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The shape of the value function under Poisson optimal stopping

David Hobson*

November 11, 2020

Abstract

In a classical problem for the stopping of a diffusion process (Xt)t≥0, where the goal is to
maximise the expected discounted value of a function of the stopped process Ex[e−βτg(Xτ )],
maximisation takes place over all stopping times τ . In a Poisson optimal stopping problem,
stopping is restricted to event times of an independent Poisson process. In this article we consider
whether the resulting value function Vθ(x) = supτ∈T (Tθ) E

x[e−βτg(Xτ )] (where the supremum is
taken over stopping times taking values in the event times of an inhomogeneous Poisson process
with rate θ = (θ(Xt))t≥0) inherits monotonicity and convexity properties from g. It turns out
that monotonicity (respectively convexity) of Vθ in x depends on the monotonicity (respectively

convexity) of the quantity θ(x)g(x)
θ(x)+β

rather than g. Our main technique is stochastic coupling.
Keywords: Poisson optimal stopping, diffusion process, monotonicity and convexity, coupling,

time-change.
MSC: 60G40, 90B50.

1 Introduction

In a classical optimal stopping problem the objective is to maximise the expected discounted payoff,
where the payoff is a function of some underlying process, typically a time-homogeneous diffusion,
and the maximisation takes places over all stopping times. In a Poisson optimal stopping problem
(Dupuis and Wang [7], Lempa [17], Lange et al [16] — the terminology was introduced by [16]) the set
of potential stopping times is restricted to be the set of event times of an independent Poisson process.
The idea behind introducing the Poisson optimal stopping problem is that in many applications (for
example, the optimal time to sell a financial asset) there are restrictions on when stopping can occur
(for example, liquidity restrictions may mean that buyers are not always available). If the underlying
process to be stopped is Markovian, then it is very convenient (and also often realistic) to model the
set of candidate opportunities to stop as the event times of a (not-necessarily homogeneous) Poisson
process, as this will preserve the Markov property. In this article we want to consider the properties of
the solution to the Poisson optimal stopping problem, where we allow the rate of the Poisson process
to depend on the underlying diffusion. Rather than studying a specific problem, we study a general
class of problems, and look for general features of the value function.

Let X be a diffusion process, g a non-negative payoff function and β an impatience factor. The
classical optimal stopping problem is to find

w(x) = sup
τ∈T ([0,∞))

Ex[e−βτg(Xτ )], (1)

where T (T) is the set of all stopping times taking values in T, and in this case T = [0,∞). The Poisson
optimal stopping problem, introduced by Dupuis and Wang [7] in the case where X is exponential
Brownian motion and extended to general diffusion processes by Lempa [17], is to find

Vλ(x) = sup
τ∈T (Tλ)

Ex[e−βτg(Xτ )] (2)
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where Tλ is the set of event times of a Poisson process with rate λ.
The Poisson optimal stopping problem has been extended in many ways and to many settings,

for example to allow for regime switching (Liang and Wei [18]), non-exponential inter-arrival times
(Menaldi and Robin [20]) and running costs and multi-dimensions (Lange et al [16]). A related work in
which actions are constrained to occur only at event times of a Poisson process is Rogers and Zane [24]
who model portfolio optimisation.

Hobson and Zeng [13] consider an extension of (2) in which the agent can choose the rate of the
Poisson process (dynamically) subject to a cost which depends on the chosen rate. Motivated by this
example, in this paper we consider the extension of (2) to a state-dependent, inhomogeneous Poisson
process and the problem of finding

Vθ(x) = sup
τ∈T (Tθ)

Ex[e−βτg(Xτ )] (3)

where Tθ is the set of event times of a time-inhomogeneous Poisson process with rate θ(Xt) at time
t. (We will use the symbol λ in the case of a constant-rate Poisson process, and θ in the case of a
state-dependent Poisson process, but essentially the only purpose of a different notation is to allow us
to highlight the results in the constant rate case.)

