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Abstract

In this thesis we study random walks in random environments, a major area in
Probability theory. Within this broad topic, we are mainly focused in studying
scaling limits of random walks on random graphs at criticality, that is precicely
when we witness the emergence of a giant component that has size proportional
to the number of vertices of the graph. Critical random graphs of interest include
critical Galton-Watson trees and maximal components that belong to the Erdos-
Rényi universality class.

The first part of the thesis expands upon using analytic and geometric
properties of those random graphs to establish distributional convergence of cer-
tain graph parameters, such as the blanket time. Our contribution refines the
previous existing results on the order of the mean blanket time. The study of
this problem can be seen as a stepping stone to deal with the more delicate prob-
lem of establishing convergence in distribution of the rescaled cover times of the
discrete-time walks in each of the applications of our main result.

Relying on powerful resistance techniques developed in recent years, another
part of the thesis investigates random walks in random enviroments on tree-like
spaces and their scaling limits in a certain regime, that is when the potential of
the random walk in random environment converges. Results include novel scaling
continuum limits of a biased random walk on large critical branching random walk
and a self-reinforced discrete process on size-conditioned critical Galton-Watson
trees. In both cases the diffusions that are not on natural scale are identified as

Brownian motions on a continuum random fractal tree with its natural metric



replaced by a distorted resistance metric.

vi



Chapter 1
Introduction

A simple random walk on a finite connected graph GG with at least two vertices is
a reversible Markov chain that starts at some fixed vertex, and at each step moves
with equal probability to one of the vertices adjacent to its present position. The
mixing and the cover time of the random walk are among the graph parameters
which have been extensively studied. The mixing time measures the time required
such that the distribution of the Markov chain is within small maximal total vari-
ation distance from the unique invariant measure. To these parameters, Winkler
and Zuckerman [103] added the e-blanket time variable (an exact definition will
be given later in (3.4)) as the least time such that the walk has spent at every
vertex at least an e fraction of time as much as expected at stationarity. Then, the
e-blanket time of G is defined as the expected e-blanket time variable maximized
over the starting vertex.

The necessity of introducing and studying the blanket time arises mainly
from applications in computer science. For example, suppose that a limited access
to a source of information is randomly transferred from (authorized) user to user
in a network. How long does it take for each user to own the information for as
long as it is supposed to? To answer this question under the assumption that
each user has to be active processing the information equally often involves the
consideration of the blanket time. To a broader extent, viewing the internet as a
(directed) graph, where every edge represents a link, a web surfer can be regarded
as a walker who visits and records the sites at random. In a procedure that
resembles Google’s PageRank (PR), one wishes to rank a website according to the

amount of time such walkers spend on it. A way to produce such an estimate is to



rank the website according to the number of visits. The blanket time is the first
time at which we expect this estimate to become relatively accurate.

Obviously, for every ¢ € (0,1), the e-blanket time is larger than the cover
time since one has to wait for all the vertices to have been visited at least once.
Winkler and Zuckerman [103] made the conjecture that, for every e € (0, 1), the
e-blanket time and the cover time are equivalent up to universal constants that
depend only on € and not on the particular underlying graph G. This conjecture
was resolved by Ding, Lee and Peres [15] (an exact statement will be given later in
(3.5)) who provided a highly non-trivial connection between those graph param-
eters and the discrete Gaussian free field (GFF) on G using Talagrand’s theory
of majorizing measures [101]. Recall that the GFF on G with vertex set V(G) is
a centered Gaussian process (1;)zev(e) with 7., = 0, for some zy € V(G), and
covariance structure given by the Green kernel of the random walk killed at x;.

Recent years have witnessed a growing interest in studying the geometric
and analytic properties of random graphs partly motivated by applications in
research areas ranging from sociology and systems biology to interacting particle
systems as well as by the need to present convincing models to gain insight into
real-world networks. One aspect of this development consists of examining the
metric structure and connectivity of random graphs at criticality, that is precicely
when we witness the emergence of a giant component that has size proportional
to the number of vertices of the graph.

Several examples of trees and graphs, including critical Galton-Watson
trees, possess Aldous’ Brownian continuum random tree (CRT) as their scaling
limit, see [0] and [77] (its universality class is, in fact, even larger, e.g. criti-
cal multi-type Galton-Watson trees [37], random trees with prescribed degree se-
quence satisfying certain conditions [27], random dissections [39], random graphs
from subcritical classes [90]). Also, it appears as a building block of the limiting
space of rescaled random quadrangulations, which is constructed as a complicated
quotient of the Brownian CRT, see [30]. A program [22] has been launched having
as its general aim to prove that the maximal components in the critical regime
of a number of fundamental random graph models, with their distances scaling
like n'/3, fall into the basin of attraction of the Erdés-Rényi random graph. Their
scaling limit is a multiple of the scaling limit of the Erdds-Rényi random graph in
the critical window, which in turn is a tilted version of the Brownian CRT, where

a finite number of vertices have been identified. Two of the examples that belong



to the Erdos-Rényi universality class are the configuration model in the critical
scaling window and critical inhomogeneous random graphs, where different ver-
tices have different proclivity to form edges. We point out the recent work of [23]
and [24] respectively.

In [37], Croydon, Hambly and Kumagai established criteria for the con-
vergence of mixing times for random walks on general sequences of finite graphs.
Furthermore, they applied their mixing time results in a number of examples of
random graphs, such as self-similar fractal graphs with random weights, critical
Galton-Watson trees, the critical Erdos-Rényi random graph and the range of
high-dimensional random walk.

In Chapter 3, motivated by their approach, starting with the strong as-
sumption that the sequences of graphs, associated measures, walks and local
times converge appropriately, we provide asymptotic bounds on the distribution
of the blanket times of the random walks in the sequence. The precise nature
of these bounds ensures convergence of the e-blanket times of the random walks
if the e-blanket time of the limiting diffusion is continuous with probability 1 at
€. To demonstrate our main results, in Chapter 4, this enables us to prove an-
nealed convergence in various examples of critical random graphs, including critical
Galton-Watson trees, the Erdés-Rényi random graph in the critical window and
the configuration model in the scaling critical window. Our contribution refines
the previous existing tightness results on the order of the blanket time (e.g. [7],
[16]).

Another goal of the investigation is to provide a description for the scaling
limits of stochastic processes on tree-like spaces, which in the last few years became
well-understood. To lay out a distinctive but non-exhaustive list of particular
cases, we cite some previous work on scaling limits of simple random walks on
critical Galton-Watson trees, conditioned on their size, with finite [31] or infinite
variance [33], the two-dimensional uniform spanning tree [15], and A-coalescent
measure trees [13, Section 7.5]. Last but not least, in [73] diffusions on dendrites
are constructed by approximating Dirichlet energies.

Despite the distinct characteristics of the processes mentioned, a shared fea-
ture is that their convergence essentially emanates from the convergence of metrics
and measures that provide the natural scale functions and speed measures in this
setting. Indeed, it was shown that the Gromov-Hausdorff-vague convergence (for a

definition, see Section 2.3) of the metric measure trees and a certain non-explosion



of the resistances [30], or a condition on the lengths of edges leaving compact sets
[13] (neither condition implies the other, see [30, Remark 1.3(a)]) yields the con-
vergence of the associated stochastic processes. For this very reason [13] and [30]
can be seen as a generalization of Stone’s invariance principle, who fifty years ago
in [99] considered Markov processes which share the characteristic that their state
spaces are closed subsets of the real line and that their random trajectories do not
jump over points. Even more important, the result proved in [36] holds for other
spaces (not necessarily tree-like) equipped with a resistance metric and a measure,
allowing for a broader range of examples to be treated. Beyond the framework
of resistance metrics, it parallels the recent work of Suzuki in [100] who showed
that the pointed measured Gromov-Hausdorff convergence of a sequence of metric
measure spaces that satisfy a Riemannian curvature-dimension condition, implies
the weak convergence of the underlying Brownian motions. We would like to draw
to the attention of the reader the complementary work of [33], where the stronger
uniform volume growth (with volume doubling) condition enabled the study of
time-changes of stochastic processes according to irregular measures, with the
representative examples being the Liouville Brownian motion (in two dimensions,
it is the diffusion associated with planar Liouville quantum gravity and is conjec-
tured to be the scaling limit of simple random walks on random planar maps, see
[21], [16] and [51]), the Bouchaud trap model, and the random conductance model
model on a variety of self-similar trees and fractals. For the latter two models, the
limiting process on the respective space is a FIN diffusion [52], which is connected
with the localization and aging of physical spin systems, see [20] and [102].
Going a step further, it would be desirable to ask whether the distribution
of a stochastic process that is not on natural scale is stable under perturbations
in the geometry of the underlying spaces. To answer this question, it is possible
to employ the framework of resistance metrics in order to study scaling limits of
random walks in random environment on tree-like spaces. For a definition, see
Section 5. The reversibility of this model offers an alternative description of it
as an electrical network with conductances that can be described explicitly in
terms of the potential of the random walk in random environment, see (5.2). This
observation allows for random walks in random environment on tree-like spaces
to be thought of as their associated variable speed random walks (the jump rate
along edges is given by (5.8)) when the shortest path metric is replaced by a

distorted metric, see (5.3), which is a resistance metric solely expressed in terms



of the potential of the random walk in random environment, and endowed with an
invariant measure specified in (5.4), which is a distortion of the uniform probability
measure on the vertices of the tree.

In this case, Gromov-Hausdorff-vague convergence of the distorted metric
measure trees, equipped with the potential of the random walk in random en-
vironment as a spatial element, can be viewed as a generalized metric measure
version of Sinai’s regime in dimension one, that is when the potential converges
to a two-sided Brownian motion. For a definition, see [104, Assumption 2.5.1].
Having this in mind, as an application of the main contributions in [13] and [30],
the convergence of the distorted metrics and measures leads to the convergence
of the the random walks in random environment. Here, we should stress that in
the various examples we consider throughout the thesis, the limiting diffusion is
a Brownian motion on a locally compact real tree, which is not on natural scale.
Typically, keeping up with the terminology used to describe continuum analogues
of one-dimensional random walks in random environment, it can be seen as a
Brownian motion in random potential on a locally compact real tree.

In the one-dimensional model (for a definition, see Section 5.2), it is well-
known that due to the large traps that arise, the random walk in random environ-
ment in Sinai’s regime localizes at a rate (logn)? ((5.16) is due to [97], for sharp
pathwise localization results, see [57]). Therefore, there is no hope in finding a
Donsker’s theorem in random environment without providing a discrete scheme
that changes the random environment appropriately at every step. This was un-
derstood by Seignourel [95], who proved such a scheme for Sinai’s random walk,
and verified a conjecture on the scaling limit of a random walk with infinitely
many barriers dating back to Carmona [30]. Our approach is advantageous as it
renders clear how the “flattening” of the environment that was introduced in the
first place in [95], forces the potential to converge to a two-sided Brownian mo-
tion, and consequently the distorted metric and measure to converge to the scale
function and the speed measure of the Brox diffusion [25], see (5.17). Also, we are
able to considerably shorten Seignourel’s proof but more importantly to remove
the technical assumption of uniform ellipticity, see (5.15), and the assumption on
the independent and identically distributed (i.i.d.) random environment as well.

Next, we consider (non-lattice) branching walk associated with a marked
tree, that is a rooted ordered finite tree in which every edge is marked by a

real value (it is equivalent to have values assigned to the vertices instead). We



associate with each vertex a trajectory of a walk defined by summing the values
of all the edges contained in the unique path from the root to that particular
vertex (it is obvious that the walk is killed after as many steps as the height of the
vertex evaluated at), see (5.33). The multiset of trajectories of the killed walk is
called the branching walk. A branching random walk is constructed by choosing
the skeleton and the values of the marked tree at random. We are interested
in biased random walk on (non-lattice) branching random walk ¢, conditioned
to have total population size n, where the underlying tree is a critical Galton-
Watson tree T,, with exponential tails for the offspring distribution, and the values
are independent, each distributed as a centered random variable Y, which has
continuous distribution with fourth order polynomial tail decay. The bias, say
B > 1, is chosen in such a way that the walk has a tendency to move towards a
certain direction, see Section 5.4 and the details that lie therein. We prove that a
weakly biased random walk on the aforementioned model converges to a Brownian
motion in a random Gaussian potential on the CRT, which is a Brownian motion
on the Brownian CRT endowed with a resistance metric, see (5.39) and a finite
measure, see (5.40). For a definitive statement, see Theorem 5.4.2.

We believe that our work offers a promising candidate for the scaling limit
of a biased random walk on the incipient infinite cluster (IIC) of Bernoulli-bond
percolation on Z< in high dimensions, that is when d > 6. At criticality, i.e.
p = p.(d) € (0,1), it is partially confirmed that there is no infinite open cluster.

Instead, one could study random walks on the I1C:
Puc(-) = lim Py, (-|0 ¢ [-n,n]"),
n—oo

constructed in [68] for d = 2, and in [63] for d > 11, where 0 < 9[—n,n]?
translates to “there exists a (finite) path of open bonds connecting 0 and the
boundary of the (f,)-ball of radius n”. In high dimensions, the IIC is tree-like,
its fractal dimension (with respect to the intrinsic metric) is 2, it has a unique
backbone (the scaling limit of the backbone is identified as Brownian motion), and
its scaling limit is related to super-processes or measure-valued diffusions, which
are continuous-time and continuous-space processes that describe the random dis-
tribution of mass undergoing repartition and motion at the same time, see [55],
[59] and [01]. Namely, in high dimensions, the scaling limit of the IIC is related
to the integrated super-Brownian excursion (ISE) (defined by Aldous [7]). Take



a critical branching random walk, condition on a large fixed total progeny where
the generation structure of the population involved is ignored, and rescale space

~1/4 The scaling limit, which can be proven to exist is ISE, see (5.35).

by n
Our declaration is justified in the sense that critical branching random walk
is a mean-field model for percolation, and therefore it is expected that both models
satisfy the same scaling properties. For an up-to-date survey, see [60]. The two are
intuitively connected in the following way. In high dimensions, due to the vastness
of the space, one could imagine that is relatively rare for a cycle to be discovered
when exploring an open cluster vertex by vertex. Every vertex in percolation
on the d-dimensional integer lattice has a number of neighbors distributed as a
binomial with parameters 2d and p for which the edge leading to it is open. On
the other hand, consider a branching random walk thought of as percolation on
the 2d-ary tree that is randomly embedded into Z¢ by mapping the root of the
2d-ary tree to the origin in Z?. Furthermore, an individual spatial location has
increment chosen uniformly at random from the neighbors of the origin in Z?.
Such a process only differs from percolation in Z¢ in that it ignores cycles.
Attempting to give a plausible answer to [19, Question 5.3] posed by Ben
Arous and Fribergh, the right scaling for a biased random walk on the IIC of Z¢
is that of a random walk with a weak cartesian bias to a single direction, identical
to the one introduced in Theorem 5.4.2, with the limit being a Brownian motion
in a random Gaussian potential that maps an infinite version of the Brownian
CRT to the Euclidean space, or alternatively, a Brownian motion in a random
Gaussian potential on the ISE (the Brownian motion on the latter object was
constructed for d > 8 by Croydon [32]). Just as critical branching random walk is
a mean-field model for percolation, critical branching random walk conditioned on
survival is a mean-field model for the high-dimensional IIC, which explains why
an unbounded version of the Brownian CRT is expected to appear in the limit.
As for establishing the corresponding limit for the weakly biased random walk on
lattice (every edge is marked by an integer value) branching random walk, [18]
outlines a program of four conditions to be checked in order to provide a flexible
scaling theorem that will be generally applicable or adaptable to several models of
large critical graphs. In this direction, it would be a meaningful project to check,
as it was done for the simple random walk on the lattice branching random walk
in [17], whether those conditions are satisfied, utilising the connection between

distorted resistance metrics and random walks in random environment that the



present thesis suggests.

Finally, we demonstrate an appealing application to non-Markovian set-
tings. The edge-reinforced random walk (ERRW) was introduced by Coppersmith
and Diaconis in 1986 (for references on the ERRW, see also [11], [13], [11], [07]) as
a discrete process on the vertices of undirected graphs, starting from a fixed vertex.
Given initial weights to all edges, whenever an edge is crossed the weight of that
edge increases by one. The transition, through edges leading out of a particular
vertex chosen, has probability proportional to their various (currently updated)
weights. In the context of the ERRW on trees by Pemantle [91] (for a definition,
see Section 5.5), due to the absence of cycles, the transitions of the process are
decided by independent Polya urns, one per vertex, where edges leading out play
the role of colours and initial weights that of the number of balls of each colour.
The ERRW on other undirected graphs by Sabot and Tarres [93] is a random walk
in a correlated, yet explicit, random environment.

It was not until recently that a scaling limit of the ERRW on the dyadic
one-dimensional lattice appeared in [83]. The scaling limit introduced is a one-
dimensional diffusion in a random potential that contains a scale-changed two-
sided Brownian motion with a drift. We remark how their result can be recovered
by using Theorem 5.2.3, which still holds when the limiting random potential
in Assumption 6 has enough regularity for (5.24) and (5.25) to make sense. In
addition, we introduce the scaling limit of the ERRW on a critical Galton-Watson
tree T,, with finite variance, conditioned to have total population size n, as a
Brownian motion in a random Gaussian potential with a drift given by the natural
CRT-distance to the root. For a definitive statement see Theorem 5.5.4.

The large time behavior of the continuous space limit of the ERRW on 27"Z
was examined in [83]. Actually, the leading order is given by the deterministic
drift part in the random potential, which is an artefact of the self-reinforcement
and leaves the continuous space limit to oscillate between —1/6 and 1/6 at a
logarithmic rate.

In our model, the prospect to explore aging (a system ages when its decor-
relation properties are age dependent: the older it gets the longer it takes to forget
its past, in particular aging has been extensively studied in the context of spin-
glass dynamics) and localization properties of the diffusions in random potential
is meaningful only insofar as the Brownian CRT is replaced with its unbounded

variant, Aldous’ self-similar continuum random tree (SSCRT), which relates to the



three-dimensional Bessel process BES(3) in the same way that the Brownian CRT
relates to the normalized Brownian excursion, or to use Duquesne’s terminology
in [138], the SSCRT is a continuum random sin-tree coded by left and right height
processes that are independent BES(3). This random tree is a size-biased random
tree with Brownian branching mechanism that appears naturally as a continuous
analogue of critical Galton-Watson trees conditioned on non-extinction (e.g. [70],
[82]). As a result, to transfer our result in this setting, the scaling limit of the
ERRW on critical Galton-Watson trees conditioned to survive (or “grow to infin-
ity”) is a Brownian motion in a random Gaussian potential with a drift given by
the natural SSCRT-distance to the root, which as we discuss in Chapter 6, can be

expected to localize (in probability) at the root at a logarithmic rate.



Chapter 2
Preliminaries

In this chapter, we introduce the necessary framework and several technical results
that we use repeatedly throughout the thesis. We do not prove any new results
in Section 2.1, although we give the definitions of metric measure trees, such as
real trees coded by functions. In Section 2.2, we cover some known formulas of
[t0’s excursion measure of reflected Brownian motion and we survey a description
of it that stresses its Markovian attributes. In Section 2.3, we define an extended

Gromov-Hausdorff topology and derive some useful properties.

2.1 Real trees

The definitions of boundedly finite pointed metric measure trees appeared in the
course of extending results that hold for real-valued Markov processes to Markov
processes that take values in tree-like spaces. We refer to [13] for the preliminary
work we do here.

A pointed metric space (T, r, p) with a distinguished point g is called Heine-
Borel if (T',r) has the Heine-Borel property, i.e. each closed bounded set in T is
compact. Note that this implies that (7', r) is complete, separable and locally

compact.

Definition 2.1.1 (rooted metric measure trees). A rooted metric tree is a pointed

Heine-Borel space (T,r, o) that satisfies the four point condition

r(uy, ug) + r(ug, ug) < maxq{r(uy,us) + r(ug, ug), r(uy, ug) + r(ug, us)},

10



for every uy,us, us,uqy € T, and if for every uy,us,us € T there exists a unique

point u := u(uy, ug, ug) € T, such that
r (i, ug) = 1(ug, w) + r(u, ug),

for every i,j € {1,2,3} with i # j. The point u is usually called the branch point,
and the distinguished point o is referred to as the root.

A rooted metric measure tree (T,r,v,0) is a rooted metric tree (1,7, p)
equipped with a measure v that has full support on (T,B(T)) and charges every
bounded set with finite measure, if B(T) denotes the Borel o-algebra of (T,r).

In a rooted metric tree (T, r, o), for x,y € T, we define the path intervals
[z, y]] =={z €T :r(z,y) =r(z,2) +r(z,y)},

[yl =l yl]\ {z), fesy] = [l gl \ sy}

If 2 # y and [[z,y]] = {z,y}, we say that x and y are connected by an edge in
T and use the notation x ~ y. Due to separability, a rooted metric tree can only

have countably many edges. Denote the skeleton of (T, r, o) as
Sk(T) := Uyer|o, u] UIs(T),

where Is(T") is the set of isolated points of (7,7, ), excluding the root. For any
separable metric space that satisfies the four point condition, the notion of a length
measure was introduced in [13]. In short, using that B(7T')|skr) is the smallest o-
algebra that contains all the open path intervals with endpoints in a countable
dense subset of T', the validity of the following statement, which we turn into a

definition, is justified.

Definition 2.1.2 (length measure). There exists a unique o-finite measure \ on
the rooted metric tree (T,r, o), such that \(T'\ Sk(T")) = 0 and for allu € T,

Ao, u]]) = (o, u).

Such a measure is called the length measure of (T, r, o).

If (T,r) is a discrete tree, i.e. all the points in T" are isolated, the length
measure shifts the length of an edge to the endpoint that is further away from the

11



root, and therefore it does depend on the root.
The first definitions of random real trees date back to Aldous [1]. Informally,
real trees are metric trees without cycles that are locally isometric to the real line.

We refer to [78] for a general presentation of the topic.

Definition 2.1.3 (real trees). A metric space (T,r) is a real tree if the two fol-

lowing properties hold for every x,y € T.

(1) It has a unique geodesic. There exists a unique isometry fy, = [0,7(z,y)] = T
such that f,,(0) =z and fu,(r(z,y)) = y.

(i) It does not contain cycles. If q : [0,1] — T is continuous and injective such
that q(0) = = and q(1) =y, then

q([0,1]) = fay ([0, 7(z, 9))).
A real tree has no edges. Therefore, if (T, r) is a real tree, then
Sk(T') = Uyper|u, v]. (2.1)

The unique length measure that extends the Lebesgue measure on the real line
coincides with the trace onto Sk(T") of the one-dimensional Hausdorff measure on
T. To describe a method to generate random real trees, which will play a crucial
role to our forthcoming applications, we turn our attention first to a deterministic
setting. Let g : [0,00) — [0,00) be a continuous function with compact support,
such that g(0) = 0. We let

supp(g) := {t > 0: g(t) > 0},

denote the support of g. To avoid trivial cases, we assume that g is not identical to
zero. For every s,t > 0, let my(s,t) := inf,cne vy 9(r) and dy : [0, 00) x [0, 00) —
R defined by

dy(s,t) == g(s) + g(t) — 2m,(s,t). (2.2)

It is obvious that d, is symmetric and satisfies the triangle inequality. One can
introduce the equivalence relation s ~ ¢ if and only if d,(s,t) = 0, or equivalently

g(s) = g(t) = my(s,t). Considering the quotient space

(Tg,dg) := ([0,00)/~, dy), (2.3)
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which we root at o, the equivalence class of 0, it can be proven to be a rooted
compact real tree, see [78, Theorem 2.1]. We use the term real tree coded by g
to describe 7,. If ¢ is the supremum of supp(g), denote by p, : [0,00) — 7, the
canonical projection, which is extended by setting p,(t) = o, for every t > (. For
every A € B(7,), we let

iz, (A) = 0({t = 0 p,(t) € A}) (2.4)

denote the image measure on 7 of the Lebesgue measure ¢ on R by the canonical

projection py.

Definition 2.1.4 (spatial rooted metric measure trees). A d-dimensional spatial
rooted metric measure tree is a pair (T, ¢), where T = (T, r,v, 0) is a rooted metric

measure tree endowed with a continuous mapping ¢ : T — R<.

Note that the terminology spatial is borrowed from [19, Section 6].

2.2 Ito’s excursion theory of Brownian motion

We recall some key facts of Itd’s excursion theory of reflected Brownian motion
collected in [79], [30] and [33].

A detailed account of the theory can be found in [92, Chapter XII]. Our
main interest here lies on the scaling property of the It6 excursion measure. Let
(LY)s>0 denote the local time process at level 0 of the reflected Brownian motion

(|B¢])e>0, which can be defined by the approximation

1 t
0 __ 1:
L _?3%2_5/0 Lo (| Bs[)ds,
for every t > 0, a.s.

The local time process at level 0 is increasing, and its set of points of increase
coincides with the set of time points for which the reflected Brownian motion is
identical to zero. Now, introducing the right-continuous inverse of the local time

process at level 0, i.e.
7, = inf{t >0: L) >k},

for every k > 0, we have that the set of points of increase of (LY);>o alternatively
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belongs to the set
{m. : k>0}U{m- : k € D},

where D is the set of countable discontinuities of the mapping k + 7. For every
k € D we define the excursion (ex(t)):>o with excursion interval (7_,7) away

from 0 as

|Bt+7k_| if0<t<7— 7,

ex(t) =

0 ift>m — 1.
Let E denote the space of excursions, namely the space of functionse € C(R,,R,),
satisfying e(0) = 0 and ((e) := sup{s > 0 : e(s) > 0} € (0,00). By convention
sup ) = 0. Observe that e, € E, and ((ey) = 7 — 71, for every k € D.

The main theorem of It6’s excursion theory adapted in our setting is the

existence of a o-finite measure N(de) on the space of positive excursions of linear

Brownian motion, such that the point measure

Z Ohyen)(ds de)

keD

is a Poisson measure on R, x E, with intensity ds ® N(de). The It6 excursion
measure has the following scaling property. For every a > 0 consider the mapping
O, : E — E defined by setting O,(e)(t) := y/ae(t/a), for every e € E, and t > 0.
Then,

No®©,'=/N. (2.5)

Versions of the It6 excursion measure N(de) under different conditionings are pos-
sible. For example one can define conditionings with respect to the height or
the length of the excursion. For our purposes we focus on the fact that there
exists a unique collection of probability measures (Ng : s > 0) on E, such that

Ny(¢ = s) =1, for every s > 0, and for every measurable event A of E,

* ds
N(A):/O NS(A)Q%. (2.6)

We might write Ny = N(:|¢ = 1) to denote the law of the normalized Brownian
excursion. It is straightforward from (2.5) and (2.6) to check that Ny satisfies the
scaling property

N,00;! =N,,. (2.7)
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To conclude our recap on Itd’s excursion theory we highlight a description

of N that emphasizes its Markovian properties. For t > 0 and x,y € R, let

pi(x,y) = \/ﬁ

be the Brownian transition density. For ¢ > 0 and = > 0, let

x 22
273

Qt(x) = axpt(xa y)|y=0 =

so that t — ¢,(x) is the density of the law of the first hitting time of x by B. For
every integer k > 1, and every choice of 0 < t; < ... <ty < 1, and xq,...,x > 0,
the distribution of (e(t1), ..., e(tx)) under Ny (de) has density

2v 27th1 ("L‘l)pz;—tl (xlv xQ) e p:,;—tk_l (xk—lv xk)ql—tk (xk>’

where, for ¢t > 0 and =,y > 0,

P (x,y) == pil,y) — pe(z, —y)

is the transition density of B killed at the first hitting time of 0.

