

warwick.ac.uk/lib-publications

Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/145715

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance
from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/363147424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/145715
mailto:wrap@warwick.ac.uk

Trust Assessment in 32KiB of RAM: Multi-application
Trust-based Task Offloading for Resource-constrained IoT Nodes

Matthew Bradbury

Department of Computer Science

University of Warwick

Coventry, UK

M.Bradbury@warwick.ac.uk

Arshad Jhumka

Department of Computer Science

University of Warwick

Coventry, UK

H.A.Jhumka@warwick.ac.uk

Tim Watson

WMG

University of Warwick

Coventry, UK

tw@warwick.ac.uk

ABSTRACT
There is an increasing demand for Internet of Things (IoT) systems

comprised of resource-constrained sensor and actuator nodes exe-

cuting increasingly complex applications, possibly simultaneously.

IoT devices will not be able to execute computationally expensive

tasks and will require more powerful computing nodes, called edge
nodes, for such execution, in a process called computation offloading.
When multiple powerful nodes are available, a selection problem

arises: which edge node should a task be submitted to? This prob-

lem is even more acute when the system is subjected to attacks,

such as DoS, or network perturbations such as system overload.

In this paper, we present a trust model-based system architecture

for computation offloading, based on behavioural evidence. The
system architecture provides confidentiality, authentication and

non-repudiation of messages in required scenarios and will operate

within the resource constraints of embedded IoT nodes. We demon-

strate the viability of the architecture with an example deployment

of Beta Reputation System trust model on real hardware.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Secu-
rity and privacy→ Trust frameworks.

KEYWORDS
Trust, computation offloading, Internet of Things, resource con-

strained, edge computing

ACM Reference Format:
Matthew Bradbury, Arshad Jhumka, and Tim Watson. 2021. Trust Assess-

ment in 32 KiB of RAM: Multi-application Trust-based Task Offloading for

Resource-constrained IoT Nodes. In The 36th ACM/SIGAPP Symposium on
Applied Computing (SAC ’21), March 22–26, 2021, Virtual Event, Republic of
Korea. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3412841.

3441898

1 INTRODUCTION
Internet of Things (IoT) devices are being deployed in a variety of

contexts including smart farming [16], healthcare [15] and smart

cities [22]. IoT devices have typically been deployed as a distributed

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8104-8/21/03.

https://doi.org/10.1145/3412841.3441898

system to perform sensing of their environment. Recently, there

has been interest in these devices to perform more complex tasks

(including actuation). An issue is that many of these devices are

resource-constrained, with limited processing power, data storage,

energy storage and other constraints.

Due to these resource constraints, it will be infeasible for IoT

devices
1
to perform computationally expensive tasks, e.g., machine

learning. Therefore, these tasks will need to be sent to resource-

rich (powerful) devices (or nodes) to execute, in a process called

computational offloading. These nodes may be accessible via the

internet (e.g., a Cloud service) or via edge nodes
2
that exist within

the same local network as the resource-constrained devices. For

a large class of applications, offloading to edge nodes is preferred,

e.g., when latency is important.

To meet demand, multiple edge nodes should be provisioned in

the network. However, a selection problem then arises: which edge

node should an IoT node choose to submit a task to? This is typically

addressed in the literature by evidence-based behavioural trust [32,
38], where the incidence of how well an edge node has correctly

executed tasks in the past is recorded and used as a predictor of

how likely that edge node is to correctly execute future tasks. Trust

is typically evaluated at the application level and sufficient storage

is needed to record information about each edge node of interest.

In vehicular and cellular networks, the task offloading problem is

referred to as Multi-access Edge Computing (MEC) [25]. However,

trust models that require a large amount of memory or processing

power to compute are not viable for resource-constrained (IoT) de-

vices. Hence, simpler models, e.g., the Beta Reputation System [21]

or hidden Markov models (HMM) [14], can be used instead.

While a suitable trust model is vital, its correct deployment is

equally important. Common internet infrastructure is typically

unsuitable due to the same resource constraints that necessitate

task offloading. Therefore, in this paper, we propose and describe

a system architecture for trust-based task offloading. The archi-

tecture is designed to support arbitrary trust models and multiple

applications running on both edge nodes and IoT devices.

We make the following contributions:

(1) We propose a system architecture for performing trust-based

task offloading for IoT devices.

(2) We profile cryptographic operations on Zolertia RE-Motes

and use this to inform the message protection strategy.

(3) We conduct a small deployment of the Beta Reputation Sys-

tem using Zolertia RE-Motes to demonstrate the efficacy of

the system.

1
By IoT devices, we mean devices that are resource-constrained.

2
By edge nodes, we mean resource-rich nodes at the edge of the network.

https://doi.org/10.1145/3412841.3441898
https://doi.org/10.1145/3412841.3441898
https://doi.org/10.1145/3412841.3441898

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Matthew Bradbury, Arshad Jhumka, and Tim Watson

The rest of this paper is structured as follows: in Section 2 we

presented related work. Section 3 describes the system model and

Section 4 specifies the problem statement. In Section 5 the individ-

ual components of the system architecture are described. Section 6

describes the experimental setup used to obtain the results pre-

sented in Section 7. A discussion of the system is presented in

Section 8 before concluding in Section 9.

2 RELATEDWORK
There has been much work on standardising the fundamentals of

IoT device infrastructure. Typically many protocols designed for

general internet use-cases are too resource intensive and are de-

signed for high performance and not minimising costs in terms of

RAM, flash, computation, and energy. So, alternative protocols for

these resource-constrained systems have been developed, such as:

uIPv6 [11] for addressing, TSCH [36] for energy-efficient wireless

medium access and RPL [1] for packet routing. Higher level pro-

tocols have been implemented on top of these, such as CoAP [31]

which provides similar functionality to HTTP.

While security protocols such as DTLS can be used to protect

UDP traffic, there has been recent effort to standardise security

protocols specific to CoAP. OSCORE [28] provides encryption and

authentication of messages. Only a subset of headers are protected

to facilitate proxying which changes some CoAP fields. A benefit to

OSCORE is that it has low overhead compared to DTLS [18, 19] and

there remain unaddressed issues with multiple DTLS implemen-

tations [17], however, OSCORE does not provide forward secrecy.

Other approaches can involve trusted execution environments such

as ARM TrustZone [27].

Trust has also been used to solve a variety of problems in IoT

applications. Primarily, the security protocols deployed typically

need to provide identity trust, where one node can verify the au-

thenticity of a message sent from another node. Trust has been

used in a variety of areas, such as routing of messages in wireless

sensor networks [9], attack detection (such as intrusion into the

network) [6] and localisation [2]. In these areas, trust is evaluated

based on observations made about the device’s behaviours.

Trust models are important for systems where nodes do not

always behave correctly. Nodes may exhibit selective behaviour,

where services are correctly performed only some of the time [34].

For example, to save energy a node may choose not to forward all

messages that are routed through it. In networks where trust is

derived from reputation information, the impact of manipulations

of this information needs to be mitigated. An example is when

nodes bad-mouth other nodes by lying and indicating they have a

low trust value for another node [34].

