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A Bayesian method for calibration and
aggregation of expert judgement

David Hartley and Simon French

Abstract This paper outlines a Bayesian framework for structured expert judgement
(SEJ) that can be utilised as an alternative to the traditional non-Bayesian meth-
ods (including the commonly used Cooke’s Classical model [13]). We provide an
overview of the structure of an expert judgement study and outline opinion pool-
ing techniques noting the benefits and limitations of these approaches. Some new
tractable Bayesian models are highlighted, before presenting our own model which
aims to combine and enhance the best of these existing Bayesian frameworks. In par-
ticular: clustering, calibrating and then aggregating the experts’ judgements utilising
a Supra-Bayesian parameter updating approach combined with either an agglomer-
ative hierarchical clustering or an embedded Dirichlet process mixture model. We
illustrate the benefit of our approach by analysing data from a number of existing
studies in the healthcare domain, specifically in the two contexts of health insurance
and transmission risks for chronic wasting disease.

Key Words: Structured Expert Judgement, Risk assessment, Bayesian hierarchi-
cal model, Calibration, Homogeneity groups.

1 Introduction

Statistical decision theory outlines how decision makers are regularly required to
make judgements in the face of uncertainty. Suppose a decision maker (DM) needed
to assess the consequences of their decision based on the outcome of a set of im-
pactful variables, X, known as farget variables. Let us assume he or she starts by
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specifically considering the expected outcome of a single random variable X € X.
Furthermore, let us assume that observations of X, denoted xx, follow an unknown
probability distribution p(xx). In many cases the DM may not have the data to as-
sess p(xx ) robustly and so must reach out to experts to give their assessment of their
uncertainty. Let E define the set of experts, |E| the number of experts and e¢ € E an
individual expert. Let us assume the DM held the belief, 7py(xx), prior to talking
to the experts and the experts’ beliefs are given by pg(xx) = {pe(xx) : ¢ € E}. The
goal of a structured expert judgement model will thus be to build a distribution for
the DM’s perspective of the uncertainty given the experts’ statements, ppy(xx ). We
are looking for a function ¢ such that ppy(xx) o< ¢ (pg(xx), Tpp(xx)) [26]. This
problem corresponds to the expert problem as outlined in French [21] and [22].

A simple approach which recognises that the DM may explicitly rely solely on
the experts, is for the DM to simply average over the experts’ beliefs, i.e. ppy =
O (pe) = Y.ocr(1/|E|) pe. Here DM prior beliefs are either ignored or added into the
sum by stating that the DM is an additional expert in E. This method can then be
easily extended to allow the DM to vary the effect of each expert on the resulting
distribution.

poM =Y, BePe (1)

ecE

where @, is a weighting factor for expert e. These methods are termed linear pooling
methods ([31], [25], [10]). Different pooling models then propose different ways to
determine the relative weightings @,. This can be simple averaging or determined
based on some performance evaluation metric. The most utilised version of this
linear opinion pool is Cooke’s Classical model [13] and Cooke’s model is often
taken as the benchmark for comparing algorithmic methods.

Key benefits of these pooling methods include; simplicity for DM’s to understand,
speed of application, and critically, they make the aggregation process transparent
and auditable. They have also, in the case of Cooke’s Classical model in particular,
proven to be robust under significant scrutiny [19]. They are not, however, without
issue. They do assess diversity of opinions provided, however, they do not cap-
ture any underlying consistency in opinion the experts may be highlighting. Pooling
methods also mean that DM’s own beliefs are not considered explicitly, (other than
in parity with the experts if their own assessment is included in the sum). Similarly,
known biases in experts or inter-expert correlation can impact how a DM may wish
to update their belief but are not considered. Finally, the key output of a pooling ap-
proach may be an unparameterised distribution. Often a parameterised distribution
(to feed as a prior into a further model) is desired. If parameterised distributions
are elicited directly from experts, or we fit a continuous parametric distribution to
elicited quantiles, the output of pooling methods will be a finite mixture of parame-
terised distributions.

Bayesian models try to tackle these issues whilst retaining some of the advan-
tages of the pooling techniques. A Bayesian expert model flowing directly from
Bayes theorem assumes that the posterior the decision maker has on xy, conditional
on the experts’ beliefs, ppy(xx|pr) is proportional to the likelihood they ascribe to
hearing the experts’ elicited values of pg given xx, ppm (pE|xx ), multiplied by the
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prior belief the DM has, Ttpyy, i.e. ppy(xx|pE) < pom (pE|xx) * Tpa(xx ). Thus the
DM treats the elicited information as data. Bayesian methods for expert judgement
are not new ([38], [40], [37], [20]). They have not been used in practice as much to
date as pooling techniques due to an over-sensitivity to input conditions and diffi-
culty in implementation, the key challenge of which is calculating the likelihood
function ppy(pelxx). Early Bayesian models treated experts as completely ex-
changeable and did not consider calibration, this often resulted in very narrow pos-
terior distributions which demonstrate high overconfidence. There is broad recog-
nition that today, pooling models, Bayesian methods and indeed other approaches
conceptually may outperform each other in different contexts ([18], [13], [50]).

Recently, Bayesian methods have become more tractable. Albert et al. [2] demon-
strated a Supra-Bayesian hierarchical model for the aggregation of expert judgement
utilising homogeneity groups. But, (as was discussed in the subsequent comments)
did not explicitly tackle how a DM could adjust for known calibration issues of the
experts, nor how the homogeneity sets into which experts are grouped could be
attained. Similarly, Clemen and Lichtendahl [9] put forward an intriguing hierar-
chical approach into how one could address calibrating an expert’s opinion but not
how a DM could then aggregate these recalibrated results together. More recently,
Billari et al. [4] proposed a relatively parsimonious Bayesian aggregation method
considering mixture models and Perild et al. [42] proposed an interesting model
for calibration utilising Gaussian hierarchical processes. In none of the models out-
lined however, has calibration, aggregation and homogeneity group definition been
attempted within a single framework.

Remark. There are those who would argue this form of aggregation should not
occur at all, [36]. They suggest we bypass the issue of combining probability distri-
butions altogether. Firstly, by getting experts to share all the information they have
relevant to the issue at hand and then having the group of experts discuss, align
and agree on a “single body of evidence.” This evidence is then passed through
Bayes theorem item by item to arrive at a posterior probability curve. This is ar-
guably a mixture of a behavioural and algorithmic method for aggregation. Other
behavioural methods such as the DELPHI [16] and the SHEFFIELD [23] method ex-
ist, however, these are not without their own issues and are reviewed in French [22]
and EFSA [18].

Other potential models for analysing and aggregating expert judgement sit out-
side of traditional probability theory and consider broader concepts inherent within
evidence theory or Dempster-Shafer theory ([30], [1], [5], [44]). Problems with sig-
nificant structural uncertainty will lend themselves to utilise these methods. In this
case we will be focussing on areas where the structure is formalised sufficiently that
Bayesian methods are applicable. Although we do note, that further work should
be done to assess and compare Bayesian methods for SEJ versus those that utilise
evidence theory notably, the transferable belief model, [30].

It is also important to highlight the different DM contexts within which SEJ stud-
ies are performed. In some studies there is a specific DM who is close enough to
the modelling to provide their prior belief, 7pys, into the process. In these instances,
as outlined previously, the modelling is calculating how the decision maker should
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adjust their beliefs given the experts’ judgements. In other contexts the DM is far-
ther away from the modelling and the output of the SEJ study is the perspective of
a rational scientist, [18]. Here the aim is to identify what a rational scientist would
believe given the experts’ statements. All of the knowledge about the target vari-
ables should be encoded in the experts’ judgements and the DM prior used in the
model should be as uninformative as possible. This second context is very common
and the Bayesian approach needs to be applicable in both cases.

There is an important decision to be made about whether experts are making an
assertion regarding the uncertainty of an input variable to a decision/model, (i.e.
helping with the construction of an informative prior for a larger more complex
model) or to the resulting output (supporting the development of the DM’s full pos-
terior for the model). This has implications regarding whether experts should pro-
vide judgements on parameters or only upon observables. For now we will leave
aside this question as in many cases this subtlety does not impact the final result and
therefore, unless explicitly stated, we will assume it does not matter.

In practice it can be difficult for experts to think in terms of distributions and
therefore it is often wise to simplify the problem by not directly eliciting the distri-
bution or parameters involved. Instead we can extract each expert’s perspective on
some intuitive points within the broader distribution and then construct a function
g. which represents our best approximation to the expert’s beliefs given the elicited
data. Cooke [13] outlines the benefits of eliciting in this way, given the challenges
experts have in mentally formulating parametric distributions. Typically we would
elicit three quantiles' from each expert e € E, L., M,, U,, associated with three prob-
abilities Pr, Py, Py (often the 0.05, 0.50 and 0.95 quantiles) and the full distribution
for the expert is approximated by g.(-|L.,M,,U.). In certain studies, five quantiles
may be elicited (often these represent the 0.05, 0.25, 0.5, 0.75 and 0.95 quantiles).
In this case, the full distribution g, is thus conditional accordingly. g, will often
be from a parametric family and as such we encode our model further by utilising
L,,M,,U, to infer the parameters ¥, of g., that represents the expert e’s conceptual
model of X. Thus, g, and ¥, should be chosen in such a way that it closely ap-
proximates the expert’s beliefs at the elicited quantiles (i.e. g.(x|7.) = pe(x) + €,
with minimal error term &€.). This process should not be done in isolation from the
experts and a feedback process is often employed to playback g, and give an op-
portunity for refinement. Other methods exist for obtaining g, more directly from
experts and many authors have considered the best elicitation methods for expert
judgement models ([3], [7], [29], [28], [23]). The decision maker’s prior will often
be elicited and parameterised in a similar way.

This paper contributes further to the discussion by outlining a more complete
Bayesian model, building on the work of Albert et al. [2] and Clement and Lich-
tendahl [9], which both calibrates and aggregates the experts’ judgements into a
suitable parameterised posterior for the decision maker, whilst also assessing proba-
ble homogeneity groups for the experts. This assessment is made using a clustering
algorithm. Advantages of different clustering techniques are discussed. This method

! The elicited quantiles should be equivalent to the expert’s true beliefs +/- any elicitation error
[45].
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is reviewed against both the simplistic expert averaging pooling model and the pre-
vailing SEJ model (Cooke’s Classical model) within two historic studies.

In Section 2 we review the commonly used Classical model in addition to the key
Bayesian approaches which we will build from. Section 3 will outline the structure
of our model before an analysis of results for two historic studies and conclusions
in Sections 4 and 5 respectively.

2 Outline of key SEJ methodologies

One of the key issues when considering expert judgement is that the DM is consid-
ering the psychology of the experts as much as the quantitative information they
provide. There is much literature into the cognitive biases that experts may exhibit,
[35], as well as the reasons for discrepancies in the judgements they offer [41]. Two
topics that can be useful for highlighting differences between experts’ judgements
are expert statistical accuracy and expert information [13].

Statistical accuracy assesses how well an expert’s forecasts truly represent reality.
An expert’s judgements on a variable may not reflect truth due to a fundamental
misunderstanding of the underlying generative physical model or they may simply
be miscalibrated due to a systematic error such as overconfidence or some form of
cognitive bias.

Remark. In some of the earlier literature on Cooke’s Classical model [13] ex-
perts’ “statistical accuracy” was referred to as “calibration”. In order to avoid
confusion with recalibration techniques, discussed later, Cooke has recommended
updating the terminology [11].

Information, is a measure of how useful an expert’s opinion is to a DM. If an
expert provides a very vague forecast this is less useful for decision making than
if they are able to be more specific (assuming they are statistically accurate). Thus,
typically a high level of information would manifest as a very tight distribution (or
narrow set of quantiles) elicited from the expert. Information is a concept closely
aligned with ‘sharpness’ of forecasts, outlined by Gneiting et al [27]. Sharpness, in
this context, is defined by the concentration of predictive distributions. Similar to
information, sharpness is a property of the forecasts only.