One approach to solving (3) (and also (2)) is to use the Bellman-type representation

Vθ(x) = Ex[e−βT
θ
1 max{g(XT θ1

), Vθ(XT θ1
}] (4)

where T θ1 is the first event time of the Poisson process with rate θ = {θ(Xt)}t≥0. This representation is
based on the fact that at the first event time of the Poisson process the agent chooses between stopping
and continuing. Solving (4), even numerically, may be challenging as the unknown Vθ appears on both

sides. One strategy, as described in Lange et al [16] is as follows. Let V
(n)
θ denote the value function

under the restriction that stopping is constrained to lie in the first n events of the Poisson process. If

we set V
(0)
θ = 0 then the family (V

(n)
θ )n≥1 solves

V
(n)
θ (x) = Ex[e−βT

θ
1 max{g(XT θ1

), V
(n−1)
θ (XT θ1

)}]. (5)

Since V
(1)
θ ≥ 0 = V

(0)
θ it is easy to see that V

(n)
θ is increasing in n (this is also clear from the definition)

and therefore V
(∞)
θ defined by V

(∞)
θ (x) = limn↑∞ V

(n)
θ (x) exists. Moreover, since we expect that

V
(∞)
θ = Vθ we have found our solution.

In this article we are concerned with the monotonicity and convexity in x of Vθ(x). A secondary

goal is to understand the relationship between V
(∞)
θ and Vθ. We give a simple sufficient condition for

equality, but also an example to show that they are not always equal.
Temporarily, instead of an optimal stopping problem, consider a fixed-horizon problem: U(x) =

Ex[e−βκg(Xκ)] where κ is a constant time. Suppose g is increasing: a simple Doeblin coupling argument
(see Lindvall [19, p24], Bergmann et al [3], Henderson et al [11]) gives that U is also increasing. Further,
if X is exponential Brownian motion and g is convex then w is convex (Cox and Ross [5]). Subject
to the condition that X is a martingale, this convexity result has been extended to general time-
homogeneous diffusions by El Karoui et al [8] using stochastic flows, Bergman et al [3] using pdes and
Hobson [12] using coupling.

Now return to the classical optimal stopping problem (1). Again, a simple coupling argument gives
that if g is increasing then so is w. Merton [21, Theorem 10] shows that if g is convex and X is
exponential Brownian motion then w is convex. Hobson [12], see also Ekstrøm [9], gives a coupling
argument to show that if X is a martingale diffusion and g is convex then w is convex. If we look
for results which apply simultaneously across all diffusions then this is the best we can hope for
(see Example 2.2 below) although in the non-martingale case Alvarez [1] gives sufficient conditions
for convexity which combine the payoff and the minimal decreasing β-excessive function of a given
diffusion.
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The first goal of this paper is to consider similar issues for Vθ. If g is increasing in x, does Vθ inherit
this monotonicity property? If g is convex, does Vθ inherit convexity? We give an example to show
that monotonicity of g is not sufficient for monotonicity of Vθ, and convexity of g is not sufficient for
convexity of Vθ, even when X is a martingale diffusion.

Our first results are that if g and θ are both increasing, then Vθ is increasing, and if g is convex (and
X is a martingale) then Vλ is convex. We give simple coupling proofs of these statements. Our main
result is more refined, and includes the above results as special cases: subject to regularity conditions,
if θ and gθ

β+θ are increasing then Vθ is increasing, and if gθ
β+θ is convex (and X is a martingale) then

Vθ is convex. Again, our proofs depend on coupling arguments. Our main technique is to show that
there is a time-change Λ = (Λs)s≥0 such that if Y = (Ys)s≥0 is given by Ys = XΛs then

Ex
[
e−βT

θ
1 g(XT θ1

)
]

= Ex
[
g(YT )θ(YT )

β + θ(YT )

]
(6)

where T is an independent unit-rate exponential random variable. We use this representation to
show that if Ψ := θg

β+θ has monotonicity (respectively convexity) properties in x then so does Gθ(x) :=

Ex
[
e−βT

θ
1 g(XT θ1

)
]

(for convexity in x we need that X is a martingale). Then we deduce corresponding

properties for V
(∞)
θ . The key role of the shape of Ψ is apparent from (6).

The second goal of the paper is to consider the relationship between Vθ and V
(∞)
θ . Clearly V

(∞)
θ ≤

Vθ. We show by example that the equality may be strict. However, subject to a growth condition on
g and the condition that the time of the nth event of the Poison process increases to infinity, there is

equality and V
(n)
θ approaches V

(∞)
θ = Vθ.

The paper is structured as follows. The next section contains some simple, stylized examples, or
rather counterexamples, which show in part that the questions we consider are interesting. Section 3
gives a precise formulation of the problem, gives some first results, and explains how to change the
problem for a general one-dimensional diffusion to a problem involving a diffusion in natural scale.

Section 4 discusses the monotonicity and convexity of V
(∞)
θ . Finally, Section 5 compares V

(∞)
θ to Vθ

and gives conditions such that V
(∞)
θ = Vθ, and hence deduces monotonicity and convexity results for

Vθ.

