to is a reflection of their relative lack of experimental development. By
way of prelude, the modern state of affairs in these systems is that the analogy to
a fluid vortex ring can be generated experimentally [Bénségi and Steinbock, 2006;
Azhand et al., 2014; Totz et al., 2015]. Figure 1.16 shows a schematic of a thick
dish of the Belousov-Zhabotinsky (BZ) reagent, a medium which supports waves
of propagating chemical activity. Axially symmetric waves of such activity spiral
outwards from a ‘singular’ ring shown in red — exactly what is occurring on this
ring will be discussed below. Beneath it is an experimental realisation of this setup
from [Totz et al., 2015], viewed from the side in figures 1.16(a)—(e) and from the
top in figures 1.16(f)—(g). From the side the ring appears as a discontinuity in the
emitted wavefronts, with a second such discontinuity where the fronts collide in the
middle of the dish. Figures 1.16(a)—(e) show stacks of snapshots of different rings
evolving over time, with the overlaid red curves tracking their position. They show,
firstly, that the rings stably persist over several hours, and secondly that they have
their own dynamics, expanding, contracting or reaching a stable radius (the out-
come may be experimentally tuned). The topological possibilities, dynamics, and
organisation of the entire excitable medium by these rings are the subject of this
section, and of §3. These rings have not yet been experimentally tied in nontriv-
ial configurations — as we shall see in this section, such an experiment would be

extremely interesting.

Excitable media

The building block of an excitable medium is an excitable oscillator, something
which rests in a quiescent locally stable state but which, given a small kick, becomes
excited before relaxing back to quiescence. A prototypical example is a nerve cell.
Given an electrical input, the cell ‘fires’, becoming excited, before slowly relaxing
back to its resting state where it can be triggered again. An excitable medium is

a continuum of these oscillators, all coupled together, in our case by diffusion of
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Figure 1.16: Top Panel: Schematic illustration of a vortex ring in excitable media.
A dish of the Belousov-Zhabotinsky reagent supports an axially symmetric spiralling
wave of chemical activity (meshed wavefronts) emanating from a ring shaped sin-
gularity shown in red. Bottom Panel: An experiment realising this setup. (a)—(e)
shows a time series of the dish viewed side on, i.e the z-z plane, over 4 hours. The
rotation period of the wave itself is 390s &~ 6—7 mins, and its wavelength is 0.58cm.
In each frame, the ring appears as a pair of points with wavefronts emanating from
it, which collide in the middle of the dish. Over time the ring moves, tracing the
curves shown. Depending on the heights h; and hg it may shrink (a), (c), reach a
steady radius (d) or expand (e). (f) and (g) show the ring from above (z-y plane)
over 3 hours. Setting spatial scale, the white bar in (g) corresponds to 5 mm. Figures
reproduced from [Totz et al., 2015].



activity from one oscillator to its spatial neighbours. Such media support waves of
activity, where an excitation in one oscillator triggers its neighbours to ‘fire’ also.
A pleasing example of such waves is a grass fire [Winfree and Strogatz, 1983a]. The
oscillators are blades of grass. Their resting state is unburnt, their excited state
burnt. After burning, the blades slowly grow back, able to be burnt again. A field
of grass, the excitable medium, supports a wave of excitation, i.e. a moving front
of grass fire. Note the front has a leading edge (the transition from unexcited to
excited) and a trailing edge (the transition from excited to unexcited).

There is an enormous experimental and theoretical literature on systems
exhibiting this sort of behaviour; for references see [Winfree, 2001]. We present a
minimal mathematical model, which shall be the focus of §3, and which provides
an effective description of many more complex excitable media [Winfree, 2001]: the
FitzHugh-Nagumo model [FitzHugh, 1961; Nagumo et al., 1962]

au:l(u—lu3—v>+v2u,

T (u+ B —v). (1.15)

priak
Here u(x,t) , v(x,t) are two real valued scalar fields, with €, 7, 5 model parameters.
The coupling which turns this system from an excitable oscillator to an excitable
medium is through diffusion V?u, in this instance in the u variable only (although
variants with diffusion in each variable also exist). The phase plane for the differ-
ential equation system without diffusion is shown in figure 1.17(a), with parameter
choices which will generate an excitable oscillator. The system has a fixed point
(u*,v*) (black dot), but given a finite perturbation in u it will execute a large loop
in phase space called the excitation-recovery loop, jumping to the upper branch of
the u nullcline, crawling along it until the first inflection, whereupon it jumps to the
lower branch and crawls again back to the fixed point (black arrows in the figure).
In the sense that a perturbation in w instigates this loop, u might be considered an
‘excitor’ variable and v a ‘recovery’ variable.

The FitzHugh-Nagumo model (1.15) was introduced in [FitzHugh, 1961],
without the diffusive term, as a semi-rigorous simplification of the Hodgkin-Huxley
model of the giant squid nerve axon [Hodgkin and Huxley, 1952], in which the four-
dimensional state space of the Hodgkin-Huxley model is projected down to two. w in
(1.15) corresponds, via the projection u = V —36m, to the pair (V,m) of axon mem-
brane potential and sodium activation level in [Hodgkin and Huxley, 1952], which
are the rapidly changing variables in the squid axon system. v corresponds, via the
projection v = 0.5(n — h), to (h,n), the sodium inactivation and potassium activa-

tion levels, which are the slow, recovery variables. Despite this neurophysiological
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background, we emphasise that (1.15) is not intended to represent a particular phys-
ical system (for example, there is not a rigorous mapping of the Hodgkin-Huxley
neurophysiological parameters onto the FitzHugh-Nagumo parameters [FitzHugh,
1961]). Rather, it is used as minimal mathematical model of excitability displaying
many of the qualitative features of more realistic, system-specific models [Hodgkin
and Huxley, 1952] but with a much smaller state and parameter space. As we saw
above, the abstract, generic roles which u and v play — that of excitor and recovery
variable — may be played by a combination of variables in any system-specific model
[Hodgkin and Huxley, 1952; Bénsagi and Steinbock, 2006; Azhand et al., 2014].

The topological possibilities of excitable media

The key topological observation is that the excitation-recovery loop of the FitzHugh-
Nagumo model is a circle S'. In a portion of excitable media M, the state of a
typical point lies somewhere on this loop, and thus we can describe the system
with a map ¢ : M — S, a situation encountered before in superfluids. Concretely
mapping between (u,v) and ¢ may be achieved via something of the form (u,v) =
(2 cos ¢ — 1, sin ¢ — v), where (u, v) are cycle-averaged values of (u,v), stretching S*
over the excitation-recovery loop. That the system is characterised by the phase field
¢ € S! immediately implies the potential existence of knotted and linked vortices
if our domain M is three-dimensional, again by simple analogy with superfluids.
What makes this system so interesting is that the character and dynamics of these
phase singularities are very different to what we have encountered before.

In two dimensions these singularities are at the core of spiral waves, a col-
lection of which are shown in the BZ reagent in figure 1.17(b). The anatomy of a
single spiral wave is dissected in figure 1.17(c)—(e). In figure 1.17(c), one imagines
taking an initially thin ring of excitable medium and setting a wave of excitation
running around it. If the ring is thickened, we expect some spatial variation in the
wavefront— it turns out that given isotropic diffusion in (1.15) it takes the shape
of an involute spiral started from the inner edge of the ring [Winfree, 2001]. This
thickening process happily continues until the time taken for the inner edge of the
wave to circulate once is comparable to the recovery time of the medium, a condi-
tion which defines a ‘core region’, inside of which the (u,v) states of points leave
the excitation-recovery loop and so cannot be reliably assigned a phase ¢ (this is
analogous to what happens inside the healing lengthscale which sets vortex core size
in superfluids). A phase description in which the core is idealised to zero radius
is shown in figure 1.17(d), and a qualitative picture of the corresponding contours

of (u,v) is shown in figure 1.17(e). These ‘rotors’ periodically emanate waves of
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(a)

Figure 1.17: Spiral waves in two dimensions. (a) The phase plane of the FitzHugh-
Nagumo model (1.15), with w and v nullclines (solid and dotted curves), fixed point
(black dot) and excitation-recovery loop (large black arrows) shown. This loop is
topologically a circle S', and progression through a cycle of excitation-recovery can
be described by a phase ¢ € S*. (b) Spiral waves in a dish of the BZ reagent. (c) —(e)
The anatomy of a single spiral wave. In (c) one imagines setting a pulse of excitation
running around a closed loop, which gradually thickens until the propagation time
around its inner edge is faster than the medium can recover from. The resulting
structure is a spiral wave. (d) shows its phase description, with three example
isophase spirals shown. The notation ‘1 = 0’ indicates the phase contour where we
have come full circle, with ¢ = 0 and ¢ = 1 identified. (e) A qualitative picture
of the (u,v) field around a spiral wave vortex. Away from the vortex the contours
are parallel, but inside they necessarily cross one another transversally. Figures
reproduced from [Winfree and Strogatz, 1983a).



excitation which organise the entire medium, splitting it into domains separated by
shock structures where two wavefronts coincide and annihilate (figure 1.17(b)).

In three dimensions, we have a linelike phase singularity, a vortex filament,
emitting ‘scroll waves’. The geometric and topological possibilities of linked and
knotted vortex filaments were first investigated in a series of papers by A.T. Win-
free and S. Strogatz [Winfree and Strogatz, 1983a,b,c, 1984]. The simplest possibility
is for the filament to close into a ring, emitting axially symmetric waves which fill
space as shown in figure 1.18(a). This is the situation encountered experimentally
in figure 1.16. However, Winfree and Strogatz demonstrated numerous other pos-
sibilities. For example, we once again have internal structure along the singularity,
in this case the angle the ¢ = 0 contour (say) makes with the filament in successive
cross sections along it, which opens up the possibility of self-linking. The simplest
such scenario, a twisted scroll wave, is shown in figures 1.18(b)—(c). Focusing on
figure 1.18(c), we note that such twisting implies a full cycle of phase about a line
threading the hole in the ring. In other words, a second phase singularity must exist
along this line too! Closing this line into a second loop, we obtain figure 1.18(d); two
scroll rings, each with linking and self-linking number (+)1. Winfree and Strogatz
extend this line of reasoning in a manner similar to that of Moffatt in [Moffatt, 1969]

to derive a topological selection rule on allowed configurations of knotted vortices:

0= > Lk(CiCj) + SL(Cy), Vi. (1.16)
1,J,0#]

This rule has a similar feel to the helicity count of (1.3), but its content is slightly
different. It is a condition each knotted loop in a link must satisfy in order for the
whole to exist. In fact a separate continuum definition of a helicity has been given
[Trueba and Arrayés, 2009] but it is currently not clear (to me at least) how the

concepts interlink; it is an interesting question for further study &.

The dynamical possibilities of excitable media

Provided the topological constraint (1.16) remains satisfied, there is no reason link
reconnections cannot occur, as they do in the other systems we have discussed. In
figure 1.18(e) we show two groups of allowed knotted vortices, and within each group
transmutations are topologically allowed. As Winfree and Strogatz note, questions
of whether or not they actually occur in a given excitable medium “probably de-

pend sensitively on the exact kinetics of the medium” [Winfree and Strogatz, 1984].

8 (1.16) corresponds to giving the link its Seifert framing [Winfree and Strogatz, 1983c;
Akhmet’ev and Ruzmaikin, 1992], for which H = 0.
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Figure 1.18: The topological possibilities of knotted vortices in excitable media. (a)
A spiral wave rotated around an axis of symmetry forms a scroll wave, shown in
cross section with wavefronts in grey. This is the system realised in figure 1.16. (b)
Cutting a scroll wave, putting a full turn of each phase contour into it, then gluing
back together. (c,d) This twisted scroll ring has a full cycle of phase around its
equator (points 0 through 8 in panel (c)), necessitating the existence of a second
twisted scroll ring linking the first, shown in (d). (e) Two groups of knotted vortices,
with transmutations topologically allowed between neighbouring elements of each
group. The matrices shown have (i, j)th element Lk(C;, Cj), where Lk(C;, C;) =
SL(C;). Note each row (and column) sums to zero, an expression of (1.16). Figures
reproduced from [Winfree and Strogatz, 1983a,b; Winfree, 1990].



In the experiment of figure 1.16 [Totz et al., 2015] we saw that these vortex lines
are not merely static emitters of wavefronts, they have their own dynamics, and
one has no a priori reason to expect these dynamics to preserve topology. What
is absolutely remarkable is that, in a certain parameter regime in the FitzHugh-
Nagumo model, it was found that they do [Winfree, 1990; Henze, 1993]. Using
e =0.3,8=0.7,7 = 0.5, a stable vortex ring was found in [Courtemanche et al.,
1990], shown in figure 1.19(a), followed by a stable trefoil knot [Henze and Winfree,
1991](in a slightly different kinetics) and then a variety of apparently stable knots
and links [Henze, 1993] summarised in figure 1.19(b). An account of this first period
of development may be found in [Winfree, 1990, 2001, 2002]. Subsequent work [Sut-
cliffe and Winfree, 2003] confirmed a wide basin of stability for the trefoil knot and
the Hopf link over substantially larger time periods than the original trefoil simu-
lations were run for. More recently, Maucher and Sutcliffe [Maucher and Sutcliffe,
2016] showed that the FitzHugh-Nagumo dynamics is even capable of simplifying
a tangled unknot into a unique canonical round form, as well as demonstrating
stable forms for more complex knots — the figure-eight and torus links in certain
geometries [Maucher and Sutcliffe, 2017]. A simplification of an unknot with 13
crossings in projection is shown in figure 1.19(c), with a cross section to show the
associated wavefield in figure 1.19(d) (one might compare to figure 1.17(b)). The
stable torus and figure-eight knots with associated minimal lengths are shown in
figure 1.19(e). These numerical findings are in stark contrast to what we saw in
fluids, superfluids and liquid crystals (indeed, in most knotted fields), and invite
a series of questions: What determines the dynamics of these vortices? How are
reconnections avoided? What is the mechanism of knot untangling? Are all knots
stable, and if so can we predict their shapes? In some form these questions have
existed since the first knotted vortices were discovered. Initial theoretical work fo-
cused heavily on the idea that their laws of motion could be explained by a ‘local
geometry hypothesis’ [Keener, 1988; Keener and Tyson, 1992; Biktashev et al., 1994;
Henry and Hakim, 2002; Echebarria et al., 2006; Dierckx, 2010] in which dynamics
at each point on the curve were governed by some local law of motion involving its
curvature, the twist of spiral wave phase etc. After a perturbative theory for such a
law was developed [Keener, 1988; Keener and Tyson, 1992; Biktashev et al., 1994],
substantial work went into testing whether or not this was the case [Winfree, 1990;
Henze, 1993], of which an account may be found in [Winfree, 2002]. Summarising
very coarsely, such laws found some success in describing isolated filaments, but of
course encounter problems whenever interfilament interactions are required. The

problem is that evidence ultimately suggested such interactions were integral to de-
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Figure 1.19: Stable knotted vortices in the FitzHugh-Nagumo model. (a) A vortex
ring contracts to a stable radius and drifts at constant velocity; its radius is 0.23)\g,
where )¢ is the wavelength of the spiral wave in the medium (see scale bar in panel
(b)) . (b) An assortment of apparently stable knotted and linked vortices found in
Ref. [Henze, 1993]. The tube around the knots is of diameter \g/m. The stability
of the trefoil knot and Hopf link were subsequently confirmed in Ref. [Sutcliffe and
Winfree, 2003] (the others are, in fact, unstable in the bulk). (c,d) The FitzHugh-
Nagumo dynamics are capable of simplifying a tangled, but unknotted, curve to the
canonical round form of panel (a); panel (c) shows an example simplification, with a
cross section through the vortex knot in panel (d) showing the wavefield.(e) Recently,
stable forms for torus knots and the figure-eight knot were found. Their geometries
are shown here, alongside their lengths as compared to ideal ropelengths. Figures
reproduced from Ref. [Winfree, 1990, 2002; Maucher and Sutcliffe, 2016, 2017].



scribing stable knots [Henze, 1993; Winfree, 2002], and as such a local geometry
hypothesis failed to account for their dynamics. The observed untangling without
reconnection of unknots shown in figure 1.19(e) [Maucher and Sutcliffe, 2016] further
casts doubt on whether such a law could be made to work.

We remark that the idea of reducing the dynamics of an entire field to that
of a curve is not unique to excitable media, but cuts across knotted fields. In
particular the idea is similar to the Local Induction Approximation (LIA) in fluids
and superfluids [Saffman, 1992], in which the Biot-Savart law of motion governing
vortex lines is approximated by a dominant contribution arising from local curvature,
which leads to motion binormal to the curve — in the case of a vortex ring, drift
perpendicular to the plane it lies in, a feature shared by the rings studied here
[Winfree, 1990]. Further, exact knotted solutions to the LIA do exist [Hasimoto.,
1972; Kida, 1981], and one might have hoped something similar applied here. Note
however that the LIA breaks down in fluids too, and further that the nature of
the fields surrounding the vortices is quite different between the two cases. One
crucial difference, as we shall see, is that in excitable media waves propagate without
attenuation for potentially arbitrary distances, making a theoretical decoupling of
distant segments of the knot difficult.

In summary, the questions posed above are not satisfactorily answered. Our
attempts to explore them, with a focus on systematically testing knots for stability
and exploring the importance of nonlocal filament interactions, form §3. The po-
tential for experimentally accessible, and spontaneously stable, knotted fields is a

major motivator for this work.

1.5 This thesis

This thesis is primarily about knotted fields in soft matter systems, systems that
may be loosely characterised as those in which geometry plays a fundamental role,
and which may undergo substantial deformations in response to external forces,
changes in temperature etc. All three of the systems described above might be con-
sidered examples of soft matter systems. One might ask “why choose soft matter?”
and we hope that our descriptions of the experimental possibilities of such systems
provide an immediate answer. Their combination of rich geometric structure and
experimental accessibility make them natural testbeds for exploring knotted fields
in all their guises. In our focus on soft matter we have of course been selective, com-
pletely neglecting discussion of theoretical and computational advances in optics
[Bode et al., 2017; Dennis and Bode, 2017], electromagnetism [Ranada, 1989, 1990,
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1992; Irvine, 2010; Kedia et al., 2013, 2016; Arrayas et al., 2017; Kedia et al., 2018]
and high energy physics [Faddeev and Niemi, 1997; Houghton et al., 1998; Battye
and Sutcliffe, 1998, 1999; Sutcliffe, 2007]. Even within the realm of soft matter we
have been selective; fluids stand out as the first and most highly developed examples
of knotted fields, and as such it was natural to discuss them. Beyond that, as well as
important examples of knotted fields in their own right, our presentation of material
on liquid crystals and excitable media serve as background and motivation for the
research topics addressed in this thesis.

As for the research topics themselves, they fall under the broad heading
of ‘investigations into knotted fields in soft matter’, but each is a distinct story.
Primarily they were chosen simply in response to current interesting questions in
knotted fields. As for §3, Maucher and Sutcliffe’s paper on unknot simplification
[Maucher and Sutcliffe, 2016] was published in 2016, and one might take it as mark-
ing renewed interest in questions around the FitzHugh-Nagumo model — there is a
gap of 13 years between it and the last publication on the matter [Sutcliffe and Win-
free, 2003]. Coupled with improved computational abilities?, new ideas about knot
initialisation, and the recent experiments we discussed in §1.4, it seems a natural
time for new investigation. §4 is again a development of recent questions about the
geometry and topology of liquid crystal gradients; our focus will be on the topology
of bend distortions. As we have seen, more theoretical attention has been paid to
orthogonal gradients and twist [Beller et al., 2014; Machon and Alexander, 2016a;
Machon, 2017] than to bend (however there is recent work on splay and bend in two
dimensions [Niv and Efrati, 2018]) and it is natural to try and complete the picture.
The recent discovery of twist-bend and splay-bend nematic phases, of which the first
review was published in 2018 [Jakli et al., 2018], provides further motivation as a
natural experimental setting for theoretical constructs, a role the cholesteric plays
for twist. The content of §2, on theoretical constructions for initialising knotted
vortices, is a little different: it initially arose out of a practical need to do just that
in §3. Many other methods exist and will be discussed in §2, but in one way or
another they did not suit our needs, either because the geometries of knot they al-
lowed were restricted, or they were computationally problematic. In attempting to
solve this practical problem, we were led to re-evaluate Maxwell’s work on the solid
angle function [Maxwell, 1873], extending it to knots and discovering connections
between the various different methods he proposes for constructing the function,

as well as connections to modern work on curve framings, writhe etc. As a result,

9Compare the description in Ref. [Henze, 1993] of running code on a CRAY supercomputer to
my own experience on my laptop and the Warwick cluster.
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this chapter has a ‘half theoretical, half practical’ feel. Its content was subsequently
used in the simulations presented in §3 and in constructing the self-linkings of bend
zeros described in §4.

We now provide a more technical summary of the content of each chapter,

with reference to the foregoing discussion.

§2: Maxwell’s Theory of Solid Angle and the Construction of Knotted
Fields

This chapter addresses a question which cuts across particular systems, and has not
been much discussed above: Theoretically, how should one construct a knotted field?
In order to simulate a knotted superfluid vortex (figure 1.6), a knotted vortex in
the FitzHugh-Nagumo model (figure 1.19), or any other knotted system one needs a
method of initialising a topologically correct configuration before running dynamics.
For the above examples, this amounts to constructing a phase field ¢ € S' containing
a phase singularity with the topology (and possibly geometry) of the desired knot.