Cooke’s Classical model utilises these two phenomena, creating a weighting for
each expert in an aggregation of the form (1). This weighting is calculated based on
the expert’s performance over a set of seed variables for which true realisations are
known a priori. Bayesian models approach these topics differently, trying to adjust
the DM’s belief given the information they provide. There is a subtle but important
distinction here. In the Classical model, experts are included (or excluded) based
on their performance relative to these measures. In the Bayesian model, all experts
are included equally, however, the uncertainty the DM has regarding the variables,
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i.e. the credence he or she puts in what they hear, is adjusted based on experts’
performance in these variables.?

2.1 Cooke’s Classical model

Based on the linear opinion pool, the format of Cooke’s Classical model is as equa-
tion (1). Weight for expert e, @, is proportional to the product of a statistical accu-
racy score and an information score, given the data elicited from e. Statistical accu-
racy is calculated as the p-value of e’s assessments for a number of seed variables
versus empirical results, measured via a chi-square test. Information is as function
only of the judgements themselves and is an assessment of the increased precision
e gives versus a background distribution, typically the uniform or log-uniform dis-
tribution. Informativeness is measured utilising Shannon relative information. For
a full outline of Cooke’s Classical model, a review of some of the original litera-
ture ([13], [14]) is recommended. It has been shown that Cooke’s format preserves
the behaviour of an asymptotically proper scoring rule and thus each expert will be
rewarded for demonstrating their true beliefs.

The number of practical applications of the Classical model in decision prob-
lems is testament to the clear benefits this framework has. This model has proven
to be robust; Cooke ([13], [15]) has a database of over 80 studies conducted us-
ing this methodology and there are many publications validating the results of the
model ([12], [8], [19]). There are however, limitations to this approach in addition to
those outlined for pooling techniques in general. In practice, in a large proportion of
Cooke’s model applications, the majority of experts are set with a weighting of zero
and only a few impact the final result (with the exception of tail extremities which
still consider all experts). In many cases all of the weight goes to a single expert.
French [22], postulates that this approach may be seen as undemocratic as members
of the group may be completely excluded from the final decision. The statistical ac-
curacy calculation of the Classical model also relies on a significant number of seed
variables, however, ultimately only uses these as a scoring mechanism. If an expert
were to display consistent bias, their accuracy score would be low and their impact
on the final decision would be minimal. If it were possible to adjust for this bias in a
rigorous way however, their full judgement could be utilised to help inform the DM.
In many cases the cost of collecting data is high and as such the maximum amount
of verifiable information needs to be extracted from each data point.

2 One philosophical debate concerns whether the DM should be allowed to adjust experts’ elicited
values. Doing so potentially reduces accountability for the experts. If you do not adjust however,
knowing that experts are miscalibrated, then you may be wilfully ignoring useful information. In
this paper we will not consider the merits of either philosophy in detail, however, will outline a
model which adjusts for known calibration issues.
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Bayesian models? try to address some of these issues, however, inherently create
some of their own. They are by nature more complex than pooling techniques and
for a Bayesian approach to be considered a practical choice for a DM it must thus be
shown to outperform Cooke’s Classical model against some criteria. The appropriate
criteria to use here will be discussed later. Within this paper we will demonstrate the
impact that considering these elements can have to the final distribution for a DM.

2.2 A Bayesian model for calibration

Consistent with ideas from Cox [17] and Morris [39], Clemen and Lichtendahl [9]
developed a model of overconfidence using past data to estimate, what the authors
term, “inflation factors” for assessed distributions post hoc. Bayesian hierarchical
models are used, allowing experts to be calibrated individually whilst simultane-
ously capturing inter-expert calibration effects. Before outlining the more complex
hierarchical elements of the model however, it is helpful to outline how the inflation
factors for a single expert are calculated.

Let us suppose, as per prior notation, a DM has reached out to a group of experts
(E) in order to help assess uncertainty for an unknown quantity X. Let us assume
further he or she has reason to believe expert e € E may be prone to some form of
consistent bias which the DM wishes to remove before updating their own belief ac-
cordingly. Finally, we assume the DM has asked e to assess three quantiles, denoted
by L., M, and U,, (e.g. 0.05, 0.50 and 0.95), corresponding to lower, middle and
upper estimates respectively. We will outline later the impact of other choices here.
The goal of the DM is to be able to transform e’s responses on the tail quantiles into
their unbiased counterparts L} and U,

Remark: For a three quantile model, it is possible to infer inflation factors for the
spread of the distribution (i.e. calculate the unbiased values L} and U} ) or to create
an inflation factor for the location parameter, M} = B.M,, but not both. To attempt
to define all three simultaneously, given only three elicited quantiles, would lead
to an overspecified model, almost completely defined by the choice of priors. The
original model outlined by Clemen and Lichtendahl [9] attempted to infer all three
parameters and so we use a slightly different structure. Experts’ miscalibration with
respect to spread is typically a more meaningful metric to calculate, thus in a three
parameter model we define the median estimate to be its own unbiased counterpart,
i.e. M = M, and attempt to infer L} and U}. We will later demonstrate an extension
to the parameterisation to a situation with five elicited quantiles whereby B, can be
inferred.

Rather than calculating inflation factors directly on the elicited values the bias in
the spread is calculated relative to the distance from M. The theory here is that there
exists multiplicative parameters oy, and oy, such that oy (M) —L,) and o, (U, —

3 In trying to address some of the more complex elements of SEJ, such as inter-expert correlation,
Bayesian approaches may suggest some procedural changes to the structure of an expert judgement
study, a selection of these are outlined in [32].
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M) are unbiased. oy, and o, are therefore scale parameters whereby a value, for
either, strictly greater than 1 suggests that the expert is overconfident. L} and U; can
thus be calculated by:

LZ :M: — (X[e(M: —Le) = (1 — (X[g)Me+ oL, 2)
U =M, + aue(Uo— M) = (1 — 04 )M, + 040U, 3)

Having established the relationship between the elicited values and their unbi-
ased counterparts, we need to fit a model, g., to approximate the unbiased expert
distribution p.(x|L},M;,U;). The model Clemen and Lichtendahl propose fits two
uniform components on the intervals [L}, M;] and [M], U;] respectively with ex-
ponential tails above U, and below L;. However, this choice is arbitrary and later
we will outline another approach. The assumption Clemen and Lichtendahl make is
that final results should be largely invariant to these modelling assumptions.

Remark. The formulation of inflation factors in this way makes the assumption
that all of the training variables are on the same scale (i.e. if some variables are
logarithmic in nature and others are not this would create a challenge in this ap-
proach). Wiper and French [50] rescaled judgements through the DM’s prior to
avoid assumptions on the common scale. This is something that could be assessed
for our approach, however, it is outside of the scope of this paper.

Thus, the task now becomes how to assess the unknown parameters ¢, and ..
The core premise of calibration is that each of these variables is assumed to be con-
stant for each expert (within the pool of seed and target variables). SEJ studies of
this nature are typically one-off activities, and the seed variables are elicited in a
single process alongside the target variables. If seed variables were captured longi-
tudinally over time then experts would have the opportunity to learn and adjust and
this assumption regarding constant bias will be incorrect.

From standard Bayesian theory, if ¥1,...,Yy| € Y are assumed to be random vari-
ables sufficiently similar to X, e has historically made judgements against Y and the
DM holds the observed values yi,...,yy|, (Which can be perceived to be exchange-
able). Then the data set compromising {yy} and {Ly.,My,, Uy} for Y € Y can be
used to discover the posterior distributions for each of the unknown parameters.*
The set Y is termed the set of seed variables. We can build a model utilising a
Markov chain Monte Carlo (MCMC) method such that Ve € E,Y € Y:

Yy Nge('|LY6aMYEaUYeaale7aue) 4)

where Ly,, My,., Uy, denotes expert e’s elicited quantile for ¥ and yy represents the
true realisation of Y, VY € Y. After a sufficient burn in period the model can outline
posterior distributions for the hyperparameters ¢, and o, for each expert. Thus,

4 The subscript ¥ here, and in all future formulas, is used to denote that these are quantiles elicited
for the seed variable Y € Y. Similarly, from here onwards, the subscript X, denotes a variable
relating to a target variable X € X and the superscript * denotes an unbiased value calculated post
recalibration.
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the DM has the scale by which he or she should adjust the expert’s elicited opinions
on X before updating their own belief.

This calibration approach could be calculated for each expert individually, how-
ever given potential common sources for bias across experts, expert to expert corre-
lation should be assessed. Sources of bias common to multiple experts might include
mutual experiences or identical literature reviewed. To establish potential correla-
tion here, the model is extended hierachically to capture this behaviour. Let o, be
assumed to be a random draw from a gamma distribution:

Qe|A1, B ~T'(A+1,B;) ®)
where hyperparameters A; and B; are defined by:
A; ~ Pois(a;) and B; ~ Exp(b;) 6)

If we set a; and b; to 2; this results in a relatively diffuse positive prior, with mean
near 1. This is the prior as outlined in the original paper, [9]. The gamma distribution
was chosen due to its strictly positive shape and the Poisson and exponential forms
were selected in order to govern the behaviour of the gamma and ensure that it was
diffuse and with a suitable mean. There is no logical interpretation of the forms
evident here, they were selected for their shapes. Nonetheless, this is a compelling
prior to use as clearly the scale parameters must be greater than zero and we are
starting from the premise that experts are likely to be calibrated.

An identical model can then be applied to .. The complete parameterisation
of this model will result in a set of hyperparameters (A;, B;,A,, B,) which capture
the similarities in behaviour across experts. When there is internal structure within
the set of experts, i.e. a subset of experts come from similar backgrounds or schools
of thought, experts can be grouped together into what are known as homogeneity
groups. Each group can then have its own set of these hyperparameters which infer
group behaviour. Implementing this through a hierarchical model will result in the
posterior distribution for these hyperparameters in addition to those of each experts’
characteristics. The calculation of expert to expert correlations it could be argued
is a significant advantage of the Bayesian approach over some of the classical SEJ
models.

Experts may be subject to cognitive biases which drive grouping, in addition to
their school of thought/background. In the primary definition of our model, only
overconfidence bias is addressed (in the calibration step). This mitigates some of
the potential issues, but is not sufficient for bias management overall within an SEJ
study. We contend that the modelling exercise is not the only mechanism to manage
bias. Other biases should be addressed during the elicitation process and be embed-
ded into the facilitation protocol.

A graph of the full calibration model is outlined in Fig. 1. Each graph outlined
in this paper has three components; nodes, edges and plates. The nodes represent
the quantities in the statistical model. Rectangular nodes denote constants and el-
liptical nodes are stochastic variables. Deterministic nodes are logical functions of
other nodes and will also be elliptical. An edge defined by a solid arrow indicates
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YinY

einE

Fig. 1 Hierarchical model for expert calibration utilising standard plate notation, grey ellipses
represent known values, white ellipses unknown variables and smaller squares indicate fixed model
parameters. True seed variable realisations yy are assumed to be random draws from a distribution
determined by expert e’s unbiased quantiles Ly,, My,,Uy,. These unbiased quantiles are a logical
function of the elicited quantiles, Ly,,My,,Uy, and the inflation factors ¢y,, 0. calculating the
expert’s overconfidence.

stochastic dependence between the variables. An edge with a dotted arrow indicates
a logical function. Grey shapes are known values. In order to keep the size of the
graph small, repeated parts of the graph are represented using a plate (a large rect-
angular box). The plate will contain an index in the bottom left corner which will
denote the element that is repeated.