2 Examples and counterexamples

Example 2.1. We might expect limλ↑∞ Vλ(x) = w(x), but this is not always the case.
Let X be Brownian motion on R and let g(x) = I{x∈Q}. Then w(x) = 1 > Vλ(x) = 0.
We conclude that we expect to need some conditions on g in order to get reasonable results.

Example 2.2. Let X be Brownian motion with positive unit drift on [0,∞), absorbed at zero. Let Hz

denote the first hitting time by X of z. Let g(x) = x and let y = argmax{ zez

sinh(z
√

1+2β)
}. If X0 = x and

dXt = dBt + dt then for 0 < x ≤ y,

w(x) = Ex[e−β(H0∧Hy)XH0∧Hy ] = y
e(y−x) sinh(x

√
1 + 2β)

sinh(y
√

1 + 2β)
(7)

with w(x) = x for x ≥ y (see Borodin and Salminen [4, 3.0.5(b)] for the second equality in (7)). It
follows that w is neither convex nor concave.

We conclude that unless X is a martingale there is no reason to expect that convex g leads to convex
w, and a fortiori that convex g leads to convex Vλ or Vθ.

For the next example, and for use in other examples later in the article, for ζ > 0 let α+
ζ (respectively

α−ζ ) be the positive (respectively negative) root of Qζ(α) = 0 where

Qζ(α) =
σ2

2
α(α− 1) + µα− ζ.
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Note that if ζ > µ then α+
ζ > 1.

Example 2.3 (Dupuis and Wang). Suppose X is exponential Brownian motion, with drift µ < β and
volatility σ > 0. Suppose g(x) = (x−K)+ and consider stopping times which are constrained to lie in
the set of events times of a time-homogeneous Poisson process with rate λ.

Let L = K(1 + λ
(β+λ)α+

β−βα
−
β+λ−λ

). Then the optimal stopping time is τ = inf{u ∈ Tλ : Xu ≥ L}
and

Vλ(x) =

 (L−K)
(
x
L

)α+
β 0 < x ≤ L

β
β+λ (L−K)

(
x
L

)α−β+λ + λ(x−K)
β+λ x > L.

In this example Vλ(x) > g(x) on (0, L) and Vλ(x) < g(x) on (L,∞). Note that as λ ↑ ∞,

L ↑M = K(
1+α+

β

α+
β

) and Vλ(x) ↑ w(x) where

w(x) =

{
(M −K)

(
x
M

)α+
β 0 < x ≤M

(x−K) x > M.
(8)

For future reference, note that in this canonical example

Ex
[
sup
s≥t

e−βsg(Xs)

]
≤ Ex

[
sup
s≥t

e−βsXs

]
= x

e−(β−µ)tσ2

2(β − µ)

t↑∞−→ 0.

Example 2.4. Suppose g(x) = x and suppose X is exponential Brownian motion started at x > 0,
with volatility σ and drift µ with µ < β. Then w(x) = x (it is always optimal to stop immediately) and
Vλ(x) = ρx where ρ = λ

λ+β−µ ∈ (0, 1). To see this note that it is always optimal to stop at the first
event of the Poisson process and then with T γ denoting an exponential random variable with rate γ

Vλ(x) = Ex[XTλe
−βTλ ] = xE[e−(β−µ)Tλ ] = xP(Tλ < T β−µ) =

λ

λ+ β − µ
x.

Now suppose θ(x) = ∞ for x ≤ J and θ(x) = 0 for x > J . Then, for 0 < x ≤ J , Vθ(x) = x. For

x > J , Vθ(x) = Ex[Je−βHJ ]. In particular, Vθ(x) = J( xJ )α
−
β .

We conclude that monotonicity of g is not sufficient for monotonicity of Vθ, and that even in the
martingale case µ = 0, convexity of g is not sufficient for convexity of Vθ.

Example 2.5. Suppose X is standard Brownian motion absorbed at zero and started above zero.
Suppose g(x) = I{x=0}. Then w(x) = Ex[e−βH0 ] = e−

√
2βx on [0,∞).

Suppose θ(x) = x−2 on (0,∞) and θ(0) = 1. It can be shown that V
(∞)
θ (x) = 0 for x > 0 and

V
(∞)
θ (0) = 1

1+β . However, Vθ(x) = 1
1+β e

−
√

2βx for x > 0 and Vθ(0) = 1
1+β so that V

(∞)
θ < Vθ on

(0,∞).

