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Abstract

Membrane tubes are structures ubiquitous in cells, and understanding their dy-
namics and morphology is of vital importance for cellular biophysics. This thesis
will discuss several aspects of the dynamics of membrane tubes in situations where
they are driven out of equilibrium by various biologically inspired processes. We
analyse the inflation of membrane tubes and their subsequent instability due to ion
pumps driving an osmotic pressure difference. This is inspired by the structure of
an organelle called the contractile vacuole complex, and leads to a new instabil-
ity with a much longer natural wavelength than a typical pearling instability. The
stability of membrane tubes with a shear in the membrane flow is analysed and a
novel helical instability which acts to amplify the fluctuations is found. We discuss
the relevance of this instability in the process of dynamin-mediated tube scission.
Finally we consider the dynamics and fluctuations of a membrane tube with active

forces acting on it.
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Chapter 1

Introduction

From the perspective of a physicist, biology is difficult. Living systems are driven
far out of equilibrium by the energy consumed in the chemical reactions necessary to
sustain life, meaning these systems are well beyond the paradigm of classical statist-
ical physics which assumes equilibrium or close to equilibrium systems [Landau and
Lifshitz, 1951; Onsager, 1931a,b]. Molecular specificity is also of vital importance in
many biological systems, so coarse graining systems is incredibly challenging [Alon,
2019]. Further to this, biological systems are rarely specified simply in terms of
their present form and function, but often depend on the system’s entire evolution-
ary history.

Despite this physics has made significant contributions to biology in recent
years, firstly from the transfer of experimental techniques, such as optical and mag-
netic tweezers [Ashkin, 1970; Crick and Hughes, 1950] and protein crystallography
[Alberts et al., 2002], and secondly by the successful use of theoretical ideas from soft
matter, statistical mechanics and information theory to analyse problems arising in
biological systems [Bialek, 2018; Goldstein, 2018]. Such problems include chemical
pattern formation [Turing, 1952; Hoyle, 2006], morphogenesis [Odell et al., 1981;
Gross et al., 2017; Lecuit and Mahadevan, 2017; Goriely, 2017], the dynamics of
DNA and other bio-polymers [Boal, 2002; Marenduzzo et al., 2006], dynamics and
control in gene regulation [Alon, 2019; Petkova et al., 2019] and, of central import-
ance to this thesis, the mechanics and dynamics of lipid membranes [Helfrich, 1973;
Powers, 2010; Seifert, 1997; Safran, 1994; Lipowsky and Sackmann, 1995; Basser-
eau and Sens, 2018]. From a more abstract, and controversial, perspective there has
even been the suggestion that evolution itself can be viewed as an emergent physical
phenomenon [Goldenfeld and Woese, 2011].

The success of soft matter physics based approaches comes largely from the



fact that both fields share similar energy scales (such that deformations can occur
due to thermal fluctuations), length and time-scales, along with biological materials
having similar mechanical properties to many substances found in equilibrium soft
matter physics [Doi, 2013]. This thesis will make use of ideas from soft matter
physics to understand the dynamics of lipid membrane tubes. These are structures
found in a variety of contexts inside the cell, and can be formed by the exertion of a
localised force on a flat membrane [Derényi et al., 2002]. We will examine a variety
of situations designed to capture important features of different cellular processes,

typically driven by energy consuming active processes.

1.1 A short history of mechanics in cell biology

Compared with classical physics and chemistry, the study of mechano-biology is a
relatively recent one. The first major attempt to describe the form and morpho-
genesis of living organisms using mathematics and the laws of physics was made by
D’Arcy Thompson in his book “On Growth and Form” published in 1917 (and a
second edition in 1942) [Thompson, 1917]. Although many of the mechanisms pro-
posed for different morphologies have since been proven wrong, the central idea that
all organisms must obey the laws of physics is quite an attractive one (particularly
in light of the development of modern genetic and cell biology and the difficulties
relating genotype to phenotype [Lecuit and Mahadevan, 2017]). As Thompson put
it:

Cell and tissue, shell and bone, leaf and flower, are so many portions of
matter, and it is in obedience to the laws of physics that their particles
have been moved, moulded and confirmed. They are no exception to the
rule that God always geometrizes. Their problems of form are in the first
instance mathematical problems, their problems of growth are essentially
physical problems, and the morphologist is, ipso facto, a student of phys-

ical science.

A particularly famous idea from Thompson comes from the final chapter
called “Theory of Transformations or the comparison of related forms” which dis-
cusses how mathematical transformations can be used to compare seemingly distinct
morphological aspects of animals, Fig. 1.1a. Although many of Thompson’s con-
jectures about how this could be used to find relations between species have been
proven false (a point which may seem obvious to a modern reader when viewed from

the paradigm of evolution by natural selection), the chapter is almost solely respons-
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Figure 1.1: Mechanics and morphology in biology: (a) figure adapted from
[Thompson, 1917], from the chapter on the “Theory of Transformations” between
different forms, in this case various fish. (b) figure adapted from [Moulton and
Goriely, 2014], showing different solutions to simple surface accumulative growth
equations (starting from the same initial conditions but with a different “growth
vector”) as compared to real biological forms.



ible for the foundation of the field of morphometrics and the development of pattern
theory and statistical shape analysis [Lecuit and Mahadevan, 2017]. Moreover, more
general geometric ideas similar to those used by Thompson have become more popu-
lar in recent years particularly when describing the growth of elastic sheets and rods
in biological morphology [Moulton and Goriely, 2014; Goriely, 2017; Wong et al.,
2017], Fig. 1.1b.

On the scale of cells, mechanical theories really began to take off in the
1970s with the pioneering work of Helfrich, Canham and Evans providing an elastic
model of the cell membrane based on curvature energies [Helfrich, 1973; Canham,
1970; Evans, 1973a; Safran, 1994; Seifert, 1997]. The simplest form of this curvature

energy is given by
F= / 2 (2H)? dAs (1.1)
S 2

where H is the mean curvature and s the bending modulus of the lipid membrane.
This energy could not only explain basic morphology, such as the bi-concave shape
of a red blood cell [Canham, 1970; Seifert, 1997], but also more complex phenomena
such as red blood cell flicker [Brochard and Lennon, 1975]. It will be this energy,
and its dynamical variants that will be the main subject of this thesis.

A further development in theoretical mechanics in cell biology is that of the
viscous dynamics of rods and filaments, particularly in the context of flagella and
bacteria with solenoidal and super-coiled morphologies [Goldstein et al., 1998, 2000;
Audoly and Pomeau, 2010; Boal, 2002]. There as also been a significant amount
of research on the dynamics and thermodynamics of molecular motors and their
interplay with the filaments that make up the cytoskeleton [Peskin et al., 1993;
Jillicher and Prost, 1995; Mofrad and Kamm, 2006], whilst at a larger length-scale
there is the paradigm for viewing the actomyosin cytoskeleton as an “active” liquid
crystalline gel where detailed balance breaking stresses act along the direction of the
nematic director [Kruse et al., 2005; Prost et al., 2015; Mofrad and Kamm, 2006].

Recently there has been a focus on active interfaces which couple the ideas of
geometry and elasticity with active forces. These have been studied in the context of
general formulations coupling chemical reactions to stresses and torques [Salbreux
and Jiilicher, 2017], more specific models for processes in morphogenesis [Morris
and Rao, 2017; Haas and Goldstein, 2015; Hohn et al., 2015; Gross et al., 2017] and
in terms of practical numerical methods for solving the full non-linear equations
[Torres-Sanchez et al., 2019]. It is hoped that such models may provide insight into
the detailed mechanisms behind force generation and shine a light on the interplay

between signalling, geometry and mechanics in biology.
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Figure 1.2: (i) Shows the general structure of a lipid molecule, (ii) Specific chem-
ical structure of Phosphatidylcholine, (iii) Hydrophilic head and hydrophobic tail
representation. Figure is a reproduction of a similar figure in [Alberts et al., 2002].
Figure taken from [Koynova and Tenchov, 2013] showing the vast phase space lipid
membranes can occupy; (iv) Lamelar phases, (v) Micelles and Lipsomes & (vi) Non-
lamellar liquid-crystalline phases.

Im3m Pn3m la3d

1.2 Lipid molecules and their self-assembly

Living cells are complex heterogeneous structures which have evolved over millions
of years to perform an enormous range of complex tasks. In order to segregate parts
of the cell and compartmentalize different bio-chemical reactions, cells make use of
organic molecules called lipids [Alberts et al., 2002; Phillips et al., 2010]. Lipids are
thin organic molecules consisting of a head group that is hydrophilic and tail groups
that are hydrophobic and hence such molecules are often called amphiphilic. By
far the most common type of lipid molecules are Phospholipids consisting of a head
group made of Choline, Phosphate and Glycerol, and two tail groups comprised of
fatty acids (often one of the tails contains a double bond making it unsaturated),
see Fig. 1.2 (ii). The amphiphilic property enables lipids to self assemble into a
complex array of phases depending on temperature, chemical composition, density
and the solvent they are in, see Fig. 1.2 (iv,v,vi) [Koynova and Tenchov, 2013]. The
self assembly into these phases is driven by the minimisation of the thermodynamic
free energy of the combined water-lipid system [Safran, 1994].

A particularly important phase for cells is that of the bilayer, which in water
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Figure 1.3: Schematic of a symmetric lipid bilayer in the fluid phase. S denotes the
mid-plane of the bilayer.

consists of two layers of lipids with heads facing outwards and tails inwards, Fig. 1.2
(iv,v). Below a critical temperature, T, these bilayers can be found in the gel phase
(Lg, Fig. 1.2 (v)D) and above this temperature in the fluid phase (L, Fig. 1.2 (iv)
F, (v) L) [Kranenburg and Smit, 2005]. For most biologically relevant scenarios we
will assume we are above the critical temperature and in the fluid phase [Simons and
Vaz, 2004]. This phase has been shown to behave laterally as a two dimensional (2D)
fluid at physiological temperatures allowing for the free diffusion of lipids [Phillips
et al., 2010; Simons and Vaz, 2004].

These fluid bilayers are the membranes which bound most of the cell’s in-
ternal compartments, called organelles. In eukaryotic cells most of the lipids are
produced in a large membrane bound organelle called the endoplasmic reticulum
(ER) [Alberts et al., 2002; Nixon-Abell et al., 2016]. The ER is made up of two
main sections; the rough ER is a high surface area region consisting of many folds
surrounding the nucleus and the peripheral ER is a dense tubular network which is
spread throughout the cell [Nixon-Abell et al., 2016]. From the ER, membrane and
proteins are fissioned off in vesicles and transported to the Golgi (an organelle con-
sisting of layers of dynamic cisternae) which, through complex interactions, sorts
the composition of membranes and proteins [Mironov and Pavelka, 2009]. From
here vesicular transport takes the sorted membrane/proteins to various organelles,
often called post-Golgi compartments [Alberts et al., 2002; Mullins, 2005]. These
processes are illustrated in Fig. 1.4.

Of course real cell membranes are made up of many more components than
just pure lipids (of which there are hundreds of species), most notably trans-membrane
proteins which are vital to many cellular functions. The idea of the 2D fluid acting
as a matrix in which proteins can freely diffuse was first formalised in the description

of the “fluid mosaic” model of cell membranes [Singer and Nicolson, 1972; Alberts
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Figure 1.4: Schematic the endomembrane system in a eukaryotic cell (trans-Golgi
network and endosomal network) showing membrane transport from the endoplas-
mic reticulum (ER) to the plasma membrane (and vice versa). Image from [Xu and
Esko, 2009]

et al., 2002]. This is still a significant simplification of the real picture though. In
reality proteins do not simply freely diffuse in the bilayer, but in many cases actively
consume energy via the hydrolysis of Adenosine triphosphate or Guanosine triphos-
phate to undergo mechanical/conformational changes [Phillips et al., 2010]. This
activity is believed to play a key role in cell membrane organisation, in particular
forming domains needed in a huge variety of biological processes. This heterogen-
eous picture of the cell membrane developed mainly due to the advancement of single
molecule tracking techniques, and such ideas were formalised in what is called the
“pickets and fences” model where the cytoskeleton and trans-membrane proteins

actively interplay with the membrane to organise domains [Kusumi et al., 2005].

In-vitro systems

In recent years many techniques have been developed to probe the physical prop-
erties of lipids in simplified biomimetic systems. Such systems have the benefit
of containing only a few components, removing much of the added complexity of
real biological membranes. These systems have allowed detailed measurements to
be made of many specific physical properties of lipids and their associated trans-

membrane protein complexes. These properties include, but are not limited to,
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Figure 1.5: Formation of Giant Unilamellar Vesicles (GUV) by electro-formation,
figure adapted from [Mertins et al., 2009].

diffusion of proteins [Quemeneur et al., 2014], membrane viscosity [Hormel et al.,
2014], shape fluctuations [Girard et al., 2005] and phase separation/domain forma-
tion [Sackmann and Feder, 1995].

One such system which we will regularly refer to in this thesis is that of
Giant Unilamellar Vesicles or GUVs. These are large bilayer vesicles often formed
by electro-formation whose composition and size can be well controlled [Angelova
et al., 1992; Mathivet et al., 1996]. A schematic of this process is shown in Fig. 1.5.
Another in-vitro system often used to measure physical properties of lipids and
trans-membrane proteins is is that of a supported lipid bilayer, which we will not
discuss in detail here [Richter et al., 2006].

1.3 Geometry of surfaces

For the remainder of this thesis we will exploit the fact that lipid membranes self
assemble into large-scale structures whose thickness, typically 4 — 5nm, is much
smaller than the lateral size of the membrane, typically ~ 1um, and that the radii
of curvature of the membrane are large with respect to the thickness [Phillips et al.,
2010; Safran, 1994; Boal, 2002]. As such it will be convenient to treat the membrane
as a smooth 2D surface which can deform due to the exertion of forces and torques,
in more mathematical language we call this surface a manifold. In order to describe
such a manifold one can make use of the extensive formalism that has been developed
by mathematicians in the field of differential geometry. Differential geometry is a
branch of mathematics that extends the notion of calculus in n-dimensional real
space (R™) to more general curved spaces [Willmore, 2012; Frankel, 2011].

For simplicity we will restrict ourselves to discussing 2D surfaces embedded



in R? as this will be sufficient for the topics discussed in this thesis, for a detailed
mathematical exposition of these ideas for n-dimensional surfaces see [Lee, 1997]. We
will assume a basic knowledge of differential geometry and tensor calculus through-
out (e.g. Einstein summation convention and how to raise and lower indices with
the metric) but more advanced ideas such as exterior calculus will be introduced as
needed.

Each point on the manifold, p € M, is labelled by a vector in the ambient
space (R?) which we denote Xp € R3. Locally we can write X as a function of two
coordinates which we denote ! where i = 1,2. We can use this to define some basis

vectors to the tangent space, 7 (M) of the manifold

—

. _ 0X
Lot

for i=1,2 (1.2)

from here we can define a bilinear form called the metric which enables us to ascribe

a distance between points on the manifold. The metric is given by
dS? = (&;,&;)dz' ® da? = gj;da’ @ da? (1.3)

where (-, -) is the inner product in R3, dz* are a basis of the cotangent space 7* (M)
and ® is a tensor product.
The unit normal vector to the surface is given by © = €1xez  The way the
‘81 X €2|
normal changes along a particular direction on the manifold gives a measure of the

extrinsic curvature and can be quantified in the bilinear form given by
b= (i1, 0;¢)dr’ @ da? = b;;da’ ® da’ (1.4)

which is often called the second fundamental form. Because b is a self adjoint
operator, we can diagonalise it along the two axes of principal normal curvature and

raise one index with the metric to give

) 1 9
bl =" 1.5
. (0 R2> o)

where R; and Ry are the principal radii of curvature (and eigenvalues of b) [Frankel,
2011].
The trace and determinant of b are given by the sum and product of these

eigenvalues and define the mean curvature, H, and Gaussian curvature, K, in the



Figure 1.6: Schematic of principal radii of curvature, Ry and Ro, on a 2D mani-
fold M embedded in R3. The expressions for mean curvature, H, and Gaussian
curvature, K, are also given.

following way

B = = i] = .
det b det b R1R2

A schematic of these curvatures is shown in Fig. 1.6.

The mean curvature is a purely extrinsic quantity, in that it describes how
the 2D surface curves in R3. The Gaussian curvature, perhaps surprisingly, is purely
intrinsic, in that it can be completely specified by just the metric and its derivatives
(specifically the Riemann curvature tensor, R;jx, by the equation K = R'215). The
relationship between intrinsic and extrinsic curvature is summarised by a set of
equations called the Gauss-Codazzi-Mainardi equations which are a major result

from differential geometry [Frankel, 2011] and have found applications recently in
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soft matter physics in the metric formulation of elasticity theory [Efrati et al., 2013].

1.4 The Helfrich-Canham energy

For a thin elastic medium there are two contributions to the elastic energy of the
material; stretching and bending [Landau et al., 1986]. Since the compressional
modulus for lipid bilayers is very large it is sufficient to consider the mechanics
purely in terms of bending energy [Boal, 2002].

One way to derive the bending energy of a fluid membrane would be to do
a formal thin film expansion of the 3D free energy, however the correct functional
form can be inferred from simple arguments which we will describe here. This form
of the free energy is an expansion in curvature to lowest order and was first proposed
by [Helfrich, 1973; Canham, 1970; Evans, 1973b] in order to explain the shapes of
red blood cells and artificial vesicles.

We know that the bending energy should depend on the curvature of the
membrane, so must couple to the second fundamental form b, and should also be in-
dependent of local coordinate parameterizations. This means it should only depend
on the trace and determinant of b, i.e. the mean and Gaussian curvature, H and K.
If the bilayer is symmetric the energy should be symmetric on sending the normal
7 — —i so it can only depend on H? not H. This leads us to write the following

energy for the membrane
K 2 _
F= / [5 (2H)? + 7K | dAs (1.7)
S

where x and &k are the splay and saddle-splay moduli respectively. This can be gen-
eralised to include an asymmetry between the leaflets of the bilayer by introducing

some spontaneous curvature Cy
F= / [g (2H — Co)? + RK} dAs. (1.8)
S

This spontaneous curvature allows for energy minimising configurations which have
some extrinsic curvature, e.g. due to differences in lipid species between the bilayers
or the presence of proteins coating the membrane [Helfrich, 1973; Seifert, 1997]. We
will refer to this energy as the Helfrich-Canham energy (or sometimes just Helfrich
for conciseness).

Other contributions to the energy can also be considered, for example surface

tension, o and, if the membrane is closed, a Laplace pressure across the membrane,
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AP. Including both of these contributions, the full free energy reads
F= / [g (2H — Co)* + RK + o—} dAs — /APdV (1.9)
S

where § = V.
We can make use of a theorem from differential geometry, called the Gauss-
Bonnet theorem, to simplify the energy further in some cases [Frankel, 2011]. The

Gauss-Bonnet theorem states that for a 2D differentiable manifold M with boundary
oM

/ KdA =27y (M) —/ kqds (1.10)
M oM

where x (M) is the Euler characteristic of the manifold and k, is the geodesic
curvature at the boundary. This result is surprising as it states that, for a closed
manifold, the integral of the Gaussian curvature over the manifold is a constant
that only depends on topology. This means that for cell membranes the saddle-
splay modulus only enters the energy at the boundary, and that if we consider a
closed membrane or membranes of infinite extent then we can neglect the contri-
bution of Gaussian curvature to the free energy (as long as we have no changes in
topology).

The Helfrich-Canham energy is closely related to the Willmore functional,
WIM] = [ H 2d A4, which is of significant interest in pure differential geometry
[Willmore, 1965]. There is a significant body of work on studying the properties
of this functional with the related Willmore conjecture (the integral of the mean
curvature squared of a torus immersed in R? is at least 272) being proved recently
[Marques and Neves, 2014].

1.4.1 Some simple minimisers

To gain help gain an understanding of the Helfrich Energy we will consider some
simple geometrically constrained minimisers (the simplest example of which is a flat
membrane).

The first non-trivial surface we will consider is that of a sphere of radius R.

The free energy for this is given by

2
Fephere = 2K <]2% — C’0> R* +4noR? — gwAPR?’ (1.11)
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which when minimised for variations in R gives the following relation

/{Cg + 20 2kCh
220 7 AP 1.12
which reduces to
Ap=% (1.13)
-5 .

when Cy = 0, which is just the Laplace law for a spherical soap film. This tells us
something quite remarkable, the bending energy of the membrane does not give any
contribution to the optimal radius of a sphere. The radius here is just set by the
length-scale given by <5, the only length-scale in the Helfrich Energy which does
not involve the bending rigidity, . This result is an illustration of the conformal
invariance of the Willmore functional [Seifert, 1997].

The second case we will consider, and which is highly relevant for the rest of

this thesis, is that of a tube of radius, R, and length, L. The free energy is given by

La) -
2o \r ) 7

Minimising with respect to variations in R leads to the relation

Fiube = 2TRL — TR’LAP. (1.14)

K mcg
_ _ — Nl
R + 5 +0—-APR=0 (1.15)

R= \/Z (1.16)

when Cy = 0 and AP = 0. This means that the natural size of a tube is set by the

natural length-scale of the membrane € = \/g . €is the scale over which deformations

which reduces to

persist in a close to flat membrane. This scale is set due to the balance between
forces from the bending energy wanting to expand the radius of the tube and those

from surface tension which attempt to minimise the surface area of the membrane.