2.3 Extended Gromov-Hausdorftf topologies

In this section we define an extended Gromov-Hausdorff distance between quadru-
ples consisting of a compact metric space, a Borel probability measure, a time-
indexed right-continuous path with left-hand limits and a local time-type function.
This allows us to make precise the assumption under which we are able to prove
convergence of blanket times for the random walks on various models of critical
random graphs. In Lemma 2.3.2, we give an equivalent characterization of As-
sumption 1 that will be used in Section 3.1 when proving distributional limits for
the blanket times. Also, Lemma 2.3.3 will be useful when it comes to checking
that the examples we treat satisfy Assumption 1.

Let (K,dk) be a non-empty compact metric space. For a fixed T' > 0, let
XK be a path in D([0,T], K), the space of cadlag functions, i.e. right-continuous
functions with left-hand limits from [0, 7] to K.
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Definition 2.3.1 (Skorohod metric). We say that a function A from [0,T] onto
itself is a time-change if it is strictly increasing and continuous. Let A denote
the set of all time-changes. If X € A, then \(0) = 0 and \(T') = T. We equip
D([0,T], K) with the Skorohod metric d;, defined as follows:

dy, (z,y) := inf { sup |A\(t) —t|+ sup dK(ac()\(t)),y(t))},

ACA  tefo,1) te[0,T]

for z,y € D([0,T], K).

The idea behind going from the uniform metric to the Skorohod metric d,
is to say that two paths are close if they are uniformly close in [0, T, after allowing
small perturbations of time. Moreover, D([0,T], K') endowed with d;, becomes a

separable metric space, see [25, Theorem 12.2].

Definition 2.3.2 (standard Prokhorov metric). Let P(K) denote the space of
Borel probability measures on K. If u,v € P(K), we set

dp(p,v) =1inf{e > 0: u(A) < v(A%) +¢ and v(A) < u(A°) + ¢, for Ae M(K)},

where A is the e-neighborhood of A and M(K) is the set of all closed subsets of

K. This expression gives the standard Prokhorov metric between pu and v.

It is known that (P(K),dp) is a Polish metric space, i.e. a complete and
separable metric space, and the topology generated by dp is exactly the topology
of weak convergence, the convergence against bounded and continuous functionals,
see [11, Appendix A.2.5]. Let 7% be a Borel probability measure on K and
LY = (L (x))sek tefo,r] be a jointly continuous function of (¢,z) taking positive
real values. We say that two elements (K, 7%, X% LX) and (K, 7/ XK' LK)

are equivalent, if there exists an isometry f : K — K’ such that

° 7TKof71 :7TK/

e fo XK = XK' which is a shorthand for f(X/) = X/ for every t € [0,T].

o LK o f = LK for every t € [0,T], which is a shorthand for LX'(f(z)) =
LE(z), for every t € [0,T], z € K.
Let K be the set of equivalence classes of quadruples (K, 7%, X% LX) under the

relation described above. We will often identify an equivalence class of K with a

particular element of it.

16



Definition 2.3.3 (correspondence). A correspondence between K and K' is a
subset of K x K', such that for every x € K there exists at least one &’ in K' such
that (x,2") € C, and conversely for every x' € K' there exists at least one x € K
such that (z,2') € C.

We now introduce a distance dg on K by setting:
die((K, ", X5, LF), (K, o X 1Y)

= inf {dJZD(WK o, o) + d7 (p(X][), ¢'(X/))

Z,0,¢",C
T+ osup (dz<¢<x>,¢'<x'>>+ sup |L5<a:>—L5’<a:'>|)},
(z,x’)eC t€[0,T]

where the infimum is taken over all metric spaces (Z,dy), isometric embeddings
¢o: K = 7, ¢ : K' - Z and correspondences C between K and K’'. In the
above expression d% is the standard Prokhorov distance between Borel probability
measures on Z, and di is the Skorohod metric d;, between cadlag paths on Z.
In the following proposition we check that the definition of dk induces a
metric and that the resulting metric space is separable. The latter fact will be
used repeatedly later when it comes to applying Skorohod’s representation theo-
rem on sequences of random graphs to prove statements regarding their blanket
times. Before proceeding to the proof of Proposition 2.3.1, let us first make a
few remarks about the ideas behind the definition of dgx. The first term along
with the Hausdorff distance on Z between ¢(K) and ¢'(K’) is that used in the
Gromov-Hausdorff-Prokhorov distance for compact metric spaces, see |1, Section
2.2, (6)]. Though, in our definition of dx we did not consider the Hausdorff dis-
tance between the embedded compact metric spaces K and K’, it is absorbed by
the first part of the third term in the expression for dx. Recall here the equivalent
definition of the standard Gromov-Hausdorff distance via correspondences as a
way to relate two compact metric spaces, see [29, Theorem 7.3.25]. The moti-
vation for the second term comes from [31], where the author defined a distance
between pairs of compact length spaces (for a definition of a length space see [29,
Definition 2.1.6]) and continuous paths on those spaces. The restriction on length
spaces is not necessary, as we will see later, apropos of the proof that dx provides
a metric. Considering cadlag paths instead of continuous paths and replacing

the uniform metric with the Skorohod metric d;, allows us to prove separability
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without assuming that (K, dg) is a non-empty compact length space. The final
term was first introduced in [19, Section 6] to define a distance between spatial
trees equipped with a continuous function. For an approach that generalizes the
Gromov-Hausdorff metric between metric spaces equipped with some additional

structure, we recommend the recent work of Khezeli in [71] and [72].
Proposition 2.3.1. (K, dx) is a separable metric space.

Proof. That dx is non-negative and symmetric is obvious. To prove that is also
finite, for any choice of (K, 7%, XX L&) (K’ 7% X' LX) consider the disjoint
union Z = K LU K’ of K and K’. Then, set

dz(z,2') := diamg (K) + diamg (K'),
for any z € K, 2/ € K’, where

diamg (K) := sup dk(y, 2)
y,2€ K
denotes the diameter of K with respect to dx. Since K and K’ are compact, their
diameters are finite. Therefore, dy is finite for any x € K, 2’ € K'. To conclude
that di is finite, simply suppose that C = K x K’ is the trivial correspondence.

Next, we show that dk is positive-definite. Let
(K, %, X% L5) and (K', 7%, X' LK)
be in K, such that
dg (K, 7%, X% LF) (K, #% X% LX) = 0.

Then, for every ¢ > 0, there exist Z, ¢, ¢’,C such that the sum of the quantities
inside the infimum in the definition of dx is bounded above by e. Furthermore,
there exists A, € A such that the sum of the quantities inside the infimum in
the definition of d?l is bounded above by 2e¢. Recall that for every t € [0,7],
LE . K — R, is continuous and since K is compact, then it is also uniformly

continuous. Therefore, there exists a § € (0, ] such that

sup  sup |LE(xy) — LE(zy)] <e. (2.8)
xz1,22€K:  t€[0,T)
di (x1,22)<0
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Now, let (z;);>1 be a dense sequence of disjoint elements in K. Since K is compact,
there exists an integer N. such that the collection of open balls (B (s, 8))Ns,
covers K. Defining Ay = Bg(z1,9) and A; = Bg(x;,0) \ U;;ﬁBK(xj,(S), for
1 = 2,..., N;, we have that (Ai)f-v:el is a disjoint cover of K. Consider a function
fe : K = K’ by setting:

fe(x) =2

on A;, where z is chosen such that (x;,2}) € C, for i = 1,..., N.. Note that by
definition f. is a measurable function defined on K. For any z € K, such that

x € A; for some i = 1,..., N, we have that

dz(6(x), ¢'(f-(2))) = dz(¢(x), ¢/ (2]))
< dz(6(x), p(x:)) + dz(d(x:), ¢'(27)) <0 +e <2 (29)

From (2.9), it follows that for any z € K and y € K,

|dz(¢(x), ¢(y)) — dz(¢'(f=(2)), &' (f(v))| < dz(d(y), &' (f-(1)))
+dz(6(z), ¢'(fe(2))) < 26 +2e = de.

This immediately yields

sup |dg (z,y) — di(fe(2), fo(y))] < de. (2.10)

z,ye K
From (2.10), we deduce the bound
A5 (nf o 1 7l < 5e (2.11)

for the Prokhorov distance between 7 o f=! and 7% in K’. Using (2.8) and the
fact that the last quantity inside the infimum in the definition of dg is bounded

above by ¢, we deduce

sup | (x) — L (fo())] < 2¢. (2.12)
z€K,te[0,T)

Using (2.9) and the fact that the second quantity in the infimum is bounded above
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by &, we deduce that for any ¢ € [0, T],

dz(¢/<f€(X£(t)))a(bI(XtK/)) < dz (¢ (f(X5 ) (XK )
+dz(d(XE ), ¢ (X)) < 26 + 2 = de.

Therefore,

sup dier (fo(X35 ), X{¥) < 4e. (2.13)
te€[0,7

Using a diagonalization argument we can find a sequence (&,),>1 such that
fe, (z;) converges to some limit f(z;) € K’, for every i« > 1. From (2.10), we
immediately get that dg(z;,z;) = dx/(f(:), f(x;)), for every i, > 1. By [29,
Proposition 1.5.9], this map can be extended continuously to the whole of K. This
shows that f is distance-preserving. Reversing the roles of K and K’, we are able
to find also a distance-preserving map from K’ to K. Hence f is an isometry. We
are now able to check that 7% o f~1 = 7% LK o f = LK for all t € [0,7], and
fo XK = XK' Since f., (x;) converges to f(x;) in K’, we can find ¢’ € (0, <] such
that dg(fo(2:), f(2;)) < e, for i = 1,..., No. Recall that (2;)2, is an e-net in K.
Then, for i = 1,..., N, such that x € A;, using (2.10) and the fact that f is an

isometry, we deduce

dier (for (), f(2)) < dir(fer(2), for(w3))
+dir(for (), () + dreo (f (), () < Te. (2.14)

This, combined with (2.11) implies
A5 (7¥ o f71 7Y < dB (7% o f7H w0 f21) + dB (75 o f21, 7)) < 126
Since € > 0 was arbitrary, 7% o f~1 = 7. Moreover, from (2.12) and (2.14),

sup |Lif () — L (f (x))]

z€K,t€(0,T]
< sup LS () = L (fo(@)| + sup L (ful2) = L (f(2)]
zeK,t€[0,T] zeK,t€(0,T]

<2+ sup o osup L () — L (ah)].
x),xheK':  t€[0,T)
dger (x],25)<Te

Now, this and the uniform continuity of LX" (replace L¥ by LX" in (2.8)) gives
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LK o f = LK for all t € [0,T]. Finally, we verify that f o XX = X*'. For any
te[0,7],

dK’(f(X,{i(t))aXtK,) < dK’(f(Xi(t)),fa'(Xi(t)))
+dgr(for (X3 ), X[) < T+ de =11,

where we used (2.13) and (2.14). Therefore,

sup der (f(X ), X[) < 11e. (2.15)
te[0,T]

Recall that sup;cpory[A(t) — | < 2e. From this and (2.15), it follows
that for every ¢ € [0,7], there exists a sequence (z,)n>1, such that z, — ¢ and
dK/(f(Xzfi),XtK/) — 0, as n — oo. If tis a continuity point of f o X% then
di (F(XE), f(XE)) — 0, as n — oco. Thus, f(XX) = XS If fo XX has
a jump at t and (z,),>1 has a subsequence (z,, )r>1, such that z, > t for any
k> 1, then d (f(XE ), X[) = 0, as n — oo, and die (f(XE ), f(X[)) = 0,
as n — o0o. Therefore, f(X[) = XtK/. Otherwise, z, < t, for n large enough and
drr (f(XE), f(XE)) — 0, as n — oo, which implies f(XX) = X/'. Essentially,
what we have proved is that if f o X* has a jump, then either f(XX) = XX or
f(XE) = XK' But, since XX is cadlag, f o X¥ = XK' This completes the
proof that the quadruples (K, 7%, X LX) and (K', 7% X¥' LX) are equivalent
in (K, dk), and consequently that dx is positive-definite.

For the triangle inequality we follow the proof of [29, Proposition 7.3.16],
which proves the triangle inequality for the standard Gromov-Hausdorff distance.

Let K' = (K', 7", X*, L*) be an element of (K, dg) for i = 1,2,3. Suppose that
dK(,Cl,ICQ) < 0.

Thus, there exists a metric space Z;, isometric embeddings ¢;; : K' — Zi,
¢21 @ K? — Z; and a correspondence C; between K' and K2, such that the
sum of the quantities inside the infimum that defines dgk is bounded above by d;.
Similarly, if

di (K%, K?) < 8y,

there exists a metric space Z,, isometric embeddings ¢os : K — Zs, ¢o3 :

K3 — Z, and a correspondence Cy between K? and K3, such that the sum of the
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quantities inside the infimum that defines di is bounded above by d,. Next, we
set Z = Z1 U Zs to be the disjoint union of Z; and Z5 and we define a distance on

Z in the following way. Let dz|z,xz, = dz,, for i = 1,2, and for x € Z,, y € Z; set

dz(ZE, y) = Zien[g{dzl (JI, ¢2,1(2>> + d22(¢2,2(z)7 y)}

It is obvious that dz is symmetric and non-negative. It is also easy to check that
dy satisfies the triangle inequality. Identifying points that are separated by zero
distance and slightly abusing notation, we turn (Z,dz) into a metric space, which
comes with isometric embeddings ¢; of Z; for i = 1, 2. Using the triangle inequality

of the Prokhorov metric on Z, gives us that

di (7t o (p10¢11) "m0 (d20ds2)7")
<df(mto(prodi) w0 (dr0de1) ")
+dZ (7% o (¢10¢o1) ", 0 (a0 ¢s2) 7).

Now, since ¢1(¢21(y)) = d2(d22(y)), for all y € K?, we deduce

dJZD(Wl o(¢10 ¢1,1)_1, 70 (¢g0 ¢3,2)_1)
< dZ (' o pr1, w0 dy1) + AP (TP 0 dy, T 0 P3s). (2.16)

A similar bound also applies to the embedded cadlag paths. Namely, using the

same methods as above, we deduce

d7 ((¢1 0 d1.1)(X1), (92 0 d32)(X?))
< d7 ($1,1(X1Y), 921(X?)) + dF (922(X?), d32(X?)). (2.17)

Now, let
C:={(r,2) € K' x K*: (x,y) € C1, (y, 2) € Cy, for some y € K?}.

Observe that C is a correspondence between K' and K®. Then, if (z,2) € C,
there exists y € K? such that (z,y) € C; and (y, z) € Cy, and noting again that

&1(21(y)) = da(P22(y)), for all y € K2, we deduce
dz(01(d11()), p2(P32(2))) < dz, (P11(x), P2.1(y)) + dz, (D22(y), P32(2)). (2.18)
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Using the same arguments one can prove a corresponding bound involving LY,
i = 1,2,3. Namely, if (z,2) € C, there exists y € K? such that (z,y) € C; and

(y,2) € Cy, and moreover

sup |L;(x) — L{(2)| < sup |Ly(x) — Li(y)| + sup |Li(y) — Li(2)].  (2:19)
te[0,7 te[0,7 te[0,7)

Putting (2.16), (2.17), (2.18) and (2.19) together gives
d (K1, KC%) < 6y + 6o,

and the triangle inequality follows. Thus, (K, dx) forms a metric space.

To finish the proof, we need to show that (K, dx) is separable. Consider
an element (K, 7, X, L) of K. First, let K™ be a finite n~'-net of K, which exists
since K is compact. Furthermore, we can endow K™ with a metric dg», such that
din(z,y) € Q, and moreover |dgn(x,y) —dg(z,y)| < nt, for every z,y € K™. We
can choose a partition for K, (A.)zexn, such that z € A,, and diamg(A,) < 2n~ 1.
We can even choose the partition in such a way that A, is measurable for all
x € K™ (see for example the definition of (A;)Ye, after (2.8)). Next, we construct
a Borel probability measure 7" in K™ that takes rational mass at each point, i.e.

7"({z}) € Q, and |7"({z}) — 7(A,)| < n~'. Define ¢, by

Ep = Sup sup  |Ls(x) — Li(2")].

s,t€[0,T: z,2'€K:

|s—t|<n~! dg (2,2')<n~!
By the joint continuity of L, e, -+ 0,asn —o00. Let 0 =50 <1 <--- < s, =T
be a set of rational times such that |s;; 1 — s;] < n~ !, for i =0,...,7 — 1. Choose
L? (x) € Qwith |L} (z) — L, (z)| < n~', for every € K". We interpolate linearly
between the finite collection of rational time points in order to define L™ to the
whole domain K™ x [0, T]. Let C" := {(z,2') € K x K" : dg(z,2') < n~'}. Clearly
C" defines a correspondence between K and K". Let (z,2') € C™ and s € [s;, i1,

for some 7 = 0, ...,7 — 1. Then, using the triangle inequality we observe that

L3 (w) = Ls(2')] < [LY(x) = Ls(2)] + | Ls(x) = Ly(2)]
< |Lg(x) = Ls(2)] + & (2.20)

Since we interpolated linearly to define L™ beyond rational time points on the
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whole space K™ x [0,T], we have that

L3 () = La(@)] < |LG,, (2) = Ls(2)] + [L () = Ls()]. (2.21)

Si+1

Applying the triangle inequality again yields

Ly, (2) = Ls(x)| < [Ly, (x) = Ly, (x)| + |Ls, (x) — Ls()|
< n! +en.

The same upper bound applies for |L? (z) — Ls(z)|, and from (2.20) and (2.21)

Si+1
we conclude that for (z,2') € C" and s € [s;, $;41], for some ¢ =0, ....,7 — 1,

|L(z) — Ly(2")| < 2n7" + 3g,.
For X € D([0,7T], K) and A C [0,T] put

w(X; A) = sup dg (X, Xs).

s,teA

Now, for 6 € (0, 1), define the cadlag modulus to be

w'(X;6) = inf max w(X; [ti-1, 4:)),
where the infimum is taken over all partitions ¥ = {0 =ty <t; < --- <ty =T},
k € N, with miny<;<x(t; — t;_1) > 6. For a function to lie in D([0,7T], K), it is
necessary and sufficient to satisfy w'(X;0) — 0, as § — 0, see [25, Lemma 1,
p.122-123|. Let B,, be the set of functions having a constant value in K™ over each
interval [(u — 1)T'/n,uT'/n), for some n € N and also a value in K™ at time 7.
Take B = U,>1B,, and observe that is countable. Clearly, putting z = (2,)7_,
with z, = uT'/n, for every u = 0,...,n satisfies 0 = 29 < 2 < - - < z, = T. Let
T, : D([0,T],K) — D(]0,T], K) be the map that is defined in the following way.
For X € D([0,T], K) take T, X to have a constant value X (z,_;) over the interval
[2u_1,24) for 1 <u < n and the value X(T') at t = T. From an adaptation of [25,
Lemma 3, p.127], considering cadlag paths that take values on metric spaces, we
have that

dp(T.X,X) <Tn ' +w'(X;Tn™"). (2.22)
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Also, there exists X" € B,,, for which
dy, (T.X,X™) < Tn'. (2.23)
Combining (2.22) and (2.23), we have that
dy (X", X) <dj (X", T.X)+d;, (T.X,X) <2Tn~ ' + ' (X;Tn™").
With the choice of the sequence (K", 7", X" L"), we find that
dg (K™, 7", X", L"), (K,m, X,L)) < (4+2T)n"' + 3¢, + w'(X; Tn™ ).

Recalling that w'(X;Tn™!) — 0, as n — oo, and noting that our sequence was
drawn from a countable subset of K completes the proof of the proposition.
]

Fix T > 0. Let K be the space of quadruples of the form (K, 7%, X LX),
where K is a non-empty compact pointed metric space with a distinguished ver-
tex o, m* is a Borel probability measure on K, X* = (X[)icp.x) is a cadlag
path on K and L* = (Ly(2))zek tepo,r] is a jointly continuous positive real-valued
function of (¢,x). We say that two elements of K, say (K, %, XX LK) and
(K', 7%, X% LX"), are equivalent if and only there is a root-preserving isome-
try f : K — K’, such that f(o) = ¢, 7o f7! = 7K' fo XX = XX and
LK o f = LK, for every t € [0,7]. It is possible to define a metric on the equiv-
alence classes of K by imposing in the definition of dx that the infimum is taken
over all correspondences that contain (g, ¢’). The incorporation of distinguished
points to the extended Gromov-Hausdorff topology leaves the proof of Proposition
2.3.1 unchanged and it is possible to show that (K, di) is a separable metric space.

The aim of the following lemmas is to establish a sufficient condition for
Assumption 1 to hold, as well as to show that if Assumption 1 holds then we can
isometrically embed the rescaled graphs, measures, random walks and local times
into a common metric space such that they all converge to the relevant objects.

To be more precise we formulate this last statement in the next lemma.

Lemma 2.3.2. If Assumption 1 is satisfied, then we can find isometric embeddings

25



of (V(G"),dgn)n>1 and (K, dg) into a common metric space (F,dr) such that

lim d%(V(G"),K) =0, lim dp(o", 0) =0, (2.24)
n—oo n—0o0
where d%; is the standard Hausdorff distance between V(G™) and K, regarded as
subsets of (F,dp),
lim db(7", ) =0, (2.25)

n—oo

where d is the standard Prokhorov distance between V(G™) and K, regarded as
subsets of (F,dp),
lim d’ (X", X) =0, (2.26)

n—oo

where dfl is the Skorohod dj, metric between cadlag functions on V(G") and K,
regarded as subsets of (F,dg). Also,

lim lim sup sup sup [L,(2") — Li(x)| = 0. (2.27)
=0 nooo Z"eV(GM)zeK: te[0,T]
dp(z™,x)<d

Proof. Since Assumption 1 holds, for each n > 1 we can find metric spaces (F,, d,,),
isometric embeddings ¢,, : V(G") — F,, ¢/, : K — F, and correspondences C"
(that contain (9", 0)) between V(G™) and K such that (identifying the relevant
objects with their embeddings)

df," (7", ) + dfff (X", X)+ sup (dn(:c,a:’) + sup |Lg(n)t(a:) — Lt(x’)|> < én,

(z,z")ecn te[0,T)

(2.28)

where €, = 0, as n — co. Now, let F' = U,>1 F}, be the disjoint union of F},, and
define the distance dp|p, x5, = dy, for n > 1, and for v € F,, 2’ € Fy, n#n/

dp(z,2') == ylglf({dn(x, y) + duw(y,2')}

This distance, as the distance that was defined in order to prove the triangle in-
equality in Proposition 2.3.1, is symmetric and non-negative, so identifying points
that are separated by a zero distance, we turn (F,dr) into a metric space, which
comes with natural isometric embeddings of (V(G"), dgn)n>1 and (K, dg). In this
setting, under the appropriate isometric embeddings (2.24), (2.25) and (2.26) read-
ily hold from (2.28). Thus, it only remains to prove (2.27). For every z € V/(G"),
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since C™ is a correspondence in V(G") x K, there exists an 2/ € K such that
(x,2") € C". Then, (2.28) implies that dp(z,z') < e,. Now, let (y,y') € C",
(z,2') € C™ and note that

SUP | L3 (y) — Ly (2)]

te[0,7

< sup [Lgg(y) — Le(y)| + sup [Lj(2) — Li(2)[ + sup [Li(y') — Le(2)]
te[0,7) te[0,7] te[0,7)

< 2e,+ sup |Li(y") — Li(2)].

te[0,7
For any 6 > 0 and y, z € V(G"), such that dgn(y, z) < J, we have that
dK(ylv Z,) S dF(y7 y/) + dF(Za Z/) + dG" (ya 2) < 2571 + J.

Therefore,

sup  sup [Lj,),(y) — Ly (2)]
y,2€V(G™): t€[0,T] Aln)t Aln)t
dG"(yvz)<5

< 2, + sup sup |L(y) — Li(2)]. (2.29)
y,2€K: te[0,T]
di (y,2)<2en+d

Also, for every z € K there exists an ' € V(G") such that (2/,z) € C", and
furthermore dp(2',x) < &,. Let 2™ € V(G") such that dp(2",z) < 6. Then,

dp(z™,2") < dp(2™,x) + dp(2', ) < 26, + 0.
More generally, we have the following inclusion:
Br(z,0) NV(G") C Bp(2',2e, + ) NV (G).
For z € K, and 2’ € V(G") with dp(2',x) < &,, using (2.28), we deduce

sup \Lg(n)t(ﬂfn) — Ly(z)|

te[0,T

< sup ILZ(n)t(l"") - Lg(n)t(ﬂf/)\ + sup \Lg(n)t(xl) — Ly()]
te[0,T] te[0,T]

<en+ sup L, (2") — L (7).

te[0,7)
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Since 2" € Bp(2',2¢, +6) N V(G"), taking the supremum over all 2" € V(G")
and = € K, for which dp(z",x) < 6 and using (2.29), we deduce

sup  sup |, (@) — Ly(x)]
z"eV(G"),zeK: t€[0,T)
dp(z™,x)<d

<ep+ sup SUp [ L3¢ (y) — Ly (2)]
y,2€V(G™):  t€[0,T]
den (y,2)<2en+6
< 3e, + sup sup |Li(y) — Li(2)].

y,2€K: t€[0,T]
dK (y)z) <4€n+6

Using the continuity of L, as n — oo

lim sup sup sup Ly (z") — Le(z)] < sup  sup |L(y) — Le(2)].
n—oco "€V (G"),xzeK:t€[0,T] y,2€K: t€[0,T)]
dF((En,IE)<5 dK(y’Z)SJ

(2.30)

Again appealing to the continuity of L, the right-hand side converges to 0, as

9 — 0. Thus, we showed that (2.27) holds, and this finishes the proof of Lemma
2.3.2.

O

In the process of proving (2.27) we established a useful equicontinuity prop-

erty. We state and prove this property in the next corollary.