We conclude that the sequence (V
(n)
θ )n≥0 does not always yield a limit equal to the value function

Vθ. In this example there are an infinite number of events of the inhomogeneous Poisson process before

X hits 0 and hence V
(∞)
θ (x) = limn V

(n)
θ (x) = 0 on (0,∞). However, in calculating Vθ, all these events

of the Poisson process can be viewed as suboptimal as candidate stopping times. Instead the optimal
stopping time is τ = inf{t ∈ Tθ : Xt = 0}.

3 Problem formualation and first results

3.1 Problem specification

Let the stochastic process X = (Xt)t≥0 be a time-homogeneous, real-valued, regular diffusion process
with initial value X0 = x, living on a filtered probability space P = (Ω,F ,P,F = (Ft)t≥0) which
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satisfies the usual conditions. Let I ⊆ R denote the state space of X, and suppose that any endpoints
which can be reached in finite time are absorbing and are included in I. (See Section 3.4 below
for further discussion about the behaviour of X at endpoints of I.) We will write Px to denote
probabilities under the condition that X0 = x (although later when we have multiple processes on the
same probability space, we will also denote this dependence on the initial condition via a superscript
on X). We suppose that X solves the SDE

dXt = a(Xt)dBt + b(Xt)dt (9)

with initial condition X0 = x ∈ I, and that a and b are such that the solution to (9) is unique in
law. The results of Engelbert and Schmidt [10], see Karatzas and Shreve [14, Section 5.5], show that
a sufficient condition is that 1/a2 and b/a2 are locally integrable.

Let g : I 7→ R+ be a non-negative (measurable) payoff function and let β be a strictly positive
discount factor. In principle our results can be extended to the case of state-dependent discount factors,
but the focus in this paper is on state-dependent arrival rates for stopping opportunities and we will
suppose that the discount factor is constant.

The value function w of the classical discounted optimal stopping problem is defined as

w(x) = sup
τ∈T ([0,∞))

Ex[e−βτg(Xτ )] (10)

where T (T) is the set of all T-valued stopping times.

Standing Assumption 1. The coefficients of the SDE for X are such that a > 0 and 1/a2 and b/a2

are locally integrable, so that X is unique in law. Further, g ≥ 0 satisfies suitable growth conditions,
so that the problem for w in (10) is well-posed.

Now consider a Poisson optimal stopping problem in which stopping can only occur at the event
times Tλ = {Tλn }n≥1 of an independent Poisson process of rate λ. (We assume that the probability
space is rich enough to carry a Poisson process which is independent of X, and to carry any other
random variables which we wish to define.) The value function is now given by

Vλ(x) = sup
τ∈T (Tλ)

Ex[e−βτg(Xτ )] (11)

where Tλ is the set of event times of a Poisson process rate λ. We expect that as λ increases then
limλ↑∞ Vλ(x) = w(x), at least if g is lower semi-continuous. As we saw in Example 2.1, in general
equality in the limit may fail.

Let Hλ be the value of the Poisson optimal stopping problem, conditional on there being an event
of the Poisson process at time 0. Then we have

Hλ(x) = sup
τ∈T (Tλ∪{0})

Ex[e−βτg(Xτ )] = max{g(x), Vλ(x)}. (12)

Further, by conditioning on the first event time of the Poisson process we have the representation
Vλ(x) = Ex

[∫∞
0
dt λe−λte−βtHλ(Xt)

]
. Substituting (12) into this last equality gives an expression for

Vλ in feedback form:

Vλ(x) = Ex
[∫ ∞

0

dt λe−λte−βt max{g(Xt), Vλ(Xt)}
]
. (13)

Based on this identity we expect that Vλ will solve the ode

LV − (β + λ)V + λ(g ∨ V ) = 0

where L is the generator of X. Dupuis and Wang [7] discus the solution of (11) and write down
expressions for Vλ and the continuation region in the case where X is exponential Brownian motion
and g is a call payoff, see Example 2.3. Lempa [17] extends these results to general diffusions.
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Let θ : I 7→ [0,∞) be a measurable function such that, to avoid trivialities,
∫
I θ(x)dx > 0. We

consider θ to be the stochastic rate function of a state-dependent Poisson process Nθ = (Nθ
t )t≥0 so

that, conditional on the path of the diffusion X, the probability that there are no events of the Poisson
process in an interval [s, t) is exp(−

∫
[s,t)

θ(Xu)du). Let Tθ denote the event times of this Poisson

process and let T (Tθ) be the set of stopping times constrained to take values in the event times of Nθ.
Let T θ1 be the first event time. We can write {T θ1 , T θ2 , . . . T θn} for the first n events, but note that

there may be countably infinitely many events in finite time. As a result, we cannot always write the
set of event times as {T θn}n≥1, at least not if we insist on T θi < T θj for i < j.