If experts operate as coherent subjective Bayesians, certain forms of recalibration
drive philosophical mathematical inconsistencies [34]. The exact form of calibration
we are employing is explicitly excluded from the mathematical analysis in Kadane
and Fischhoff [34]. In large data sets, such as Cooke’s Delft database there is also ev-
idence of incoherence among expert judgements, even on small numbers of elicited
quantiles.

It is important to note that this formulation of expert recalibration is reliant on
a certain level of mathematical coherence in expert’s responses. Whilst it manages
for lack of statistical accuracy it does not adjust for incoherence. If, for example, an
expert had judgements in which the lower quantile is greater than the mid quantile or
in the extreme case an upper quantile less than the lower quantile then this approach
will not work. The authors recommend that these forms of incoherence should be
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challenged and managed as part of the elicitation process rather than the modelling
process.

It would be possible, if desired, to create a simpler parameterisation here. Rather
than having different hyper-parameters for the upper and lower inflation factors
A;,B;, Ay, B, we assume that oy, and o, are random draws from a single distri-
bution determined by just two hyper-parameters, A and B. This would minimise the
number of elements that need to be specified, but would put constraints on the rela-
tionship between the two inflation factors. Leaving these separate, allows for free-
dom in the model for these to be unrelated and potentially in opposing directions,
i.e. over-confident in the lower quantile and under-confident in the upper quantile.

2.3 A model for aggregation

The traditional Bayesian approach treats the elicited information from experts as
data and updates the DM’s prior via Bayes formula [21]. The aggregation model,
taken from Albert et al. [2], utilises a Supra-Bayesian parameter updating approach
for combining indirect elicitation across multiple experts. Here we use the term
indirect elicitation as rather than eliciting parameters from experts directly, experts’
knowledge is elicited on more intuitive observables and the (hyper)parameters then
inferred. Similar to Clemen and Lichtendahl’s model, this method is generic and can
be utilised with a multitude of parameterisations.

The aggregation model starts with the clustering of experts into homogeneity
groups. Let us assume the experts are broken into a set of homogeneity groups H,
comprising of groups i € H, each of size |A| such that | Uh| = |E|,h € H. The aim
of the model will be to assess the variation both between and within these homo-
geneity classes. Homogeneity classes effectively use weighting to adjust for depen-
dence between experts rather than by attempting to elicit some form of correlation
structure. The ability to account for inter-expert dependence is important to ensure
uncertainty is not understated and is one of the advantages of Bayesian approaches
[48],[49],[32]. Selecting the right homogeneity classes is imperative. The guidance
from Albert et al. is for experts within a class to be selected “corresponding to simi-
lar backgrounds or schools of thought.” When this assignment is not trivial, or there
are multiple potential grouping choices, a protocol for defining the groups can be
useful. Later we will touch on how algorithmic approaches may be used to create
H.

Let ¥, be a parameterisation, such that g, (-|7.) represents the conceptual model
about X held by expert e who is a member of homogeneity group /. Subscript eh
is used from here on to denote this membership. The authors suggest the following
hierarchical model to group experts:

Yo ~ f(-|Yn,pn) Ve €E
W~ fClv,p)  VheH 7
Y~ Tipm
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einkE

hinH

Fig. 2 Hierarchical model for expert aggregation. Experts’ opinions, which are elicited as quan-
tiles, Lep, My, Uy, are related, via a logical determination, to a distribution parameterised by 7,y,.
The 7, are considered samples from homogeneity groups with location parameters ;. Each 7,
is in turn, drawn from an overarching distribution, with parameters ¥, representing the DM’s ag-
gregate belief. Model dispersion parameters pj, and p are also random variables. The number and
structure of priors for these parameters will be determined by the choice of distribution f and so
for simplicity are not included in the diagram.

Here, experts within a single homogeneity group have parameters drawn from
a consistent distribution f(|y,,pr). Each of the homogeneity groups has their pa-
rameters drawn from a single distribution f(+|y,p). The p terms here represent dis-
persion parameters and the y terms represent location parameters. Note. the term Y,
represents the output of the model, or more explicitly, the agreement of the experts
given the decision maker’s prior. Fig. 2 outlines a graphical view for the aggregation
model in standard plate notation. The functional form of f will be dependent on the
choice of parameterisation g,.

A simple parameterisation of (7) would be the two parameter model such that
y=(u,0?) where u € R and 7 = 1/6% > 0. The complete model would thus be:

T
IJ'eh|,uh7ph ~ JV(IJh,Ph) ah’-}zvéh F(éh,éh) ek
Ll p ~ A (1. p) Tlh|f7gwp(§7g) @)

vhecH
p o~ A (Upm; po) o
T ~1, I'(a,a)



Calibrating and Aggregating Expert Judgement 13

In this model, (i, T) represent the target consensus values; (L, T;) are the homo-
geneity classes values and the (U, T.;) represent the parameterisation of the views
of the individual experts, i.e. g.() = -4 (Uen, Ten)- The expert level location parame-
ters, U, are assumed to be random draws from a normal distribution with a location
parameter defined by the homogeneity group within which the expert sits. The p
values represent the dispersion of these distributions. The ratio between the expert
level dispersion parameter and the homogeneity group dispersion parameter, will
be strictly positive and is determined by a gamma distribution, with parameters &j,.
The homogeneity group parameters are linked to the global parameters in a similar
way. £ and a represent the parameters of the distribution of the global to homogene-
ity group dispersion ratio and the dispersion prior respectively. When we build this
out further in section 3.2, we will use a split normal and thus 7y will be extended to
include a third parameter.

With suitably diffuse priors selected by the decision maker (specifics outlined
later) the full posterior of this model can be calculated utilising Gibbs sampling.
The above has demonstrated the appropriate model for aggregation of a single target
variable. Fig 2. (and 8) could trivially be extended to the whole set X (with a plate
around the whole diagram and the appropriate subscripts), as each aggregation is
independent.

3 Structure of the model

To get to our final Bayesian model for structured expert judgement, as outlined in
the introduction, it is critical to perform both the calibration steps and the aggre-
gation steps on the experts’ opinions. It is also necessary to give the DM a more
specific approach for calculating the homogeneity groups required by these hierar-
chical approaches.

Let the base calibration and aggregation models be defined as above and assume
all prior notation outlined remains constant. We will first turn our attention to how
we would use this information to calculate the homogeneity groups and then will
outline how the grouping, calibration and aggregation steps are all linked by de-
scribing the method in full.

3.1 Calculation of homogeneity groups

Suppose that two experts exist within a single homogeneity group, i.e. come from
a similar background and school of thought. Given the structure of the hierarchical
model, the parameters (},;,) which represent their beliefs about X are drawn from a
single distribution f(-|y,px). It is reasonable for the DM to suppose therefore, that
the experts’ beliefs about the seed variables Y are also drawn from similar distribu-
tions i.e. experts belong in the same homogeneity group for all elicited variables. If
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we consider a single expert e that belong to one of the homogeneity groups /4 then
this expert will be similarly grouped in the homogeneity sets for both the target and
the seed variables. i.e.

ecE : {eehheH}x = {echhecH}y )

here {-}x refers to the set of homogeneity groups formed when considering the
output variables, {-}y is similarly defined for the seed variables.

Note. Assuming that the seed variables Y are sufficiently similar to the output
variables X, (9) makes intuitive sense. The drivers of expert homogeneity groups we
are trying to build, such as common schools of thought, should not vary between
variables. If seed variables significantly different to the target variables are chosen,
however, then an individual expert may come from many different schools of thought
and therefore this assumption, and the resulting algorithmic approach would break-
down. Although, in this instance the seed variables would add little value to any SEJ
approach that the DM may be using.

Following from (9); given that {h € H}y, = {h € H}y, =--- = {h € H}y,, let
us consider the |Y| dimensional space € RIY/ formed by responses to the |Y| seed
variables, which are linearly scaled to the unit interval. Each expert’s response for
the mid-quantile defines their position along the relevant axis, and therefore each
expert is represented in this space by a single point Y,. It is reasonable to assume
from here that experts from a single homogeneity group have responses clustered
in some sense within this space. Thus, assigning experts to homogeneity groups
simplifies to identifying clusters in the seed variable space and creating an index for
each expert based on the cluster within which their seed variable responses sit.

Note. Here we are defining clusters only by expert’s responses to the seed vari-
ables, Y, we do not consider their responses to the target variables, X, when de-
termining their homogeneity groupings. Whilst it would be in principle feasible to
perform the exercise over the bigger space & RIYHXI getermined by the experts
mid quantile responses to both seeds and targets, this is not recommended. As the
number of dimensions increases the elements will become sparser and the cluster-
ing will be less evident. More research is recommended to understand the impact of
clustering over the seed variables, the seed and the target variables or indeed the
target variables alone, however this is not covered within the scope of this paper.

Clustering is an exploratory data analysis technique and there is no single def-
inition of what constitutes a cluster, nor how rigidly items must be allocated into
these clusters. Given that experts cannot be in multiple homogeneity groups, each
expert’s responses must belong to exactly one cluster and therefore a hard cluster-
ing is needed. Furthermore, the set of homogeneity groups must be a covering of
the experts, therefore we are ultimately looking for a strict partition clustering of
the space.

One approach to defining the clusters is to do this through visual inspection. In
low dimensional data sets, appropriate clustering can often be determined simply
by looking at a plot of the elements in either the x,y plane or the x,y,z cube. Visual
inspection is often not feasible in SEJ studies as there are often many more than three
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seed variables. This creates a high dimensional space which cannot be visualised
easily.

To overcome these challenges we recommend algorithmic cluster determination
followed by targeted visual inspection, for validation. The algorithmic approach
ensures that the full dimensionality of the data is considered, and provides a mech-
anism which removes as much subjectivity as possible in the cluster definitions.
Visual inspection provides an opportunity for the rationale behind the clusters pro-
posed by the algorithmic approach to be made clear. This can enhance buy-in and
allow for adjustment if there is staunch disagreement or further knowledge to be
embedded.

There are a multitude of algorithms that could be considered to estimate the clus-
ter structure (and therefore the underlying homogeneity groupings). Agglomerative
hierarchical clustering algorithms are an appealing method to use as they are easy
to conduct pre-analysis, easy to understand and provide a nice visual way for a DM
to review the clusterings that will ultimately impact the model. They have also been
shown to work well over sparse data sets.

The hierarchical clustering process is an iterative algorithm which initially puts
each element into its own cluster and then merges clusters together based on their
distance apart and a linkage criteria. This process is repeated until all of the elements
are merged into a single group. Each step in the process creates a different potential
set of clusters. In order to arrive at our final strict partition a cut of the clusters which
exist at one step in the process is taken. This cut can be created either visually by
looking at a dendogram of the hierarchical clustering and considering the distance
shift at each merge or by conducting the clustering using a library which considers
many potential metrics and determines the cut for you, e.g. NbClust in R.

Note. The maximum number of feasible clusters is simply the number of experts
present within the study. If each expert sits within their own cluster, and therefore
their own homogeneity group, the middle step in the hierarchical aggregation model
becomes redundant. In this instance the model can be thought of as only having two
levels, an expert level and a total global level. For utilising the three levels in the
hierarchical aggregation process, therefore, we need to consider groupings whereby
at least two experts are combined, i.e. where the maximum number of clusters is
|[E| —1.

The disadvantage of a hierarchical clustering approach is that it is not possible to
integrate it fully into the Bayesian model (clustering would need to be processed first
and then included). In this way, we will have a two-stage method. This will result
in the seed variable data being used twice and completely independently, once for
clustering and once for calibration, which is unappealing.

This two-stage method therefore gives results which are an approximation to
a fully Bayesian method. Using mixture models it is possible to take a further
step closer to a fully Bayesian model by integrating the clustering directly into the
MCMC. With sufficient data, the number of clusters can be inferred by extending to
Dirichlet process mixture models (DPMM). SEJ studies are often not large enough
to necessitate this method and simpler hierarchical clustering will suffice. For com-
pleteness, the fully Bayesian approach is outlined in the Results section and, for
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one study, compared to the hierarchical approach, to determine how reasonable an
approximation the two-stage method is.