In this chapter we propose the solid angle function of a link K, defined by
Maxwell in his A Treatise on Electricity and Magnetism [Maxwell, 1873], as a natural
solution to this problem. We provide a systematic description of this function as a
means of constructing a knotted field for any curve or link in R3. This is a purely
geometric construction in which all of the properties of the entire knotted field
derive from the geometry of the curve, and from projective and spherical geometry.
We emphasise a fundamental homotopy formula as unifying different formulae for
computing the solid angle. The solid angle induces a natural framing of the curve,
which we show is related to its writhe Wr and use to characterise the local structure
in a neighbourhood of the knot. Finally, we discuss computational implementation
of the formulae derived, and give illustrations for how the solid angle may be used
to give explicit constructions of knotted vortices in excitable media and knotted
director fields around disclination lines in nematic liquid crystals. Part of the work
in this chapter consists of an implementation of the methods described in C++: it

may be found at https://github.com/garethalexander/Solid Angle.

§3: Stable and Unstable Vortex Knots in Excitable Media

In §1.4 we discussed the discovery of several apparently stable knotted vortices in
the FitzHugh-Nagumo model, as well as the dynamics’ remarkable ability to sim-
plify unknots without reconnections. We also saw that the mechanisms underlying

these phenomena are still ill-understood, and posed the following questions: What
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determines the dynamics of these vortices? How are reconnections avoided? What
is the mechanism of knot untangling” Are all knots stable, and if so can we pre-
dict their shapes? This chapter is an exploration of these questions. We perform a
systematic survey of the dynamics of all knots with at most eight crossings, estab-
lishing that the generic behaviour is of unsteady, irregular dynamics, with prolonged
periods of expansion of parts of the vortex. We show that the mechanism for the
length expansion is a long-range wave-slapping interaction. We also show that there
are stable vortex geometries for certain knots; in addition to the unknot, trefoil,
and figure-eight knots reported previously, we have found stable examples of the
Whitehead link and 62 knot. We give a thorough characterisation of their geom-
etry and steady-state motion. For the unknot, trefoil, and figure-eight knots we
greatly expand previous evidence that FitzHugh-Nagumo dynamics untangles ini-

tially complex geometries while preserving topology, and discuss the mechanisms at

play.

84: Bend Geometry in Liquid Crystals

In §1.3.3 we described the geometry and topology of nematic order, giving a splitting
of director gradients into those perpendicular to the director, containing splay, twist,
and biaxial splay, and those parallel to the director, the bend. Unlike splay and twist
distortions, the geometry of bend has not received much attention in the liquid
crystal literature. Here we explain the relation between bend and the curvature and
torsion of the integral curves of the liquid crystal director. The zero set of the bend
consists of a set of lines, the  lines, which are cousins to the umbilic (or \) lines
of cholesterics. We describe how these lines may be oriented, provide a description
of their self-linking, and classify their local structure. The winding and linking of
these § lines conveys important topological information about the director, giving
a simple method for computing topological invariants with data naturally provided
by the liquid crystal itself. The natural testbed for bend geometry is one in which it
is brought to prominence through strong energetic couplings, in the same sense that
cholesterics are the natural context in which to study twist. We use the recently
discovered twist-bend nematic as this testbed, providing illustrations of Skyrmions
and Hopfions in twist-bend nematics, the g lines therein, and how these lines can

compute Skyrmion and Hopfion numbers.
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Chapter 2

Maxwell’s Theory of Solid
Angle and the Construction of
Knotted Fields

2.1 Introduction

Knotted fields are three-dimensional textures of continuous media that encode in
their structure a knotted curve, filament or family of field lines. Originating in Lord
Kelvin’s speculations of atomic structure as knotted vortices in the aether [Thom-
son, 1867], they have since been experimentally realised in nodal lines of optical
beams [Dennis et al., 2010], disclinations in nematic liquid crystals [Tkalec et al.,
2011; Tasinkevych et al., 2014; Copar et al., 2015], spinor Bose-Einstein condensates
and fluid vortices [Kleckner and Irvine, 2013]. Concurrently, theoretical studies con-
tinue to flourish in classical field theory [Sutcliffe, 2007], electromagnetism [Kedia
et al., 2013; Arrayds et al., 2017], superfluids [Kleckner et al., 2016] and excitable
media [Maucher and Sutcliffe, 2016, 2017, 2018].

Central to theoretical advances are explicit constructions for knotted fields
exhibiting different knot types, or other pertinent physical properties, such as he-
licity in fluid flows. Constructions for knots in electromagnetic fields have centred
around the Hopf map and rational map generalisations of it, shear-free null con-
gruences and twistor methods [Ranada, 1992; Kedia et al., 2013; Arrayas et al.,
2017; Kedia et al., 2018]. The simplest constructions yield torus knots and links
and the majority of constructions have focused on this family, together with seek-
ing to control the helicity of the field [Kedia et al., 2018], or its dynamics [Irvine,

2010]. The same rational map constructions also give knotted solutions in other field
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theories, such as the Skyrme-Faddeev model [Battye and Sutcliffe, 1998; Sutcliffe,
2007]. These methods satisfy the dynamical equations of motion directly and are
geometrically special by construction, providing powerful tools for describing the
full knotted field and its properties.

A separate approach has been developed to create nodal lines in optical
beams that encodes the knot as the zero locus of a complex polynomial [Dennis
et al., 2010]. From these fields initial conditions can be generated for paraxial wave
equations with the subsequent evolution giving a beam containing the encoded knot.
Again, the simplest constructions are for torus knots (captured by the polynomials
2P + 22) but the method can be applied for any geometric braid [Bode et al., 2017;
Dennis and Bode, 2017]. The argument of such a complex polynomial gives a phase
field that winds around the knotted nodal line and can be used to initialise phase
vortices, or as an angle orienting the director field of a liquid crystal with the nodal
line then appearing as a disclination [Machon and Alexander, 2014]. In common
with the constructions for electromagnetic knots, this approach encodes the knot
implicitly rather than explicitly in that its location and geometry derives from the
polynomial rather than being given a priori.

A canonical construction for a phase field associated to any knotted curve
K, that depends only on the curve and represents a knotted field on its complement
is given by the solid angle w(x) subtended by K at each point in space. This
construction of knotted fields goes back to Maxwell [Maxwell, 1873], since the solid
angle is proportional to the magnetostatic potential of a current carrying wire, and
in all likelihood represents the earliest explicit construction for a knotted field. If
we imagine K to be a wire carrying unit current then Maxwell’s equations state
that it generates, in its complement, a magnetic field that is irrotational, so that
locally it is the gradient of a potential. Ampere’s law shows this potential to be
globally multi-valued (increasing by g upon traversing any closed loop encircling
the wire): the solid angle is the magnetostatic potential normalised to be 47 cyclic,
i.e. it takes values in R/47Z = S1. This description makes clear that solid angle
is naturally defined for an oriented curve K, the orientation being provided by the
current flow. Since magnetic fields are divergence free, the solid angle is a harmonic
function, and this, together with the 47 circulation, may be taken as an alternative
definition. Knotted fields constructed out of it satisfy physical differential equations
(Laplace’s equation), but in contrast to other methods are more direct and explicit
in their construction, so that there is no special focus on torus knots, geometric
braids or any other particular class of knots.

Construction of the magnetostatic potential via numerical integration of the
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magnetic field about K has recently been used to initialise knotted fields in su-
perfluids and excitable media [Kleckner et al., 2016; Maucher and Sutcliffe, 2016].
However, very little in the way of a systematic treatment of solid angle and its
geometric content has been given since Maxwell’s own presentation in his Treatise
on Electricity and Magnetism [Maxwell, 1873]. Maxwell devotes articles 417-422
of [Maxwell, 1873] to an extended discussion of solid angle, its properties and geo-
metric meaning, as well as methods for calculating it. He gives three methods, in
addition to (2.1): a direct calculation; a method given “for the sake of geometrical
propriety”; and his preferred method which involves calculating the work done in
transporting a unit magnetic pole to the point x. Through the latter he (indepen-
dently) derives the Gauss linking integral [Ricca and Nipoti, 2011].

Typically, solid angle is described with the help of an orientable surface X
spanning K: w(x) is then the area that this surface projects to on the unit sphere
centred on x, and is given explicitly by the formula [Saffman, 1992] (which Maxwell
attributes to Gauss [Maxwell, 1873, Art. 409])

(x—-y)

w(x) =
s x—yl?

-dS, (2.1)
where y varies over . While this description hides the fact that solid angle de-
pends only on K, it provides the main geometric interpretation for solid angle and
establishes close connections to projective and spherical geometry, particularly to
spherical curves and areas. Solid angle, then, is a naturally geometric object depen-
dent only on K, which involves an interplay between the geometry of K itself, and
that of the spherical curve to which K projects. As such it belongs firmly to the
domain of the differential geometry of curves. Yet its relationship to curve geometry
is only partially developed, limited to how the local geometry influences the local
structure of the magnetic field in the curve’s normal plane [Saffman, 1992; Moore
and Saffman, 1972; Ricca, 1994]. A related question is that of an ‘optimal’ method of
computing w, both from a theoretical and computational standpoint. Both methods
mentioned above suffer deficiencies. In the first, an unnecessary intermediate, the
magnetic field, is computed before w. In the second, an arbitrary surface spanning K
must be provided, of which w is independent — this is especially inconvenient from
a numerical standpoint. We desire a convenient direct expression for w, dependent
only on K.

In this chapter, we show that Maxwell’s three methods, extended where
appropriate to knotted curves, may all be considered as applications of a single

curve homotopy formula. In doing so, we shall arrive at several distinct formulae for
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computing w directly from K and make connections between solid angle and modern
results on the geometry of spherical curves [Levi, 1994; Arnold, 1995], as well as
discussing close connections between the asymptotic structure of w and the writhe
of K [Fuller, 1978; Dennis and Hannay, 2005]. With these formulae in place, we offer
a geometric description of the local properties of w in a tubular neighbourhood of K,
considering both the structure in the normal plane and as one moves along the knot.
Our description, which begins directly at the spherical geometry of the projected
curve, complements existing results on the local structure of the magnetic field, and
reveals a previously unseen connection between the local structure of w and the
‘writhe framing’ of [Dennis and Hannay, 2005]. Our results give several formulae for
the direct computation of w from K, of practical value when initialising simulations
of knotted fields. We discuss solutions to the main difficulties in their numerical
implementation, and end with a brief description of applications to the initialisation
of scroll waves in excitable media and knotted textures in nematics. Implementations
in C of the methods described are given at github.com/garethalexander.

The extension of the construction of solid angle to the case where K is a link
is straightforward: by the linearity of electromagnetism the solid angle for a link
is simply the sum (mod 47) of the solid angles corresponding to each of the link
components. For this reason, we restrict the majority of our discussion to knots, and
discuss the few subtleties which come with extension to links in a brief dedicated

section.

2.2 The homotopy formula for solid angle

At each point x of the knot complement the projection of K onto the unit sphere cen-
tred on x, which we shall call the observation sphere, traces out a curve n := ﬁ,
y € K, as shown in figure 2.1. This projected curve has points of self-intersection in
correspondence with the crossings of the knot as seen from x. Upon varying x there
will be particular viewing points where the number of visible crossings changes and
at those points n also has cusps. In all cases (2.1) expresses that the solid angle
at x is the area bound by the projected curve n on the observation sphere; indeed,
Maxwell states this as the definition of the solid angle.

Maxwell’s first method of computing w(x) is to choose arbitrary spherical
coordinates (0, ¢) on the observation sphere, and integrate the projected area di-

rectly [Maxwell, 1873, Art. 417]:

w(x) = /(1 —cosf) do. (2.2)



Figure 2.1: (a) An oriented knot K with tangent vector T (here the 41) projects
onto a unit observation sphere about a point x, giving the spherical curve shown
in blue. (b) The projection of K onto the observation sphere gives an immersed
spherical curve n, with self-intersections in correspondence with the crossings of the
knot as seen from x. A unit tangent t for n is induced by the orientation of K, and
we select normal v :=n x t.

If we denote by n., the (arbitrarily chosen) polar direction 6 = 0, then (2.2) can be

expressed in vector notation as

w(x) = / Do XB g, (2.3)

1+noo~n'

a formula that has been rediscovered a number of times [Asvestas, 1985; Dangskul,
2015; Borodzik et al., 2017]. We remark that if we interpret (2.3) as an integral
over K rather than its projection on the observation sphere, the integrand is the
vector potential for a magnetic monopole placed at x, with —n, corresponding to
the choice of Dirac string. Indeed, expressing it in the spherical coordinates of (2.2)

we recover the vector potential of [Dirac, 1931]

No X 1 B sin 0 N
l+n,-n |y—x| 7(1+cosf)”’

(2.4)

where r = |y — x|. Maxwell gives this formula explicitly in Cartesian coordinates
and remarks on the role of the string (“axis”) in evaluating the integral.

Maxwell does not advocate the use of (2.2), other than for computational
convenience, writing that it “involves a choice of axes which is to some extent arbi-
trary, and it does not depend solely on the closed curve” [Maxwell, 1873, Art. 418].
We shall discuss his second method in §2.3, but his preferred method is his third
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“as it employs no constructions which do not flow from the physical data of the
problem” [Maxwell, 1873, Art. 419]: viewing w as the magnetostatic potential of K,
it may be built by measuring the change Aw as we transport a unit magnetic pole
along an arbitrary path from a reference location to x, or equivalently by fixing x
and oppositely transporting K. Maxwell gives a formula for Aw under this trans-
port in terms of a double integral over the path and K, by summing the areas of
the infinitesimal parallelograms swept out by line elements of K.

This approach shifts the focus from calculating the solid angle directly to
calculating the change induced by a translation of the knot along some path. It
is a small step to extend this to give a formula for the change associated to a
general homotopy of K, in which the shape of K may vary. Of course, Aw does not
depend on the precise form of this homotopy, which allows it to be calculated using a
standardised method, for instance by connecting corresponding points of the initial
(Kp) and final (K1) curves with straight lines, i.e. K; = (1 —t)Ko+tKy, t € [0, 1],
as shown in figure 2.2. This homotopy induces one on the observation sphere, which
we denote n;, with the straight lines along which the points of K move projecting
to geodesic arcs connecting nyg and n;. The change in solid angle is the area swept
out by this mesh of geodesic arcs.

Consider the contribution to the area of the geodesics connecting a small
segment of the two curves, as shown in figure 2.2(b): By Archimedes’ theorem on
the equality of the area of the sphere and its circumscribed cylinder this is equal to
the product of the distance |ng — nj| between the two endpoints of the geodesic arc
and the angle swept out by its midpoint (ng+mn;)/|ng + ni|. The difference in solid
angle is therefore

ng+ng ng+ny
w(x; K1) —w(x; Ky :/no—n1 X .
(x; K1) — w(x; Ko) ( ) Evpr R Far—

_/noxnl-(dno—i-dnl)
o 1—|—Il(]'1’11

mod 4. (2.5)

This is the basic homotopy formula for solid angle, applicable to an arbitrary defor-
mation of K. Both Maxwell’s first and third methods of computing w can be seen
as applications of (2.5) — we recover (2.3) by letting K recede asymptotically far
from x, so that ng is a single point n,, on the observation sphere and w(x; Kp) = 0
mod 47. In §2.3 we shall use a homotopy of K along its tangent developable sur-
face to demonstrate that his second method also follows directly from the homotopy
formula.

The integral in (2.5) is not defined when x lies on the surface swept out
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Figure 2.2: (a) An initial (K() and final (k) space curve are connected by a straight
line homotopy K, three lines of which are shown in the figure (blue lines). This
projects to a homotopy on the observation sphere via geodesics n; (blue curves)
between the initial ng and final n; projected spherical curves. In this figure we
deliberately choose Ky and K7 to be different knots — K; need not preserve knot
type. (b) Calculating the area swept out by the geodesic parameterisation between
ng and n;. Shown are two segments of ng and np, as well as their normalised average
Iggiﬁil (green curves). Consider the area of the geodesic sliver connecting ny and n;
centred on the point p. Archimedes’ theorem tells us this is equal to that same area
projected onto a cylinder circumscribing the sphere, which is given by |ng — ni|dé,
or equivalently by the triple product in (2.5).




Figure 2.3: A spherical knot projection n (blue curve, here a typical projection
of a twisted unknot) induces a dual spherical curve n* := t x n (yellow curve).
Maxwell proposes the construction of n* by allowing a unit circle (yellow disk) to
roll without slipping around n such that its plane of contact is tangent to n. A unit
vector perpendicular to this circle (yellow arrow) then traces n*. As shown in (2.10),
zeros of geodesic curvature in n correspond to cusps in n* (marked points). More
pictures of this construction may be found in [Levi, 1994; Arnold, 1995].

by K, which we refer to as the surface of discontinuity — as an example, in (2.3)
this surface is formed by translating K to infinity along ns,. The line of K; passing
through x connects antipodal points of the observation sphere, ng-n; = —1, and this
line does not project to a unique geodesic arc connecting these endpoints. Instead
there is a whole family of equivalent connecting geodesics, which cover the sphere
once. As x crosses the surface of discontinuity, the geodesic parameterisation of the
antipodal sections of ng and n; jumps from one side of the observation sphere to
the other, giving a 47 jump in (2.5).

We note that (2.5) has the same form as the formula given by Fuller for the
difference in writhe of two curves [Fuller, 1978]. This is because for each fixed point
x (not on K; for any t) the difference in solid angle is expressible as an area between
two spherical curves, as arises for the difference in writhe. This is the first of several
relations between the solid angle function for a curve and its writhe, which help to

convey its geometric content.

2.3 Maxwell’s geometric formula, dual curves and ho-

motopies along tangent developable surfaces

Maxwell’s objection to (2.2) is that it involves an arbitrary choice of spherical co-

ordinates on the observation sphere, and for this reason he states a construction
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Figure 2.4: The setup to which the Gauss-Bonnet formula (2.7) applies. A non
self-intersecting curve A has corners of exterior angle € and bounds a region 2 on an
oriented surface S. It has tangent t, and normal 4 which points inwards to € [Lee,
1996].

in which no such choice is made [Maxwell, 1873, Art. 418]. Let a unit circle roll
without slipping around n such that its plane of contact is tangent to n, as shown in
figure 2.3(a). Then a unit vector perpendicular to this circle traces a second curve
on the observation sphere, called the dual curve n*. Denote the length of n* by o.

Maxwell states that the solid angle is given by
w(x) =21 — o, (2.6)

a result he simply describes as a “well-known theorem”. This result is in fact equiv-
alent to the Gauss-Bonnet formula [Lee, 1996], an identification that has been redis-
covered at least twice [Levi, 1994; Arnold, 1995]. In the form stated by Maxwell, (2.6)
is only correct if n is a simple curve without points of inflection, but it is true in
much greater generality [Arnold, 1995]. As a more general version is essential for ap-
plication to generic knot projections, in the following section we give a self-contained
elementary proof, applicable to any smoothly immersed spherical curve. First, how-
ever, we wish to fix notation and concepts by reviewing exactly which version of the
Gauss-Bonnet formula we will use, as different authors often use the same name to
refer to slightly different results — in this discussion we follow [Lee, 1996].
Suppose we have a non self-intersecting curve A, allowed to contain corners
of exterior angle €, which bounds a region €2 on an oriented surface S. A is oriented
as the boundary of €2, with tangent vector t and normal vector v which points into

) — this setup is shown in figure 2.4. The Gauss-Bonnet formula states that
/ KdA:27r—/k‘.7d5—Zei, (2.7)
Q A :

where K is the Gaussian curvature of the surface S, and ky = % - is the signed
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Figure 2.5: The spherical knot projection n in panel (a) may be decomposed via
the Seifert algorithm into Seifert circles n;, shown in panel (b). These circles bound
regions €2;, signed according to the orientation of their boundary (coloured hatching).
At self-intersection points of n, the resulting circles have corners, with exterior angles
€;; (shown for one such corner).

geodesic curvature of \. We note that a common variant of (2.7) considers only
smooth curves 5\, without the corners €. The derivations of both results differ in
one place only: rather than writing 2m = [; 5\9 and then relating 0 to geodesic and
Gaussian curvature as is done in the smooth case, when dealing with corners one
proceeds in a piecewise manner, writing 2r = Y. €; + [ A éi, where ); is the segment

of A between ¢; and ¢;11. One then proceeds as before on each piece 01

2.3.1 A dual curve theorem for self-intersecting curves

We begin by relating the area swept out by n to its integrated geodesic curvature by
using the Gauss-Bonnet formula (2.7) — we emphasise that n generically contains
self-intersections, and as such we cannot simply apply the result directly. n has
a canonical tangent vector induced from the orientation of K, denoted t, and we
choose for it a normal vector v := n X t, as shown in figure 2.1(b). (Note that
in the special case that n is a simple curve, as is the case for the curve A shown
in figure 2.4, it bounds two regions on the sphere, but is only correctly oriented
as the boundary of one of them. = points inwards to this region.) We perform a
Seifert decomposition [Adams, 2004] of n. This entails resolving each crossing in a
manner that preserves the orientation of the curve and results in its separation into
a collection of Seifert circles n;, as shown in figure 2.5. Each circle is a simple curve
and bounds a region {2;. At self-intersections of n the resulting Seifert circles have

corners, with exterior angles €;;. Now, for each circle, applying the Gauss-Bonnet
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formula (2.7) gives

/ dA =2m —/ k‘.yds — E €ijgs (2.8)
Q; n; -

7 1 ]

dt

where ky = 7 -7 is the signed geodesic curvature of the Seifert circle boundary.
Summing each side of (2.8) over all Seifert circles, the left-hand-side sums to w(x)
mod 47; on the right-hand-side the exterior angles cancel pairwise, and we pick up
a contribution of 275, where S is the number of Seifert circles, in addition to the
total integrated (signed) geodesic curvature. The number of Seifert circles is equal
to x+ D, where Y is the Euler characteristic of the surface constructed by the Seifert
algorithm and D is the number of double points (self-intersections) [Adams, 2004;
Lickorish, 1997]. For a knot the Euler characteristic of any Seifert surface is odd, so
that S = D + 1 mod 2. Thus we have

wx)=2r(D+1)— / kyds mod 4. (2.9)
n
We remark that the quantity D+ 1 mod 2 is the spherical equivalent of the rotation
number of a planar self-intersecting curve, sometimes termed its parity [Whitney,
1937; Phillips, 1966; Solomon, 1996]. The 27 in the Gauss-Bonnet formula arises
as the rotation number of a simple curve, and the appearance of the parity here is
thus a natural extension to the self-intersecting case.