There has been much work on developing trust models to solve

these problems beyond resource-constrained systems [32, 38]. In

vehicle and cellular networks the task offloading problem (which

we focus on in this paper) is referred to as Multi-access Edge Com-

puting (MEC) (previously Mobile Edge Computing) [25]. A variety

of solutions have been proposed for trust-based offloading in MEC

systems, typically involving machine learning approaches [26, 37],

linear programming (LP) [10], or game theoretic approaches [30].

However, these solutions are typically unsuitable for use in resource-

constrained systems. Many machine learning models, though not

all, require a large amount of memory or are expensive to compute,

and techniques such as LP or game theoretic approaches would

require large amounts of data to be sent to a central location to be

processed into a schedule which is costly in terms of energy. This

typically means that lightweight approaches are needed that are

evaluated on resource-constrained IoT devices.

The seminal example of a lightweight trust model is the Beta

Reputation System (BRS) [21]. The BRS maintains two counters

which are parameters to the Beta distribution, the number of good

events observed (𝛼) and the number of bad events observed (𝛽). A

trustor can calculate a trust value about a trustee via the expected

value of this distribution (the ratio of good events to the total num-

ber of events). These values can be updated with more observations,

allowing the belief in the trustee to be refined.

The BRS and other models such as those that use HMMs [14]

can allow the representation of trust in a small amount of space.

However, for these trust models to be effective in selecting a target

for task offloading, they need a suitable system to feed them with

observations and then deliver tasks to the chosen node.

3 SYSTEM MODEL
The system is modelled as a graph 𝐺 = (𝑉 , 𝐸), where:
• 𝑉 = 𝑉𝑅 ∪𝑉𝐶 ∪ {𝜌} is the set of nodes in the network, made

up of edge nodes (𝑉𝑅), IoT nodes (𝑉𝐶), and a root node 𝜌 ,
• 𝐸 ⊆ 𝑉 ×𝑉 is the set of communication links between nodes

in the network.

IoT devices exist within the network to perform sensing and

actuation. They are battery-powered with limited CPU power, RAM,

energy storage, and potentially no stable storage. For example, the

Zolertia RE-Mote [39] has a 32MHz CPU, 32 KiB of RAM, 512 KiB of

programmable flash, a 800mAh battery, and support for an optional

SD card. Communication in these devices is typically performed

using IEEE 802.15.4, Bluetooth Low Energy, or LoRaWAN. Edge

nodes support the IoT nodes by executing tasks that are either too

expensive or require access to data unavailable to IoT devices. The

special root node is equipped with similar resources to edge nodes

and performs dedicated tasks for the system.

4 PROBLEM STATEMENT
There is a set of applicationsA deployed in the network, for each of

which there is a variant deployed on an IoT devicesA𝐶 and a variant

deployed on edge nodesA𝑅 . There is a bijection 𝑓𝑎𝑝𝑝 : A𝑅 → A𝐶

from the edge node applications to IoT device applications. We

assume two functions (i) 𝐴𝐶 : 𝑉𝐶 → 2
A𝐶

that returns the set of

applications on an IoT device and (ii) 𝐴𝑅 : 𝑉𝑅 → 2
A𝑅

that returns

the set of applications on an edge node.

Tasks generated on IoT device 𝑐 for application 𝑎 ∈ 𝐴𝐶 (𝑐) will
need to be delivered to an edge node that hosts the corresponding

application. The edge nodes that can process these tasks are:

𝑉𝑎
𝑅 = { 𝑟 | 𝑟 ∈ 𝑉𝑅 ∧

(
∃𝑎′ ∈ 𝐴𝑅 (𝑟) , 𝑓𝑎𝑝𝑝 (𝑎′) = 𝑎

)
} (1)

Definition 4.1 (Task Offloading). Given a IoT device 𝑐 ∈ 𝑉𝐶
and the task for application 𝑎 ∈ 𝐴𝐶 (𝑐) that 𝑐 needs to offload, which
edge node 𝑟 ∈ 𝑉𝑎

𝑅
should the job be offloaded to such that: (i) the task

will be accepted, (ii) 𝑟 returns a result within some deadline 𝑑 , and
(iii) the result is correct.

Multi-application Trust-based Task Offloading for Resource-constrained IoT Nodes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Certificate
Sever
/cert

Mosquitto
MQTT
Server

Stereotype
Server

/stereotype

MQTT-over-
CoAP
/mqtt

Root

fd00::1 (global)
fe00::1 (link)

Serial Line IP (SLIP) + RPL Border Router

Certificates
Database

Capability
Announce

Stereotype
Database

Resource-rich

fd00::212:4b00:14d5:2bd6 (global)
fe80::212:4b00:14d5:2bd6 (link)

Resource-
rich

Applications

Reputation
Database

Trust Model:
History

Certificates
Database

Capability
Discovery

Stereotype
Database

Resource-constrained

fd00::212:4b00:14d5:da27 (global)
fe80::212:4b00:14d5:da27 (link)

Resource-
constrained
Applications

Reputation
Database +

Dissem.

Trust Model:
Evaluation +

History

Figure 1: System functionality across the three device classes with example addresses

We assume that application tasks may not always be performed

correctly by edge nodes and that there may be failures in any of

the three conditions in Definition 4.1 due to edge nodes choosing

to intentionally behave badly (e.g., wanting to prefer some capabil-

ities over others) or due to other failures (e.g., transient network

failures) that may cause packets to be lost. The deadline of a task

is application-specific, some applications may be critical and have

an early deadline, whereas non-critical applications will have later

(possibly flexible) deadlines.

We propose to use a measure of trust as one approach to solve

the Task Offloading problem. The metric captures the likelihood

of a node to correctly execute an offloaded task. However, in order

to capture this behavioural trust, a system must first provide: (i)

identity trust and confidentiality, where messages between nodes

can be authenticated and protected, (ii) mechanisms to facilitate the

discovery of edge nodes and their capabilities, and (iii) mechanisms

to submit tasks, receive responses and make observations about

these actions. Depending on the trust model in use, it may also be

necessary to (iv) provide stereotype information about nodes to

bootstrap trust, and (v) facilitate the dissemination of reputation

information. This paper does not provide a solution to the Task

Offloading problem, but instead presents a system architecture

which facilitates the deployment of trust models that do.

5 SYSTEM ARCHITECTURE
In this section we present a high-level description of our architec-

ture to perform trust-based task offloading, before describing in

detail the individual components. The system relies upon uIPv6 [11]

and RPL [1] for message routing, and CoAP [31] for reliable mes-

saging. As CoAP uses UDP this avoids the RAM cost of including

the TCP stack. CBOR [7] is used to encode the contents of CoAP

messages. For the security layer, OSCORE [28] provides encryp-

tion and authentication of CoAP messages. We plan to use Group

OSCORE [33] for messages that require no encryption but require

being digitally signed, as no implementation is available yet for the

draft standard.

We have performed an implementation
3
using Contiki-NG [12].

The Contiki-NG operating system uses a coroutine-based coopera-

tive scheduling model [13] instead of a multi-threaded model. The

impact of this design is that the multiple applications running need

3
Implementation source code: https://github.com/MBradbury/iot-trust-task-alloc.

to ensure that they behave well to avoid impacting other applica-

tions and tasks. For example, they will need to yield often enough

to allow other coroutines to execute.