As clustering is an exploratory process, when used post an algorithmic deter-
mination, visual inspection gives the opportunity for validation (and if necessary
tweaking) of the clusters defined. It can help both in ensuring that recommended
clusters are appropriate and in getting buy-in from DMs and other stakeholders to
the choices made. As the seed variable space is high dimensional some process-
ing of the data is required in order to create visuals which can be analysed easily.
We recommend running a principal component analysis (PCA) over the data set to
reduce dimensionality.

Principal component analysis essentially solves an eigenvalue/eigenvector prob-
lem to change the coordinate system and create new uncorrelated variables that max-
imise variance. In doing this the originally high dimensional space can be described
as a space with a small number of meaningful dimensions, known as principal com-
ponents. Each principal component captures a certain percentage of the variance
between elements that existed in the original description. When applied to the SEJ
data, the first few principal components can be visualised pairwise in two dimen-
sions and the rationale for the clusterings created by the algorithms easily spotted.
A scree plot which highlights the cumulative variance of the principal components
can help build confidence that by visualising only this small segment of the total
space a significant portion of the variance is being explained.

Once the proposed clusters are reviewed and agreed, this uniquely determines
the homogeneity groups, H, used to determine the index % assigned to each expert
in the first and second line of equation (7).

3.2 Full Method

With the homogeneity group algorithm identified, it is possible to outline our full
model. Building on the aggregation/calibration elements previously outlined, we can
create an algorithmic approach which defines homogeneity groups, calibrates and fi-
nally aggregates. To save the reader from the simple but lengthy algebraic form, we
describe the full method utilising a descriptive process. For the more masochisti-
cally minded the full algebraic and graphical forms of the model are outlined in
subsections A.1, A.2 and A.3 of the appendix.

Posterior distributions for target variables are created utilising the following de-
scriptive process:

1. Cluster: Rescale experts’ elicited seed variable quantiles onto the unit interval.
Run an agglomerative hierarchical clustering algorithm over the |Y| dimensional
seed variable space to create a dendogram of potential homogeneity groups. De-
fine homogeneity group assignments for each expert by creating a cut of the
dendogram, either manually or through a tree cutting algorithm. Principal com-
ponent analysis is conducted on the seed variable space. The first two or three
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principal components are visualised pairwise and the clustering proposed by the
algorithm are reviewed, discussed and approved.

2. Calibrate: Infer inflation factors oy, and o, for each expert e € E. Here, for
each Y €Y the realised value for seed variable Y is a random draw from a dis-
tribution defined by e’s elicited quantiles for Y, (Ly,, My,, Uy, ), and the inflation
factors which define e’s overconfidence (oy, and @,,.). ¢, and o, are random
draws from homogeneity group hyper-parameters (A;;, By, Aun, Byn) Which cap-
ture within homogeneity group inflation factor dependence.

3. Aggregate: For each target variable X € X, elicited quantiles (Lx.;, Mxen, Uxen)
for each expert e € E are assumed to be a function of unbiased quantiles
(LY ops My, Ux ;) adjusted according to e’s inferred inflation factors (oy, and
ay.) generated in step 2. Here, i denotes the homogeneity group assignment
ascribed to e in step 1. These unbiased quantiles represent specific points in ex-
pert ¢’s underlying distribution of X, characterised by (now unbiased) parameters
Yxon- Parameters ¥y, are random draws from a distribution with location param-
eters Yy, defined by the homogeneity group, s, within which e sits. Homogeneity
group distributions are in turn random draws from a global distribution with loca-
tion parameters Yy, which are informed by the prior belief of the decision maker,
Tpumy - As previously highlighted, X has been included as a subscript to all vari-
ables here to denote that they are unique to each target variable under considera-
tion. The posterior of the global distribution Yy represents the final aggregate for
target variable X.

In practice, whilst described sequentially, both steps 2 and 3 are calculated for
each step in the MCMC. Thus these two steps can be represented within a single
directed acyclic graph (DAG). The full graph is outlined in Fig. 12 in the appendix.
The aggregation model is updated to replace the elicited expert values with their
unbiased counterparts.

Thus with the full model linked in it’s generic form, it is important to define the
model parameterisation we shall use within our sample cases. Here we will outline
one option for model parameterisation however there are many feasible alternatives.

3.3 Model parameterisation

To parameterise our model correctly, we need first to define the generic distribu-
tions g, and the corresponding unbiased parameters ¥y, VX € X and Ve € E. These
choices, at an expert level, define the form of the random draw in the calibration
model given in equation (4) and the first line in the aggregation step given in equa-
tion (7). Suppose, as proposed in the calibration section, that the experts have pro-
vided 3 quantiles (0.05,0.50 and 0.95) for each X € X and Y € Y; the parameterisa-
tion we choose should preserve all of the information that the experts have provided.
The natural first choice would often be a Gaussian model whereby a distribution
N (W5 O%2y) is selected VX € X, (or similarly for ¥ € Y) where u,,, 052, are
chosen such that 3, = My, = M., and 032, is defined to minimise the error be-
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tween the probability density function (p.d.f) at 5% and 95% and the elicited values
from the expert. In this context the Gaussian model would certainly simplify the
computation required, however it would make a very strong assumption that experts
true beliefs are symmetric around the mid quantile (even when their elicited values
are not). Often this is not the case and therefore utilising this parameterisation would
immediately distort the elicited data.

A second choice for the parameterisation; as initially proposed by Clemen and
Lichtendahl [9] is to model the experts’ beliefs with two uniform components and
exponential tails. We define the subscript Xeh to denotes values for the variable X €
X, from expert e € E who is a member of homogeneity group 4 € H and P, Py, Py,
as before, denote the probabilities which were originally elicited against. In this
way:

Page a0 if x< L,
Py—PL . * *
WL if Ly <5< M o
v — Py . * *
U, i, W My Sx<Ugg,

(1—Py)Aye 0 bi~Uxa) if x> U5,

ge(x|L§(eth;2eh’U;eh) =

Here parameters Ay, and Ay are given by:

Py — P 1
A= () — (11)

MXeh_LXeh PL

and P, P 1
dy = (2 (12)

* *
Xeh _MXeh 1 =Py

This approach has a distinct advantage over the basic Gaussian parameterisation
as the distribution will exactly fit the quantiles given by the expert and thus there
is no loss of data. However, the uniform component puts very little mass near the
central quantile suggesting that the expert gives us very little information except the
range of probable outcomes (0.05 - 0.95 quantiles).

The approach that we have taken is to utilise the natural shape of the Gaussian, in
which we suggest that in practice experts have a strong belief about the mid-quantile
with diminishing probabilities from here, without the associated loss of information.
In this way we will model utilising a split normal:

_1 XﬁM;(eh 2

1 2\6E . *
P T4 Xleh ifx <My,
Xleh M (13)

1 2V 6F : *
— Xueh lf_x 2 M
G;ueh V2m Xeh

ge(x‘l‘;(e}uM;eh? U;eh) ~

where, the unbiased standard deviations oy, and oy, are calculated by:

M3, — L%
* _ "Xeh 'Xeh * _
OXlen = s and Oy, =

U;eh _M;eh (14)
o
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Here §; represents the number of standard deviations between the elicited quan-
tiles. Clearly if the probabilities for L and U are symmetric around M then §; = 6,.
In the case 0.05, 0.5 and 0.95 then &§; = &, = 1.64. 1y, and 13, follow directly
from these assignments and are then hierarchically calculated as per (8). The fi-
nal parameterisations are given by ¥y, = (Mx . Txjen> Txuen)- With this model the
decision maker location prior will be Mpy, rather than py,.

The formulation of the split normal in this way will not result in a fully contin-
uous distribution as at the mid-quantile there is a step. It would be trivial to adjust
for this simply by factoring each half of the distribution, however, the result of this
would be a shift in the median point, which is an unappealing result given the way
we have defined calibration. Given that it does not largely affect the complexity of
the modelling we leave this point of slight discontinuity.

Remark. this model is only one of many approaches which could be taken, it
would be interesting, although not covered within this paper, to assess the impact of
non-Gaussian parameterisations on the final output.

To build our model we have used the JAGs package embedded within R. JAGs,
built on the BUGSs language, works using a Gibbs Sampling approach to MCMC,
and in this combination allows relatively efficient calculations of results. Complete
model runs typically take circa 10 minutes to complete 100,000 iterations. Mod-
elling has been run in RStudio with R version 3.6.1, JAGs version 4-10 on an AMD
Ryzen 7 PRO 3700U processor, with 4 cores, 8 logical processors and 16.4GBs
of virtual memory. These specifications are for a standard laptop. Timing was pro-
vided based on modelling only on a single core. Modelling was implemented in
this way to mimic hardware available to study analysts whilst conducting an SEJ
study live. If run-time is a concern, significant improvements can be made utilising
a multi-threaded version of the code and deploying in a virtual environment with
many cores.

4 Analysis of results

In this section we assess the effectiveness of our combined model by running it
against empirical studies from Cooke’s database and comparing the resultant target
variable forecasts to the more commonly utilised opinion pooling techniques. The
results on two studies will be outlined. Studies have been chosen at random from a
subset in which all forecasts are on a uniform scale.

The first study considered (Arkansas) formed part of a broader study conducted
by the Centre for Disease Dynamics, Economics and Policy looking at grant effec-
tiveness and child health insurance enrolment for the Robert Wood Johnson Founda-
tion. The second case study we will review (CWD) was conducted for the University
of Ottowa to assess infection transmission risks for chronic wasting disease (cwd)
from deer to humans ([46]; [47]).

Whilst in principle we may wish to encode DM knowledge into the analysis, these
studies have been conducted in the rational scientist context outlined in EFSA [18].
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In this context, relatively uninformative priors are appropriate, outlined below, and
a consistent set of priors can be used for both studies.

The rational scientist context is a common one in SEJ. Here, rather than mod-
elling the impact of elicited expert judgements to an individual DM’s belief, the aim
is to combine the judgements in a way that represents what a rational scientist would
believe given the experts’ inputs. Typically, all of the knowledge for that hypothet-
ical rational scientist should be encapsulated within the experts’ judgements and
hence relatively flat (and thus uninformative) priors are desired.

One of the advantages of modelling expert judgement in a Bayesian way is that
this can easily be done, but, if DM’s do have prior belief they wish to embed in the
model the mechanisms inherently exist to do this. In many deployments of Bayesian
models the modelling process can be quite distinct from DMs and model priors are
defined by the analysts performing the work. It is strongly recommended for SEJ
that this approach, for target variable priors, unless in a rational scientist context, is
avoided.

If any prior knowledge on the target variables needs to be incorporated into the
model, this should be elicited directly from the DM. This can be difficult, particu-
larly as studies often run at a distance from decision makers, but the authors contend
that it is an essential step in deploying a Bayesian study correctly. The process of
eliciting DM prior belief can operate as a mechanism to increase traction with stake-
holders, help facilitators understand the sensitivity of the decision to judgements
given and ultimately increase the chance of study outputs being utilised. Whilst ad-
mittedly challenging, the authors have successfully elicited prior beliefs from many
decision makers in the past.

Incorporation of decision maker belief, often happens when SEJ is deployed in
private enterprise. Public sector SEJ studies often take the rational scientist view
outlined. As such, publicly available data-sets are often in this context, which, given
the desire to compare to existing models, is the reason for the two case studies
outlined. SEJ is more commonly found in the public sector than the private sector,
although the authors would like to see greater traction for these methods in private
enterprises.

In a typical study there are often very few experts and elicited quantiles. The full
set of hyperparameters, (a;,b;,a,,by,,Mpu, Po, P, Pn, &, Er, To,a) consequently must
be modelled carefully as their influence will be important.