The integrated geodesic curvature is equal to the (signed) length of the dual
curve n* := —y =t x n [Levi, 1994; Arnold, 1995](figure 2.3). To see this, consider

how n* varies with arc length along n:

dn* _i
ds  ds

dt
txn)=— xn=kt. 2.10
(txm) = xn=h, (210)
t is tangent to n*, but its orientation alternates across zeros of k-, which correspond
to cusps in n*. Defining ds* = k,ds, we obtain dn*/ds* = t, and see that ds* should
be interpreted as a signed length element, the sign being given by that of k. Thus
we arrive at

w(x)=2m(D+1)— / ds® mod 4. (2.11)

n*
For a simple curve without inflection points D = 0 and the sign of ds* never alter-
nates, so its integral gives o and we recover (2.6). By contrast, consider the spherical
‘figure-eight’ curve n shown in figure 2.3, as would arise when K is a twisted unknot
parameterised by (sint,cost,sin2t),t € [0,2x], and the point of projection lies on
the y-axis with |y| > 1. Considering a surface spanning this twisted unknot, one

immediately expects w = 0 at such a projection point — let us check the results
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of (2.6), (2.11) applied to the spherical figure-eight curve. D = 1 and we have two
zeros of geodesic curvature, which divide n* into two segments separated by cusps
with ds* switching sign between them. So applying (2.11), we arrive at our expected
result, but applying (2.6) we do not. Eq. (2.11) thus generalises Maxwell’s “well
known theorem” (2.6) to the case of a smoothly immersed curve, and in particular

to any generic spherical knot projection.

2.3.2 The pullback to K and a homotopy along the tangent devel-
opable surface

As results on the structure of spherical areas, (2.9), (2.11) are valid for any smoothly
immersed spherical curve. However, we have in mind the case where one arises as
the projection of the knot K. Using this projection we now pull each term in (2.9)
back to K. This facilitates a reinterpretation in terms of the geometry of K, as well
as a novel method of deriving it using (2.5).

We begin by constructing a natural ‘projective’ framing for K, dependent on
x, with which we will express D in (2.9) as a self-linking number. To construct this
framing, extend the lines of sight from x along n until they meet K. These lines
project to vectors normal to K, which are non-zero provided n - T # +1 where T
is the unit tangent vector to K, in other words provided there are no cusps in n on
the observation sphere. The number of double points seen from x mod 2 is equal
to the self-linking number of K given this projective framing, SL(K, x), also mod 2.
The mod 2 counting gives an ambiguity in the sign of the identification of D with
SL(K,x) which will lead to two distinct re-writings of (2.9), and so we shall keep
the sign explicit in the following.

Using Calugareanu’s theorem SL(K,x) = Tw(K,x) + Wr(K) [Calugareanu,
1959, 1961], we now write SL(K,x) in terms of the writhe of K and the twist of the
projective framing, which is directly computed to be
1 (n-T)(n-T xdT)

/K |

TW(K,X):ﬂ I~ (. T)

(2.12)

Substituting this expression for SL(K, x) into (2.9) with the sign ambiguity discussed

above, and combining with the pullback of the dual curve length,

n-TxdT
* = = _— 2.1
/n*ds /n/{,yds /Kl—(n-T)Q’ (2.13)
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Figure 2.6: The forward tangent developable surface T; ;. (yellow surface) for the
knot K in figure 2.1 (red curve), constructed by extending half-lines along tangents
from K (green, dashed). The intersection of the surface with a sphere of asymptot-
ically large radius gives a scaled copy of the tangent indicatrix to K, T 4+ (blue).
The half-lines comprising T;  define a straight line homotopy between K and T 4,
from which the blue, dashed curve is taken.

we arrive at

w(x) = 21(1 + Wi(K)) — /K % mod 4r. (2.14)
This formula for the solid angle depends only on K and data canonically associated
to it, with the only ambiguity being a choice of sign. The appearance of the writhe
in (2.14) reveals this geometric property of curves to be closely connected to the
solid angle. We shall return to the sign ambiguity in a moment — for now, let us
select the plus sign.

Instead of taking (2.6) as our starting point, we now demonstrate how (2.14)
may be derived directly from the curve homotopy formula (2.5). To construct the
appropriate homotopy, extend half-lines from K along its tangents T, sweeping out
a surface in space known as the forward tangent developable surface of K, which we
denote Ty 4 :=y +tT, t € [0,00) [Eisenhart, 1909] — an example of this surface
is shown in figure 2.6. Consider the intersection of this surface with a sphere of
asymptotically large radius. The curve T 4 given by this intersection is simply
the spherical image of T, known as the forward tangent indicatrix of K [Eisenhart,
1909], scaled to the sphere radius. Our desired homotopy is between T 4 and
K, and is defined by the half-lines comprising T; . As T« 4 is asymptotically far
from x, its projection on to the observation sphere simply reproduces the tangent

indicatrix. Using the fact that n x T -dn = 0, we see that the integral in (2.14) is a
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second special case of (2.5), with Ky = T 4+, K1 = K, and the area swept out on
the observation sphere lying between the forward tangent indicatrix and n.

This argument also identifies 27(1 + Wr(K)) as the solid angle of T 1.
We may obtain an integral formula for this area by considering the asymptotics
of (2.14), allowing x to recede far from K along —n. so that w(x) — 0. Doing so
yields

T xdT
/K ﬁ = 27(1 + Wi(K)) mod 4, (2.15)

however, as this integral is the area bound by the tangent indicatrix on the unit
sphere, the identification is simply a recovery of Fuller’s writhe mod 2 formula [Fuller,
1978]. In the context of curve homotopies, we may interpret (2.15) as giving the
change in solid angle for a homotopy in which T + shrinks to a point (that projects
to no on the observation sphere). Eq. (2.14) may then be thought of as a com-
bination of two homotopies: the first from an arbitrary point to T 4, and the
second from To 4 to K. By contrast, (2.3) combines these two homotopies into
one. Returning to the sign choice made above, we now see that choosing a minus
sign would give a version of (2.14) corresponding to a homotopy along the backward
tangent developable surface Ty _ :=y —tT, t € [0,00), between K and the back-
ward tangent indicatrix T, —. That aside, the geometric interpretation remains the
same. We note briefly that the tangent indicatrix is not the only spherical curve
canonically associated with K which might be used to define a homotopy; we might
also consider the normal and binormal indicatrices. In these cases, however, neither
triple product in (2.5) vanishes, as occurred in (2.14), and so the resulting formulae
are less simple.

With the choice of plus (minus) sign in (2.14), the surface of discontinuity
discussed in §2.2 is given by T; 4 (T;_). Jumps are also present in (2.9) and (2.11),
however they occur on both halves of the tangent developable surface T; . U T; _
and the overall 47 jumps are composed of each individual term in the equations
jumping by 27. To convince ourselves of this fact, consider the behaviour of (2.11)
as x passes across T; y UT; _. n undergoes a Reidemeister 1 move, during which
D jumps by 1. The segment of n* corresponding to the Reidemeister move in n
begins and ends at antipodal points on the sphere. By removing the loop in n, we
create two inflection points. Recalling that the sign of ds* alternates between these

inflections, we pick up a change in signed length of 27.
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2.4 The structure of w

The level sets of w, for regular values, form a family of Seifert surfaces with common
boundary K. Figure 2.7 shows this global structure for a twisted unknot and a
Whitehead link. The topology of the level sets changes at critical points of w, where
generically the local structure is a cone point 4 (2% +y? —222) with Morse index 1 or
2. As the solid angle is a harmonic function, critical points of Morse index 0 or 3 are
forbidden by the maximum principle. For knots and links that are fibred [Stallings,
1978] it is possible for the solid angle to have no critical points at all; indeed this is
the case for both the unknot and Whitehead link shown in figure 2.7. The general
relationship between the shape and geometry of a knot or link and critical points of
the solid angle is a fascinating open problem.

It is of particular interest to characterise w in a tubular neighbourhood of
K, so that we may modify it when initialising simulations using w. This control
is useful when the local structure of the field around a vortex affects its dynamics,
as for example in helicity in fluids [Moffatt and Ricca, 1992] or the twist of scroll
waves in the FitzHugh-Nagumo model [Winfree and Strogatz, 1984; Maucher and
Sutcliffe, 2018]. This local structure has longitudinal and transverse parts: the level
sets of w rotate as one traverses K, and in a plane normal to K corrections due to
local curvature and torsion arise, analogous to those studied for the magnetic field
about a curved wire [Saffman, 1992]. Harmonic fields in the tubular neighbourhood

of a knot have also recently been studied in [Duan and Yao, 2018].

2.4.1 Longitudinal structure — the solid angle framing

The intersection of the level set w = 0 with K defines a ‘solid angle’ framing,
canonical in the sense that it depends only on the knot and is purely geometric. As
this framing is described by a pushoff of K onto an orientable surface, it has zero
self-linking number [Lickorish, 1997]; the extension to links is straightforward and
discussed in §2.5. Figure 2.8(a) shows this surface and its induced framing for the
Whitehead link of figure 2.7. A natural question is to identify this solid angle framing
in terms of the curve geometry. Let x approach a particular point y(s) € K, for a
fixed s, in such a way that the displacement vector u := x —y(s) defines a direction
in the normal plane to the curve at s (figure 2.8(b)). Aligning the x,y, z axes with
the local Frenet-Serret frame N(s),B(s), T(s), we have u = (ecosf,esinf,0). As
e/p — 0, where p is the radius of curvature, we may think of the image of K on the
observation sphere as comprised of two parts; for points y(s’) with s’ outside a small

interval I around s (of size ~ 4/2pe), the projection to x is no different from the
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Figure 2.7: The structure of w around a knotted curve, generated with the method of
§2.5. (a)—(c) show level sets of w of spacing 7, each of which forms a Seifert Surface
for the knot with opacities on the near sides of the images reduced to reveal the inner
structure of w. (a) A twisted unknot. (b),(c) The Whitehead link (components in
blue, green) from two viewing directions. (d) A slice through the Whitehead link
from the same direction as (c¢). The local structure of w about the knot is especially
clear in (d) — w winds by 47, and as we move away from the knot, curvature induced
corrections cause the level sets of w to bunch along the curve normal, as discussed
in §2.4.



Figure 2.8: (a) The solid angle framing for the Whitehead link of figure 2.7. Shown
is the level set w = 0 (blue surface), and its induced framing (components in blue,
green). (b) The limiting behaviour of n as x approaches K (shown is the behaviour
of n about the marked point on the 4; of figure 2.1). x approaches a fixed point
y(s) on K such that u:= x —y(s) = (ecosf,esinf,0) lies in the normal plane to
y(s). As e¢/p — 0, a region on K of size \/2pe (green) projects to a semicircle Ss g
between +T(s). This semicircle sweeps the observation sphere as 6 is varied. The
remainder of K projects to Cs (red), and is independent of 6.

y(s)=vy(s) This
ly(s)—y(s)I”
is a curve Cs on the observation sphere with endpoints +£T(s) and is independent

projection to y(s), and the image of K is given by the unit chords

of 6. In the same limit, the points y(s’) with s’ € I contribute to the image of

K on the observation sphere a semicircle Sy between +T(s) with midpoint —ﬁ
that depends on 6. n is thus decomposed as n = C; U S, 9. Varying 0, Cs remains
unchanged, and S, o wraps the sphere once, giving the asymptotic winding structure
w = 2(0 — a(s)), where a(s) is the rotation angle of the Frenet-Serret normal N(s)
into the solid angle framing. a(s) gives the longitudinal structure of w. It represents
the contribution of Cs to w, and as such is a global quantity, not computable by a
local analysis.

Our decomposition of n is identical to that of the set of cross chords consid-
ered in the context of Calugareanu’s theorem [Dennis and Hannay, 2005; Calugareanu,
1959], a consequence of the projection map outside of I degenerating to the chord
map as €/p — 0 to give Cs. The completion of Cs by S; ¢ is given, in Calugareanu’s
theorem, by a choice of framing vector u for K [Dennis and Hannay, 2005]. Here it

is given, via projection, by the displacement vector u.
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As discussed by Dennis & Hannay in [Dennis and Hannay, 2005], given some
framing u, Wr(K) and Tw(K, u) are given by the areas swept out on an abstract
sphere by Cs and S, respectively, as s varies along K. They point out that one
may choose a special framing, which they call the ‘writhe framing’, such that the
area swept out by Ss ¢ precisely cancels that swept out by Cs, giving zero self-linking
number. The discussion above makes clear this framing is exactly the solid angle
framing, and the cancellation condition may be naturally read as a variation of

such that # lies tangent to the level set w = 0; in terms of the Frenet-Serret frame,

u]
0 = a(s).

2.4.2 Transverse structure — curvature induced corrections to w

In the previous section, we saw that the asymptotic structure of w normal to K,
corresponding to the decomposition n = C;US; g, is simply w = 2(0—a(s)). At finite
¢/p we find corrections due to the local curvature of K, with the leading contribution
being logarithmic in €. For the derivative of w, the magnetic field, this problem is
well studied [Saffman, 1992; Ricca, 1994]. However, we wish to demonstrate that
existing results may be mapped directly on to corrections in the geometry of n as
the decomposition n = C; U S, ¢ is smoothed at finite €/p, insight one does not gain
from the magnetostatic picture.

The asymptotic description n = Cs U ;¢ contains cusps at the boundary
between Cs and S g, located at =T(s). The primary effect of small but finite €/p is
a rounding of these cusps, and the displacement of n slightly off £T(s), as shown
in figure 2.9(a). It is thus natural to focus our attention, and choose coordinates,
appropriate to describing n in the vicinity of +T(s). Expanding y(s’) to lowest

1

order in &', y(s') = (5, (s" — 5)2,0,5 — s) and n is given by

1
e (e ) eeond] (iR cont). - L
n= |:1+2<S +§2> ecosG] ( 2§(s cos 0), 2§s1nc9,1 ,  (2.16)

~ . S/—S e
50 8= N The form of (2.16) is
chosen to emphasise that we have an expansion of n in the vicinity of +T(s) on the

where we have defined reduced lengthscales € :=

observation sphere. Focusing now on the smoothed cusp at positive 5, we introduce

a new variable ¢ := In(§), and rotate the z-y coordinates of n by %, yielding
. _1 = 0. = . 0
n = [1 4 é(cosh 2t — cosf)] ™2 \/Zcosgsmht, —\/Zsm§cosht, 1), (2.17)

a hyperbola projected onto the observation sphere (figure 2.9(a)). In the original,
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unrotated coordinates, the asymptotic behaviour of this hyperbola is of two longi-
tudinal great circles passing through T(s) at angles 6 and 0. As € — 0, the first of
these circles gives S, . The second gives the local structure of Cy, and in particular
tells us that the direction of departure of Cs from T(s) is set by N(s). The vertex
of the hyperbola, found at ¢ = 0, is the point of closest approach to T(s) and gives
the natural choice § =1 (s’ = s+ /2pe) to define the upper boundary between S g
and C,. It approaches the pole as v/¢, and so in the limit € — 0 we recover the sharp
decomposition n = Cs U S, 9.

The local structure of the solid angle can be computed using any of our
formulae for w, however, in view of the foregoing description, an appealing method
is to use (2.9) and the geodesic curvature of the hyperbola. As this approach is
symmetric in 3, it is enough to compute the geodesic curvature for the hyperbola
near § = 1 and simply double the result to account for § = —1. Further, the geodesic
curvature of n is strongly peaked in a localised region of size ~ v/€ about the vertex
of the hyperbola, decaying to 0 as the hyperbola approaches its asymptotic great

circles. Using (2.17) we find an integrated geodesic curvature of

° si 1+ é(cosh 2t —
2/ sin /1 + é(cosh 2t (:OS.Q)d757 (2.18)

— oo cOSO + cosh2t + ésin® 0

where we have extended the upper limit of integration to +oo, corresponding to an
integration of the hyperbola between —ﬁ and N(s) on the observation sphere. The
integrand decays exponentially for large ¢ so that the error involved is small.

The integral (2.18) may be evaluated exactly in terms of elliptic integrals of
the first and third kind. The main feature is that the result is not analytic in €
but has leading behaviour €lné. This can be seen most easily by noting that the
integrand decays exponentially for [¢| > 5 In(2/¢) and that the integral is dominated
by values of |t| smaller than this. Retaining only the leading behaviour, one finds

the local structure of the solid angle has the form
- .8 N
w(€ 0) =2(0 — a(s)) + €ln = sind + O(e), (2.19)
€

in which a zeroth order term from the integrated geodesic curvature gives the wind-
ing of w and the logarithmic term causes the level sets of w to bunch along the local
normal. Figure 2.7(d) shows a cross-section through a Whitehead link in which both
of these structures are clearly visible. In figure 2.9(b) we compare the various orders
of approximation in (2.19) to the exact solution for a round unknot. In contrast

to the divergence of the magnetic field, w is perfectly well behaved as € — 0. The
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logarithmic correction €logé tends to 0, but in a cusped manner, with unbounded
radial derivative at the origin. We may interpret this fact as a direct consequence
of the limiting cusped structure n = Cs U S, 9 — the magnetic field gives the rate
of change in the area of a spherical curve as we smooth a cusp in it, and is thus
naturally unbounded.

We note briefly that (2.19) is not harmonic — indeed, the corresponding
expression for the magnetic field found in, for example, [Saffman, 1992] is not diver-
gence free. This is a consequence of neglecting variation in w along T(s) and one
may verify that, allowing x to lie off the plane normal to y(s), one picks up a term

linear in z which restores harmonicity.

a b g2F
0.1 [
0.0
-0.1 -~
20— log gsinf)|
0.2k —ExactI
-0.2 -0.1

Figure 2.9: (a) For finite €¢/p, the local structure of n is approximated by the
hyperbola (2.17) — the dashed black line gives the approximation to n shown in
figure 2.8. As €/p — 0, the vertex of this hyperbola approaches T(s), and the
asymptotes remain unchanged (black dotted line). In this way, we obtain the limiting
decomposition n = C5 U S; 9. The two asymptotes are great circles through T(s)
at angles ¢ and 0, and give the local behaviour of S, and C; — note that that an
angle of 0 corresponds to the direction N(s). (b) The local structure of w in a plane
normal to K. Contours of spacing % are shown for the the zeroth order rotational
structure (black dashed line), the curvature induced correction (2.19) (orange) and
the exact solution for a circle of radius p (blue). The absolute values of the level
sets are arbitrary, as we have discarded global information about Cs in our local
structure calculations. The primary effect of curvature is to bunch the level sets of
w along the local normal. Note that for the curvature induced correction we have
fixed the regular values in (2.19) to zero by comparison with the exact solution for
a circle [Saffman, 1992].
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2.5 Remarks on numerical implementation, extension
to links

In (2.3), (2.9), (2.11) and (2.14), we have several possible methods for computing w
for any curve K, directly from the specification of its embedding in R?. The main
difficulties in their numerical implementation are encountered when evaluating w(x)
at points close to the surface of discontinuity discussed in §2.2, 2.3.2. We shall focus
discussion on (2.3) and (2.14), the remaining equations being of similar numerical
character.

Focusing first upon (2.3), when x lies on the surface of discontinuity it is
pierced by a (generically) unique half-line extended from some point y(s) € K
such that n(s) - n,, = —1. Considering the integral in (2.3) to be defined upon
K, at the arc length s there is an isolated point of divergence in the integrand.
In the degenerate case where x lies upon a line of self-intersection in the surface,
there will be multiple such points. Letting x now lie slightly off the surface and
approach it perpendicularly, we may expand the integrand of (2.3) using x—y(s) :=
€cos O Ny +esin @ ny x T(s)/|ns x T(s)|, where € is now the angle between x—y (s)
and the surface. We find that its limiting behaviour is that of a Lorentzian peak
of width €f, which abruptly switches sign as x crosses the surface. If one employs
a simple numerical integration scheme with regularly spaced points along K of
spacing As, the Lorentzian peak is not captured when e =~ As. This leads to
poor approximation of w(x) in a region of constant thickness As about the surface
of discontinuity. By refining K, we may reduce the thickness of this region —
unsurprisingly, this result suggests that As should be on the order of the resolution
one desires for w.

A similar discussion holds for (2.14), for which the divergences of the inte-
grand occur at s such that n(s)-T(s) = £1, depending on which homotopy is used.
The width of the Lorentzian peak instead scales as p(s)#, and so the thickness of the
region of poor approximation is Ase/p(s); in particular, we note that this thickness
scales with viewing distance in (2.14), but not in (2.3).

One method of avoiding these peaks is to use the freedom in (2.3), (2.14) to
move the surface of discontinuity about in space, ensuring x is never too close to it
when computing w(x). In (2.3), we have freedom in our choice of n,. The surface of
discontinuity is given by dragging K to infinity along n.,, and two different choices
of ny, will give two such surfaces. If K is knotted, these surfaces must intersect,
giving a set of curves on which a third choice of ny is needed. In practice, an

initial choice of n,, is often suggested by the geometry of the input knot, or is
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simply chosen to be a coordinate axis. When computing w(x), one may record the
minimum value of n - ny, and, if it crosses some user defined threshold, switch to
using —ne for the calculation at that point. On the set of lines where this second
choice again crosses the threshold, a random choice of ny, may be used. (2.14) faces
analogous problems on the tangent developable surface. Here, we have freedom in
whether to place the discontinuity on T, or T;_. However, these two surfaces
again generically intersect [Cleave, 1980; Mond, 1989], and there is now no more
freedom in (2.14), forcing one to either switch method or analytically correct for
the Lorentzian peaks along such intersections. For this reason, and for the scaling
properties discussed above, from a numerical standpoint we have found the use
of (2.3) to be more convenient than (2.14).