This feature set is not limited to Contiki-NG, and other operating

systems (such as RIOT [4], Zephyr
4
, OpenThread

5
, and others)

have a similar set of features. While our implementation is specific

to Contiki-NG, the system architecture can be implemented on

alternate IoT OSes that support the required features.

A single root node is required as part of Contiki-NG’s implemen-

tation of RPL. On this single root node, a CoAP server (implemented

using aiocoap [3]) will be used to provide services to the network.

An overview of the system is shown in Figure 1.

We make the following assumptions as part of the development

of this system architecture:

(1) As IoT devices have finite lifetimes, they may be retrieved

and have batteries swapped at which point firmware updates

may be performed.

(2) The multiple applications running on a single device are

assumed to be mutually trusted [35], where one application

does not intentionally aim to negatively impact another.

(3) A measure of trust in an edge node is evaluated on the IoT

devices. While trust could be evaluated elsewhere in the

network, there are costs involved with the transmission of

observations and the device evaluating trust would need to

be assumed to behave well.

5.1 Public Key Infrastructure
This system is primarily focused on evaluating behavioural trust,

where the edge node is selected via an evidence-based evaluation of

their past behaviour. However, in order to provide a foundation for

behavioural-based trust, it is necessary that nodes in the network

have trust in the identities of other network nodes.

Each IoT device is pre-deployed with a root certificate, their own

certificate, and their secret key. This implementation uses the NIST

P-256 elliptic curve (EC) (also know as sepc256r1) for ECC keys

because the keys and signatures both take up a small amount of

space (64 B) compared to keys required for RSA at comparable bits

of security [23]. ECDSA signatures also provide non-repudiation

for messages that are digitally signed. However, a downside is that

4
https://zephyrproject.org

5
https://openthread.io

https://github.com/MBradbury/iot-trust-task-alloc
https://zephyrproject.org
https://openthread.io

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Matthew Bradbury, Arshad Jhumka, and Tim Watson

Certificate = [
tbscertificate : TBSCertificate,
signature : bytes .size 64

]
TBSCertificate = [

serial_number : uint,
issuer : bytes .size 8,
validity : [notBefore: uint, notAfter: uint],
subject : bytes .size 8,
stereotype_tags : StereotypeTags,
public_key : bytes .size 64

]
StereotypeTags = [

device_class : uint
]

Figure 2: CDDL definition of lightweight certificate

ρPKI

PKI
n

RR and RC Nodes

key-req

known?

key-resp

Request Public Key (valid Signature)

key-req

known?

4.00 Bad Request

Request Public Key (Invalid Signature)

msc PKI

Figure 3: PKI Protocol

ECC operations are time consuming to compute, therefore we aim

to minimise the use of ECC operations where appropriate.

Due to the large size of X.509 certificates we use a CBOR-encoded

certificate similar to [20], whose contents is shown in Figure 2.

While the certificates support including the time at which they are

valid, not all systems may be capable of checking the validity. This

is because there may be no time-synchronisation protocol in use

that allows IoT devices to align their local clock with a global clock.

So in this system, certificates can be purged from the root node

once IoT devices are expected to have run out of battery.

To minimise the number of ECC operations that IoT devices

perform, a shared secret is provided to an OSCORE context so for

the majority of operations AES-CCM is used to encrypt and provide

authentication of messages. In order for a node 𝑛1 to create an OS-

CORE context with another node 𝑛2, elliptic curve Diffie–Hellman

(ECDH) is first used to generated a shared secret using 𝑛2’s public

key and𝑛1’s secret key. Therefore, ECC operations are only required

when deriving the OSCORE context, digitally signing/verifying spe-

cific messages, and verifying certificates.

At network deployment not all edge nodes may be known, this

means there is a need for IoT devices to be able to request keys for

unknown nodes from a key server on the trusted root node. The

protocol for this is shown in Figure 3.

Name MQTT Topic

announce edge/+/announce
unannounce edge/+/unannounce
capability add edge/+/capability/+/add
capability remove edge/+/capability/+/remove

Table 1: MQTT Topics

5.2 Resource-rich Capability Discovery
IoT devices need to discover edge nodes and their capabilities (i.e.,

what applications they are running). Discovery of these capabili-

ties aligns with a publish-subscribe model where IoT devices sub-

scribe to announcements of edge nodes publishing their capabilities.

MQTT [5] is a pub-sub protocol designed for IoT devices, however,

it has a number of downsides when integrating with this system.

Primarily, MQTT uses TCP to provide reliability, which means that

there would be an additional RAM cost by including the TCP library.

The use of MQTT would also mean that the security mechanisms

protecting CoAP messages could not be applied to MQTT messages.

To mitigate this overhead on the IoT devices, we instead imple-

ment MQTT-over-CoAP, where an application on the root node

translates CoAP messages into MQTT messages and vice versa.

The MQTT-over-CoAP translator application communicates with a

Mosquitto [24] server that provides the MQTT functionality.

There are four phases to resource-rich capability discoverywhich

are shown in Figure 4. The first requires IoT devices to subscribe
to the four topics in Table 1. The first wildcard entry (represented

by +) is the edge node’s EUI-64 in hexadecimal and the second

wildcard entry is the name of the capability.

The announce topic is used for edge nodes to announce them-

selves to others in the network. Their lightweight certificate is in-

cluded in the message so receivers do not need to request it. The re-

ceivers will validate the certificate upon reception. The capability
add topic is used for edge nodes to inform subscribers that a specific

capability is being provided by that node.

The unannounce and capability remove topics are used by

well-behaved edge nodes to inform subscribers that the node or

a capability is unavailable respectively. Malicious nodes may not

publish these messages, so IoT devices will need to be able to handle

this scenario when encountered.

5.3 Resource-rich Stereotype Request
An issue in trust-based selection is that when the system is starting

or a new entrant joins, there is little opportunity for historical data

to have been gathered and used to build a trust model. Therefore,

in order for facilitate better initial decisions, stereotypes can be

provided as a starting point to bootstrap trust models [32].

When an edge node announces itself, the certificate it sends

contains a set of tags which provide an abstract description of the

node. Once these tags are received, the stereotype for this set of

tags is requested from the root node as shown in Figure 5. When

choosing which IoT device to submit a task to, the stereotype with

the closest set of matching tags may be used in the process of

calculating the trust value for that edge node.

Multi-application Trust-based Task Offloading for Resource-constrained IoT Nodes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

ρMQTT

MQTT
ρbridge

mqtt-coap-bridge
r ∈ VR

RR Nodes
c ∈ VC

RC Nodes

sub-reqforward sub-req

ack sub-req sub-ack

sub-req

sub-ack

subscribe to topics (annouce, unannouce, publish add and publish remove)

ann-reqforward ann-req

ack ann-req ann-resp

store r’s
certificate

ann-resp

store r’s
certificate

announce resource-rich node r

unann-reqforward unann-req

ack unann-req unann-resp

Potentially
forget r

unann-resp

Potentially
forget r

unannounce resource-rich node r

[add/rem]-cap-reqforward [add/rem]-cap-req

ack [add/rem]-cap-req [add/rem]-cap-resp

[add/rem]-cap-resp

notify
apps

publish add / publish remove resource-rich r capability c

msc Edge Capability Dissemination

Figure 4: Resource-rich Capability Discovery Protocol

5.4 Reputation Dissemination
Trust models may incorporate a measure of reputation into their

evaluation of the trustworthiness of an edge node. The reputation of

a trustee is the beliefs held by other trustors in the system and it is

stored in the same format as the trust model held by other trustors.