The calibration component parameters (A;;,Bin,A.n,Bun) Will be set, as per (6),
such that Ay, ~ Pois(a;) and By, ~ Exp(b;) (and equivalent for the upper bounds)
and a; = b; = a, = b, =2 Vh € H. This provides a suitably diffuse prior, centred
around 1, for the dispersion parameters of the calibration model. This is identical to
the parameter values first proposed by Clemen and Lichtendahl [9].

The aggregation component hyperparameters (Mpyy, Po, P, Pr, &, &, To, @) are set
with weakly informative priors.

Remark. given our split normal parameterisation there are actually hyperpa-
rameters for both the upper and lower model dispersion parameters, thus, there is
effectively a &, and &;, and equivalent. In practice we set these hyperparameters to
be identical, therefore for simplicity this distinction is omitted below.
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Similar to Albert et al. [2], we shall apply truncated Normal priors for the disper-
sion components as this is a useful simplification of the folded noncentral-t distri-
bution which is conjugate for these parameters, as shown by [24] :

Vo~ A (0,90); Vo~ A(0,9); Vop ~ A1 (0, 0n); (15)

where @, @, @y, are selected to be weakly informative. Given the uniform scales
of the examples that we are looking at, and the fact that in practice to ease modelling
we normalise everything onto [0,1] (and then readjust back to the original scale at
the end), setting ¢y = @ = ¢, = 1000, provides a sufficiently diffuse prior for these
hyperparameters. Similarly, we can switch the prior on the variance component 7!,
from a gamma (7, 'T"(a,a)) to a truncated normal prior VT~ A5 (0, o) where
Y is selected in order to be reasonably diffuse, here we also select yp = 1000. For
the intermediary hyperparameters, &,&,, we stick with a gamma prior, as outlined
in the orignal model, however, we do not use completely diffuse priors and set & =
&, = 1.5. As Gelman [24] highlighted, utilising very small components for the terms
in the gamma distribution puts a lot of the mass at zero, which for this model is
unfavourable. Utilising the above structure, allows us to set a prior which has more
of the mass centred at 1, building the assumption that there is similarity in intra
homogeneity group dispersion parameters, whilst being sufficiently diffuse enough
to learn the true nature of these intra group dispersion relationships from the data.

With these hyperparameters set, we review the results for each of the studies
outlined earlier and compare these to opinion pooling methods. It is important to
note here that the comparison is not aimed at showing superiority of our method
compared to the other methods. We merely wish to better understand how the hi-
erarchical modelling, and the focus on the consensus of experts, drives a differing
perspective to the opinion pooling methods. Specifically, the two methods which
we will compare to are an equal weighted linear opinion pool of the form (1) where
®, = 1/|E| (with a DM referred to as EWDM) and a performance weighted linear
opinion pool where , is defined by performance over the seed variables and is
determined by Cooke’s Classical model, outlined previously (PWDM).

4.1 Arkansas Example

The Arkansas study, originally conducted in 2012, had 4 experts who were required
to assess 10 seed variables and 20 target variables. An example of the seed questions
utilised (with the values known a priori) is “What is the ratio between the number of
children without health insurance in Arkansas / number of children without health
insurance in Louisiana?” with a true realisation of 0.66. The target questions were
of a similar nature; e.g. “What would the participation rate for public insurance be in
2020 if CHIPRA were not renewed in 2013?”. Here CHIPRA refers to the Children’s
Health Insurance Program Reauthorization Act, which was signed into action by
President Obama February 4th 2009. All of the data was elicited against 5 quantiles
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(0.05, 0.25, 0.5, 0.75, 0.95), although given the above parameterisation we will only
utilise 3 of these within our model.

The first component to analyse is the clustering component (the outputs of which
are then embedded within the broader calibration and aggregation model). Running
our agglomerative hierarchical clustering approach over the seed variable space re-
sults in a proposal to split the experts in to three homogeneity groups. The dendo-
gram for the hierarchical clustering can be seen in Fig. 14 in the appendix. Expert 1
and expert 4 sit within their own groups and experts 2 and 3 are clustered within a
single homogeneity group.

|_._|

Model
Recalibrated
+ Uncalibrated

11711

0 20 40 60
Uncertainty ranges

Fig. 3 Effect of recalibration on experts’ estimates within the Arkansas study on the question:
“What would the adolescent well-care visit rate be in 2020 without RWJF Covering Kids and if
CHIPRA were not renewed in 2013?” All experts show a significant broadening of their quantiles
as a result of the recalibration, particularly expert 1.

Following homogeneity group definition, we assess the impact of calibration. A
very simple pre-analysis of the data suggests the experts are not well calibrated,
with a significant bias towards overconfidence. If all of the experts were statistically
accurate we would expect that circa 4 of the 40 seed variable estimations across the
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experts (10%) would be outside of the experts’ elicited quantiles. In practice 58%
of the realisations fell above the experts’ 0.95 quantile or below the 0.05 quantile.
This ranged from 80% for expert 1 to 30% of assessments for expert 3. To this ex-
tent, when we review the calibration parameters in the Bayesian model we would
expect these to compensate for this behaviour and increase the expected uncertainty
versus what was outlined by the experts. The medians for the experts’ miscalibra-
tion parameters range from 1.3-3.6 for q;,, and from 2.0-11.4 for a,.. All of these
values are greater than 1, indicating systemic over-confidence rather than under-
confidence, aligned to the expectations from the pre-analysis. Expert 1, sits at the
upper end of this range for both variables. The scale of these calibration parameters
suggests the experts’ forecasts are significantly over confident. The DM should con-
sequently be very careful when assessing whether the originally elicited judgements
from these experts give a true picture of the uncertainty present.

Focussing on experts’ forecasts for a single target variable, Fig. 3 outlines the
impact this recalibration has to the estimates used in the model. Variable 10 (“What
would the adolescent well-care visit rate be in 2020 without Robin Wood Johnson
Foundation (RWJF) Covering Kids and if CHIPRA were not renewed in 20137”), is
chosen here to demonstrate the difference in output for the three different modelling
types. Of particular note, is expert 1 whom despite being very confident in their re-
sponse initially, once recalibrated, as expected, display a much broader distribution.

It is interesting to also note the underlying structure of the responses to this vari-
able. In the original forecasts expert 1 estimated with high certainty the true value
will be greater than 30 whereas the other three experts estimate the median of this
variable at circa 20 (and strictly less than 30). The recalibration exercise has shrunk
this discrepancy. The recalibrated judgement for expert 1 now overlaps considerably
with the other three experts. This suggests that there may not be such a stark under-
lying difference, aligning with our aim to identify consistency between judgements.
We will return to this later when we assess the output distributions.

Finally, we focus on the aggregation component and the posterior distribution for
the DM. One element to be considered when building this final posterior distribution
is how to combine the posteriors of the components (M, 7; and 7,) into a single
output. Within the initial MCMC these components are modelled separately; in each
run we have a posterior distribution for each but no combined distribution. We create
this combination by applying a secondary Monte-Carlo analysis drawing triplets
from each distribution (here we actually use samples from the original model, post
convergence) which we fit back to our split normal structure. We sample from this
to give our combined posterior.

Reviewing all target variables in the study; Table 1 outlines the resultant poste-
rior and how this compares to the estimates for the EWDM and the PWDM. (Please
note. Variables 14 and 15 have been removed from this list as not all experts pre-
dicted these two target variables). It is clear from the data that there are similarities
between the approaches in the mid-quantile assessment with the Bayesian decision
maker (BDM), having a mean difference of 1.5% from the EWDM and 2.2% from the
PWDM, (with mean absolute differences of 4.6% and 14.8% respectively). For the
outer quantiles (0.05,0.95) the BDM model produces much wider final distributions
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than either of the other two models. Here the BDM suggests there is a significant
probability that the true value of these realisations will lie significantly below or
above the estimates of either the PWDM or the EWDM. This should not be surpris-
ing, given the calibration data reviewed earlier, however, it is important to review
the full distributional forms rather than just the quantiles to understand the impact
of these fluctuations.

Rather than review all of the distributions in detail, we will examine the distri-
bution for the tenth target variable®, which was outlined earlier. Variable 10 was
selected as there was notable discrepancy between the EWDM and the PWDM distri-
butions. This gives us an opportunity to understand how the BDM model compares
to other models in cases where there is more complication in the underlying data
structure. Distributions for all remaining target variables have been included in Fig.
15 in the appendix.

The EWDM distribution in Fig. 4, is multimodal, aligned to the calibration point
plot shared earlier. There is more mass under the first peak reflecting the lower
assessments provided by three of the experts. For the PWDM we see a unimodal dis-

EWDM PWDM BDM

Target Variable |(0.05 [0.5 095 [0.05 0.5 0.95 10.05 0.5 0.95
Variable 1 519 |74 975 [56.2 (954 (979 (462 |75.6 (953
Variable 2 62.1 (925 (995 |855 (96 99.6 (58.7 |87.9 |98.7
Variable 3 54 76.5 198.6 (562 (943 (979 |51.2 [79.1 [96.8
Variable 4 354 (844 1956 |543 (929 |96 39.2 |73.7 |95.6
Variable 5 32.1 [70.1 (954 |36.6 ([92.8 (959 |33.8 [67.2 [92.1
Variable 6 102 (17.5 |25.2 |10.3 |20 259 6.6 18.5 (30

Variable 7 159 (28 38.1 [16.8 [26.2 |37.5 (129 |29 44.1
Variable 8 119 (262 |38.1 |10.2 (21.1 |37.3 |10.3 |(28.1 |45.6
Variable 9 11 232 (364 [125 |25 30 10 257 (419
Variable 10 104 {20.8 |36.4 |10 19.1 |26 7.8 23.8 |[41.6
Variable 11 59 16.1 (304 |5 18.1 |32.6 |[-0.5 |16.7 |[37.9
Variable 12 247 519 (679 |20.6 |(52.1 [67.8 (209 |52.5 (88.9
Variable 13 152 (49 66.3 (10.6 |35.6 |589 (17.8 |49.2 |84.3
Variable 16 395 |71 84.4 (355 |65.8 (84.6 |45 727 193.7
Variable 17 80.9 190.5 (98.6 |80.3 |92.5 (99 779 190.5 |98.3
Variable 18 50.6 (873 (945 |45.7 |72.8 |92.4 [60.8 |859 [97.5
Variable 19 67.6 (89.1 [96.2 |75.1 |87.6 [96.5 |66.2 |85.8 (97.2
Variable 20 459 |81.2 [90.8 |40.7 |70.8 |[86.9 |52.9 [80.9 |96

Table 1 Comparison of DM quantiles for different modelling approaches to the Arkansas Study.