Two brief computational remarks: As discussed in §2.4, the limiting local
structure of w about K has cylindrical symmetry. If one desires high accuracy to
sample the tubular neighbourhood of K, one may use a cylindrical mesh out to a
distance ~p(s). Finally, we note that as values of w for different values of x are

computed independently of one another, our formulae are easily parallelised.

2.5.1 Extension to links

Extending our results to links is straightforward: by the linearity of electromag-
netism, one simply sums w mod 47 for each component of K. We reiterate that w
is only defined for oriented curves, and that different choices of orientation for each
component of K will give distinct solid angle functions. In the case of the solid angle
framing discussed in §2.4, each component K; acquires a framing, whose self-linking

number equals the negative of the sum of the linking numbers between K; and Kj,
j # 1 (figure 2.8).

2.6 Construction of knotted fields: two illustrations

We describe briefly two different examples of knotted fields that can be constructed
using the solid angle as illustrations of how it influences the structure in different

settings.

2.6.1 Scroll waves in excitable media

The possibility of knotting in the waves of excitable media has been considered for
some time [Winfree and Strogatz, 1983a, 1984]. In a three-dimensional excitable

medium, scroll waves of excitation emanate from a vortex filament, which it is
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possible to close into a loop or knot. Recent results have highlighted a remarkable
topology-preserving dynamics in these materials [Maucher and Sutcliffe, 2016, 2017,
2018] in which the geometric shape of the vortex filament relaxes and simplifies
but without strand crossings, thus preserving the topology. Simple effective curve
dynamics seem insufficient to capture the full behaviour, which depends also on
interactions mediated by the global structure of the scroll waves. This structure can

be captured, in part at least, using the solid angle.

Figure 2.10: Scroll waves from a unknotted vortex filament. In (a) we show the zero
level set of the phase field (2.20) and in (b) a modification of it where a sinusoidal
modulation has been added to the solid angle framing, thereby adjusting the local
spin rate of the scroll wave. In both (a) and (b) the two columns simply show
different cuts through the emanating scroll waves.

Scroll waves emanate from a knotted vortex filament creating an outward
propagating family of approximately equi-spaced wavefronts. A simplified descrip-
tion of this wave system is given by a phase field that both winds by 27 around
the filament curve and increases linearly with distance from it. This behaviour is

captured by the function
1
P(x) = kdg (x) + §wK(x) mod 27, (2.20)

where wg (x) is the solid angle of K, dx(x) = minycx |y — x| is the distance from
x to the curve K and k is a wavenumber. In figure 2.10(a) we show an example
of the scroll waves generated by a simple unknotted vortex ring. Note that the
way the wave surface attaches to the filament — i.e. the local spin rate of the scroll

wave along the length of the filament — is determined by the solid angle and, in

66



particular, given by the solid angle framing. Of course, the phase function (2.20)
can be modified to vary this; the modulation can by thought of as a K-dependent
off-set to the distance function dx(x). An example of such a modulation and how

it alters the scroll waves is shown in figure 2.10(b).

2.6.2 Nematic disclinations

As discussed in §1.3, in nematic liquid crystals it is possible to manipulate topo-
logical defect lines, called disclinations, so as to create closed loops in the form of
any knot or link [Tkalec et al., 2011; Copar et al., 2015; Machon and Alexander,
2013]. The surrounding liquid crystal texture is an example of a knotted field. The
molecular orientation in liquid crystals is described by a unit vector d with the ne-
matic symmetry d ~ —d; disclinations are line defects in the director field around
which the orientation rotates by 7, or reverses. The solid angle facilitates an explicit

construction of a knotted field with this property. For example, the director field
d(x) = [sin(wk(x)/4),0, cos(wk (x)/4)], (2.21)

encodes K as a disclination line for any choice of knotted curve, or link. This
knotted field has two particularly notable properties. First, since the solid angle is
harmonic, it corresponds to a critical point of the one elastic constant Frank free
energy. Second, the texture is “planar”, having no y-component.

We show in figure 2.11(a) a visualisation of the director field (2.21) for the
case where the disclination lines K correspond to the Borromean rings. The knot-
ted nematic texture is conveniently visualised by showing the surface where the
z-component of the director vanishes — the vector field (2.21) has boundary condi-
tions such that the director is aligned along z asymptotically far from K, motivating
this choice. This surface is a level set of the solid angle, namely wx = 2.

In §1.3.2, we saw that for a given knotted disclination K there are many
homotopy classes of texture, one of which is represented by (2.21). To obtain rep-
resentatives of other classes we introduce a second solid angle function wy,(x) for a

curve L described below, and use a generalisation of 2.21,

1= (52 () (22 4 (52

The surface d, = 0 is the same as before (the level set wx = 2m) but the director

field is no longer constant over it, varying with the solid angle function wy. In

figure 2.11(b) we illustrate this through the colour of the surface. Now the gradient
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Figure 2.11: Knotted nematic texture for disclinations forming the Borromean rings.
The surface corresponds to the set of points where the director has no z-component,
d, = 0; it is coloured according the xy-components. In (a) the texture is planar
(see (2.21)) and in (b) it is fully three-dimensional (the curve defining the xy-winding
through the angle wy, is also indicated).

of this colour is (proportional to) a magnetic field and L is the curve corresponding
to the current carrying wire needed to generate that magnetic field. More formally,
L is a curve in the complement of the surface d, = 0 corresponding to a homol-
ogy cycle and generates colour winding around the dual cycle of the surface itself.
Constructing the textures (2.22) for every homology cycle L we generate represen-
tatives of every homotopy class of nematic texture [Machon and Alexander, 2016a,;
Alexander, 2018]. Of course, the construction is more than purely topological and
depends also on the geometric properties of the solid angle and of the curves that

generate them.

2.7 Discussion

The solid angle provides a canonical knotted field for any explicitly given curve or
link, depending only on that curve and its geometry. As such it facilitates a study
of the geometry of knotted fields, shedding light on their structure and establish-
ing connections between the field and the geometry of the curve. We have given
a survey of its properties and methods for computing it that parallels and mod-
ernises Maxwell’s seminal presentation. The fundamental result is the homotopy
formula (2.5), which unifies the different formulae for calculating the solid angle,

and also provides the means for characterising changes in the knotted field induced

68



by deformations of the curve. In the latter context, it would be natural to study
the consequences of inflection points and other geometric degeneracies in the curve
shape, and also strand crossings or, with suitable extension, reconnections. Like-
wise, one could seek a characterisation of the geometric shape of a knot or link whose
solid angle function realises specific properties, for instance having a minimal num-
ber of critical points. Those special geometric shapes where the properties of the
solid angle change would then represent an interesting branch of singularity theory.

The local structure of the field can be considered particularly important
in many systems. Here, the natural framing provided by the solid angle and its
relation to the writhe of the curve establish a standard reference, from which the

global effects of changes to the local behaviour can be systematically assessed.
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Chapter 3

Stable and Unstable Vortex
Knots in Excitable Media

3.1 Introduction

Models of excitable media support spiral wave vortices in two dimensions!. In a

three-dimensional medium the analogous structure is a vortex filament [Winfree and
Strogatz, 1983al]. Such a filament may close on itself to form, in the simplest case,
an unknotted loop, and more generally a knotted vortex [Winfree and Strogatz,
1983b]. As well as being organising centres for waves of excitable activity, early
numerical experiments and theoretical work showed that these knotted filaments
have their own dynamics [Keener, 1988; Winfree, 1990; Keener and Tyson, 1992;
Henze, 1993; Biktashev et al., 1994; Winfree, 2002; Dierckx, 2010]. Remarkably, in
a simple example of an excitable medium, the FitzHugh-Nagumo model, simulations
suggested that these dynamics were topology preserving, and further that they were
capable of ‘simplifying’ a knot, reducing an initially complicated filament geometry
to a simpler stationary state [Winfree, 1990; Henze, 1993; Winfree, 2002]. Such a
scenario stands in stark contrast to the knot untying via reconnection events seen in
other examples of knotted fields such as fluids and superfluids [Kleckner and Irvine,
2013; Scheeler et al., 2014; Kleckner et al., 2016].

So far, the striking knot simplification has been reported only for the un-
knot [Maucher and Sutcliffe, 2016] — reducing three examples of tangled, but un-
knotted, curves to a geometric circle of fixed average radius — and, in two examples,
the trefoil [Sutcliffe and Winfree, 2003; Maucher and Sutcliffe, 2016]. At higher

!The introduction to this chapter is self-contained. However, for much more detail on excitable
media, and the theory and history of vortex knots inside them, the reader should see §1.4, with
which this section and §3.2 share a little overlap.
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crossing number the behaviour appears to be more complicated. Nevertheless, with
the exception of two examples discussed below, reported knot and link evolutions
are still consistent with preservation of topology [Henze, 1993; Winfree, 1990, 2002;
Sutcliffe and Winfree, 2003; Maucher and Sutcliffe, 2016, 2017, 2019]. Stationary
states have been reported for all torus knots and links up to N = 12 [Maucher and
Sutcliffe, 2017, 2019], where N denotes the crossing number of the knot or link,
although only in the case where they are stabilised by proximity to a planar surface
with Neumann (no-flux) boundary conditions and the vortex filaments are initialised
to have the idealised geometry of torus curves. Both of these features are believed
to be important for the stability of these examples [Maucher and Sutcliffe, 2017,
2019]. If the vortex is initialised with idealised torus geometry but not sufficiently
close to the boundary, it is prone to poorly understood instabilities which cause
it to deviate from the initially symmetric form. Similarly, torus knots initialised
without the idealised geometry do not evolve to the observed stationary states and
instead follow irregular dynamics, typically ending with the filament breaking upon
contact with the no-flux surface. It is not known how close to the idealised torus
geometry the initial curve needs to be to attain the stationary state. A cautionary
example is provided by early bulk (not close to a no-flux boundary) simulations of
a variety of knots and links, including torus knots, started from exactly symmet-
ric configurations, which appeared stable over the times initially simulated [Henze,
1993]. As we shall demonstrate in the case of torus knots, over longer timescales
such geometries in fact destabilise. The recent no-flux simulations are over much
longer timescales, however in the absence of theoretical results it is not clear exactly
how long simulations testing knot stability should be.

As indicated above, in contrast to topology preserving dynamics seen in the
unknot some apparently exceptional examples of topological non-preservation have
been reported, the first being the already discussed example of a single filament
breaking at a no-flux boundary, effectively interacting with its mirrored neighbour.
In the bulk, a small vortex loop (stable in isolation) may be annihilated by a larger
coaxial one [Courtemanche et al., 1990; Maucher and Sutcliffe, 2018]. The mech-
anism behind this annihilation is thought to be ‘wave slapping’ by a train of high
frequency wavefronts coming from the larger loop impacting upon the smaller one
(which has a vortex rotation frequency below that seen for an isolated filament)
causing it to destabilise.

Underlying all of the above observations are general questions as to the driv-
ing factors behind knot dynamics, which can be expected to involve both the topol-

ogy of the vortex and its geometry. Theoretical work has focused on local geometric
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models of filament motion in which an isolated straight filament is perturbed to
have slight curvature and longitudinal twist in the phase of its cross sectional spiral
waves [Keener, 1988; Keener and Tyson, 1992; Henry and Hakim, 2002; Biktashev
et al., 1994; Echebarria et al., 2006; Dierckx, 2010]. To lowest order these deforma-
tions lead to filament motion with both normal and binormal components, as well
as a modification of vortex rotation frequency away from the intrinsic (straight fila-
ment) frequency of the excitable medium [Keener, 1988; Biktashev et al., 1994; Dier-
ckx, 2010]. A buckling instability, termed the ‘sproing’ instability [Henze, 1993], in
which an initially straight filament twisted above some critical threshold destabilises
and adopts a helical conformation, has also been predicted and observed [Keener,
1988; Henze, 1993; Henry and Hakim, 2002; Echebarria et al., 2006; Dierckx, 2010],
which has been proposed [Maucher and Sutcliffe, 2017] to account for the deforma-
tions seen in torus knot simulations.

These considerations are all local and do not capture the global topology of
the vortex or non-local wave-vortex interactions, which are essential to the process
of simplification without reconnection observed for unknotted loops. The nonlin-
ear waves of excitation propagating from the vortex filament mutually annihilate
when they meet, creating a complex ‘collision interface’ [Winfree, 1990; Henze and
Winfree, 1991; Henze, 1993; Winfree, 2002; Sutcliffe and Winfree, 2003] depending
not only on the filament geometry but also on the synchrony of wave emission from
distant parts of the vortex ( [Henze and Winfree, 1991] shows an example of this
interface for a trefoil knot with a different kinetics to that considered here). The
analogous structure in a two-dimensional medium, sometimes known as a “shock
structure” [Howard and Kopell, 1973], is well studied in a variety of excitable me-
dia [Krinsky and Agladze, 1983; Ermakova et al., 1986; Vinson, 1998; Gottwald
et al., 2001; Agladze et al., 2007; Dutta and Steinbock, 2011]. If a two-dimensional
spiral vortex interacts with a wavefield of frequency higher than its own (as gen-
erated either by other vortices or externally) this interface moves towards the low
frequency vortex until directly upon it, at which point the high frequency wave-
field directly slaps the vortex. This slapping may then induce motion in the vortex,
commonly referred to as “spiral wave drift” or “high frequency induced drift”. The
same scenario may occur in three dimensions — a more general instance of the wave
slapping mechanism described above for a pair of coaxial rings — and has been
proposed as an important driver of filament dynamics, a conjecture for which there
is some indirect evidence [Winfree, 2002; Sutcliffe and Winfree, 2003; Maucher and
Sutcliffe, 2019]. However, in the three-dimensional case the factors that determine

the collision interface are poorly understood — as discussed above, local filament
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geometry may in principle affect vortex rotation period, but the observed frequency
shift and annihilation of a small unknot suggests that inter-filament interactions and
Doppler shift due to relative filament motion are also important.

We present here the results of a systematic survey of the dynamics of all
prime knots up to crossing number N = 8 and focus on behaviour in the bulk, using
periodic boundary conditions, so as to further complement recent work by Maucher
& Sutcliffe [Maucher and Sutcliffe, 2016, 2017, 2018, 2019], who have studied no-flux
boundary conditions. We find generically that knotted vortices do not stabilise into
simplified stationary states, although some do. The predominant behaviour is of
unsteady dynamics and instability through the expansion of some portion of the
knot into a large loop; we present evidence that this instability occurs through the
wave slapping mechanism alluded to previously. In a substantial fraction of cases
(eight of thirty-six) the instability eventually leads to strand reconnections in the
bulk, demonstrating that such events are in fact not exceptional as one increases
crossing number, and do not occur solely at a boundary or in a highly symmetric
geometry. The reconnections are of anti-parallel strands, driven together through
wave slapping in a manner analogous to the annihilation of the unknot discussed
above, and result in links. For both a generic knot and the specific case of idealised
torus knots we additionally investigate the role of the sproing instability in knot
destabilisation, finding it to be unimportant in explaining generic knot instability
and not directly responsible for torus knot destabilisation, although correlated with
torus knots attaining a temporarily stable knot length.

Our survey also shows that for N < 4 (unknot, trefoil, figure eight) knots
do exhibit topology preserving dynamics towards stationary states. We strengthen
these results, and for the unknot those of [Maucher and Sutcliffe, 2016], by testing
the bulk untangling dynamics of all of these knots with a wide variety of initial
conditions — in the case of the unknot, a far greater variety than has been used
previously. We find that in the bulk a generic unknot, trefoil or figure eight simplifies
to a canonical form, but that the wave slapping mechanism at play for large IV can
cause rates of convergence to vary dramatically. We then characterise the geometry
and long-term dynamics of these stationary states and two further examples that we
have found, a Whitehead link and a 62 knot, both of which appear to belong to the
same ‘family’ as the figure eight knot, sharing with it many dynamical properties.
This commonality does not cleave across preexisting knot types, for example torus

knots, but rather is a property of the FitzHugh-Nagumo dynamics.
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3.2 Methodology

3.2.1 The FitzHugh-Nagumo model

The FitzHugh-Nagumo model is given by the pair of nonlinear reaction-diffusion

equations

8U_1 1 3 2 81}_ _
8te<u 3" U>+v“’ E*G(“‘i‘ﬁ ), (3.1)

with u(x,t), v(x,t) real valued scalar fields. The remaining symbols are model
parameters, and here are set to € = 0.3, 8 = 0.7, v = 0.5. These values were
originally chosen in [Henze, 1993], and belong to a parameter regime in which two-
dimensional spiral waves rotate rigidly and a simple vortex ring shrinks to a stable
finite radius [Courtemanche et al., 1990]. As such, they are particularly well suited
to the search for stable knots and have been used extensively in the literature [Henze,
1993; Winfree, 2002; Sutcliffe and Winfree, 2003; Maucher and Sutcliffe, 2016, 2017,
2018, 2019]. With these parameter choices characteristic spatial and time scales are
given in arbitrary units (fixed by setting the diffusion constant to one above) by
a spiral wavelength, A\g = 21.3, and a rotation period for which we find a value of
Ty = 11.14 £ 0.03, giving a rotation frequency fo = 0.0898; this period has been
previously been reported as between T = 11.1 [Henze, 1993] and Ty = 11.2 [Sutcliffe
and Winfree, 2003]. One may also define an effective vortex radius \g/27 ~ 3.4, a
naive estimate of the radius of the stable unknot mentioned above; the actual radius
found in [Courtemanche et al., 1990] is 4.8. Over such a lengthscale one expects
short-range inter-vortex repulsion in a generic knotted filament. For comparison to
experiment, we may consider the system used in [Totz et al., 2015], discussed in
figure 1.16 of §1.4. There, Ty = 390s, giving a time unit of 35s, and Ay = 0.58cm,

giving a space unit of 0.27mm.

3.2.2 Simulating bulk FitzHugh-Nagumo dynamics

We simulate (3.1) with periodic boundary conditions using the pseudospectral method
of [Goldstein et al., 1996], in which the linear part of (3.1) is solved exactly in Fourier
space via an integrating factor, and nonlinear terms are computed via fast Fourier
transform. Thereafter, a fourth order Runge-Kutta timestepping is used. When
such a method is employed for diffusive systems, high wavenumbers are damped
by an exponential integrating factor, and the system remains numerically stable
for time steps beyond those allowed by the Neumann stability criterion [Goldstein

et al., 1996]. To test the effects of altering gridspacing and timestep we calibrate
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against the rotation period of a two-dimensional spiral, a quantity known to be sen-
sitive to such choices [Dowle et al., 1997]. We have found that for grid spacings of
Az =0.2,0.4,0.6, observing two-dimensional spirals over a time of 7' = 5000 one is
able to alter the chosen timestep between At = 0.01 and At = 0.14 with no mea-
surable effect on spiral period. In practice, with the exception of simulations to be
discussed in § 3.3.1, we perform simulations using gridspacing Ax = 0.5, timestep
At =0.1.

Our use of periodic boundaries complements existing results by removing the
effects of no-flux boundary interactions on vortex evolution, allowing us to study
long time bulk dynamics without vortex knots breaking at (or nestling into) the
boundary. One might worry that although we have removed boundary interactions
they have been replaced by the effects of periodic neighbours. Figure 3.1(a) shows
a snapshot of a typical periodic simulation. The structure of the wavefield, shown
in orange, is tracked by plotting the level set u = 1.6. It has a complex topology
at lengthscales comparable to that of the vortex filament, shown in red. However
further from the filament the shells of wave activity simplify to a series of concentric
spheres propagating outward from the location of the filament. This is a conse-
quence of the nonlinear nature of the waves — when two wavefronts meet they fuse,
creating a single cusped front, which is then smoothed by the curvature dependence
of front propagation velocity. Provided the simulation domain size remains large in
comparison to the dimensions of the vortex filament (and noting that, as we shall
see, filament dynamics are typically orders of magnitude slower than wave dynam-
ics), these shells shield the vortex from its periodic neighbours — the outermost
shell passes across the periodic boundary and annihilates itself, leaving the bulk of
the simulation untouched. As an example, in figures 3.1(b), (¢) we compare snap-
shots from two simulations of the same knot evolution, in this case the 72 knot,
but run in boxes of different sizes. Figure 3.1(b) is identical to figure 3.1(a) except
that we only show a cross section through the wavefield. Figure 3.1(c) shows the
corresponding knot and cross section taken from the larger simulation. Considering
discrepancies between the two wavefields where they overlap (in other words only in
the smaller box) we see that differences are localised to a region on the boundary of
the smaller box, with the bulk of the two simulations in agreement on this smaller
box. As expected, the knot loci themselves are identical. The data shown is taken
at time 7' = 2420 after initialisation, O(200) vortex rotation periods into the simu-
lation (why we select this particular knot and simulation snapshot for display will
be discussed further in §3.3), during which time (and throughout the remainder of

the simulation) the knots from the smaller and larger simulations track one another
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perfectly. We may thus be confident that our periodic simulation is indeed capturing
bulk behaviour. In practice, how large a simulation box one needs to ensure this
behaviour will vary depending on knot dynamics and the timescale of simulation.
For the results presented here, we find a box size of 174 to be sufficiently large, with
corresponding numerical grid size 350 = 2 x 5% x 7 factorisable into small primes,

which speeds the fast Fourier transforms used in spectral simulation considerably.