When a trust model incorporates reputation, each of the IoT devices

need a mechanism to disseminate their beliefs. It is important to

provide non-repudiation for messages containing reputation of

trustees so nodes cannot claim they had a different trust value in

the past. There is also no need for confidentiality, meaning the

messages can be signed and sent unencrypted.

There are multiple options for implementing dissemination of

reputation information, such as: (i) performing a network-wide

multicast, (ii) targeting specific nodes, (iii) performing a 1-hop

broadcast, or (iv) allowing nodes to request reputation information.

In this implementation we focus on (iii) and (iv) where IoT devices

perform a periodic dissemination of trust values and also allow

other nodes to request reputation information from arbitrary nodes.

Both of these actions are shown in Figure 6.

ρStereotype

Root Stereotype Server
n

RR and RC Nodes

stereotype-req

stereotype-resp

Update
relevant

trust
models

Request Stereotype

msc Stereotype

Figure 5: Resource-rich Stereotype Request

ρPKI

PKI
n

RR and Other RC Node(s)
c

RC Node

Broadcast trust

key-req

key-resp

Td

Periodic dissemination every Td seconds

Broadcast trust

key-req

key-resp

merge
reputation
with local

data

Td

Periodic dissemination every Td seconds

trust-req

trust-resp

Request trust

msc Trust and Reputation Dissemination

Figure 6: Trust Dissemination Protocol

5.5 Application
The messages that applications on IoT devices send to edge nodes

(the task-request and vice versa the task-response), will be pro-

tected by the OSCORE layer via encryption and authentication of

the message. While, some applications may not require confiden-

tiality, a generic layer will need to encrypt the messages in order

to facilitate applications that do require it. An example of the appli-

cation protocol is shown in Figure 7 for an application that sends

a periodic task every 𝑇 seconds. When a capability add for this

application is received, the application is started if it is not running.

For the first periodic action, an edge node may be selected which

lacks the IoT device’s certificate. The edge node will not acknowl-

edge the message and instead request the certificate. Either, when

the IoT device retries the certificate will have been retrieved, or

the IoT device will eventually timeout. Subsequent actions will not

need to repeat this as the edge nodes will cache the certificate.

In the case of failure, applications may choose to resubmit a task

to an alternate edge node. This is left up to the application as it will

require buffering the task to facilitate retrying it.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Matthew Bradbury, Arshad Jhumka, and Tim Watson

ρPKI

PKI
r

RR Nodes
c

RC Nodes

notify add

first?

start app

Ta

Notified of addition of resource-rich r’s capability c

Send data/task

expensive
compute

Data/task response

Ta

Periodic action every Ta seconds

notify remove

last?

stop app

Ta

Notified of removal of resource-rich r’s capability c

msc Application

Figure 7: Application Protocol

6 EXPERIMENTAL SETUP
We perform experiments

6
using a deployment of six Zolertia RE-

Motes which have hardware acceleration for SHA2, AES-CCM-16-

64-128 (used by OSCORE), and 256 bit ECC operations. The key

benefit is hardware support for ECC operations which take a long

time to compute. Contiki-NG’s implementation allows the CPU to

execute other (potentially time sensitive) tasks while a message is

being signed or verified. Each RE-Mote was attached to a Raspberry

Pi which logged output. Two of the Raspberry Pis acted as Edge

nodes, performing expensive computation for applications.

The system frequently publishes capabilities (every 2min), dis-

seminates trust (every 2min), generates a monitoring task (every

1min) and generates a routing task (every 2 to 3min). These rates

are higher than typical in order to obtain results in a reasonable time

and would need to be adjusted based on the deployment performed.

To avoid memory fragmentation, fixed-sized pools are allocated

at compile time. Table 2 shows the default maximum number of

different types of objects that can be allocated and their RAM cost.

These values would need to be adjusted for different network sizes.

6.1 Example Trust Model
To illustrate the operation of this system we implement an example

trust model using the BRS. The trust value for each metric𝑚, edge

node 𝑟 and application 𝑎 is beta-distributed T𝑚 (𝑟, 𝑎) ∼ Beta(𝛼, 𝛽)
(application-specific) or T𝑚 (𝑟) ∼ Beta(𝛼, 𝛽) (application-agnostic)
where𝛼 is the number of successful interactions and 𝛽 is the number

of unsuccessful interactions. The expected value of the distribution

summarises the number of successful events that have occurred.

𝐸 [X] = 𝛼

𝛼 + 𝛽 where X ∼ Beta(𝛼, 𝛽) (2)

6
Raw results for these experiments can be found at [8]

Name Count Entry (B) Total Size (B)

Certificates 12 288 3 456

Stereotypes 5 24 120

Edges 4 52 208

Edge Capabilities 12 28 336

Peers 8 32 256

Peer Edges 32 32 1 024

Peer Edge Capabilities 96 16 1 536

Table 2: Configuration constants and RAM cost

For any application-agnostic metric𝑚: T𝑚 (𝑟, 𝑎) = T𝑚 (𝑟).
Each IoT device 𝑐 maintains three sets of Beta distributions that

summarise interactions with edge node 𝑟 and application 𝑎:

• T
sub
(𝑟) — Did 𝑟 inform 𝑐 that a task was received and will

be executed?

• Tres (𝑟) — Did 𝑟 provide a result for a task?

• Tcorr (𝑟, 𝑎) —Was the result that 𝑟 provided for application 𝑎

correct?
Correctness is an application-specific and best-effort attempt to

validate if a result for a task conforms to expected aspects of the

result. As 𝑐 will not execute the task and compare results, there will

likely be false positives when evaluating malicious responses.

The overall trust value of an edge node is summarised by a

weighted mean over the expected values of these distributions:

T (𝑟, 𝑎) =
∑︁

𝑚∈𝑀 (𝑎)
𝜑𝑎,𝑚𝐸 [T𝑚 (𝑟, 𝑎)] (3)

where:

• 𝑀 (𝑎) is the set of metrics that relate to application 𝑎.

• 0 ≤ 𝜑𝑎,𝑚 ≤ 1 is the weight that application 𝑎 gives metric

𝑚. Applications use it to specify the relative importance of

metrics, with 1 =
∑
𝑚∈𝑀 (𝑎) 𝜑𝑎,𝑚 .

If a stereotypeS𝑚 (𝑟) is available for edge node 𝑟 and metric𝑚, then

the trust model for that metric is adjusted before calculating the

summarised trust. As these trust models are initialised as Beta(1, 1),
1 is subtracted from 𝛼 and 𝛽 .