1.4.2 Shape equation for a general surface

In the previous section we made use of geometric simplifications to gain some intu-
ition about the forces which govern membrane shape. Here we consider the more
general problem of the shape equation for an arbitrary surface. The partial differ-
ential equation whose solutions describe the minimisers of the Helfrich energy can
be found by setting the first variation of the energy with respect to perturbations

in the shape to zero. To derive this rigorously, one must make use of some rather
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Figure 1.7: Simple surfaces that minimise the Helfrich energy, (A) a tube of radius
R = /55 (with no pressure jump or spontaneous curvature) and (B) a sphere of
radius R = £% (with no spontaneous curvature).

messy differential geometry to account for the variations in the metric etc.. For
simplicity we will only state the results here, but details of the full calculation can
be found in Ref. [Zhong-Can and Helfrich, 1989]. For a rigorous pure mathematics
derivation see Ref. [Simons, 1968].

The full shape equation for a membrane which minimises the Helfrich energy
is given by

K [QALBH — (4H + Cy) <H2 ~ K- C;OH>] +2Ho = AP (1.17)

where A = —ﬁ@i ( lglg™ Oj(')> is the Laplace-Beltrami operator for a scalar

field on the manifold (defined with the same sign convention as in Ref. [Arroyo
and DeSimone, 2009]). This is a 4'"-order non-linear PDE in the “height” of the
membrane and in general there are no analytical solutions to the full equation,
except in some simplified cases, for example [Rautu, 2018] and references therein.
Full solutions to the general problem are usually found via either gradient
descent methods, e.g. Surface Evolver [Brakke, 1992], or using more sophisticated
finite element methods to solve the shape equation via Willmore flow [Elliott and
Stinner, 2010; Barrett et al., 2016]. We will not present a full account of these

methods here as they will not be used in this thesis.

14



15 25 30 35 40

20
ZIR,,

Figure 1.8: Figure showing the numerical solutions to the axisymmetric shape equa-
tions for a tube pulled from a ring with hinge boundary conditions. Details of the
boundary conditions and method are given in the main text. Inset showing the
angle, v, arclength, S, parametrization of surfaces axisymmetric about the Z axis.
Figure adapted from [Derényi et al., 2002].

1.4.3 Shape equation for axisymmetric surfaces and formation of
membrane tubes

A simplified case that is useful to consider is that of axisymmetric surfaces as, not
only does the shape equation reduce to a boundary value ODE problem, but it turns
out that many membrane shapes found in nature are approximately axisymmetric
(for example red blood cells) [Jiilicher and Seifert, 1994; Seifert, 1997]. Here we will
label the axis of symmetry Z and parametrize the surface in terms of angle from
the normal, 1(.S), where S is the arclength, see Fig. 1.8 inset.

The radial and and symmetry axis coordinates are given by

OsR = cosvp; 0OsZ = —sin), (1.18)
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and the shape equation becomes [Jiilicher and Seifert, 1994; Derényi et al., 2002]

1 2 cos 3sin 3cos — 1
O = — 2 (@50’ — 20V oy 1 2IY ey 1 3L Loy o
o cos? Yv+1 . o . AP ’
+ E@Sl/} — 27R3S1n¢ + Eslnlﬁ — T

In practice this equation is difficult to integrate numerically due to being very
unstable and computationally intensive semi-implicit methods are often required
[Rahimi and Arroyo, 2012]. It is often easier to solve the first integral of this equation

numerically [Derényi et al., 2002], which is given by

1 . cos? cos?p+1 .
derpcosyp = — 3 (0sv)*sin ) — 7 wasi/ﬂ + % sin ¢ (120
o . AP f ’
LS PR

where f is a constant of integration that can be associated with a point force acting
along the Z axis at R = 0. An alternative way of deriving this equation is to use a
Hamiltonian field theory formulation of the Helfrich energy by introducing conjugate
momenta. In that case the first integral of the shape equation is found as one of
Hamilton’s field equations [Jiilicher and Seifert, 1994].

Solving Eq. (1.20) for a close to flat membrane (1) < 1) gives the Green’s

function for the shape at linear order in the shape perturbation

Ziin (R) = Zo — %\2/“;07 % [Iog <\/;%> + Ko (\/};{ﬂ - Aifz. (1.21)

Note that, for large distances away from the point force, the shape depends
logarithmically on R [Derényi et al., 2002].

The full non-linear equation can be solved numerically, either with a shooting
method [Derényi et al., 2002] or a relaxation scheme [Powers et al., 2002]. In the
case of the shooting method with boundary conditions at zeros given by a ring
(R = Rying) and zero curvature (0sy) = —sin/R), the shape is found by shooting
in 7 (essentially shooting for the value of the force) and setting the dggt) just using
Eq. (1.20), then finding the curve that crosses the Z axis. The solutions to this are
shown in Fig. 1.8.

Using these numerics it is possible to find the force needed to pull a tube
and even study the equilibrium interaction between two tubes [Derényi et al., 2002].
To understand the force needed to pull a tube we will use a simpler model which,

neglects the energy of the neck and cap of the tube, which gives the correct result
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for long tubes (as the energy of the base and cap are negligible as L — o0). The

free energy of a membrane tube of length L is given by
TR
Fuabe = Frunel = (55 +2m0R) L - fL, (1.22)

taking the derivative with respect to the tube length, L, setting to zero and making
use of the expression for the equilibrium radius of a pressure-less tube (Eq. (1.16)),

gives the force needed to hold a tube at length L

2
f= %” = 27\/20k, (1.23)

which agrees with numerical solutions for long tubes found in [Derényi et al., 2002;
Powers et al., 2002]. This corresponds to the interesting fact that, beyond some
critical threshold in the small deformation regime, the force required to pull a tube

is independent of its length.

1.4.4 Shape instability of a membrane tube

An interesting question to ask is the following; for what values of bending energy,
k, and surface tension, o, is a tube of radius, R, stable to small undulations in its
shape.

If we parametrize the radius of a tube as r(,z) = R + u(6, z) we can write
the free energy as an expansion in u and its derivatives. We can choose to write u

in terms of its Fourier modes as follows
u(®,2) =Y tigme' Y, (1.24)
q7m

where g = %T” (where n € Z) and m are the Fourier variables conjugate to z and 6

respectively.
If we assume all undulations preserve the volume of the tube we can show
that o0 = —55 > am |tig.m|?, and the free energy of the membrane tube can be

written in the following way [Gurin et al., 1996; Komura and Lipowsky, 1992]

F = Fupe + FP, (1.25)
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where

F2 —

1 § 1.26
S gl (4wt e T BT ey} 020
q,m

where ¢ = qR.

For m > 1 this is always stable, however for the m = 0 modes there is a
possible instability. For zero bending energy this instability would simply correspond
to the classical Rayleigh-Plateau instability [Rayleigh, 1892; Tomotika, 1935, and
the second variation in the free energy would be negative for all § = ¢R < 1 and for
any a value surface tension. In the case of a membrane tube with bending rigidity

the criterion for this instability becomes

3K

572 (1.27)

o> 0, =

which we will generally refer to as the criterion for a Pearling instability on a mem-
brane tube throughout this thesis [Bar-Ziv and Moses, 1994; Nelson et al., 1995;
Gurin et al., 1996]. When the full fluid dynamical problem is treated it can be
shown that the fastest growing wavelength of the instability has the universal beha-
viour of ¢max ~ 0.6 for any surface tension sufficiently past the instability threshold
(0 2 o) [Nelson et al., 1995] (although the exact number does depend on the

relative viscosity between inside and outside [Boedec et al., 2014]).

1.4.5 Shape fluctuations of membrane tubes

The bending energy for a lipid bilayer has a rigidity comparable to the energy scale
of thermal fluctuations, typically k ~ 10kpT where kp is Boltzmann’s constant and
T is temperature [Boal, 2002]. Because of this the bilayer is highly susceptible to
thermal fluctuations. As the free energy expansion in the previous section is Gaus-
sian, we can compute the fluctuation spectrum in Fourier space exactly by making
use of the equipartition result from statistical mechanics [Landau and Lifshitz, 1951;
Safran, 1994]

_ 1 ., )
(am) = 5 [ Diamitgmtyme >/ (1.29)

where Diig , = Hq m dlgm and Z is the partition function given by

Z = / Diig e "/ k5T) (1.29)
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which gives the result

kpT R2

([tgml*) = :
o (((12 +m2)?— 12— Sm2 4 %) ~“R%(1— @ —m?)

(1.30)

It is interesting to note that the m = 1 modes diverge in the small ¢ limit as in
this limit the fluctuations are essentially just a local translation of the cross section,
thus the energy they cost tends to zero as ¢ goes to zero. An in depth discussion
of the critical fluctuations of membrane tubes can be found in Ref. [Fournier and
Galatola, 2007].

1.5 Fluid dynamics at cellular scales

Here we will present a brief discussion of fluid dynamics at the scale of cell biology,
this subject is vast so we will not attempt to discuss many of the subtleties in depth,
but refer the reader to other resources e.g. [Happel and Brenner, 1983; Purcell, 1977].

The equations of fluid dynamics are generally specified in terms of a con-
tinuity equation and momentum rate equation [Landau and Lifshitz, 1959]. The

continuity equation is given in terms of the velocity, ¥, and density, p, of a fluid
Op+ V- (pd) = J (1.31)

where J is a source/sink of mass in the fluid. In the case where the fluid is incom-

pressible p = Const., and has no sources or sinks, this reduces to the incompressib-
ility condition

V-7 =0. (1.32)

The rate of change of momentum is given in terms of velocity ¥, density p,

fluid stress tensor T = TYé; ® ¢; and external force per unit volume f which are

related by the Navier-Stokes equation
p(atmaﬁa):ﬁ-:mff (1.33)
In the case of an incompressible Newtonian fluid the stress tensor is given by
T =5 (V! + Viv') — Pg (1.34)
where 7 is the viscosity, and P the pressure. We can write the equation in dimension-

less form by making use of the viscosity and density along with some characteristic
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length-scale L and velocity vy,

n
Lvop

O+ @- Vi = (6-T+f):é(ﬁf+f*) (1.35)
where @ is dimensionless velocity, ¢ dimensionless time, T dimensionless stress and
Re = pvogL/n is the Reynolds number of the flow. The Reynolds number is a
dimensionless number which can be viewed as the ratio of viscous to inertial forces
in the fluid; for large Reynolds number inertial forces dominate and the fluid is often
in a highly non-linear regime. For small Reynolds numbers viscous forces dominate
and the system can be viewed as over-damped. If we consider some estimates of
these parameters at the scale of cells we might choose the following [Purcell, 1977;
Milo and Phillips, 2015]

n~10"3Pas
p ~ 103Pa s> m 2
L~ 10 %m (1.36)

vy ~ 107 %m 7!

= Re~ 1075.

In this limit the equations of motion reduce to the Steady Stokes equations

along with incompressibility

= —

W =VP—f V-5=0 (1.37)

which will be used throughout the rest of this thesis.

1.6 Overview of thesis

In this thesis we will aim to examine the dynamics of membrane tubes driven by
various out of equilibrium processes designed to mimic situations in cell biology.
The goal is to understand the physics underlying cellular processes with minimal
models that capture the important biology and mechanics.

Chapter 2 deals with the shape instability of membrane tubes due to an
osmotic pressure difference driven by ion pumps. These ion pumps consume ATP
to actively move ions across the membrane against their concentration gradient.
When oriented inwards we show that the increase in osmotic pressure causes the

tube to swell, eventually leading to a Pearling-like instability, but with a much
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longer wavelength. This problem is inspired by the Contractile Vacuole Complex
found in many single-celled freshwater organisms [Allen, 2000]. This organelle is
responsible for regulating the osmotic pressure inside the cell by acting as a pump
to remove excess water, and thus maintain cell volume. This tubular instability
forms a vital part of the pumping cycle as the bulges collect water to be emptied
into the main vesicle of the pump.

Chapter 3 focuses on the dynamics of membrane tubes where there is a shear
gradient in the azimuthal fluid flow of the membrane, in part inspired by the action
of Dynamin in fissioning membrane tubes and necks of vesicles [Roux et al., 2006;
Roux, 2014]. By employing the methods of covariant hydrodynamics we analyse the
stability of perturbations to the membrane tube’s shape under this shear rate. We
find a helical instability in the membrane tube shape whose handedness is set by
the shear rate. Because of advection with the ground-state flow, the pitch length
of the instability decreases until the shape eventually becomes stable, however we
show that this instability provides significant amplification to the fluctuation spectra
of the tube. This amplification gives rise to large non-equilibrium fluctuations of
the tube that may play an important role in the, as yet, ill understood process
of Dynamin mediated scission (perhaps via friction mediated scission similar to
Ref. [Simunovic et al., 2017]).

The final section, Chapter 4, considers the full relaxation dynamics of mem-
brane tubes (with variable surface tension) and their statistical mechanics under
passive and active fluctuations. Here we consider a simple model of generic active
fluctuations which break detailed balance in the system [Gov, 2004]. We compute
the fluctuation spectra for these stochastic processes acting on the tube and the
“effective temperature” of the Fourier modes of the tube shape. We discuss possible
experiments to measure these fluctuations and how varying the viscosity could be

used to quantify the activity in the system.
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Chapter 2

Hydro-osmotic Instabilities in
Active Membrane Tubes

In this chapter we study a membrane tube with unidirectional ion pumps driving
an osmotic pressure difference. A pressure driven peristaltic instability is identi-
fied, qualitatively distinct from similar tension-driven Rayleigh type instabilities on
membrane tubes. We discuss how this instability could be related to the function
and biogenesis of membrane bound organelles, in particular the contractile vacuole
complex. The unusually long natural wavelength of this instability is in agreement
with that observed in cells. The analysis also provides a more general framework

with which to approach hydrodynamic instabilities where slow driving is dominant.

2.1 Introduction

A key contemporary challenge in cellular biophysics is to understand the physical
self-organization and regulation of organelles [Mullins, 2005; Chan and Marshall,
2012]. Eukaryotic organelles bound by lipid membranes perform a variety of mech-
anical and chemical functions inside the cell, and range in size, construction, and
complexity [Alberts et al., 2002]. A quantitative understanding of how such mem-
brane bound organelles function has applications in bioengineering, synthetic biology
and medicine. Most models of the shape regulation of membrane bound organelles
invoke local driving forces, e.g. membrane proteins that alter the morphology (often
curvature) [Heald and Cohen-Fix, 2014; Shibata et al., 2009; Jelerci¢ and Gov, 2015].
However other mechanisms, such as osmotic pressure, could play an important role
[Gonzalez-Rodriguez et al., 2015].

Membrane tubes are ubiquitous in cells, being found in organelles such as the
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endoplasmic reticulum and various post-Golgi compartments [Alberts et al., 2002].
Models for their formation typically involve the spontaneous curvature of membrane
proteins [Shibata et al., 2009] or forces arising from molecular motors attached to
the membrane that pull tubular tethers as they move along microtubules [Yamada
et al., 2014]. Many of these tubules may contain trans-membrane proteins that can
alter the osmotic pressure by active transport of ions. Most work on the biogenesis of
cellular organelles has focused on their static morphology and generally not on their
non-equilibrium dynamics. In what follows we consider an example in which the out-
of-equilibrium dynamics drives the morphology, Fig. 2.1. Our study is inspired by
the biophysics of an organelle called the contractile vacuole complex but additionally
reveals a new class of instabilities not previously studied that are of broad, perhaps
even universal, physiological relevance.

The contractile vacuole complex (CVC) is an organelle found in most fresh-
water protists and algae that regulates osmotic pressure by expelling excess water
[Komsic-Buchmann et al., 2014; Stock et al., 2002; Allen, 2000; Naitoh et al., 1997;
Docampo et al., 2013]. Its primary features are a main vesicle (CV) that is in-
flated by osmosis and periodically expels its contents through the opening of a
large pore - probably in response to membrane tension - connecting it to the ex-
tracellular environment, thereby regulating cell volume [Patterson, 1980; Docampo
et al., 2013]. Water influx into the CVC is due to an osmotic gradient generated by
ATP-hydrolysing proton pumps in the membrane that move protons into the CVC
[Stock et al., 2002; Heuser et al., 1993; Nishi and Forgac, 2002; Fok et al., 1995].
In many organisms such as Paramecium multimicronucleatum, the CVC includes
several membrane tubular arms connected to the main vesicles, which are thought
to be associated with the primary sites of proton pumping and water influx activity
[Tominaga et al., 1998]. The tubular arms do not swell homogeneously in response
to water influx, but rather show large undulatory bulges with a size comparable to
the size of the main CV, leading us to speculate that this might even play a role in
CV formation de novo. These tubular arms appear to be undergoing a process sim-
ilar to the pearling or Rayleigh instability of a membrane tube under high tension
[Rayleigh, 1892; Tomotika, 1935; Powers and Goldstein, 1997; Bar-Ziv and Moses,
1994; Bar-Ziv et al., 1997; Gurin et al., 1996; Nelson et al., 1995; Boedec et al.,
2014] or an axon under osmotic shock [Pullarkat et al., 2006], but with a much
longer natural wavelength: Rayleigh instabilities have a natural wave length A ~ R
where R is the tube radius. Here we derive the dynamical evolution of a membrane
tube driven out-of-equilibrium by osmotic pumping, which results in a much longer

natural wavelength for the instability.
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Figure 2.1: (a) Microscopy image of the contractile vacuole in paramecium mul-
timicronucleatum adapted from [Tani et al., 2000]. (b) Diagram of the contractile
vacuole complex. The tube is shown connected to the main body of the CV (left).
As ions are pumped in, increasing the osmotic pressure, the tube undergoes a swell-
ing instability and undulations develop with some wavelength A. This phenomenon
is observed in the contractile vacuoles of many protists, e.g. paramecium multimi-
cronucleatum [Patterson, 1980; Allen, 2000]. (c) Schematic of a membrane tube
with ion pumps and surface undulations. A cartoon of a representative ion pump is
shown in the top right.
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Figure 2.2: Flow dynamics of the contractile vacuole complex (CVC) (a) Initial
stage of CVC inflation where water (bulk fluid) is transported into the tubes and
main vesicle due to an ion pump driven osmotic pressure difference. In this state
the pore connecting to the cellular exterior is closed. (b) In the inflated state of the
CVC water stops flowing down the tubes into the main vesicle as it is fully inflated
and at high pressure. The tubes then swell and undergo an instability. (c¢) The pore
opens and the main vesicle deflates, expelling water. Water from the tubes is driven
into the main vesicle as membrane flows back onto the tubes. Sometime during this
process the pore closes, the tube deflates and we return to the initial scenario.
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In the CVC, the tubular arms are surrounded by a membrane structure
resembling a bicontinuous phase made up of a labyrinthine tubular network called
the smooth spongiome (SS). We assume this to represent a reservoir of membrane
keeping membrane tension constant and uniform during tube inflation.

A schematic of of the bulk and membrane flow dynamics associated with
the expulsion cycle of the CVC is shown in Fig. 2.2. In this chapter we will deal
only with the early stages of tube inflation and not the highly non-linear expulsion

dynamics later in the cycle, Fig. 2.2(c).

2.2 Membrane mechanics

The CVC is comprised of a phospholipid bilayer membrane. This bilayer behaves
in an elastic manner [Helfrich, 1973; Phillips et al., 2010]. At physiological temper-
atures these lipids are in the fluid phase [Alberts et al., 2002; Phillips et al., 2010].
For simplicity we will treat the bilayer as a purely elastic, fluid membrane in the
constant tension regime, neglecting the separate dynamics of each leaflet. The mem-
brane free energy involves the mean curvature H and surface tension o [Helfrich,
1973; Safran, 1994; Nelson et al., 2004] and is given by

;_/SdA (g(gH)2+g) —/APdV, (2.1)

where dA and dV are the area and volume elements on S, & is the bending rigidity,
and AP is the pressure difference between the fluid inside and outside the tube (see
also Eq. (1.8)).