We wish to consider the properties of

Gθ(x) = Ex[e−βT
θ
1 g(XT θ1

)]

and especially
Vθ(x) = sup

τ∈T (Tθ)

Ex[e−βτg(Xτ )].

Where the arrival rate of the Poisson process is constant and equal to λ we write Gλ instead of Gθ.

3.2 First results

In this section we give some simple proofs of monotonicity and convexity of Gθ and Vθ which can be
obtained by extending proofs of monotonicity and convexity for w from the literature (see [3, 5, 8, 9,
11, 12, 19, 21]). In Section 4 we will give stronger results using a different coupling which is specific
to the Poisson optimal stopping problem.

Under Standing Assumption 1 the diffusion X is unique in law, and the optimal stopping problem
corresponding to w is well-posed. Then Vθ is finite.

Theorem 3.1. Suppose g and θ are increasing in x. Then Vθ is increasing in x.

Proof. Suppose X solves
dXt = a(Xt)dBt + b(Xt)dt (14)

Fix x < y. Let Xx and Xy denote solutions of (14) where the superscript indicates the initial value
e.g. Xx

0 = x. We construct a coupling such that Xx ≤ Xy pathwise.
Let X̄x solve dX̄x

s = a(X̄s)dB̄
x
s + b(X̄s)dt subject to X̄x

0 = x and let X̄y solve dX̄y
s = a(X̄y

s )dB̄ys +
b(X̄y

s )ds subject to X̄y
0 = y, where the Brownian motions B̄x and B̄y are independent. Let σ =

inf{u : X̄x
u = X̄y

u}, let X̃x
s = X̄x

s and let X̃y
s = X̄y

s on s ≤ σ and X̃y
s = X̄x

s on s > σ. Then,
by the Strong Markov property and uniqueness in law, X̄y and X̃y are identical in law. Moreover,
X̃x
s ≤ X̃y

s by construction. This is the Doeblin coupling, Lindvall [19, Section II.2]. It follows that
E[ψ(X̄x

s )] = E[ψ(X̃x
s )] ≤ E[ψ(X̃y

s )] = E[ψ(X̄y
s )] for any non-negative, increasing function ψ and any s.

Suppose that θ is constant (in which case we write λ). Then, since g is increasing, for the coupled
processes (X̃x, X̃y) and for any τ we have e−βτg(X̃x

τ ) < e−βτg(X̃y
τ ). Moreover, for τ ∈ T (Tλ),

E[e−βτg(X̃x
τ )] ≤ E[e−βτg(X̃y

τ )] ≤ sup
ξ∈T (Tλ)

E[e−βξg(X̃y
ξ )] = Vλ(y).

Taking a supremum over τ ∈ T (Tλ) gives that Vλ(x) ≤ Vλ(y) and hence that Vλ is increasing in x.
Now we consider the corresponding result for increasing rate functions θ. By the previous analysis,

without loss of generality we may assume that Xx
s ≤ Xy

s for all s ≥ 0.
Let Nγ = (Nγ

t )t≥0 be a Poisson process with stochastic rate function γ = (γt)t≥0.
There are two natural ways to think of Nγ = (Nγ

t )t≥0 and therefore (at least) two natural ways to
couple inhomogeneous Poisson processes with different rates.

First, if N̄ is a unit-rate Poisson counting process, then we can define Nγ = (Nγ
t )t≥0 by Nγ

t =
N̄∫ t

0
γsds

. Then, given a pair of Poisson processes Nγ and Nξ we can couple them by writing Nγ
t =

N̄∫ t
0
γsds

and Nξ
t = N̄∫ t

0
ξsds

. If
∫ t

0
γsds ≥

∫ t
0
ξsds for all t then Nγ

t ≥ N
ξ
t for all t.
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Second, we can consider Nγ as the counting process derived from a homogeneous space-time Poisson

process NR2
+ in which there is an event of Nγ in [s, t) if and only if there is an event of NR2

+ in

{(u, z) : s ≤ u < t, z ≤ γu}. See Figure 1. Here, NR2
+ is a Poisson process in the first quadrant of the

plane for which the number of points in a set A ⊆ R2
+ is a Poisson random variable with mean the

area of A.

x

y

t

φ

Figure 1: The left figure shows events of the unit rate Poisson process on R2
+. The right figure how

those events become events of a time-inhomogeneous Poisson process on R+ of rate φ: an event at
(x, y) becomes an event at t = x if y ≤ φ(x).