3.2.3 Defining and tracking the vortex filament

Stacking two-dimensional spiral vortices one obtains the simplest example of a vortex
filament, one with a straight geometry from which emanates a quasi-two-dimensional
‘scroll wave’ [Winfree and Strogatz, 1983a]. More generally, the vortex filament is a
tubular structure with arbitrary geometry, normal cross sections of which resemble
spiral vortices whose phase is allowed to vary longitudinally. (In fact even this
picture is an idealisation; waves emanating from other sections of the filament can
disrupt this local spiral wave structure.) Various operational definitions to extract
a one-dimensional curve from this tubular structure have been proposed [Winfree,
1990; Henze, 1993; Dowle et al., 1997]. Here we follow [Sutcliffe and Winfree, 2003;
Maucher and Sutcliffe, 2016, 2017, 2018, 2019] and first compute the intermediate
quantity

B = Vu x Vo. (3.2)

|B| measures the deviation of u and v contours from colinearity — it is zero for a
planar wave, and only attains substantial nonzero value along the vortex filament.
Contours of |B| thus take the form of tubes. For example, figure 3.1 tracks the vortex
filament by showing the level set |B| = 0.4 in red. To extract a one-dimensional
curve from such a tube, we first note that B orients the tube. Stepping along the
tube in the direction given by this orientation, we connect maximal values of |Bj|
in cross sections taken through it, resampling if necessary to give equidistant steps;
a similar extraction procedure is detailed in [Winfree, 1990]. This raw curve is
then smoothed to remove modes of frequencies comparable to A, giving a smoothed
curve from which we may compute curvatures and torsions via finite difference.
(The choice of lengthscale for filtering is motivated by the observation that the
most highly curved stable filament observed, a stable round unknot [Courtemanche
et al., 1990], has a circumference comparable to A.) Typically we will use the term
‘filament’ to emphasise the one-dimensional curve defined above, and ‘vortex’ when
we wish to discuss the full tubular stack of spiral waves surrounding this curve. This

definition (and indeed other ‘instantaneous’ definitions [Dowle et al., 1997]) gives
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Side length: 174
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Side length: 225

Figure 3.1: (a) A snapshot of a typical simulation, here of the 75 knot T = 2420 after
initialisation, demonstrating the structure of the wavefield in a periodic simulation
box. The level set |B| = 0.4 (red tube) marks the vortex filament, and contours
of u = 1.6 mark the location of propagating wavefronts (orange paired surfaces).
The near quarter of the wavefronts are clipped to reveal their inner structure. The
wavefronts have a complex topology at lengths comparable to that of the vortex,
but away from it take the form of simple concentric shells. (b, ¢) Snapshots of
the same 75 knot evolution simulated in boxes of different sizes. (b) replicates (a),
with a cross section through the u wavefield shown (wavefronts in red). (c) shows
the corresponding knotted vortex and wavefield from the larger box (dark grey
simulation box corresponds to cross section shown). Differences in the wavefields
are localised to the boundary of the smaller simulation box, ensuring we are indeed
capturing bulk dynamics. As expected, the knot loci themselves are identical.



rise to small amplitude oscillations in the geometry of the filament at period ~ Tj
which carry through to derived quantities such as knot length. We shall examine
the spectrum of these oscillations in detail in §3.4, but in subsequent plots showing
length evolution we filter them out for clarity.

As discussed above, vortex phase varies along the filament, framing our one-
dimensional curve, and the twist of this framing may in principle affect both filament
motion and vortex rotation period. We track it by computing % along the filament

and then smoothing as above.

3.2.4 Initialising a knotted vortex field

To initialise an arbitrary knotted vortex for simulation we adopt the basic strategy
of [Sutcliffe and Winfree, 2003; Maucher and Sutcliffe, 2016] in which a phase field
#(x) € S', x € R*\ K, is constructed which contains a phase singularity with the
geometry of some desired vortex knot K. Thereafter, the winding of ¢ around the
specified knotted phase singularity is translated into the winding of (u,v) around
the excitation-recovery loop of the FitzHugh-Nagumo model as one encircles the
vortex filament via the map (u,v) = (2cos ¢ — 0.4,sin ¢ — 0.4).

To construct a phase field ¢ containing a singularity along a given curve K,
we first compute the solid angle function w about K using (2.3) from §2.2 [Binysh
and Alexander, 2018]

Do X n-dn
w(x) = / =~ " mod 4, (3.3)
where fory € K, n := g:; is the projection of K onto a unit sphere centred on x

and n is an arbitrary unit vector. For a discussion of this integral and its numerical
properties, including its singular behaviour about points x such that n-n,, = —1,
see §2.5 [Binysh and Alexander, 2018].

The solid angle contains the necessary phase singularity along K, and for the
simulations discussed in this chapter we use it for initialisation directly by setting
¢ = w/2. We emphasise that, although w contains the correct topology to be used
as an initialisation condition, the structure of w about K does not mirror that of
a typical (u,v) wavefield, which consists of a series of approximately equispaced
wavefronts radiating outwards from the vortex filament (figure 3.1) — after ~ T,
¢ = arctan (2(v + 0.4)/(u + 0.4)) no longer resembles w. Further, this methodology
does not give control over the initial twist distribution along the filament, which
is set by the intersection of the level set w = 0 with K, the solid angle framing of
K discussed in §2.4 [Binysh and Alexander, 2018]. We may control both of these
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features by modifying ¢ as

1
d(x) = kod(x) + iw(x), (3.4)
where ko := 2m/)¢ is the spiral wavenumber and d(x) := minyex|y — x| is the

minimal distance from x to K. kod(x) increases linearly with distance from the
curve, giving a periodic modulation of ¢ and hence (u,v) with distance. As an
example, figure 3.2(a) shows the wavefield generated using (3.4) when K is a trefoil
knot. The intersection of the level set ¢ = 0 with K, and hence the initial twist
distribution, may be controlled by including an offset in the definition of d(x) which
varies along K. An example of such a modulation, and how it alters the wavefield, is
shown in figure 3.2(b). Given, for example, the importance of twist distribution on
both rotation frequency and the sproing instability as discussed above (and further
explored in this chapter), such control is desirable for future work.

Initialisation geometries for the knots considered here were constructed from
those found in KnotPlot [Scharein]|, which in turn are based on Rolfsen’s knot table.
In the absence of existing work on high crossing number knots in the FitzHugh-
Nagumo model, there is no compelling reason to choose one set of initialisation
geometries over another; for example, an alternative choice would be to use configu-
rations of ideal ropelength [Ashton et al., 2011; Kleckner et al., 2016; Maucher and
Sutcliffe, 2017]. We use Rolfsen’s configurations as, with the exception of the torus
knots (whose evolutions we will compare to existing results [Maucher and Sutcliffe,
2017]) the geometries do not possess any symmetries. If strands of the knot are
initialised closer to one another than the vortex radius Ag/27, reconnections may
occur in the first AT ~ T of simulation, before the wavefield about the knot is
established [Maucher and Sutcliffe, 2016]. To ensure this does not occur, given an
initialisation geometry K we scale isotropically such that the longest side of K’s
bounding box occupies 80% of the simulation box size. As the simulation box is
O(50) times the size of the vortex radius, this ensures reconnections do not occur

during initialisation.

3.3 Unstable Knots

Fascinating recent numerical experiments on the evolution of unknots initialised
in complex geometries showed that the FitzHugh-Nagumo dynamics is capable of
simplifying an initially tangled unknot to a unique circular curve, without strand
crossings [Maucher and Sutcliffe, 2016]. These intriguing examples, coupled with

two further instances of simplification in the case of the trefoil [Sutcliffe and Win-
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Figure 3.2: Wavefield initialisation about a trefoil knot vortex filament (red curve)
using (3.4), with the level set ¢ = 0 shown in orange. The near half of the level set
is clipped to reveal its inner structure. In (a) the definition of d(x) in (3.4) is simply
minimal distance to the filament. In (b) it is modified by a threefold symmetric
sinusoid along the trefoil, d(x) = minycx|y — x| + %sin(Bs) where s is arclength
(as measured from the intersection of the trefoil with the zy-plane) and L is total
trefoil length, effectively adjusting the solid angle framing and local twist rate of
the vortex filament.

free, 2003], as well as some indirect evidence of the same behaviour for the Hopf
link [Maucher and Sutcliffe, 2019] (and a series of preliminary results on various
links in [Henze, 1993]), naturally invite the speculation that such simplification is
generic to any knot. To investigate the dynamics of a generic knotted filament, and
establish whether this is indeed the case, in figure 3.3 we show a survey of the length
evolution of all knots up to and including crossing number N = 8, with particular
curves that we discuss further highlighted in the legend. Excluding chiral variants,
there are thirty-six such knots.

Initial behaviour across all knots is contraction. This behaviour can be under-
stood using the perturbative, locally geometric laws of filament motion mentioned
in §3.1,which apply to an isolated and slightly distorted filament. To lowest order,
these laws predict that V,, = c1k + ...,V = cak + ...[Keener, 1988; Keener and
Tyson, 1992; Biktashev et al., 1994], where V,,, V}, are the filament normal and bi-
normal velocity, and the ellipses denote terms of higher order in filament curvature,
twist and arclength derivatives thereof Dierckx [2010]. The coefficient ¢; has been
called a ‘filament tension’ [Biktashev et al., 1994]; to lowest order its sign determines
whether the filament shrinks or expands (this analogy is not exact however; ¢; does
not have the dimensions of a force). The coefficients ¢; and ¢z are model and pa-

rameter value specific; for the parameters used here ¢; = 1.28 is positive [Maucher
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Figure 3.3:  Length evolution of knotted vortices up to and including crossing
number N = 8, with reconnection events indicated by curves which terminate early
with a circular marker. Knots included in the legend are further discussed in the
text. Note the difference in scale between the first and subsequent panels. (a)
N <5. (b) N =6 (dotted lines) and N = 7 (solid lines). (¢) N = 8. The unknot
(01), trefoil (31) and figure eight (41) settle to a stable length and fixed geometry
(see section 3.4). However, beyond this, generic behaviour is an initial period of
contraction, followed by length increase over longer timescales. Insets show the

geometries resulting from the destabilisation of the initially symmetric 5; and 7;
torus knots.
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T=2421 T=2423

Figure 3.4: Reconnection of the 79 knot at T' = 2423 (orange curve, then orange
and green curves after reconnection event) shown in AT = 2 increments. A pair of
anti-parallel strands (circled in black) interact, generating a wavefield locally similar
to that of the stable unknot; shown is the value of u in a cross section through the
knot, with high « value coloured red. The wavefield from the remainder of the
knotted filament, shown entering the circled region at T = 2417, impinges upon
these strands causing them to destabilise and reconnect. Note that the wavefield at
T = 2420 is also shown in figure 3.1.



and Sutcliffe, 2018], and an isolated filament contracts. Our knotted curves are
initialised with their strands separated by several vortex radii. Over the first few
vortex rotation periods the wavefield establishes itself around the vortex filament
(over such a timescale the filament may be considered stationary) with the resulting
collision interface disjoint from the filament itself. Thereafter each segment of the
filament initially moves effectively in isolation from its neighbours, and contracts.
Over longer timescales, however, we find that this initial contraction does not
generically lead filaments to settle to a canonical form or a fixed length, and further
that their topology is not always preserved. We observe reconnection events in eight
of the thirty-six cases, indicated by those curves terminating in circular markers in
figure 3.3. The first of these occurs at N = 7, with four of the seven N = 7
knots and four of the twenty-one N = 8 knots exhibiting reconnections. Figure 3.4
shows the reconnection event in the 72 knot occurring at T = 2423 in AT = 2
increments, with the region where the reconnection occurs circled in black. A pair of
neighbouring anti-parallel segments are directly impacted by waves emanating from
the rest of the knotted filament, causing them to destabilise and reconnect — the
same wave slapping mechanism responsible for the annihilation of a small unknot by
a larger one observed in [Maucher and Sutcliffe, 2018]. In cross section, the wavefield
generated by the anti-parallel segments (that section of the wavefield ending at the
circled anti-parallel segments in the 7" = 2417 panel of figure 4) locally resembles
that of a stable unknot, or indeed of a pair of oppositely signed two-dimensional
vortices [Courtemanche et al., 1990]. However this stable structure is additionally
impinged upon by the wavefield of the rest of the knot (shown entering the circled
region at 7" = 2417). It has previously been noted that the rotation period of a
stable unknot is 14% greater than T [Maucher and Sutcliffe, 2018], and as such the
stable unknot is vulnerable to wave-slapping induced annihilation by a wavetrain of
period Ty, with the frequency difference leading to motion of the collision interface
towards the stable unknot at speed cAT /2Ty, where ¢ is the wavespeed in the
medium [Courtemanche et al., 1990; Winfree, 2002], until the interface directly
impinges upon the unknot — this process is shown schematically in figure 3.5, and
a simulation of it may be found in [Courtemanche et al., 1990]. This same argument
applies to the anti-parallel segments discussed here, but the resulting topological
change is reconnection. In addition to the similarity of the wavefields between the
coaxial unknots of [Maucher and Sutcliffe, 2018] and the situation discussed here,
the relative filament motion is also the same; in both cases, the perturbed filaments
are drifting away from the impinging wavefield when topological change occurs.

This geometric detail is important, as the velocity of a stable unknot (0.3 [Maucher
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and Sutcliffe, 2018]) is a substantial fraction of the wavespeed in the medium (1.9)

and as such Doppler shift may compensate for reduced unknot frequency. For the

geometry here, however, the two effects can only compound one another.

(a) . ) D) ! ——
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Figure 3.5: A schematic of wave slapping between a pair of unknots. (a) A large
unknot (blue) emits waves of activity with speed ¢ at a period T, which travel
towards a smaller unknot (red), which emits at Tp + AT. The locus where the two
wavetrains meet and annihilate is called the collision interface (grey). The difference
in emission frequencies causes this interface to move at speed c¢AT/2Ty. (b) The
collision interface moves towards the smaller unknot (1, 2) until directly impinging
upon it (3). This causes the smaller unknot to destabilise (4).

Topology changes previously reported in the literature have primarily oc-
curred at simulation boundaries [Maucher and Sutcliffe, 2017, 2019], and one might
be concerned that this reconnection is also an artefact of a finite simulation box.
The snapshot of a 79 simulation at T = 2420 shown in figure 3.1 was taken from
the same data shown in figures 3.3, 3.4, and was chosen specifically to emphasise
that this is not the case. Enlarging the simulation box to side length 225 as shown
in figure 3.1 yields identical knot evolution, including the reconnection event.

Although we have focused the above discussion on the reconnection in the
72 knot, analogous findings hold for the other cases. A detailed understanding of
the wavefield evolution leading to such reconnections, and why they are seen here
only for N > 5, is lacking (we shall see examples of similar wavefield induced effects
for small N in §3.4), but as N increases one generically expects a more complex
wavefield surrounding the knot as strands become closely packed over one another.
As such, we lose the ability to picture segments of the knot as isolated, or even as

interacting solely with a unique ‘nearest neighbour’ region, but instead must think
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of them analogously to the vortex ring buffeted by external waves.

Even in the absence of reconnections, we only see stable states for the unknot,
trefoil and figure eight knots; we shall discuss the robustness and detailed geometry
of these states in §3.4. For N > 4 knots do not simplify. After the initial relatively
rapid contraction, we generically see expansion over a much longer timescale of order
several hundred vortex rotation periods followed by periods of irregular evolution
including possible further expansion. Although the broad trend is to faster expan-
sion at higher crossing number, the variability of behaviour between knots of the
same crossing number suggests that initialisation geometry is just as important in
determining long time evolution. In particular, we note the discrepancy between the
behaviour of a typical knot with no initial symmetry and a torus knot initialised with
high symmetry. Although a typical knot shows length increase by time 1" = 2000,
for the 5; knot shown in figure 3.3 this increase is only visible by T =~ 4000, and
is not evident for the 7; even by T ~ 6000, although the inset curve geometries
demonstrate the knot has indeed destabilised (that such destabilisation occurs, but
only after long time simulations, clearly demonstrates the necessity of simulating for
many hundreds of rotation periods before drawing conclusions about the dynamics
of this system). In the next section, we shall investigate the mechanisms of both the
dramatic length increases seen in a generic knot, and of the deviation of the torus

knots away from initialisations of high symmetry.

3.3.1 The mechanism of vortex knot length increase

Exploring the knot geometries corresponding to the generic length increases seen in
figure 3.3 one finds that, despite the variety of behaviour across knots, the increase
occurs via a common mechanism in which isolated strands of the knot rapidly expand
outwards from a tightly packed core region forming the rest of the knot. We illustrate
this behaviour for the example of the 63 knot in figure 3.6(a). The same wave
slapping mechanism driving reconnection events has also been proposed as a non-
local mechanism for persistent knot length increase; in this context when the collision
interface intersects a section of the knot, wave-vortex interactions drive that section
outwards [Winfree, 2002; Sutcliffe and Winfree, 2003]. The interaction does not have
an intrinsic lengthscale, as waves in the medium do not decay. Instead, its range
depends upon the geometry of the knot and the accompanying collision interface.
For the 63 knot shown in figure 3.6 one may verify that this surface intersects the
expanding arm, suggesting that wave slapping may be at play.

Given the potential importance of this mechanism, we would like to establish

that it is really driving knot expansion, rather than simply being correlated with it.
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Figure 3.6: (overpage) Dynamics of the 63 knot. (a) From 7" = 0 to 7" = 2000
the knot contracts and flattens, behaviour caused by the intrinsic curvature driven
dynamics of an isolated filament mimicking a line tension. From 7' = 2000 onwards
length increases, with a single arm of the knot rapidly expanding outwards from an
otherwise tightly packed core. (b) Comparison of the length evolution of the fully
interacting 63 vortex filament at 7' = 2000 (green) to a copy encased in a ‘glass
tube’ of radius 10 (blue) or 15 (orange). With long-ranged interactions removed,
the knot does not expand, but rather settles to a length of ~ 400 — 600. (c) Initial
divergence in geometries between the interacting 63 knot (green curve) and the
radius 10 tubed one (blue curve). Divergence does not occur globally, but is localised
to two distinct expanding segments outside the lengthscale defined by the tube. (d)
Distribution of filament twist during knot expansion. The expanding arm of the
knot has twist values well below the 0.024 rotations per space unit threshold for the
sproing instability, and is less highly twisted than other, non-expanding, segments
of the knot, ruling out this instability as the cause of length increase.

To do so, we investigate the effects of abruptly removing long-ranged interactions
entirely, by numerically encasing the filament in a ‘glass tube’ of moderate radius
which moves with the filament and fuses when two knot segments approach one
another [Winfree and Strogatz, 1983b]. With this construction short-range inter-
filament repulsion, and geometry (including twist) mediated filament motion are
preserved but long-ranged interactions are cut out. Using it, we may compare the
evolution of a filament both with and without long-range interactions. A suitable
radius for the tube is suggested by previous estimates of vortex radius in the lit-
erature, as well as the naive estimate \o/2m ~ 3.4: [Courtemanche et al., 1990]
directly measures a stable vortex ring radius of 4.8, suggesting a vortex radius of
~ 5, and [Maucher and Sutcliffe, 2017] estimates a radius of 5.9 by matching ideal
ropelength [Ashton et al., 2011] and measured trefoil lengths. To implement this
construction numerically we simulate only within a tube of lattice points about the
filament (the filament itself being constructed as in §3.2). In principle the details of
the boundary conditions between the vortex and tube must be considered, however
we have found that provided we use a tube radius above the vortex size estimates
above, such details do not alter the geometry driven motion of the vortex, a reflec-
tion of its localised nature. This observation allows us to sidestep a sophisticated
finite-element scheme (the spectral method discussed in § 3.2.2 only being valid
for a periodic box), and instead simply use a finite difference method, with (u,v)
values for points outside of the tube set to their fixed point values (—1.03, —0.66).
The tube must move with the vortex, however we note that this need only hap-

pen on the (slow) timescale of vortex motion; we may allow motion in a fixed tube
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for a time O(1y), after which the tube is recentred around the vortex. The points
brought into the tube at its boundary during this procedure are again set to fixed
point (u,v) values. In practice we typically use a conservative tube radius of ~ 10
with gridspacing Az = 0.5 and timestep At = 0.01, with a finite difference scheme
in which the Laplacian is computed using a seven point stencil and both reaction
and diffusion terms are evolved using fourth order Runge-Kutta timestepping. The
timestep above is chosen as it gives results identical to those of the spectral method
using At = 0.1 when measuring the two-dimensional spiral vortex period.

Figure 3.6(b) contrasts the length evolution of the fully interacting 63 knot
with a copy of it encased in the tube, with initial conditions for both taken at
T = 2500, midway through knot expansion. Upon removing long-ranged interactions
we no longer see a dramatic increase in knot length. Instead, the length of the tubed
knot stabilises at ~ 400 — 600. The details of this stabilisation vary depending on
the radius of the tube, but the final lengths obtained are approximately the same
across radii. Using the core size estimate of [Maucher and Sutcliffe, 2017], the
ideal ropelength of the 63 knot is 340 [Ashton et al., 2011], and thus the tubed
knot is relatively tightly packed. Over longer timescales (AT = 8000 shown for
the radius 10 tube of figure 3.6(b)) the tubed 63 does not reach a fixed geometry,
but rather undergoes a compact tumbling motion, as the binormal component of
filament motion causes segments of the knot to work over one another, though
without further substantial length change. In figure 3.6(c) we explore the initial
divergence in geometry between the fully interacting and tubed knots. We see that
it does not occur globally, but is localised to distinct expanding segments of the
interacting 63 which lie separate to the knot core region and are responsible for
global length increase; these same segments are those which intersect the collision
interface. Within the core region, segments of the filament are packed closer than
the spatial cutoff we have defined, and there is no immediate divergence between
the interacting and tubed knots. By contrast, removing long-range interactions
allows distant segments of the tubed knot to evolve under their intrinsic dynamics,
unaffected by wave-vortex interactions, and so shrink towards the core region. Thus
a wave slapping mechanism accounts for global changes in knot length and also for
the geometry of where they occur.