2.2.1 Differential geometry of the membrane

For the membrane tubes in which we are interested we parametrise the bilayer as
an embedding in R3. Utilising the cylindrical symmetry of the membrane tube we
write this as a surface of revolution about the z axis with radius r(z,t). This means
that we will only consider squeezing (peristaltic) modes in our analysis. In Cartesian
coordinates this surface is parametrised by the vector R= (rcosf,rsinb, z), i.e. by
the normal cylindrical polar coordinates where r(z,t) is the radial distance of the
axisymmetric membrane from the cylindrical symmetry axis and z measures the

coordinate along that axis. From this we can define tangent vectors on the manifold
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as

OR
p1 — — — (— 1 22
=5 (—rsiné,rcosb,0) (2.2)
€y = 8815 = (0yrcosf,0,rsinf, 1). (2.3)

This allows for the definition of a Riemannian metric as
gij =€;-€; for 4,5 ={1,2}. (2.4)

Hence the metric and its inverse are

r2 0 1 iz 0
_ 7 -1 _|r . 2.5
g [0 1+ (azr)2] g [0 PR (2:5)

To find the curvature of S we need to know how the normal vector, 77, to the
surface S varies. We can write this normal vector as
L 61X e 1 .
n=—-—-—= (cos@,sinf, —0,r) . (2.6)
’61 X 62‘ 1+ (aZT)Q

From this we can find the second fundamental form b;; = 7 - €; ; where the

comma denotes a partial derivative. Taking the determinant and trace of

-1

) 1 = 0

b = ——— [0 B.ur ] , (2.7)
1+ (8.r)? 1+(0:1)2

we find the mean and Gaussian curvatures
2H: ]. < 8zz7" 5 _].> (28)
14 (@.r)? N @) 7

—0,.7

r (1 + (327“)2)2‘

K =

Assuming radial symmetry and integrating over the volume of the tube we

27



obtain

00 2
F = 271'/ dz Er 1 ( O-zr 5 — 1>
w2 14 (@2 N @) T
+ory/1 4 (8.1) — ;TQAP] . (2.10)

We use Eq. (2.10) as a model for the free energy of a radial arm of the
CVC. Ion pumps create an osmotic pressure difference that drive a flux of water to
permeate through the membrane. We calculate the dominant mode of the hydro-
osmotic instability resulting from the volume increase of the tube lumen. We write
the radius of the tube as r(z,t) = R + u(z,t), with v assumed small, and make use
of the Fourier representation u(z,t) = _, u,e%. Absorbing the ¢ = 0 mode into
R = R(t) allows us to write [udz = 0. The free-energy per unit length can be

written at leading order as

T
F=F0+ 2% alq)li’ (2.11)
q
where P2

alq) = % ((qR)4 - (q2) + 1) +0(¢R)? — APR (2.12)

and )

O =95 | = — ZAPR’ 2.1

F ™ <2R +0oR 5 R (2.13)

Identifying the static pressure difference AP with the Laplace pressure Py, =
—k/(2R?)+0 /R, the point at which the ¢ = 0 mode goes unstable can be identified:
the membrane tube is unstable for tube radii R > \/§Req where Req = \/% is the
equilibrium radius of a tube with AP = 0. This criterion for the onset of the
instability is the same as the Rayleigh instability on a membrane tube [Gurin et al.,
1996], however the instability is now driven by pressure not surface tension. This is
a crucial difference. It leads to a qualitatively different evolution of the instability,
as we now show. In what follows we are interested in the dynamics of the growth of
unstable modes after the cylinder has reached radius \/gReq. Our initial condition
is a tube under zero net pressure, although the choice of initial condition is not

crucial.
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2.3 Dynamics of active ion pumps

We assume that the number of proton pumps moving ions from the cytosol into
the tubular arm depends only on the initial surface area, i.e. it is fixed as the tube
volume (and surface) varies. We denote the number of ions per unit length in the

tube as n and write an equation for the growth of n as

d 0, te (—o0,0
o ( ) (2.14)
dt 2mBReg,  t € [0,00)

where 3 is a constant equal to the pumping rate of a single pump multiplied by
the initial area density of pumps. This assumes that the ion pumps are diffusing
sufficiently fast so as to be homogeneously distributed, this assumption is chosen so
as to simplify the calculations. The ion pumps are assumed to switch on at t = 0
and that the tube was in thermal equilibrium prior to that time.

The density of ions, py, can be obtained by solving Eq. (2.14) and dividing
by volume per unit length, v(¢),

n(t) nog  2mBRegt

PI=0m) “ o T e (2.15)

The growth of the tube radius is driven by a difference between osmotic
and Laplace pressure [Chabanon et al., 2017]. This means the rate equation for
the increase in volume can be written in terms of the membrane permeability to
water. Assuming that the water permeability (number of water permeable pores)
is constant during tube inflation, we write the volume permeability per unit tube

length p/ = 2w Reqp, where p is the (initial) permeability of the membrane. Thus

% =/ (kgT (p; — p1 (t =0)) — AP) (2.16)
where the osmotic pressure is approximated by an ideal gas law. If we expand
this equation to lowest order in the shape undulations it can be transformed into
an equation for R(t) on the time interval ¢ € [0,00). This allows us to solve the
dynamics hierarchically in the shape undulations where the flow and permeation
generated by higher order terms will be discussed for in the next section. We identify

AP with the Laplace pressure of a uniform tube. This leads to
AR _ Tpump 1 (f+ <1+‘T> (}—1» (2.17)
dt 7. R \R2 R) \R?
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kBT Reqpr(t=0)> 'Pump — 28 ’ Tpump ’ Req
Tpump and 7, represent the time-scales of pumping and permeation

where ¢ =
Req

wWkpTpr(t=0)"

of water respectively. The experimental time-scale for radial arm inflation is con-

and 7, =

sistent with a value of Tpump ~ 10! — 1s. These dynamics assume our ensemble
conserves surface tension, not volume (as in the usual Rayleigh instability). This
proves to be a crucial difference.

Values of R,y = 25nm, o = 107N m~! and hence x are estimated using
experimentally measured values from [Zimmerberg and Kozlov, 2006; Koster et al.,
2003]. We take a typical ionic concentration in the cytosol of a protist for p;(t =
0) = 3.0 x 108um™3 (around 10 mMol) [Stock et al., 2002; Phillips et al., 2010;
Jackson, 2006]. Making an order of magnitude estimate of 5 from the literature on
the CVC [Stock et al., 2002; Allen and Fok, 1988; Tani et al., 2000] leads to estimates
of B ~ 10%-10%um~2s~!. Temperature is taken as T = 310K. The permeability of
polyunstaurated lipid membranes is thought to be around p = 10~*um Pa~!s™!
[Olbrich et al., 2000]. This permeability could be much larger in the presence of
water channels but we find that our results are rather insensitive to increasing the
value of u because, for physiological parameter values, our model remains in the
rapid permeation regime, i.e. 7,/Tpump < 1. This permits a multiple time-scales
expansion [Murray, 1992] of Eq. (2.17). With & ~ 1073 < 1 we find the approximate

asymptotic solution

+1>1/2+(9< T > (2.18)

Tpump

R(t) =
) <7'pump
This solution agrees well with numerical solutions to Eq. (2.17), see Appendix A for

more details.

2.3.1 Case of an osmotic shock

We can consider a tube with a fast-acting tension reservoir (something similar to
the smooth spongiome), undergoing osmotic shock. It is interesting to understand
the dominant wavelength selection in such a case as the system may be easier to
implement in vitro than systems involving unidirectional ion pumps. If the radial
expansion of the membrane is driven by a hypo-osmotic shock, the radial dynamics

are governed by the following growth equation
dR 1 (1 Ap < 5) ( 1 >>
dt R <R2 Po R/ \ R? (2.19)
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change in ionic density of the outside medium due to osmotic shock. Note that the

where t = %, o= and Ap = py — Pshock 1S the

normalisation chosen here is different from the one used for ion pumps.

2.4 Dynamical instability in the axisymmetric shape

perturbation

We now proceed to deriving the dynamical equations for the Fourier modes. The
equations governing the solvent flow are just the standard inertia free fluid equations
for velocity field ¢. These are the continuity and Stokes equations for incompressible

flow
V-7=0; VP=nV (2.20)

where P is the hydrodynamic pressure and 1 = 1073Pa - s the viscosity. The lin-
earised boundary conditions are: v.|,—r = @ + vp, where v, is the permeation
velocity (proportional to the hydrodynamic pressure jump across the membrane:
vp = pAP|,—p), and v.|,—r = 0. The second condition is justified by invoking the
membrane reservoir as a mechanism for area exchange. This exchange is assumed
to happen on time-scales set by the membrane viscosity and area expansion modu-
lus of the membrane, which gives a time-scale for tension relaxation of 7, ~ 10~ 7s
[Keren et al., 2008; Shi et al., 2018]. We will be considering the dynamics in the
long wavelength limit and as such neglect the hydrodynamics of the membrane as, at
large length-scales compared to the tube radius, bulk dissipation dominates [Seifert
and Langer, 1994].

If we write the velocity field in terms of a stream function ¢ as

U= % (az@Dgr - 87«1,062) (2'21)

the continuity equation is automatically satisfied, and the Stokes equations can be

solved to give

> Argrhi(gr) + Bi(qr)?Io(gr) r <R

(2.22)
> A2qrKa(qr) + Bsy(qr)?Ko(gr) r> R

in the interior of the tube, where A; 5 and Bj 2 are found from the boundary con-
ditions. I, (x) and K, (x) are modified Bessel functions of the first and second kind

respectively.
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From here we use the equation v, = p(AP)|,—r, where AP|,_p is the hy-
drodynamic pressure jump across the tube membrane, and use the solution of the
interior and exterior hydrodynamic pressure from the Stokes equations to find a

value of v,. In Fourier space this gives

Up = Ug <2q77x1(q)u - 1) - (2.23)

Iy (Ip — 1) K§
x(@) = —73 5~ 5 p
qRI3 — 2IoLy — qRI}  qRK} +2KoK1 — qRK?

with I, = I, (¢R) and K, = K, (qR).

The force balance equation at the membrane reads

where

(2.24)

(P = 200,0,) ors = f (2.25)

where f is the force required to displace the membrane to u and can be found from
the free energy. Substituting the velocity and pressure fields into this gives the

dynamic equation for the modes 1,

. ag(g 1 _
iy =—5p T (L 2x(@) g (2.26)
X(q) o IO (qRIO — Il) KO (qRKO — Kl) (227)

CqR(I}-13) +2Ly  qR (K} - K2) +2K Ko

with the shorthand I, = I,,(¢R) and K, = K, (¢R) [Gurin et al., 1996]. The elastic
response function ay(g) is obtained by replacing the pressure AP by the Laplace
presure AP, = o/R — k/(2R?), which gives

K

ar(q) = Rr2

1 3
<(qR)4 - i(qR)2 + 2) +o((gR)?-1). (2.28)
Eq. (2.26) can be used to describe the dynamical instability of a membrane
tube subjected to different driving mechanisms; an increase of membrane tension
(Rayleigh instability), an osmotic shock, or the slow active pumping mechanism we

are primarily interested in. In the limit ¢R < 1 this gives

¢*R(t) QMR(t)> i (2.29)

uq——aL(Q)< 8 + R,

where 1, is the Fourier representation of u in the z direction. The response function

ay, is obtained by replacing the static pressure difference by the Laplace pressure
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APy, in Eq. (2.12). Note that the term involving pu, capturing mode growth due to
permeation, is only relevant for wavelengths A > 100R¢q, hence we will discard it
in our analysis for simplicity (but retain it in the numerics for completeness). The
growth rate for a given mode is now time dependent, hence the mode amplitude
cannot be obtained from the maximum of the growth rate, but depends on the
growth history and must be obtained by solving the full, time-dependent problem.
We identify the instability as being fully developed when our linearised theory breaks
down. We define the dominant mode of the instability, called ¢, as the first mode
with an amplitude reaching \/W = Req (a choice that does not influence our
results, see Appendix A). We define the time when this occurs as t = tgpa).

We define the instantaneous growth rate G(q) = Z—Z from Eq. (2.26). This

growth rate shows a peak as a function of q. The location of the peak depends on

how the instability is driven. Starting with a stable tube under zero pressure with
radius Ry and membrane tension gg, the instability can be driven by an increase of
tension o > o* = 30 (see Eq. (1.27)) at constant volume (Rayleigh instability), or
by an increase in volume (or radius) R > R* = v/3Ry at constant tension (Osmotic
instability). In the former case, and in the limit o > ¢*, the growth rate reaches a
universal shape with a peak at Rpq* ~ 0.6. The most unstable wavelength is thus
entirely set by the initial tube geometry (its radius Rp). In the latter, the peak of
the growth rate depends on the time-dependent radius and does not reach any sort
of universal behaviour. In fact the location of the peak is a non-monotonic function
of the radius, first increasing, then decreasing with increasing radius. Its largest
possible value is Ryq* ~ 0.2 and occurs for R ~ 2.35Ry, see Fig. 2.3.

The growth rate relation is quantitatively different from a Rayleigh instability
due to the driving mechanism. The functional dependence of the growth rate relation
depends on the polynomial ar(gq) describing the membrane mechanics in ¢ space,
Eq. (2.28). The Rayleigh instability is driven by a surface tension o > 3r/(2R3) at
constant volume (R(t) = Rp), so that the magnitude of the ¢* term in Eq. (2.28)
doesn’t change. In the case of osmotic pressure however, the instability is driven
by a change in volume caused by the osmotic pressure, i.e. R > \/W . This
increases the prefactor to the ¢* term which means that the higher ¢ modes are
stabilised compared to the Rayleigh case. This means that the dominant wavelength
is skewed towards smaller ¢, Fig. 2.4.

As the fastest growing mode changes in time, it is the cumulative growth
that is important. This means we must integrate the growth of each ¢ mode over
time, accounting for fluctuations.

The fluctuations of modes with wavenumber ¢ about the radius R(t) follow
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Figure 2.3: Location of the peak of the growth rate (¢* = Reyq*) for a tube under
constant tension, as a function of the tube radius. The initial tube radius R,
corresponds to the equilibrium radius of a tube under zero pressure.

the dynamics of the Langevin equation based on Eq. (2.29)

_ar(q)

S

where 7(q) = 8n/(Rq?) and (,, the thermal noise, has the following statistical prop-

Ug + 4 (2.30)

erties

(Cq) =0 (2.31)

<%ﬁxﬂh»—%ﬁﬂr%ﬁgi§

(2.32)

Here the thermal noise is found using the equipartition theorem, and thus only gives
the fluctuations of the m = 0 mode. We have considered only thermal noise here
as the main purpose is to provide a background from which the instability is seeded
(and our results seem to be insensitive as to the exact functional form of the noise).
One might want to consider various forms of active noise which break the fluctuation
dissipation theorem as such forces are likely to dominate the fluctuation spectra
[Manneville et al., 2001; Ramaswamy et al., 2000; Gov, 2004]. Possible sources of
active noise could include: sharp noise “kicks” from the ion pumps, fluctuations
from the surrounding cytoskeleton and noise from the concentration fluctuations of

ions. We will consider a simple minimal model of these types of active fluctuations
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Figure 2.4: Normalized growth rate relation for a membrane tube undergoing
a Rayleigh instability (Rg ~ 107 2um, u = 0, k = 10kgT, 0 = 890y, where
oo = k/(2R%)) or responding to an osmotic shock under constant membrane tension
(R(t = 0) = Reg = 107 2um, p = 10~*um Pa~'s™!, k = 10kgT, R(t) = 2.35).
These parameters are chosen such that they illustrate the growth rate relations in
the high tension limit for the Rayleigh instability (blue curve), or correspond to the
maximal peak wavelength in the case of osmotic shock (orange curve). The disper-
sion relation for the Rayleigh instability is obtained from Eq. (2.26), with constant
radius and the limit g — 0. For comparison the typical growth rate for physiological
parameters in the case of slow pumping (with R = v/3 4 0.05) is also shown (green
curve).

in Chapter 4.

Solving this Langevin equation for (|i,|?), using an initial condition of an
equilibrium tube and the approximate form of R(t) = V1tit (Eq. (2.18)) we find
an integral equation for the mode growth by using the standard methods of Ito
calculus [Sarkké and Solin, 2019]

_ 12 N N t ~2 (41 -
{laq|*) keT  (FO)-F(®) 4 ~F(D) / kpTq"(F 4 1) Towmp F@) g7 (233

RZ, " 2kr(1+ (j4)e 0 KT T

where t' is a time variable integrating over the noise kernel (in units of Tump),

Ty = 8R§qn/m, 4 = qReq and

_ 2Tpumpd> R (1)

F(t) 157,
n

(40 — 5 + @R(t)? (35 i 6§2R(t)2)) . (2.34)
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Integrating this numerically, together with Eq. (2.18), we can find the dynam-
ics of the modes. The distribution of mode amplitude against ¢ is shown in Fig. 2.5.
Although the smallest ¢ modes go unstable first, they have very slow growth and
so the mode that dominates the instability arises from the balance between going

unstable early (favouring low ¢) and growing fast (favouring higher values of ¢).

101 3
- i
. ——t=2.04
100} - ——f=12.08
O : \
A ,/'/ \
~ / \
=— 1071 / ;
|§@' S \

0 005 01 015 02 025 03
q

Figure 2.5: Plot of the distibution of mode amplitude ,/(u2) against scaled
wavenumber § = qReq for £ = 2.0 (solid), 2.04 (dashed) and 2.08 (dash-dotted,
the time when the first mode reaches /(42) = Reg), Ty/Tpump ~ 1075, Req = 25nm,
o =10"*Nm~! and p;(t = 0) = 3.0 x 108ym~>

We can compute numerically the natural wavelength associated with the
dominant mode, ¢, the first to reach \/W = Req, see Fig. 2.6. This gives
a dominant wavelength A ~ 100 R.; ~ 2um for parameters consistent with the
CVC, much larger than that found in the Rayleigh instability, but consistent with
observations of the CVC [Allen, 2000]. Understanding why this is the case is not
straightforward by inspection of the growth equation Eq. (2.33), but is more easily
done by considering the time-dependent growth rate Eq. (2.29). Indeed, at the time
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t = lfinal, the dominant mode ¢ whose amplitude reaches /(|4 2y = Req is very

close in value to the fastest growing mode (the peak of the instantaneous growth

rate) at that particular time, written ¢*, which can be derived analytically as a
function of the tube radius from Eq. (2.29). As a result of the quasi-static driving
of the instability by the ion pumps, the final radius is always only marginally above
the critical radius \/§Req.

Figure 2.6: Plot of dominant wavenumber § = ¢* R, of the instability against ratio of
viscous to pumping timescales 7, /Tpump and ratio of viscous to permeable timescales,
Tp/Tyu. All other parameters are the same as in Fig. 2.5. The blue rectangle indicates
typical physiological parameters.

The fastest growing mode can be expressed in terms of (SR(tﬁnal) = g—i =

R(tﬁnal) — /3, Fig. 2.7. Tt is important to note that whilst the growth rate relation
does give a good approximation to the dominant wavelength, there is a difference
due to the history encoded in the full dynamical description.

The peak of the growth rate relation can be found analytically (Cclg\q* =0),
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and in the small ¢ limit is

1 16nu 1

~\2 - -

AT AR S RO R 1 R )
6R2

(2.35)

to leading order in dR(tgna), in the g — 0 limit, this can be expressed as §* =

(6R(tﬁna1)) 1z
\/5(3) 1/4
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Figure 2.7: Dominant wave-number squared, (cj*)Q, plotted against final radius
minus critical radius 0R(tgna) = R(tﬁnal) — /3, the solid line corresponds to the
peak of the growth rate as a function of wavenumber and points represent the peak
found by numerically solving the full dynamics.

This is the main factor contributing to the long wavelength/small ¢ instabil-
ity. While a qualitatively similar regime exists for tension driven instabilities, it is
only valid very close to the instability threshold and its observation would require
a very precise tuning of the tension. Far from threshold, the Rayleigh or pearling
instability shows a universal relationship ¢* ~ 0.6R., [Bar-Ziv et al., 1997; Powers
and Goldstein, 1997; Bar-Ziv and Moses, 1994; Boedec et al., 2014].

A related limit is that of an osmotic shock (which we detail in Appendix A).
The difference between the Rayleigh and osmotic shock instabilities is due to the
growth rate having a different response when driven by a volume change compared
to surface tension. The constant volume (Rayleigh) instability might be of lim-
ited relevance for the morphological changes of cellular membrane tubes, as cellular
membranes typically contain a host of membrane channels, including water chan-

nels, which allow fairly rapid water transport across the membrane. The osmotic
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instability that we analyse here recognises the presence of active pumps in the or-
ganelle membrane, which can drive osmotic changes in the organelle lumen [Allen,
2000]. There is some correspondence between the fast pumping limit in Fig. 2.6
(Tn/Tpump large) and the osmotic shock situation. The instantaneous growth rates
have the same dependence on the tube radius, but have a different time dependences
as the dynamics of tube inflation is different in both cases. The osmotic shock limit
is most likely not physiologically accessible to ion pumps. Crucially, one can see in
Fig. 2.6 that the instability length scale is set by dynamical parameters, most im-
portantly the ratio of the viscosity and pumping time-scales. Varying 7, /Tpump has
the effect of changing the time-scale over which the modes go unstable. It is fortu-
itous that the dominant wavelength does not depend strongly on the pumping rate,
the parameter we can estimate least accurately (see Appendix A). This suggests a
robustness to the wavelength selection that may have important implications for the
CVC’s biological function. In the physiologically accessible range of parameters for
pumping and permeation, this length scale is much larger than the asymptotic limit

for either the Rayleigh instability or the osmotic shock instability.