Corollary 2.3.2.1. Fix T > 0 and suppose that Assumption 1 holds. Then,

limlimsup  sup  sup [Lg(y) — Ly (2)] = 0. (2.31)
=0 nooo  y,zeV(GM): te[0,T]
dG”(yvz)<6

Proof. As we hinted upon when deriving (2.30), using the continuity of L,

limsup sup  sup [Ljay(y) — Ly (2)] < sup  sup |Li(y) — Le(2)].
n—oo  y,zeV(G™): t€[0,T] y,2€K: t€[0,T]
den (y,2)<8 di (y,2)<6

Sending 6 — 0 gives the desired result.
O

Next, we prove that if we reverse the conclusions of Lemma 2.3.2, more
specifically if (2.24)-(2.27) hold, then also Assumption 1 holds.
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Lemma 2.3.3. Suppose that (2.24)-(2.27) hold. Then so does Assumption 1.

Proof. There exist isometric embeddings of (V(G"),dgn)n>1 and (K, d) into a
common metric space (F,dg), under which the assumptions (2.24)-(2.27) hold.
Since (2.24) gives the convergence of spaces under the Hausdorff metric, (2.25)
gives the convergence of measures under the Prokhorov metric and (2.26) gives the
convergence of paths under d,, it only remains to check the uniform convergence
of local times. Let C" be the set of all pairs (z,2') € K x V(G"), for which
dp(z,2’) < n~'. Since (2.24) holds, C" are correspondences for n > 1. Then, for
(x,2") e C"

sup | Lz, (") — Li(z)] < sup sup |Ljz,.(2") — Li(7)],
t€[0,T) eV (G™),xeK: t€[0,T)
dp(z™,z)<n!

and using (2.27) completes the proof.

2.3.1 Topological considerations

For two fixed metric spaces (K, dk) and (K',dg/) and a subset C C K x K', the

distortion of C is defined as

dis(C) := sup{|dk (z,y) — dr (', /)] : (z,2"), (y,¢') € C}.

Given a Borel probability measure 7 on K x K’, with marginals m; and 73, the

discrepancy of 7 with respect to 7% and 7" is defined as
D(m; 7%, 75 = ||y — 75| |1y + ||72 — 7K || 2v,

where || - ||ty denotes the total variation distance between signed measures. If 7/
and 7% are probability distributions, a Borel probability measure 7 on K x K’
is a coupling of 7% and 7/ in the standard sense, if D(m; 7%, 7%") = 0. The

following lemma gives an alternative description of dg.

Lemma 2.3.4. The metric dg between (K,7™, LX) and (K', 7%, LX") is also
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given by:

di (K, 7, L), (K, 7%, L))

7,C: /
) z,2")eC
(0,0")€C (=%)

]. ! !
= inf {édiS(C) + D(m; 7", 75 4+ 7(C%) + sup ||LF(2) — L* (z/)||m7[O7T}} ,

where the infimum is taken over all correspondences and Borel probability measures

on K x K'.

Given a metric space (Z,dz) and isometric embeddings ¢ : K — Z, ¢’ :
K' — Z, recall that the standard Prokhorov distance between 7% o ¢! and
75" 0 ¢~ on the common metric space (Z,d,) appeared in the definition of dg.
Another distance, which fits to the setting where 7% and 7% are not supported

in the same metric space, but still generates the same topology, is given by

inf {5 >0:D(m oo™ 7 o™ <,

7({(2,2') : dz(z,2") > €}) < e, for a probability measure 7 on Z}.

To extend this, the condition w({(z, ') : dz(z,2") > €}) < ¢ is replaced by 7(C°) <
e, an analogous condition on the set of pairs lying outside the correspondence C,

measured by 7.

Remark. In Lemma 2.53.4, if the infimum is taken over all correspondences be-
tween K and K', and couplings m on K x K', observe that the formulation of dg

is simplified not to include D(m; 7k, 7TKI).

To extend dj to a metric between (non-compact) Heine-Borel metric spaces
consider restrictions of ((K,dg, o), 7, LX) to Bx(o,R) := {u € K : dx(o,u) <
R}, the closed ball of radius R centred at the root g, denoted by

(’C’ LK)|R = ((BK(Q’ R)7 dK|BK(Q,R)><BK(g,R)7 Q) s 7TK(' N BK(Q, R))v LKlBK(g,R)) .

By assumption (Bk (o, R), dK| By (0.R)x B (0.R) 0) is compact, and thus (K, L¥)|x €

K. The function defined by setting:

/000 et <df< (UC’ L5)|m, (K, LK')IR) A 1) dR
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is well-defined, see [, Lemma 2.8]. Moreover, it can be checked that it is a metric.
For each n € NU {oo}, let (K", L") = ((K",dgn, 7", 0"),L"). We say that
(K™, L™) converges to (K>, L*°) in the spatial Gromov-Hausforff-vague topology
if and only if, for Lebesgue-almost-every R > 0,

dg (K", L™)|r, (K>, L™®)|g) — 0.

In a number of settings, for instance, in studying the weakly biased random
walk on the range of critical branching random walk in Section 5.4, it is relevant
to consider the embedding into Euclidean space. Also, many self-similar fractals
are naturally defined as subsets of R? or some other metric space, and it might
sometimes be more desirable to state the convergence of graphs to such fractals
in that space, instead of an abstract metric space isometric to their associated
metrics. To take this on account, one can adapt the Gromov-Hausdorff-vague
topology to include the case in which the spaces of interest are embedded into
a common metric space when the relevant embeddings are continuous (but not
necessarily isometric) with respect to the metric that the spaces are endowed
with. To incorporate collections of spatial rooted metric measure spaces of the
form ((T,r,v,0),p) to the Gromov-Hausdorff-vague topology, where ¢ : T —
(K,dk) is a given continuous embedding of T into a complete, separable metric
space (K,dg), is equivalent to viewing ((T,r,v, 0),¢) as belonging to K, where
the spatial element now consists of ¢, rather than a local time-type function.

More specifically the metric dg is modified to measure the distance between such
((T’ T, V? Q)’ (p) and ((T/7 Tl? Vl? Q,)7 ()0/) by

1
incf {adis(C) + D(m;v, V') + w(C°) + sup dk(p(2), go’(z’))} :
™, (Z,ZI)EC
(e.0")eC

where the infimum is taken over all correspondences and Borel probability mea-

sureson T x T".
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Chapter 3
Convergence of blanket times

In this chapter, we establish asymptotic bounds on the distribution of the e-blanket
times of random walks in sequences of finite connected graphs. The precise nature
of these bounds ensures convergence of the e-blanket times of the random walks if
the e-blanket time of the limiting diffusion is continuous with probability one at €.
In Section 3.1, we introduce Assumption 1, which encodes the information that,
properly rescaled, the sequences of the discrete state spaces, invariant measures,
random walks, and local times, converge to (K, dk), m, X and (Li(2))zeck tcfo,r]
respectively, for some 7' > 0. This formulation will be described in terms of
the extended Gromov-Hausdorff topology. In Section 3.2, we present Assumption
2, a weaker sufficient assumption when the sequence of spaces is equipped with
resistance metrics. In Section 3.3, we prove Theorem 3.1.2 and Corollary 3.1.2.1

under Assumption 1.

3.1 Finite graphs and their associated random

walks

We continue by introducing the graph theoretic framework in which we work.
Firstly, let G = (V(G), E(G)) be a finite connected graph with at least two ver-
tices, where V(G) denotes the vertex set of G and E(G) denotes the edge set of G.
We endow the edge set with a symmetric weight function u“ : V(G)? — R, that
satisfies u$ > 0 if and only if {z,y} € E(G). The weighted random walk asso-
ciated with (G, u%) is the Markov chain (X&), PS, 2 € V(G)) with transition
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probabilities (Pe(z,¥))syev(c) given by

G
Hay

PG('CU,y) = ’
pus

where & = > yev(G) (15, One can easily check that this Markov chain is reversible

and has stationary distribution given by

ZxGA Mg

G
T (A) = ,
ZzEV(G) g

for every A C V(G). The process X has corresponding normalized local times
(LY (x))zev(c)eso given by L§(z) =0, for every z € V(G), and, for t > 1,

t—1
1
Li(z) = —2 > Lixo_a), (3.1)
for every x € V(G).

The simple random walk on G is a Markov chain with transition probabil-

ities (P(2,¥))ayev(q) given by
P(z,y) = 1/deg(x),

where deg(z) = {y € V(G) : y ~ x}|. The simple random walk is reversible and

has stationary distribution given by

2 pea deg(z)

==

for every A C V(G). It has corresponding local times as in (3.1) normalized by
deg(x).

To endow GG with a metric, we can choose dg to be the shortest path dis-
tance, which collects the total weight accumulated in the shortest path between
a pair of vertices in GG. But this is not the most convenient choice in many cases.
Another typical graph distance that arises from the view of G as an electrical net-

work equipped with conductances (1S )(zy1ep(c) is the so-called resistance metric.
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For f,g: V(G) — R, let

1
Ea(f.9) =5 > (F@)—FW)9(x) — 9w)us, (32)
z,yeV(G):
{zy}eE(G)
denote the Dirichlet form associated with the process X¢. Note that the sum in the
expression above counts each edge twice. One can give the following interpretation
of E(f, f) in terms of electrical networks. Given a voltage f on the network, the
current flow I associated with f is defined as I, := uS (f(x) — f(y)), for every
{z,y} € E(G). Then, the energy dissipation of a wire connecting = and y is
uS, (f(x) = f(y))*. So, E(f, f) is the total energy dissipation of G. We define the
resistance operator on disjoint sets A, B € V(G) through the formula

Ro(A, B)™ i=mf{&(f. ) : [ V(G) = R, fla =0, f|p = 1}. (3.3)

Now, the distance on the vertices of G defined by Rg(z,y) := Ra({z},{y}), for
x #y, and Rg(x,z) := 0 is indeed a metric on the vertices of G. For a proof and
a treatise on random walks on electrical networks see [31, Chapter 9]. We also
refer the reader to [11, Section 4].

Writing 7¢, for the first time at which every vertex of G has been visited,

cov

E,7%, denotes the mean of this quantity when the random walk starts at = €

V(G). Define the cover time by

G

G
cov T

cov*

= max E,
zeV(G)

For some ¢ € (0, 1), define the e-blanket time variable by
5(e) = inf{t > 0: m(G)LE () > et, Yo € V(G)}, (3.4)

where m(G) is the total mass of the graph with respect to the measure u%, i.e.
m(G) = ZIeV(G) p&. Taking the mean over the random walk started from the

worst possible vertex defines the e-blanket time, i.e.

Theorem 3.1.1 (Ding, Lee, Peres [15]). For any finite connected graph G =
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(V(G), E(G)) with at least two vertices and any € € (0, 1), using the notation < to
denote equivalence up to universal constant factors and <. to denote equivalence

up to universal constant factors that depend on ¢,

2
t¢ < |E@)|(E .| o= 76 (e), 3.5
= 1B@) (B s we) =700 5
where (1;)zcv(q) @5 a centered Gaussian process with 1y, = 0, for some xo € V(G),

and

(E<7796 - ny>2)m’yev(c) = (RG(Z’, y))x,er(G)-

Secondly, let (K, dk) be a compact metric space and let ™ be a Borel prob-
ability measure of full support on (K,dk). Take ((X;)i>0,Pz,2 € K) to be a
m-symmetric Hunt process that admits local times (L;())zex >0 continuous at z,
uniformly over compact time intervals in ¢, P -a.s. for every x € K. Recall that a
Hunt process is a strong Markov process with right-continuous sample paths that
possess left limits (for definitions and other properties, see [53, Appendix A.2]).
Analogously to (3.4), it is possible to define the e-blanket time variable of K as

Thi(e) :=1inf{t > 0: Ly(x) > et, Vo € K}, (3.6)

and check that is a non-trivial quantity, see Proposition 3.3.1 below.

The following assumption encodes the information that, properly rescaled,
the discrete state spaces, invariant measures, random walks, and local times, con-
verge to (K, dy), m, X, and (L¢(2))zek tejo,r) respectively, for some fixed 7" > 0.
This formulation will be described in terms of the extended Gromov-Hausdorff

topology constructed in Section 2.3.

Assumption 1. Fiz T > 0. Let (G"),>1 be a sequence of finite connected graphs
that have at least two wertices, for which there exist sequences of real numbers
(a(n))n>1 and (B(n))n>1, such that

(a(n)Gn> ", (Xg(n)t)te[o,T}, (Lg(n)t(ﬁ))er(G"),te[O,T]) — (K> T, X, (Lt(ﬂf))zeK,te[o,T])

in the sense of the extended pointed Gromov-Hausdorff topology, where

(a(n)G")p>1 = (V(G"),a(n)dgn, 0" )n>1 and K = (K, dg, 0)
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for distinguished points o™ and o in V(G™) and K respectively. In the above
expression the definition of the discrete local times is extended to all positive times

by linear interpolation.

In the examples that will be discussed in Chapter 4, we will consider random
graphs. In this context, we want to verify that the previous convergence holds in
distribution. Our first conclusion is the following. Its proof will be given later in
Section 3.3.

Theorem 3.1.2. Suppose that Assumption 1 holds in such a way that the time
and space scaling factors satisfy a(n)f(n) = m(G™), for every n > 1. Then, for
every € € (0,1), 6 € (0,1) and t € [0,T],

lim_}sup P (B(n)'mi(e) <t) < P, (mui(e(1 —0)) < 1), (3.7)
liminf P2, (B(n)"'ri(e) <t) = P, (mu(e(1+6)) <1), (3.8)

n—oo

where Py and P, are the laws of X™ started at ¢" and X started at o respectively.

The mapping € — 7, () is increasing in (0, 1), so it posseses left-hand and
right-hand limits. If 7,)(¢) is continuous with probability 1 at &, then letting 6 — 0
on both (3.7) and (3.8) demonstrates the corollary below.

Corollary 3.1.2.1. Suppose that Assumption 1 holds in such a way that the time
and space scaling factors satisfy a(n)f(n) = m(G™), for every n > 1. Then, for
every € € (0,1),

B(n) " mi(e) — Tui(e)

in distribution, if i(e) is continuous with probability 1 at € on (0,1).

3.2 Local time convergence

To check that Assumption 1 holds we need to verify that the convergence of
the local times in (2.27), as suggested by Lemma 2.3.2. Due to work done in a
more general framework in [33], we can weaken the local convergence statement
of (2.27) and replace it by the equicontinuity condition of (2.31). In (3.3), we
defined a resistance metric on a graph viewed as an electrical network. Next, we

give the definition of a regular resistance form and its associated resistance metric
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for arbitrary non-empty sets, which is a combination of [38, Definition 2.1] and
[38, Definition 2.2].

Definition 3.2.1 (regular resistance form). Let K be a non-empty set. A pair
(&E,K) is called a regular resistance form on K if the following six conditions are
satisfied.

i) KC is a linear subspace of the collection of functions {f : K — R} containing

constants, and £ is a non-negative symmetric quadratic form on K such that
E(f, [) =0 if and only if f is constant on K.

ii) Let ~ be an equivalence relation on KC defined by saying f ~ g if and only if
the difference f — g is constant on K. Then, (K/ ~,E) is a Hilbert space.

iir) If x # vy, there exists f € K such that f(x) # f(y).
i) For any z,y € K,

[f(x) = f(W)

R(z,y) == sup{ £7.7) fek, Ef,f)> 0} < 0. (3.9)

v) If f = (f A1) VO, then f € K and E(f, f) < E(f, f), for any f € K.

vi) The K N Co(K) is dense in Co(K) with respect to the supremum norm on
K, where Cy(K) denotes the space of compactly supported, continuous (with
respect to R) functions on K.

It is the first five conditions that have to be satisfied in order for the pair
(€,K) to define a resistance form. If in addition the sixth condition is satisfied
then (€, K) defines a regular resistance form. Note that the fourth condition can
be rewritten as R(z,y)™' = inf{&E(f,f) : f: K = R, f(z) =0, f(y) = 1}, and
it can be proven that it is actually a metric on K, see [74, Proposition 3.3]. It
also clearly resembles the effective resistance on V(G) as defined in (3.3). More
specifically, taking K := {f : V(G) — R} and &g as defined in (3.2) one can prove
that the pair (Eg, K) satisfies the six conditions of Definition 3.2.1, and therefore
is a regular resistance form on V(G) with associated resistance metric given by
(3.3). For a detailed proof of this fact, see [53, Example 1.2.5]. Finally, in this

setting given a regular Dirichlet form, standard theory gives us the existence of
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an associated Hunt process X = ((X;)i>0, Pz, € K) that is defined uniquely
everywhere, see [53, Theorem 7.2.1] and [74, Theorem 9.9].

Suppose that the discrete state spaces (V(G™))n>1 are equipped with resis-
tances (Rgn)n>1 as defined in (3.3) and that the limiting non-empty metric space
K, that appears in Assumption 1, is equipped with a resistance metric R as in
Definition 3.2.1, such that

e (K, R) is compact,
e 7 is a Borel probability measure of full support on (K, R),

o X = ((X¢)i>0, Pz, 2 € K) admits local times L = (L(2))ex >0 continuous

at z, uniformly over compact intervals in ¢, P, -a.s. for every z € K.

In the following extra assumption we input the information encoded in
the first three conclusions of Lemma 2.3.2, given that we work in a probabilistic
setting instead. For simplicity as before we identify the various objects with their

embeddings.

Assumption 2. Fiz T > 0. Let (G"),>1 be a sequence of finite connected graphs

that have at least two wvertices, for which there exist sequences of real numbers

(a(n))n>1 and (B(n))n>1, such that
(V&™) aln)Ran, o) 7" (Xhn) jery) — (K Ro0) 7, X)

in the sense of the extended pointed Gromov-Hausdorff topology, where o™ € V(G™)
and o € K are distinguished points. Furthermore, suppose that for every ¢ > 0
and T > 0,

limlimsup sup P2 sup  sup a(n)|[Lgu(y) — Ly (2)| =€ | =0.
=0 naoo zeV(Gn) y,2EV(G™): te[0,T)
Ragn (y,z)<5

(3.10)

It is Assumption 2 we have to verify in the examples of random graphs

we will consider later. As we prove below in the last lemma of this section, if
Assumption 2 holds, then the finite dimensional distributions of the local times

converge, see (2.27). Given that (V(G™), Rgn)n>1 and (K, R) can be isometrically

embedded into a common metric space (F, dr) such that X™ under P}, converges
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weakly to the law of X under P, on D([0,T], F'), see Lemma 2.3.2, we can couple
X" started from o™ and X started from p into a common probability space such
that (Xf, )0 = (Xe)epr) in D([0, T], F), almost-surely. Denote by P the
joint probability measure under which the convergence above holds. Proving the
convegence of finite dimensional distributions of local times is then an application

of three lemmas that appear in [38], which we summarize below.

Lemma 3.2.1 (Croydon, Hambly, Kumagai [38]). For every x € F, 6 > 0,
introduce the function fs5.(y) := max{0,0 — dp(x,y)}. Then, under Assumption
2,

i) P-a.s., for each v € K and T >0, as § — 0,

fgt f&,x(Xs)dS
fK f&,r(y)ﬂ-<dy>

sup — 0.

te[0,7)

— Ly(x)

ii) P-a.s., for each x € K, T >0 and § >0, as n — 0o,

Jo faa(X)ds g Jou(Xg,)ds
fK f5713 (y)ﬂ(dy) fV(G’”) fé,x(y)ﬂn(dy)

sup
t€[0,T]

iii) For each x € K and T > 0, if 2" € V(G™) is such that dp(z™,z) — 0, as

n — oo, then

fg f5,x(Xg(n)s)dS .
fV(Gn) fé,x(y)ﬂn(dy) N a(n) ﬁ(n)t(x )

lim lim sup P ( sup

6=0 nooo t€[0,T]

By applying the conclusions of Lemma 3.2.1, one deduces that for any
x € Kand T > 0, if 2" € V(G") such that dp(2™,2) — 0, as n — oo, then
(a(n) L (2™))ieior) = (Le(T))iep,r) in P-probability in C([0,7],R). This re-
sult extends to finite collections of points, and this is enough to establish the

convergence of the finite dimensional distributions of the local times.

Lemma 3.2.2. Suppose that Assumption 2 holds. Then, if the finite collections
(zM)E_, in V(G™), for n > 1, are such that dp(z?,x;) — 0, as n — oo, for some
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(z;)F_, in K, then it holds that

(a(n) E(n)t(x?))z':l ..... k,te[O,T]_><Lt<xi)>z’:1 ..... kt€[0,7]> (3-11)

in distribution in C([0,T], R¥).

3.3 Blanket time-scaling and distributional

bounds

In this section, under Assumption 1, and as a consequence of the local time con-
vergence in (3.11), we are able to establish asymptotic bounds on the distribution
of the blanket times of the graphs in the sequence. The same argument for the
cover time-scaling was provided first in [35, Corollary 7.3] by restricting to the
unweighted Sierpinski gasket graphs. The argument is applicable to any other
model as long as the relevant assumptions are satisfied. First, let us check that
the e-blanket time variable of K as written in (3.6) is well-defined.

Proposition 3.3.1. Fiz ¢ € (0,1). For every v € K, P,-a.s. we have that
Thi(e) € (0, 00).

Proof. Fix z,y € K. There is a strictly positive P,-probability that L;(x) > 0 for ¢
large enough, which is a consequence of [25, Lemma 3.6]. From the joint continuity
of local times, there exist r = r(z) > 0, 6 = d(x) > 0 and ¢, = t.(r) < oo, such
that

P, ( inf L (z) > 5) > 0. (3.12)

z€Bg (z,r)

Now, set 7, ,(t.) := inf{t > t, + 7, : X; = y}, where 7, := inf{t > 0: X; = 2z}
is the hitting time of x € K. In other words, 7, ,(t,) is the first hitting of y € K
after t, + 7,. Note that, the commute time identity for a resistance derived in the

proof of [38, Lemma 2.9], see also Appendix B, lets it be deduced that
E,7, <E,7,+ E,7, = R(z,y)n(K), (3.13)

which in turn implies that E,7, < oo, for every x,y € K. Applying this observa-

tion about the finite first moments of hitting times, it is easy to check that 7, , (%)

40



is finite, Py-a.s., and also that

P inf L. )(2)>0d]>0. 3.14
(Lt e 0) (314

This simply follows from an application of (3.12) and the Strong Markov property.
The additivity of local times and the Strong Markov property implies that

—-1
N R R WA R
gt 292 (Y6 (Te) - e

where (£});>1 are independent random variables distributed as inf e g, (2,) L7, , t.) (%)

and (£7);>1 are independent copies of 7,,(t.). The strong law of large numbers
along with (3.14) yields that the right-hand side of the inequality above converges

to
. —1
E{ inf Ln,yw(z)] (B (t))"

2€Bg (x,r)

P,-a.s. Using basic properties of the resolvents of killed processes of resistance
forms (e.g. [36, (6)-(8), p. 1945]), and the commute time identity in (3.13),

EyLTI,y(t*)(ZU)(EyT%y(t*))_l = Ea:LTy(x)(EyTx,y(t*))_l = 1a

and therefore, the joint continuity of local times lets it be deduced that the right-
hand side of (3.15) satisfies

liminf inf Li(z)

t—oo 2€Bg(z,r) T

> e, (3.16)
P,-a.s., for some ¢, € (g,1).

To extend this statement that holds uniformly over By (z,7), we use the
compactness of K. Consider the open cover (Bg(z,7))s,ex for K, which admits
a finite subcover (B (z;, 7))~ . Since the left-hand side of (3.16) is greater than
€4, the result clearly follows as
Lt((li)

Lt X
lim —< ): min lim  inf ,
t—oo ¢ 1<i<N t—o0 zeB(x;,r;)

which implies that there exists ty = to(x) < oo, such that L (z) > ety, for every
x € K, and recalling the definition of the e-blanket time variable of K in (3.6),
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we deduce that m,(e) < 5 < o0.

We are now ready to prove one of our main results.

Proof of Theorem 5.1.2. Let € € (0,1), 6 € (0,1) and t € [0,7]. Suppose that
t < mi(e(1—9)). Then, there exists a y € K for which L;(y) < e(1—0)t. Using the
Skorohod representation theorem, we can assume that the conclusions of Lemma
2.3.2 hold in an almost-sure sense. From (2.24), there exists y"* € V(G") such
that, for n large enough, dr(y",y) < 2e. Then, the local convergence at (2.27)

implies that, for n large enough,
a(n) L (") < Li(y) + edt.

Thus, for n large enough, it follows that a(n)Lj ), (y") < Li(y) + edt < et. Using
the time and space scaling identity, we deduce m(G")Lj,,(y") < eB(n)t, for n
large enough, which in turn implies that S(n)t < 704(¢), for n large enough. As
a consequence, we get that 7,(s(1 — §)) < liminf, ., 8(n)~'7(¢), which proves
(3.7).

Assume now that 7,(e(1+9)) < ¢. Then, for some 7,)(e(1+0)) <ty < t, it
is the case that L, (y) > e(1+3)to, for every y € K. As in the previous paragraph,
using the Skorohod represantation theorem, we suppose that the conclusions of
Lemma 2.3.2 hold almost-surely. From (2.24), for every y™ € V(G™), there exists
ay € K such that, for n large enough, dr(y",y) < 2¢. From the local convergence
at (2.27) we have that, for n large enough,

a(n) g(n)to (yn) > Lto (y) - €5t0-

Therefore, for n large enough, it follows that a(n) L, (y") = Lt (y) —dto > eto,
for every y € K. As before, using the time and space scaling identity yields
m(G") L3, (") = €B(n)to, for every y™ € V(G") and large enough n, which in
turn implies that 5(n)ty > 7(e), for n large enough. As a consequence, we get

that limsup,,_,., B(n)~'1%(e) < mi(e(1 + 4)), from which (3.8) follows.
O
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Chapter 4
Examples

In this chapter, we demonstrate that it is possible to apply our main result to a
number of examples where the graphs and the limiting spaces are random. These
examples include critical Galton-Watson trees, the critical Erdos-Rényi random
graph and the critical regime of the configuration model. The aforementioned
models of sequences of random graphs exhibit a mean-field behavior at criticality
in the sense that the scaling exponents for the walks, and consequently for the
local times, are a multiple of the volume and the diameter of the graphs. In the
first few pages of each section we quickly survey some of the key features of each
example that will be helpful when verifying Assumption 2. Our method used in
proving continuity of the blanket time of the limiting diffusion is generic in the
sense that it applies on each random metric measure space and a corresponding
o-finite measure that generates realizations of the random metric measure space
in such a way that rescaling the o-finite measure by a constant factor results in
generating the same space with its metric and measure perturbed by a multiple
of this factor. For that reason we believe our results to easily transfer when
considering Galton-Watson trees with critical offspring distribution in the domain
of attraction of a stable law with index a € (1,2), see [78, Theorem 4.3] and
random stable looptrees, see [10, Theorem 4.1]. Also, we hope our work to be
seen as a stepping stone to deal with the more delicate problem of establishing
convergence in distribution of the rescaled cover times of the discrete-time walks in
each application of our main result. See [35, Remark 7.4] for a thorough discussion
on the demanding nature of this project.