5 From the nature of the questions asked within the study, some of the variables are bounded, i.e.
the output is a % that must be between 0 and 1. Without intervention, the BDM in these cases may
produce a posterior distribution that sits outside of these bounds as we do not constrain the model
in formulation. Thanks to the constant in the Bayesian formula, we can simply do this by applying
a further prior which is uniform on the unit interval (and zero outside of this) and then rescaling
the posterior as necessary. All of the values in this study, when comparing to the other modelling
types, have been adjusted accordingly. Another mechanism for imposing bounds, considering the
generic model outlined, would be to select a parameterisation, such as a beta distribution, which
constrains the bounds by default.
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Fig. 4 Comparison of final distributions to the question “What would the adolescent well-care
visit rate be in 2020 without RWJF Covering Kids and if CHIPRA were not renewed in 20137” The
Bayesian model (blue) demonstrates a larger support, aligned to the overconfidence demonstrated
by experts in the seed variables.

tribution aligned to the lower estimations. This is driven by the relative weighting
of Cooke’s model which determined that 23% of the performance weighting should
be assigned to expert 2 and 77% of the weight assigned to expert 3. Expert 1 and
expert 4 were eliminated. Thus, the final distribution is dominated by experts who
had a lower estimate of the variable as expert 1’s judgements are not included. By
design, as we are assessing the consistency in opinion, the Bayesian model also has
aunimodal posterior. Evident from Fig. 4 is also the heavier BDM tails relative to the
other two models. The mode of the distribution, unsurprisingly, sits between the two
peaks of the EWDM, however is skewed slightly to the lower peak. This is aligned to
the calibration behaviour shown earlier and the relative homogeneity group weight-
ings in the model. In this way, the Bayesian model smooths the variabilities between
the experts, whilst still modelling the underlying differences in the estimations.
The beauty of the Bayesian model is that even though the homogeneity group
structure has been compressed into this final posterior distribution, it is still possi-
ble to learn about the underlying model behaviour. We can examine the posterior
homogeneity group parameters which can easily be recovered in addition to the
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complete posterior DM distribution. Fig. 5 outlines the homogeneity group distribu-
tions. Group 1 comprises of just expert 1, group 2 includes expert 2 and expert 3,
and group 3 is just expert 4. The rationale for the skew in the Bayesian model to-
wards the lower peak of the EWDM is evident here. Group 1 has a distinctly different
distribution to groups 2 and 3, driven by expert 1’s differentiated belief compared to
their peers. The final Bayesian DM distribution is weighted more to the common be-
lief demonstrated in group 1 and group 2, but less so than if the experts had just been
aggregated directly. In this way, the differentiated perspective of expert 1 has had
increased weight. This is one of the advantages of the Bayesian model, the model
design and software implementation facilitates a deepdive of the results, beyond just
the final distributions, to support the DM decision making.
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Fig. 5 Comparison of homogeneity group distributions to the question “What would the adolescent
well-care visit rate be in 2020 without RWJF Covering Kids and if CHIPRA were not renewed in
2013?” Group 1 = {expert 1}, Group 2 ={expert 2, expert 3} and Group 3 = {expert 4}.

4.2 The impact of our elicited quantile choice

The Arkansas study originally elicited 5 quantiles (0.05, 0.25, 0.5, 0.75 and 0.95) for
both the target and seed variables. Up to now, given the parameterisation choice out-
lined earlier, we have only been considering three of these (0.05, 0.5, 0.95) thereby
effectively discarding some of the elicited information. Utilising the remaining data
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points and different modelling approaches allows us to determine the impact of our
quantile choice and inform more efficient elicitation in the future. There are many
possible combinations of quantiles which we could use to either inform the cali-
bration inflation factors or the target variable aggregations. We have prioritised four
combinations for further analysis and compare these to our original model structure:

e QuterQuantiles: Our original parameterisation: quantiles 0.05, 0.5 and 0.95 are
used to determine two inflation factors oy, and o,.. The same quantiles are used
for aggregation on the target variables.

o InnerQuantiles: We still use three quantiles for determining ¢, and ¢, but now
consider the elicited quartiles 0.25, 0.5 and 0.75. The same quantiles are used for
aggregation on the target variables.

e AllFiveQuantiles: Use all five elicited quantiles for determining oy, and @,
effectively giving more power to the calibration model. Only the OuterQuantiles
are used for aggregation on the target variables.

o BetaOuterQuantiles: All five elicited quantiles are used for calibration. ¢y, and
o, are calculated as before but we extend the model to allow positional uncer-
tainty in the median by creating an inflation factor B, such that M = B, M,. Outer
quantiles (0.05, 0.5, 0.95) are used for aggregation on the target variables.

o BetalnnerQuantiles:1dentical to the BetaOuterQuantiles except the inner quan-
tiles (0.25, 0.5, 0.75) are used for aggregation of target variables.

Applying these five model parameterisation types, to the target variable outlined
earlier, results in different posterior distributions for the DM as demonstrated in Fig.
6. What is striking in Fig. 6 is that whilst there are some minor differences be-
tween the posteriors of each approach (particularly in the tails) these are relatively
insubstantial. It is reasonable to assert that a DM is unlikely to make a substan-
tively different decision regardless of the parameterisation choice used. We apply
a Kolmogorov—Smirnov test to 10000 samples from each distribution and consider
relative to the original model (OuterQuantiles) to assess the mathematical differ-
ence between the cumulative distribution functions (c.d.fs), Table 2. The p-value in
this test demonstrates that in all cases the posterior distributions are with very high
likelihood not the same (or strictly speaking, they are not both samples from an iden-
tical underlying distribution). Utilising the D statistic from the test does demonstrate
however, that whilst they are not identical distributions they are very similar. The D-
statistic can be interpreted as the maximum distance between the two tested c.d.fs.
Thus if we consider the two parameterisations which do not have a beta term (In-
nerQuantiles and AllFiveQuantiles), the maximum distance between either of these
distributions and our original parameterisation is circa 4%. Even if we assess cali-
bration by placing an inflation factor on the median estimate (BetaOuterQuantiles
and BetaMidQuantiles) we still do not generate massively different distributions.
The maximum distance here relative to the original model is circa. 9%. If we dis-
card the tails and apply a Kolmogorov-Smirnov (KS) test to the bulk of the distri-
butions (samples in the 25th-75th percentiles), these numbers drop further to < 2%
and < 7% respectively.
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Fig. 6 Comparison of the posterior DM distributions by parameterisation type for target variable
10 in the Arkansas study. The choice of parameterisation has had little impact to the overall uncer-

tainty.
InnerQuantiles AllFiveQuantiles |BetaOuterQuantiles|BetaMidQuantiles
D Statistic  {|0.0395 0.0248 0.0852 0.0791
p-value < 1¥107° <1¥107° <1¥107° <1¥107°

Table 2 Kolmogorov-Smirnov test on the impact of quantile parameterisation for target variable

10 in the Arkansas Study.

Extending this further to consider all of the target variables within this study

(Table 3 and Fig. 16-32 in the appendix), we can see that this distributional similarity
is very consistent across variables. Indeed the maximum difference between any

different parameterisation choice and our original model in any target variable at
any point in the c.d.f is circa 15%. This is an incredibly small difference given the
substantively different data sets, and calibration parameterisation choices used to
generate these distributions. Thus, for the Arkansas study, we have seen posterior
consistency when considering different parameterisations of the calibration model
and number of elicited quantiles being modelled.

This is only a single study, and significant empirical analysis would be required
to demonstrate that this behaviour applies consistently. However, it is a very ap-
pealing result nonetheless. Firstly, this suggests the modelling approach we have
outlined is robust and relatively consistent regardless of the quantile choice made.
This builds confidence that the model is identifying underlying behaviour without
being overly sensitive to our input choices. Secondly, if our choice of quantiles does
not impact the robustness of the output, DMs can make a choice prior to elicitation

on which quantiles they would like their experts to inform on. The cost of an elic-
itation exercise increases as the number of elicited data points increases. Eliciting
more invariably takes more time from both facilitators and experts. Thus, if this
model gives you consistently similar results regardless of whether you elicit three

i 1.QuterZuantiles

,: 2. InnerQuantiles

| - LAlFiveQuantiles
== 4 BetaDuterQuantiles

5.BetalnnerQuantiles
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Target Vari-||InnerQuantiles AllFiveQuantiles |BetaOuterQuantiles|BetaMidQuantiles
able

Variable 1  ||0.1004 0.0305 0.0456 0.0907
Variable 2 |{0.079 0.046 0.0631 0.0392
Variable 3 |{0.0586 0.0364 0.0473 0.0966
Variable 4 {(0.0378 0.0695 0.0767 0.067
Variable 5 |{0.0386 0.0311 0.0384 0.0838
Variable 6 |0.0927 0.0308 0.0572 0.0963
Variable 7 |{0.1088 0.038 0.0142 0.0476
Variable 8 1|0.0553 0.019 0.0496 0.0759
Variable 9 [(0.0841 0.024 0.0336 0.0698
Variable 10 |{0.0395 0.0248 0.0852 0.0791
Variable 11 ||0.1305 0.0291 0.0142 0.0305
Variable 12 |{0.1589 0.0148 0.0167 0.0936
Variable 13 |{0.0839 0.0493 0.0466 0.1195
Variable 16 ||0.1595 0.0404 0.0395 0.1027
Variable 17 [[0.1258 0.0214 0.018 0.0799
Variable 18 {/0.0892 0.0406 0.0422 0.0889
Variable 19 ||0.0915 0.0348 0.0631 0.0945
Variable 20 ||0.0801 0.0259 0.0117 0.0953

Table 3 D Statistic from a Kolmogorov-Smirnov test on the impact of quantile parameterisation
across all Target Variables in the Arkansas Study.

or five quantiles, you can make your elicitation exercise more effective by eliciting
less, without loss on the output. Another way this behaviour could be beneficial is
that experts may favour elicitation in different ways, i.e. some experts wish to give
their judgements on outer quantiles and others on inner quantiles. Given the model
provides consistent outputs, an elicitor could tailor the elicitation exercise to each
individual expert and then place these mixed quantiles into the model. The model
could then adjust and standardise internally as required without loss of precision.

4.2.1 All-in-one-method

The full modelling method outlined so far relies on two steps, a homogeneity group
assignment step, followed by a combined calibration/aggregation step. In the inter-
est of moving to a fully Bayesian method, an all-in-one method which links these
three elements completely is desired. As described earlier, one approach to this is to
consider mixture models for clustering over the seed variable space. We outline such
a model and apply it to the Arkansas study here for two reasons. Firstly to assess
how reasonable an approximation the two-step method is and secondly to address
the suitability and challenges of modelling in this way.

Rather than use a standard mixture model to do our clustering, we utilise a Dirich-
let process mixture model. A Dirichlet process is used here as not only the expert
assignments but also the number of homogeneity groups may be unknown to the
DM. The non-parametric nature of the Dirichlet process mixture model allows the
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DM to simply define a tuning parameter, o, based on an expected maximum number
of homogeneity groups. The identified number of groups is then an output of the
model.

The Dirichlet process mixture can be described by the following generative pro-
cess, [6].

1. Generate a set of mixing weights, v where v = {vk}kelz‘ | according to a stick
breaking process dependent on tuning parameter o.

2. Generate a set of parameters 6 where 8 = {6 }ic .| for each potential cluster
k, according to a prior distribution with parameters 6.

3. For each observation in the seed variable space Y., assign a component label, &,
according to the mixing proportion Vv.

4. Generate Y, according to the 4" component of .

When the model is a mixture of Gaussians, 0 is defined as a mean and a precision
matrix and the prior distribution on 0 is modelled as a normal-Wishart. The model
can be written algebraically as:

Y.~ A (6) (16)
h~Cat(v) (I7)
0 ~ Normal — Wishart (6p) (18)
v ~ GEM(0) (19)

where GEM denotes the stick break process, [43]. The DAG of this process is out-
lined in Fig. 13 in the appendix.

The DPMM can be integrated into the linked calibration/aggregation model by
utilising the homogeneity group assignment 4 for expert e in the calibration and
aggregation element, when Y, is assigned to cluster /. Rather than being calculated
a priori, clusterings are then defined at each step within the global MCMC.
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Fig. 7 Comparison of the posterior DM Quantiles between the one-stage and two-stage method

We compare this all-in-one method to the two step method, with hierarchical
clustering, outlined earlier by generating posterior distributions for all target vari-
ables in the Arkansas data. Running the all-in-one method takes considerably longer.
On the same machine, modelling takes approximately 10 times as long.
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Final results obtained using the two methods were extremely similar. Fig. 7 out-
lines the relationship between the quantiles of the final posterior distribution for all
of the target variables in both the all-in-one method and the two-stage method. In
each case the line x = y is plotted. Across all three variables we see very tight clus-
tering of the results around these lines. The DM posterior has been largely invariant
to the change in methodology. This is reassuring as it further builds the case for the
robustness of the method, whilst providing options for analysts on how to perform
the modelling based on both practicality (time needed to model, availability of data)
and theory (modelling all-in-one allows us to avoid having to reuse the data).