In local geometric models of filament motion a mechanism by which length
may stabilise or increase, despite an effective positive line tension, is via the ‘sproing’
instability [Winfree, 2002] in which, above some critical local twist threshold, an
initially straight filament buckles into a helix; by expanding beyond lowest order

in curvature and twist, local geometric laws of motion have successfully reproduced
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this sproinging and classified it as a Hopf bifurcation [Henry and Hakim, 2002;
Echebarria et al., 2006; Dierckx, 2010]. For the FitzHugh-Nagumo model with the
parameter values used here, [Henze, 1993] reports this threshold at 0.024 rotations
per space unit for a straight filament. This instability has been proposed to account
for the halting of links at lengths greater than hard core repulsion on the scale
of the vortex radius would suggest [Winfree, 2002], and for the destabilisation of
symmetric torus knots [Maucher and Sutcliffe, 2017]. We may rule out sproing as a
driver of the dramatic length increases seen in generic knots by noting that, as a local
geometric mechanism, its effects were present in the tubed knot discussed above.
For further confirmation, we may also examine the twist distribution along the fully
interacting filament during knot expansion. Figure 3.6(d) shows this distribution
for the 63 knot; we see that the expanding arm of the filament consistently has twist
values well below the sproing threshold and, further, that other sections of the knot
are more highly twisted, yet do not show the same length increase. In fact, twist
values along the entirety of the knot are consistently below the sproing threshold, an
observation also made for the early short time simulations of [Henze, 1993; Winfree,
2002].

Although not a driver of generic knot length increase, this last observation
suggests that the sproing threshold may still have dynamical importance as a sta-
biliser against curvature induced length decrease, or play a role in the destabilisa-
tion of symmetric torus knots. In figure 3.7 we study the destabilisation of the 5¢
torus knot, originally presented in figure 3.3, in more detail. Figure 3.7(a) shows
the evolution of a measure of the asymmetry of the knot, defined by taking the
power spectrum of the knot’s curvature as a function of arclength, and computing
the fraction of the power in modes which do not respect the underlying symmetry
(fivefold in this case). Alongside it we show the evolution of both the maximal
twist, expressed as a fraction of the 0.024 rotations per space unit sproing thresh-
old discussed above, and the fraction of the arclength of the 5; which attains a
twist greater than 90% of this threshold. We first note that the order of events is
broadly consistent with sproing threshold playing a role in the dynamics. After an
initial period in which the knot flattens and the twist remains roughly constant,
maximal twist increases until it attains the sproing threshold, thereafter remaining
constant; this threshold is attained as the length of the 5; stabilises. However, it
is several hundred rotation periods before we see the subsequent loss of symmetry.
This timescale suggests that it is not the case that the knot hits the sproing thresh-
old, and then destabilises; [Henze, 1993] notes that the timescale for sproinging to

occur is typically only a few rotation periods. Furthermore the geometry of the
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destabilisation is inconsistent with sproing instability. In figure 3.7(b) we show the
knot as it destabilises, coloured by twist. We fail to see helical sproinging along the
highly twisted segments of the knot; instead the whole form collapses to a twofold
symmetric shape. A similar deformation is seen in the 71 (see inset of figure 3.3) and
has been noted in early simulations of initially symmetric triply-linked rings [Henze,
1993], where its cause was attributed to an interplay between the sproing thresh-
old and inter-filament interactions. Overall, then, it appears the sproing threshold
acts to halt knot shrinkage, but that subsequent destabilisation cannot be directly

attributed to the sproing instability.

3.4 Stable Knots

In §3.3 we showed that the speculation that a generic knotted vortex might simplify
to a canonical form — a speculation previously evidenced by promising ‘untangling’
results for the unknot [Maucher and Sutcliffe, 2016] and a few further examples of
simplification in low crossing number knots and links [Sutcliffe and Winfree, 2003;
Maucher and Sutcliffe, 2019] — is not borne out for N > 4. In the search for stable
knots, recent numerical experiments found that knots and links could be stabilised
through proximity to a no-flux boundary [Sutcliffe and Winfree, 2003; Maucher
and Sutcliffe, 2017]. Primarily the examples shown were for torus knots and links,
although the figure eight knot and Borromean rings were also briefly given as non-
torus examples. In contrast to the untangling of unknots, these boundary stabilised
states of more complex vortices were not established to be ‘basins of attraction’ for
generic initial geometries, but rather were obtained from highly symmetric initial
vortex line geometries. In §3.3 we also saw that in the case of torus knots more
complex than the trefoil such states are not stable in our bulk simulations. By
contrast, for the stability of the trefoil and figure eight knots we now show that
a much stronger statement than has been made previously is true: in the bulk,
a generic trefoil or figure eight simplifies to a canonical form, analogously to the
unknot. The states are the same as those found in the survey of figure 3.3 and also
appear to be the same as those found near a reflecting boundary. In addition, we
strengthen the results of [Maucher and Sutcliffe, 2016] and demonstrate them to be
independent of a no-flux boundary by testing the bulk untangling dynamics of the
unknot with a far greater variety of initial conditions than has been used previously.

All knots may be converted into the unknot by performing strand crossings.
The minimal number of strand crossings needed to convert a knot into the unknot is
called its unknotting number. Of the knots with N < 8 there are 18 with unknotting
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Figure 3.7: The role of the sproing instability in the destabilisation of the 5; torus
knot. (a) shows the (normalised) length evolution of the 5;, alongside a measure
of its asymmetry. Shown also is the maximum absolute twist along the knot as a
fraction of the 0.024 rotations per space unit sproing threshold, and the fraction of
arclength which attains 90% of this threshold. The twist threshold is reached as knot
length plateaus, but no sproinging instability is observed; instead the knot gradually
destabilises over several hundred rotation periods. (b) shows the geometry of the
knot destabilisation, coloured by twist. Rather than a helical instability developing
in regions of high twist, the whole knot transitions to a twofold symmetric form.
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Figure 3.8: Untangling dynamics of the (a) 18 unknots, (b) 17 trefoils and (c) 9 fig-
ure eight knots formed by performing single strand crossings on the higher crossing
number knot geometries of §3.3. (a) All unknots simplify to a unique round geom-
etry without reconnection events. Length decrease is monotonic, however there is
some variation; the geometry of one particularly slow decay is shown in the inset,
displayed at times indicated by the solid markers. (b) All trefoil geometries simplify
to a unique stable state, however there is greater variation across decays than for
the unknots, with periods where knot length actively increases (boxed inset, circled
markers). (c) Of the 9 tangled figure eights simulated, 7 settle rapidly to a stable
state. However, over T' = 20000 one example fails to converge and another con-
verges only after going through prolonged periods of length increase, contraction
and irregular ‘tumbling’ dynamics.



number 1; that is, they can be converted to the unknot by a single strand crossing.
By analogous single strand crossings one can also target the trefoil or figure eight
knots: for N < 8 there are 17 that convert to the trefoil and 9 to the figure eight
under a single strand crossing. Beginning with the knot geometries of §3.3, we use
these crossings to provide an assortment of initial tangled geometries for unknots,
trefoils, and figure eights, and study their evolution. Figure 3.8(a) summarises the
results of these simulations for the tangled unknots. We find in all cases that the
initially tangled vortex transforms to a unique stable ring and that the dynamics
does not involve any reconnections. The typical dynamics is an approximately
constant rate of length contraction, although this is not rigorous and there is some
variation. In particular, in one example (obtained from the 8;; knot) there is a
substantial period of pause where length decreases much more slowly than is seen
on average; snapshots of the geometric evolution of this curve are shown as insets.

Figures 3.8(b),(c) show results for the trefoil and figure eight knots. As with
the unknot, for the trefoils we see simplification without reconnection to a unique
steady state, although there are perhaps more examples showing periods where the
length is not decreasing; one such is illustrated by the inset figures. However, for
the figure eights the dynamics is rather more complicated; 7 of the 9 initialisations
rapidly converge to a unique stable state, but 2 show prolonged periods of length
increase as well as of contraction, with one of them failing to converge over the times
simulated. In the example highlighted in figure 3.8(c), we see that the initial period
of expansion is due to a single arm of the knot rapidly expanding outwards from
an otherwise tightly packed core, caused by the same wave slapping as described in
§3.3. This expansion continues for many hundreds of rotation periods and results in
a total increase of several times the initial knot length. In addition, the subsequent
period of contraction does not lead directly to a stable shape, but rather produces
an extended period of ‘tumbling’ dynamics in which the length fluctuates erratically
before eventually settling to the final steady state. The total time that this dynamics
plays out over greatly exceeds that of the typical unknot.

These results bridge the gap between the simplification of the unknot dis-
cussed in [Maucher and Sutcliffe, 2016] and our own findings for high crossing num-
ber knots by showing that, although clearly neither the untangling dynamics nor the
geometries giving rise to wave slapping instability are fully understood, the same
mechanisms dominating high crossing number knot behaviour also play an impor-
tant role in determining low crossing number behaviour; wave slapping can totally
disrupt the appealing picture of a dynamics which monotonically decreases knot

length even when a stable target state exists. The results also demonstrate the im-
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portance of initial conditions on long-term knot evolution; even given the existence
of a stable state, the difference between a ‘good’ and ‘bad’ initial starting state may
lead to an order of magnitude difference in the time taken to reach that stable state.

Another notable example of the importance of initial conditions comes from
the observation that the boundary stabilised trefoil knot actually exists in two dis-
tinct stable configurations [Maucher and Sutcliffe, 2017]. The first, which we denote
the 31,1, has the geometry that the tangled trefoils of figure 3.8 evolve to. The
second, which we denote the 31 2, is not reached by our tangled trefoils. This state
was constructed in [Maucher and Sutcliffe, 2017] from an exactly twofold symmet-
ric initial vortex filament, and preserves this symmetry in the final reported state.
Although, as we have seen with torus knots, highly symmetric boundary stabilised
states may not exist in the bulk, in our own simulations we have found the 3;
to be accessible in the bulk using an initial configuration with only approximate
twofold symmetry, and have confirmed its stability up to 7' = 12000. Thus, al-
though this twofold symmetric 31 2 indeed appears stable, the results of our tangled
trefoil simulations suggest that it has a small basin of attraction. Taken together,
the above results suggest that, although we have seen that the stability of higher
crossing number knots is not the norm, stable geometries may nevertheless exist in
the bulk, but that when hunting for them we should not use any carelessly chosen
initial configuration, but ought to be more selective in which initial geometries we
use. For hints as to what those geometries might be, we now investigate in detail

the properties of the stable knots we have found thus far.

3.4.1 Properties of stable knots

Figure 3.9 shows the geometries, curvature and torsions as a function of arclength,
vortex framings and twist distributions of the stable 31 1, 31 2 and figure eight knots.
The evolution of their vortex framings at four successive intervals over a (approx-
imate) vortex rotation period are indicated by the vector fields along the curves.
Curvatures and torsions shown correspond to the geometries in the far left, T'= 0
panels (as discussed in §3.2.3 there is slight intra-period oscillation), with the ar-
bitrary zero of arclength fixed to coincide with maximal curvature values. We first
note the striking twofold symmetry of both the 3; 2 and the 4; knots; this symmetry
is not a remnant of initial conditions, but emerges from the underlying dynamics. By
contrast, the 31 1 lacks any threefold symmetry. This is especially notable given that
this state was reached starting from an exactly threefold symmetric torus knot ge-
ometry in §3.3. It appears that the boundary stabilised trefoil reported in [Maucher
and Sutcliffe, 2017] also lacks threefold symmetry, although it is unclear why this loss
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Figure 3.9: Geometries, vortex framings and twist distributions of our stable knots.
Vector fields along curves indicate vortex framings, and are shown at four successive
times across a (approximate) vortex rotation period. Curvatures and torsions shown
correspond to the T'= 0 panels (there is slight intra-period variation) with the zero
of arclength fixed to maximal curvature values. With the exception of the 4; knot
for which there is no distinction, all knots shown are the ‘right handed’ chiral variant
— they rotate in a right handed sense about their direction of motion (down the
page). Dotted circle highlights a half turn of a helix in the figure eight geometry,
which may be extended to several half turns to give the initialisation geometries for
the stable Whitehead link and 65 knot shown.



of symmetry does not occur for boundary stabilised torus knots of higher crossing
number. A second striking feature of these stable knots is the tight synchronisation
of the evolution of their framings. The framings of closely separated segments of the
filament mesh [Henze, 1993], the wavetip emanating from one segment being consis-
tently met by a wavetip emanating from a spatially neighbouring segment, resulting
in travelling waves of tightly synchronised wave activity running the length of the
knot in a periodic fashion. The pattern is evident in the 3; 2 and figure eight knots,
but is also present in the 311, most clearly when one focuses on one of its three
relatively straight segments; the framing of the curved lobes is twisted such that it
meets the rotation of the wavetip emanating from the straight segment. Again, this

meshing is an emergent property of the stable knot.
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Figure 3.10: Length evolution of the Whitehead link and the 65 knot with initial-
isation geometries made by extending the structure of the stable 4; knot. Insets
correspond to marked times.

The similarity of the geometries and vortex framings of the 31> and figure
eight is suggestive of a recurrent structural motif. To investigate further we take the
geometry of the the stable figure eight and use it as a starting point to construct new
trial initialisation geometries. We do so in the simplest way possible — as highlighted
in the dotted circle around a section of the T' = 0 figure eight in figure 3.9, the knot
geometry contains a half-turn of a helix, which we may extend to an integer number
of half-turns. Doing so gives a family of trial initialisation curves alternating between
knots and two component links, the next two being the Whitehead link and the
62 knot. Simulation reveals that such initialisation geometries evolve to apparently
stable states. Figure 3.9 shows their detailed geometry, and in figure 3.10 we confirm
their bulk stability up to 7' = 15000. Both states share the twofold symmetry and
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tight synchronisation over a vortex rotation period found in the 31 2 and figure eight
knots, with especially close similarity in the geometry and twist distributions of the
41, Whitehead link and 69 knots. This similarity suggests that they arise as the
start of a family of such stable knots which does not cleave along some existing sub-
category of knots (for example torus knots) but rather arises specifically from the
FitzHugh-Nagumo dynamics. As another demonstration of the importance of initial
conditions, and a reminder that such states may have small basins of attraction, we
note that the 69 of §3.3 does not find this stable state over the times simulated.

In figure 3.11 we explore the dynamical properties of all stable knots found
thus far. With the exception of the 311, we find that each drifts along its axis of
symmetry and rotates as a rigid body, with speeds and rotation rates summarised in
figure 3.11(a); these rates are computed by averaging the motion of the rigid body
frame of the stable knot over AT = 2000. An example of this motion is shown for
the 62 knot in figure 3.11(b) (as can be seen in figure 3.10, the Whitehead link and
the 62 knot have some long timescale periodic length modulation which corresponds
to a slight oscillation in their velocity). The 31 instead drifts in a helix as shown in
figure 3.11(c), rotating about the helical axis as a rigid body, a reflection of its lack of
threefold symmetry (a numerical fit to this helix [Enkhbayar et al., 2008] finds that
it has radius 3.23 and pitch 39.34). The scale, and structure with knot size, of the
drift velocities resembles that found for torus links in [Maucher and Sutcliffe, 2019]:
within the family of knots discussed above, we see drift velocity decreasing with knot
size. However, the complex geometries of the stable knots discussed here renders the
explanation for this decrease given for torus knots (decreasing asymmetry between
inner and outer parts of the torus as size increases) inapplicable. A reflection of
this complexity is that, beyond consistency of scale, there is no clear accompanying
pattern in the rotation rate data.

We briefly note that in the above discussion of vortex rotation sense, drift
velocity and overall knot rotation sense we have not been careful to distinguish the
possibly different behaviours of oriented or chiral variants from one another. All
stable knots and links discussed above are isotopic to themselves under reversal of
the orientation of any link component, however with the exception of the 4; they
are all chiral, and this chirality determines the rotation sense of the knot. In figures
3.9 and 3.11 we present variants rotating in a right handed sense about their drift
velocity; left handed variants, with reversed twist distributions, also exist.

As discussed in §3.3, [Maucher and Sutcliffe, 2018] reports an increase in the
rotation period of a stable unknot by 14%. We investigate whether similar shifts

exist for other stable knots by looking at the spectra of their high frequency length
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oscillations. Figure 3.11(d) shows the spectra of all stable knots as measured over
AT = 4000 after they reach their stable configurations, alongside the spectra of the
first T' = 1000 of the unknot and 4; data shown in figure 3.3. We include this second
set of data for calibration and methodology validation, as during this time we expect
the data to give the spectrum of a noninteracting knot, which should approximately
correspond to fy. As expected, the length oscillations of the noninteracting data are
consistent with the fundamental vortex rotation frequency of fo = 0.0898, and do not
vary with knot topology — before inter-vortex interactions occur the global structure
of the filament does not dramatically affect vortex rotation period. In fact, as this
data is taken during the contraction of both knots, the observation that it shows
purely spectral broadening suggests a negligible role for curvature in possible shifts
to rotation frequency. As with the noninteracting data, the stable knot spectra show
single peaks, but their frequencies are shifted relative to the noninteracting case on a
scale which exceeds our estimate of curvature induced corrections. For all nontrivial
knots, this shift is to a higher frequency (lower period), and its size is approximately
constant; we obtain a period of T' = 0.977y. By contrast, the unknot alone shows
a substantial shift to lower frequencies (higher period); we find an unknot rotation
period of T' = 1.197), consistent with the results of [Maucher and Sutcliffe, 2018].
That the situation for nontrivial knots is a shift to lower period relative to an isolated
filament is intriguing, and suggests itself as a potential origin of the motion of the
collision interface leading to the wave slapping observed in §3.3. One important
complicating factor in this sort of analysis is Doppler shift. Although the period of
the stable unknot is higher than Tp, its velocity is 0.3, a substantial fraction of the
wavespeed (1.9) in the medium. Using the data presented here this gives a Doppler
shifted period for a stationary observer ahead of the unknot of only 1% greater than
To; in other words, at least for the unknot, relative filament motion is extremely
important in determining the stability of a situation. A similar calculation for an
observer behind the 4; gives a Doppler shifted period of T' = 0.975Tp, a far less
substantial shift. We speculate that these two facts, firstly that stable structures
generically appear to have periods shifted below Ty, and secondly that even when
the shift is to a higher period in the case of the unknot (extrapolating unknot
behaviour to that of generic anti-parallel strands) this increase is compensated for
in a directional manner by Doppler shift, give an intrinsically unstable dynamics in

which the formation of any interacting structure hinders further formation via wave

slapping.
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Figure 3.11: Dynamics of stable knots. (a) A summary of drift speeds and rotation
rates for all known stable knots. Note that the velocity given for the 3; ; is that along
its helical axis. (b) Drift and rotation of the 62 knot. Shown are centres of mass
taken at T' = 100 intervals (blue dots), and snapshots of the geometry at 7" = 3000
intervals; between each snapshot the knot has rotated ~ 20 times. (c) The 3 ; drifts
along a helical path (fitted red curve), rotating about the helix axis as a rigid body.
(d) Power spectra of high frequency oscillations in knot length data. Before inter-
vortex interactions occur, the oscillation period is the same as fy. All non-trivial
stable knots show a similar shift to higher vortex rotation frequencies (7' = 0.977y),
with the unknot alone showing a shift to lower frequencies (17" = 1.197p).



3.5 Discussion

We have presented a survey of the bulk dynamics of knotted vortices in the FitzHugh-
Nagumo model covering prime knots up to crossing number N = 8. Although the
simplest knots — the unknot, trefoil and figure eight — possess stable states and
exhibit a fascinating dynamics of untangling without reconnections, this is not re-
peated for any of the other knots in our survey. The general trend is an irregular
dynamics, marked by sustained periods of length expansion of parts of the knot, the
cause of which we have directly shown to be a long-range wave slapping interaction.
In several cases, this wave slapping led to strand reconnections and topology change,
phenomena which appear to be associated more with the geometry of the wavefield
than the topology of the vortex.

For those stable knots found in our initial survey, we have tested the ef-
fectiveness of the FitzHugh-Nagumo flow in untangling a wide variety of initial
conditions. Although the dynamics successfully untangled all but one initial geom-
etry over the time simulated, we saw that in the case of the figure eight knot this
untangling was far from monotonic, and that the same wave slapping dominating
high crossing number knot behaviour may also cause low crossing number knots to
substantially increase in length before untangling. These results stand in contrast
to those of [Maucher and Sutcliffe, 2016] and our own on the rapid untangling of
unknots. We gave a detailed characterisation of the geometry and dynamics of all
known stable vortices in the bulk, including the tight synchronisation of their asso-
ciated wavefields, their motion through the medium and natural rotation periods,
and shifts in the spectra of their high frequency length oscillations. In addition
to the already known trefoil and figure eight knots, we found stable forms for the
Whitehead link and 62 knot, both of which appear to come from the same ‘family’ of
knots as the figure eight. While in the former case, the basin of attraction appears
to be large, the same cannot be said for the latter, at least for the timescales of the
simulations we have run.

Throughout this chapter, we have emphasised the importance of the colli-
sion interface on understanding long timescale vortex dynamics. Although we have
seen many examples of its importance, an understanding of its own dynamics is
currently qualitative at best. As a first step towards rectifying this, it would be
interesting to directly study the evolution of local rotation rate along a vortex to
fully disentangle the possible effects of curvature, twist and interactions. Turning
from general dynamical questions to the details of stable states, beyond noting close

similarities between those found we have not proposed principles by which their
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geometry and behaviour may be understood. A detailed description appears chal-
lenging, but the observed wavefield synchronisation, and similarities in the size of
spectral shifts, of §3.4 offers a global organising principle from which one might try
to predict geometries. When discussing stability we have contrasted our own results
in the bulk with those on torus knots and links that have been found near no-flux
boundaries [Maucher and Sutcliffe, 2017, 2019], detailing where results overlap (the
stability of the trefoil and figure eight) and where they diverge. Although we have
seen that boundary stabilisation is more complex than simply a suppression of the
sproing instability, its exact nature remains unclear, and deserves further study.