To demonstrate our main results consider first 7', a critical Galton-Watson
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tree (with finite variance o). The following result on the cover time of the simple
random walk was obtained by Aldous, see [5, Proposition 15|, which we apply to
the blanket time in place of the cover time. The two parameters are equivalent

up to universal constants, see (3.5).

Theorem 4.0.1 (Aldous [5]). Let T be a critical Galton-Watson tree (with finite
variance o2 ). For any § > 0 there exists A = A(d,e,0%) > 0, such that

P(AT'E? < tl(e) < ARPP||T| € [k, 2k]) > 1 — 6,

for every e € (0,1).

Now, let G(n,p) be the resulting subgraph of the complete graph on n
vertices obtained by p-bond percolation. If p = n=14+An~%3, for some \ € R, that
is when we are in the so-called critical window, the largest connected component
Cl, as a graph, converges to a random compact metric space M that can be
constructed directly from the Brownian CRT 7, see the work of [3]. The following
result on the blanket time of the simple random walk on C} is due to Barlow, Ding,

Nachmias and Peres [10].

Theorem 4.0.2 (Barlow, Ding, Nachmias, Peres [16]). Let C' be the largest
connected component of G(n,p), p =n"' + A3 X € R fized. For any § > 0
there exists B = B(d,¢) > 0, such that

P(B'n<ti(e) < Bn)>1-3,

for every e € (0,1).

Our contribution refines the previous existing tightness results on the order
of the blanket time. In what follows Py, n > 1 as well as [P, are the annealed mea-
sures, that is the probability measures obtained by integrating out the randomness

of the state spaces involved.

Theorem 4.0.3. Let T, be a critical Galton-Watson tree (with finite variance)
conditioned to have total progeny n+ 1. Fiz e € (0,1). If i(¢) is the e-blanket

time variable of the simple random walk on T, started from its root o", then
Py (n7275(e) <) = Py (riy(e) < 1),
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for everyt > 0, where 75,(¢) € (0, 00) is the e-blanket time variable of the Brownian
motion on T., started from a distinguished point o € T.. FEquivalently, for every

e € (0,1), n=%217 () under P,n converges weakly to 75,(¢) under P,.

Theorem 4.0.4. Fiz ¢ € (0,1). If 7li(e) is the e-blanket time variable of the

simple random walk on C}, started from its root o", then
Py (n7'mi(e) <t) = Py (1i)'(e) < 1),
M

for every t > 0, where 13} (¢) € (0,00) is the e-blanket time variable of the Brow-

nian motion on M, started from o.

To present our last result we consider the configuration model. Let M"(d)
be the random multigraph labeled by [n] := {1, 2, ...,n}, such that the i-th vertex
has degree d;, © > 1, for every 1 < i < n, which is constructed as follows. Assign
d; half-edges to each vertex ¢, labelling them in an arbitrary way. Then, the
configuration model is produced by a uniform pairing of the half-edges to create
full edges. If the degree sequence satisfies certain conditions that would be made
precise later in Assumption 3, it was shown in the work of [12] that the largest

2/3

connected component MY (d), is of order n*/?. Recently in [23] its scaling limit,

Mp, was proven to exist and to belong to the Erdds-Rényi universality class.

Theorem 4.0.5. Fiz ¢ € (0,1). If 7i(e) is the e-blanket time variable of the

simple random walk on M7 (d), started from its root o, then
Py (n'mip(e) < t) = P, (T,;\IAD(»S) <t),

for every t > 0, where 77/'"(¢) € (0,00) is the e-blanket time variable of the

Brownian motion on Mp, started from o.

In each section that comprises Chapter 4, we verify the assumptions of
Corollary 3.1.2.1, and therefore prove convergence of blanket times for the series
of critical random graphs mentioned above, thus effectively proving Theorem 4.0.3-
4.0.5.
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4.1 Critical Galton-Watson trees

We start by briefly describing the connection between critical Galton-Watson trees
and the Brownian CRT. Let £ be a mean 1 random variable with variance 0 <
02 < 400, whose distribution is aperiodic (its support generates the lattice Z,
not just a strict subgroup of Z). Let 7, be a Galton-Watson tree with offspring
distribution £ conditioned to have total number of vertices n + 1, which is well-
defined for every n large enough from the aperiodicity of the distribution of &.

Then, it is the case that
(V(Tw),n™Pdy,) = (Te, de), (4.1)

in distribution with respect to the Gromov-Hausdorff distance between compact
metric spaces, where dr, is the shortest path distance on the graph with vertex
set V(Ty), see [0] and [77].

To describe the limiting object in (4.1), let e := (e(t))o<i<1 denote the
normalized Brownian excursion, which in the narrow sense is a linear Brownian
motion, started from zero, conditioned to remain positive in (0, 1) and come back
to zero at time 1. The process corresponding to this intuitive description was
characterized explicitly in several ways in Section 2.2. We extend the definition
of e by setting e(t) = 0, if ¢ > 1. Recalling the notion of compact real trees coded

by functions from Section 2.1,
(7;7 de) = ([07 1]/ ™~ dE)

is the Brownian CRT, cf. (2.2) and (2.3). The natural Borel probability measure
w1 upon 7, is the image measure on 7, of the Lebesgue measure ¢ on [0, 1] by the
canonical projection p, of [0,1] onto g, cf. (2.4).

Upon almost-every realization of the metric measure space ((7e, d.), pi1.), it
is possible to define a corresponding Brownian motion X¢. The way this can be
done is described in [31, Section 2.2]. If we denote by PZ:T{ the law of the simple
random walk in 7,,, started from a distinguished point ¢", and by 7" the stationary
probability measure, then as it was shown in [33], the scaling limit in (4.1) can be

extended to the distributional convergence of
((V(E)medm Q”),W”(”m'),PZ:?((nfl/Qansntﬂte[O,ll € ))
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to ((7;, d,, g),,uTe, PZ), where P is the law of X*, started from a distinguished
point g. This convergence described in [33] holds after embedding all the relevant
objects nicely into a Banach space. We can reformulate this result in terms of
the extended Gromov-Hausdorff topology that incorporates distinguished points.
Namely,

((V(Tn)m_”zdm 0"), 7", (n_l/zans/th)te[o,l}) - ((7;, de, 0), 17z, (Xfa'g/Q)t)te[O,l})v
(4.2)

in distribution in an extended pointed Gromov-Hausdorff sense.
Next, we introduce the contour function of 7,. Informally, it encodes the
trace of the motion of a particle that starts from the root at time ¢ = 0 and then
explores the tree from left to right, moving continuously at unit speed along its

edges. Formally, we define a function first for integer arguments as follows:
f(0) = o".

Given f(i) = v, we define f(i + 1) to be, if possible, the leftmost child that has
not been visited yet, let’s say w. If no child is left unvisited, we let f(i+1) be the
parent of v. Then, the contour function of 7, is defined as the distance between
f(4) and the root ", i.e.

Cn(1) :==dr, (0", f(3)), 0<i<2n.

The function C), is only defined for integer arguments. To map intermediate values
of finto V(7,) extend f to [0, 2n] by taking f(t) to be f(|t]) or f([t]), whichever
is further away from the root. This convention will be used later in a calculation

involved in the proof of Theorem 5.4.1. The following theorem is due to Aldous.

Theorem 4.1.1 (Aldous [6]). Let C(,) denote the normalized contour function

of T,, defined by
Cr(2ns)

Voo
)

Then, the following convergence holds in distribution in C([0,1]): C, @, =

Ciny(8) := 0<s<1.
2/0¢)e, where e is a normalized Brownian excursion.
13

An essential tool in what follows will be a universal concentration estimate

of the fluctuations of local times that holds uniformly over compact time intervals.
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For the statement of this result let

r(Ta) = sup dr,(z,y)
z,ye€V(Tn)
denote the diameter of 7, and m(7,) denote the total mass of 7,. Also, we
introduce the rescaled shortest path distance dr. (z,y) = r(T,) ‘dr, (z,y).

Theorem 4.1.2 (Croydon [35]). For every T > 0, there exist constants ¢, and
co not depending on T,, such that

sup PZ—Q (7(7;)1 sup }L:}(Tn)m(%)t(y) - L?(n)m(mt(z)‘ > A/ dr.(y, Z))

Y,2€V(Tn) te[0,T]

S 616*02)\’ (43)

for every A > 0. Moreover, the constants can be chosen in such a way that only

c1 depends on T

We remark here that the product m(7,)r(7,), that is the product of the
volume and the diameter of the graph, which is also the maximal commute time
of the random walk, gives the natural time-scaling for the various models of se-
quences of critical random graphs we are going to consider. The concentration
estimate of Theorem 4.1.2 is a version of [20, (V.3.28)] for graphs. The last in-
gredient we are going to make considerable use of is the tightness of the sequence
|Cw|| ., of Hélder norms, for some o > 0. The proof of Theorem 4.1.3 is based on
Kolmogorov’s continuity criterion (and its proof to get uniformity in n). Indeed,

the following result can be obtained for any a € (0,1/2).

Theorem 4.1.3 (Janson and Marckert [64]). There exists a > 0, such that
for every € > 0 there exists a finite real number K., such that

P( [Ciny(s) = Cny(1)]

sup
0<sAL<1 |t —s|*

SKE) 21—5,

uniformly on n.

Remark. Building upon [55], Janson and Marckert proved this precise estimate
on the geometry of the trees when the offspring distribution has finite exponential

moments. Relazing this strong condition to only a finite variance assumption, the
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recent work of Marzouk and more specifically [S0, Lemma 1] implies that Theorem
4.1.3 holds for the normalized height function of T,, which constitutes an alterna-
tive encoding of the trees. That Theorem j.1.5 can be stated as well in terms of
the normalized contour function of T,, with only a finite variance assumption, is
briefly achieved using that the normalized contour function is arbitrarily close to
a time-changed normalized height process. See the equation that appears as (15)
in [77, Theorem 1.7] and refer to [77, Section 1.6] for a detailed discussion.

Since (7T,)n>1 is a collection of graph trees it follows that the shortest path
distance dr,, n > 1 is identical to the resistance metric on the vertex set V(7,),
n > 1, where each edge has unit conductance. In this context, we make use of
the full machinery provided by the theorems above in order to prove that the
local times are equicontinuous with respect to the annealed law, which is formally

defined for suitable events as
P i= [ PIOPAT,),

Proposition 4.1.4. For everye >0 and T > 0,

lim lim sup Pyn sup sup n_1/2|L23/2t(y) — L7 (2)] > | =0.
=0 nooo Y,2€V(Tn):  t€[0,T]
n=12dr (y,2)<é

Proof. Let us define, similarly to de, the distance dc¢, in [0, 1] by setting:

de,.,, (t1,t2) = Cny(t1) + Ciny(t2) =2 min  Cppy(r).

retiAte,t1 Vi)
Using the terminology introduced to describe the Brownian CRT, 7, equipped
with nt/ 2dc(n>, when ¢; and ¢, are equivalent if and only if

Ciy(t1) = Cipy(tz) =  min  Cpy(r),

Te[tl/\tz,tl \/t2]

coincides with the tree coded by n'/2C,). We denote by pcg, ¢ [0,1] — T, the
canonical projection that maps every time point in [0, 1] to its equivalence class

on 7,.
Given ty,t € [0, 1], with 2nt; and 2nt, integers, such that pc,, (t1) = y and
PCq, (ta) = 2, let w € [ty Ata, 1 V ] With minyep, ats 1y vta) Cin) (1) = Cny(u). From
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Theorem 4.1.3, there exist K > 0 and a > 0, such that

dey,, (t1,t2) = (Ciny(t1) — Ciy(u) + (Ciny(t2) — Ciy(w) < K([t1 — ul™ + [u — £2[%)
<K |ty — to]° (4.4)

with probability arbitrarily close to 1, where the last inequality follows from the
concavity of t*. We condition on C(,), assuming that it satisfies (4.4). The total
length of the path between y and z using (4.4), is

Ch(2nty) +C,(2nty) —2 min  C,,(2nr) = nl/QdC(m (t1,ts) < 2Kn'/?|t; — o).

re [t1 Nto,t1 \/t2]

Hence, by Theorem 4.1.2, if we denote by

L™ (@)lsojo.r1 == sup [Li(z)], 2 € V(Tn),

t€[0,T]

the supremum norm of L"(x) : [0,7] — R, for any fixed p > 2,

Eg |[r(To) ™ (LY erymer ) = Lm0

:/0 Pz)—ﬁ( sup 7(7a) ™ [ Lrgymme W) = Limymeme(2)] = gl/p) o

te€[0,7

1/p
(o] _CQf
< e A/ 7(Tn) dTn(y,Z)dg'

0

el/p

Changing variables, A\'/? = \/r(To)~Ldr, (y.2)

, yields

cl/p

S S S e ————
T(Tn)—ldTn (y,2) dg

0

= (T(E)_ldn(y,Z))p/Q/ e N AN < ey(r(To) ", (y, )P,
0

where c3 is a constant depending only on p. Therefore,

B |[r(To) ™ (LY igymer () = Lm0 o < ea(r(Ta) " dr (y, 2))2.
(4.5)
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Conditioning on the event that C,) satisfies (4.4), the total length of the path

between y and z is bounded above by
2Kn1/2|t1 - t2|a,

and consequently the diameter of 7,, is bounded above by a multiple of n!/2. More

specifically,
r(T,) < Kn'/?20+1,

Moreover, m(T,) = 2E(T,) = 2(V(T,) — 1) = 2n. Hence, by (4.5), we have shown
that, conditioned on C(y) satisfying (4.4), for any fixed p > 2,
_ n n p - —o
BT |0 (Lo (5) — Lo ()| oy < caln™ "2 (y, 2))P227
< s [t — a7

Choosing p such that ap > 4, this is at most, except in the trivial case t; = to,
C5|t1 — tg’z.

This holds for all ¢, and t,, with 2nt, and 2nt, integers, such that pc,, (t1)) =y
and pc,,(t2) = z. Since the discrete local time process is interpolated linearly
between these time points, it also holds for every ¢, € [0,1]. Using the moment
condition (13.14) of [25, Theorem 13.5] yields that, on the event that C(,) satisfies
(4.4), the sequence

|[n ™2 L2 0 (pa(th))] ‘oo,[D,T]

is tight in C[0, 1]. If we denote by A% the measurable event

Ag = sup sup n_1/2|Lz3/2t(y) - LZ3/2t(Z)| Z € )
y,2€V(Tn):  t€[0,T)
n_l/QdTn(y7z)<6
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note that

de, (ti,t
Py (4;) = / PT:(A})P(dT,) < / Pg(Ag; sup G (T )

ttecl0] |t — La|®

< QK) P(dT;,)

+ P (dc(n> (tl,tg) > 2K|t1 — t2|a, th,tg € [O, 1]) ,

and therefore, as a consequence of the Reverse Fatou Lemma,

de, (t1,t
lim sup B, (43) < / lim sup PTy (A‘5 sup 2 (t:12)

n—o00 n—o0 t1,t2€[0,1] |t1 - t2|a

<2K ) P(dTy)

+ limsup P (dc(n> (i ta) > 2K [t — ta|®, Vi, 15 € [0, 1]) .
n—oo

Letting 6 — 0, the desired result follows using the tightness of the local times,

conditioned on C(,) satisfying (4.4), which was shown before, and using the fact

that the second probability on the right-hand side above, by (4.4), is arbitrarily

small.

[]

4.1.1 Continuity of blanket times of Brownian motion on
the Brownian CRT

We are primarily interested in proving continuity of the e-blanket time variable of
the Brownian motion on the Brownian CRT. The mapping ¢ — 71,(¢) is increasing
n (0,1), so it posseses left-hand and right-hand limits. We let

Ac = {(To)eer : P& (ria(e—) = m(e+)) = 1} (4.6)

denote the collection of random trees coded by positive excursions that have con-
tinuous blanket time variable at ¢ € (0,1) almost-surely with respect to P?, the
law of the corresponding Brownian motion on 7.

Moreover, € — 7f(¢) has at most a countably infinite number of disconti-
nuities Pj-a.s as a real-valued monotone function defined on an interval. Recalling

the definition of It6’s (unconditioned) excursion measure N in (2.6), by Fubini, we
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immediately get

/Ol/EPZ (ri(e—) # ma(e+)) N(de)de = Ep, {/01 1 {6 (=) # 76 (c+) ) de | =0,

where by Ep, we denoted the expectation with respect to the annealed law, which

is formally defined for suitable events as

P,() = /E P ()N(de). (4.7)

Therefore, denoting the Lebesgue measure on the real line by ¢ as usual, we deduce
that for f-a.e. € € (0,1),

/E (1- P{ (my(e—) = m(e+))) N(de) = 0.

The fact that N(de) is a sigma-finite measure on E yields that for f-a.e. € € (0,1),
N-a.e. e € E,
P{ (mii(e—) = mi(e+)) = L. (4.8)

Thus, we inferred that for f-a.e. ¢ € (0,1), N-aee. e € E, T. € A.. To be
satisfactory for our purposes, we need to improve this statement to hold globally
in (0,1).

For a fixed positive excursion e compactly supported on [0, (], consider the
random real tree ((7.,d.), u1.), where d. is defined as in (2.2) and p7, as in (2.4).
Recalling the mapping introduced in Section 2.2,

Ou(e)(t) = Vae(t/a),  t€[0,a(],

applied to e for some a > 1, results in perturbing d. by a factor of \/a and ur. by
a factor of a. To be more precise, consider the set AN Sk(7e, (), see (2.1), where
A € B(Teo,())- In particular, if 7" C Tg,() is a countable dense subset, we have
that

{A NSk(Te,() : A € B(T@a(e))} =0 ({[x,yl 2,y eT'}). (4.9)

For s,t € péi(e) (T") € [0,a(], such that pg,)(s) = = and pe, () (t) = y, observe
that
dea(e) (ZL’, y) - \/Ede(j:m@a); (410)

23



where Z,, 7, € T. are in such a way that p.(s/a) = &, and p.(t/a) = g,. Using the

scaling property of the Lebesgue measure, implies

W, ([1:9]) = €({r € [0,aC] : po, () (7) € [2,9]})
(({r € [0,al] : pe(r/a) € [Za, 4al})
= al({r € [0,¢] - pe(r) € [Ta,Jal})-

Therefore,

170, ([T 9]) = ap,([Ta, Ta])- (4.11)

For simplicity, for the random real tree 7 := ((7, d.), pi7. ), we write ©,7 to denote
the random real tree ((To,(e), do,(c))s I7o, o)), Where de, () and ur,, ., satisfy (4.10)
and (4.11) respectively.

Next, if the Brownian motion (X;);>o on 7 admits local times (L§(x))ze7 >0
that, P¢-a.s., are jointly continuous in (,t), then it is the case that the Brownian

motion on ©,7 admits local times distributed as

(\/Esza/%(fL"))xeT,tzO

that, Pg@“(e)—a.s., are jointly continuous in (x,t). To justify this, it takes two steps
to check that they satisty, P?“(e)-a.s., the occupation density formula (see [38,
Lemma 2.4] and the references that lie in the proof of (b) and (2.6)):

VAL (I (82) = [ L e (21 (d2)

[,y Za,Ja)

a=3/2y
= / a3/2 ]]' [imga] (Xl§>dk
0
= /(; ]]‘[ja,ga](XZ_S/Qk)dk7

for every t > 0, where the first equality is obtained by (4.11) and the second holds,
P¢-a.s., by the occupation density formula applied to (L{())ze7,>0- In addition,
fora > 1,

(X2 ap PoG T )} LX) PE [z, )},

where @ means equality in distribution (to justify why the processes are equal

in law, see the definition of a speed motion on a compact real tree after Theorem
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5.1.1),which brings us to our second step, confirming that, P?“(e)—a.s.,

e “ e “ BOale
] \/aLa*3/2u(Z)M7'ea(e>(dZ) = /0 ]L[iml?a](Xa*B/?k)dk = /0 ]l[x,y} (Xk; ( ))dk,
.y
for every open line segment [z,y] C To, () With z,y € 77, and ¢t > 0. In view of
(4.9), this can be seen to hold for any A N Sk(7e, () with A € B(To,())-
Now, for every e € (0, 1) fraction of time and every scalar parameter a > 1,
for the e-blanket time variable of the Brownian motion on ©,7 as defined in (3.6),

we have that

Tga(e)(a_le) @ inf{t > 0:vaL, s (x) > ca™'t, Vo € T.}
@ inf{t > 0: L, s2,(x) > ea™/*t, Yo € T.} @a’B/QTgl(g).
This implies that

T € A, if and only if ©,7 € A,-1.. (4.12)

In other words, 7(¢) is continuous at €, Pg-a.s., if and only if TS“(G)(G*%) is

continuous at €, Pj-a.s. Using the way in which the blanket times above relate
as well as the scaling properties of the usual and the normalized It6 excursion we

prove the following proposition.

Proposition 4.1.5. For every € € (0,1), N-a.e. e € E, 75,(¢) is continuous at ¢,

P¢-a.s. Moreover, Ni-a.e. e € E, 7y(¢) is continuous at €, Pg-a.s.

Proof. Fix ¢ € (0,1). We choose a > 1 in such a way that a~'e € €, where
Qg is the set for which the assertion in (4.8) holds ¢ almost-everywhere. Namely,
N-a.e. e € B, T € A,-1.. Using the scaling property of Itd’s excursion measure
as quoted in (2.5) yields, v/aN-a.e. e € E, ©,T € A,-1., and consequently N-a.e.
e € E, T € A., where we exploited (4.12). Since € was arbitrary, this establishes
our first conclusion.

What remains now is to prove a similar result but with N(de) replaced with
its version conditioned on the length of the excursion. Following the same steps
we used in order to prove (4.8), we infer that for f-a.e. ¢ € (0,1), N(-|¢ € [1,2])-
ae. e € B, T € A1, and consequently l-a.e. ¢ € (0,1), N(:|¢ € [1,2])-ae.
e € E, 6,T € A.. Using the scaling property of the normalized It6 excursion
measure quoted in (2.7), we deduce that l-a.e. € € (0,1), Nj-a.e. e € E, T € A,

where N; is the law of the normalized Brownian excursion. To conclude, we
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proceed using the same argument as in the first paragraph of the proof. Fix an
e € (0,1) and choose @ > 1 in such a way that a~'e € ®;, where ®, is the set
for which the assertion Ny-a.e. e € E, T € A, holds ¢ almost-equally. Namely,
Ni-a.e. e € B, T € A,-1., which from the scaling property of the normalized
[t6 excursion measure yields aNj-a.e. e € F, 0,7 € A,-1.. As before this gives
us that Nj-a.e. e € E, T € A., or in other words that Nj-a.e. e € E, 77(¢) is
continuous at €, Pg-a.s.

O

Proof of Theorem J.0.5. Since the space in the convergence in (4.2) is separable,
we can use Skorohod’s coupling to deduce that there exists a common metric space

(F,dr) and a joint probability measure P such that, as n — oo,
d(V(To),7e) = 0, dp(@" i) =0, dp(g",0) >0,  P-as,

where

—

(V(To), dr,., "), 7 L (V(T), d7., 67), ")

and

(Teo 7 0. 17) 2 (Te 7. 0). o).

Moreover, X™ under PZ;I converges weakly to X¢ under P§ on D([0,1], F). In
Proposition 4.1.4, we proved equicontinuity of the local times with respect to the
annealed law. Reexamining the proof of Lemma 3.2.2; one can see that in this case
L™ under P (+) := [ PZ;:(-)df’ will converge weakly to L under Ps(-) := [ Pg(-)df’
in the sense of the local convergence as stated in (3.11). It was this precise state-
ment that was used extensively in the derivation of asymptotic distributional
bounds for the blanket times in Section 3.3. Then, the statement of Theorem
3.1.2 translates as follows. For every € € (0,1), § € (0,1) and ¢ € [0, 1],

limsup/Pg}: (n=*2(e) < t) dP < /Pg (r1(e(1 =0)) < t)dP,

n—0o0

lim inf / PT; (0 9/2401(e) < 1) dP > / P (r(c(1 + 6)) < t) dP.

n—oo

From Proposition 4.1.5 and the dominated convergence theorem, we have that for
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every ¢ € (0,1) and ¢ € [0, 1],

lim [ P(r4(s(1£4)) <t)dP =lim [ PS(r5(c) < t)dP
6—0 6—0

= [ Porie) < )NGe) = By (re) < )
Therefore, we deduce that for every € € (0,1) and ¢ € [0, 1],

lim P» (n_3/27ﬁ(5) <t) = lim PZZ} (n_3/27']?1(5) <t) P(dTy)

n—oo n—oo

=P, (ra(e) <1).

4.2 The critical Erd6s-Rényi random graph

Our interest in this section shifts to the Erdés-Rényi random graph at criticality.
Take n vertices labeled by [n] = {1,...,n} and put edges between any pair inde-
pendently with fixed probability p € [0,1]. Denote the resulting random graph
by G(n,p). Let p = ¢/n, for some ¢ > 0. This model exhibits a phase transition
in its structure for large n, as it was discovered in the groundbreaking work of
Erdés and Rényi in [51]. With probability tending to 1, when ¢ < 1, the largest
connected component has size O(logn). On the other hand, when ¢ > 1, we see
the emergence of a giant component that contains a positive proportion of the ver-
tices. In the critical case, when ¢ = 1, they showed that the largest components
of G(n,p) have size of order n%?.

We will focus here on the critical case ¢ = 1, and more specifically, in the
critical window p = n~' 4+ An~%3, A € R. The most significant result in this
regime was proven by Aldous [¢]. Fix A € R and let (C}");>1 denote the sequence
of the component sizes of G(n,n~" + An~%/3). For reasons that are inherent in
understanding the structure of the components, we track the surplus of each one,
that is the number of vertices that have to be removed in order to obtain a tree.

Let (S!*)n>1 be the sequence of the corresponding surpluses.

Theorem 4.2.1 (Aldous [8]). Asn — oo,

(”_2/3(0?%217 (Szn)izl) — ((Cy)iz1, (Si)i=1)
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wn distribution, where the convergence of the first sequence takes place in Ef, the
2

set of positive, decreasing sequences (x;)i>1 with > .-, x7 < oo. For the second

sequence, the convergence takes place in the product topology.

The limit is described by stochastic processes that encode various aspects
of the structure of the random graph. Consider a Brownian motion with parabolic
drift: 2

B) = Bt+>\t—§, t>0, (4.13)
where (B;):>o is a standard Brownian motion. Then, the limiting sequence (C;);>1
has the distribution of the ordered sequence of lengths of excursions of the process

B) — Oigr;i;tBﬁ, t>0,
that is the parabolic Brownian motion reflected upon its minimum. Finally, (5;);>1
is recovered as follows. Draw the graph of the reflected process and scatter points
on the plane according to a rate 1 Poisson process and keep those that fall between
the z-axis and the function. Then, S; are the Poisson number of points that fell
in the corresponding excursion with length C;. Observe that the distribution of
the limit (C;);>1 depends on the particular value of A chosen.