T ′𝑚 (𝑟) =
{
T𝑚 (𝑟) .𝛼 − 1 + S𝑚 (𝑟).𝛼
T𝑚 (𝑟) .𝛽 − 1 + S𝑚 (𝑟).𝛽

(4)

The individual distributions are updated as per Algorithm 1,

where 𝑓
opinion

𝑎,𝑚 is an application 𝑎 and metric-specific𝑚 function

that evaluates the opinion IoT device 𝑐 has about a situation and

interaction. The situation details which task was submitted and the

interaction contains information about the last interaction with the

edge node. For example, a situation may be “Request route from a

to b” and the interaction may be “𝑟 timed out returning a response”.

To choose which edge node to submit a task to, that edge node

must support the application that originated the task and also have

a sufficiently high trust value. For this example model we imple-

mented a banded approach, where a sufficiently high trust value

is any trust value within some distance from the maximum trust

value. The chosen edge node is selected randomly from the edge

nodes that meet this criteria.

This trust model does not utilise the reputation information

disseminated. However, we have included it to demonstrate the cost

Multi-application Trust-based Task Offloading for Resource-constrained IoT Nodes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Algorithm 1 Update state based on a situation and interaction

⊲ 𝑎 is an application, 𝑠 is a situation, 𝑖 is an interaction

1: function Update(𝑎, 𝑠 , 𝑖)

2: for𝑚 ∈ 𝑀 (𝑎) do
3: if RelevantInteraction(𝑎, 𝑠, 𝑖,𝑚) then
4: 𝑜 ← 𝑓

opinion

𝑎,𝑚 (𝑠, 𝑖)
5: if 𝑜 = Successful then
6: T𝑚 (𝑒, 𝑎).𝛼 ← T𝑚 (𝑒, 𝑎).𝛼 + 1
7: else
8: T𝑚 (𝑒, 𝑎).𝛽 ← T𝑚 (𝑒, 𝑎).𝛽 + 1

𝜑𝑎,𝑚 sub res corr

Environment Monitoring 1 0 0

Routing
1

3

1

3

1

3

Table 3: Application per-metric weights

that trust models that do utilise it incur, as this system architecture

is intended to be trust model agnostic.

6.2 Example Applications
To illustrate the operation of this system we implement two ex-

ample applications: (i) environment monitoring and (ii) vehicle

routing. The environment monitoring application generated a task

every 1min, which involves sending sensor data to an edge node.

The routing application generated a task every 2 to 3min contain-

ing source and destination coordinates and expected to receive a

route response within 2min. The routing application performs a

correctness check of a task result by checking that the source and

destination are the first and last items in the provided path. The

trust model weights for these two applications are shown in Table 3.

7 RESULTS
We now present results analysing three key aspects of this system:

(i) the RAM and Flash costs, which define the device specifications

of IoT devices, (ii) the cost of cryptographic operations, highlighting

the trade-offs made, and (iii) the runtime performance of the system

with example applications.

7.1 RAM and Flash Usage
The RAM and flash usage of the implementation (shown in Table 4)

was generated using nm on the compiled binary for IoT devices.

This only shows the cost of defined symbols such as static variables

and functions, it does not include strings. Symbols have been clas-

sified into categories to identify where the RAM and flash costs

are incurred. The implementation is limited by the RAM of the

IoT hardware. This is because dynamic memory allocation is typi-

cally avoided with embedded systems, as long-term use can lead to

memory fragmentation which prevents future allocation requests

succeeding. So instead fixed-size buffers are chosen at compile time.

In our implementation 64% of the RAM utilisation comes from

the buffers required to implement network access (contiki-ng/net),

certificate storage and digital signatures (system/crypto), and the

trust model (system/trust).

Flash RAM

Category (B) (%) (B) (%)

applications/monitoring 1 388 1.2 353 1.2

applications/routing 3 868 3.3 474 1.6

contiki-ng 7 280 6.2 846 2.9

contiki-ng/cc2538 14 556 12.4 2 356 8.0

contiki-ng/coap 8 556 7.3 2 388 8.1

contiki-ng/net 26 824 22.9 8 232 27.8

contiki-ng/oscore 5 512 4.7 1 010 3.4

newlib 26 415 22.6 2 534 8.6

system/common 3 188 2.7 37 0.1

system/crypto 6 210 5.3 5 173 17.5

system/mqtt-over-coap 1 490 1.3 503 1.7

system/trust 11 846 10.1 5 659 19.1

Total Used 117 133 100 29 565 100

Total Available 524 288 32 768

Table 4: IoT device RAM and flash usage

Operation Mean Cost Units

SHA256 637 ± 11.6 ns/B
ECC Sign (sepc256r1) 360 ± 0.04 ms

ECC Verify (sepc256r1) 711 ± 0.03 ms

ECDH 344 ± 0.02 ms

AES-CCM-16-64-128 Encrypt 0.94 ± 0.01 µs/B
AES-CCM-16-64-128 Decrypt 1.01 ± 0.01 µs/B

Table 5: Performance of Cryptographic Operations

7.2 Cryptographic Operations Cost
In this section, we perform profiling of the relevant cryptographic

operation costs on the Zolertia RE-Mote to understand the trade-offs

of using different message protection approaches. The hardware on

which these tests were performed has a clock with 32768 ticks per

second, which means timers have a resolution of 30.5 µs (3 s.f.). The

average costs are shown in Table 5 with 95% confidence intervals.

Results for SHA256 and ECC operations were gathered by gener-

ating a random plaintext with a random length from 1 to 1 024 B and

then signing and verifying that plaintext. As SHA256 is performed

as part of the sign operation, each sign and verify operates on a

constant number of bytes, so the results are not shown per byte.

Results for AES-CCM encryption and decryption were gathered

by generating a random plaintext with a random length from 1 to

1 024 B, a random 35 B of additional authenticated data (maximum

supported by OSCORE), a random 16 B key, and a random 13 B

nonce. The plaintext was encrypted and a 8 B authentication tag

was generated which was then decrypted and authenticated.

These results highlight the cost difference between AES-CCM

operations and the ECC operations on this IoT hardware. Perform-

ing an AES-CCM operation on a 100 B message is three orders of

magnitude faster than an ECC operation. This performance differ-

ence is why ECC operations are only used to derive a shared secret

for OSCORE and to disseminate signed reputation information,

whereas AES-CCM is used to protect all other messages.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Matthew Bradbury, Arshad Jhumka, and Tim Watson

7.3 Task Submission
We performed a deployment with three IoT devices (wsn3, wsn4,

wsn5) and two edge nodes (rr2 and rr6) where both edge nodes

perform the monitoring application correctly, but rr6 always per-

forms incorrectly for the routing application. Incorrect behaviour

is randomly chosen from: (i) not sending a response, (ii) sending an

invalid response claiming it is correct, or (iii) sending a response

indicating a failure. The system was run for long enough for trust

values to begin to converge. Results are shown in Figure 8 where (i)

the IoT devices evaluate their trust that the edge node will execute

the task (lines) and (ii) the number of tasks a IoT device submits to

an edge node over a time period (bars).

Figure 8a shows results for the monitoring application, where

trust values start high (due to stereotypes) and remain high. There

are instances where trust values decrease, which may be due to

transient failures such as edge nodes failing to acknowledge a task

submission. The tasks submitted by the three IoT devices are dis-

tributed across the two edge nodes as no edge node has a sufficiently

low trust value for them to be excluded from task submission.