We take the second approach. Since θ is increasing (and we have coupled Xx and Xy so that
Xx
t ≤ Xy

t for all t) we have a set inclusion of the event times for the Poisson process with rate
θ(Xx

t )t≥0 within the set event times for the Process with rate θ(Xy
t )t≥0:

T(θ(Xxt ))t≥0 = {u : (u, z) ∈ NR2
+ , z ≤ θ(Xx

u)} ⊆ {u : (u, z) ∈ NR2
+ , z ≤ θ(Xy

u)} = T(θ(Xyt ))t≥0 .

In particular, any candidate stopping time for the process started at x is also a candidate stopping
time for the process started at y. Then

sup
τ∈T (T(θ(Xxt ))t≥0 )

E[e−βτg(Xx
τ )] ≤ sup

τ∈T (T(θ(Xxt ))t≥0 )

E[e−βτg(Xy
τ )] ≤ sup

τ∈T (T(θ(X
y
t ))t≥0 )

E[e−βτg(Xy
τ )]

where the first inequality comes from Xx
· ≤ Xy

· and the second from the inclusion T (T(θ(Xxt ))t≥0) ⊆
T (T(θ(Xyt ))t≥0).

Theorem 3.2. Suppose X is exponential Brownian motion. Suppose g is convex. Then Ex[e−βtg(Xt)],

Gλ(x) = E[e−βT
λ
1 g(XTλ1

)] and Vλ(x) are convex in x.

Proof. This result extends a result of Merton [21, Theorem 10] from convexity of w in x to convexity
of Vλ.

Suppose dXt = σXtdBt + µXtdt. Then there is a coupling such that Xx has representation
Xx
t = xZt where Zt = eσBt+(µ− 1

2σ
2)t is independent of x. Then for x < y and ζ ∈ (0, 1),

g(X
ζx+(1−ζ)y
t ) = g(ζxZt + (1− ζ)yZt) ≤ ζg(xZt) + (1− ζ)g(yZt) = ζg(Xx

t ) + (1− ζ)g(Xy
t ). (15)

It follows that for any stopping time τ we have g(X
ζx+(1−ζ)y
τ ) ≤ ζg(Xx

τ ) + (1− ζ)g(Xy
τ ) and then

E[e−βτg(Xζx+(1−ζ)y
τ )] ≤ ζE[e−βτg(Xx

τ )] + (1− ζ)E[e−βτg(Xy
τ )]. (16)
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Taking τ = Tλ1 we get that Gλ is convex. Moreover, taking a pair of supremums over τ ∈ T (Tλ) on
the right-hand-side of (16),

E[e−βτg(Xζx+(1−ζ)y
τ )] ≤ ζVλ(x) + (1− ζ)Vλ(y).

Now, taking a supremum over τ ∈ T (Tλ) on the left-hand-side we obtain Vλ(ζx+(1−ζ)y) ≤ ζVλ(x)+
(1− ζ)Vλ(y).

Remark 3.3. A similar proof applies to the case where X is Brownian motion with drift and we
deduce that if Xx

t = x+ aBt + bt and g is convex then Gλ(x) and Vλ(x) are convex in x.

Theorem 3.4. Suppose X is a martingale diffusion. Suppose g is convex. Then Ex[e−βtg(Xt)] and
Gλ(x) are convex in x.

Proof. This result extends Hobson [12, Theorem 3.1] slightly, by including the result that Gλ(x) is
convex.

For x < y < z define a triple of processes (X,Y, Z) via

dXt = a(Xt)dB
X
t , X0 = x,

and similarly dYt = a(Yt)dB
Y
t subject to Y0 = y and dZt = a(Zt)dB

Z
t dt subject to Z0 = z. (Here we

use the more economical notation (X,Y, Z) where normally we might write (Xx, Xy, Xz).)
Couple the processes by making the three driving Brownian motions independent. Let Hxy =

inf{u : Xu = Yu} and Hyz = inf{u : Yu = Zu}. Fix t > 0 and let σ = Hxy ∧ Hyz ∧ t. Then, by
symmetry, on σ = Hxy,

(Zt −Xt)g(Yt)
L
= (Zt − Yt)g(Xt) Ytg(Zt)

L
= Xtg(Zt)

so that

E[(Zt −Xt)g(Yt)I{σ=Hxy}] = E[(Zt − Yt)g(Xt)I{σ=Hxy}] + E[(Yt −Xt)g(Zt)I{σ=Hxy}]. (17)

Similarly,

E[(Zt −Xt)g(Yt)I{σ=Hyz}] = E[(Zt − Yt)g(Xt)I{σ=Hyz}] + E[(Yt −Xt)g(Zt)I{σ=Hyz}]. (18)

Finally, on Hxy ∧Hyz > t we have σ = t, Xt < Yt < Zt and by convexity of g

(Zt −Xt)g(Yt)I{σ<Hxy∧Hxz} ≤ (Zt − Yt)g(Xt)I{σ<Hxy∧Hxz} + (Yt −Xt)g(Zt)I{σ<Hxy∧Hxz}.