The scaling limit of the largest connected component of the Erdds-Rényi
random graph in the critical window arises as a tilted version of the Brownian
CRT following a procedure introduced in [3]. Given a pointset P, that is a subset
of the upper half plane that contains only a finite number of points in any compact
subset, and a positive excursion e, we define P N e as the number of points from
P that fall under the area of e. We construct a “glued” metric space M. p as
follows. For each point (¢,2) € PNe, let u 4 be the unique vertex p.(t) € 7c and
V(t,e) be the unique vertex on the path from the root to u ) at a distance x from
the root. Let Ep = {(u(t2), Vta)) 1 (t,2) € PNe} be the finite set that consists of
the pairs of vertices to be identified. Let {v;,u;}i—1. x be k pairs of points that
belong to Ep. We define a quasi-metric on 7, by setting:

r—1
d/\/le,p(m7y) ‘= min {de(xa y), inf {de(x, u;,) + Z de(vijv uij+1) + dE(Ur;y)}} )

B1yeeeslp
j=1
(4.14)
where the infimum is taken over r positive integers, and all subsets {iy, ..., 7.} C

{1,...,k}. Moreover, note that the vertices i1, ..., 7, can be chosen to be distinct.
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The metric defined above gives the shortest distance between x,y € 7. when we
glue the vertices v; and u; together for i = 1,...,k. It is clear that d,, , defines
only a quasi-metric since da, ,(u;, v;) = 0, for every i = 1,...,k, but u; # v;, for
every ¢ = 1,...,k. We define an equivalence relation on 7. by setting x ~g, y
if and only if du, ,(z,y) = 0. This makes the vertex identification explicit and
M. p is defined as

Mep = (Te/ ~Eprdm.»)-

To endow M, p with a canonical measure, let p. » denote the canonical projection
from 7. to the quotient space T,/ ~pg,. We define 7. p := py. o pe_jlp, where p7.
is the image measure on 7, of the Lebesgue measure ¢ on [0, (] by the canonical
projection p, of [0,(] onto 7. So, mep = (£ o p.t) opgﬂl}. We note that the
restriction of p.p to ¢ is pe.

For every ( > 0, as in [3], we define a tilted excursion of length ¢ to be a

random variable that takes values in £/, whose distribution is characterized by

E (ﬂ{eeg} exp (fOC e(t)dt))
E (exp (fOC e(t)dt))

for every measurable & C E. We note here that the o-algebra on E is the one

Peecé€) =

Y

generated by the open sets with respect to the supremum norm on C'(R,,R,).
Write M(© for the random compact metric space distributed as (Mep,2dpm. ),
where € is a tilted Brownian excursion of length ( and the random pointset of
interest P is a Poisson point process on Ri of unit intensity with respect to the
Lebesgue measure, independent of é.

We now give an alternative description of Mg p, for which the full details
can be found in [3, Proposition 20]. From the construction, it is easy to prove
that the number |PNeé| of vertex identifications is a Poisson random variable with

mean foc é(u)du. Given [P Né| = k, the co-ordinate u( ,) has density

é(u)
S e(t)dt

on [0,¢], and given w4, its pair vy 5 is uniformly distributed on [0, €(u(: 4))]. The
other k£ — 1 vertex identifications are distributed accordingly and independently of

(U(t,2): Vit,))-
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After introducing notation, we are in the position to write the limit of the
largest connected component, say C}, as M1 where C| has the distribution of
the length of the longest excursion of the reflected upon its minimum parabolic
Brownian motion in (4.13). Moreover, the longest excursion, when conditioned to
have length (', is distributed as a tilted excursion € with length C';. The following

convergence is a simplified version of [3, Theorem 2]. As n — oo,

(n=23CT, (V(C1),n3der)) — (C1, (M, dum)), (4.15)
in distribution, where conditional on Cy, M @M(Cl). Moreover, it was shown
in [34], that the discrete-time simple random walk X' on C}, started from a
distinguished vertex 0", satisfies a distributional convergence of the form

-1/3 v C1' M
(X)) = () (4.16)

where XM is a diffusion on M, started from a distinguished point ¢ € M. The
convergence of the associated stationary probability measures, say n", was not
directly proven in [34], although the hard work required has been done. More
specifically, see [341, Lemma 6.3]. The results above can be reformulated in the
following distributional convergence in terms of the extended pointed Gromov-

Hausdorff topology:

<(V(Cf),n_1/3dc?, Qn) ", (n_l/3X§;J>t>0> — ((/\/l,dM, 0) ,WM,XM) )

(4.17)

Now, we describe how to generate a connected component on a fixed number

of vertices, for which the full details can be found in [3, Lemma 6] and [3, Lemma
7]. To any such component we can associate a spanning subtree, the depth-first
tree by considering the following algorithm. The initial step places the vertex with
label 1 in a stack and declares it open. In the next step vertex 1 is declared as
explored and is removed from the top of the stack, where we place in increasing
order the neighbors of 1 that have not been seen (open or explored) yet, while
declaring them open. We proceed inductively. When the set of open vertices
becomes empty the algorithm terminates. It is obvious that the resulting graph
that consists of edges between a vertex that was explored at a given step and a

vertex that has not been seen yet at the same step, is a tree. For a connected

60



graph G with m vertices, we refer to this tree as the depth-first tree and write
T(G). Fori=0,..m —1, let X(i) be the number of vertices seen but not yet
fully explored at step i. The process (X (i) : 0 < i < m) is called the depth-first
walk of G.

Let T,, be the set of (unordered) trees labeled by [m|. For T € T,,, its
associated depth-first tree is 7' itself. We call an edge permitted by the depth-first
procedure run on 7' if its addition produces the same depth-first tree. Fxactly
X (i) edges are permitted at step i, and therefore the total number of permitted
edges is given by

a(T) := Z_:X(i),

which is called the area of 7. Given a tree T" and a connected graph G, T'(G) =T
if and only if G can be obtained from T by adding a subset of permitted edges by
the depth-first procedure. Therefore, writing G for the set of connected graphs G
that satisfy T(G) = T, we have that {Gr : T € T,,} is a partition of the connected
graphs on [m], and that the cardinality of Gr is 20(T) ' since every permitted edge
is included or not.

Back to the question on how to generate a connected component, write G,
for the graph with the same distribution as G(m, p) conditioned to be connected.

We focus on generating G? instead.

Lemma 4.2.2 (Addario-Berry, Broutin, Goldschmidt [3]). Fiz p € (0,1).
Pick a random tree Tﬁl that has a “tilted” distribution which is biased in favor of

trees with large area. Namely, pick Tﬁl i such a way that
P(T? =T)x (1—p)~@ — TeT,.

Add to TP each of the a(TP) permitted edges independently with probability p. Call
the graph generated G?,. Then, GP. has the same distribution as GP,.

Proof. For a connected graph G on [m], let s(G) := |E(G)| — (m — 1) denote its

surplus. From the definition of G?,, for a connected graph G on [m], we have that

m

P(GP, = G) x pIE(G)I(l —p) (3)-1E@G)| _ ps(G)er—l(l _ p)(2)78(G)*er1
x p (1 = p) @),
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Also, note that T(GP,) = TP, and therefore

P(GY, = G) o (1 - p) D P(GE, = GIT(G) = T)
= (1= p) " Dp" (1 = p)r =D = pD (1 — p)=(D),

which completes the proof.
O

We use ¢™ to denote the root of T?. In what follows we give a detailed
description of how we can transfer the results proved in Section 4.1. We denote
by Cyp, := (Cra(i) : 0 < i < 2m) the contour function of TP, and by

) = S0

its normalized contour function of positive length (. We start by showing that,

: 0<s<g,

for some o > 0, the sequence ||C,m ||z, of Hélder norms is tight.

2/3

Lemma 4.2.3. Suppose that p=p(m) is in such a way that mp*> — (, asm — oco.

There exists a > 0, such that

Clmy(5) — Cmy (t
lim hmian( sup [Ciom () m () §M) =1

M—o00 m—o0 0§5¢t§1 |t — s|a

Proof. We simply assume that ( = 1. The general result follows by Brownian
scaling. Let T,, be a tree chosen uniformly from [m]. We note here that Theorem
4.1.3 is stated in the more general framework of size-conditioned Galton-Watson
trees with critical offspring distribution that has finite variance and exponential
moments. If the offspring is distributed according to a Poisson with mean 1, then
the conditioned tree is a uniformly distributed labeled tree (e.g. [56, Proposition
2.3]). By Lemma 4.2.2,

P( sup Cmy(8) = Clamy (2)] > M)

0<sAt<1 |t —s|*

[t—s|™

E[(T = )]

— p)—a(Tm)
B[ g St 02
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Using the Cauchy-Schwarz inequality, we have that

P( “up |Cmy(8) — Clamy (1) . M)

0<s#£t<1 |t — s|*

IC(m) (8)=Clm) (D) 1/2 on 12
_ P (o e > ar) (5 (1 — )
- E[(1— p)-aTm]

(4.18)

2/3 1, as m — 00, there exists ¢ > 0 such that p < em=3/2, for every

Since mp
m > 1. Since T,, is a uniform random tree on [m|, from [3, Lemma 14|, we can

find universal constants Ky, Ky > 0, such that
E (1 —p) )] < Kl (4.19)

for fixed & > 0. Recall that a(T;,) = 327" X,u(4), where (X,,(i) : 0 < i < m) is
the depth-first walk associated with 7}, (for convenience, we have put X,,(m) = 0).

From [31, Theorem 3], we know that,

(m™ 2 X ([mt]))ecio) = (€(t))ecio.,

as m — 00, in distribution in D([0,1],Ry), where (e(t))tcpo,] is a normalized

Brownian excursion. Writing

(1—p)Tm) = (1 — p)= T Xonli) = (1 )=/ fo ™2 (Lt

?

and using that the sequence (1 — p)~%") is uniformly integrable, see (4.19), we
deduce that

> 0, (4.20)

E[1l-p ] 5 E [exp (/01 e(u)du)

as m — oo. Thus, for m large enough,

(B [(1 = p)2T)) " JE[(1 — p) =]

is bounded by a universal constant, see (4.19) and (4.20). To conclude, taking first
m — oo and then M — oo, the desired result follows from (4.18) and Theorem
4.1.3. [l
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It is now immediate to check that the local times (Li"(7)),ev(an,) >0 Of the
corresponding simple random walk on G?, are equicontinuous under the annealed
law. The proof of the next lemma relies heavily on the same methods used to
establish Proposition 4.1.4, and therefore we will make use of the parts that remain
unchanged.

Recall that the graph generated by the process of adding Bin(a(T?),p)
number of surplus edges to T},’I was denoted by éﬁz. We view G% as the metric
space T that includes the edges (of length 1) that have been added and we equip
it with the resistance metric Rg» defined by (3.3).

Lemma 4.2.4. Suppose that p=p(m) is such that mp*>

everye >0 and T > 0,

— (, as m — oo. For

lim lim suplP sup sup m~ 2L o, (y) = Linae, (2)] > €|s(Gh) = 5
0—=0 m—oo y,2€V(Gh,):  t€[0,T]
m_l/QRG;on(y,z)<6
=0.

Proof. We simply assume that ( = 1. The general result follows by Brownian
scaling. From Lemma 4.2.3, given t1,ty € [0, 1], with 2nt; and 2nt, integers, such

that pe (t1) =y and Pén, (t) = z, there exist M > 0 and « > 0, such that

de,, (t1,t2) = Comy(t1) + Camy(ta) =2 min  Clpy < 2M|t, — t5|%,  (4.21)

re [tl Nta,t1 Vtg]

with probability arbitrarily close to 1, cf. (4.4). Conditioned on é’(m) satisfying
(4.21), the resistance between y and z on éﬁz is smaller than the total length of

the path between y and 2z on Tﬁl, see Proposition A.0.1. Therefore,
Rer (y,2) < dgp (y,2) = m'2dy,, (t1,t2) < 2Mm' 2|ty — o],

which indicates that, on the event that (4.21) holds, the maximum resistance of

1/2

@ﬁl is bounded above by a multiple of m'/“. More specifically,

r(GP) < Mm!/?2+1,

Moreover, m(GP,) = 2E(GP,)) = 2(s(GP,) + m — 1). An application of Theorem
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4.1.2, which was originally formulated for the local times of random walks on

weighted graphs in terms of the resistance metric, yields

Egzn Hmfl/Z (ng/z(y) — LZS/Q,(,Z)) ‘ ‘Zo,[O,T] s(éfn) = s] < Gt — t2|ap/2’

conditional on C,,) satisfying (4.21), for any fixed p > 2, cf. (4.5). Since the
discrete local time process is interpolated linearly between the integer time points
2nt; and 2nts, the statement above is also valid for every t1,t5 € [0,1]. The rest
of the proof is finished in the manner of Proposition 4.1.4, and therefore we omit
it.

m

For notational simplicity, the next result is stated for the largest connected
component C of G(n,n~! + An~*3), for fixed A € R. In fact, it holds for the i-th
largest connected component. As usual, we denote by (L} ())zcv ey =0 the local

times of the simple random walk on C7'.

Proposition 4.2.5. For everye >0 and T > 0,

lim lim sup P n sup sup n~ V3L (y) — L7(2)| > e | = 0.
=0 nooo y,2€V(CT):  t€[0,T]
n_1/3RC{z (y,2)<d

Proof. Fix e >0, > 0 and T > 0. In the random graph G(n,p), conditional on

n
1>

n (4)
Cl - G%T,,

where as above p = n~! + An~43, for fixed A € R. Note that np — 1, as n — o0o.
By (4.15) and Skorohod’s representation theorem, there exists a probability space
and random variables C’?, ~f, n>1 and C;, M defined on that space, such that
(Cr,Cr) @(C’l,/\;l) with n~23C? — (), as n — oo, in the almost-sure sense.
Conditioning on the size and surplus of CP, if we denote by BS the measurable
event

Bi = sup sup n_1/3|L2t(y) — Ly (2)] > €,
y,2€EV(CT):  te[0,T]
nil/SRciL (y,Z)<5

for large enough constants A (appears in (4.22)) and S (appears in (4.23)), note
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that

P, (B2) < / P (BY; A'n?/? < OF < An*?) P(dCY) (4.22)

P(C} ¢ [A™'n?/3, An1¥).

Since C7 and p = p(n) are such that C7p?/® — C}, as n — oo, in the almost-sure

sense, we can bound (4.22) above by

Pgn( supp | tshl};/ (cm- 2\ (0")3/2t<y) — L?c;l)wt(z)‘ > ¢
y,zEV(GC{L). €[0,77]

(C{L)*l/2RGp (y,2)<d’
cr

P(CT ¢ [A~'n?3 An*?]) + P(ST > 9), (4.23)

for appropriate ¢’ > 0, 6’ > 0 and 7" > 0 that only depend on ¢, §, T and A. By
Theorem 4.2.1,

hm lim sup P(C ¢ [A™'n?/3, An*3]) = 0. (4.24)

A—=00  poeo

@ . ([
ST — Poi /e(u)du :
0

where Poi < fOC é (t)dt) denotes a Poisson random variable with mean the area under

Furthermore, as n — oo,

a tilted excursion of length (, see [3, Corollary 23]. As a consequence, tightness

of the process that encodes the surplus of C}' follows:

hm lim sup P(ST > S). (4.25)

S—00 pooco

The proof is finished by combining (4.24) and (4.25) with the equicontinuity result
of Lemma 4.2.4, see (4.23).
[l
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4.2.1 Continuity of blanket times of Brownian motion on

M

To prove continuity of the e-blanket time of the Brownian motion on M, we first
define a o-finite measure on the product space of positive excursions and random
pointsets of Ri. Throughout this section, for simplicity, we still use ¢ to denote
the Lebesgue measure on R%. We define N(d(e, P)) by setting:

N(de, |P| =k, (dxy, ...,dzg) € By X ... X By)

_]_k

/ Fr(Ni(de) = H BOA (4.26)

where fr(1) := dl/v/2x3, 1 > 0 gives the density of the length of the excursion e,
see (2.6), and A, := {(t,x) : 0 < o < e(t)} denotes the area under its graph. In
other words, the measure picks first an excursion length according to f(I) and,
given L = [, it picks a Brownian excursion of that length. Then, independently of
e, it chooses k points according to a Poisson with unit mean, which are distributed
uniformly on the area under the graph of e.

It turns out that this is an easier measure to work with when applying our
scaling argument to prove continuity of the blanket times. Also, as we will see later,
N is absolutely continuous with respect to the canonical measure N*(d(e, P))
that first at time ¢ picks a tilted Brownian excursion e of a randomly chosen
length [, and then independently of e chooses k points distributed as a Poisson
random variable with mean fo t)dt, which as before are distributed uniformly
on the area under the graph of e. To fully describe this measure, let N** denote
the measure (for excursions starting at time ¢) associated to B} — info<.<; B2, see
(4.13), first stated by Aldous in [3]. We note that Nt* = N~ and thus it suffices

to describe NO*, for every A € R. For every measurable subset A,

NOA(A) = /0 h NOAA) (D) FA(DN, (exp ( /0 l e(u)du)) , (4.27)

o\ - . ...
where N;** is a shorthand for the excursion measure N%*, conditioned on the event

{L =1} and F)\(l) := exp (—1/6 (A\* + (I — \)?)). For simplicity, let

0.0 = BB (e ([ | ) ).
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In analogy with (4.26), we characterize N**(d(e, P)) by setting:

N de, |P| = k, (dxy, ..., dxy) € Ay X ... X Ay)

= [T anttr— oy (- [ etwyan) <f0 ) ﬁﬁ A

=1

(4.28)

After calculations that involve the use of the Cameron-Martin-Girsanov formula
[92, Chapter IX, (1.10) Theorem] (for the entirety of those calculations one can

consult [3, Section 5]), one deduces that

Nl(de)

N (de) = exp (/Ol e(U)du) N (exp (fol @(u)du>)a

and as a consequence the following expression for the Radon-Nikodym derivative

is valid:

N Bl (Jletwdu) i
N e 1/l

= exp (1 — é (NM+(l-2+ t)3)> (/Ol e(u)du)k : (4.29)

Recall that for every b > 1, the mapping O, : F — FE is defined by setting

Ou(e)(t) := Vbe(t/b),  te]0,b(],

for every e € E. As we saw in Subsection 4.1.1, it acts on the real tree coded
by e scaling its distance and measure appropriately, see (4.10) and (4.11). Recall
the alternative description of the “glued” metric space M. p, where e is a positive
Brownian excursion of length ¢ and P is a Poisson point process on R? of unit
intensity with respect to the Lebesgue measure independent of e. The number
|P Ne| of vertex identifications is a Poisson random variable with mean fo u)du.
As a result, the number of vertex identifications |P N O,(e)| has law given by a

Poisson distribution with mean

. Vbe(u/b)du = b/ /C e(u)du.

0 0
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Moreover, conditioned on |P Ne| and e, the coordinates of a point (uz), Vi)
in P N e have densities proportional to e(u) for u( ) and, conditioned on w4,

V(t,z) is uniformly distributed on [0, e(u4))]. Then, conditioned on [P N Oy(e)|,

b

the coordinates of a point (ul() Uiy )

Y ) in P N Oy(e) are equal in law to bu( )

b
(t,z)

[0, Vbe(u( ). From now on, we use ©,(e,P) to denote the mapping from the

in the case of ul(’w), and conditioned on u’(’t@), v is uniformly distributed on
product space of positive Brownian excursions and random pointsets of the upper
half plane onto itself that applies ©,(e) to e and repositions the collection of points
in P as described above.

From the definition of the quasi-metric dy4, , in (4.14), we have that un-
der the application of O, it rescales like v/bd M..p, @ statement that should be
understood in accordance with (4.10). Let £(7.) denote the leaves of 7, that is
the set of points o € T, such that 7. \ {o} is connected, i.e. the complement of
the set of leaves is the skeleton of 7.. In particular, £(7;) is uncountable, and

wr.(L(Te)) = ¢. Consider the set
I ={oeL(T.):peploc) € B},

for a measurable subset B of M, p, where p. p is the canonical projection from
7. to the resulting quotient space after the vertex identifications, made explicit
by the equivalence relation ~g,. We endowed M, p with the measure 7. p, that
is the image measure on M, p of p7. on 7. by the canonical projection p.p of 7.
onto M, p. Then, by definition 7. p(B) = 7, (1), and consequently 7g, . p)(B) =
:“Teb(e)([ ). As we examined before, under the application of Oy, ITo, o) rescales
like bu7., where once again this should be understood according to (4.11) and
the notation that was introduced in the course of its derivation. Finally, since
No®©,! = VIN, see (2.5), and using the fact that £(A; N A,)/¢(A,) in (4.26) is

scale invariant under ©,, we have that
No®©;! = ViN.

Therefore, considering N instead of N** is advantageous as it could easily be seen
to enjoy the same scaling property as N.
We now have all the ingredients to prove continuity of the blanket times of

the Brownian motion on M. We describe the arguments that have been already
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used in establishing Proposition 4.1.5. Let Tgfp(s) denote the e-blanket time of the
Brownian motion X*” on M, p started from a distinguished vertex g, for some
e € (0,1). Taking the expectation of the law of T&’P(e), e € (0,1) against the
o-finite measure N as in (4.7), using Fubini and the monotonicity of the blanket

times, yields
e, P e, P e, P
P; (Tbl (e—) = m <5+)) =1,

l-a.e. ¢, N-a.e. (e, P), where PE’P denotes the law of X*” started from p. The rest
of the argument relies on impoving such a statement to hold globally € € (0, 1).
In the transformed “glued” metric space Mg, (,p), the Brownian motion
admits P?b(e’m
is enough to infer that, for every e € (0,1) and b > 1, the continuity of the e-

-a.s. jointly continuous local times (VbL, s/2,(2))sem, p>0- This

blanket time variable of M, p is equivalent (in law) to the continuity of the b~'e-
blanket time variable of Mg, . p), and consequently as in the proof of Proposition

4.1.5, applying our scaling argument implies
e, P e, P e, P
Py (7 (=) = 7 (e ) = 1,

N-a.e. (e,P). Recall that, conditional on Cy, M @ M) where O is the length
of the longest excursion of the process defined in (4.13), which is distributed as a
tilted excursion of that length. Then, applying again our scaling argument as in

the end of the proof of Proposition 4.1.5, conditional on C, we deduce

P (' (e—) = my'(e4)) = 1,

Ng,-a.e. (e, P), where N; is the version of N defined in (4.26) conditional on
{L = 1}. Tt was shown in (4.29) that the canonical measure Ng&f‘ is absolutely
continuous with respect to N¢,, therefore the above also yields that conditional

07)‘ M ] ] M
on Oy, Ng'-ae. (e,P), 7y (¢) is continuous at ¢, P, -a.s.

Proof of Theorem /.0.4. Fix € € (0,1). Here, for a particular real value of A € R

and conditional on Cf,

P.() = [ PONE (e P))

formally defines the annealed measure for suitable events. Given the continuity
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of 7Y!(g) at ¢, Pﬁ/‘—a.s. and Proposition 4.2.5, the desired annealed convergence
follows by applying Theorem 3.1.2 exactly in the same manner as we did in the
proof of Theorem 4.0.3 in the end of Subsection 4.1.1.

O

4.3 Critical random graph with prescribed de-

grees

Let G, 4 denote the space of all simple graphs labeled by [n] such that the i-th
vertex has degree d;, ¢ > 1, for 1 < i < n. We denote the vector (d; : i € [n])

of the prescribed degree sequence by d, where ¢, := > }di is assumed even.

i€n
Write Gn,d for G,, 4 with the difference that we allow self—loi)ps as well as multiple
edges between the same pair of vertices. Then, the configuration model is the
random multigraph in G, 4 constructed as follows. Assign each vertex i with d;
half-edges, labelling them arbitrarily by 1, ..., ¢,. The multigraph M"(d) produced
by a uniform random pairing of the half-edges to create full edges is called the
configuration model. In particular, we look at prescribed degree sequences that

satisfy the following assumption.

Assumption 3. Let D,, be a random variable with distribution given by

_#ydi =1}

P(D, = i) -

In other words, D, has the law of the degree of a wvertex chosen uniformly at
random from [n]. Suppose that D, @) D, for a limiting random variable D such

that P(D = 1) > 0. Moreover, assume the following as n — oo,
i) Convergence of third moments: E(D3) — E(D?) < oo,

i) Scaling critical window: %g:)—n) = 1+ "3 +o(n=Y3), for some A € R.

In particular, E(D?*) = 2E(D).

Remark. We remark here that the configuration model with random i.i.d. degrees
sampled from a distribution with E(D?) < oo treated in [05], meets the assump-

tions introduced above. More generally, ii) is assumed for A = 0 and corresponds
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to the critical case, i.e. if E(D?) < 2E(D) there is no giant component with prob-
ability tending to 1, as n — oo. In addition, E(D?*) > 2E(D) sees the emergence

of a unique giant component with probability tending to 1, as n — oo, see [59].

Write ¢ = (c1,¢2,¢3) € RY and define a Brownian motion with parabolic
drift by

t2
B =Y x>0, (4.30)
c1 2cy

where (B;)i>o is a standard Brownian motion. The most general result under
minimum assumptions for the joint convergence of the component sizes and the
corresponding surpluses was proven in [12]. Fix A € R and let (M/");>; and

(RI");>1 denote the sequence of the sizes and surpluses of the components of M"(d)

respectively.

Theorem 4.3.1 (Dhara, van der Hofstad, van Leeuwaarden, Sen [42]).

Asn — oo,
(R (M) iz, (RM)is1) — (MfP)is1, (RSP )is1)

in distribution, where the convergence of the first sequence takes place in Ei. For

the second sequence, the convergence takes place in the product topology.

The limiting sequence (M;?);>; is distributed as the ordered sequence of
lengths of excursions of the process (B;” ’A)tzo reflected at its minimum, where cp
has coordinates depending only on the first three moments of D and are given
exactly by ¢ = E(D), c? = E(D3)E(D) — (E(D?))? and ¢ = 1/E(D). Drawing
the graph of the reflected process, scattering points on the plane according to a
Poisson with rate ¢ and keeping only those that fell between the x-axis and the
function, describes R;” as the number of those points that fell under the excursion
with length M;".

In Section 4.2, we introduced M(©) as the random real tree coded by a tilted
Brownian excursion of length ¢ to which a number of point identifications to create
cycles is added. The number of point identifications is a Poisson random variable
with mean given by the area under the tilted excursion. Given that number, say
k > 0, x; is picked with a density proportional to the height of the tilted excursion
in an i.i.d. fashion for every 1 < i < k and y; is picked uniformly from the path
that connects the root to x;. Then, x; and y; are identified. Let M) denote
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M@ if the number of point identifications is instead Poisson with mean given by
the area under the tilted excursion multiplied by c3, i.e. ¢3 foc é(u)du.