The mixture model for clustering will work best when we have studies with a
significant number of experts and seed/target variables in them, as we now have a
very tangible increase in the number of model parameters. Methods for operating on
a large scale are becoming more relevant due to mass participation expert judgement
studies conducted over the internet, [22], however, these are still the minority. As
such, for most studies today, often the clustering space will be very sparse and po-
tentially high dimensional. In such cases, principal component analysis (PCA) could
be run, here as part of the clustering process itself, to reduce dimensionality ahead
of cluster identification if an all-in-one method is considered and convergence is
an issue. The analysis here however, suggests that the two-step method is a reason-
able approximation and will likely be more appropriate in the short term. The issues
with an all-in-one method overall are significant increase in model complexity (and
consequently stability), the need for more data and risk that final posterior distribu-
tions become exceptionally diffuse with the integration of more areas of uncertainty,
thereby reducing the value for the decision maker.

Whilst costs of this all-in-one method may outweigh the theoretical benefits to-
day, as bigger studies are undertaken this balance is likely to shift. Application of
this method to a mass participation expert judgement study is likely to test the
enhanced efficacy it can bring. Given the scale/cost required to implement mass-
participation studies, it would probably be best to integrate this test into a study
conducted for other purposes, rather than designing a test study explicitly. This is
left to further research.

4.3 CWD

The CWD study was outside of the health insurance domain, instead looking at the
transmission risks for chronic wasting disease from deer to humans. The study was
comprised of 10 seed variables and 13 target variables. With 14 participants, this
study had significantly more experts present than the Arkansas study. These experts
were separated into 5 homogeneity groups by the model. Three experts (1,4 and
10) were placed in individual groups as they demonstrated consistently different
behaviour over the seed variables than their counterparts. The model breaks the
remaining experts into the following two sets, {2,6,8,9,11,12} and {3,5,7,13,14}.
The separation of the individual groups is evident in a simple PCA plot of the first
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two components of the seed variable space, demonstrated in Fig. 8. Even within just
these two components over half (~54%) of the variability in the seed variable space
can be explained.
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Fig. 8 PCA plot of first two components for the seed variable space. Note the separation of experts
1,4 and 10 from the bulk of the remainder. These experts resultantly sit in their own homogeneity
groups.

Whilst the three groups of individual experts are visible from the PCA plot of
the first two principal components, there is no apparent logical seperation of the
remaining experts. A split into two further groups is not readily visible. The third
principal component of the PCA captures a further 15.4% of the variance within
the seed variable space. As outlined in Fig. 9, plotting the third principal component
pairwise versus the first, the groups produced by the model become readily apparent.

Whilst the number of experts, the number of questions and the domain of the
study in this case are very different to the Arkansas case, the statistical accuracy of
the experts is similar. Here over 51% of judgements sit outside of the 5th to 95th
quantile bounds. In the most extreme cases, 2 experts had 80% of their judgements
outside of these bounds. This level of miscalibration suggests systemic overcon-
fidence. Thus as anticipated in the majority of cases the Bayesian model has sig-
nificantly broader tails across the aggregate target variables than the two opinion
pooling methods. This behaviour can be seen in a plot of the distributions for each
target variable, captured in Fig. 10. Table 4 in the appendix outlines the standard
quantiles, by target variable, associated with each of these distributions.

One case in this study where we see different behaviour to any of the variables
in the Arkansas study, is where experts predict significant imbalance in the upper
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Fig. 9 PCA plot of first and third components for the seed variable space. Two further expert
clusterings are visible. One cluster consisting of experts, 2,6,8,9,11 and 12, all of whom sit above
the line y=0. One further cluster with experts 3,5,7,13 and 14 is visible with members sitting below
the line y=0. Experts 1,4 and 10 have been removed from this plot to reduce clutter.

and lower uncertainty. Variable 10 in CWD study, outlined in Fig. 11, which looks
at the link between wild and farmed deer, is a good example. The distance between
the 50th percentile and the 95 percentile in the final DM estimation is 2%-3% across
all three model types (EWDM, PWDM and Bayesian DM). This compares to up to
57.5% in the lower half of the distribution (between the 5th percentile and the 50th
percentile). For this type of variable, the EWDM will often have uniform probabil-
ity all the way out to the limits because there is a single expert who has had this
extreme judgement. The PWDM may not include this expert in the final aggregation
(or significantly down weight them) and therefore does not recognise this tail. The
Bayesian p.d.f however maintains the potential for the low value, but decays much
more rapidly than the EWDM. This is due both to the chosen parameterisation and
because the expert with the extreme perspective (expert 12) sits within a broader
homogeneity group, this will effectively down-weight the effect of this expert in
the model. This is an interesting counterpoint to the Arkansas study, in which the
grouping up-weighted the differentiated view as that individual was grouped alone,
here the view is included but down-weighted as their perspective is grouped with
many others that are less extreme. This leads to a lower risk profile for the Bayesian
DM which sits between the EWDM and the PWDM. The final result, in Fig. 11 is that
the Bayesian model acknowledges the additional lower uncertainty identified by a
small subset of the experts (and highlighted in the EWDM) whilst maintaining the
mass closer to the bulk of the estimations, similar to the PWDM. In these cases this
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Fig. 10 Final distributions for all target variables in the CWD study. The Bayesian decision maker
(blue) consistently demonstrates a wider support than the PWDM (green) or the EWDM (pink). The
Bayesian model is also always unimodal, emphasising the underlying consistency in the estima-
tions.

behaviour can outweigh the impact of recalibration due to overconfidence and lead
to tighter distributions than the EWDM in one tail.

As is evident across the studies analysed so far, it is very common to see over-
confidence (as defined by low statistical accuracy denoting too narrow bounds) in
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expert judgement studies. Outside of simulated data the authors are yet to see a
study with experts consistently demonstrating under-confidence in their judgement.
This cross-domain tendency for experts to be overconfident should give DMs pause
for thought. Recalibration of expert opinions is a controversial subject, and there are
certainly contexts when it is unwise; we would argue however that a DM should not
neglect this critical information when assessing their belief in light of the elicited
judgements. This would lead such a DM to a Bayesian model similar to the one
outlined here.
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Fig. 11 Final distributions for target variable 10 in the CWD study. The Bayesian decision maker
(blue) lower portion of the pdf decays much quicker than the EWDM (pink). This leads to a posterior
expectation on the tracked quantiles between the EWDM and the PWDM (green)
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5 Discussion

The above examples demonstrate that a Bayesian framework for SEJ can generate
comparable results to those of the current exemplars in this space (Cooke’s Clas-
sical model and EWDM models) whilst emphasising different components of the
information provided by the experts. Across the target variables shown we have
seen consistently that the Bayesian model demonstrates broader support in the pos-
terior than the output of both the EWDM and the PWDM. This suggests the overshoot
percentages utilised in pooling methods should be very carefully considered.

Posterior consistency has been evident when considering different parameterisa-
tions of the calibration component of the model (i.e. assuming two or three recalibra-
tion inflation factors) and utilising varying numbers of elicited quantiles. This could
provide an opportunity for study facilitators to minimise the number of elicited items
and thereby reduce time and cost.

One of the advantages of the Bayesian approach is that visualisations can be
produced throughout its application which gives an exploratory tool for the DM to
understand drivers of uncertainty captured within the posterior. These visualisations
can be on core model elements, such as PCA plots of the clustering or homogeneity
group posteriors, or, on other latent variables within the model. The ability to see
the uncertainty represented visually can give confidence to the DM in their ability to
move forward with understanding.

The underlying model we have described in the paper is quite generic, although
we have given a more specific formulation for our examples. Not withstanding this,
we note two potential areas of future research to allow the model to be used in
broader contexts. The first of these is scale invariance. When we have variables on
both a linear and a log scale, appropriate calibration adjustments must be consid-
ered differently. The current method of utilising multiplicative inflation factors is
not suitable for such an endeavour. One option would be to transform the experts’
judgements prior to modelling in order to allow them be dealt with consistently.
One method would be to pass them through the DM’s prior, this approach was first
outlined by French and Wiper, [S0]. Another option would be to recalibrate the per-
centiles themselves rather than the variables, i.e. apply the inflation factor to the
quantile probabilities, thus moving the problem all into the single scaled probability
domain.

The second area that warrants further investigation is how we handle bM/expert
correlation. Currently we have bypassed this with the use of diffuse priors however
with a knowledgeable DM this would not necessarily be appropriate [32]. A suitable
model adjustment would need to be found.

To demonstrate this model is truly a feasible alternative for a DM, it is important
to test the model across a number of studies and decisions to demonstrate the spe-
cific contexts in which this model will provide advantages. Luckily, given the wealth
of studies that have been conducted historically and reside within Cooke’s Database
[14], there is a number of conditions within which to test this approach. One method
is to apply the model to all of the studies within this database and compare versus
the current models utilising out-of-sample (00S) validation. Unfortunately as reali-
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sations of events assessed in SEJ studies are, by definition, uncommon; true 0OS val-
idation is rarely feasible. Typical approaches ([8], [19], [12]) utilise cross-validation
techniques, removing one or more of the seed variable, setting these as target vari-
ables and training the model with the remaining seeds. Forecast precision is then
measured in standard ways as the true values for these targets is known a priori.
Further comparisons with the performance of our model with the Classical Model
provide additional support for the conclusions in this paper on the relative merits of
the models [33].

Finally, it is hypothesised that as the number of experts increases we would
expect to see the results of utilising a Bayesian method and the PWDM approach
to further align. In such situations the PWDM will typically have a broader num-
ber of experts with non-trivial weights, thereby representing a mixture of many
well-calibrated individuals, which is conceptually very similar to the Bayesian
model. The over shoot percentages defined as part of Cooke’s Classical PWDM are
analagous to the tails on the Bayesian model. It is conjectured if these were relaxed
further than the 10% commonly used today, as the number of experts were to in-
crease, there is potential for convergence between the posterior distributions for the
PWDM and the Bayesian model. Many studies today are not conducted on a sig-
nificant enough scale to demonstrate this behaviour. As mass participation subject
judgement events become more common through virtual elicitation over the inter-
net, we would expect to see enough data to become available to test this hypothesis
in the future.
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A Appendix

A.1 Full method outline

Here we provide the mathematical outline for the full method combining the hierar-
chical model homogeneity group calculation, aggregation and calibration processes.

A.1.1 Data going into the model:

e A set of experts E, a set of seed variables Y and a set of target variables X

e A set of probabilities associated with quantiles that were elicited from each ex-
pert for each variable - P, Py, Py

e Elicited quantiles from each expert for the target variables - Lxcn, Mxen, Uxen
VeeE,X € X.

e FElicited quantiles from each expert for the seed variables - Ly,;,, My, Uy, Ve €
E,)YeY.

e A parameterised distribution to be fit to the elicited data for each expert - g,
Ve € E with cumulative distribution function G,

e The decision maker’s prior for each target variable - 7pyy,

A.1.2 Step one - Homogeneity group calculation

For each elicited seed variable mid-quantile, My,;, rescale onto the unit interval.
Term the new rescaled value rMy,y,.

MYeh - min({MYeh S E})

Myep = 20
T eh max({My.p : ¢ € E}) —min({My,, : e € E}) 20)

Define Y, to be the |Y| dimensional tuple:
Ye = (rMien, "Moeps -, TMy o) (2D

Run an agglomerative hierarchical clustering process. Set each item Y, to be its
own cluster C,. Create a dendogram by merging clusters one at a time based on the
Euclidean distance between them in RIY.

i.e. Merge the two clusters C; and C; that minimise D(C;,C;). Where

D(Ci,Cj) = max d(Y,‘,Yj) Y, € C,’,Yj S Cj, 22)

and

d(Yi,Y;) = ) %Y‘(Yi(k) —Y,(k)? (23)



42 David Hartley and Simon French

(This defines an agglomerative process with a Euclidean distance metric and a
complete linkage criterion. These are standard metrics to use for this form of clus-
tering but many others are available.)