Figure 8b shows results for the routing application. The trust

values begin at a high value due to stereotype information, however,

the trust in the two edge nodes quickly diverge due to the differ-

ing behaviour. While rr6 has a trust value that is still within the

maximum distance from the highest trust value, it can be chosen to

execute tasks (as described in Section 6.1). However, after the trust

value becomes sufficiently low, rr6 is excluded from being selected

and the IoT devices only send tasks to the well behaving rr2.

7.4 Message cost
Results showing the number of bytes transmitted and received are

shown in Figure 9 and Figure 10 respectively, where messages have

been grouped into 5min windows. The results for IoT devices wsn4

and wsn5 are omitted as they show a similar pattern to wsn3.

The messages have been categorised where possible. Due to is-

sues with analysis tools not all OSCORE contexts can be decrypted,

so valid messages will appear as “oscore”. Not all 6LoWPAN frag-

ments could be reassembled, so are shown as “6lowpan-fragment”.

Packets marked as “oscore” were for a variety of purposes includ-

ing the two applications and potentially other categories where

messages could not be decrypted. “trust-dissem” packets are inten-

tionally not protected with OSCORE, as they need to be signed and

not encrypted. The implementation currently manually includes

a digital signature, which will be the case until Group OSCORE is

supported (as will be described in Section 8.3).

Comparing the two edge nodes rr2 (always good) and rr6 (always

bad) shows why an edge node may choose to perform maliciously,

as there is a greatly decreased cost in delivering the functionality.

Edge node 2 has a higher number of messages sent and received

than rr6 because by performing correctly it needs to deliver the

result of the application. For the routing application task, this means

that a result of 7 600 B needs to be delivered back to the IoT device

which involves sending 39 CoAP messages and receiving the same

number of acknowledgements in the best-case.

There is a decrease in the number of messages sent and received

on rr6 and the wsn3 at 8:30 because all three IoT devices choose to

use rr6 for all tasks in this period (as shown in Figure 8b). The same

08:10 08:20 08:30 08:40 08:50 09:00
Time

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

st
V

al
ue

(l
in

es
)

wsn3 eval rr2

wsn3 eval rr6

wsn4 eval rr2

wsn4 eval rr6

wsn5 eval rr2

wsn5 eval rr6

0

1

2

3

4

5

6

N
um

b
er

of
ta

sk
s

su
bm

it
te

d
(b

ar
s)

(a) Monitoring

08:10 08:20 08:30 08:40 08:50 09:00
Time

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

st
V

al
ue

(l
in

es
)

wsn3 eval rr2

wsn3 eval rr6

wsn4 eval rr2

wsn4 eval rr6

wsn5 eval rr2

wsn5 eval rr6

0

1

2

3

4

5

6

N
um

b
er

of
ta

sk
s

su
bm

it
te

d
(b

ar
s)

(b) Routing

Figure 8: Trust values over time and nodes selected to exe-
cute tasks for two different applications

pattern appears at 8:40, but only for wsn3 as the other two edge

nodes send routing tasks to rr2. As rr6 behaves well for the moni-

toring application, IoT devices do not stop submitting monitoring

tasks to it. This is why rr6 continues to receive “oscore” messages

even after IoT devices stop sending routing tasks to it at 8:45.

The routing application has the largest proportion of bytes sent

(>52%) and received (>72%) for the three IoT devices. Trust dissem-

ination and subscribing to capabilities are also expensive, costing

10–13% of bytes sent and 7–10% of bytes received. Packets that our

analysis tools could not process (marked as “oscore”) took up 15–

17% of bytes transmitted and 4–5% of bytes received. This indicates

a worst case 50% overhead in transmitted bytes and 28% overhead

in received bytes to facilitate trust-based task offloading. In reality

these overheads will be lower, as some application packets were

categorised as “oscore”. The overhead will differ depending on the

frequency of reputation and capability dissemination, frequency

of tasks, and the payload sizes of tasks and their responses. De-

ployments would need to adjust the rate at which reputation and

capability information is disseminated based on application needs.

Multi-application Trust-based Task Offloading for Resource-constrained IoT Nodes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

08:10 08:20 08:30 08:40 08:50 09:00
Time

0

10000

20000

30000

40000

50000

60000

70000

M
es

sa
ge

L
en

gt
h

(b
yt

es
)

S
en

t
D

ur
in

g
W

in
do

w

6lowpan-fragment

app-routing

capability-pub-sub

certificate

coap-ack

oscore

ping-request

rpl-control

stereotype

trust-dissem

(a) rr2

08:10 08:20 08:30 08:40 08:50 09:00
Time

0

10000

20000

30000

40000

50000

60000

70000

M
es

sa
ge

L
en

gt
h

(b
yt

es
)

S
en

t
D

ur
in

g
W

in
do

w

app-routing

capability-pub-sub

certificate

oscore

ping-request

rpl-control

stereotype

trust-dissem

(b) wsn3

08:10 08:20 08:30 08:40 08:50 09:00
Time

0

10000

20000

30000

40000

50000

60000

70000

M
es

sa
ge

L
en

gt
h

(b
yt

es
)

S
en

t
D

ur
in

g
W

in
do

w

6lowpan-fragment

capability-pub-sub

certificate

coap-ack

oscore

ping-request

rpl-control

stereotype

trust-dissem

(c) rr6

Figure 9: Length of messages sent over 5 min windows

08:10 08:20 08:30 08:40 08:50 09:00
Time

0

5000

10000

15000

20000

25000

30000

M
es

sa
ge

L
en

gt
h

(b
yt

es
)

R
ec

ei
ve

d
D

ur
in

g
W

in
do

w

6lowpan-fragment

app-routing

capability-pub-sub

certificate

oscore

ping-reply

rpl-control

stereotype

trust-dissem

(a) rr2

08:10 08:20 08:30 08:40 08:50 09:00
Time

0

5000

10000

15000

20000

25000

30000

M
es

sa
ge

L
en

gt
h

(b
yt

es
)

R
ec

ei
ve

d
D

ur
in

g
W

in
do

w

6lowpan-fragment

app-routing

capability-pub-sub

certificate

coap-ack

oscore

ping-reply

rpl-control

stereotype

trust-dissem

(b) wsn3

08:10 08:20 08:30 08:40 08:50 09:00
Time

0

5000

10000

15000

20000

25000

30000

M
es

sa
ge

L
en

gt
h

(b
yt

es
)

R
ec

ei
ve

d
D

ur
in

g
W

in
do

w

6lowpan-fragment

capability-pub-sub

certificate

oscore

ping-reply

rpl-control

stereotype

trust-dissem

(c) rr6

Figure 10: Length of messages received over 5 min windows

8 DISCUSSION
A number of design decisions were made due to limitations in the

software libraries available or to simplify implementation aspects.

We now discuss two considerations with using this architecture.

8.1 Use of MQTT Retain Flag
An optimisation to reduce the cost of announce and capability

messages would be to use the MQTT retain flag. This means when a

message is published, that message is saved and delivered to nodes

that subscribe in the future. However, a retained message may

contain outdated information (e.g., an edge crashed or a capability

becomes unavailable). Therefore, in this work we have chosen to

be conservative and have edges periodically publish information.