2.5 Discussion

We have developed a model for a water-permeable membrane containing uni-directional
ion pumps. Hydro-osmotic instabilities realised in cells may be expected to usually
lie in this class. Deriving dynamical equations for a membrane tube, we identify an
instability driven by this osmotic imbalance. This has a natural wavelength that
is set by dynamical parameters, specifically the ratio of the pumping time-scale to
viscous time-scale, and is significantly longer than a Rayleigh or pearling instability.
Interestingly it is of the same order as seen in the CVC radial arm suggesting that
this is a possible mechanism behind the radial arm morphology. It is also interesting
to note that the size of the bulge formed by the instability is of a similar order of
magnitude to the size of the main CVC vesicle. We speculate that this instabil-
ity may provide a mechanism for biogenesis of the CV from a featureless active
tube. Throughout this analysis we have neglected the spontaneous curvature term
in the Helfrich-Canham energy, Eq. 1.8. This would have the effect of renormalizing
the surface tension of the tube, and can lead to a traditional pearling-like instabil-
ity [Jelerci¢c and Gov, 2015]. For small values of spontaneous curvature which are
not sufficient to induce pearling there is likely only some minor quantitative differ-
ences when compared with our analysis, however a detailed analysis for spontaneous

curvature values close to the pearling threshold might yield some interesting results
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due to the interplay between length-scales. It might also be of interest to consider
the case where the ion pumps couple to curvature and are allowed to diffuse allow-
ing for effect similar to the active curvature instability seen in Ref. [Ramaswamy
et al., 2000]. In the future we intend to further address the question of the CVC’s
organellogenesis which would likely require the implementation of a more realistic

area-tension relation [Boedec et al., 2014].
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Chapter 3

Shear-driven Instabilities on
Membrane Tubes

Motivated by the mechanics of dynamin-mediated membrane tube scission we use
covariant hydrodynamics to analyse the stability of fluid membrane tubes subjected
to shear flow in azimuthal direction. We find a novel helical instability driven by the
membrane shear flow which has its onset at shear rates that may be physiologically
accessible under the action of dynamin and could also be probed using in-vitro
experiments on membrane nanotubes, e.g. using magnetic tweezers. We discuss
how such an instability may play a role in the mechanism for dynamin-mediated

membrane tube scission.

3.1 Introduction

The covariant hydrodynamics of fluid membranes has been a subject of much interest
in the soft matter and biological physics community in recent years, both for the
general theoretical features of such systems [Cai and Lubensky, 1994, 1995; Fournier,
2015] and their application to biologically relevant processes [Sens, 2004; Arroyo and
DeSimone, 2009; Brochard-Wyart et al., 2006; Morris and Turner, 2015; Morris,
2017]. Such systems couple membrane hydrodynamics with bending elasticity and
have been shown to display complex visco-elastic behaviour in geometries with high
curvature [Rahimi et al., 2013].

Membrane tubes are highly curved and are found in many contexts in cell
biology, including the endoplasmic reticulum and the necks of budding vesicles [Kak-
sonen and Roux, 2018]. Such tubes can be pulled from a membrane under the action

of a localized force (such as from molecular motors) [Derényi et al., 2002; Yamada
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et al., 2014; Cuvelier et al., 2005]. They are stable due to a balance between the
forces from bending energy, involving the bending rigidity x, and from the surface
tension o and have equilibrium radius 7o = /5% [Zhong-Can and Helfrich, 1989].

One of the simplest ways to drive flows on the surface of these tubes is to
impose a velocity in the azimuthal direction. The analysis of shape changes induced
by such flows is the subject of this chapter. Two possible mechanisms for realizing
such flows via in-vitro and in-vivo experiments are shown in Fig. 3.1.

The fission of membrane tubes plays an important role in many cellular
processes, ranging from endocytosis to mitochondria fission [McClure and Robinson,
1996; Frank et al., 2001]. The key component of the biological machinery required to
induce membrane fission is a family of proteins called dynamin which hydrolyse GTP
into GDP [Antonny et al., 2016; Roux et al., 2006]. dynamin is a protein complex
that oligomerizes to form polymers which wrap helically around membrane tubes
[Antonny et al., 2016; Roux et al., 2010; Shlomovitz et al., 2011]. Although there is
clear evidence that dynamin undergoes a conformational change when it hydrolyses
GTP, there is not yet a consensus on the exact method of fission [Roux, 2014; Kozlov,
1999, 2001; McDargh et al., 2016; McDargh and Deserno, 2018], although recent
coarse-grained simulations have shed some light on the possible role of constriction
and de-polymerisation [Pannuzzo et al., 2018]. It has been shown experimentally
that, upon hydrolysis of GTP, dynamin (counter)rotates rapidly whilst constricting
[Roux et al., 2006]. The rotation frequency can be of order 10Hz [Roux et al., 2006],
giving a mechanism for the generation of flows in the azimuthal direction.

Another possible way of driving such flows is by pulling a small tube from a
Giant Unilamellar Vesicle (GUV) or cell with magnetic tweezers and using magnetic
field oscillations to spin an attached bead [Crick and Hughes, 1950; Hosu et al., 2007;
Monticelli et al., 2016].

3.2 Covariant fluid dynamics of membranes

The membrane behaves as a viscous fluid with 2D viscosity 7,,. The ratio of this
viscosity over the viscosity of the bulk aqueous fluid, 7, gives a length scale, Lgp =
"7’", called the Saffman-Delbriick length [Saffman and Delbruck, 1975; Saffman, 1976;
Henle and Levine, 2010]. This is the distance over which bulk hydrodynamics screens
membrane flows in planar geometry. In the case of a membrane tube, the screening
length is modified due to geometric effects and becomes v/Lspro [Henle and Levine,
2010]. We will consider dynamics on a scale less than this, such that the dominant

dissipation mechanism involves the membrane flows. This means that we can neglect
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Figure 3.1: Possible realizations of shear driven instabilities on membrane tubes
(shown in orange throughout). a) dynamin on the neck of a budding vesicle. Under
hydrolysis of GTP the protein constricts and (counter)rotates, prior to fission of the
tube. This rotation drives a significant shear flow on the neck of the vesicle. b)
A GUV with membrane tube pulled by magnetic tweezers; the magnetic bead can
be spun in order to drive flows in the azimuthal direction on the tube. c¢) Sketch
of the growth of the helical instability described in this letter, the final stage is a
possible pathway to tube fission due to non-linear effects. The basis vectors on the
membrane €; where ¢ = r, 0, z, length of tube, L, and equilibrium radius, rg, are
labelled. Middle panel shows shear direction.

bulk flows on sufficiently short length-scales (sufficiently short tubes), so long as we

match to physically appropriate conditions at the tube ends. Such approaches have

been used to great effect in understanding membrane dynamics on scales shorter
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than the screening length [Morris and Turner, 2015; Morris, 2017; Bahmani et al.,
2016]. For further details see Appendix B.

We need to construct force balance and mass conservation equations on a
moving membrane which we will denote by a 2D Riemannian manifold §. As S will
be embedded in R? we denote vector fields living in R? with an arrow above them,
for example &, and vector fields living in the tangent bundle of S by bold typeface,
e.g. x.

The position of S will be denoted by X (1, x2), which depends locally on
two coordinates of R3. This allows for the definition of a basis on S, & = 8192 .
The surface has velocity, V = v + wii where v = vig;. & is equipped with a
metric ds? = gijd:cidwj , where g;; = €; - €;, this and its inverse act to raise and
lower indices respectively (the action by the metric of raising and lower of indices
will sometimes be denoted by the f and b signs respectively, see Appendix B). The

€1><€2
‘€1X€2|

triad (€3, e, = ) forms a local frame on S. We also denote the second
fundamental form on S as dB = bijda:idxj where b;j; = 7 - (0;€;). The connections

along the tangent and normal bundles are defined in the following way
0;€; = CFijér; il = —bJé; (3.1)

where Cj; = 26 (9;gmk + Okgjm — Omgjx) are Christoffel symbols [Frankel, 2011].
We will also define the mean curvature, H, and Gaussian curvature, K, in the

following manner
2H =b'; K =det (b7). (3.2)

We assume the membrane behaves like a zero-Reynolds number fluid in the
tangential direction [Happel and Brenner, 1983] and has bending energy given by
the usual Helfrich energy [Helfrich, 1973].

Formally, the rate-of-deformation tensor for a manifold is defined as the Lie-

Derivative of the metric along the velocity field (V' = v + wii), which can be shown
to be equal to [Marsden and Hughes, 1994; Arroyo and DeSimone, 2009]

d="Lg(g) = % (va + (va>T> ~bw (3.3)

where V is the covariant derivative and b denotes the action of the metric to
“lower” the index. The first two terms are covariant versions of the standard
rate-of-deformation tensor, whereas the third term describes the coupling between
curvature, b, and the velocity normal to the membrane, w. See Appendix B for a

brief heuristic derivation of this using local constructions.
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We can find the continuity equation (incompressibility condition) for the

membrane by taking the trace of the rate-of-deformation tensor, d. This gives
V- v=2Hw, (3.4)

which is simply the Euclidean continuity equation modified to account for the normal
motion of the membrane.

The membrane also has associated curvature energies given by the Helfrich
energy [Helfrich, 1973]

FHe = / dAs2kH? (3.5)
S
the time derivative of which is given by [Rahimi et al., 2013]

1By = Elw] = /S w (k [-2ArsH +4H (H? — K)]) dAs (3.6)

and depends only on the normal component of the flow field, not the tangential
components. Here k is the bending rigidity of the membrane and A;g = —xd*d
is the Laplace-Beltrami operator (where x is the Hodge star and d is the exterior
derivative, for definitions of these see Appendix B).

Defining the Rayleigh dissipation functional for the membrane in the follow-
ing way

Ws = / nd - ddAs (3.7)
S

describes the fluid behaviour of the membrane by accounting for the energy dissip-
ation in the fluid due to the viscosity. From this a complete dissipation functional

for the system can be defined as

G:W3+E+/SJ(V~U—2Hw)dAS (3.8)
imposing incompressibility of membrane with Lagrange multiplier, o, which cor-
responds to surface tension. Performing functional variation with respect to the
components of the surface velocity yields the force balance equations for the mem-
brane, see Ref. [Arroyo and DeSimone, 2009] for details.

Force balance normal to the membrane means the normal elastic and viscous

forces must sum to zero, leading to the following
K [2ALgH — AH (H? — K)] +20H + 20, [';Vi0? — 2 (2H? - K)w] = 0. (3.9)
This is a modified form of the shape equation first derived by Zhong-Can & Helfrich
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[Zhong-Can and Helfrich, 1989], but with the addition of viscous normal forces given
by fluid flow on the membrane. The term coupling the second fundamental form
and gradients in tangential velocity can be thought of as the normal force induced
by fluid flowing over an intrinsically curved manifold. This term is of fundamental
importance in the present study as it drives a shape instability. The other viscous
term ~ (2H 2K ) w is the dissipative force associated with the normal velocity,
inducing flows in the tangential direction on a curved surface.

Force balance in the tangential direction gives
Nm [ALpv’ — 2Kv' +2 (b7 — 2Hg") Vw] — Vie =0 (3.10)

which is the modified form of the 2D Stokes equations. The new terms, coupling
Gaussian curvature with tangential velocity, and curvature components with the
gradients in normal velocity, come from the modified form of the rate-of-deformation
tensor which accounts for the curved and changing geometry of the membrane.
The term ~ Kv® describes the convergence/divergence of streamlines on a curved
surface. The term ~ (bij —2Hg" ) Vjw describes the forces induced tangentially by

the dynamics of the membrane.

3.3 The shear-driven instability of membrane tubes

We consider a ground-state membrane tube (w = 0) of length L in cylindrical

_Kk_

o and impose a velocity v = vgég at z =0

coordinates (r, 6, z) with radius rg =
(which can be interpreted as the edge of an active dynamin ring, for example).
Making use of the azimuthal symmetry the continuity and Stokes equations reduce
to an ODE that admits the solution

v = (vy — Q2) & (3.11)
where the exact value of €2 depends on the boundary condition at z = L.

We consider a problem of a membrane tube attached to a flat membrane at
2z = L where L < /Lgprg. We treat this flat membrane as an effective “impedance”
acting at the end of the tube, as such we do not balance the shape equations at z = L.

We may want to consider a tube attached to a sheet of membrane that has
some friction associated to some underlying molecular interactions. For example,
consider that the tube has been pulled from the plasma membrane which is at-

tached to the acto-myosin network [Kaksonen and Roux, 2018]. We model this
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using D’arcy’s equation on the sheet

1 v A

-0 (ropv) — - ——v=20 3.12

r T ( T ) T2 nm ( )
where A is a friction coeflicient associated with the adhesions and v is the velocity
in the @ direction on the sheet (in standard planar polar coordinates). The solution

Nm
equation of the second kind of order i. We solve both geometries for some velocity

to this equation is of the form v = AK; < ir), where K;(x) is a modified Bessel

vz, and then balance torques to find the ground-state velocity of the tube.

This leads a velocity profile on the tube (where the flow just follows the

oo [ K
standard Stokes equations) of the form Eq. (3.11) where Q = % where
14+Ly /222
nmm K1
Ki = KZ ( 77)‘ 7“0) .
In the limit A — 0 we recover the solution with no friction, where Q = 5 Eiom.

In both of this and the A — oo limit the shear rate is of a similar order of magnitude,
scaling like € ~ vg/L.

We can now make a perturbation about this ground state in r(z,0,t) =
ro + u(B, z,t), v = v + 5090, 2,t)& + v*(0,2,t)é., 0 = oo + d0(0, 2,t) and
w = Owu. Note that all components of differential forms are given in the basis
df, dz hence the different dimensions in components. We will also make use of
the discrete Fourier transform, f(0,z,t) = >, ,, Fam ()T swhere f, ., is the
discrete Fourier Transform of f(6, z) with m € Z. We will use this to write Egs. (3.4),
(3.9), (3.10) in Fourier space up to linear order in the perturbations.

To linear order the metric and its inverse on the membrane are

9i5] = 0 ) 0 .

9 1 _ 2u
g+ 2rou O] ; g =[g"] = [7“3 T 0] (3.13)

The second fundamental form (and its mixed index version) are given by the follow-

ing at linear order

02u—ryg—u O.u . @_L_% Ozqu
[big] = | N I AT B I (3.14)
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which gives mean and Gaussian curvature

. 92 1
2H:bi12bi]‘gﬂ:L2u—*+%+azU
oo "0 7o (3.15)
. . 0%
K =det (b)) = det (bjpg™ ) = —=
et (o) = det (bug®) =~
The Christoffel symbols are the following
8gu 8zu
0 _ |70 1. . _ |7rodzu 0
-85 a- ]
70

which can be used to find the covariant derivative of the velocity field on the mem-
brane v = (v + 0v%)é + sv?é,

Vo = (3.17)

%8@(5?}9 OgOv~?
L4 19600 9.60°]

We will make use of this to calculate the viscous part of the normal membrane
response in the shape equation
1 Q
W Vo = ——9p0v” — —0.9u. (3.18)
0 To
We also note here the Hodge duals of the fundamental forms as this provides
a natural way to compute Laplacians on manifolds (see Appendix B for general

expressions of Hodge stars)

*xvol? = 1; *x1 = vol?
1 (3.19)
*xdf = (—u2> dz  xdz = —(ro+u)df

where vol? is the volume 2-form on the surface. From this we find the Laplacian of
the mean curvature — x d x dH in order to derive the bending rigidity dominated
response. After some lengthy algebra and taking the Fourier representation u =

Zq,m ﬂ‘Lme

components, we can write the shape equation as a linear response theory. This gives

taz+imb wwith similar transforms for ¢ = o¢ + do and the surface velocity

the linear response of the normal force balance is the following

F gm + Fom00qm + Fo 008 g m + F2 607 gm + GgmOWgm = 0 (3.20)

q7m
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Jmax
_fmax

Figure 3.2: Surface plot showing the normal component of the viscous force per
unit area on the m = 1, ¢ = 1 mode according to Eq. (3.20). This shows the helical
nature of this growth rate. fmax is the maximum force per unit area which scales
with the size of the undulation. Arrows indicate the direction of shear flow.

2 .
where 7', = 4@[(’1’4+m4+2t§2m?—2m2+1] M Fop = FO = 2
0
Fam = 0and Gy, = =13 where ¢ = gro is the dlmensmnless form of the wavenumber
m o

q, scaled by the tube radius.

Note the sign of the final term in the F, coeflicient suggests that the shear
flow could lead to an instability in the m # 0 modes. The force distribution on the
tube is shown in Fig. 3.2. Note that the (m — —m, ¢ — —¢) symmetry of the force
defines a “handedness” which changes upon reversing the direction of the shear rate.

In order to find the 2D Stokes equations to linear order we need to calculate
the Laplace-Beltrami operator of the velocity field v = % (%) + dv* (%).
First we lower the velocity with the metric and act on it with the exterior derivative

giving (to linear order)
dv’ = [—TOQ + O,uvg — ufd + 7’08251)9] dz A df + 9pdv*dl A dz (3.21)

next, taking the Hodge star of this and using the asymmetry of the wedge product
and the fact that vol = /|g|df A dz we find

d,u 9,60 +8951)

To To

(3.22)
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Taking the exterior derivative of this gives

74 z # 4 Q
dxdv’ — [_é?uvg — 9007 + 02000 Ozu ] dz
To 7o To
3.23
8z9u 0 8995’Uz ( )
+ |- v — O,900" + dé
To ro

taking the Hodge star of this and applying the inverse metric leads to

! 0 . 0

(— *d * dv ) == [—8zzuvo — 1905,00" + 0,90V° — 8Zu(2} 20

r
0 5 . . 5 (3.24)
LU, .
+ [ T2 4 = 0.900" — = gedv } <) .

) 70 g 0z

The contribution to the Stokes equations from the Gaussian curvature is
given by
20%u 0

—2Kv=—% — 3.25
v =250 (55) (3.25)

and from the gradient in the normal velocity we have

2(b—2Hg) - Vw = 2 5 0 42 7 (% 29 <8> (3.26)
— . w = 0 —_ 0 r = — 0w —_— . .
J 0 0/ 7m\0 1 dyw To 0z

Taking Fourier transforms of these we can find the 2D Stokes equations in

Fourier space

mq s, igQ2 - 0

z — § 1 - -2~ im S
m —T25Uq,m — 2 Ugm + P‘qu,m — 300 ® [q Uq,m} - E‘qu,m
0 0 0 0
2 ¢ 2 1o - mg 5 0 2ig 5 iq 5
m
Nm H&)q’m — %vo ® [mqtg,m] — ﬁévq,m + géw%m — %50q,m

where ® denotes convolution between the two Fourier transforms in ¢ space. This
comes from using the convolution theorem F(f - g) = F(f) ® F(g). The continuity
equation reads

iMOVy 1y + 1G00% y + SWgm = 0. (3.28)

From this point it is just a matter of algebra to find the response functions

= 0 =z J . _ —
OVg s OV, a0d 004 in terms of Uy, and dwg m.
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. ~ - . ~N ~ — ~2 — ~ — q — ~
im (m2 + 3q2) OWq,m + qu?’u(Lm + z—ovo ® (qzuq,m) — T—fvo ® (Mmqtg,m) (3.29)
(2 + @)

6_1};7"77/ -

o § N . —

iG (@ — m2) Swgm — miQigm) + ™0 ® (Miligm) — "oy ® (Pitgm) (3:30)
(m? + 2)*

N [%‘v’o ® (G2 Ugum) + %v}) ® (GMmiigm) + 2420Wqm — m@Qaq,m}
(m? +¢*) ro

00gm =

(3.31)

We can now make use of the fact that the Fourier transform of the ground-
state velocity convolved with some function is given by vp ® (-) = vg — iQdrg0g (-).

Thus we have the following identity

o ® [f(@)tgm] = f (q) 00 ® (tgm) — iQrotqmdgf (q) (3.32)

Writing 0w m = O4tigm + O(u?) we can find a growth rate equation for g,

where time is normalised according to ¢t = t7 with 7 = %7

Ogtiqn = —imTotiqm — QUmgiigm + F(q,m)liqm (3.33)
where
F(qam) -
[m(j ((m2 + q~2)2 _ 262) Q — (m2 + 62)2 (1 + mA + 64 + 2m2 (62 o 1))} (334)
2q4 )

Q= % is the dimensionless shear rate and 0y = vo0m/(T000)-

The modes become unstable when the real part of the growth rate changes
sign to R{F(m,q)} > 0. We note that R {F(0,q)} < 0 for all ¢, meaning that the
m = ( peristaltic mode is always linearly stable. The general stability condition is

given by

(mz _HjQ)? (1 + mA TGt 4 om? (@2 _ 1))
(m?+ @) —2) |

The |m| = 1 mode is the first to be driven unstable. The stability diagram for the

Qmg > (3.35)

|m| = 1 mode is plotted in Fig. 3.4 with the black line in both the main figure and
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the inset. This means that, beyond a certain rotation speed, a helical mode will
grow, with pitch length initially set by the length of the tube. The divergence of the
growth rate for small ¢ is removed by the bulk hydrodynamics, however this is at a
length scale much longer than the tube length. This helical instability is a new type
of membrane instability, distinct from the usual peristaltic (Pearling) instabilities
found in membrane tubes [Nelson et al., 1995].