This merging process is repeated using the same criteria until all elements form
a single cluster.

Final homogeneity groupings, H, are then defined by selecting a cut of this den-
dogram which can be done either manually based on visual inspection or utilising a
dynamic tree cutting approach such as in the R package NbClust.

The cluster groupings that sit along the cut are assignments of experts to homo-
geneity groups. Suppose along this cut ten experts were clustered in the following
three groups. Group 1 - experts {1,3,5,7,9}, Group 2 - experts{2,4,6}, Group 3 -
experts{8,10}. H would then be the array {1,2,1,2,1,2,1,3,1,3}.

Validate the homogeneity group choices by running a principal component anal-
ysis (PCA) over the seed variable space. Visualise the first two or three principal
components pairwise and consider a scree plot of the PCA to understand the level
of variance captured within these components. Determine whether there is agree-
ment with the choices made algorithmically and then finalise homogeneity group
assignments.

A.1.3 Step two - calibration and aggregation

Calibration
For each Y in Y and e in E, assume the true realisation of ¥ (yy) are random
draws from a distribution of structure g, defined by the unbiased quantile estimates
of the expert e.
¥y ~ 8e(|Lyens Uyens Myen) € €EY €Y (24)

where the unbiased quantile estimates are defined by:

L;F’eh = (1 - alE)MYe + aleLYe ecE
UY*eh = (1 - aue)MYe + (xueUYe h= H(e) (25)
My, := Mye XeX

and the inflation factors for each expert are random draws from a distribution
which is consistent across experts within a single homogeneity group:

el Ain, Bin ~ I (Ajp +1,Bp,) ecE 06)
Oue|Aun, Bun ~ I (Aup + 1, Bun) h=H(e)
where A, Ay, By and By, are defined by:
Ay, ~ Pois(a;) and By, ~ Exp(b
Ih (ar) Ih p(br) @

Ay ~ Pois(a,) and By, ~ Exp(b,)
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Hyperparameters a;,a,, b; and b,, are consistent across all experts and homogene-
ity groups.

Aggregation

Assume that the elicited quantile for each expert target variable pair is a function
of the underlying unbiased quantiles and the inflation factors inferred.

Lx., = (L;(eh — (1 — (Xlg)Mxe)/(Xle ecE
Uxen = (Ug, — (1 — Qye)Mxe) / Oye h=H(e) (28)
My, = M;e XeX

where the unbiased parameters L, , My, Uy, are those such that:

Ge (L;‘(ehh/);eh) = PL (29)
G, (M;éehh?eh) =Py (30)
Ge(U;ehh&keh) =F (31)

where each experts’ unbiased parameterised values ¥y, for a given target vari-
able X € X and expert e are random draws from a distribution, f, defined by the
homogeneity group # € H within which e sits. The appropriate functional form of
f is determined by the functional form of g,. Homogeneity group parameters are
random draws from a global distribution, which have the decision maker’s prior.

Yxen ~ f(:|Yxn,pxn) Ve €E
Yan~ f(lw.px)  VheH (32)
Yx ~ Tpmy

The parameters Yy are then used to infer the target posterior given by gpa(-|¥x)-

Please note: In practice, when encoding in a language such as BUGS, the logical
determination in equations (28)-(31) is embedded within the first line of (32). Thus
the data is encoded as a random draw. To this extent, this is modelled as Ly, ~
FClYcns Pxn, 0e) and the functional forms of g. and equation (28) determine the
structure of this draw. Similar for Uy, and Mx .

A.2 Full method outline - split normal parameterisation

When the distributions g, are all defined to be a split normal then they can be repre-
sented by a single function such that:

_1 Aii/IXeh 2
e T % ifx < My,
(.X‘L* M Uz )N Oy 1on V2T (33)
8e Xeh>" Xeh>~ Xeh L My 0
1 2V gF
Xueh lf_x 2 MXeh
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where, the unbiased standard deviations oy,,, and oy, are calculated by:

* *
MXeh — LXeh

Uy —M;
* _ * _ “Xeh Xeh
OXjeh = 5 and Oy,pp = —5—=

&

and 13, := 1/0%;,, and T}, := 1/0%:,,. Here & represents the number of
standard deviations between the elicited quantiles. The equation for g, is identically
defined for the seed variables and used in equation (24). The parameters Yy, in
equation (32) are then given by the triple, (My,;,, T ;.1,> Txyen)- 10 this instance the
generic aggregation component (equation (32)) is now replaced by:

(34)

Lxen|Mxh, Oge, pxn ~ N (Mxp —

0
————),Pxn)
V Txien Qe

() 35
Uxen|Mxn, Que, pxn ~ A (Mxn + ——=——),Pxn) )
V TXueha“e
My en|Mxp, pxn ~ A (Mxn, Pxn)
with Location parameter aggregation:
Mxy|Mx, px ~ N (Mx, px) (36)
My ~ AN (Mpus, , Px0)
and Dispersion parameter aggregation:
TX1h TXuh
X \rxan, Exin ~ T (Exans Exin) X\t Exun ~ T (Exuns Exun)
TXleh Xueh
Tx1 TXu
—tx1,Ex1 ~ T (Ex1,Ex1) | Txu, Excu ~ T (Exu, Exu) 37
TXih TXuh
T ~ Tyl (a,a) T ~ Truol (,4)

The parameters now used to infer the target posterior are given by the triple
(Mx, tx;, Tx,)- These are used as inputs into equation (33) to create the full aggregate
distribution.
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A.3 DAG for connected calibration and aggregation models

:aI: bl Ialullblul

P
]
Il
‘

Y
T
1
P

Yiny

einE

hinH

hinH

XinX

Fig. 12 Directed acyclic graph for the linked aggregation and calibration models. The inflation
factors from the calibration model are used to logically determine unbiased estimators in the ag-
gregation model.
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A.4 DAG for a Dirichlet process mixture model

[e, |

o kin 1:|E|

kin1:|E|

Q8

einkE

Fig. 13 Dirichlet process mixture model for homogeneity group definition. Experts are points in
the space € RIY! and are clustered utilising a mixture model (typically Gaussian).

A.5 Additional Arkansas study analysis and figures

A.5.1 Dendogram of expert homogeneity groups

Dendogram of Expert Homogeneity

Height
100 180
[N

Expert 1
Expert4

Expert 2 T
Expert 3 4‘

Fig. 14 Hierarchical clustering dendogram for the identification of expert homogeneity groups
within the Arkansas Study. Expert 2 and 3 form a single homogeneity group.
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A.5.2 Distributions for all target variables

Target Variable 1

Target Variable 6

Target Variable 11

47
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I . —
Target Variable 4 Target Variable 9 Target Variable 16

Fig. 15 Comparison of final distributions across all target variables within the Arkansas study. The
Bayesian model (blue) demonstrates a larger support, aligned to the overconfidence demonstrated
by experts in the seed variables.
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A.5.3 Cumulative density functions for different parameterisations of the
calibration and aggregation model

DM Posterior CDF by Parametrisation type - Target Variable 1

1.00
. 0.75
e DataType
a
% — 1.OuterQuantiles
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O o025

0.00

0 50 100 150
Variable

Fig. 16 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 1 in the Arkansas study.
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Fig. 17 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 2 in the Arkansas study.
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DM Posterior CDF by Parametrisation type - Target Variable 3
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Fig. 18 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 3 in the Arkansas study.
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Fig. 19 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 4 in the Arkansas study.



50 David Hartley and Simon French

DM Posterior CDF by Parametrisation type - Target Variable 5

1.00

o
3
o

DataType

— 1.OuterQuantiles
2.InnerQuantiles

--- 3.AlIFiveQuantiles

- = 4.BetaOuterQuantiles

- 5.BetalnnerQuantiles

Cumulative Probability
g

o
)
a

Variable

Fig. 20 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 5 in the Arkansas study.
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Fig. 21 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 6 in the Arkansas study.
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DM Posterior CDF by Parametrisation type - Target Variable 7

1.00

o
3
o

DataType

— 1.OuterQuantiles
2.InnerQuantiles

--- 3.AlIFiveQuantiles

- = 4.BetaOuterQuantiles

- 5.BetalnnerQuantiles

Cumulative Probability
g

-25 0 25 50 75
Variable

Fig. 22 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 7 in the Arkansas study.
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Fig. 23 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 8 in the Arkansas study.
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DM Posterior CDF by Parametrisation type - Target Variable 9

1.00

o
3
o

DataType

— 1.OuterQuantiles
2.InnerQuantiles

--- 3.AlIFiveQuantiles

- = 4.BetaOuterQuantiles

- 5.BetalnnerQuantiles

Cumulative Probability
g

o
)
a

-30 0 30 60
Variable

Fig. 24 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 9 in the Arkansas study.
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Fig. 25 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 11 in the Arkansas study.
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DM Posterior CDF by Parametrisation type - Target Variable 12
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Fig. 26 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 12 in the Arkansas study.
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Fig. 27 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 13 in the Arkansas study.
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DM Posterior CDF by Parametrisation type - Target Variable 16
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Fig. 28 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 16 in the Arkansas study.

DM Posterior CDF by Parametrisation type - Target Variable 17
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Fig. 29 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 17 in the Arkansas study.
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DM Posterior CDF by Parametrisation type - Target Variable 18

1.00

o
3
o

DataType

— 1.OuterQuantiles
2.InnerQuantiles

--- 3.AlIFiveQuantiles

- = 4.BetaOuterQuantiles

- 5.BetalnnerQuantiles

Cumulative Probability
g

o
)
a

0 50 100 150
Variable

Fig. 30 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 18 in the Arkansas study.

DM Posterior CDF by Parametrisation type - Target Variable 19
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Fig. 31 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 19 in the Arkansas study.
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DM Posterior CDF by Parametrisation type - Target Variable 20
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Fig. 32 Comparison of the posterior DM cumulative density functions by parameterisation type for
target variable 20 in the Arkansas study.

A.6 Additional CWD study analysis

EWDM PWDM BDM
Target Variable |(0.05 [0.5 095 [0.05 |05 095 [0.05 0.5 0.95
Variable 1 00 |9 90.5 (0.0 1.7 19.8 |[-12.3 |8.3 473
Variable 2 02 [29.7 [958 0.0 |5 58.7 |[-37.9 |30.8 |114.8
Variable 3 0.6 14.3  [454.4 10.5 4.8 |40 -13.4 |11 457
Variable 4 00 9.1 238.7 (0.0 15.6 (193.4 |-8 7.1 345.6
Variable 5 0.1 65.3 (100 0.0 13.3 (921 |-24.7 |629 (1224
Variable 6 12.1 (664 |95.1 |13.9 [69.5 |89.7 |-18.9 [68.6 |121.8
Variable 7 11.7 (56,5 |91.8 |12 62.1 (848 |-17 |59.2 (119.1
Variable 8 7.8 [49.7 |89.6 |10 46.6 |89 -36.6 (52.8 |123.4
Variable 9 0.0 8.7 83 00 (34 19.8 |[-14.6 |84 |69.7
Variable 10 412 1987 |100 [90.1 [98.4 |100 753 (99.8 |102.7
Variable 11 0.0 1.3 [461.7 |0.1 0.9 2 -2 1.1 38.2
Variable 12 0.0 14.8 (87.8 0.0 0.7 19.7 |-24.6 (12.8 |87.5
Variable 13 2.1 39.5 (953 |19 39.6 (974 |46 |44.7 |120.2

Table 4 Comparison of DM quantiles for the 13 target variables, considering different modelling
approaches to the CWD Study. The Bayesian decision maker (BDM) demonstrates a broader range
of uncertainty than the equal weighted (EWDM) or performance weighted (PWDM) decision makers.