The features of the FitzHugh-Nagumo model at the parameter values stud-
ied here which are conducive to the formation of stable knots — short-range inter-
vortex repulsion, a contractile filament law of motion — are offset by other unde-
sirable features, primarily wave slapping. Parameter choices were originally made
in [Henze, 1993] on the basis that such values gave two-dimensional vortices with
desirable properties and three-dimensional simulations were computationally feasi-
ble. It would be interesting to revisit these choices armed with new criteria for a
desirable set of parameters. For example, we might search for parameters (or indeed
models) such that rotation frequency is seen to decrease with twist and interactions.
A related question is to explore whether wave slapping interactions have any role in
enhancing untangling as well as hindering it — in other words, whether the untan-
gling aspect of the dynamics can be captured in a local geometric model. Here the
tubed knot of §3.3 offers some hints; in preliminary simulations of tubed versions of
the tangled unknots of §3.4 we do not see substantial differences in the untangling
times between tubed and untubed unknots. It may be the case that, although the
full dynamics appear extremely difficult to capture with a local geometric model,
such a model offers insight for the restricted case of unknot untangling. This is
especially interesting given the apparent contrast between the untangling dynamics
seen here and those utilised by line tension minimisation methods [Maucher and
Sutcliffe, 2016].

Stable vortex rings have been realised experimentally and successfully de-
scribed using existing theory [Bénsigi and Steinbock, 2006; Azhand et al., 2014;
Totz et al., 2015]. As such, although one expects the precise details of knot stability
to be specific to the system studied, we believe that our exploration of the phenom-
ena seen here — the importance of wave slapping, bulk simplification of low crossing
number knots, frequency shifts in stable knots — is of direct experimental interest
for a general excitable medium, outside of the details of the FitzHugh-Nagumo

model.
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Chapter 4

Bend (GGeometry in Liquid
Crystals

4.1 Introduction

Geometric structures pervade the physics of liquid crystals. Famously, it was the
geometry of focal conics that led Friedel to an understanding of smectics [Friedel
and Grandjean, 1910]. This has been followed by geometric models of developable
domains [Kléman, 1980; Bouligand, 1980], screw dislocations and grain bound-
aries [Kamien and Lubensky, 1999], columnar phases on curved substrates [San-
tangelo et al., 2007], and the beautiful explanation of the frustration in blue phases
[Sethna et al., 1983]. The geometry of vector or nematic-like order was introduced
in §1.3.3 where we gave Frank’s elasticity of nematics (1.7), in which the funda-
mental modes of distortion — splay, twist, bend, biaxial splay — are named for
their geometric character. Corresponding to the symmetries of this elasticity we
had the decomposition (1.12), (1.13) of director gradients into components parallel
(VEn) and perpendicular (Vén) to n. Focusing on the shape operator Vén, we saw
that there were geometric singularities called umbilic lines [Machon and Alexander,
2016b], zeros of the deviatoric part of Vén, A, which describes directions of principal
curvature. The importance of umbilic lines is brought to the fore when they have
direct energetic consequences, as in a cholesteric liquid crystal, minimally described
by

Fo, = [;/d?’r (\Vn|2 +2gon -V x n), (4.1)

a modification of (1.7) in which all elastic constants are set to the same value K

and the twist energy is shifted to have a minimum at n-V X n = —¢qy [de Gennes
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and Prost, 1996]. The groundstate is given by any director field equivalent to
n = (cosqoz,sinqpz,0) (with nonzero twist qgp), where the local z direction is set
by the pitch axis, p, a second vector distinct from the line field n which gives the
local axis of twisting in the cholesteric. The eigenvectors of A determine p [Beller
et al., 2014; Machon and Alexander, 2016b], and umbilics in cholesterics then corre-
spond to defects in the pitch axis called A lines [de Gennes and Prost, 1996; Beller
et al., 2014]. Cholesterics themselves support an increased variety of metastable
states relative to the nematic phase, with many topological configurations including
Skyrmions, Hopfions and other knotted solitons (some of which are shown and dis-
cussed in §1.3.3), novel textures of shells and droplets, and constellations of point
defects [Posnjak et al., 2017]. Within these solitons, A lines might be considered
‘fingerprints’, naturally localised geometric structures describing energetic frustra-
tion, which also convey global topological information about the texture as zeros of
a section of the nontrivial part of £* ® £ directly derived from n.

This chapter is about the geometry and topology in the part of Vn not ex-
amined above, VIn = n* ® Vyn, determined by the bend vector b := Vun. By
analogy with the description of the shape operator, umbilic lines and cholesterics
given above, several questions suggest themselves: If the geometry of A is the geom-
etry of surface curvatures, what is the geometry of b? Do cousins of umbilic lines
exist, and if so what is their structure and topological significance? What types
of ‘bend solitons’ might we expect? And, if cholesterics are the natural setting to
study umbilics, what is the natural setting to study bend? The recently discovered
twist-bend nematic [Cestari et al., 2011; Chen et al., 2013; Borshch et al., 2013;
Jakli et al., 2018] is one answer to this last question, providing a system in which
the geometry of bend is naturally brought to prominence. In these systems the
molecules have a bent-core architecture that leads to an energetic preference for
non-zero bend. The observed phase, and apparent theoretical groundstate, has a
heliconical ordering that is intermediate between ordinary nematics and cholester-
ics. As such, we might expect analogous textures and topological states to those
observed in cholesterics. One key difference between the systems, however, is that
the cholesteric energy (4.1) is intrinsically chiral — left handed and right handed
twist have different energies. By contrast, the twist-bend nematic energy is achiral,
the ground state spontaneously picking one of two equal energy heliconic (hence chi-
ral) states. A second difference is that the bend is identically zero in the cholesteric
ground state.

In §4.2 we will describe the fundamental geometry and topology of bend,

relating it to the curvatures and torsions of families of integral curves, and show
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that cousins of umbilic (or A) lines exist, which we call 8 lines. Their structure,
including a natural notion of self-linking, will be discussed in §4.4. These [ lines,
zeros of a section of &, provide topological information analogous to umbilics; they
give a Skyrmion count, and are capable of distinguishing textures of different Hopf
invariant. We explore their topological significance in §4.5. Throughout, we will use
the twist-bend nematic as a model system, providing simulation results of twist-bend
Skyrmions and Hopfions. As such, we give a standalone introduction to twist-bend

nematics in §4.3. We conclude with a discussion of avenues for further work in §4.6.

4.2 Elements of the global geometry and topology of
bend

We firstly specify a few technical details brushed over in §1.3.3. Vector bundles
over a contractible space (like R3) are trivial [Milnor and Stasheff, 1974], as are
homotopy classes of maps from this space into any other (in our case specifically S?
or RP?) [Hatcher, 2002]. So in order to see topologically interesting features, such
as a nontrivial Euler class for £, our material must be topologically nontrivial. We
will denote it by a general 3-manifold M, and typically have in mind experimentally
accessible examples like S$3, D? x S!, §? x S, perhaps also T2 x S! or T3, as well
as the plethora of 3-manifolds given by knot complements'. M has a metric, which
we denote (e, @) or, when using vectors and there is no chance of ambiguity, with
the dot product notation e - e. The manifold is considered equipped with its stan-
dard metric compatible connection V. We will also freely use vectorial and vector
calculus notions such as cross products, gradients and curls, for example writing
(n-V)n = Vun, where on the left hand side with have the vector calculus gradient
and dot product, and on the right the connection. These vectorial concepts may be
defined on a general 3-manifold in terms of differential forms, wedge products and
so forth [Lee, 1996; Frankel, 2015], however typically we think of our 3-manifold as a
subset of R? with some nontrivial boundary conditions which allow us to compactify
the space (for example imposing fixed far field boundary conditions on R? allows
compactification to S3). As such, we may locally consider the manifold R? with
its standard connection and metric, and think of vectorial notions in the familiar
direct way, moving freely between them and the alternative presentation involving
connections and differential forms.

The bend is the change of the director field along itself, b = Vyn = —nx V x

n, and is a globally defined vector whose sign does not reverse under the replacement

Not all of these examples actually can support nontrivial £! For example, H2(SS) =0.
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of n by —n. As such, it is well defined for a line field. In this chapter, however,
we will restrict our attention to orientable textures, in other words those without
disclination lines, in which n can be considered a unit vector. We do this for two
reasons. The first is that we wish to focus on the simplest case first — the presence
of disclinations complicates our analysis, although it can be done by employing a Q
tensor approach [Machon and Alexander, 2016b]. The second is that, even without
disclinations, many topologically nontrivial textures of experimental relevance exist,
the Skyrmion and Hopfion textures to be considered in §4.5 being two examples.
As n is a unit vector, the bend is everywhere orthogonal to it, b-n = 0
— that is, b is a section of £. Setting b; := n X b and denoting their normalised
vectors e; := b/|bl, e2 := b, /|b)| = n x e; we have a local orthonormal frame
(e1,e2,n). Considering a single integral curve of the director, this frame is exactly
the Frenet-Serret frame (e;,e2,n) = (N,B,T) [DoCarmo, 1976], where T,N,B
are the tangent, normal and binormal to the integral curve, and in terms of curve
geometry b = kN, where & is the classical curvature. Continuing in the same vein,
the torsion of the integral curves is given by 7 = (e3, Vye1), a measure of how the
Frenet-Serret frame spins about the tangent as one moves along the curve. For any
curve, its torsion 7 may be interpreted as the connection one form corresponding to
the restriction of the ambient connection onto the curve’s normal bundle. For the
family of integral curves given by the director we interpret it as one component of

a connection one-form on the bundle &,

(Vb,b)

A = <Ve1,e2> = <b,b>

(4.2)
This 1-form and its associated curvature 2 = dA will enter in a fundamental way
into the characterisation of the director field, orienting bend zeros and giving a count
of Skyrmions. A few remarks about (4.2) are in order. Firstly, the connection V
here is a connection on the bundle &, and is globally well defined as the restriction
of the ambient connection on the manifold to the plane field £&. Equivalently, it is
the pullback connection induced by the map n : M — S? [Lee, 1996].2. The sections
(e1,e2) are, however, only well defined on the complement of the bend zeros (which
we come to in a moment), and this carries through to the 1-form A.

The bend is a vector in three-dimensional space, and a generic such vector
vanishes at isolated points. However, the constraint that it be orthogonal to the

director makes it atypical, having only two degrees of freedom — b is locally a

2n is a unit magnitude section of TM. However, 3-manifolds are parallelisable [Geiges, 2009],
meaning an everywhere nonzero basis can be chosen for the entire bundle. Relative to such a basis
n: M — S%
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map R3 — R2. As a result, the set of points where it vanishes is one-dimensional
and forms a set of fundamental curves in the material that are characteristic of
the director field. On these lines b = kKN = 0, so they correspond to points of
inflection in the integral curves of n, where the curvature x vanishes. We might
think of these zeros as ‘inflectional lines’, but we shall refer to them as 3 lines
by informal analogy with A lines. Finally, as discussed in §1.3.3, the zeros of any
section of an (orientable) vector bundle encode its Euler class. More precisely, the
B lines, counted with appropriate sign, are Poincaré dual to the Euler class of &,
e(§) € H*(M) [Bott and Tu, 1982; Hatcher, 2002; Geiges, 2009]. This is certainly
true, however the [ lines are more than this — they are not just any section, freely
chosen within £. Rather, they are directly derived from the director n, and cannot
be varied independently of it. One thus expects them to encode more information

than an arbitrary section of &; we shall return to this point in §4.6.

4.3 Twist-bend nematics

The twist-bend nematic, Ny, is a recently discovered phase of liquid crystal in which
the director adopts a spontaneous nonzero magnitude of bend [Jakli et al., 2018|.
Originally suggested by Meyer [Meyer, 1976], the idea was not actively pursued until
an article of Dozov’s [Dozov, 2001] in which he considered the possibility of the bend
elastic constant, K3 in (1.7), becoming negative, with the free energy then stabilised
from below by higher order derivatives. Everywhere constant magnitude bend is not
possible in two dimensions [Niv and Efrati, 2018], however provided one accepts an
accompanying twist or splay deformation, it is possible in three dimensions. Of these
possibilities Dozov focused on the twist-bend case, predicting a heliconical director

shown in figure 4.1(a)
n = (sin 6 cos gz, sin @ sin qz, cos ), (4.3)

where 27 /q is the heliconical pitch and 6 is the tilt angle. The bend vector in this
heliconical state is b = g¢sin 6 cos 6(— sin gz, cos gz, 0) and the twist is —¢sin? 6. As
6 — 0 we recover a simple nematic, and as § — 7/2 we obtain the cholesteric ground
state. A more recent theoretical approach, closer in spirit to Meyer’s original work,
is to keep K3 positive but augment the director n with a vector order parameter p,
the shape polarisation, shown in figures 4.1(a),(c) [Shamid et al., 2013]. n and p
together describe a banana shaped (‘bent-core’) molecule, with n specifying the long
axis of the banana (which respects n — —n) and the direction and magnitude of p

specifying the orientation and bendiness of the banana in the plane perpendicular
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to n. Spontaneous bend may be generated through a coupling to polarisation via a
term in the free energy like —p - (n- V)n = —p - b, expressing the steric preference
of banana shaped molecules to pack into configurations with nonzero director bend.

A minimal free energy, following [Shamid et al., 2013], is

/

¢

\

V4

Figure 4.1: (a) The heliconical ground state of a twist-bend nematic, with director
n and shape polarisation p of the banana shaped molecules shown. p is parallel to
the bend vector b of the director. (b,c) Just as a uniaxial liquid crystal can exist
in either an isotropic or nematic phase despite the individual molecules being rod-
like, a banana shaped molecule does not automatically imply the twist-bend state
— these polar molecules may have their orientations randomly aligned to give no
net shape polarisation, creating a uniaxial nematic phase. Figures reproduced from
[Jakli et al., 2018].

Fo= [ @ SIvnP+ VP - dp- (e Vot S0 PP (49
where K is a single Frank elastic constant for the director, C' is the same for the
polarisation, A sets the strength of coupling between bend and polarisation, and
u sets the scale of the bulk ordering energy. One may coarse grain p out of this
free energy, reproducing Dozov’s theory with an effective bend constant Kgﬂ =
K3 — (202 /u), which becomes negative if the ratio A?/u is large enough [Shamid
et al., 2013]. The ground state of (4.4) appears to be given by (4.3). Sending
u — oo in (4.4), as is the case deep in the twist-bend phase, |p| = 1 and p is

assumed to have the form
p = (—singz, cos gz, 0). (4.5)

This limit is useful for theoretical intuition, although in all simulations of the free

energy (4.4) presented in this chapter we allow the magnitude of p to vary. Substi-
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tuting the forms (4.3), (4.5) into (4.4) one may determine the heliconical parameters

in terms of those in the free energy,

sz = (1429) - (1 (1. ©))" (45)

2\
=3 cot 260, (4.7)

which may also be written

A :qtanQH’ g:sin“é?' (48)
K 2 K  cos260

In terms of variables \/K,C/K the magnitude of the heliconical bend is

=g = (1425) - (2 (1+5)) ). o

In figure 4.2(a) we plot 6, ¢, |b| as functions of C/K,\/K. Fixing A\/K and increas-

(@) 0.2 0405 0.14 0.3 0.6 ®) M C/K varies © @ M\/K varies
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Figure 4.2: (a) Contour plots of 6 (4.6), ¢ (4.7) and |b| (4.9) against C/K,\/K
for the heliconical ground state (4.3) of the free energy (4.4). Coloured squares
and circles are particular values of (C/K, \/K) for which the corresponding integral
curves of the director are shown in (b),(c).

ing C'/K causes the cone angle to increase towards an asymptotic value of 7/4, and
both wavevector and bend magnitude to decrease. Fixing C'/K and increasing \/K

causes wavevector and bend magnitude to increase, with the cone angle unchanged.
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The integral curves of the director (4.3) are given by the helices
1 . 1
(x(t),y(t), z(t)) = (- tanfsingt, — tanf cos gt, t), (4.10)
q q

and in figures 4.2(b),(c) we show the effects of varying C/K, \/K on these integral
curves.

Theoretical prediction of the twist-bend nematic predated its experimental
observation by decades [Jakli et al., 2018], with optical microscopy experiments in
the period 19932013 suggesting the existence of a low temperature ‘N’ state in a
variety of flexible dimers, which supported focal conics as well as other hallmarks
of a layered structure, but without an accompanying density wave (as in a smectic)
and a periodicity too small to resolve (in contrast to a cholesteric). More direct
observations came from freeze-fracture transmission electron microscopy in 2013
[Borshch et al., 2013], with an Ny, phase directly observed in cyanobiphenyl-(CHg)7-
cyanobiphenyl (CB7BC) with an extremely small pitch of 8-9nm. Currently there
are over 100 compounds known to exhibit this phase, with prevailing pitch lengths on
the nanometre scale [Jakli et al., 2018]. In comparison to cholesterics, with pitches
in the pym, this certainly represents a current experimental difficulty in generating
topologically nontrivial textures in these systems, with typical techniques — optical
visualisation and manipulation using fabricated colloids [Tasinkevych et al., 2014]
or lazer tweezers [Tkalec et al., 2011; Copar et al., 2015; Ackerman and Smalyukh,
2017] — inapplicable at such scales.

4.4 The structure of § lines

Consider the 1-form B := (b,b)A and its dual vector B := (B,e). The vector
j := V x B points along the 3 lines, orienting them according to the circulation of
A as shown in figure 4.3 [Machon and Alexander, 2016b]. To see this, consider a
local trivialisation (dg, dy,n) in a tubular neighbourhood around the /3 line. Unlike

(b,b1), (dg,d,) are nonzero throughout the neighbourhood. In such a trivialisation,
b = b,d; + b,d,, b, =b,d, —b,d,, (b,b) =02+ bz. Expanding A one finds

bydb, — bydb,

A=
b2 + b2

(4.11)

where w :=(d,, Vd,) is the connection 1-form associated to V when using this local
trivialisation. (b, by, s), where s is arclength along the 3 line, form a local coordinate

system with z-axis tangent to the J line and given by Vb, x Vb, /|Vb, x Vb,| —
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generically (bg,b,) vanish linearly, so Vb,, Vb, are non-zero on the § line and the
coordinate system is well defined. We may also define the associated cylindrical
polar system (p, 6, 2)%, in which A = df + w. The azimuthal 1-form df itself is
undefined on the S line, diverging relative to the smooth contribution w, and as
such the essential behaviour of A around the 3 line is simply that of df (figure 4.3).
Multiplying (4.11) through by b2 + b737 B =b,Vb, —b,Vb, + (b2 + b;)(aa, e) and on
the g line j = V x B = 2Vb, x Vb,. In terms of differential forms, on the 3 line
dB = 2db, Ndb, and xdB is dual to j, where x denotes Hodge duality. We emphasise
that A and df are defined along the entire tubular neighbourhood of a generic 3

line (with the line itself cut out), providing a canonical orientation.

.....

Figure 4.3: The bend n (orange arrows), a section of the bundle of planes £ (blue
planes) which are perpendicular to the director n (blue arrows), vanishes along
curves called /8 lines (green curve). The 1-form A (4.2) (grey) circulates around
these § lines, providing a global orientation vector j. The figure shows a Legendrian
point in the § line (red dot), where n - j = 0, and across which the index of the
line Ig, which characterises its local profile, changes.

4.4.1 The local structure of 5 lines

We may investigate the local structure of b about a [ line via a Taylor series.

Generically this series is governed by linear terms and so its structure is given

3Remember, however, that the vectors Vb, /|Vb,| and Vb, /|Vb,| are not orthogonal and so
there is a Jacobian between this and a ‘true’ polar system.
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by Vb evaluated on the 8 line. We have already seen that the director n splits
TR? ~ L@¢, with a corresponding splitting of Vn into two pieces, VEn and Vén, in
§1.3.3, and one way to proceed is to do the same to Vb. However, the [ line itself, in
combination with n along it, provides us with more structure than a single splitting
— it gives a canonical way to further split &, giving an adapted framing with which
several other planes and splittings may then be defined. In figure 4.4(a) we show the
0 line and n at a generic point, where n and j are neither parallel nor perpendicular.
The normalised cross product n x j defines a vector ny := nxj/|nxj| and orthogonal
plane A, and we define a third vector n, :=ny xn = (j— (n-jn)/|j — (n-j)n|,
the normalised projection of j onto &, with associated orthogonal plane y. Setting
(dg,dy,n) = (n,,ny,n) gives an adapted frame for the 5 line, with the line itself
always in the A plane. Note immediately that by construction, n,-j > 0, and further
that this frame is undefined if n || j. Across such points both n, and ny change
sign discontinuously, and the framing undergoes a 7 rotation (as unoriented planes
x and A may be extended by continuity) — this situation is shown in figure 4.4(b),
and we shall return to it in a moment. As well as £, x and A, we also have the plane
perpendicular to j itself, given by ker(xdB) and denoted «. Loops in these planes
measure winding about the S line. We have two limiting cases, shown in figures
4.4(b) and (c). In figure 4.4(b), n || j, £ = o and a loop in x intersects the g line
— if we try to measure winding on this plane we encounter degenerate behaviour.
In figure 4.4(c) n L j, x = a and a loop in £ intersects the [ line, likewise showing
degenerate behaviour. This latter case, where n - j = 0, we refer to as a Legendrian
point [Geiges, 2009]. One notes that the degeneracy in figure 4.4(b) is of higher
codimension than that in figure 4.4(c) — in figure 4.4(c) we require one component
of a unit vector to vanish, giving a codimension 1 degeneracy, whereas in figure 4.4
two must vanish, giving codimension 2.

We now examine the structure of Vb on the g line, making use of the various
planes defined above. In general, Vb € I'(T*R® @ TR3). Note, however, that
(n,Vb) = —(b, Vn) and so along a 3 line, where b = 0, Vb takes values in T*R3®¢
and so can be viewed as a linear map R? — R?, with a one-dimensional kernel which
defines the 3 line; j lies in this kernel. We have that

j = det(V°b)j = det(Vb)n + det(V¥b)n, (4.12)

where, as defined in §1.3.3, V*b is the restriction of Vb € T'(T*R? ® €) to the space
o* ® &, It is understood that each V*®b is evaluated on the S line, and one may

imagine each reads V*b|g3 jine although we shall not explicitly write the restriction.
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Figure 4.4: (a) At a generic point on a /3 line we have a canonically defined triple
(ny,ny,n) with orthogonal planes (x, \,¢), as well as the tangent to the /3 line j
and its orthogonal plane «. This framing breaks down in the situation shown in
panel (b), where n || j and ny is undefined, a codimension 2 degeneracy. In (c) we
show a Legendrian point where n-j = 0, a codimension 1 degeneracy. Measuring on
a consistently oriented plane across these degeneracies (in other words using either
X— or x4 across the degeneracy in (b)), in (b) Ig changes sign and in (c) Ié changes
sign.