This analysis neglects the advection in ¢ given by Eq. (3.33). This corres-
ponds to the m # 0 modes being advected with the ground-state flow and adding
more turns to the helices, thus increasing ¢. As this advection will eventually sta-
bilise the mode, what really matters is the maximum size the fluctuation reaches
before it is damped. To calculate this we solve Eq. (3.33) with the initial condition
Ug,1 = upd(¢ — qo), which can then be used to calculate the amplification of a given

g

mode, —2=. The solution to Eq. (3.33) is given by the method of characteristics as

23
Ug,m(t) = u0d(q — Go — mS2E)e @™ (3.36)

where

1 - o s
f(g,m) = & [ —20m2(2 4 3¢%)30% + 30m3Gt* Q3 — 6m* 0

— 308(5 + 4% + ¢* — Q) + 15m£< — 4200 48 + 4¢° — Q) ) (3.37)

000

_ 60 +15<4_~—z+ 1 )
maQ —m2i2 | m\gQ " (G—mi)?

and includes the advection of the undulation by the ground-state flow, thus short-
ening the wavelength of the undulation, i.e. § = §(t) = go + mQi. Because of this
advection any ¢ mode which is initially unstable will be advected to stability and
the mode will eventually decay. If our system was purely deterministic this would
kill the instability in the long time limit, however as the bending rigidity of the
membrane has comparable energy to the thermal energy (k ~ 10kpT where kg is
Boltzmann’s constant and 7' is the temperature) the ¢ spectrum is constantly fed
by thermal fluctuations. This means that, to understand the full dynamics of the
system we should solve Eq. (3.33) with the addition of a stochastic term describing

thermal noise.
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3.3.1 Solution to the fluctuation spectrum with thermal noise

Adding a thermal noise term to Eq. (3.33) we get a Stochastic Partial Differential
Equation (SPDE) in (Z,§) given by

Osligm = —Qmdgiigm + F' (g, m)gm + 0:Ctgm (3.38)

where )
2kpT (m*+ %)

- 27 8g.q/Omm0 (t — 1) (3.39)

<af<t,q,ma£/ Ct’,q’,m’ > =

is chosen such that we recover the equipartition result of equilibrium statistical
mechanics when = ¢y = 0. We define F'(qg,m) = F(gq,m) — imty. Eq. (3.38),
with initial data g, (0) = ug(g, m), is the stochastic version of a Cauchy problem
[Chow, 2014].

In order to solve this SPDE we make use of the method of Stochastic Char-

acteristics [Chow, 2014]. In It6 form the thermal noise is written as

Crgm = V/B(@,m)dWygm (3.40)

where (AW g mdWir gr ) = Smmi6q,0dt and B(G,m) = (m? + §2)° /G*.
Eq. (3.38) is equivalent to the It6 integral

o i
Ugm(t) = uo(q, m) — mSQ ; Ogligm(s)ds —1—/0 [F’(q,m)faq,m(s)ds + C&q,m] . (3.41)

In order to solve this we introduce the following characteristics
~ f ~ o~
o) = a4 mid [ ds =g+ mdi
0

t
nt<q,r>—r+/0ns<q, r) F' (6a(g) ds+/\/ (G2 (@), m) AW,

(3.42)

for certain regularity conditions on the noise these stochastic integral equations have
a unique solution that defines a stochastic flow of diffeomorphism. This leads to the
solution to the stochastic Cauchy problem, posed by Eq. (3.38) and its initial data,
which is given by

ﬂq,m =Uug (¢;1(q), m) €xp

/ exp

7
/ F’(cﬁs(y),m)dfs] ly=s7 (0

/Fqss | VB, () m)aWs |,y

(3.43)
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Evaluating the integrals in the exponentials we find
Flamit) = [ Fouly).myd
= [ — 15mPQ(mtQ + q) — 40m*(mtQ + ¢)°

+60m (m? — 1) Q(mtQ + ¢)* log(mtQ + ) — 30 (6m* — 2m? + 1) (mtQ + ¢)*
+10m* (m? — 1)2 + 60 (2m° — 2m* + m?) (mtQ + ) — 6(mtQ + q)®

-1
+ 15mQ(mtQ + ¢)° <60mQ(th + q)3> — imoot

= f(qa m, t) — imot.
(3.44)

We want to consider the steady state of the fluctuations at a time when any
dependence on this initial data has decayed so, by taking the complex conjugate of

Eq. (3.43) squared and averaging we find

(Jtgm* (D)) = e2f (@=mQL.m.i) /t B ((j +mQ (7' — ) ,m) e~ 2 (@mQLm.7") q (3.45)
0

where we have input the characteristic curves and their inputs explicitly and neg-

lected the term describing the dynamics of the initial data as we are only interested

in the steady state.

If we consider the case of the m = 1 mode then the equilibrium fluctuations
are known to be critical in the ¢ — 0 limit [Fournier and Galatola, 2007]. Because
of this we introduce a cut of wavenumber ¢y that corresponds to the length-scale of
the longest fluctuation on the finite tube. This implies that the noise kernel of our

system has only localized support on the interval 7/ —t € [‘505 ‘j, 0], so we can change

variables to integrate over this interval. Thus, the m = 1 steady state fluctuations

are given by

agal?0) = 30 [ B (74 0r1) @0 (3.0

We plot the steady states of (|ig1/?) and the z component of their spatial
gradients, ¢*(|tg1|%), in Fig. 3.3 for Q =1 and o = 0.2. We also plot the equivalent
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Figure 3.3: The steady state fluctuations for a sheared tube (Eq. (3.46)) and their
Fourier “gradients” in the z direction (|F (€, - Vu) |> = ¢*(|tig1|*)) with shear rate,
Q = 1, and long wavelength cut-off, o = 0.2. We choose the bending rigidity to be
k = 10kgT. The dashed red line shows the equivalent thermal fluctuations.
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thermal fluctuations given by Eq. (1.30) with m =1

kT
(lig1?) = — 15—+ (3.47)
! KG* (G +2)
which we plot as a red dashed line.
In fact it is the gradient terms which break the linearisation conditions due
to the advection and amplification increasing the gradients. To find a criterion for
“Non-linear deformation” (and hence very large fluctuations), we can find where the

2>“jﬁ[]‘max =1 for Q given q~07

gradients become of ~ O(1) by solving (1 + G2, )(|tg1
where Gmax is the ¢ value for the peak of the steady state fluctuations, Eq. (3.46).
This gives us a line on the (go, Q) plane that gives a conservative estimate of when
non-linear effects become important. A stability diagram for the m = 1 mode in

(g, ?)-space is plotted in Fig. 3.4 along with the criterion for non-linear deformation
(blue dot-dashed).

3.4 Discussion

In the small § limit, the threshold shear (Eq. (3.35)) is Q ~ 2§, see Appendix B.

The shear rate is 2 ~ 2”—?’”, where v is the spinning frequency. Assuming that the

cut-off wavenumber of the tube is associated with a fundamental mode gy = 2”%,
gives the critical spinning frequency for the onset of instability as
200
Verit =~ —— (348)
m

The functional form of the critical frequency can be explained using a scaling analysis

of Eq. (3.9). For ¢ ~ 1/L, the first order correction to the curvature scales like

H ~ 75 so that the elastic force-per-unit-area scales like fo ~ 2, while the off-

diagonal components of the second fundamental form scale like b ~ TOLL and hence

Nm Qu o UNmV
roL L2 -

the viscous force-per-unit-area scale like fyis ~ Balancing these forces

gives a critical frequency vepit ~ r%'

Typical membranes in the fluid (liquid disordered) phase have viscosities
Nm ~ 1078 — 1077 Pam s [Hormel et al., 2014] (higher in the liquid ordered phase).
However, much higher values have been associated with tubes pulled from living
cells, 7, ~ 1077 — 107° Pam s [Brochard-Wyart et al., 2006]. Effective viscosities
may be higher still if the neck is crowded with proteins. If we assume the surface
tension takes a physiologically typical value of oy ~ 107 N m~! [Roux, 2014; Ant-

onny et al., 2016], this gives a critical frequency of vei; ~ 1 — 100Hz in the small
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Figure 3.4: Figure showing the zero of F(g,m = 1) as a function of ¢ and
(Eq. (3.35)). The region above the black line is unstable. The blue dot-dashed
line shows the value of €2 for which the steady state becomes non-linear as a func-

tion of ¢y, which we denote the region above this line as “Non-linear deformation”.
The inset shows the same plot on a linear scale, with the red dashed line showing

the low ¢ expansion of the stability criterion.
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¢ limit. It is more likely that dynamin will be found on short tubes with ¢y ~ 1
so, reading off from Fig. 3.4 we find Q ~ 5 for the stability criterion and Q ~ 50
for the non-linearity criterion which corresponds to frequencies of 5 — 500Hz and
50 — 5000Hz. dynamin has been measured to have rotational frequencies v ~ 10Hz
[Roux et al., 2006], suggesting the instability could be accessible to dynamin for the
higher values of viscosity found in cells [Brochard-Wyart et al., 2006]. The criterion
for non-linearity is rather conservative as it is based on the variance of the fluctu-
ations (one third of the fluctuations will be breaking the linearity condition at this
point). It is also likely to significantly underestimate the size of fluctuations, which,
in the case of dynamin, are likely to be dominated by active processes rather than
thermal noise (see Chapter 4), and is further damped by the hard cut-off at gp.

A natural way for the instability /fluctuations to progress in the non-linear
regime is fission of the tube, which is of particular significance given that the exact
mechanism for dynamin mediated fission is unknown. This effect may be ampli-
fied due to friction with the cytoskeleton [Brochard-Wyart et al., 2006; Simunovic
et al., 2017] impeding the supply of membrane to the growing fluctuations. As
the instability /fluctuations grow the surface tension will increase, either narrowing
the tube or causing Pearling [Nelson et al., 1995]. An increase in tension has been
shown to accelerate spontaneous tube fission [Morlot et al., 2012] and friction im-
peding membrane flow has been shown experimentally to scission tubes [Simunovic
et al., 2017]. The increase in fluctuations is also likely to promote the formation
of hemi-fused states, which can be an important intermediate for fission [Pannuzzo
et al., 2018]. This picture of fission, promoted by membrane hydrodynamics just
outside the active dynamin site, is consistent with the experimental observation that
the location of fission is near the edge of the active dynamin site rather than directly
under it [Morlot et al., 2012]. The time-scale over which the instability grows is of
the order of 7 =~ 1072 — 1's, which is sufficiently fast to be consistent with the
dynamin-induced fission process [Dar et al., 2015].

Although we have provided evidence that a membrane instability can be
driven by the rotation of dynamin, our study is based on the simplified geometry of a
cylindrical tube, rather than the neck of a budding vesicle, a location where dynamin
might typically act in-vivo. While our approach becomes analytically intractable for
such complex membrane geometries we can gain some intuition into how the driving
force per unit area of the instability changes with the geometry of the neck region.
We do this by considering the term in the normal force balance equation that is
responsible for driving the instability. Given the helical symmetry of the instability

we infer that this driving force-per-unit-area goes like the mixed derivative in the
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shape, fdriving ~ Db’ j V;v?. The term which acts like the shear rate on the tube now
depends on z and we must calculate it numerically, see Appendix B. In the case of
a catenoid neck this leads to an amplification of the driving force by (only) a factor
of 2 near the active site (z = 0), for details see Appendix B. Whilst a relatively
small effect, this is qualitatively consistent with the experimental observation that
dynamin fission of a tube in-vitro often occurs near the GUV neck [Morlot et al.,
2012] and that fission on the necks of a budding vesicles in-vivo occurs faster than
it does on long tubes [Morlot et al., 2010; Roux, 2014]. It is worth noting that if we
were to consider a model for dynamin which included constriction then we would
need to be decide whether to use a constant velocity or constant torque boundary
condition, as the two are no longer equivalent. The same would also apply when
considering the full non-linear dynamics.

A second possibility for the non-linear growth is a stable non-equilibrium
shape driven by the membrane flow. In this case it is worth noting an analogy
between the membrane tube instability that we discuss here and elastic rods un-
der torsion that deform nonlinearly into plectonemes [Audoly and Pomeau, 2010].
We suggest that it may also be possible (under some conditions) for the unstable
membrane tube to develop fluid plectonemes, similar to those actually seen in ex-
periments on long tubes covered in dynamin [Roux et al., 2006; Morlot et al., 2010].

A possible experiment to better understand the non-linear evolution of the
fluctuations and determine whether these hydrodynamic effects alone are sufficient
to induce fission would involve a short tube pulled from a GUV or cell by magnetic
tweezers that then spin its end, Fig. 3.1b. This would also enable experimentalists
to test our predictions more quantitatively. The instability should also arise in a
longer tube, however the quantitative nature of our predictions would likely require
modifications due to screening of membrane flow by the ambient fluid. In this case
we expect that the unstable wavelength would then be set by the screening length
V/Lspro rather than the tube length [Henle and Levine, 2010; Ferziger and Peric,
2002] and that our results would continue to hold at the scaling level.

In summary, we have developed a hydrodynamic theory that predicts an
instability on fluid membrane tubes that is driven purely by a shear in the membrane
flow. Such flows are shown to first drive a helical instability, which is quite distinct
from any previously identified instabilities of fluid membrane tubes. This instability,
although eventually advected to stability by the flow is shown to be able to produce
a significant increase in the fluctuation spectra of a membrane tube. We predict that
this instability is physiologically accessible to dynamin but has not previously been
considered in models of its function [Lenz et al., 2008; Morlot et al., 2010]. This
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instability may provide a mechanism for dynamin-mediated tube fission, e.g. due
to increasing tension in the amplified steady state or in the subsequent non-linear

deformation regime.
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Chapter 4

Dynamics of Passive and Active
Membrane Tubes

Utilising the Onsager formulation, we derive dynamical equations for the small de-
formation limit relaxation of a fluid membrane tube allowing for a contrast of ambi-
ent viscosity and variations in surface tension due to the deformations. Computing
the relaxation rates, we recover results previously found in the case of purely axisym-
metric perturbations along with new results for higher order angular (m) modes. We
explain the long and short wavelength limits of these modes making use of various
asymptotic arguments. Adding stochastic terms to our dynamical equations which
describe passive thermal forces and “active” forces, we compute expressions for the
mean-square fluctuations and effective temperature associated with the addition of
active fluctuations. Finally we discuss how one might measure these fluctuations in

experiment and infer the properties of the active forces.

4.1 Introduction

Membrane tubes, formed by bilayers of phospholipid molecules, are structures ubi-
quitous in cells. They are vital to the function of many organelles including the
peripheral Endoplasmic Reticulum (ER) [Nixon-Abell et al., 2016] and membrane
nanotubes, which have been implicated as an important pathway in inter-cellular
signalling [Abounit and Zurzolo, 2012]. Membrane tubes can be formed from a flat
membrane by the action of a local force normal to the membrane (such as molecu-
lar motors, actin or curved proteins coating the membrane) [Derényi et al., 2002;
Cuvelier et al., 2005; Yamada et al., 2014].

From a statistical mechanics perspective there has been significant work on
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the thermal fluctuations of membrane tubes [Fournier and Galatola, 2007; Komura
and Lipowsky, 1992]. A striking prediction from these theories is that the bending
modes of the tube are critical in the long wavelength limit and it would be expected
that an-harmonic terms in the free energy will dominate the excess area and length
fluctuations [Fournier and Galatola, 2007]. This has become relevant recently as it
was shown that optical tweezers techniques can be used to infer the power spec-
tral density of such fluctuations on tubes pulled from Giant Uni-Lamelar Vesicles
(GUVs) [Valentino et al., 2016]. A related topic of interest is the statistical mech-
anics of tubular networks [Tlusty and Safran, 2000; Tlusty et al., 2000] and on the
length fluctuations of tubes held by a fixed force [Barbetta and Fournier, 2009].

Work on the dynamics of membrane tubes has focused on the simplified
axisymmetric case, in particular the dynamics of the pearling instability of mem-
brane tubes [Bar-Ziv and Moses, 1994; Boedec et al., 2014; Nelson et al., 1995;
Gurin et al., 1996], and the dynamics of tether pulling from a GUV or cell [Evans
and Yeung, 1994; Nassoy et al., 2008; Brochard-Wyart et al., 2006]. A further
area of study is that of particle mobility laterally within the membrane [Henle and
Levine, 2010; Rahimi et al., 2013]. These examples provide insight into how the
curved geometry of the membrane tube can lead to interesting physics, in the form
of visco-elastic couplings [Rahimi et al., 2013] and non-Newtonian rheological beha-
viour [Brochard-Wyart et al., 2006; Evans and Yeung, 1994].

In this chapter we will focus on the dynamics of membrane tubes, deriv-
ing equations of motion from an Onsager framework (in the manner of [Fournier,
2015; Sachin Krishnan et al., 2016, 2018]) and analysing the relaxation behaviour
in Fourier space. We then consider the case where stochastic forces act on the
membrane and derive the statistical behaviour of the shape undulations, in par-
ticular focusing on the case where active noise dominates. Here the term active
refers to a noise term which breaks the fluctuation dissipation theorem. Such active
membrane systems have been theoretically studied extensively in the case of flat
membranes [Prost and Bruinsma, 1996; Ramaswamy et al., 2000; Gov, 2004] and
spherical vesicles [Sachin Krishnan et al., 2018; Turlier et al., 2016]. These descrip-
tions have also proved useful when compared to experiments with active proteins in
GUVs [Manneville et al., 2001] and in the analysis of red blood cell flicker [Turlier
et al., 2016; Gov and Safran, 2005].

We derive the fluctuation spectra for active tubes and calculate the effect-
ive temperature of such fluctuations. We then discuss possible ways to quantify
the parameters in our active fluctuations model from experiment. Finally we dis-

cuss some open problems in the study of membrane tubes and the study of active
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membranes more generally.

4.2 Membrane tube dynamics

4.2.1 Geometry

We take the membrane to be a manifold, S C R3. Vectors in the ambient space will
be denoted ¥ € R? and vectors in the tangent bundle to the manifold as = € T (S).

We parametrise the manifold, S, with the vector
7= (r(0,z1t)cos0,r(0,z,t)sinb, z) (4.1)

where 7(6,z2,t) = ro[l+u(6,z2,t)], see Fig. 4.1(a). We will consider the small
deformation limit where u < 1. Tangent vectors can be induced on the surface by
taking derivatives with respect to 6 and z, giving €y = Jp7 and €, = 0,7, respectively.
A complete triad can be defined by {éy, €, 7} where @7 = (€y x €,)/|€p X €, is the
normal vector to the surface. The metric and second fundamental (bilinear) forms
are then defined as g = ¢;;dX'dX7 = ¢, - €;dX'dX’ and b = b;;dX'dX’ where
bi; = 1 - 0;¢;. This can be used to define the mean curvature, H = b;'/2, and
Gaussian curvature, K = det b;”.

The membrane is assumed to behave as a fluid in the tangential direction so
we define a vector field, v € T' (T (S)), as the flow velocity of lipids in the membrane,
where I" (7 (S)) denotes a section of the tangent bundle. We assume v is of the same

order as u and perturb around a ground-state with no flow.

4.2.2 Free energy

The free energy of an incompressible fluid membrane can be written using the
Helfrich-Canham-Willmore energy [Helfrich, 1973; Canham, 1970] (Eq. (1.8))

Fu = / dA [a n g(zﬂ)ﬂ : (4.2)

where o is surface tension, k the bending rigidity and the area element is given
by dA = \/Hdez. We have integrated out the contribution from the Gaussian
curvature and saddle splay modulus by assuming no changes in topology and a tube
of infinite length. We also neglect spontaneous curvature for simplicity (Cy = 0).

The area element and the mean curvature squared are given, up to second
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order by,
1
dA =~ [1 +u+ 5 (rg02u + Ogu)] dfdz, (4.3)
111 1
H*~ — [2 — 130%u + Ogu +u + 5{2u(r%8§u + 303u) — r2(0.u)?
0

+ (r20%u + dgu)? + (9gu)? + 3u2}] . (4.4)

If we take the full free energy F = Fo — [ dV AP, where AP = P~ — P*
is the the hydrostatic pressure jump across the membrane, then the ground-state

r = ro must satisfy the modified Laplace equation

o K
2 _AP=0, 4.5
70 27“8 (45)
in order to minimise the free energy.

For the Onsager formulation of membrane dynamics, we need to know the

rate of change of the free energy. This is given by
. 3 5
F = / dfdz [2 (iu + r20%u + r30tu + iagu + 2r2030%u + 33u>
7o
292 2 .
—o(u+rgoiu+ (%u)] rot, (4.6)

where dot indicates time derivative and we have made use of Eq. (4.5) (or equival-
ently the constraint that total volume is preserved [dfdzu = —(1/2) [ dfdzu?).
Note that F is a functional only of the normal velocity v, = rot + O(u?) and not

the tangential components of membrane velocity, v.

4.2.3 Dissipation and constraints

We will consider only the dissipation due to the ambient fluid as this is the dominant
dissipative mechanism at large length-scales [Seifert and Langer, 1994]. We define
the velocity in the ambient fluid as V = V&, where we use Greek indices to denote
summation over coordinates in R3. The dissipation functional for the bulk fluid is
given by [Landau and Lifshitz, 1959]

PE= | dAVvEy*DIDYE, (4.7)
Vi o
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r=ro(l+u(z0,1))

WA

Figure 4.1: (a) Cross section of a membrane tube with some undulation rou(, z,t)
about the radius 79. Here nT label the viscosity of the exterior and interior am-
bient fluid respectively. (b) Surface plots of the Fourier decompositions, u =
dgm Ugm €' P+ for g = 1.
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where 1 is the viscosity of the exterior and interior regions respectively (and sim-
ilarly for the other + superscripts), as shown in Fig. 4.1(a), and Dfﬁ = (VC,VBjE +
V3ViE)/2 is the rate-of-deformation tensor.

At the scale of cell membranes (10 nm—100 pm) viscous dissipation dominates
the energy dissipation in the fluid, hence we neglect the contribution from inertia
and assume zero Reynolds number [Happel and Brenner, 1983].