Then, the limit of the largest connected component of the configuration
model in the scaling critical window, say M7 (d), can be written as a scalar multiple
of MO .5 ), where M{P is distributed according to the length of the longest
excursion of the Brownian motion with parabolic drift with coefficients dependent
on c¢p as defined in (4.30). This statement is made precise as a simplified version

of [23, Theorem 2.4], which we quote. As n — oo,

D
(n=22M, (VM7 (d),n”PPdvipay, 07)) — (MfD, (MD, de@)) :
\/@

(4.31)
in distribution, where conditional on M;?, Mp @ MM ) Actually [23, The-
orem 2.4] holds also by considering the largest connected component of a uniform
element of G,, 4 with d satisfying the minimum conditions in Assumption 3. The
limit of the maximal components of G(n,n~! + An~%/3) can be recovered by con-
sidering Dgg to be a mean 1 Poisson random variable (c[®* = ¢2Fr = ¢Dor — 1)
by noticing the following two facts. By Poisson approximation to binomial, the
random degree sequence of G(n,n~! 4+ An~%/3) satisfies Assumption 3 with limit-
ing random variable Dggr. Moreover, conditional on the event where the random
degree sequence is equal to d, G(n,n™' + A~ 3) is uniformly distributed over
Gnd-

We turn now our interest to how to sample uniformly a connected com-
ponent with a given degree sequence (d; : i € [/n]) that satisfies the following

assumption.

Assumption 4. Let d; = 1, and d; > 1, for every 1 < i < m. There exists a

probability mass function (p;)i>1 with the properties
pr>0, > =2 Y % <o,
i>1 i>1
such that

1 ~ 1 ~
—#J 1 dj =1ip = i Wi>1, and =Y di =Y i’pi
m#{] =1} — pi, foralli>1, an — 2 i2p

i>1 i>1

In particular, maxi<i<g d; = o(y/m).
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For a given rooted plane tree 6 with root g, let ¢(0) = (c,(0)),co, where ¢, (0)
gives the number of children of v in # and let s(f) = (s;(6))i;>o be the empirical
children distribution (ECD) of 6, i.e. s;(6) := #{v € 6 : ¢,(0) = i}, for every
i > 0. Note that sy(f) = #L(0) gives exactly the number of leaves of . Now,
given a sequence of integers s = (s;);>0, note that there exists a finite plane tree 6

with s(0) = s if and only if sp > 1, s; > 0 for every ¢ > 1, and

Zsizl—l—ZiSi < 00.

i>0 i>1

Given s, let Ty denote the collection of all plane trees having ECD s. Let z,y €
L(6). We say that the ordered pair of leaves (z,y) is admissible if par(z) <pp
par(y), i.e. if the parent of x is explored before the parent of y during a depth-first
search of 6, and if gpar(y) € [[o, gpar(x)]], i.e. if the grandparent of y belongs to
the ancestral line that connects the root to the grandparent of z. Let (A(6), <<)
denote the collection of pairs of admissible leaves of # endowed with the linear
order << that declares (z1,y1) << (x2,2) if and only if 21 <pp 3, or if z; =
and y; <pp y2. For k > 1, we denote by Ay(#) the collection of admissible
k-tuples of 2k distinct leaves and by T¥ the pairs (6,z) for which § € T, and
z € Ag(0). Finally, for a rooted plane tree 6 and z = {(x1,y1), ..., (T, yx)} €
A (0), we denote by L(6,z) the rooted plane tree obtained from 6 performing the
following operation. Delete z;, y; together with the edges adjacent to them for
each i = 1,...,k and add an edge between par(z;) and par(y;). We equip L(0,z)
with the shortest path distance and the uniform probability measure on its set of
vertices.

We will work with connected graphs with a fixed surplus, so suppose that
> di=2(m — 1) + 2k,

for some fixed £ > 0. Under Assumption 4, the lowest labeled vertex has one
descendant and for the remaining vertices 2, ..., m we form the children sequence
c = (cz):’g% via ¢; = czz — 1, for every 2 < ¢ < m, and cpqy; = 0, for every
1 < j < 2k. Observe that
i+2k i
=Y di—(m—1)=(m—1+2k) -1, (4.32)
i=2

=2
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and thus ¢ can be seen as representing a children sequence for a plane tree with
m :=m — 1 + 2k vertices. Write s := (s;);>o for its ECD. The following lemma is
due to Bhamidi and Sen.

Lemma 4.3.2 (Bhamidi, Sen [23]). To generate uniformly a connected graph

with prescribed degree sequence d satisfying Assumption /,

i) Generate first (T, Z) uniformly from TF. If Z = {(z1,31), ..., (zx, yx)} with

(513'173/1> <<l <KL (xkuyk)a

label x; as m~+21—1 and y; as m~+2t, 1 < i < k. Label the rest of the m — 1
vertices uniformly using the remaining labels 2, ...,m so that in the resulting
labeled tree the vertex 5 has exactly ch — 1 children. Call this labeled tree Tslb.

i) Construct L(T™®, Z), attach a vertex labeled 1 to the root and forget about
the planar order and the root. Call G the resulting graph.

Then, G s distributed uniformly over the set of connected graphs with prescribed

degree sequence J

Proof. Fix a connected graph with prescribed degree sequence d. Recall that
d; = 1. Remove vertex 1 with the only adjacent vertex to it and replace it with
a root, which we call z; and denote the resulting graph by G. We construct a
labeled plane tree from G using a depth-first procedure that in each step deletes
the edges that create surplus while adding two leaves to the disconnected vertices.
To be more precise, starting from the root x; on the top of the stack, set its status
as explored and the status of its neighbors as seen. Then, shuffle all its neighbors
uniformly, pick the leftmost one, call it x5 and place it on the top of the stack
declaring it open. We proceed inductively as follows. At step k, for some k > 2,
if ;. is on the top of the stack, we set its status as explored and the status of its
neighbors as seen only if none of them have been previously seen while shuffling
them uniformly and declaring the leftmost one, x;,1, open.

Suppose that, before exploring x;, we found ry edges that create surplus
and that at z; we found r; many new edges that create surplus, say ey, ..., e,
where e, = zpu;, © = 1,...,7, and u; <pp ... <pp U,,. For ¢ = 1,...,71, delete ¢;
and create two leaves labeled m + 2ry + 2¢ — 1 and m + 2ry + 27 in such a way that
x = par(m + 2rg + 2i — 1) and u; = par(m + 2r¢ + 2i). Shuffle the neighbors of
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xk, including the newly created leaves, set their status as seen and the status of

x, as explored, move to the leftmost one and call it z;, ;. Note that we do not set

the status of m + 2rg + 2¢, ¢ = 1, ..., 71 as seen since it is not a neighbor of x;.
Let T(G)™ denote the labeled depth-first tree recovered and set

z={(m+1,m~+2),..,(0m+2k—1,m+2k)}.

Observe that T(G)™ has always children sequence given by (4.32) and z contains
k admissible pairs of leaves. Therefore, (T(G)"®,z) € T*. Now,

P(LIP2)=0)= 3 P((TF2)=T(G)"1).
(T(&@)".2)

where the sum is taken over the set of all labeled elements of T that can be
obtained through the depth-first algorithm outlined above. The aforementioned
set has cardinality [[",(d; — 1)! due to the uniform shuffling we commit in each
step. Recalling how (Tslb, Z ) is generated, we complete the calculation we started.

Namely,

P(L(TS“D,Z):G>: 3 P((Tslb,Z):(T(G)lb,z))

(T(G)'".2)

"o 1 1
L= o e

Now, since this probability is a function of m only, the desired result follows.
O

We use o™ to denote the root of T,. We denote by C%, = (C%,(i) : 0 < i <
2m) the contour function of 7}, the random tree generated according to i) in the

statement of Lemma 4.3.2, and by

~ B C’fn(Qms)
= —\/ﬁ 7

its normalized contour function as well. In the next lemma we show that, for some

0<s<1,

a > 0, the sequence ||C~'(Sm)|\ 1, of Holder norms is tight.
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Lemma 4.3.3. There exists a > 0, such that

s (s)—C3 (¢
lim limian( sup () (om0 < M) =1. (4.33)

M—o00 m—oo 0§s;£t§1 |t — S|a -

Proof. From the definition of (T}, Z), it is clear that

Pl =0 = 220

S

for any 6 € T, i.e. T, is a random tree that has “tilted” distribution which is
biased in favor of trees with large collection of admissible k-tuples between 2k
distinct leaves. Hence, for any f : C([0,1],R;) — R, bounded and continuous

function,
] E[f(C3 AT
Elf(Cln)] = E[\(A)k(Ts)H ’

(4.34)

where 75 is a uniform plane tree having ECD s, which is specified by the children
sequence described in (4.32). Here, Cf, ) is the normalized contour function that

encodes T,. Note that when d satisfies Assumption 4, s satisfies the following:

S . 1 . .
Zsi =m, EZ — p;, forall i >0, and - 222&' — ZZQPi-

>0 >0 120

In particular, max{i : s; # 0} = o(y/m). Also, p := (p;)i>0 is a probability mass

function with p; := p;41, for every ¢ > 0, and therefore it has the properties

po>0, Y ip=1, Y i’p < oo (4.35)

i>0 i>0
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By (4.34) along with the Cauchy-Schwarz inequality, we deduce

~ ~ E ]1 [CS  (s)—CS . (#)] A TS
|C(Sm)(s) - C(Sm) (t)| {Supois;ﬁtgl WEM}‘ k( )‘
P sup >M| =
osspest JE— sl E[|A(Ty)]]

5 (s)-cx ()] 1/2 21\ 2
P (supocoper D2 a) (| (42)] )

< (4.36)
E [|Ak(Ts)\]
skmk/2
Using [23, Lemma 6.3(ii)], we have that
AT _ 1 AT
(B o G E < 00,
fnuz% ( sEmk/2 ~ k! i}g so/m o
for every k > 1. Furthermore, using [23, Lemma 6.3(iii)], [23, Lemma 6.3(v)]

together with the uniform integrability from above, we conclude that

(/01 2e(u)du)k] >0,

as m — oo, where (e(t))cp, is a normalized Brownian excursion and ¢? =
> is0%°pi — 1. Tt only remains to deal with the quantity P(|Ce |, = M) that
appears on the right-hand side of (4.36). It turns out that plane trees chosen

|Ak(Ts)| Poo\ *
E{s”ém’“/2 _>< 2 > E

uniformly from Ty are related to Galton-Watson trees by a simple conditioning.
The uniform distribution on Ty coincides with the distribution of a Galton-Watson
tree 6§ with offspring distribution p := (p4;);>0, which must satisfy p; > 0 if s; > 0,
conditioned on the event NM;>o{s;(0) = s;}. Take u = p asin (4.35) to be the critical
offspring distribution with finite variance of a Galton-Watson tree 6. Then, if P,
is the probability distribution of 6,

P ([|Com 11, = M) = P, ([|Clmy 11, = M]si(0) = s;,¥i > 0) ,

where ||C(n)||m, denotes the a-Hélder norm of the normalized contour function
Cm) that encodes ¢. The proof is completed as a result of Theorem 4.1.3.
]
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In Lemma 4.3.2, we saw that G, a uniformly chosen connected graph with
prescribed degree sequence d satisfying Assumption 4, is distributed as L(Tslb, Z ),
where (T, Z) is a uniform labeled element of T#. Recall that to obtain L(T!", Z)
from (T, Z), where Z = {(zi, i), .., (T, )} With (z1,51) << ... << (T, Ys),
for every pair of admissible leaves, we add an edge between par(z;) and par(y;),
deleting x;, y; and the two edges incident to them, for 1 < ¢ < k. The resistance on
L(T™, Z) between two vertices is smaller than the total length of the path between
them on 7. This observation together with Lemma 4.3.3 is enough to establish
equicontinuity of the rescaled local times (LY (2))zev(g)>0 of the simple random
walk on G under the annealed law. Since the proof relies heavily on arguments

that are present in the proof of Proposition 4.1.4 we omit it.

Lemma 4.3.4. For everye >0 and T > 0,

lim lim sup P,m sup sup m~Y?LY a2, (Y) — Lfn3/2t(z)| >e| =0.
6=0 m—oo y,z€V(G):  t€[0,T)
m=12Rg(y,2)<6
Assume that d satisfies Assumption 3 with limiting random variable D, and

let D* denote its size-biased distribution given by

iP(D =)

pii= D" =) = g,

Then, for M} (d), the largest connected component of the configuration model

M"(d), if we denote by LN convergence in probability,

#{veMi(d):dy =i} p . 2
— — i, d—> i“p; < oo, (4.37)
VNG )] wor@), 2 * 7 2"
P(M7(d) is simple) — 1, (4.38)

for all 4+ > 1. For a justification of (4.37) and (4.38), see [23, Proposition 8.2].
Note that P(D = 1) > 0 under Assumption 3, and hence pj > 0. Furthermore,

under Assumption 3,

S =220y

i>1

and this shows, along with (4.37), that (d, : v € MJ(d)) satisfies Assumption 4
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(after a possible relabelling of the vertices) with limiting probability mass func-
tion p* := (pf);>1. Let P denote the partition of M"(d) into different components.
Conditional on the event {M7(d) is simple} N {P = P}, M{(d) is uniformly dis-
tributed over the set of simple, connected graphs with degree sequence decided by
the partition P, see [62, Proposition 7.7]. Since P(M7(d) is a multigraph) — 0 by
(4.38), imitating the argument used in the proof of Proposition 4.2.5, the result

below follows as a combination of Theorem 4.3.1 and Lemma 4.3 .4.

Proposition 4.3.5. Under Assumption 3, for everye > 0 and T > 0, the rescaled
local times of the simple random walk on MY(d) are equicontinuous under the

annealed law, i.e.

lim lim sup Pn sup sup n V3L (y) — L (2)| > e | =0.
=0 nooo y,2€EV(MP(d)):  t€[0,T]
n= 3 Ry (a) (y,2)<6

4.3.1 Convergence of the walks

Croydon [36] used regular resistance forms to describe the scaling limit of the
associated random walks on scaling limits of sequences of spaces equipped with
resistance metrics and measures provided that they converge with respect to a suit-
able Gromov-Hausdorff topology, and under the assumption that a non-explosion
condition is satisfied. For families of random graphs that are nearly trees and
their scaling limit can be described as a tree “glued” at a finite number of pairs
of points, a useful corollary of [36, Theorem 1.2] combined with [36, Proposition
8.4] yields the convergence of the processes associated with the fused spaces.

To see that the conclusion of [36, Proposition 8.4] holds, recall that under

Assumption 3, jointly with Theorem 4.3.1,

b

as n — oo in the Gromov-Hausdorff sense. Let P denote the partition of M"(d)

CD
(V(M?(d)),”_l/?’dw(d),Qn) — <MD>—1DdMD7Q> )

into different components. Conditional on the event {M7(d) is simple} N {P =
P}, M7 (d) is uniformly distributed over the set of simple, connected graphs with
degree sequence decided by the partition P, and therefore the convergence above
is valid with M?(d) replaced by L(T}, Z), see Lemma 4.3.2 for its construction.
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If Z = {([El,yl),...7($R?,valt)} with (IL‘hyl) << L0 <KL (IR?ny{l% let D(TS,Z)
be the space obtained by fusing z; and gpar(y;), 1 < j < R}, endowed with the
graph distance and the push-forward of the uniform probability measure on Ty,

and observe that

dK(L(TSv Z), D(T57 Z)) < 5R§L'

Thus, jointly with Theorem 4.3.1, the convergence above is valid with M7 (d)
replaced with the “glued” tree D(TS, Z ), and since M p, is also a “glued” tree, this
shows that the conclusion of [36, Proposition 8.4] is valid.

It remains to show that

lim lim inf P (nfl/?’dM?(d)(gn, B, (0", 7)) = \) =1, YA > 0.

rT—00 N—0o0

To bound the last probability from below, intersect it with the event n=/3D?(d) <
r, under which B, (¢",r)¢ = (). Indeed, the distance from " € M} (d) to 0 is +o0,

and therefore

P (™ Pdyipay (0", Ba(0",7)%) > )
> P (nYPdupay (0", Bu(o™,7)¢) > A\,n 3D (d) <)
= P(n"Y2DMd) <), (4.39)

where D7 (d) := diamy (g (M7 (d)). Letting D;(d) := diamuy, (Mp), since for the
two (and any) metric spaces M (d) and Mp,

In~3DM(d) — Dy(d)| < 2dg(n~*M(d), Mp),

the convergence n~/3D?(d) — D;(d) in distribution is immediate from (4.31). By
this and (4.39),

lim inf P (n_l/?’dM?(d)(gn, B, (0", 7)) > A) > liminf P(n=Y3DM(d) < r)

n—oo n—0o0

= P(Dy(d) <r).

As r — 00, the right-hand-side tends to 1, and this shows that the claimed non-
explosion is fulfilled. As a consequence, we have the convergence of the pro-
cesses associated with the fused spaces. It is possible to isometrically embed

(MY (d), drir(ay), n > 1 and (Mp, dp,,) into a common metric space (F, dr), such
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that
Pyl @ (07X T )iz0 € ) = Py (X120 € ). (4.40)

weakly as probability measures in D(R,, F).

4.3.2 Continuity of blanket times of Brownian motion on

Mp

In Section 4.2.1, we presented Nt* the inhomogeneous excursion (for excursions
starting at time ¢) measure associated with a Brownian motion with parabolic
drift as defined in (4.13). Denote by N the excursion measure associated with
B as defined in (4.30). Write (e(u) : 0 < u < t) for the canonical process under
N. By the Cameron-Martin-Girsanov formula [92, Chapter IX, (1.10) Theorem],
applied under N,

dcljg exp (\/6 t’y(u)de(u) - %/Ot vz(u)du> :

C1 0

where y(u) = X — —u is the drift. On the set of excursions of length ¢, using

integration by parts, We have that

\/_/ (A——u) e(u)—%/ote(u)du,

a multiple of the area under the excursion of length ¢. So, the density becomes

dNS’)‘ B 03/2 t 1 Co 3 3
N —exp(c—%/oe(u)du—é c_‘;’t_)\ + A :

There is a corresponding probability measure Ng”? = Ng’)‘(-|[~/ = [), which for a

Borel set B on the space of positive excursions of finite length, is determined by

N, (exp (%ﬁ fol e(u)du) ]lB)
Ng; (1p) = i :
N, <exp (% IN e(u)du))
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To determine NJ*(L € dl), recall that N(L € dl) = f,(\) = dl/v/2xl3, 1 > 0, and

therefore

NoML e dl) = fr(l) exp (—é ((%l — A)S + >\3)> N, <exp (% /Ol e(u)du>> .

Let Nf”\ denote the canonical measure that first at time ¢ picks a tilted Brownian
excursion of a randomly chosen length [, and then independently of e chooses a
number of points according to a Poisson random variable with mean c3 fo t)dt,
which subsequently are distributed uniformly on the area under the graph of e.

In comparison with (4.28), we characterize N (d(e, P)) by setting:

Ny (de, |P| = k, (dxy, ..., dxy) € Ay x ... x Ay)

= /OOO NG (L € )N (de) exp (—03 /Ol e(u)du) <03 fo ) H 4 A ﬂ A

i=1

(4.41)

It is easy to see that Nf”\ is absolutely continuous with respect to IN as defined in
(4.26). More specifically,

dz? = exp (1 - </\3 (%l - /\+t)3>> (03 /Ole(U)dU)k- (4.42)

Proof of Theorem 4.0.5. Applying our scaling argument as in Subsection 4.2.1

yields that conditional on M”, Nyep-a.e. (e, P), 7Y'?(¢) is continuous at ¢,
P}'P-a.s. In (4.42), it was shown that the canonical measure NS is absolutely
continuous with respect to N, therefore the above also yields that conditional on
M;P, Ng:;\\/jch—a.e. (e, P), 7y (¢) is continuous at ¢, P)'P-as., where NglA is the
version of N conditional on {L =1}. Fix € € (0,1). Here, for a particular real

value of A € R and conditional on M{”,

P.() = [ PR ONG o (dle P))

formally defines the annealed measure for suitable events. Given the continuity of
TbAftD( ) at e, Pé"‘D—a.s. and Proposition 4.3.5, the desired annealed convergence

follows by applying Theorem 3.1.2 exactly in the same manner as we did in the
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proof of Theorem 4.0.3 in the end of Subsection 4.1.1.
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Chapter 5

Random walk in random

environment on plane trees

In Section 5.1, we introduce the random walk in random environment on locally
finite ordered trees as a resistor network with conductances and stationary re-
versible measure given in terms of its potential, while the rest of the section ties
together the preliminary work done to yield the convergence of the random walks
in random environments under Assumption 5, as a corollary of the main contri-
bution of [36]. Finally, along with extending Seignourel’s result in [95] to hold for

a wider class of environments, we prove Theorem 5.4.2 and Theorem 5.5.4.

5.1 Set-up and main assumption

Let T" be a locally finite ordered tree with a distinguished vertex o. For each u € T,
we denote its children by i, ..., ug) and its parent by ug. Note that &(u) < oo,

for every u € T, since T" was assumed to be locally finite. For each u € T', let

§(u)
N, := {(wuui)f(%) W, >0 V0 <i<E(u)and Zwuui = 1},
i=0

where wy,, : T — (0,1) is a measurable function indexed by the directed edge
connecting u to its neighbor w,;. Formally, N, is the set of transition laws at w.
We equip N, with the weak topology on probability measures, which turns it into
a Polish space. Let Q := ]
the Polish structure of N,, and the corresponding Borel o-algebra F, which is the

wer Nu equipped with the product topology that carries
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same as the o-algebra generated by cylinder functions. For a probability measure
P on (2, F), a random environment w is an element of 2 that has law as P.

For each w € Q, the random walk in the random environment (RWRE) w
is the time-homogeneous Markov chain X = ((X,)n>0, P, u € T') taking values

on T with transition probabilities, for each u € T, given by
(Pu (X1 = wl X = )i = (wau )15 (5.1)

Using the same terminology from the literature of RWRE, for u € T', we refer to
P! as the quenched law of X started from u. For each non-root vertex u € T, let @
denote the parent of u. Then, the fraction oz, := w_z/wg, is well-defined for every
node of T" except the root and any of its children. Suppose that the marginals
of w are defined as the transition probabilities of a weighted random walk on T
with conductances assigned on its (undirected) edge set E(7"). More specifically,
for each u € T, let
()55 = (% 0<i< §<u>) :
where c({u}) 1= X" c p(ryuce €(€). In this case, oz = ({7, ah)/e({i, u}).

To define the potential Vi of the RWRE on T, we demand its increment

between u and @ to be given by log 0z, or in other words:

Vi(u) = V(o) == Y log os,

veEloul]

which is well-defined, up to a constant, for every node of T" except the root and
any of its children. It will be convenient to work with a slight modification of
the trees under consideration. We add a nex vertex which we call the base and
stick it to the root by a new edge with unit conductance, i.e. ¢({g,0}) := 1.
This yields a planted tree T. To keep our notation simple, even if the statements
are expressed in terms of the planted tree T, we still phrase them in terms of 7.
Setting Vr(p) := 0 extends the definition of the potential to the whole vertex set
of T. Now, observing that the potential is given pointwise at u € T\ {o} by the
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telescopic sum

Vi(u) = Y logon = Y |loge({s#}) —loge({#,v})| = loge({d, u}) ™,

vE[o,ul] v€E[o,ul]

we deduce that the exponential of the potential at u is equal to the resistance

r({u,u}) := c({u,u})"t. Therefore, we can now define the potential as

gy = o), we T {e), 52

0, U = Q.

One of the crucial facts for the RWRE on tree-like spaces is that, for fixed
w, the random walk is a reversible Markov chain, and thus it was of no loss of
generality to assume that the marginals of w are defined as the transition prob-
abilities of a weighted random walk on 7', see [31, Section 9.1]. The RWRE on
T, for fixed w, can be described as an electrical network with resistances given by

r({u,u}) = "7 € T, and resistance metric

r(un,un) == Y r({dul) = Y &M wuy €T, (5.3)

u€lu1,uzl] u€u1,uz]]

with the convention of a sum taken over the empty set being equal to zero. The

stationary measure of the RWRE on 7', for fixed w, is given by

£(u) §(u)
v({u}) = c({u}) = Zr({u, u )t =e VT 4 Ze%(uﬂ, ueT. (5.4)

The reversibility means that, for all uw € T and 0 < i < £(u), we have

If (T, r) is a metric tree, we denote by C(7T') the space of continuous functions

f T — R and by C. the subspace of functions that are vanishing at infinity.
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A continuous function is called locally absolutely continuous if for every ¢ > 0
and all subsets 7" C T with A(T") < oo (recall the notion of the length measure A
introduced in Definition 2.1.2), there exists a § = 6(7", ), such that if [[u;, v;]]l, C
T’ is a disjoint collection of arcs with > " | r(u;,v;) < 6, then Y"1 | | f(w;)—f(v;)| <
e. Denote the subspace of locally absolutely continuous functions by A. Notice
that in the case when (T,r) is a discrete metric tree A is equal to the space of
continuous functions.

Consider the bilinear form
1
(f.9) =5 [ VIV (5.5)

and its domain
D)= L*(v)NCux N{f €A:Vf e L*\)}, (5.6)

where the gradient, Vf, of f € A is the function, which is unique up to A-null

sets, that satisfies

/“2 Vf(u)A(du) = f(uz) — f(ur), Yui, ug € T. (5.7)

For its existence and uniqueness, see [12, Proposition 1.1]. The gradient, V f, of
f € A depends on the choice of the root g, although, the bilinear form in (5.5) is
independent of that choice, see [12, Remark 1.3].

Definition 5.1.1 (v-symmetric Markov process). We call a Markov process X on
(T, B(T)) v-symmetric if the transition function {T;}i~o of X is v-symmetric on
(T, B(T)) in the following sense:

/T £ (u)(Tog) () (du) = / (T, ) (w)g(w)(du)

for any non-negative measurable functions f and g.

Theorem 5.1.1 ([12], [13]). There exists a unique v-symmetric strong Markov
process ((Xi)es0, P% u € T) associated with the reqular Dirichlet form (€, D(E))

on the metric measure tree (T',r,v), which is called the v-speed motion on (T,r).

If (T,r) is a compact real tree, then the v-speed motion on (7, r) coincides

with the v-Brownian motion on 7' [12], i.e. a v-symmetric strong Markov process
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with the following properties:

i) Continuous sample paths.
ii) Reversible with respect to the invariant measure v.
iii) For every wuy,us € T with uy # us,

r(u(uy, ug, us), ug)
r(uq,uz)

P (1, < Tyy) = , ug €T,

where 7, := inf{t > 0 : X; = u} is the hitting time of u € T', and u(uy, us, ug)
is the unique branch point of uy, us and us in T'.

iv) For ui,us € T, the mean occupation measure for the process started at wu;

and killed upon hitting us has density 2r(u(uy, ug, u3), us)v(dus), so that

o (/0 f(XS)ds> _ 2/Tf(u3)r(u(u1,u2,u3>,u2)y(du3>,
for every f € C(T).