8.2 Forward Secrecy via ECHDE
We have proposed pre-deploying a public/private key pair to each

IoT device lasting the device’s lifetime. This simplifies key manage-

ment, reducing the cost of managing and exchanging keys. A down-

side is that using ECDH to derive a shared secret once (i.e., used

for the lifetime of the devices) does not provide forward-secrecy. If

required, then future standards (such as EDHOC [29]) that facilitate

ECDHE will be necessary to setup the OSCORE context.

8.3 Implementation Limitations
Due to the use of recently published standards there are some

features of the libraries being depended upon that are not yet im-

plemented. Firstly, the implementation of OSCORE for Contiki-NG

does not yet implement RFC 8613 Appendix B.1 [28], which means

that when nodes reset they will be unable to restart communication

via OSCORE. Secondly, the Group OSCORE draft standard [33] does

not yet have a working implementation so signed and unencrypted

trust packets cannot be protected by Group OSCORE. To work

around this, the payload is signed, however, this will not protect

the CoAP headers that Group OSCORE protects.

9 CONCLUSIONS
We have presented a system for facilitating trust-based task of-

floading for multiple applications on IoT devices. Through two case

studies and an example trust model, we show how a suitable edge

node is selected as the destination for offloading. In our example,

it took 6 rounds of task submissions over under 30min for a per-

manently bad node to be excluded and at worst a 50% overhead in

transmitted bytes and 28% overhead in received bytes. The imple-

mentation applies recent IoT security standards such as OSCORE

and will make use of future standards such as Group OSCORE to

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Matthew Bradbury, Arshad Jhumka, and Tim Watson

provide security guarantees. We have also developed the building

blocks to enable the use of more complex trust models that involve

the use of disseminated reputation information and stereotypes. For

future work, we plan to perform a threat modelling of this system

to guide the development of resilient trust models.

DATA STATEMENT
The software used to generate these results can be found at https:

//github.com/MBradbury/iot-trust-task-alloc. The data gathered

and presented in this paper can be found at [8].

ACKNOWLEDGMENTS
This work was supported by the PETRAS National Centre of Excel-

lence for IoT Systems Cybersecurity [EPSRC Grant EP/S035362/1].

The authors would like to thank Martin Gunnarsson and Krzysztof

Mateusz Malarski at RISE for assistance with their WIP OSCORE

implementation.

REFERENCES
[1] Roger Alexander, Anders Brandt, J. P. Vasseur, Jonathan Hui, Kris Pister, Pascal

Thubert, P. Levis, Rene Struik, Richard Kelsey, and Tim Winter. 2012. RPL:

IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550. https:

//doi.org/10.17487/RFC6550

[2] J. G. Alfaro, M. Barbeau, and E. Kranakis. 2009. Secure Localization of Nodes in

Wireless Sensor Networks with Limited Number of Truth Tellers. In Seventh An-
nual Communication Networks and Services Research Conference. IEEE, Moncton,

NB, Canada, 86–93. https://doi.org/10.1109/CNSR.2009.23

[3] Christian Amsüss and Maciej Wasilak. 2013–. aiocoap: Python CoAP Library.

http://github.com/chrysn/aiocoap/

[4] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders, H. Petersen, K.

Schleiser, T. C. Schmidt, andM.Wählisch. 2018. RIOT: An Open Source Operating

System for Low-End Embedded Devices in the IoT. IEEE Internet of Things Journal
5, 6 (Dec 2018), 4428–4440. https://doi.org/10.1109/JIOT.2018.2815038

[5] Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta (Eds.). 2019. MQTT
Version 5.0. OASIS Standard, Burlington, MA, USA. https://docs.oasis-open.org/

mqtt/mqtt/v5.0/mqtt-v5.0.html

[6] F. Bao, I. Chen, M. Chang, and J. Cho. 2012. Hierarchical Trust Management

for Wireless Sensor Networks and its Applications to Trust-Based Routing and

Intrusion Detection. IEEE Transactions on Network and Service Management 9, 2
(June 2012), 169–183. https://doi.org/10.1109/TCOMM.2012.031912.110179

[7] Carsten Bormann and Paul E. Hoffman. 2013. Concise Binary Object Representa-

tion (CBOR). RFC 7049. https://doi.org/10.17487/RFC7049

[8] Matthew Bradbury, Arshad Jhumka, and Tim Watson. 2020. Dataset for: Trust
Assessment in 32 KiB of RAM: Multi-application Trust-based Task Offloading for
Resource-constrained IoT Nodes. https://doi.org/10.5281/zenodo.4312801

[9] I. Chen, F. Bao, M. Chang, and J. Cho. 2014. Dynamic Trust Management for Delay

Tolerant Networks and Its Application to Secure Routing. IEEE Transactions on
Parallel and Distributed Systems 25, 5 (2014), 1200–1210.

[10] M. Chen and Y. Hao. 2018. Task Offloading for Mobile Edge Computing in

Software Defined Ultra-Dense Network. IEEE Journal on Selected Areas in Com-
munications 36, 3 (2018), 587–597.

[11] A. Dunkels, J. Eriksson, N. Finne, F. Österlind, N. Tsiftes, J. Abeillé, and M. Durvy.

2012. Low-power IPv6 for the Internet of Things. In 9th International Conference
on Networked Sensing (INSS). IEEE, Antwerp, Belgium, 1–6.

[12] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. 2004. Contiki - a lightweight

and flexible operating system for tiny networked sensors. In 29th Annual IEEE
International Conference on Local Computer Networks. IEEE, Florida, USA, 455–462.
https://doi.org/10.1109/LCN.2004.38

[13] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. 2006. Pro-

tothreads: Simplifying Event-driven Programming of Memory-constrained Em-

bedded Systems. In Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems (Boulder, Colorado, USA) (SenSys ’06). ACM, New York,

NY, USA, 29–42. https://doi.org/10.1145/1182807.1182811

[14] Ehab ElSalamouny, Vladimiro Sassone, and Mogens Nielsen. 2010. HMM-Based

Trust Model. In Formal Aspects in Security and Trust, Pierpaolo Degano and

Joshua D. Guttman (Eds.). Springer, Berlin, Heidelberg, 21–35.

[15] A. Elsts, X. Fafoutis, P. Woznowski, E. Tonkin, G. Oikonomou, R. Piechocki, and I.

Craddock. 2018. Enabling Healthcare in Smart Homes: The SPHERE IoT Network

Infrastructure. IEEE Communications Magazine 56, 12 (2018), 164–170.

[16] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem. 2019. A Survey on the

Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access
7 (2019), 156237–156271.

[17] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri de Ruiter, Konstanti-

nos Sagonas, and Juraj Somorovsky. 2020. Analysis of DTLS Implementations

Using Protocol State Fuzzing. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, Boston, MA, 2523–2540.