Our system has several constraints which, in the Onsager formulation, will be
imposed using Lagrange multipliers [Doi, 2013]. Firstly, the membrane and ambient

fluid are incompressible so must satisfy the following conditions
Vo Vot =0, (4.8)

for the bulk fluid (where + correspond to the exterior and interior velocities respect-
ively) and
V' — 20, H =0, (4.9)

for the membrane, where v,, = rot+O(u?) is the normal velocity of the surface. Fur-
ther constrains come in the form of no slip and no permeation boundary conditions

on the bulk fluid at the membrane
(VEL)E =0 VL = ot (4.10)

4.2.4 Rayleighian and equations of motion

To derive the full equations of motion using the Onsager formulation, we must first
write down the Rayleighian or Rayleigh dissipation functional [Doi, 2011; Goldstein,
2002; Landau and Lifshitz, 1959; Fournier, 2015; Sachin Krishnan et al., 2016]. The
full Rayleighian for the system is found by taking the sum of the rate-of-change of
free energy for the system, Eq. (4.6), and the energy dissipations (half the work
done on the system), Eq. (4.7), and adding in the constraints on the system using
Lagrange multipliers. This formulation is equivalent to Onsager’s kinetic equation
with reciprocal coefficients, but recast as a variational formalism, with the advantage
that finding the correct pairs of fluxes and forces is now trivial as they are obtained

by the variational principle automatically [Onsager, 1931a,b; Doi, 2011]. Thus our
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Rayleighian reads

R:P++P—+jf+/

dAC(Viv' 4 1) — / dv*t ptv,vet
oV

y+

[ v vy [ (Vo) o] o [V ) - o]
- oV

AT (Vg = i) 4+ A (V7 |y — o) } , (4.11)

where ¢, P, ,uii and AT are Lagrange multipliers imposing the constraints of con-
stant area, constant volume, no slip and no permeation respectively. Note that we
choose the signs of ¢ and PT so that they correspond to pressure and surface tension
variation respectively (however this is arbitrary).

We now proceed to use Onsager’s principle and minimise the Rayleighian to
find the equations of motion for the membrane [Doi, 2013]. Taking variations of
Eq. (4.11) with respect to VF|, yields

Fn DSl — 1 =0, (4.12)
FnrDE + PE - \F =0, (4.13)

showing that ,uzi and A* correspond to the traction forces acting on the membrane.

Extremising with respect to v’ gives

Vi€ = =y =0, (4.14)

7

or eliminating the Lagrange multipliers
Vi + 0Dy =0~ Dy =0, (4.15)

which is simply tangential force balance on the membrane.
Taking variations with respect to rot and eliminating A* gives normal force

balance on the membrane as
Kk (3 202 404 5 o 20202 4
—3 §u+r062u+7“062u+589u+27“089(9zu+09u
o

¢

— g(u + 130%u + Oju) + =

—ntDf + Pt +n D, - P =0. (4.16)
To 7o

Varying with respect to ¢ gives the membrane incompressibility condition, Eq. (4.9).

Varying with respect to P and V. gives the usual Stokes equations and
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incompressibility condition
EViVeE = vept v, veE =o. (4.17)

This approach has allowed us to derive the fully coupled equations of motion
for the system by just considering the relevant dissipation functionals and system

constraints and deriving everything from a variational principle.

4.2.5 Fourier space decomposition

Next we solve the bulk fluid dynamics equations and thus calculate their traction
forces on the membrane. To do this we make use of the known solution to the Stokes

equations in cylindrical coordinates given by [Happel and Brenner, 1983]

VE = Vot +V x (vie,) +18,VEE + 0,652, (4.18)
Pt = —opto%et, (4.19)

where (¢, ¢F, ¢F) are scalar functions that each satisfy the Laplace equation. We
decompose these functions in Fourier space in 6 and z in terms of the coordinate

systems harmonic basis

¢* Poon
[ =)0 | g, | I, () e, (4.20)
e) " \zg
with
Hqim(r) _ H;_m(r) = Kin(qr), (4.21)

g (r) = Im(gr),

where I,,,(qr) and K,,(¢qr) are modified Bessel functions of the first and second kind,
respectively.

We now take the Fourier transform of our equations where we define the
Fourier transform as f(6,z) = Zq,m fame ™9 the form of surfaces given by the
m mode perturbations is shown in Fig. 4.1(b).

Applying the boundary conditions on the bulk flow in Fourier space allows

us to find (q)qim, \Ifqim, Eqim) in terms of our variables (v’,v*,1). The boundary con-
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ditions in Fourier space read

ToUgm
WL | =
vgm
oL 011, + (im/r)VE L + =L OMIE
(im/r) %, Ik, — Wk 9,11% +im=5, [0,11%, — 115, /r] L (4.22)
r=ro

iq®5 %, +irq2s, [0.1015, + 1%, /7]

We can make use of the continuity equation to eliminate vgm = 10(qug, —
iligm)/m and find (®F,, WL EX ) in terms of dgm and v, which are given in
Appendix C.

In Fourier space, the components of the tangential force balance equation

read

0 : Zrﬂgqm + 77+ [r@r(‘/ﬁj{/r) + l:nnvqﬁr}
0

r=rg
o |+ ] | o (1.23)
r=rg
Z ingm + T7+ (zqv;]rrjlr + 87"‘/;1%) |r:ro
o (Vi + 0V |, =0 (420

where the bulk velocity terms can be expressed using using (q);tm, \I/écm,E;tm) and
are thus just functions of gy and vg,,. Solving for vy, and (g4, allows us to write
(@fltm, \I'écm, Efltm) in terms of 1y, alone. We can now write the normal force balance

equation in Fourier space (in dimensionless units) as

Bilgm = —Atigm, (4.25)

—5(1-¢ —m?), (4.26)

B (P%—n(xﬂ)@%’%fﬂw(x—1)3%?5—Pq7n>

: r=ro o (4.97
“qmﬁ/rg’ ( )
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where & = org/k, n=n" +n", x = (n* —n7)/n and § = gro.
The exact form of B is in general too complex to write down except for the

m = 0 case where it is

(x—-1I} (x +1) K}
2110 — ¢* (I3 — I}) 24K K> — ¢ (K? — KQ)

3
~ T ~
B(3,0) = 201+ )

, (4.28)

where the modified Bessel functions are evaluated at r = rg. For larger values of m,
we will evaluate B numerically using Mathematica.

It is interesting to note that, compared with the spherical case, there are
more degrees of freedom for the tube as the m and § modes are not coupled as they

are in the case of spherical harmonics [Sachin Krishnan et al., 2016].

4.3 Relaxation dynamics

Here we will consider the relaxation dynamics for all the modes, in particular ex-
amining their asymptotic behaviour. We will make use of these results later when
analysing the active fluctuations of a membrane tube in Sec. 4.5. As the relaxa-
tion dynamics are identical under a sign change of ¢ and m we restrict ourselves to
G, m > 0 in our analysis and discussion.

For some initial condition at ¢ = 0, the solution to Eq. (4.25) is given by
Ugm(t) = ugm(0)e ™, where A = A/B. In this section we will analyse the form
of A to understand the stability and relaxation dynamics of the Fourier modes in
membrane tube’s shape. The relaxation rate for each (¢,m) mode is given by A.
This describes the rate at which an undulation in the tube’s radius decays back
to the ground-state. These rates are plotted as a function of wave-number in the
z direction, ¢, in Figs. 4.2 and 4.3. Throughout we will fix the total viscosity 7
and vary the relative viscosity x = (n™ — n7)/n so the plots are shown in units of
associated with the time-scale of the total viscosity given by 7 = nrg /x.

First, we discuss m = 0 modes. For values of o = k/(2r), corresponding to
an equilibrium ground-state with no net pressure, the undulations are always stable
so A > 0. The scaling behaviour of A in the small § regime (§ < 1) is computed for

the m = 0 mode, where we find

nrd x+1

B(q,0) ~ 20 — 1
@0~ 1% |20~ D+ e g |

(4.29)

where v = 0.577 ... is the Euler-Mascheroni constant. This gives the scaling beha-
viour A ~ ¢ in the small § regime, see Fig. 4.2(a).
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As would be expected, in the large ¢ limit the scaling behaviour is like that
of a flat membrane where A ~ ¢® and all relative viscosities converge to a universal
relaxation rate (a consequence of the approximate symmetry between the interior
and exterior at such small length scales), see Fig. 4.2(a).

The scaling behaviour for m = 1 is evaluated numerically and shown in
Fig. 4.2(b). For large values of ¢ the relaxation rate scales like that of a flat mem-
brane (for the same reason as the m = 0 modes). However, at small values of ¢,
some interesting behaviour is encountered which is strongly dependent on the rel-
ative viscosity. As ¢ — 0, the external dissipation due to the tube being dragged
through the fluid dominates the relaxation rate (the internal motion simply corres-
ponds to locally translating the cross section of the tube so gradients in velocity, and
hence dissipation, become small). In this limit the tube behaves like an elastic rod
in terms of its relaxation and tends slowly towards A ~ — (v +log ¢) ¢* in the long
wavelength limit. This scaling behaviour for a continuous Zimm model of an elastic
rod under tension in the long wavelength limit with small deflections is discussed in
Appendix C.

The case Y = —1 corresponds to ™ = 0, hence in the long wavelength limit
there is essentially no friction, and the m = 1 mode relaxation rate diverges as
G — 0. The crossover between interior to exterior dominant dissipation means that
in the n™ < n~ limit, the relaxation rate can be non-monotonic in ¢, increasing at
intermediate ¢ before being screened by the exterior viscosity at long wavelengths,
as seen in the case y = —0.95 in Fig. 4.2(b).

For higher modes of |m| > 2, the dissipation is dominated in the long
wavelength regime by the gradients in velocity induced by the cross sectional de-
formations of the tube. Thus, as ¢ decreases, the relaxation rate becomes constant,
see Fig. 4.3. This constant increases with m as each successive mode costs more
bending energy to excite, so will relax faster. The high ¢ limit again behaves like a

flat membrane with A\ ~ > for all m.

4.4 Pearling instability

For the m = 0 mode, there is an instability when the tube is placed under high

surface tension [Boedec et al., 2014]. The growth rate or dispersion relation of such
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Figure 4.2: Plot of decay rate, A, against wavenumber, ¢ for ugy, (a) m = 0 and (b)
m = 1 for varying relative viscosity x = (n* —n7)/n (keeping 7 fixed as the rate
has been non-dimensionalized by the viscous time associated with the total viscosity,
7 =nrd/k). Surface tension is given by & = 1/2 such that the ground-state has no
hydrostatic pressure jump.
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Figure 4.3: Plot of decay rate, A, against wavenumber, ¢ for the modes ugy, (m =
2,3,4,5) where X has been non-dimensionalized by the viscous time, 7, = nrg/x).
Surface tension is given by & = 1/2 such that the ground-state has no hydrostatic
pressure jump. Changing x does not change the form of the relaxation rate for these
modes.

an instability is given by

_ K-35 +35—5(1—¢)] (4.30)

501 L 2 (=112 (1)K ’
(L +q )<2q111052(13112) + 20K 1 K2—¢2 (K3 —K2)

where, again, the modified Bessel functions are evaluated at r = rg. The threshold
for the instability at ¢ = 0 is given by & > 3/2 or o > 3k/(2r3), which corresponds
to the point when A(0,0) changes sign [Nelson et al., 1995; Gurin et al., 1996].
This instability is analogous to the Rayleigh-Plateau instability in a column
of fluid [Tomotika, 1935; Rayleigh, 1892], where forces arising from the interface
surface tension, o act to minimise the total interface area-to-volume ratio, and thus
the fluid breaks up into spherical droplets. Similar forces arise in the case of mem-
brane tubes although these are counteracted by the presence of membrane bending
rigidity, k. The exact form of this instability growth-rate was found previously in

Ref. [Boedec et al., 2014], where only axisymmetric perturbations were considered,
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Figure 4.4: Plot of the growth rate for the pearling instability on a membrane
tube, —\, against wavenumber, ¢, for varying values of relative viscosity x. The
dimensionless surface tension is set to & = or3 /k = 100.

and was shown to converge with earlier works when variations in surface tension
were neglected [Nelson et al., 1995; Gurin et al., 1996; Powers, 2010].

For large surface tension & and similar values of viscosity (x ~ 0), the max-
imum of the growth rate, —\, rapidly converges to the wave-number ¢* ~ 0.6. The
growth rate, —\, is plotted in Fig. 4.4 for different values of relative viscosity Y.
Note that short wavelength perturbations, ¢ > 1, are always stable as the surface

tension terms in A(g,0) are always positive for ¢ > 1.

4.5 Fluctuations of membrane tubes

We now consider the relaxation dynamics of the tube under thermal and active
fluctuations, this is given by adding thermal and active forces to the force balance
equation

Bligy = —Atigm + g, + o5 (4.31)
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where ¢™ and £2¢ denote the passive and active forces respectively. The statistical

properties of the thermal noise are given in the standard way

(€ (1)) =0, (4.32)

2kpT
(€ (et (1) = =

Byg 6mm 6 (t — 1), (4.33)

where kp is Boltzmann’s constant and T is the temperature. For the active fluctu-

ations we write

{Egm(t)) = 0,

(€ e, (1) = T e

qm q'm’ 2 qq/émmh

(4.34)

where 7, is the correlation time of the active forces and the physics of the active
processes will be captured in our choice of active force density, F(q,m) [Gov, 2004].
These active fluctuations could have a variety of biological sources such cytoskeletal
activity [Turlier et al., 2016] or ion pumps/transmembrane proteins [Ramaswamy
et al., 2000]. We will consider only the simplest case where for direct forces acting
on the membrane, F(¢,m) = F = Const., although in principle more realistic
models could be considered and can depend in detail on the biological process being
modelled [Turlier et al., 2016; Manneville et al., 2001].

4.5.1 Thermal fluctuations

First we consider the case when there are no active fluctuations, &7, = 0. Solving
Eq. (4.31) by Fourier transform in time (assuming any initial conditions have decayed

away) yields the following covariance

* k’BT !
<uqm (t) Ug'm! (t/)>th = /{76 it lA/Béqq’&nm’v (4'35)

and the equal time covariance is given by

kgT
) = - , (4.36)

K (62+m2)2_%62_%m2+%_&(1_62_m2)

<‘uqm|2

which is the standard result of the equipartition theorem [Fournier and Galatola,
2007], also given in Eq. (1.30). The equal time covariance is plotted against ¢ in
Fig. 4.5 for m = 0,1,2,3. Here the surface tension is chosen to be commensurate

with the equilibrium tube radius with no hydrostatic pressure.
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Figure 4.5: Equal time covariance for thermal fluctuations plotted against wave-
number G for modes m = 0,1,2,3. We choose 0 = k/(2r3) or & = 1/2.

A striking prediction given by this theory is the divergence of the m = +1
modes, i.e., criticality, in the long wavelength limit. This criticality is due to the
m = £1 modes being one-dimensional Goldstone modes (they only locally translate
the cross-section of the tube which does not alter the energy in the long wavelength
limit). The equilibrium properties of such fluctuations, such as excess area and
length fluctuations, are discussed in detail in Ref. [Fournier and Galatola, 2007].
It is expected that due to the uni-dimensional character of these modes that the
criticality will be preserved, even in the anharmonic regime [Fournier and Galatola,
2007].

4.5.2 Active fluctuations

Turning our attention to the case of active fluctuations, we will find the statistical
properties of the shape fluctuations due to purely active noise. We assume that the
active and thermal noise terms are uncorrelated, hence the total shape fluctuations
can be found by simply adding the active and passive contributions.

To find the covariance we Fourier transform in time with the convention
u(t) = [dw/(27) u(w)e™?, and find the covariance

F27'*(5 /(5 ré(w—w’)
* _\\ac qq “mm
<uqm(w)uq'm'< w')) (A2 + B2w?)(1 + 72w?)

(4.37)
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Figure 4.6: Equal time covariance for active fluctuations of the membrane tube
plotted against wave-number ¢ for modes m = 0,1,2,3. We choose o = x/(2r3),
x =0, F =05 and 7. = 107 = 100§ /k.

Inverting the Fourier transform for w and w’ gives the covariance in time,
which after some algebra gives

F2T* ATe—|t—t/|/T* _ Be—|t—t/|A/B

(g () g (#))™ = 1 yem Sat Oomuns (4.38)

which gives the variance

F?r

<|uqm|2>ac = W*:'B) (4.39)
As this depends on the dissipation in the system (through the presence of B),
it is immediately obvious that the fluctuations are non-equilibrium. If we assume
that the activity correlation time is an order of magnitude more than the viscous
time-scale, 7. ~ 107 = 10nr3 /K, and that the forces exerted on the membrane are
f ~ 1pN over an area 73, then F' ~ 0.1 — 1 [Sachin Krishnan et al., 2018]. Using
these parameters along with y = 0, F' = 0.5 we can plot the active fluctuations,

Eq. (4.39), in Fig. 4.6.
The same divergence at small ¢ is observed in the m = 1 modes (with the
same exponent as in the thermal case). The m = 0 mode shows a peak, the position

of which can be shifted by changing the value of the active time-scale, 74, (relative
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Figure 4.7: Effective temperature of the membrane tube with both thermal and act-
ive fluctuations, Eq. (4.40), plotted against wave-number ¢ for modes m =0, 1,2, 3.
We choose o = k/(2r3), x =0, F = 0.5 and 7. = 107 = 1001 /.

to the viscous time-scale, 7 = nr3/k). The decay in active fluctuations of the
m = 0 mode as ¢ — 0 is due to the viscous damping making such non-equilibrium
fluctuations unfavourable.

A simple observable to calculate is the effective temperature as a function of

Fourier parameters, this is given by

([tgm )™

— 7 = 7<|uqm 2} (4.40)

This is plotted in Fig. 4.7 for the same parameters of F' = 0.5, 7, = 107 = 10nr3 /x,
X = 0 and 6 = 1/2. This shows that for long tubes the highest effective temperature
is found in the m = 1 modes and that these are likely to dominate the spectrum.
Measuring the temperature of fluctuations of long tubes, for example those
pulled from GUVs [Valentino et al., 2016], and varying the viscosity of the exterior
fluid may provide a way to quantify the magnitude and time constant of such active
correlations in experiment. Fig. 4.8 shows the effective temperature of the m =1
modes for varying relative viscosity y, along with the asymptotic result predicted

using a Zimm model for such modes, see Appendix C.
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Figure 4.8: Effective temperature of the membrane tube with both thermal and
active fluctuations, Eq. (4.40), plotted against wave-number ¢ for modes m =1 for
different values of relative viscosity y. All other parameters are chosen as follows o =
k/(2r3), F = 0.5 and 7, = 107 = 10nr$/k. The dotted line shows the asymptotic
approximation found by using a Zimm model for a rod in a viscous fluid.
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4.6 Discussion

In this chapter we have investigated the active and passive dynamics of fluid mem-
brane tubes. Using Onsager’s variational formalism we have calculated the full
relaxation dynamics for the Fourier modes in the shape of the membrane tube,
assuming a small deformation limit, and analysed the asymptotic limits of the re-
laxation rates. This work accounts for variations in surface tension, previously only
considered in the axisymmetric case [Boedec et al., 2014], and also viscosity contrast
between the interior and exterior ambient fluid.

The scaling behaviour of the relaxation modes is analysed and characterised
in both the long and short wavelength limits. Unsurprisingly, in the short wavelength
limit we recover the scaling behaviour of a flat membrane for all angular modes.
More interesting behaviour is found in the long wavelength limit, particularly in the
case of the bending modes (m = £1), where we find a relaxation rate that scales
like that of the normal modes of an elastic rod in a viscous fluid. We can also
reproduce the pearling instability growth rate found in Ref. [Boedec et al., 2014]
which is recovered when we set m = 0 and choose a sufficiently high value of surface
tension (o > 3k/(2r3)). These relaxation dynamics are significantly different from
those found for flat membranes [Fournier, 2015; Seifert and Langer, 1994] or for
spherical vesicles [Sachin Krishnan et al., 2016]. In the case of the spherical vesicles
the system can be written purely in terms of a sum over one Fourier variable due
to the coupling imposed by spherical symmetry. This does not happen in the case
of the tube as ¢ and m are independent of one another.

We then make use of these relaxation equations to compute the fluctuation
spectra for passive thermal fluctuations and a simple minimal model of active fluc-
tuations [Sachin Krishnan et al., 2018; Gov, 2004]. The active noise clearly breaks
the fluctuation dissipation theorem, due to the presence of dissipative terms in the
mean-square fluctuations, see Eq. (4.39). The active noise also shows the same crit-
icality of the bending modes (m = 1) in the long wavelength limit found in thermal
fluctuations [Fournier and Galatola, 2007].

We compute the effective temperature of the system with both thermal and
active fluctuations and show that, for long tubes, the clearest signature of this active
noise is in the bending modes (m = 1). This should be a measurable prediction with
current experimental setups, e.g. using a similar approach seen in Ref. [Valentino
et al., 2016] and changing the external viscosity. This could be used to infer in-
formation about the size of forces and activity time-scales for different sources of

activity (assuming they can be reconstituted in-vitro). Perhaps the most pressing
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open question in the field of active membranes is what functional form is best used
to represent the active fluctuations. The simple model of a direct force used in
this paper, though used successfully throughout the literature to describe real sys-
tems [Gov, 2004; Prost and Bruinsma, 1996; Sachin Krishnan et al., 2018], does not
respect force balance at the level of an individual fluctuation. More complex models
of activity have been proposed for specific situations, for example using dipole forces
and allowing fluid permeation of the membrane [Manneville et al., 2001], however
a general framework is lacking and the effect of different models of active noise on
observable phenomena is not yet well understood.