Taking expectations, adding the result to (17) and (18), and multiplying by e−βt we obtain

E[(Zt −Xt)e
−βtg(Yt)] ≤ E[(Zt − Yt)e−βtg(Xt)] + E[(Yt −Xt)e

−βtg(Zt)].

Using the fact that X, Y and Z are independent we conclude that

(z − x)E[e−βtg(Yt)] ≤ (z − y)E[e−βtg(Xt)] + (y − x)E[e−βtg(Zt)]

and that E[e−βtg(Xx
t )] is convex in x.

Since Gλ(x) =
∫∞

0
λe−λtEx[e−βtg(Xx

t )]dt the convexity property is also inherited by Gλ.

Remark 3.5. (i) The same proof shows that if g is concave, then Gλ is concave.
(ii) Similar arguments were used in Bayraktar [2, Lemma 2.3] to prove convexity in x of Ex[e−βtg(Xt)]
in the case where Xt = e−µtX̃t, where (X̃t)t≥0 is a martingale diffusion. The main focus of Bayrak-
tar [2] is the pricing of American options in a model with level-dependent volatility and jumps governed
by a Poisson process, and one of the goals is to show that the price of a perpetual American put is
convex in the current price of the underlying asset. Although the setting us quite different, there is
some commonality of ideas with this paper, for example by looking at the value function associated with
stopping on or before the time of the nth event of the Poisson process.
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We close this section with two other results which will be useful in later sections.

Proposition 3.6. If Gθ ≤ g then V
(∞)
θ = V

(n)
θ = V

(1)
θ = Gθ.

Proof. Suppose V
(k)
θ = Gθ ≤ g. This is true for k = 1 by hypothesis. Then

V
(k+1)
θ (x) = Ex[e−βT

θ
1 {g(XT θ1

) ∨ V (k)
θ (XT θ1

)}] = Ex[e−βT
θ
1 g(XT θ1

)] = Gθ(x) ≤ g(x)

and the result follows by induction.

Proposition 3.7. Let Y be a regular martingale diffusion with state space I and let T be an indepen-
dent exponential random variable. Suppose c : I → [0,∞) is bounded on compact sub-intervals of I
and is such that Ey[c(YT )] ≥ c(y).

Let C(y) = Ey[c(YT )]. Then C is convex.

Note that convexity of c is a sufficient but not necessary condition for Ey[c(YT )] ≥ c(y).

Proof. Let {T1, T2, . . .} be the event times of a Poisson process, let T0 = 0 and let {Sk = Tk−Tk−1}k≥1

be the inter-arrival times.
Fix x, y, z ∈ I with x < y < z. Let Y0 = y and for w ∈ {x, z} define Ht

w = inf{u > t : Yu = w}.
We have C(y) = Ey[c(YT1

)] and then

C(y) = Ey
[
c(YT1

)I{Hx≤Hz∧T1}
]

+ Ey
[
c(YT1

)I{Hz≤Hx∧T1}
]

+ Ey
[
c(YT1

)I{T1<Hx∧Hz}
]
.

By the Strong Markov property of Y and the fact that T1 is memoryless we have

Ey
[
c(YT1)I{Hx≤Hz∧T1}

]
= Ey

[
Ey[c(YT1)I{Hx≤Hz∧T1}|FHx∧Hy∧T1 ]

]
= Ey

[
Ex[c(YT1

)]I{Hx≤Hz∧T1}
]

= C(x)Py(Hx ≤ Hz ∧ T1).