If (T, r) is a discrete metric measure tree, then the v-speed motion on (7', r)
is the continuous-time nearest neighbor random walk on (7, r) with the following

jump rates:

q(uy,up) ™t =2 v({ur}) - r(ug, ug), Uy ~ Us. (5.8)

Equivalently, the v-speed motion on (7', 7) is the continuous-time nearest neighbor
random walk on (T, r) with associated Dirichlet form (&, D(€)):

E(f.9) = (=Lf.9)u, (5.9)

where

1 1
L = ) 2 gy )~ )

U ~U
is the generator of the process, acting on continuous functions f € C(T') that
depend only on finitely many points of 7T

Let (T, r,v) be a compact real metric measure tree. To formalize the notion

of the potential of diffusions on (7, r), which are not necessarily on natural scale,
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assume that we are further given a measure p which is absolutely continuous with

respect to the length measure A and its density is given by

d

ﬁ(@ = ), (5.10)
where ¢ : T" — R is a continuous function. For every uj,us € T, let ry : T'x T —
R, defined by

ro(Ur, ug) := / e?@WA(du). (5.11)
[[u1,uz]]

To justify the term potential on 7" given to ¢, cf. (5.3). It is easy to check that
re defines a metric on 7. In addition, r and r4 are topologically equivalent and
the metric space (T, 74) is also a compact real tree. Moreover, (€, D(E)) (see (5.5)
and (5.6) with the difference that in (5.5) we integrate with respect to p instead of
A) is a regular Dirichlet form. In this case we refer to the corresponding diffusion
as the (v, u)-Brownian motion. The v-Brownian motion on (7, r,) is equal in law
with the (v, u)-Brownian motion on (7', 7), see [12, Example 8.3]. In fact, for the
previous statement to hold, ¢ needs not to be assumed continuous insofar as it
has enough regularity for the integral in (5.11) to make sense and (7', r4) to be a
locally compact real tree.

Now, we are ready to state our main assumption that corresponds to a
metric measure version of Sinai’s model, that is when the potential converges to
a Brownian motion. The natural tree-distance and the counting measure on the
tree are replaced by the distorted resistance metric and the invariant measure of
the RWRE on the tree, which are explicitly associated with the potential on the

tree.

Assumption 5. For a sequence (T, Vi)n>1 € K of random elements built on a
probability space with probability measure P, where Ty, := (T, 7, 0™), Vn), n > 1
is a (locally finite) rooted plane metric measure tree with metric r, as in (5.3),
boundedly finite measure v, as in (5.4), and V, : T,, — R is the potential of the
RWRE as defined in (5.2), we suppose that

(T, Vi) D (T, ) (5.12)

in the spatial Gromov-Hausdorff-vague topology, where T := ((T,r4,0),Vp) is a

rooted real measure tree with metric ry as in (5.11), boundedly finite measure vy,
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and ¢ : T — R is a continuous potential on T as defined in (5.10). Moreover,
suppose that the following non-explosion condition of the metrics is satisfied:

lim liminf P (r,(0", Bn(0", R)°) > ) =1, VA > 0. (5.13)

R—o00 n—o0

With their role as the scale function and the speed measure, r,, and v,, will
dictate the scaling of the RWRE. If Assumption 5 holds, as a corollary of |
Theorem 1.2], it is possible to isometrically embed (7,,,7,), n > 1 and (7', 7,)

Y

into a common metric space (Z,dyz) in such a way that the v,-speed motion on
(T, 1y,) converges weakly on D(R., Z) to the vg-Brownian motion on (7, r4). Note
that, r, is a resistance metric associated with the bilinear form (5.9) and 74 is a
resistance metric associated with the bilinear form (5.5), when integrating with

respect to p instead of A.

Theorem 5.1.2 (cf. Croydon [30]). Let (X]")i>o be the random walk associated
with a random environment w(n), n > 1. Under Assumption 5, there ezists a

common metric space (Z,dz) onto which we can isometrically embed (T,,,7,), n >
1 and (T,ry), such that

P (Xm0 € 1) = P2 ((X) 0 € )

weakly on D(Ry, Z), where (Xy)i>o is the vg-Brownian motion on (T,1,). Here,
P and P? represent the annealed laws of the corresponding processes, obtained by

integrating out the randomness of the elements of K with respect to P.

Remark (cf. Croydon [30]). When (T,, (Va,¥n)), n > 1 and (T, (4,v)) are ran-
dom elements of K, built on a probability space with probability measure P, where
Y and Y are continuous embeddings of (T,,,rn), n > 1 and (T,ry) respectively,
into a complete and separable metric space (K, dk), Assumption 5 (with the prob-
abilistic non-explosion of (5.13)) and its validity implies the annealed convergence

of the embedded stochastic processes involved in Theorem 5.1.2:

P (n (X7)) 0 € ) = B2 (0 (X0))yzg € ).

weakly on D(R,, K), where P¢" and P° represent the annealed laws of the corre-
sponding processes, obtained by integrating out the randomness of the elements of
K with respect to P.
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5.2 Convergence of Sinai’s random walk to the

Brox diffusion

We introduce the one-dimensional RWRE considered early in the works of [97]
and [938] (see also [57] and [09]) and studied extensively subsequently by many
authors (we refer to [104] for a detailed account). Given a sequence w = (w; ).ez
of i.i.d. random variables taking values in (0,1) and defined on a probability space
(Q, F, P), the one-dimensional RWRE is the Markov chain X = ((X,,),>1, P%, u €

Z) that given w has transition probabilities:
P,(Xpy1=2-1X,=2) =w_, P,(Xp=z2+1X,=2)=wl=1—-w,.

Let o, :=w; Jw}, z € Z and assume that

Ep(log oy) =0, o := Var(log o) > 0, (5.14)

Ple <wy, <1—¢)=1, for some ¢ € (0,1/2). (5.15)

The first assumption ensures that the one-dimensional RWRE is recurrent, P-a.s.
w, while the second forces the environment to be non-deterministic. The last

assumption, called uniform ellipticity, is usually used in the context of RWRE for

technical reasons. Sinai [97] showed that there exists a non-trivial random variable
by : Q@ — R, whose law was characterized later independently by Golosov [57] and
Kesten [69], such that for any n > 0,
o?X
PU(|—= —b >n) —=0 5.16
(| = m)| > 1) =0, (5.16)

as n — 0o, where P* is the annealed law of X defined as P*(G) := [ P%(G)P(dw),
for any fixed Borel set G C ZN. This result was a consequence of a localization
phenomenon that occurs, trapping the random walk in some valleys of its potential.

Brox [28] considered a one-dimensional diffusion process in a random Brow-

nian environment W that formally solves the stochastic differential equation
1
dXt - dBt - §Wl(Xt)dt7 X(] - O, (517)

where (By)i>0, (Wi(x))z>0, (Wa(2))z<o are three mutually independent standard
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Brownian motions, such that

W) OV =0 (5.18)
oWa(lz]), z <0,

for some o > 0. Rigorously speaking we are considering a Feller-diffusion process

X; on R with the generator of Feller’s canonical form

1 d 1 d
2e W@ dp \ eW@) dx )~

Once one defines the conditioned process X; given an environment W, using the

law of total probability, one defines what the process X, is.
Among those, he also showed that this real-valued stochastic process X;
converges very slowly, when ¢ = 1, to the same random variable b; as in (5.16).

Namely, for every n > 0,
P* (|o?Xea — bi(w)]| > 1) — 0, (5.19)

as o — 00.

(5.16) and (5.19) show that the one-dimensional RWRE enjoys the same
asymptotic properties as a one-dimensional diffusion process in a random Brow-
nian environment, however this does not necessarily imply that Brox’s diffusion
is the continuous analogue of Sinai’s random walk. This question was answered
in the affirmative by Seignourel [95] who proved the existence of a Donsker’s in-
variance principle in a setting where one is allowed to parametrize the random

environment appropriately at every step of the walk.

Theorem 5.2.1 (Seignourel [95]). For every m > 1, consider a sequence of i.i.d.
random variables (w, (m)),ez, and for simplicity denote w_ (1) by w, . Further-
more, suppose that (5.14) and (5.15) are satisfied, while also, for every m > 1 and

for every z € Z,
e\ —1
wi(m) :==1—w(m) @ <1 +0." 1/2> , (5.20)

which in other words means that, for every m > 1 and for every z € Z, p.(m) :=

w; (m)/wi(m) @ o™, for every m > 1, (X™),s1 denotes the random walk
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associated with the random environment (w; (m)).cz, then
—1yvm (d)
(m™ X[z )ez0 — (Xe)exo

in distribution in D([0,00)), where (X;)i>o is the Broz diffusion.

We undertake the task of generalising the result for Seignourel’s model by
effectively removing the uniform ellipticity condition. Such a gesture is meaningful
in that it allows us to include applications of this theorem to environments that
are not uniformly elliptic, such as Dirichlet environments. A particular model of
interest that famously falls into this class is the edge (linearly) reinforced ran-
dom walk on locally finite directed graphs. For an overview on random walks in
Dirichlet random environment (RWDE) we refer to [94].

In a second level the i.i.d. assumption made by Seignourel [95] is not essen-
tial as soon as we suppose that the potential of the random walk associated with
the parametrized environment converges weakly to a two-sided Brownian motion.

Recalling some basic definitions from Section 5, for every m > 1,

\/_lmszzl loggia X Z ]-7
V" =140, x =0,
0
_\/Lm Y icaprlogon, < —1
is the potential of the one-dimensional RWRE changed at step m according to
(5.20), and now we are ready to make our assumption precise. It clarifies why in

order to get a Donsker’s theorem in random medium one is forced to “flatten” the

environment in the first place.

Assumption 6 (Sinal’s regime). Suppose that (V[ )ser converges weakly to

(W (x))zer, where (W (x))zer is a two-sided Brownian motion as in (5.18).

By direct calculation it can be verified that, for fixed w(m), m > 1, the
RWRE (X!™),>1, m > 1, is a reversible Markov chain and the stationary reversible

measure which is unique up to multiplication by a constant is given by

(14 0x(m)) (T, @i(m) ™",z >1,
Vism) (€) = § 1+ 00(m), x =0, (5.21)
(1+ 00(m) [T1—gyy 0i(m),  x<—1.
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Here, the reversibility means that, for all n > 0 and z,y € Z, we have that

Vw(m)(x)Pw(m)(Xgl =yl Xy =12) = Vw(m)<y)Pw(m)(Xm =z| Xy =y).

n

Sticking to the interpretation of the one-dimensional RWRE as an electrical net-
work with resistances given by rym)(z—1,z) = €'+, x € Z, we can rewrite (5.21)
as

Vio(m) () = eV e Ve x € L. (5.22)

Moreover, we endow Z with the resistance metric r,,) : Z x Z — R that satisfies

Twm) (2, 2) := 0, for every = € Z, and

y—1 y—1
Twim) (T, Y) = er(m)(z, z4+1)= Zevzm, x <. (5.23)

The one-dimensional lattice viewed as a rooted metric measure space endowed
with the finite measure and the resistance metric defined in (5.22) and (5.23)
respectively, in Sinai’s regime converges weakly in the spatial Gromov-Hausdorff-

vague topology as indicated by the next theorem.

Theorem 5.2.2. Under Assumption 0,
((Z, m_lrw(m), O),m_ll/w(m), Vm) @) (R, r,0),v, W), m — 0o,

in the spatial Gromov-Hausdorff-vague topology, where
r(z,y) ::/ eV Edz, (5.24)
Ay, zVY]

for every z,y € R and
v(A) = / 2@z, (5.25)
A

for every A € B(R).

Proof. By Skorohod’s representation theorem, there exists a probability space on
which the convergence

(d)

(Vima))eer — (W (2))zer (5.26)

holds almost-surely with respect to the uniform norm on compact intervals. Define

a correspondence R, between Z and R by setting (i,s) € R,, if and only if
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i = |ms|. We will bound the distortion of R,,. Suppose that (i,s),(j,t) € R,
such that s <t. Then,

|m_1rw(m) (Za ]) - T(Sa t)|

- . (5.27)

Jj—1 t |mt]/m . t
=|m™! Z eVs" — / eV Wy / e lmul duy, — / eV dy
o—i s |ms]|/m s

whichn turn, using the triangle inequality, can be bounded above by
L. t [mt]/m . [
/ e lmul dy — / eV dy / e lmul dyy — / e"lmul du
s s [ms]/m s

t S t
S/EWM—WWWW/) E%mm+/ e lmel | du. (5.28)
s [ms]/m L

m mt|/m

+

Then, dis(R,,) converges to 0 uniformly in s,¢ € [—-R, R|, for some R > 0, see
(5.27) and (5.28), which combined give us the following:

dis(Ry,) = sup{|m ™ rum (i, 4) — (s, £)] : (i,5), (j. £) € Run}

< 2Rl — || o Lrim) + 2m 7Y€ " || oo (2R 28] —— 0. (5.29)

Recall that m™'v,(y) puts mass m~'(e”"" 4+ e ""1) on i € Z. Then, we may
couple m™'v,(m) and v by taking U ~ U[—R, R] and taking 7 to be the law of the
pair

(|mU|, 2¢O,

This is precisely the natural coupling 7 induced by the correspondence R,,. There-
fore, m(R¢,) = 0. Since, for every R > 0,

milyw(m)

dg (((Z, m™ 7(m), 0)

R Vm‘R) ) ((Rv T, O) |R7 V’Rv W|R>)

=~

R’

< Sdis(Rn) + 7(Ry,) + [[Vim) — Wlleo-r.R|

N | —

the result follows by (5.29) and the convergence in (5.26), which holds almost-
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surely with respect to the uniform norm on [—R, R].

Let R > 0. It is obvious that

R
lim inf rym) (0, Bugn) (0, R)%) = 5,

m—r0o0

and therefore taking the limit as R — oo yields that (5.13) is satisfied. Combining
this with Theorem 5.2.2 allows us to deduce that Assumption 5 is fulfilled. Thus, as
a consequence of Theorem 5.1.2, the vy, (m,)-speed motion on (Z, 7,3, 0) converges
weakly in D([0,00)) to the v-speed motion on (R,r,0). The v,,,-speed motion
on (Z,r.my) is the continuous-time nearest neighbor random walk on (Z, 7))

with jumps rescaled by m~! and time speeded up by

V() (2) ™ Py (2,2 + 1)+ rgmy (2 — 1,2) 1) = m?, r€Z,

which, is equal in law to (mlef;LQtJ)tZO.
It remains to identify (in law) the v-speed motion on (R, r, 0) with the Brox
model, see (5.17). Fixing the environment W, (X;);>o is a Feller-diffusion on R

having infinitesimal generator of Feller’s canonical form

1 d 1 d
2e W@ dp \ eW@) dx ) -

In other words, (X;):>o is a diffusion on R with differentiable scale function

s(z) = / ez, xr € R,
0
and speed measure
v(A) = / 2e W@y, A € B(R),
A

which is the same as the one in (5.25). Then, X is the continuous strong Markov

process associated with the Dirichlet form

&) =3 [ S5 g ),
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for every f,g € L?*(v) NCs N A, such that £(s, g) < oo, where here A is the space

of absolutely continuous functions. Note that, for all z,y € R,

o= [ S
[xAy,xVY]

which can be seen to induce that (R, r,0) is a locally compact real tree with length
measure s'(z)dz. The gradient V, f, of f € A is the function, which is unique up

to s'(z)dz-zero sets, that satisfies

/y V. f(2)s'(2)dz = f(y) — f(y),

for every xz,y € R, see (5.7). Therefore, V,.f = f’/s’. Using this information, by

the following calculation, we find that

&)= 5 [ 550 g )

1 d 1
=3 / Wi)(vrf@)s'(z)) (Vr9(2)s(2)) = 5 / SA=V,f - Vg,
for every f,g € L?(v) N Csx N A, such that £(f,g9) < oo. To conclude, the v-
speed motion on (R,r,0) is equal in law with X. We have thus successfully
proven Seingourel’s result to hold for a wider class of random walks in random

environment.

Theorem 5.2.3. Let, for every m > 1, (X]"),>1 denote the random walk associ-

ated with the random environment under which Assumption 6 holds. Then,

1 vm d
(m ™ X[ ez Dy (X0

in distribution in D([0,00)), where (X;)i>o is the Brox diffusion.

5.3 Convergence of a random walk with barriers

A model with infinitely many barriers was considered by Carmona in [30] in or-
der to study the large time behavior of the solution of (5.17) when the random
coefficient W' is replaced by the formal derivative of a spatial Lévy process. The

random environment consists of a sequence of barriers (7,).cz such that their
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increments (7, — 7,_1).ez form a sequence of independent geometric random vari-
ables of parameter o € (0,1). To construct the random environment rigorously
consider a sequence of Bernoulli random variables (&, ),ez of parameter a € (0, 1),
ie. P64 =1)=1—P(& =0) = a and let

2221 gk‘) z > 17
Balz) =40, z=0, (5.30)
3G, 2< 1

Then, setting 7, := inf{r € Z : B,(r) = z} yields the desired property for the in-
crements of (7,),cz. The random walk in the random environment 7 is introduced
as a simple random walk away from the level of the set {7, : z € Z}. When it
reaches one of the barriers a biased coin is tossed, with probability of heads thrown
being p € (0, 1), it chooses to move to the right with probability p or otherwise
to the left with probability ¢ := 1 — p. In other words, the random walk in the
random environment 7 is the Markov chain ((X,,),>1, P%, u € Z) that given 7 has

transition probabilities:

1-P( Xy =2—1X,=2)=P.( X1 =2+ 11X, = 2)

%, z¢{r,:z €7},
p, z€{r:z€Z}.

To treat this example as part of the framework in which Assumption 6 was im-
posed we need to generalize the Gromov-Hausdorff-vague topology on rooted met-
ric measure spaces endowed with a cadlag function ¢ : R — R. To do this we
replace dg(¢(z),¢'(2')) that appears in the definition of the metric on K with
dj, (6(2),¢'(2')), where dj, denotes the Skorohod metric on D(R). It can be
checked that K with this new metric constitutes a separable metric space, see
Section 2.3. In the light of this consideration we can reformulate Assumption 6 to
include one-dimensional diffusions with jumps. Namely, suppose that the limit-
ing process (W (z)).er in Assumption 6 is a two-sided Lévy process and that the
convergence in distribution takes place on D(R).

To write down the potential first observe that g, = 1 if and only if 2z ¢ {7, :
z € Z}. Therefore, observing that the set of barriers {r, : z € Z} is a.s. identical
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to the set {z € Z : &, = 1}, we have that

n:=§jbg&:=bg(?)}jszkg(g)@x@, 2> 1
k=1 P/ p

Repeating the same calculation for z < —1 implies that V, = log(q/p)Ba.(2), for
every z € Z.

To obtain in the limit a general Lévy process, and consequently a Brownian
motion in random Lévy potential as the scaling limit of the random walk with
infinitely many barriers, we normalize the random media appropriately. Let A > 0,
and for every n > A consider the normalized environment (8Y,,(2)):ez defined as
in (5.30), where this time the Bernoulli trials have probability of success equal
to A/n. To verify that this is indeed the correct choice, check that the following

conditions are satisfied.

Lna]
|nx| A
P =1)=\-—=—= A P =1 =—
kZ; <£k ) n — AT € (07 00)7 1§1’]§1§a§ﬂ (gk ) n — 07
for every x > 0. These are sufficient, see [50, Theorem 3.6.1] to allow us to deduce

from the weak law of small numbers that, for fixed z > 0, ﬁf\‘/n(Lm:J) converges
weakly to a Poisson random variable with mean Ax. For an alternative proof of
this fact using characteristic functions, see [50, Appendix B|. Therefore, for the

two-sided process (fom J)IGR that has independent increments, we have that

<myﬂﬁh%@ymmmj (5:31)

weakly on D(R), where (N(z)).er is a Poisson process with parameter A > 0.

Consequently, since the proof of Theorem 5.2.2 remains unchanged,
(Z,n 770, 0) ;0" e, V) 9, ((R,7,0),v,log(q/p)N), n— oo, (5.32)

in the spatial Gromov-Hausforff-vague topology, where 77 := inf{r € Z : Bj\l/n(r) =
z}, see (5.22) and (5.23) for a definition of v;» and r;» respectively. Slightly abus-
ing notation, r and v stand for (5.24) and (5.25) with W replaced by log(q/p)N.
The following result, that was conjectured by Carmona [30] and originally proved
by Seignourel [95], is deduced by using (5.31), (5.32) and following the proof of
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Theorem 5.2.3.

Theorem 5.3.1. Let A > 0, and for every n > X\ consider the random walk

(X)) m>1 associated with the random environment 7. Then,
—1 n (d)
(n™ X[ )ez0 — (Xi)izo,

weakly on D([0,00)), where (X;)i>o s a solution to the SDE
1 q\
dXt = dBt — 5 log =N (Xt) dt, XO = 07
p

where (By)i>o is a standard Brownian motion independent of N.

Remark. One way to see that the process X; exists is by noticing that its generator

would take the form

1 d 1 d
96 08(DN(@) dg \ Joa(DN(@) dg )

Once one defines the conditioned process X; given the environment N, using the

law of total probability, one defines what the process X; really is.

5.4 Random walk on the range of a branching

random walk

We can define biased random walks on graphs generated by conditioned branching
random walks. For a rooted finite ordered tree T with root p, in which every edge
e is marked by a real-valued vector y(e), given a value function y : E(T) — R¢,
we define a map ¢ : T — R? by setting ¢(o) := 0, ¢(g) := 0 and

ou):= > yle), weT\{e}, (5.33)

e€Egu

where the sum is taken over the set of all edges contained in the unique path be-
tween o and u. Also, we interpolate linearly along the edges. Let {(T,,, ¢,) }n>1 be
a family of random spatial graph trees, where T, is generated by a Galton-Watson

process with critical offspring distribution ¢ conditioned to have total progeny

101



n. In addition, we demand £ to have finite variance og < oo and exponential

moments, i.e. E(e*) < oo, for some A > 0. Conditional on T, the increments
(y(e))eck(r,) of the spatial element ¢, are independent and identically distributed
as a mean 0 random variable Y with finite variance 33 < oo (Zy is a positive

definite d x d-matrix) that furthermore satisfies the tail condition:
P(dp(0,Y) > y) = o(y™),

where dp denotes the usual Euclidean metric in R?. Given the other assumptions
that we are making, [0/, Theorem 2| ensures that the fourth order polynomial
tail decay is necessary to obtain the convergence of the tours of 7T),, i.e. the two-
dimensional process (C),(i), R, (7)) supported on {0, ..., 2n}, such that the contour
function C,, (i) traces the distance to the root of the position of a particle that
visits the outline of T;, from left to right at unit speed, and the head function
R,(7) := ¢n(ul), if ul denotes the i-th visited vertex in the contour exploration
of T,,, keeps record of the points of the branching random walk ¢,,. Note that, C,,
determines the skeleton of the tree and R, via its increments, all the values.

Hence, for each u € T,, and conditional on T,,, ¢,(u) is a simple random
walk on R? with i.i.d. increments distributed as Y and number of steps given by
the depth of the path from the root ¢" to u. The random multiset of trajectories
is called a branching random walk. Let G, = (V(G,), E(G,)) be the graph with
vertex set

V(G,) :i={z e R: 2 = ¢, (u) with u € T},}

and edge set
E(G,) = {{z1, 22} e R x R : 2; = ¢ (w;), 1 = 1,2 with {u1,us} € E(T},)}.
Fix a parameter 5 > 1, and to each edge {x1, 22} € E(G,), assign the conductance
c({z1, 22}) = groxton (w0t (wa)}

with {w;,us} € E(T,), where gbf(ll)(ui) denotes the first coordinate of ¢, (u;),
i = 1,2. Observe that c({¢,(0"), pn(0™)}) = ﬁmax{‘b%l)(gﬁ)’(bsll)(gn)} = 1, which
is compatible with our convention of putting a unit conductance between the

root and its base. The biased random walk on G, is the Markov chain X =
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(Xpn)nz0,Pg, ,x € V(Gy)) on V(G,) with transition probabilities given by

c({71,72})
c({w})

where the normalization is defined by c({z1}) = > cp@g,)aeccle). If B > 1,

Pg, (x1,29) :=

then the biased random walk X has a directional preference towards the first
coordinate. On the other hand, if 5 = 1, there is no bias and we end up with the
simple random walk on G,.

The RWRE on T, is going to be of particular interest. Firstly, adopting
the notation that was introduced in Section 5, the random environment at every
vertex u e T,, will be represented by a random sequence (wuui)fio) in (0,1)¢™ such
that Zl g Wuu; = 1. The RWRE on T,, will be the time-homogeneous Markov
chain X' = ((X])n>0, P%, u € T,,) taking values on 7T,, with transition probabilities
given by (5.1). To connect this model with the biased random walk on the critical
branching random walk conditioned to have n particles, suppose that the marginals

of the environment are defined, for each u € T,,, as follows:

(Wau )58 = (P, (6 (1), dn(ui)))s%).

For this choice of random environment, the quenched law of ¢, (X’) is the same as
that of X, and consequently the same holds for the corresponding annealed laws.

This is immediate regarding the following relations:

c({on(w), n(ui)})
c({on(u)})

To connect the first coordinate of the random embedding ¢,, with the potential of
the RWRE on T, let (A, (u))yer, be its increments process, i.e.

<P%wawwamm$3=( :os¢35w0, wer,

An(u) = ¢ (u) — o) ().

If the environment is defined as in the previous paragraph, log c({¢, (@), ¢, (u)})~t =
—log 8- max{s\ (@), . (u)}. Therefore, the potential (V,(u))uer, of the random

walk in a random environment on 7,,, which is obtained by (5.2), satisfies

Vi (u) = —log B (o) (@) + max{0, A,(u)}) , ue T, (5.34)
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which demonstrates that if the individual increments are small, the potential of the
RWRE on T, is nearly given by a negative constant multiple of the first coordinate
of ¢,.

We demonstrate that V,,, when rescaled, converges to an embedding of the
Brownian CRT into the Euclidean space, so that an arc of length ¢ in the Brow-
nian CRT is mapped to the range of a Brownian motion run for time ¢. In other
words, if 7, denotes the Brownian CRT , consider a tree-indexed Gaussian pro-
cess (¢(0))seT,, built on a probability space with probability measure £P, with
E¢(o) = 0, and Cov(¢(o), ¢(0’)) = de(0,0 A 0’)I, where I is the d-dimensional
identity matrix. For almost-every realization of 7, (w.r.t the normalized It6 ex-
cursion measure Ny ), there exists a P-a.s. continuous version of ¢, see (51) in [19]
for details. We keep the notation ¢ for this version.

For an underlying tree that satisfies the assumptions we made in the start
of the section, [32, Corollary 10.3] ensures the following distributional convergence
in K. If dr, is the shortest path metric and pr, is the uniform probability measure

on the vertices of T},, we have that

_ n _ d
(T 2dg,, "), pz = 46,) <D (T2, o7de, 0), pir, B8) (5.35)

where o7 = U% and Xy = Ny, /U%. The limiting object (7., d.) is a real tree
coded by a normalized Brownian excursion e := (e(t))o<t<1, see (2.2) and (2.4).