For future work, it would be interesting to consider the effects of different
formulations of activity (both in tubes and other scenarios). Furthermore, real
membranes are often highly heterogeneous, consisting of multiple phases [Sackmann
and Feder, 1995]. These multi-component membranes have been shown to have
interesting properties, both in their statics [Leibler and Andelman, 1987; Fonda
et al., 2018; Wolff et al., 2016] and dynamics [Sankararaman et al., 2002; Komura
et al., 2015], which would be interesting to study in the presence of active fluctuations
in the highly curved geometry of membrane tubes. It would also be interesting
to consider the effect of a visco-elastic ambient fluid as this may give a better
approximation to the cytoplasm in cells. Not only would this give potentially richer
dynamics, due to the presence of of an additional time-scale, but it could also be
useful in understanding more realistic biological processes [Komura et al., 2015;
Nixon-Abell et al., 2016; Abounit and Zurzolo, 2012].
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Chapter 5

Discussion & Outlook

Lipid membrane tubes are abundant inside cells and their dynamics have been im-
plicated in many important processes. In this thesis we have considered some theor-
etical models of simple situations, designed to mimic important processes in biology,
in an attempt to elucidate the underlying physics. Here we briefly outline some pos-
sible future directions of research and extensions to the work in the three main

chapters of the thesis.

5.1 Hydro-osmotic instabilities

The main key extension to this work would be considering the effects of a finite
length tube, e.g. a finite tube surrounded by a “cytosol” opening into a reservoir at
lower osmotic pressure. This would lead to gradients in the concentration of ions
inside the tube, and hence a gradient in pressure which could then drive flows. This
model with small perturbations to the radius (or a sphere/tube geometry if beyond
the threshold for a hydro-osmotic instability) could be used to compute a steady
state of flux into the tube across the membrane and out into the exterior reservoir.
It would be instructive to use such a simple model to analyse whether it can be used
for osmoregulation and what constraints are set on the system.

Beyond simple tubes there is significant biological motivation to study the
behaviour of such instabilities in tubular networks, both from the contractile vacuole
literature [Allen, 2000] and the peripheral endoplasmic reticulum [Nixon-Abell et al.,
2016]. Such an investigation would likely require numerical approaches either using
surface evolver for the statics [Brakke, 1992] or more sophisticated finite element
methods for the full dynamics [Elliott and Stinner, 2010; Barrett et al., 2016].
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5.2 Shear-driven instabilities

In the case of the shear-driven instability the main result is an amplification of
the fluctuations due to shear in the azimuthal flow field on the membrane tube.
Again finite element simulations might provide one route to better understanding
this problem. However this could prove challenging as most current methods for
covariant hydrodynamics do not incorporate fluctuations, which are vital to this
phenomenon.

Perhaps the most promising future direction would be to consider experi-
ments similar to the magnetic tweezers setup proposed in Chapter 3. This would
give some indication as to how important these shear effects are for real systems,
particularly for parameters when the fluctuation amplification is beyond linear ana-
lysis. This experiment may prove difficult as oscillations may be introduced to the
tube from the magnetic trap so shape undulations may not be purely caused by the
shear rate.

The helical geometry of Dynamin could also be considered in more detail and
we could also look at the effect of hydrodynamics on other similar proteins (ESCRT
for example) [McDargh and Deserno, 2018; Lenz et al., 2008; De Franceschi et al.,
2019]. This work would most likely have to be performed numerically or with coarse
grained hydrodynamic models as the complex geometry of the ground-state would

make the full covariant hydrodynamics intractable [Arroyo and DeSimone, 2009].

5.3 Dynamics of active membrane tubes

In the case of more general theories of active membranes it may be instructive, in the
first instance, to consider close to flat membranes (Monge gauge). It would be worth
developing a simple model of active fluctuations which does not break force balance
locally. One way to do this might be to consider fluctuating quadrupoles acting
normal to the membrane and to see if this makes any difference in the fluctuation
spectra when compared with the simple direct force model used in Chapter 4 and
much of the literature [Gov, 2004]. This would also differ from some of the more
physically realistic models of active membranes by having true active fluctuations as
opposed to thermal fluctuations coupling to dipole fields which cause the fluctuation
dissipation theorem to break down [Manneville et al., 2001].

In terms of experimental verification for membrane tubes it appears that
in-vitro experiments on tubes pulled from GUVs might soon have the resolution

required to measure active fluctuations [Valentino et al., 2016]. In order to be
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able to compare the experiments meaningfully with theory it would be necessary
to calculate how the fluctuation spectrum is modified by a finite length tube and
how length fluctuations come into play [Barbetta and Fournier, 2009]. This would
be important so as to know exactly which modes should be fitted with the power
spectral density inferred from experiment (in the current experimental paper only

axisymmetric modes are considered).

5.4 Conclusion

In conclusion, we have developed several theoretical models of dynamical processes
in lipid membrane tubes. These models have been heavily inspired by real processes
in cell biology, and our analysis has allowed us to understand some of the physics
underlying these processes. There are still many outstanding questions in both
theory and experiment, with the interplay between the two makes this an exciting

area to work as a theorist.
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Appendix A

Additional details for Chapter 2

A.1 Approximate solution for slow pumping

Fig. A.1 shows the agreement between the asymptotic solution to the radial dy-
namics: R(t) = (1 +t/7'pump)1/2 (Eq. (2.18)) and the full numerical solution of
Eq. (2.17).

We can find the radius R(q) at which the mode ¢ first goes unstable by
finding the zero of the a(g) polynomial, Eq. (2.12), defining R(q) = V3R, + 6 R(q).

For the small ¢ limit and assuming 5}]%—23) is small we find

‘Sg@ ~ V3 (Rogq)? (A1)

Using Eq. (A.1) with the approximate solution for R(t) gives a formula for the time
the mode ¢ first goes unstable

t: A Tpump (2 + 64°%) (A.2)

where ¢ = qReq.

A.2 Defining the dominant wavelength

Defining the dominant wavelength of a time dependent growth rate is in general
a difficult task; as the peak of the dispersion relation is time dependent we must
instead consider the full growth history of each mode. We define the dominant mode
at linear order to be the first one to have (|uy|*) = CRZ, where C = 1. It is therefore
a sensible thing to check that the chosen value of the cutoff, C, has a minimal effect

on our results, i.e. the dominant wavelength at linear order should be constant for
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Figure A.1: Top: plot showing approximate solution (dots, Eq. (2.18)) and full
numerical solution (solid line, Eq. (2.17)) for radius growth due to ion pump os-
motic pressure. Bottom: plot showing the absolute error between the approximate
solution and numerical solution.

C ~ 1. Plotting ¢* against C, Fig. A.2, shows a weak logarithmic dependence of the
dominant wavenumber on C'. The only pronounced effect for a cutoff around linear
(C ~ 1) order might be to shift the values in the fast pumping limit by < 5%, the

values for physiological parameters remain virtually unaffected.
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Figure A.2: Plot of dominant wavenumber, ¢, against cut-off criterion, C'. Crucially
any dependence on C' is very weak. The values of mump and 7, have been chosen
to correspond with the four corners of the surface plot shown in Fig. 2.6. All times
are in units of seconds.

A.3 Weak dependence of dominant wavelength on the

pumping rate in the physiological range

The asymptotic solution presented in the main paper is valid for parameter estimates
consistent with the CVC. It is of interest to see how the wavelength of the instability
varies with pumping rate in this limit. The wavelength of the instability varies with
pumping rate but very weakly (slower than logarithmically). The wavelength for
time-scales consistent with the CV pumping is A ~ 1um which is of the correct
order of magnitude for the CV and much larger than the tube radius. The weak
dependence of the wavelength on the pumping provides a robust mechanism of size

regulation, Fig. A.3.

A.4 Osmotic shock

Inserting the time-dependent solution of Eq. (2.19) in the growth equation Eq. (2.26)
(including thermal noise, as in Eq. (2.30)) gives access to the evolution of the amp-
litude of the different modes. The exact value of the dominant ¢ depends on the
permeability 4 (or the time-scale 7,) and the magnitude of the shock Ap/pg. A 3D

plot of how this varies is shown in Fig. A.4. Comparison with the behaviour that
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pumping time-scales 7, /Tpump for the asymptotic solution found in the main paper
(Eq. (2.18)). Here 7,,/7, = 10~%. This plot is essential a cross-section of Fig. 2.6 in
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Figure A.4: Surface plot showing the dominant wave-number of an instability driven
by osmotic shock when varying permeation time-scale, 7, and shock magnitude

Ap/po.

arises in the presence of ion pumps (Fig. 2.6) shows that the peak value of the dom-
inant mode is the same in both case, and corresponds by the peak of Fig. 2.3. This
peak occurs for fast pumping (7,/7, > 1072 - Fig. 2.6) or for strong osmotic shock
(Ap/po > 10 - Fig. A.4), showing that these two situations are somewhat similar.

However the details are different due to the different dynamics of tube inflation in
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both cases.

The drop off in dominant wavelength of the osmotic shock instability when
permeability and shock magnitude are very large is caused by the decrease of the
peak of the growth rate relation at very large radii (Fig. 2.3). This happens because
of a decrease in the contribution of the bending rigidity to the energy at large radii
and small ¢. The surface tension contribution to the energy remains, hence the
instability starts to be dominated by surface tension. The only contribution of the
bending terms is to increasingly stabilise the larger values of ¢, thus pushing the
peak wavelength to lower ¢. Interestingly the bending rigidity in this limit acts in
a qualitatively similar manner to a large difference in viscosities discussed in the

original fluid jet papers [Rayleigh, 1892; Tomotika, 1935].

A.5 Note on numerical implementation

All the numerics shown in Fig. 2.5 and Fig. 2.6 of the main paper are implemented
using a discrete Fourier transform, as such the autocorrolation function, (|4]?) has
units of [Length]?, this choice of implementation is used to simplify the criterion
for the fully developed instability. The longest mode in real space is chosen to be
104Req, this corresponds to a small enough spacing for the g space to approximate

a continuum.
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Appendix B

Additional details for Chapter 3

B.1 Differential geometry and exterior calculus

Here we present a “users guide” to the style of geometric notation used in the main
paper. We do not focus on mathematical rigour here, for a more formal treatment
see [Frankel, 2011].

If we define a manifold M"™ where the derivative of a curve at point p € M"
gives an element of the tangent space X, € T, (M"), we can express this in terms

of a coordinate basis

X, =X <aii>p = X' (&), (B.1)

where Einstein summation over mixed indices is implicit.

If we choose a family of curves on M"™ with continuous derivatives we can
extend the definition of the tangent space to the tangent bundle on M", T (M") =
UpTp (M™). This extends the definition of a vector to a vector field on the the
manifold, X € T (M").

The dual of T (M™) can be defined as the cotangent space 7*(M™). An
element of this space, a 1-form, is defined in the following way w € 7* (M™)

w(X) =R (B.2)

In coordinate notation
X) = w; X7dz! 0 _ XI5t = w; X B.3
w(X)=uw; a5 = wiX!0; = wiX". (B.3)

In general a type (p, q) tensor field, T is defined in the following way
T(Xl,...,Xp,wl,...,wq) —R (B.4)
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where Xi,..., X, € T (M") and wy, ...,wq € T* (M™).

We can define a type (2,0) metric tensor on the manifold as
9(5): g(X,Y) =R (B.5)
where XY € T (M").
g(-,-) = ds? = g;jda’da? = ¢ - ;da'da? (B.6)

which allows a mapping between vectors and 1-forms.
The exterior or wedge product between two 1-forms is defined as the totally

asymmetric tensor product
Wi AWy =w] Q@ wy —wy Q wi. (B.7)
A p-form, «, can be defined from p 1-forms as
a=wi ... A\wp. (B.8)
This has the following property
WINA AW A LAW A ey = =W A AW AL AWy A Lwy (B.9)
for any two s, . Or in coordinate notation
Qirosj = — Qi s.r..j (B.10)

where oo = aimjd:z:i Ao Adad.

This along with the metric leads to the natural geometric definition of the
volume form vol” := ,/gdz' A ... A da", where g := det(g;;).

The exterior derivative, d, of a smooth function f is just its differential

df = %dxi. The exterior derivative, d, of a p form is a p + 1 form
da =do;. j N dz' A ... Ada?. (B.11)

The Hodge star operator, x : 7(M)*) — 75(M)*=k) is defined by the

Hodge inner product of two differential forms o and

aAN*p=(a-p)vol” (B.12)
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in coordinate notation we have
*x o = €.,/ det gajlmjkg“jl o gRIRAZ A A datn (B.13)

where € is the totally asymmetric tensor.

A diffeomorphism is a map between two manifolds that is smooth, one-to-
one, onto and has a smooth inverse. The Lie derivative is a natural object to use
in continuum mechanics as it describes how a vector field Y changes along the
flow generated by a vector field X. If ¢(t) = ¢, is a diffecomorphism parametrised
by t and describing the local flow generated by X, where t is defined such that
limy—,0 ¢+ (X) = X, then we define the Lie derivative of a vector field Y with respect

to a vector field X as follows

(O—t+ Yo, — Y2
t

[LxY], = lim =XY)-Y(X) (B.14)
t—0

as such LxY is a vector field on M™. Similar identities can be derived for more

general tensors [Frankel, 2011].

We will define the Laplace-Beltrami operator as
ALBZ—*d*d (B15)

which for scalar ¢ and vector v is the following in index notation

Appd = — 0; ( |9|9ijaj¢>

1
vl (B.16)

Arpv? = —/|gl€np€ri g’ 9" Om ( 99" "0, (Urgm'))

where the later formula is not usually given in the literature as it is simpler to work
with exterior calculus identities (which is how we will proceed).

One final point of note is that we will use the b, # notation to denote raising
and lowering of indices for conciseness. For example, if v € T (M") and w €

T* (M™), then

= gijvjdxi = v;dz’ (B.17)

Wt = g7w;€; = w'e;.

92



B.2 Screening of membrane flows by bulk fluid mech-

anics

We will consider hydrodynamics on a static membrane tube (i.e. we assume that
the cylindrical geometry is stable to perturbations in shape). In the limit of small

inertia the 3D velocity field, , satisfies the continuity and Stokes equations
V-i=0; nV2i=VP (B.18)

where P is the pressure and 7 the viscosity. This is coupled to the membrane velocity
at the boundary with a no-slip condition.
Stress balance at the membrane is imposed by the 2D continuity and Stokes

equations and, for surfaces of zero Gaussian curvature, can be written as
Viv' =0;  nmArpy; — Vio =t7 +1t; (B.19)

where 7, is the (2D) membrane viscosity, o is the surface tension, v = v'e; is
the tangential membrane velocity and Ayp is the Laplace-Beltrami operator (form-
ally this corresponds to Apg = dd where d is the exterior derivative and § is the
co-differential). The combined operator dd is the generalization of the curl-curl
operator to a manifold and acts like a Laplacian [Rahimi et al., 2013; Arroyo and
DeSimone, 2009]. The symbols t;t are the traction forces from the bulk fluid act-
ing on the membrane (+ denoting interior and exterior respectively)[Arroyo and
DeSimone, 2009; Fournier, 2015].

We will consider a system of a membrane tube with radius ro = where

K
200’
k is the bending rigidity of the membrane and oy is the equilibrium surface tension.

This is the radius which minimizes the Helfrich Hamiltonian for a fluid membrane
F = / dAr (2/€H2 + O’o) (B.QO)
r

where I and dAr denote the manifold describing the neutral surface of the membrane
and its associated area element, and H is the mean curvature [Zhong-Can and
Helfrich, 1989]. For typical membrane tubes fissioned by Dynamin 79 ~ 10nm
[Roux, 2014].

We use standard cylindrical coordinates (r, 8, z) and take the boundary condi-
tion for flow on the membrane to be v|,—¢9 = vo€y, we treat this as an approximation
to the flow induced by Dynamin.

We can then solve Eq. (B.18) & Eq. (B.19), making use of symmetry v =
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Figure B.1: Flow field for the ground-state of the spinning membrane tube with
radius 79 = 1.0, and Saffman-Delbriick length LT% = :7777”0 = 10%*. The boundary
condition on the tube at z = 0 is v(0) = vo where 12 = 103571

v(z)éy, U = u(r, z)ey they reduce to

r (B.21)
oI +t5 +t, =0

1
;& (royug) + 9%ug —

. +
where t(jt = lim,_y, nro, <8TT“

We can now solve this numerically by direct
methods (taking a Neumann boundary condition for the bulk flow at z = 0 and
u = 0 at large distance and r = 0) [Ferziger and Peric, 2002]. The flow field
computed by this method can be seen in Fig. B.1.

To understand how the flow field on the membrane varies with Saffman-
Delbriick length it is helpful to examine the analytic solutions to the coupled mem-
brane bulk system in Fourier space. The flow field on the membrane in response
to a point force in the 6 direction, Fp, was found analytically in Ref. [Henle and

Levine, 2010], and in the limit ro < Lgp this gives

V22| ] |

v &2 )€y eXp [— Nip (B.22)
0
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Figure B.2: Flow-field decay rate, A (with units Length_l) against Saffman-Delbriick
length Lgp for tube spinning velocity at z = 0 given by :f—g =10%s"1.

In the original paper our boundary condition corresponds to vg = 3 ff)’ LQ%(‘?. Note
m

that this is # independent as the m = 0 Fourier mode dominates the bulk dynamics
in this limit, so each cross-section of the tube rotates with a constant velocity. This
means that the flow on a tube is screened like v ~ e=*| where A = —¥2_. This

v Lspro

approximate analytical expression can be compared to numerical solutions where

we find that it reproduces the correct power law relation between A and Lgp, see
Fig. B.2.

For flows with large Lsp /79 ~ 103 —10* this gives a screening length of order
100r¢ so as long as we consider flows where L < 107y then membrane dissipation

should dominate.

B.3 Effects of geometry on driving force

To try and understand the effect of the instability in more complex geometry (in
particular with non-zero Gaussian curvature in the ground state), we need to con-
sider the term driving the instability as the full calculation becomes intractable very
quickly. All the forces acting normal to the membrane which drive the instability are

due to the term b’ § V;v7, in particular the driving force (per area) is set by the linear
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response coefficient of the mixed second derivative of the shape, kg.(z) which is now
a function of z due to change in geometry (specifically the non-constant gradient in
the flow field ground state). The driving force per unit area scales like
0%u
fdriving ~ Qnmkez(z)m (B'23)
so we will consider how kg, (z) changes as we change the geometry of our ground-
state.
For some general axisymmertic ground-state parametrized by the vector X =
(r(z)cosf,r(z)siné, z) with ground-state flow field v0(z)ey we find (up to linear

order in perturbations)

bljvivj = a,0000V5 + A21900-0V, + k@zaaeal; + b.091090v9 + koOpu (B.24)
where
" B —r'(2) = 2r'(2)3 — r'(2)° + r(2)% (2)r" (2)?
2000 = r(2)2(1+ r'(2)2)5/2
. B 7,//(2)
kHz =

[ —00(2)r'(2) = v0(2)r" (2)° + r(2)00' (2) + r(2)r' (2)*0 (2) + 1(2)00(2)r (2)r" (2)

X (r(z)2(1 +1'(2)%)%/? -

1
SN T SE
ey = v0(2)

RERVETIEE

(B.25)

B.3.1 Neck (Catenoid)

To consider the effect of the instability in a more realistic in-vivo situation, for
example on the neck of a budding vesicle, we look at the ground state flows and
kg, on a catenoid, r(z) = rgcosh <%> The ground state surface flow is solved
numerically with boundary conditions v(0) = 1, v(2) = 0 taking 7o = 1 and L = 2
for simplicity. From this we can evaluate kg, and compare to the case of a tube.
This is shown in Fig. B.3. Note the amplification of ky, by a factor of 2 near the

centre of the catenoid when compared to the tube. The consequences of this for

96



1.0F.

Catanoid |

Figure B.3: Left: plot of the catenoid with radius ro = 1. Right: Plot of the
force linear response coefficient for the mixed shape derivative (i.e. the term in the
normal force that goes like f ~ kg,0p,u) for the helical shape perturbations on such
a surface.

dynamin are discussed in the main paper.

B.4 Derivation of rate-of-deformation tensor using local

constructions

If we consider a membrane which when un-deformed, M, and is approximately flat

then its line element (metric) can be written
ds? = dz? 4 dy?. (B.26)

If we deform this manifold by the vector (¢, $y,?) to a new manifold M’ and

choose coordinates z, y such that the second fundamental form of of M’ is given by

b= (dz dy) (lzl 52) (jf;) (B.27)

The new metric on the surface M’ is given by ds”? = (da’)? + (dy’)? where,

to lowest order,

Az’ = (1 — k19) (1 4 0p¢) Az + 8y ¢xdy

(B.28)
dy’ = (1 — ko) (1 + 8y¢,) dy + Db, da.
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so the new metric is given by

ds” = (1 = 2k19) — 20:¢;) da® + 2 0oy + Oyby) dady

B.29
+ (1 = 2kot) — 20yby) dy? (B.29)

up to linear order in the variables (¢4, ¢y,1) and their derivatives.
If we assume (¢z, ¢y, V) = At (vy, vy, w) = AtV, where V is the membrane
velocity then we can write

L=1 [ds”? — ds?
2 (B.30)
= At [(&va — kyw)dz? + (O2vy + Oyvy) dazdy + (Oyvy — kow) dyQ]

and dividing by At and taking the limit At — 0 gives the rate of deformation tensor

1 ) .
d= 5 (Vﬂ}j + Vjvi) — wbi]' dz' ® da?. (B.31)
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Appendix C

Additional details for Chapter 4

\Ifj: —+

. +
C.1 Expressions for ¢ amd Zqm

qm?