Each equality in (4.12) is just a rewriting of the cross product Vb, x Vb, but they
may be obtained directly by pulling back the volume form on £ via Vb. Using
the second equality in (4.12) as an example, we have the decomposition Vb =
ngEg + VXbE, + V*bE,, where E, denotes projection onto the subspace e as
in §1.3.3. This decomposition carries through to the pullback, and since each of
Véb, VXb, VAb is a map between vector spaces of the same dimension, the pullback
simply scales the volume form by the determinant. Finally, by the construction of
our framing, det(V*b) = 0 — if we were using an arbitrary framing all three terms
would appear in (4.12). Recall also that, by the construction of n,, det VXb > 0.
(4.12) relates the windings we see in different measuring loops around the 3
line, and allows us to examine winding behaviour as we pass through a Legendrian
point. In the above discussion we focused on £ and , but it is worth also describing
what one observes when measuring winding on a general oriented plane . Pairing a
unit vector in R? to its orthogonal oriented plane, the space of all such planes is S2,
and we imagine j defining a north pole. The set of all planes containing the 5 line
is then an equatorial circle which splits S? into two disconnected hemispheres — in
passing from one piece to another we encounter a plane containing the [ line, on
which det(V7b) = 0 and across which it changes sign. This description motivates
the definition of an index Ig := Sgn(det(V7b)) = Sgn(n,, - j), where n, is the unit
vector associated with the oriented plane «. The most common measurement of this
type is IE [Nye and Hajnal, 1987; Berry, 1998, 2004], which describes the winding

of b measured on a loop in the oriented plane £. The value of Ig depends on which
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of the two equivalence classes outlined above v belongs to; if v is degenerate and
det(V'b) = 0, we set Ig = 0. By construction, Ié\ =0, Ig = {0,1}. This latter fact
is a little subtle given the reversal of n, when n || j; we return to it in a moment.

Let us now consider situations of degeneracy in order of ascending codimen-
sion, beginning with a Legendrian point (codimension 1), shown in figure 4.4(c) and
also in figure 4.3. At the point itself n-j = 0 so Ig = 0 and we encounter degenerate
winding on &; across the point IE changes sign. By contrast, the winding measured
in a = x, given by I}, is perfectly well behaved. The dual situation (codimension
2) occurs when n - j = +1, Ig = 0 and is shown in figure 4.4(b). Across such
points, the orientation of y reverses. To be precise let us define a + and — side
of the point, with associated oriented planes x4 and x_ which may be smoothly
continued across the singular point and so defined on a neighbourhood of it. On
the + side Ig = Ig*, and on the — side Ig = Ig_. We have that [g* = —Ig_ and
so measurement of index on a consistently oriented plane across the singular point
shows a sign reversal. Finally det(Vb)? = det(V¢b)? + det(VXb)?2, and so for I
to vanish we require that Ig =1 g =1 é\ = 0, in other words that j vanish, an even
higher codimension degeneracy in which ker(Vb) become two-dimensional and the
coordinate system (b, b,) defined above breaks down.

We briefly explore how these constructions appear when given a concrete,
but arbitrary, trivialisation (d;,d,,n). With respect to this trivialisation Vb is

given a 2 X 3 matrix and we have a Taylor series

X
= vty +o@ (4.13)
b, Vébye Vb, Sy

z
where s, sy, are currently regarded simply as undetermined constants in the Taylor
series, and O(2) contains terms quadratic or higher in x,y, z. How should we extract
the adapted frame, orientation of the g line and local windings from this matrix?

Ig is immediate. j is given by

j = (Vbuysy: — Vbyyse:)ds — (VEbursy, — Vobyes,.)d, +det(Véb)n  (4.14)
= det(VX b)d, — det(V* b)d, + det(Vb)n = det(VXb)n, + det(Véb)n (4.15)
where x" and X are the planes associated to the unadapted frame (d,,d,,n). We
have that det(VXb) = (det(V* b)? —I—det(VX/b)Q)%, where we may safely choose the

positive branch of the square root by construction of n,. Away from a Legendrian

point j may also be written as j = det(V¢b)(Véb~!s, 1)T, where s = (842, $42)7, and
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so the orientation on the S line is determined by Vé¢b~'s — specifically, its angle
to the local z-axis is given by tan @ = det(VXb)/det(V:b) = s (Vb 1)TVibls,
and to the z-axis by cos¢ = det(VX'b)/det(VXb) — a rotation by ¢ adapts the
framing, bringing ¥’ = x, N’ = A, at which point (4.16) adopts the form

¢b t

by cot 0s,. ngyy Syz
z

where V¢ b, etc. now refer to the rotated coordinate values. At a Legendrian point,
det(VEb) = 0, but (4.16) and our expression for cos ¢ still holds in the limit § —
7/2,cot @ — 0. The limit where # — 0 is a little more delicate. Here s, s,. — 0,
and one needs to prescribe a manner in which they do so in order to find the limiting
framing behaviour — for example, cos ¢ = (1 + (detv)"b)Q/(detV)"bf)_% =1+
(Vébyyse, — ngyxsyz)Q/(Vfbyxsm — ngyysyz)Q)_%, and this expression can give

arbitrary values of ¢ depending on how the limits in s, s, occur.

4.4.2 Relating ( line structure to director gradients

Above, we studied the structure of Vb on 3 lines and the possible local structures
of bend around them. All of this structure is derived from that of n, and it is
interesting to investigate their correspondence. For example, it is relatively easy to
imagine a director field which gives a bend zero with index [ ¢ = +1: we picture n
tangent to a family of helices all centred on a local axis, their radius decreasing as
one approaches the axis and degenerating to a line along the axis itself. A director
with Ig = —1 is perhaps less obvious; how should we construct and visualise one?
Further, as noted above, this family of helices has the director parallel to the 3 line,
a highly nongeneric, codimension 2, situation: what is the generic one?

We begin by relating the bend structure about a 3 line to director gradients:
a direct calculation yields Vb = (Vén)?+VEVén | Vb = (V1)2n. With respect to
an arbitrary (d,, d,, n) trivialisation the corresponding Taylor series for the director,

retaining only terms that contribute to the bend at linear order, is

o) = ént2vEven) | 122 (VE)*na
()< (e srsan) () e 2o (T07)
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giving bend

(ZZ) - ((vfn)Q n vafn> (;) +2 (Egiiigz) : (4.18)

which may then be cast into the form of (4.16). We emphasise again that all
operators in (4.17), (4.18) are evaluated on the § line. Pursuing our investigation of
zeros of differing index we decompose Vb into two components, a spin 0 component
V&1b with positive determinant and winding, and a spin 2 component V&b with
negative determinant and winding: V¢b = V&+tb+4 V& ~b. With this decomposition
one finds that n - j = det(Véb) = |det(V&Tb)| — |det(VE&~b)| and so the relative
weights of each component determine the overall index. V& *b, V&~b may again be
explicitly computed in terms of the director by recalling the splitting of the shape
operator (1.13)

Vén = gfg-i-gj-i-A (4.19)

where s = V - n is the splay, ¢ = n -V x n is the twist, and A is the deviatoric
component [Machon and Alexander, 2016b; Alexander, 2018; Selinger, 2019], all
evaluated on the S line. We find that

Vérth = %(32 — @ — AdetA + 2Vns) I+ %(sq + an) J, (4.20)

V&b = sA + VuA. (4.21)

Note that in the absence of variation along n, V¢b = (Vén)? and only an index of
IE = +1 is possible; for negative winding we must have nonzero derivatives along
the director.

VA itself is naturally decomposed into two modes of distortion — change

in the magnitude of the eigenvectors of A, and their rotation:

AVA) L (LVA)

A
VA=A A AL A) b

(4.22)

where II = JA is orthogonal to A with respect to the inner product, (II, A) =

Tr(II'A) = 0. The object <(HA’VAA>> is a connection 1-form defined in [Machon and

Alexander, 2016b], which measures the rotation of A. To see this explicitly, consider
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A expressed in a (d,d,, n) trivialisation,

A1 Ag cos) sinf
A= = v —detA . 4.23
(AQ —A1> ¢ <sin9 — cos 9) ( )

Direct calculation shows that % = df(n) + 2(d,, Vnd;). The second term

expresses the rotation of (d;,d,) as one moves along n, and we may set it to 0 by

demanding that the trivialisation to be locally parallel (the closest we can come to
<H7VUA>

demanding it be constant given that £ varies). Then TRA T df(n) = ¢'. With

this notation in hand

det(VEb) = ((s/2)% + (¢/2)* + detA)?
+(Vns/2)* + (Vna/2)* + ((5/2)* = (¢/2)*) Vs + (5¢/2) Vg
+ 5(VadetA) — detAVys — (Vn\/—detA)2 +detAg?. (4.24)

Note that setting all gradients to 0 in (4.24) we recover det(Vn)?, whilst setting
all terms involving A to 0 we recover det(V&+b).

In figure 4.5(a) we show director and bend configurations for each mode of
distortion appearing in (4.24). In figure 4.5(b) we show a succession of profiles one
might see in crossing a Legendrian point, for example following the § line in figure
4.3 — in the example shown ¢’ increases, changing an I &= 41 profile to an I E=_1

profile, with a corresponding change in the sign of n - j.

4.4.3 Self-Linking of 3 lines

As we follow a closed § line, the local structure described in §4.4.1, 4.4.2 varies,
providing a natural definition of self-linking — the description we provide here is
entirely analogous to that given for umbilic lines in [Machon and Alexander, 2016b].
Variation in local profile is tracked by measuring V¢b along the 3 line (one might
consider a different plane, « for example, but the results of the construction will not
differ). At a fixed point on the 3 line, the space of values of V¢b is described by four
parameters, which cannot all be zero, and as such has the homotopy type of S. To
compare Vb at differing points along the 3 line we introduce a local trivialisation
of the bundle £* ® ¢, for which a natural choice is induced by two sections (dy, dy)
of & which have self-linking number 0 with the § line— these may be explicitly
constructed using the Solid Angle framing of §2. Relative to this framing V¢b is
a map from S' — S3. Such a map is nullhomotopic, and so to define a winding

number we must impose some further restriction on the space of local profiles. A
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Figure 4.5: (a) Each mode of distortion appearing in (4.24), with corresponding
bend zero. In all but the last panel, only the given mode is nonzero. In the last
panel, both detA and €' are nonzero — one needs principal axes defined to see
their twisting. j is shown aligned with the director, although we emphasise this is
nongeneric. (b) With detA initially nonzero and all other modes zero, ¢’ is increased,
giving a series of profiles one might see in crossing a Legendrian point. In the figure
the skew of the § line relative to £ is set to a generic nonzero value — note the sign
change in n - j with that of Ig.



natural one is to restrict Ig to a single sign, considering a transverse 3 line with
no Legendrian points. S2 is then split into two solid tori [Machon and Alexander,
2016b], and V¢b is homotopic to a map ST — S — the degree of this map defines a
longitudinal winding number. Suppose for definiteness we are in the solid torus such
that IE = +1. Given the splitting Véb = V&+b 4+ V&~b, this homotopy consists of
tuning the term V& ~b to zero, leaving only V&Tb which is parameterised by two
numbers, not simultaneously zero, homotopically S!.

If V¢b describes a ‘twisted tube’ along the f§ line, we may extract a ribbon
by evaluating it on one of the trivialising sections, d, say, producing the vector field
ngzb along the 3 line whose self-linking number SL(/3) equals the winding number
described above. Such a ribbon is shown schematically in figure 4.3 and we shall see

several examples in twist-bend nematics in 4.5.

4.5 The Topological Significance of ( lines

In §4.2,4.4 we explored the structure of bend, and in particular its zeros, S lines. In
this section we shall see how these structures convey global topological information
about the director n, with examples provided of Skyrmions and Hopfions in twist-

bend nematics.

4.5.1 [ lines and Skyrmions

Stable Skyrmions in cholesterics [Afghah and Selinger, 2017] and chiral magnetic
systems [Yu et al., 2010] are well studied. Here we show that an intersection count
of oriented [ lines through a measuring surface within the texture computes the
Skyrmion number on that surface, and provide a simulation of a stable Skyrmion
tube in a twist-bend nematic as an example. Consider a measuring surface ¥ with
boundary v inside M, with small disks of boundary C; removed where the § lines
puncture this surface, as shown in figure 4.3. Integrating A over this surface, by an
analysis identical to that presented for umbilics in [Machon and Alexander, 2016b]
we have a result in the style of the Gauss-Bonnet-Chern theorem [Lee, 1996; Frankel,
2015]:

1 1 1 - o C;
° WA—QF/ZQ—%r;/Cid@—;Sgn(nZ J)—;I : (4.25)

where Igi is the index of the [ line measured on the oriented plane containing C;,
dual to ny, the surface normal to X; IBCZ' may be ifg. Suppose now that X is closed.

On this surface, the degree of the map n : ¥ — S? counts the number of Skyrmions
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q, as discussed in §1.3.3. This degree may alternately be computed via the integral
1/47 [ Q [Frankel, 2015], and thus we have that ), Igi = 2q — a signed count of
B lines computes (twice) the Skyrmion number, and a nonzero Skyrmion number
implies the existence of 4 lines. In the language of characteristic classes [Milnor and
Stasheff, 1974] a closed set of oriented (3 lines is a cycle in H; (M), Poincaré dual
to the Euler class of £, e(¢) € H?(M). When we count signed intersections of this
cycle with closed measuring surfaces, we are evaluating e(£) on homology cycles in
Hy(M), producing characteristic numbers — here the ‘Euler characteristic’. These
numbers provide information — here complete information [Milnor and Stasheft,
1974] — about whether the bundle is trivial or not.

Figure 4.6: Skyrmion tube in a twist-bend nematic, with S lines oriented by j shown
in green, and a cross section through the tube, which may be taken as a measuring
surface, containing director (blue cylinders) and normalised bend vector (orange
arrows). A signed intersection count of the § lines piercing this surface gives +2,
twice the Skyrmion number, consistent with (4.25) — these intersection points are
highlighted in red circles, within which we see winding of the bend vector about its
ZEros.

In figure 4.6 we show a simulation of a stable Skyrmion tube in a twist-
bend nematic, with director and bend shown on a single cross section through the
tube, which may be taken as our surface 3. The simulation is performed using a
standard finite difference relaxation scheme applied to (4.4). Extraction of /5 lines is
performed using a modified version of the methodology discussed in §3.2.3 — curves
of minimal |b| are traced by flowing along the vector field j, the theoretical tangent
to the S line, computationally corrected by minimisation in planes cross sectional to
the 8 line being traced out. We may extract the self-linking ribbons by constructing

the solid angle framing for each component of our § line (this is different to the
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framing for a linked set of 3 lines — the framing shown for the Whitehead link in
figure 2.8 has self-linking +1), pushing off a small distance (comparable to numerical
gridspacing) along this framing to get a value of b, and then performing a second
pushoff along that vector.

The Skyrmion texture tends to the heliconical ground state (4.3), (4.5) in
the far field, and so on a cross section we see a constant far field director and bend
vector — these rotate as the cross section is varied along the tube. This far field
behaviour allows us to compactify the boundary of ¥ as is usual when measuring
Skyrmion number, considering it closed as in the discussion above. We see that our
Skyrmion texture is punctured by two bend zeros, both positively co-oriented with
the surface, giving a count of +2, twice the Skyrmion number, and telling us that
the bundle ¢ has nontrivial Euler class. Note that summing Ig gives 1 -1 =0, a
reflection of the fact that the director makes a half twist between the two zeros. We
briefly note that the 3 lines are consistently transverse to the director (although the
central § line is nongeneric), and that their handedness is in fact opposite to that

of the director, both observations deserving of further study.

4.5.2 [ lines and Hopfions

In §1.3.3 we gave an introduction to Hopfions, three dimensional analogues of
Skyrmions characterised by an element @ € 73(S?) for an orientable director —
we described how they may be visualised using the Pontryagin-Thom construction,
and provided experimental images of their realisation in cholesterics. It has been
suggested that their stability in cholesterics (escaping Derrick’s theorem) comes from
the intrinsic lengthscale in the ground state given by the repeat length 7/qy [Ack-
erman and Smalyukh, 2017]. This motivates their study in twist-bend nematics,
which have a similar ground state and lengthscale (4.7). Hopfions are also the ideal
test case for probing what topological information 3 lines contain in addition to the
Euler class e(§). More specifically, all orientable three-manifolds are parallelisable
[Geiges, 2009], and once a choice of basis has been made the director gives a map
n: M — S2. The homotopy class of such a map is determined firstly by the Eu-
ler class e(¢) and secondly by a suitably defined element of m3(5?). In a Hopfion
M = S2 and so H*(M) = 0, hence e(¢) € H*(M) = 0. Can the 3 lines tell us the
Hopf invariant Q7

In figure 4.7 we show a Hopfion in a twist-bend nematic, simulated using
fixed boundary conditions top and bottom and periodic boundaries in the horizontal
plane, as is commonly used when simulating cholesteric Hopfions under confinement

[Ackerman and Smalyukh, 2017]. In the vertical the simulation box is 2(27/¢), in
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the horizontal 8(27/q). The texture itself is visualised using the Pontryagin Thom
construction of §1.3.2 applied to the director. There are multiple constructions
which explicitly realise such textures— in the figure we simply rotate a Skyrmion
texture around a central axis as described in [Sutcliffe, 2007], giving a Hopfion with
Hopf charge () = +1, with the polarisation field p then initialised to the bend of this
director. More elaborate Hopfions may be constructed via rational maps [Sutcliffe,
2007] as mentioned in §3.1, with preimages of the director then tracing the knotted
zero set of a complex polynomial and generating Hopfions of larger (). We briefly
note that the Solid Angle function described in §2, modified with a longitudinal
phase as in §3.2.4, can also be used as an alternate method for generating these
knotted Hopfions, with control over curve geometry and cross sectional structure.

The Hopfion in figure 4.7 initially contains three [ lines, shown in fig-
ure 4.7(b), each oriented by j and linked with one another. In addition, the central
[ line has self-linking +1 with the remaining two having self-linking number 0. Al-
though not shown in figure 4.7, constructing a Hopfion with ) = —1 gives a mirror
image, with all linking and self-linking numbers reversed. This Hopfion is not sta-
ble — it decays into two point defects which then annihilate, as shown in figure
4.7(c), a well known decay channel for Hopfions [Chuang et al., 1991]. At the point
of Hopfion decay, its 8 lines unlink and their self-linking changes to 0. Based on
simulations of this type, we conjecture that a result analogous to the helicity count
of (1.3) holds for these 3 lines:

Q= > Lk(BiB;)+>_ SL(B). (4.26)

,0,1#] i

Applying this count to figure 4.7 gives a change from () = +1 — the linking numbers
cancelling and the self-linking giving +1 — to @ = 0 as the Hopfion decays. For its
mirror image, it would be from @ = —1 to @ = 0. As well as simulation evidence,
there is good theoretical reason for conjecturing (4.26). It appears to coincide with a
prescription for computing the © invariant of three-manifolds [Gompf, 1998], which
must relate to the Hopf invariant on S3. Further, a result partially capturing this
structure has been demonstrated for umbilics in [Machon and Alexander, 2016b].
Nevertheless, we do not currently have a self-contained proof, and the issue certainly

deserves further study.
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Figure 4.7 @ = 41 Hopfion in a twist-bend nematic, visualised using the
Pontryagin-Thom construction. (a) Integral curves of the director (blue tubes),
showing a far field heliconical state with a reversal of helix handedness in the Hop-
fion core. (b) ( lines (green) in the Hopfion, oriented by j, with yellow curves
denoting their self-linking ribbons (the azimuthal ribbons are simply displaced ra-
dially from their § lines and are not shown for clarity). A count using (4.26) gives
@ = +1. (c) The Hopfion shown is not stable, but rather decays into two oppositely
charged point defects (located at the tips of the PT surface shown) which then an-
nihilate. At the point of Hopfion decay, the bend zeros unlink and their self-linking
decays to 0.



4.6 Discussion

As well as a self-contained proof of (4.26), several other issues deserve further study.
Firstly, although the Hopfion presented in figure 4.7 (and those in other simulations
we have performed) decays, it is perhaps premature to conclude that Hopfions are
inherently unstable in twist-bend nematics (in contrast to cholesterics). Our initial-
isation methodology is coarse — we should not assume that simply constructing a
director with the desired Hopf invariant and then setting the polarisation to director
bend is an appropriate method, especially given the metastability of these states in
cholesterics. Progress here likely starts with further study of the geometry of stable
Hopfions in cholesterics [Ackerman and Smalyukh, 2017].

The second issue was raised at the end of §4.2. The bend is a canonically
given section of &, but it cannot be varied independently of n, suggesting it may
contain more information than can be captured in an arbitrary section. Let us briefly
consider the bend of a texture on a two-manifold, in particular T'?; a discussion of the
geometry of bend in two dimensions may be found in [Niv and Efrati, 2018], although
not of its topology. Homotopy classes of maps T2 — S? are given by the degrees of
the meridional and longitudinal restrictions, however the bundle £ is trivial here, and
an arbitrary section should contain no information about these degrees. By contrast,
based on preliminary simulations and a direct homotopy argument, it appears that
a count of oriented bend zeros (again lines on T?) along any meridian or longitude
computes exactly these degrees. In summary, the geometry and topology of bend

contain many fascinating basic questions, which currently appear unanswered.
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