Combining (5.34) with (5.35) yields

(T3, nil/szna 0"), i, n71/4¢m n71/4vn> ﬂ} ((Te, o7de, 0), 72, B b, JB,¢¢(1))’

(5.36)
in the spatial Gromov-Hausdorff-vague topology, where ¢(!) denotes the first co-
ordinate of ¢ and o34 = —logf - (X4)11. It is natural to ask whether there is a
certain regime in which the biased random walk on large critical branching ran-
dom walk possesses a scaling limit. Answering the question posed above, (5.36)
can be informative as it designates a discrete scheme in which the bias must be
changed at every step. To be more precice, for every n > 1, let (X),,>1 denote
the biased random walk on G, with bias parameter 3, := 5"71/4, for some 8 > 1.
We refer to this regime as the weakly biased regime on account of the “flattening”

that the bias has to undergo. Observe that, for every n > 1, (n=Y4V, (u))yer, is
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the potential of the RWRE on 7,, changed at every step n according to

(ﬁn—l/él max{¢ (u1), 511)(1@)})
{ul,u2}€E(Tn)

(Cn({fﬂ'h$2})){x1,m2}eE(gn) =

Then, in conjunction with Section 5 and (5.4), for fixed environment, the station-
ary reversible measure of the weakly biased random walk (X),,>; is unique up

to multiplication by a constant and is given pointwise in u by

Z/n({u}) _ efn—1/4Vn(u) + Z efn—l/‘an(u), ueT,, (537)

u! ~ouu! U

where the sum is taken over the set of all vertices contained in the neighborhood of
u excluding its parent. Moreover, the resistance metric with which 7;, is endowed

satisfies 7, (u, u) := 0, for every u € T,,, and

ro(ug, ug) = Z 6”71/4‘/”(”), uy, uy € T, with uy # us. (5.38)

u€lu1,uzl]

The rest of the section is devoted in verifying that the analogue of (5.36)
indeed holds when the shortest path metric dy;,, and the uniform probability mea-
sure on the vertices of T}, are distorted by continuous functionals of the potential

of the weakly biased random walk.

Theorem 5.4.1. Asn — oo,
_ . _ _ _ ¢
(T, n ™21y, M), (20) v, n A0, n™4Y,,) 9@, (Te, 07741, 0), Vo) S, 05.60™),

in the spatial Gromov-Hausdorff-vague topology, where
o (tun, g) = / 75090\ (do), (5.39)
([u1,u2]]

Jor every uy,us € To and vya is the mass measure defined as the image measure

by the canonical projection p; of the Lebesgue measure on [0,1], see (2.4), where

g — </ e—aﬁ,zzﬁd)(l)(v))\(dv) 0<t< 1) i (5.40)
[[pe (0),pe (t)]]

(note that é : [0,1] — Ry is a (random) continuous function such that é(0) =
é(1) = 0, and therefore ps is well-defined).
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Proof. Using Skorohod’s representation theorem, we can assume that we are work-
ing on a probability space on which the distributional convergence of the normal-

ized contour function of T,

to a normalized Brownian excursion e := (e(t))o<i<1, Cin) @, ore in C([0,1],Ry)
[6], holds in the almost-sure sense. We build a correspondence between 7, and 7.
as follows. Let R, be the image of the set (i,t) by the mapping (i,t) — (ul', p.(t))
from {0, ...,2n} x [0, 1] to T}, x 7. such that i = |2nt], where u! is the i-th visited
vertex in the contour exploration of 7T), and p. denotes the canonical projection
from [0,1] to 7.. Note that this correspondence also associates the root uf of
T,, with the root p.(0) of T.. If A\, denotes the normalized length measure of
(T,,,n~Y2dy, , ul), observe that, for all u? € T, i € {0, ...,2n},

Mllug, uf]]) = n~t2dr, (ug, uf) = 0200 (0).

The normalized length measure )\, is naturally associated with a o-finite measure
Ao, on ({0, ...,2n},n"2dc, ,0), such that for all i € {0, ..., 2n},

Ae, ((0,4]) = n™12de, (0,i) = n= 200 (i) = Aa([ug, ufl]),
where d¢, is defined similarly to (2.2) replacing g with C,,. Recall here that C,, is
also a positive excursion with finite length 2n. In a similar fashion, let A, be the

unique o-finite measure on ([0, 1], d., 0), such that for each t € [0, 1],

)\e((()?t]) = de(oat) = de(pe<0)’pe(t)) = )‘(Lpe(())’pe(t)”)v

where A is the length measure of 7.. It is a fact that the normalized length measure
A, of the discrete tree T,, shifts the length of one edge to its endpoint that lies
poul €T,,0,5 €{0,...,2n}, the
sum and consequently the distorted distance in (5.38) between uj and u} can be

further away from the root ug. Hence, for every u

rewritten as

n—l/an(u?, u?) _ / €n71/4vﬂ(v))\n<dv) — / en*1/4Vn(U2)ACn (dk)
[ul u]] [i.7]]
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Similarly, the distorted distance 740, see (5.39), between p(s) and p.(t), for some

s,t € [0, 1], can be reexpressed as

t
ro(pe(s), p(t)) = / 569\ (dv) = / 59V @D ) (dr).

[[pe(s)pe ()]

Hence, for (i,s),(j,t) € R,, we have that

|n =P (uf ,uj) ro(pe(s), pe(t))]
’/ 1/4Vn / os, ¢¢(1) (pe(r)) A (d?‘)
7]

/ 6 —1/4 Vi (uf, [2nr] )\C /

S

which is bounded above by

50000 s ()]

< sup [en V) emned )L\, ((|2ns), [2nt]])
(i,t)ERn

¢ ¢
+ / eaﬁ,ascb“)(pe(r)))\cn(dr)_/ eaﬁ,qbd)(l)(Pe(T)))\e(dr) ' (5.41)

S

For each s,t € [0, 1],
n~Y2 e (([2ns], [2nt]]) — Ne((s, 1)),

as n — 0o. Combining this with (5.36) yields that both terms in (5.41) converge
to 0, uniformly in s,¢ € [0, 1], as n — oo, and the part of the proof that shows
that the distortion dis(R,) of the correspondence converges to 0, is complete.
We now introduce what we call the distorted contour exploration of 7},. In
essence, what it does is to collect a weight equal to e‘”_l/w"(“?), i €40,..,2n},
whenever the directed edge connecting the parent of u} to u} is traversed in the

canonical contour exploration of 7,,. To be more precise, set

Coli) = > eV o<i<on,

u€[ug,ul’]]

By convention, let C,(0) = C,,(2n) := 0. Extend C, by linear interpolation to
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non-integer times. Then, (Tn,nflﬂrn,u()‘) is a random real tree coded by C.,.
The mass measure pz on T, is defined as the image measure by the canonical
projection pg of the Lebesgue measure on [0, 2n]. By definition, (2n)~'us (A) =
(({t € [0,1] : ps, (t) € A}), for a Borel set A of (T},,n™"?r,,uf). The Prokhorov

distance between (2n)'us and vy is negligible since
d;ﬂ ((2n)_1,uén, (Qn)_lz/n) < (2n)7,

recalling that v, is the stationary reversible measure of the weakly biased random
walk, see (5.37). Towards proving that the Prokhorov distance between (2n)~'ye
and v, is negligible, we consult the proof of [2, Proposition 2.10]. There exists

a common metric space (Z,dz), such that

_ 1. = _
dz ((2n) " pe,,, vsw) < 5dis(Ry) + [supp(Cy) — supp(é)].

Since the right-hand-side converges to 0 as n — oo, the desired result follows.
O

The v,4u)-speed motion on (7, 07740 ), which we coined the v,a)-Brownian
motion in a random Gaussian potential Uﬁ’¢(1)¢(1) on the Brownian CRT, is a novel
object that emerges as the annealed scaling limit of the weakly biased random
walk (X7),,>1 on T, with bias parameter ﬁ”fm, for some 8 > 1. To make this
statement clear, we suppose that the random elements

((Tn, 7’L*1/27’n7 Q”>’ (Qn)*lyn’ n71/4¢n7 n71/4vn)

n>1

and
((Te, 0774010, 0), Vg, S, 05,601

are built on a probability space with probability measure P. This is possible since
the probability measure M,, on C([0,1],R,) x C([0, 1], R?) such that the pair of
the normalized discrete tours (C,, R(»)) is in its support, converges weakly as a
probability measure to M, a probability measure on C([0,1],R,) x C([0,1],R?)
defined similarly in such a way that the resulting spatial tree (7., ¢) has marginal
M, see [64, Theorem 2|. Then, P is the probability measure of the probability space
under which the aforementioned weak convergence holds almost-surely, which we

can assume exists using Skorohod’s representation theorem. The annealed laws
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P¢" and P? of the weakly biased random walk (X" ),,>; and the V4 -Brownian
motion in a random Gaussian potential aM)(l)(b(l) respectively, are obtained by
integrating out the randomness of the state spaces with respect to P.

Finally, we are able to state our result, as (5.12) and (5.13) are satisfied,
and therefore so is Assumption 5. (5.13) simply follows from the fact that the
spaces involved in the spatial Gromov-Hausdorff-vague convergence of Theorem

5.4.1 are compact, cf. the proof of (4.39).

Theorem 5.4.2. Consider the weakly biased random walk (X)y,>1 on T, with

bias parameter B”_1/4, for some B > 1. Then,

pe” ((n_1/4¢n( 33/%))20 e ) —y e ((E¢¢(XtJT1))tZO € ) ;

weakly as probability measures on D(R,,R?), where o > 0 is a constant, ¥4 is a
positive definite d x d-matriz, (X;)i>o is the V4 -Brownian motion in a random
Gaussian potential oV on the Brownian CRT, ¢V is the first coordinate of a tree-

indexed Gaussian process (¢(0))ser. with E¢(o) =0 and covariance structure

Cov(e(o), (")) = d.(0,0 NI,

where I is the d-dimensional identity matriz, if (7., d.) denotes the Brownian CRT,
a real tree coded by a normalized Brownian excursion, endowed with its canonical
metric (2.2).

5.5 Edge-reinforced random walk on large criti-

cal trees

Let (o (€))ecr(r,) be a sequence of positive initial weights on E(7},), the set of
edges of a critical Galton-Watson tree with finite variance for the aperiodic off-
spring distribution, the model that was fully described in Section 5.4. The edge-
reinforced random walk (ERRW) on T, started from o, is introduced as the

discrete time process Z = ((Z}})k>1, P4, u € T,,) with transition probabilities

0 0 N ({23, u})
Poo(Zier = ul(Z])osjzr) = H{UNZ?}Z%ZQ Ne({Zp ')
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where for an edge e € E(T,), Ni'(e) :=ag(e) + #{0 < j < k—-1:{Z}, 2}, } =
e}. In other words, at time k, this walk jumps through a neighboring edge e
with probability proportional to N;*(e), which is initially equal to af(e) and then
increases by 1 each time the edge e is crossed before time k. The initial weights

we are going to be interested in choosing are
al(e) =27t/ e € E(T,), (5.42)

so that the ratio of the initial weights over the shortest path metric, when rescaled

1/2

by n="/¢, is constant. The following theorem due to Sabot and Tarres describes

the ERRW as a mixture of Markovian random walks.

Theorem 5.5.1 (Sabot, Tarres [93]). Let o := (a"(€))ccr(r,) ndependent ran-
dom wvariables with a"(e) ~ I'(ag(e),1). Let (w™(e;(u)) : 0 < i < &(u))uer, be an
independent family of independent random variables, that conditional on o™, are

distributed according to the density

an(€l<u)) 672a”(ei(u))sinh(%)2+%dl,’ (543)
where (ei(u))fi%) = ({u,u;} : 0 <0 <E&(u)). Defined" := (U™ (u))uer, by

ZeEEQnM le(e)’ u # (Qn7
0, u= 0",

U (u) ==

where E,n ,, 15 the set of all edges contained in the unique path connecting 0" and u.
U" is interpolated linearly along the edges. Consider the nearest neighbor random
walk on T,,, started from o", that conditional on (", U™), moves from u to u; with

probability

Then, under the annealed law it has the same distribution as the ERRW (Z]')k>0.

As a consequence of the theorem above and (5.2), the potential V" :=

(V"™(w))uer, of the random walk in random environment (o™, U™) has the following
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expression:

UM (id) + U (u) + log a”({d, u}) Y, u # o,
V'(u) =
0, u=o",

The aim of the following series of lemmas is to establish the distributional conver-
gence of this potential and examine its limit. In what follows, it is useful to recall
the correspondence R,, between T,, and 7. that was extensively used in the proof

of Theorem 5.4.1.

Lemma 5.5.2. Suppose that (i,t) € R,,. Then,

swp 5 3 am(e) ™t — du(pel0), o)) B 0,

2
te[0,1] €€Bp un
K

as n — 00, where the convergence above is in probability.

Proof. Since a™(e) ~ T'(af(e), 1), then a™(e)~! follows the inverse Gamma distri-
bution with parameters ogj(e) and 1. For n large enough, by elementary properties
of the Gamma distribution, we derive the following asymptotic behavior of the

-1

mean and variance of a"(e)~'. Note that for n large, the expressions below are

well-defined as o (e) diverges, see (5.42).
E(a"(e)™") = (a5(e) = 1)7' = O(ag(e) ") = O(n~'7?),

Var(a”(e) ™) = (ag(e) — 1) *(ag(e) —2)~' = O(n~*?).

Using Kolmogorov’s maximal inequality, for every n > 0,

[a"(e)' —E(a™(e) ]| >n ]| <

N —

P | sup

t€[0,1] eeEug o
e

~ O(n*dg, (ug, u))
4n? ’

which goes to 0, as n — oo. This in turn yields the desired result just by noticing
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that

hmsup — Z E — de(pe(0), pe(?))

n— oo
CEE n u"’

<lim sup |n_1/2dTn (ug, ui') — de(pe(0), pe(t))],

n—0o0

which is equal to 0, uniformly in ¢ € [0, 1].

Lemma 5.5.3. As n — oo, conditional on (o™, U™),

((Tn,nil/ZdTn,ﬂTn, ) Vn) ((7;,O'Td6,,u7‘e ),2]/{) y

in the spatial Gromov-Hausdorff-vague topology, where U = (U(u))ueT. is a pro-
cess defined by
U(u) = V26(u) +do(o,u), uweT, (5.44)

where (¢(u))uer. 1S a tree-indezed Gaussian process built on a probability space
with probability measure P, with E¢(u) = 0 and Cov(o(u), p(u')) = de(0,u Au').

Proof. Note that U(p.(t))—U(pe(s)), s,t € [0,1] with s < ¢, is normally distributed
with mean d.(pe(s), pe(t)) and variance 2d(pe(s), pe(t)), i.e.

N(de(pe(s);pe(t)), 2de(pe(s), pe(t)))-

Take s,t € [0,1] with s < ¢, such that (i,s),(j,t) € R, and {uj,u}} € E(T,).

The conclusion of Lemma 5.5.2 gives that the total variation distance between

N((2a"({uf, uf 1)~ " ({uf, uf}) ™) and N(de(pe(s), pe(t)), 2de(pe(s), pe(t)))

converges in probability to 0, as n — oo. The increment U"(u}) — U™ (uj) =
w"({uj,u}}) has its law, conditional on o™, explicitly given in (5.43), and using

a standard Kullback-Leibler divergence bound, see [ . (13)], the total variation

distance between its law and that of N((2a™({uf,u}}))™", o™ ({uf, uj})~") is

O(a"({uf, uj}) ™).
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Therefore, the total variation distance between the distribution of w™({uf,u}})
and that of U(p.(t)) — U(pe(s)) is of the same order as above. Again, due to
Lemma 5.5.2, the fact that [t —s| < n~" for those (i, 5), (j,t) € Ry, with {u}, u}} €
E(T,) and the of e, almost-surely, we deduce that o”({u},u7})™" converges to 0
in probability, as n — oco. As a consequence, (U™(u}))icpo,1] converges in law, as
n = 00, to (U(p.(t)) epo

0

When v, and r,, are defined similarly to (5.37) and (5.38) respectively, with
the potential of the particular RWRE studied in Section 5.4 replaced by V", the
proof of Theorem 5.4.1 remains intact. In our context (see (8) in [78] for details)
the process (¢(u)),er. has a continuous modification, therefore there exists a P-
a.s. continuous modification of U. The scaling limit of the ERRW on 7;, with
initial weights as in (5.42) is described as the vy-speed motion on (7, orry, 0),

where

ry (U, ug) == exp(2U (v))A(dv),
(ur, ) /{WH D(2U(1)A(dv)

for every uy, us € 7. and 1, is the mass measure on 7, defined as the image measure

by the canonical projection ps of the Lebesgue measure on [0, 1], see (2.4), where

é:= (/ exp(—2U(v))A(dv) : 0 <t < 1) .
[[pe(0),pe ()]

Theorem 5.5.4. Consider the ERRW (Z}')>1 on T, started at its root 0", with
initial weights given by af(e) = 27'n'/2 e € E(T,). Then, there exists a common
metric space (Z,dz) onto which we can isometrically embed (T,,,7,), n > 1 and

(Tes14), such that

Pg; ((n_l/2Z23/2t)te[0,1} € ) — P? <(Ztg;1)te[0,1} S > ,

weakly as probability measures on D(R,., Z), where op > 0 is a constant, (Z;)¢>0
is the vy-Brownian motion in a random potential 2(¢(u) + de(0,u))uer. on the
Brownian CRT, started at o, ¢ and d, are the same as in the statement of Theorem
5.4.2.

We emphasize that choosing T,, to be a critical Galton-Watson tree with fi-
nite variance for the aperiodic offspring distribution is justified by its distributional

convergence as a metric measure space, and more importantly by the convergence
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of its contour function. Therefore, it is of no surprise that the theorem above
is expected to hold for the ERRW on random ordered trees that possess these
properties, such as a size-conditioned critical Galton-Watson tree, whose aperi-
odic offspring distribution lies in the domain of attraction of a stable law of index
a € (1,2]. It was shown by Duquesne [17], (see also [70]) that, properly rescaled,
its contour function converges weakly to a normalized excursion of the continuous
height function associated with the a-stable continuous-state branching process,
which encodes the a-stable Lévy tree, a generalization of the Brownian CRT in

the case a = 2 (for definitions, see the references mentioned above).
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Chapter 6
Future plans and open problems

I propose the following research projects to explore aging properties of the diffu-

sions in random potential presented in the previous chapter.

1. The one-dimensional diffusion (X;);> in a random Wiener potential W con-
sidered by Brox in [28] exhibits some interesting features. Among those,
there exists a non-trivial measurable function by such that (X;);>o converges
very slowly to by, which is the so-called subdiffusivity, see the statement in
(5.19) and cf. (5.16). This result is a consequence of a localization phe-
nomenon that occurs, trapping the diffusion in some valleys of its potential,
and was extended to a wide class of random environments [66]. Also, see [75]
for a limit theorem for the shape of the full trajectory of a multi-dimensional

diffusion in a self-similar random potential.

We have a corresponding notion of a valley of the potential of the Brownian
motion on (7,7s), where 7 is the SSCRT, a continuum random sin-tree
coded by left and right height processes that are two independent three-

dimensional Bessel processes. Furthermore,
T‘¢(U1, UQ) = / GUﬁ’¢¢(v)>\(dU), U, Uy € T
[[u1,u2]]

is a metric on 7. Here, recall from (5.39) in Theorem 5.4.1 that [[u, us]] is
the unique arc connecting u; and ug, 04 is a positive constant depending
on  and Y4, and A denotes the length measure of the SSCRT.

We call a valley or (-valley a triple (Lg, by, he), where L, is the sub-level
domain of ¢ restricted to the closure 7 of the ball in T of radius ¢ centred
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at the root,

by := arg,;, min ()

is the base of the valley and, given ¢’s continuity,
he == 6(by)

denotes its height, a term justified by noticing that sup,csz, #(z) = £. We
assume that the following hold with high probability as ¢ — oo and € — 0.

[[0,be]] € Lg—2) and by is the unique minimum for ¢ on Ly s).

e the smallest number m such that there exists a set A = {z1,..., 2}
with r4(z,2;) > €*/4 for each 4, such that any path from z to L must
pass through A, is of order O(1).

o inf{p(x) — d(be) : © € Virye) \ Bay (be,el)} > €.
® by-1(y) is continuous at ¢, where t — ¢71(t) := inf{¢' : hy >logt} is the

right-continuous inverse of e”.

Then, under mild assumptions on the volume growth of L, for £ large enough,

we claim that, for every 6 > 0,
P(dr (X, be1iry) > 6071(t)) =25 0, (6.1)

where P¢ denotes the annealed law of (X;);>o started from o with respect
to the law of the random environment. Therefore, identifying the unique b,
and verifying all the aforementioned assumptions yields the limit theorem

above.

. A precursor to this problem allows one to get a glance and further conjecture
on the precice nature of (6.1). The scaling limit of the ERRW on critical
Galton-Watson trees conditioned to survive (Kesten [70)] showed that it is
possible to make sense of conditioning them to survive or ‘grow to infinity’)

is a Brownian motion in a random Gaussian potential with a drift given by

o(u) + dr(o,u), (6.2)
where T is the SSCRT. Due to modulus of continuity properties of ¢ (see

116



[19, Theorem 6.4]), the decisive term in (6.2) regarding the occurence of a
localization phenomenon is the drift dr(p, -), which is an artefact of the self-
reinforcement. Therefore, the sub-level domain L, is asymptotically 7, a

toy model for which our four assumptions are expected to hold with b, = o.

Conjecture 1. Let (X;)i>0 be the Brownian motion in a random Gaussian
potential with a drift given by (6.2). For each § > 0,

tim pe (92X 5\ _ .
t—00 (logt)

A stronger statement was confirmed to be valid in [S3], where the large time

behavior of the continuous space limit of the ERRW on 27"Z was examined.

. Consider a Galton-Watson tree T', which is a branching process with i.i.d.
offsprings that are distributed as a random variable ¢ with mean 1, ag =
Var(£) € (0,00) and E(e?) < oo, for some A > 0. Given a realization
of T, the lattice branching random walk on 7T assigns a spatial location
ér(u) € Z2, for each v € T. First, by setting the spatial location of the
root to be the origin of the d-dimensional lattice. If (y(€))ccp(r) are i.i.d.
according to the step distribution of a simple random walk, then ¢r(u) is
the sum of values y(e) over the set of all edges contained in the unique path
that connects u to the root. The couple (T, ¢r) is called the critical lattice
branching random walk, and can be viewed as an embedded subgraph of
Z4. Notice that it is not necessarily a tree. We propose to study the weakly
biased random walk (X ),,>; with bias parameter B for some B > 1,
started from 0, on the trace of the critical lattice branching random walk

(T, ¢n), where T), is a Galton-Watson tree conditioned to have size n.

Conjecture 2. In high dimensions (d > 14 in the case where there is no bias
and we end up with the simple random walk on the trace of critical lattice

branching random walk [17])

converges to the Brownian motion in a random Gaussian potential on the
ISE. The convergence is annealed and takes place in the uniform topology

over compact sets.
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The process considered in Theorem 5.4.2 essentially differs from the con-
sidered in the conjecture above. More specifically, (¢n(X]))m>1 is a biased
random walk on a tree, which is then embedded. Recall that in Section
5.4, the step distribution according to which (y(e))ccp(z,) is distributed was
assumed to be continuous in R? with fourth order polynomial tail decay.
In this open problem (X ),>1 is a biased random walk on a graph that

contains cycles.
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Appendix A

Proposition A.0.1. Let (G, u%) be a weighted graph, with edges weighted accord-
ing to (1/pS)) toyyer(e)- Let dg and R be the weighted shortest path distance and
the resistance metric respectively. Then, dg > Rq. If G is a graph tree, i.e. there

15 a unique path between any two vertices in the graph, then dg = Rg.

Proof. Let a,b € V(G) and 7 be a path that connects a and b. For f: V(G) - R
that satisfies f(a) = 0 and f(b) = 1, applying the Cauchy-Schwarz inequality gives

2

STWE)T Y. (@) =l | = Y f@) - fw)l

{zy}em {zy}em {z,y}em

Since f(a) =0, f(b) =1 and 7 is a path that connects a,b, the right-hand side of
the inequality above is bounded below by |f(a) — f(b)|* = 1. Hence,

-1

Ealf, )= > (F@) —fw)us, > D W)™

{x,y}ew {m,y}@r

where ) {w}eﬂ(,ugy)_l denotes the weighted distance between a and b on .
Recalling the definition of the resistance metric on G, this implies Rg(a,b) <
> (o) e (11$,) 7", which proves the desired inequality.
It is easy to see that all the inequalities in the proof hold with equality if
there exists a unique path connecting a and b.
0

119



Appendix B

Let (K, R,0),m,X) € K and B be a non-empty closed subset of K. By [74,
Theorem 4.1], there exists a unique function gp : K x K — R such that, for every

x €K, gg(zx,-) € K and
g(gB(x’ ')v f) = f(l‘), (Bl)

for every f € {f € K: f|p = 0}. As part of [74, Theorem 4.1], gp satisfies

0 <gp(z,y) = gs(y, ) < gp(z,v) = R(r, B). (B.2)

Furthermore, by [74, Theorem 10.4], the transition density (p; \B(:I;,y))gc,ye K50

of the corresponding Hunt process X7, which is the process X with the killing

condition on hitting B, exists and is continuous on K x K x (0, 00):

g8(,y) =/ pi B (2, y)dt, Vo,y € K.
0

This readily implies

B, ([ se0od) = [ s, wer.  ®3

for any measurable function f : K — R, , where 75 is the hitting time of B.

Proposition B.0.1. If (K, R, o), 7, X) € K, then
E,7, + Ey7. = R(z, y)m(K), Vr,y € K,

where T, is the hitting time of z by X.

Proof. Fix x,y € K. As in (B.1), there exists a function g(,} : K x K — R such
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that, for every y € K, g(z1(y,-) € K and

E(9ay (), f) = fy),
for every f € {f € K: f(x) = 0}. We deduce that
E91ay (W) + 90y (@), f) = E(gay(y, ), f = f(@)) + Eggy (@, -), f = f(y)) =0,
for every f € K. It follows that g,y (y,-) + ggy(,-) is a constant. So,
93 (Y ) + 903 (2, ) = 903 (4, @) + gy (2, ) = Rz, ), (B4)

where we made use of (B.2). To conclude, g¢,1(y,-) is the occupation density
for X, started at y with the killing condition on hitting = (cf. (B.3)), and so by
symmetry and (B.4), we have that

E,7, +E,7, = /Kg{y}(x,z)w(dz) +/Kg{x}(y,z)7r(dz)
- /K (93 (1, 2) + 910 (2, 2))(d2) = / Rz, y)n(dz) = R(z,y)n(K).

K

]
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