Here we give expressions for the scalar Laplace function decompositions for the
Stokes equations after imposing the boundary condition, Eq. (4.22) and making use

of the continuity equation to eliminate vgm. This gives
f, = 2r0 |G (4iv],, — 3qrotigm) Ky — 4m (Grotigm — 2iv},) Km—1Km
+ 4 (Toaqm + ngm) K,,Qn, —qNQTOquKTQn.;_J X |:7Q3K’§I’L—1
+2(9m — 8) P K2 _1 Km + 4G (m (m — 8) — 2¢°) Kyp1 K7,

—1
—8m (m? + &) K;«ff(;ﬂ] , 1)

qm

vl =70 [ —8K2, (vZ, (m* +2(m + 1)m@® + ¢*) — igrotigm (m(3m +2) + %))
+ 8K m—1Km ((m® + (m — 2)@%) vZ,, — i(m — 2)grotigm )
+2¢° 3Ky, 1 + K7 ) ((m? + @) vfn — iGrotigm) ]
x [mq(fs (m® +m@®) K3}, — 1K), — K

-1
+2(8 — 9M) P K K2,y + 4G (24° — (m — 8)m) Kanm_1>] : (C.2)
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=4 = 0] 80K, (o (2 + ) = i+ i)
+ (6iG° K7,y + 2iG° K2, ) Vi — 84K m K1 (Grgigm — imuv},,) ]
X [é (=8 (m® +m@®) K3, + T K,y + K

-1
+2(9m — 8)FP K K21 + 4G ((m — 8)m — 2¢%) K%Km_lﬂ , (C.3)

®,,, =0 [I?n ((m® = 1) rotigm — iquey,) + @1 (Grodugm — ivg,)
— 2mIm Irm—1 (Grotigm — z'ugm)] x [c}(cf[;l_l

—1
+ (2(m = 2)m — @) I3 L1 + (2 — 3m) Gl 121 + m@fg)] : (C.4)

Wem =170 [ — 211 (m%ém + (m— 1)§2v2m —i(m — 1)Grotigm)
+ G5,y ((m* + @) V5, — Girotigm))
+iI2, (Totigm (2m(m + 1) + ¢*) + iqUey, (m(m +2) + i)) ]

X l:qu(qNQI?nl + (2(m —2)m — ¢*) I} I

-1
2= st 2+ mal})| (©5)

Egm =70 [Im[m_l (=@rgtigm + 2imv},,) + I, ((m + 1) rotign + iGus,)
- ic}vémfii_l] X [QN(qﬂffn—l + (2(m = 2)m = ) I I
—1
+ (2 = 3m)Gln I + mzj[f’n)] , (C.6)

where the modified Bessel functions K,,, I, are evaluated at r = rg.
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C.2 Relaxation dynamics of linear Zimm model

Here we consider the relaxation dynamics of small planar normal perturbations to

a thin elastic rod whose position is given by
7= (z(t) cos ¢z, 0, 2), (C.7)

and has geodesic curvature k, = —q%x cos qz.
We will assume z(¢) is small compared with the scales we are considering

such that the elastic force-per-unit length on the rod is given by
f: (—AVQk‘g +Tky,0, 0) = (—Aq4x cosqz — Tq?x cos gz, 0, 0) , (C.8)

where A is the bending rigidity of the rod and T is the tension [Audoly and Pomeau,
2010).

We can now write the dynamics of this rod as a continuous Zimm model

?_—/ds*A(*—s*)f(s*), (C.9)

where

1 - -
AF—f)=— L [ T=98F=9 (C.10)
Bl — 3 =3P
is the Oseen tensor [Doi and Edwards, 1986].
At linear order and in the long wavelength limit (we choose a short wavelength
cut-off of the rod radius, r¢) this gives
(Ag* + Tq*)Ci(gro)

T~ A1
T T x, (C.11)

where Ci(grg) = — frzo dz’ cos(qz’)/«’. This gives a relaxation rate that scales like
A~ — (v +log§)® in the small § limit, where v is the Euler constant. This agrees

with the scaling of a membrane tubes bending mode in the long wavelength limit.
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Appendix D

Résumé de these en francais

Les tubes membranaires sont des structures omniprésentes dans les cellules, et la
compréhension de leur dynamique et de leur morphologie est d’une importance cru-
ciale pour la biophysique cellulaire. Cette these aborde plusieurs aspects de la dyna-
mique des tubes membranaires dans des situations o ils sont déséquilibrés par divers
processus inspirés par des phénomenes biologiques. Nous analysons le gonflement de
tubes due a des pompes ioniques entrainant une différence de pression osmotique,
ainsi que les instabilités qui en résultent. Ceci est inspiré par la structure d’un or-
ganelle appelé le vacuole contractile, et conduit a une nouvelle instabilité avec une
longueur d’onde naturelle beaucoup plus longue que celle résultant d’une instabilité
de type pearling. La stabilité des tubes membranaires présentant un écoulement de
cisaillement a leur surface est également analysée. Nous avons découvert et analysé
une nouvelle instabilité hélicoidale qui conduit a I'amplifications des fluctuations
du tube. Nous discutons de la pertinence de cette instabilité dans le processus de
scission des tubes induite par la dynamine. Enfin, nous considérons la dynamique

et les fluctuations d’un tube membranaire sur lequel agissent des forces actives.

D.1 Introduction

Nous commencons par esquisser une breve histoire de la mécanique en biologie
cellulaire. Nous discutons des travaux de D’Arcy Thompson qui, pour la premiere
fois, appliqua des idées issues des mathématiques et de la physique a I'étude des
organismes en 1917. Nous passons ensuite a une vue d’ensemble des développements
les plus récents, notamment la nage a faible nombre de Reynolds, les études sur les
globules rouges, les cristaux liquides actifs et la dynamique des tiges et des filaments

visqueux.
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Ensuite, nous décrivons plus en détail ’auto-assemblage des lipides en struc-
tures en bicouches membranaires (en particulier dans la phase désordonnée des
liquides) et discutons de I'importance de ces membranes comme interfaces entre
différents compartiments cellulaires dans les cellules eukaryotes. Etant donné que
ces structures sont généralement tres minces, elles peuvent étre considérées comme
des structures 2D entourées par un environnement 3D. Nous introduisons quelques
outils de géométrie différentielle pour décrire de telles surfaces (variétés). A partir de
14, nous discutons des travaux fondamentaux de Helfrich, Evans et Canham qui ont
menés a la définition d’une énergie de courbure pouvant étre utilisée pour décrire
les formes des bicouches lipidiques.

Nous discutons des formes simples d’énergie minimale, telles que des sphéres
et des tubes, avant d’énoncer I’équation de forme complete pour décrire une surface
arbitraire. En nous limitant aux surfaces possédant une symétrie axiale, nous discu-
tons des solutions qui correspondent & une membrane soumise a force ponctuelle, Fig.
1.8. Nous discutons les considération énergétiques expliquant I'instabilité classique
de perlage d’un tube membranaire, qui est observée lorsque la tension superficielle
dépasse un seuil critique.

Nous discutons la mécanique statistique de la membrane soumise aux fluc-
tuations thermiques et obtenons le résultat de I’équipartition pour les ondulations
quadratiques moyennes d’un tube membranaire. Enfin, nous fournissons une breve
discussion de la dynamique des fluides aux échelles cellulaires, en particulier de la
facon dont les termes inertiels dans les équations hydrodynamiques peuvent étre

négligés a cette échelle.

D.2 Instabilités hydro-osmotiques dans les tubes mem-

branaire actifs

Dans ce chapitre, nous étudions un tube membranaire doté de pompes ioniques
unidirectionnelles entrainant une différence de pression osmotique. Ceci est inspiré
d’un organelle trouvé dans de nombreux protistes d’eau douce (organismes euca-
ryotes unicellulaires) appelé le complexe vacuole contractile, Fig. 2.1a. Cet organelle
agit comme une pompe pour éliminer ’exces d’eau des cellules et constitue ainsi un
mécanisme d’osmorégulation. Le vacuole contractile est dotée de pompes a protons
unidirectionnelles sur toute sa surface qui consomment de 'ATP pour transporter
des protons contre leur gradient de concentration, ce qui entraine une différence de
pression osmotique qui permet a la vésicule principale de se remplir d’eau. Un pore

ancre cette vésicule a la membrane plasmique. Lorsque la vésicule est completement
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gonflée, ce pore s’ouvre et la pression de Laplace expulse I'eau.

La vésicule principale est entourée de 5 a 10 bras en forme de tubes mem-
branaires, eux aussi recouverts de pompes a ions, qui se gonflent sous l'effet de
la différence de pression osmotique et semblent ensuite subir une instabilité mon-
trant un gonflement hétérogene, Fig. 2.1a, b. Ces protubérances ont des tailles ca-
ractéristiques bien supérieures a celles d’une instabilité typique de pearling.

Nous étudions ce mécanisme en considérant un tube membranaire infini re-
couvert de pompes a ions qui transportent des ions & travers la membrane a un taux
constant par unité de surface. Nous calculons la croissance du tube en raison de cette
augmentation de la pression osmotique, Eq. 2.18, et considérons les perturbations
linéaires sur cet état fondamental en évolution constante. Parce que le tube est ini-
tialement stable, toutes les ondulations initiales seront amorties. Nous incluons donc
un terme de forgage stochastique choisi qui conduirait aux fluctuations thermiques si
le tube était en équilibre. La résolution de la dynamique stochastique complete pour
le déplacement quadratique moyen des ondulations conduit une instabilité avec un
nombre d’onde naturel ¢ = grg ~ 0.05 — 0.1 (o ¢ est le rayon d’équilibre du tube)
pour des valeurs de parametres compatibles avec des expériences d’électrophysiologie
sur le vacuole contractile. Cela correspond a une longueur d’onde d’environ 1 a 10
microns, ce qui est du méme ordre de grandeur que celle des protubérances observées
dans le vacuole contractile.

La raison de cette grande longueur d’onde est que le fonctionnement lent des
pompes a ions conduit & une dynamique qui reste a tout moment tres proche du seuil
d’instabilité, de sorte que seules les longueurs d’onde élevés sont rendues instables.
Cela est également dii au fait que le taux de croissance des différents modes possede
un pic pour un vecteur d’onde ¢ qui est une fonction non monotone de rayon du tube,
avec un maximum pour ¢ = 0.2. Pour l'instabilité classique du perlage, le taux de
croissance possede un pic pour un vecteur d’onde ¢ = 0.6 entierement déterminé par
la géométrie du tube. Ce qui contribue également a expliquer la longueur d’onde
plus élevée de notre instabilité, voir Fig. 2.2, 2.3. Il s’avere également que cette
sélection de longueur d’onde est tres robuste aux modifications de nos parametres.
La longueur d’onde exacte est définie par le rapport des temps caractéristiques
de pompage ionique et de dissipation visqueuse. Cependant, une modification de
plusieurs ordres de grandeur de ce parametre ne conduit qu’a une variation un
facteur de deux de la longueur d’onde.

Nous avons développé un modele de membrane perméable a 1’eau contenant
des pompes a ions unidirectionnelles. Les instabilités hydro-osmotiques observées

devraient appartenir a cette classe d’instabilités. En dérivant des équations dyna-
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miques pour un tube membranaire, nous identifions une instabilité provoquée par ce
déséquilibre osmotique. Cela a une longueur d’onde naturelle qui est définie par les
parametres dynamiques, en particulier le rapport entre 1’échelle de temps de pom-
page et I’échelle de temps visqueuse, et qui est nettement plus longue que celle de
Iinstabilité de Rayleigh ou de pearling. Il est intéressant de noter que la longueur
d’onde obtenue est du méme ordre que celle observée dans les bras radiaux du com-
plexe vacuole contractile, ce qui suggere qu’il s’agit d’un mécanisme possible pour
expliquer la morphologie de ces bras. Il est également intéressant de noter que la
taille latérale des excroissances formées par l'instabilité est du méme ordre de gran-
deur que la taille de la vésicule principale du complexe vacuole contractile. Nous
supposons que cette instabilité peut fournir un mécanisme pour la biogenese du va-
cuole contractile & partir d’un tube actif sans particularité. Nous avons l’intention

d’aborder plus avant la question de cette organellogénése dans nos travaux futurs.

D.3 Instabilités par cisaillement sur tubes membranaires

Motivés par la mécanique de la scission des tubes membranaires induite par la
dynamine, nous utilisons ’hydrodynamique covariante pour analyser la stabilité des
tubes membranaires soumis a un flux de cisaillement dans la direction azimutale.
L’hydrodynamique covariante des membranes de fluide a suscité un vif intérét au sein
de la communauté des spécialistes de la matiere molle et de la physique biologique au
cours des dernieres années, tant pour les caractéristiques théoriques générales de tels
systemes que pour leur application a des processus biologiquement pertinents. Ces
systemes associent I’hydrodynamique des membranes a 1’élasticité de courbure et se
sont révélés présenter un comportement viscoélastique complexe dans les géométries
a forte courbure.

L’un des moyens les plus simples de décrire les écoulements & la surface de
ces tubes consiste a imposer une vitesse dans la direction azimutale. L’analyse des
modifications de forme induites par de tels écoulements est le sujet de ce chapitre. La
Fig. 3.1 illustre deux mécanismes possibles pour réaliser de tels écoulements via des
expériences in vitro et in vivo. La fission des tubes membranaires joue un role impor-
tant dans de nombreux processus cellulaires, allant de I’endocytose a la fission des
mitochondries. Le composant clé de la machinerie biologique nécessaire pour induire
la fission membranaire est une famille de protéines appelée Dynamin, qui hydrolyse le
GTP en GDP. La dynamine est un complexe protéique qui s’oligomérise pour former
des polymeres qui s’enroulent en hélice autour des tubes membranaires. Il est claire-

ment établi que Dynamin subit un changement de conformation suite a I’hydrolyse
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du GTP. Cependant, il n’existe pas encore de consensus sur la méthode exacte de fis-
sion, bien que des simulations numériques récentes aient montrées le role probable de
la constriction et de la dépolymérisation. Il a été démontré expérimentalement que,
lors de I’hydrolyse du GTP, la dynamine tourne rapidement tout en se rétrécissant.
La fréquence de rotation peut étre de 'ordre de 10Hz, donnant un mécanisme pour
la génération de flux de membrane dans la direction azimutale. Un autre moyen pos-
sible de générer de tels écoulements consiste & extraire un petit tube d’une vésicule
unilamellaire géante (GUV) ou d’une cellule avec des pinces magnétiques appliquant
une force sur une bille magnétique fixée a la membrane et & utiliser des oscillations
de champ magnétique pour faire tourner la bille.

Nous analysons la stabilité d’un tube membranaire soumis a un taux de ci-
saillement €2 aux perturbations de la forme, de la vitesse de surface et de la tension
de surface. En résolvant les équations hydrodynamiques a la surface, nous pouvons
écrire une équation dynamique pour les perturbations du rayon en fonction des
modes de Fourier. Cela montre qu’il existe une instabilité hélicoidale entrainée par
le cisaillement avec une longueur de pas définie par la taille du tube. Ceci est ana-
logue a une instabilité similaire dans une tige élastique torsadée a chaque extrémité.
Cependant, en raison de la nature fluide de la surface, la forme est modifiée par
I’écoulement de I’état fondamental, ce qui entraine ’ajout de spires supplémentaires
a 'hélice a chaque tour. Cette advection stabilise finalement la croissance de I'hélice
et conquit a un état stationnaire hors d’équilibre. Pour comprendre les implications
de ce mécanisme d’amplification, nous résolvons la I’équation différentielle stochas-
tique dans la forme afin de tenir compte des fluctuations thermiques Eq. 3.38. Ceci
nous permet de calculer les fluctuations quadratiques moyennes de 1’état station-
naire, Fig. 3.3. Nous estimons la vitesse de rotation nécessaire pour obtenir des
déformations non-linéaires et discutons des implications possibles de ce mécanisme
d’amplification de la fluctuation sur la scission du tube par la Dynamin, Fig. 3.4.

En résumé, nous avons développé une théorie hydrodynamique qui prédit
une instabilité sur des tubes membranaires fluides qui est uniquement provoquée
par un cisaillement constant de la membrane. On montre que de tels écoulements
provoquent d’abord une instabilité hélicoidale, ce qui est tout a fait distinct de toute
instabilité précédemment identifiée des tubes membranaires fluides. Cette instabilité
conduit & un état stationnaire associé a une augmentation significative du spectre
de fluctuation d’un tube membranaire. Nous prédisons que cette instabilité est phy-
siologiquement accessible a la Dynamin, bien que ce phénomene n’ait encore jamais
associé a la fonction de la Dynamin. Cette instabilité constitue mécanisme qui pour-

rait conduire a la scission des tubes, par ex. suite a une augmentation de tension
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membranaire dans I’état hors d’équilibre, ou a 1’évolution non-linéaire de la forme

d’un tube sous cisaillement.

D.4 Dynamiques passives et actives des tubes membra-

naires

Le but de ce travail est d’obtenir des équations générales d’évolution d’'un tube
membranaire soumis & une distribution de forces fluctuantes arbitraire due a des
phénomenes actifs. En utilisant la formulation Onsager, nous dérivons des équations
dynamiques pour la relaxation de la déformation d’un tube membranaire fluide per-
mettant un contraste de viscosité entre l'intérieur et I’extérieur du tube, ainsi que des
variations de tension superficielle dues aux écoulements de membrane. Pour obtenir
les équations completes du mouvement en utilisant la formulation de Onsager, nous
devons d’abord écrire le Rayleighian. Le Rayleighian complet pour le systéeme est
obtenu a partir de la somme du taux de changement d’énergie libre pour le systeme,
Eq. 4.6, et des dissipations d’énergie (la moitié du travail effectué sur le systeme),
Eq. 4.7, et en ajoutant les contraintes sur le systeme en utilisant des multiplicateurs
de Lagrange. Cette formulation équivaut a 1’équation cinétique de Onsager avec des
coefficients réciproques, mais est obtenu par formalisme variationnel, avec ’avantage
que la recherche des couples de flux et de forces corrects est maintenant triviale puis-
qu’elle dérive directement du principe variationnel. Cette approche nous a permis
d’obtenir les équations de mouvement couplées pour le systeme en prenant simple-
ment en considération les fonctions de dissipation pertinentes et les contraintes du
systeme et en tirant toutes les conséquences d’un principe variationnel.

En utilisant la transformée de Fourier et la solution connue aux équations
de Stokes en 3D, nous pouvons trouver une équation de relaxation pour les per-
turbations de forme, équation 4.25. Nous considérons la dynamique de relaxation
pour tous les modes, en examinant en particulier leur comportement asymptotique.
Nous montrons que le mode m = 0 donne le méme comportement de relaxation
et l'instabilité de pearling que 'on trouve dans d’autres articles qui ne prennent
en compte que les perturbations a symétrie axiale, Fig. 4.2a, 4.3. Nous analysons
également le comportement de mise a 1’échelle pour des valeurs plus élevées de m.
Le mode m = 1 a un comportement intéressant dans la limite des grandes longueurs
d’onde, ou il se comporte comme une tige élastique, Fig. 4.2b. Les valeurs les plus
élevées m = 2, 3,4... ont toutes un comportement de relaxation similaire, résumé a
la Fig. 4.4.

Sur la base de ces tax de relaxation, nous examinons la dynamique des fluc-

107



tuations thermiques passives et des fluctuations actives. Dans ce cas, “actif” fait
référence aux fluctuations ne satisfaisant pas le théoreme de fluctuation-dissipation.
Nous calculons les fluctuations quadratiques moyennes pour les fluctuations passives
et actives et calculons la “température effective” de chaque mode m en fonction de G,
Fig. 4.7. Nous discutons de la fagcon dont la variation de la viscosité externe pourrait
permettre de mesurer la contribution des fluctuations actives dans une expérience
sur un tube extrait d’'un GUV. Pour les travaux futurs, il serait intéressant d’exami-
ner les effets de différentes formulations d’activités (a la fois dans les tubes et dans
d’autres scénarios). Il serait également intéressant de considérer l'effet d’un fluide
ambiant visco-élastique, car cela pourrait donner une meilleure approximation du
cytoplasme dans les cellules. Cela donnerait non seulement une dynamique poten-
tiellement plus riche, en raison de la présence d’une échelle de temps supplémentaire,
mais pourrait également étre utile pour comprendre des processus biologiques plus

réalistes.

D.5 Discussion et perspectives

Les tubes membranaires lipidiques sont abondants a l'intérieur des cellules et leur
dynamique a été impliquée dans de nombreux processus importants. Dans cette
these, nous avons examiné quelques modeles théoriques de situations simples congus
pour imiter des processus importants en biologie, ’objectif étant de les utiliser pour
élucider la physique sous-jacente. Dans ce chapitre, nous décrivons brievement cer-
taines orientations futures possibles de la recherche et des extensions du travail dans

les trois chapitres principaux de la these.
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