[18] C. Gündoğan, C. Amsüss, T. C. Schmidt, and M. Wählisch. 2020. IoT Content

Object Security with OSCORE and NDN: A First Experimental Comparison. In

IFIP Networking Conference (Networking). IEEE, Paris, France, 19–27.
[19] Martin Gunnarsson, Joakim Brorsson, Francesca Palombini, Ludwig Seitz, and

Marco Tiloca. 2020. Evaluating the Performance of the OSCORE Security Protocol

in Constrained IoT Environments. Internet of Things 13 (2020), 100333. https:

//doi.org/10.1016/j.iot.2020.100333

[20] Joel Höglund, Samuel Lindemer, Martin Furuhed, and Shahid Raza. 2020. PKI4IoT:

Towards public key infrastructure for the Internet of Things. Computers & Security
89 (2020), 101658. https://doi.org/10.1016/j.cose.2019.101658

[21] Audun Jøsang and Roslan Ismail. 2002. The Beta Reputation System. In 15th
Bled Electronic Commerce Conference. University of Maribor Press, Bled, Slovenia,

14 pages.

[22] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang, and C. S. Hong.

2020. Edge Computing Enabled Smart Cities: A Comprehensive Survey. IEEE
Internet of Things Journal 7, 10 (2020), 10200–10232. https://doi.org/10.1109/JIOT.

2020.2987070

[23] Arjen K. Lenstra and Eric R. Verheul. 2001. Selecting Cryptographic Key Sizes.

Journal of Cryptology 14, 4 (2001), 255–293. https://doi.org/10.1007/s00145-001-

0009-4

[24] Roger A. Light. 2017. Mosquitto: server and client implementation of the MQTT

protocol. Journal of Open Source Software 2, 13 (2017), 265. https://doi.org/10.

21105/joss.00265

[25] P. Mach and Z. Becvar. 2017. Mobile Edge Computing: A Survey on Architecture

and Computation Offloading. IEEE Communications Surveys Tutorials 19, 3 (2017),
1628–1656.

[26] S. Pan, Z. Zhang, Z. Zhang, and D. Zeng. 2019. Dependency-Aware Computation

Offloading in Mobile Edge Computing: A Reinforcement Learning Approach.

IEEE Access 7 (2019), 134742–134753.
[27] Carlos Segarra, Ricard Delgado-Gonzalo, and Valerio Schiavoni. 2020. MQT-TZ:

Hardening IoT Brokers Using ARM TrustZone. In 39th International Symposium
on Reliable Distributed Systems (SRDS 2020). IEEE, Shanghai, China, 256–265.
arXiv:2007.12442 [cs.CR]

[28] Göran Selander, John Mattsson, Francesca Palombini, and Ludwig Seitz. 2019.

Object Security for Constrained RESTful Environments (OSCORE). RFC 8613.

https://doi.org/10.17487/RFC8613

[29] Göran Selander, John Preuß Mattsson, and Francesca Palombini. 2020. Ephemeral
Diffie-Hellman Over COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-01.

Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-

lake-edhoc-01 Work in Progress.

[30] Ali Shakarami, Ali Shahidinejad, and Mostafa Ghobaei-Arani. 2020. A review

on the computation offloading approaches in mobile edge computing: A game-

theoretic perspective. Software: Practice and Experience 50, 9 (2020), 1719–1759.
https://doi.org/10.1002/spe.2839

[31] Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014. The Constrained Appli-

cation Protocol (CoAP). RFC 7252. https://doi.org/10.17487/RFC7252

[32] Phillip Taylor, Lina Barakat, Simon Miles, and Nathan Griffiths. 2018. Reputation

assessment: a review and unifying abstraction. The Knowledge Engineering Review
33 (2018), e6. https://doi.org/10.1017/S0269888918000097

[33] Marco Tiloca, Göran Selander, Francesca Palombini, and Jiye Park. 2020. Group
OSCORE - Secure Group Communication for CoAP. Internet-Draft draft-ietf-core-
oscore-groupcomm-09. Internet Engineering Task Force. https://datatracker.ietf.

org/doc/html/draft-ietf-core-oscore-groupcomm-09 Work in Progress.

[34] B. Wang, M. Li, X. Jin, and C. Guo. 2020. A Reliable IoT Edge Computing Trust

Management Mechanism for Smart Cities. IEEE Access 8 (2020), 46373–46399.
https://doi.org/10.1109/ACCESS.2020.2979022

[35] Jun Wang, Xi Xiong, and Peng Liu. 2015. Between Mutual Trust and Mutual Dis-

trust: Practical Fine-Grained Privilege Separation in Multithreaded Applications.

In Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Confer-
ence (Santa Clara, CA) (USENIX ATC ’15). USENIX Association, USA, 361–373.

[36] Thomas Watteyne, Maria Rita Palattella, and Luigi Alfredo Grieco. 2015. Using

IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things

(IoT): Problem Statement. RFC 7554. https://doi.org/10.17487/RFC7554

[37] D.Wu, G. Shen, Z. Huang, Y. Cao, and T. Du. 2019. A Trust-Aware Task Offloading

Framework in Mobile Edge Computing. IEEE Access 7 (2019), 150105–150119.
[38] H. Yu, Z. Shen, C. Leung, C. Miao, and V. R. Lesser. 2013. A Survey of Multi-Agent

Trust Management Systems. IEEE Access 1 (2013), 35–50.
[39] Zolertia. 2016. Zolertia RE-Mote Revision B Internet of Things hardware development

platform, for 2.4-GHz and 863-950MHz IEEE 802.15.4, 6LoWPAN and ZigBee®
Applications. Datasheet ZOL-RM0x-B. Barcelona, Spain. V1.0.0.

https://github.com/MBradbury/iot-trust-task-alloc
https://github.com/MBradbury/iot-trust-task-alloc
https://doi.org/10.17487/RFC6550
https://doi.org/10.17487/RFC6550
https://doi.org/10.1109/CNSR.2009.23
http://github.com/chrysn/aiocoap/
https://doi.org/10.1109/JIOT.2018.2815038
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://doi.org/10.1109/TCOMM.2012.031912.110179
https://doi.org/10.17487/RFC7049
https://doi.org/10.5281/zenodo.4312801
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1145/1182807.1182811
https://doi.org/10.1016/j.iot.2020.100333
https://doi.org/10.1016/j.iot.2020.100333
https://doi.org/10.1016/j.cose.2019.101658
https://doi.org/10.1109/JIOT.2020.2987070
https://doi.org/10.1109/JIOT.2020.2987070
https://doi.org/10.1007/s00145-001-0009-4
https://doi.org/10.1007/s00145-001-0009-4
https://doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265
https://arxiv.org/abs/2007.12442
https://doi.org/10.17487/RFC8613
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-01
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-01
https://doi.org/10.1002/spe.2839
https://doi.org/10.17487/RFC7252
https://doi.org/10.1017/S0269888918000097
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-09
https://doi.org/10.1109/ACCESS.2020.2979022
https://doi.org/10.17487/RFC7554

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Problem Statement
	5 System Architecture
	5.1 Public Key Infrastructure
	5.2 Resource-rich Capability Discovery
	5.3 Resource-rich Stereotype Request
	5.4 Reputation Dissemination
	5.5 Application

	6 Experimental Setup
	6.1 Example Trust Model
	6.2 Example Applications

	7 Results
	7.1 RAM and Flash Usage
	7.2 Cryptographic Operations Cost
	7.3 Task Submission
	7.4 Message cost

	8 Discussion
	8.1 Use of MQTT Retain Flag
	8.2 Forward Secrecy via ECHDE
	8.3 Implementation Limitations

	9 Conclusions
	Acknowledgments
	References