Similarly, Ey
[
c(YT1

)I{Hz≤Hx∧T1}
]

= C(z)Py(Hz ≤ Hx ∧ T1).
Suppose inductively that

C(y) ≤ C(x)Py(Hx ≤ Hz ∧ Tk) + C(z)Py(Hz ≤ Hx ∧ Tk) + Ey
[
c(YTk)I{Tk<Hx∧Hz}

]
. (19)

We have shown this is true for k = 1. Let Y Tk be given by Y Tkt = YTk+t. Then, on Tk < Hx ∧Hz, and
writing S for Sk+1,

c(YTk) ≤ EYTk
[
c(YTk+1

)
∣∣FTk]

= EYTk
[
c(Y TkS )I{Hx≤Hz∧(Tk+S)}

]
+ EYTk

[
c(Y TkS )I{Hz≤Hx∧(Tk+S)}

]
+EYTk

[
c(Y TkS )I{Tk+S<Hx∧Hz}

]
= C(x)PYTk (Hx ≤ Hz ∧ (Tk + S)) + C(z)PYTk (Hx ≤ Hz ∧ (Tk + S))

+EYTk
[
c(Y TkS )I{Tk+S<Hx∧Hz}

]
.

It follows that

Ey
[
c(YTk)I{Tk<Hx∧Hz}

]
≤ C(x)Py(Tk < Hx ≤ Hz ∧ Tk+1)

+C(z)Py(Tk < Hz ≤ Hx ∧ Tk+1) + Ey
[
c(YTk+1

)I{Tk+1<Hx∧Hz}
]
.

Substituting this inequality into (19) we get the equivalent statement for k + 1. Hence we know that
(19) holds for all k ≥ 1. Letting k ↑ ∞, and using the fact that Y is regular and c is bounded on [x, z]
we get

C(y) ≤ C(x)Py(Hx ≤ Hz) + C(z)Py(Hz ≤ Hx).

Then, using the martingale property of Y we get C(y) ≤ C(x) z−yz−x + C(z)y−xz−x and C is convex.
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Remark 3.8. The argument extends without change to cover the case where the unit-rate exponential
T is replaced by the first event time T θ1 of a Poisson process with rate θ = {θ(Yt)}t≥0, provided T θ1
is almost surely finite. An alternative strategy for a proof is to use the fact that we expect C to solve
LY C = θ(C− c), where LY is the generator of Y . Then, since L has no first order derivative, if C ≥ c
everywhere, then C is convex.

Example 3.9. Let B be Brownian motion. For φ ≥ 0 set hφ(x) = |x|+ φ
{
|1−x|+|1+x|

2 − |x|
}

. Then

hφ is symmetric about zero, and piecewise linear with kinks at 0 and ±1. Moreover, hφ(0) = φ and
hφ(x) = |x| for |x| ≥ 1. Note that hφ is convex if and only if φ ≤ 1.

Let Tλ be an exponential of rate λ > 0 and let ξ =
√

2λ. Set Hφ(x) = Ex[hφ(BTλ)]. Then, with

LB,yt denoting the local time of B at y by time t,

Hφ(x) = hφ(x) +
φ

2
Ex[LB,1Tλ

] +
φ

2
Ex[LB,−1

Tλ
] + (1− φ)Ex[LB,0Tλ

]

= hφ(x) +
φ

2

e−ξ|1−x|

ξ
+
φ

2

e−ξ|1+x|

ξ
+ (1− φ)

e−ξ|x|

ξ
.

Then, for x ∈ (−1, 1),

H ′′φ(x) = ξ2(Hφ(x)− hφ(x)) = ξ
[
φe−ξ cosh(ξx) + (1− φ)e−ξ|x|

]
,

and for |x| ≥ 1,
H ′′φ(x) = ξ2(Hφ(x)− hφ(x)) = ξe−ξ|x| [φ cosh ξ + (1− φ)] .

Then Hφ is convex everywhere if and only if Hφ ≥ hφ everywhere, if and only if φ ≤ 1
1−e−ξ . In

particular, if 1 < φ ≤ 1
1−e−ξ then Hφ is convex, even though the payoff function hφ is not.

3.3 Reduction of the problem to a problem in natural scale

Recall that our assumption is that X is a regular diffusion with state space I which solves the SDE
dXt = a(Xt)dBt + b(Xt)dt. Moreover, Standing Assumption 1 gives that b/a2 is locally integrable.

Then we can define s : I → R by s′(x) = exp(−
∫ x b(z)

a(z)2 dz) and if we setMt = s(Xt) thenM = (Mt)t≥0

solves dMt = η(Mt)dBt where η = (as′)◦s−1. The key point is thatM is a (local) martingale. Moreover
M is a regular diffusion with state space IM = s(I). The increasing, invertible function s is called
the scale function and M is said to be in natural scale (Rogers and Williams [23, V.46]). Note that
s is only determined up to a linear transformation, so we may choose constants to make IM have a
convenient form.

Let ĝ = g ◦ s−1 and θ̂ = θ ◦ s−1. Then e−βτg(Xτ ) = e−βτ ĝ(Mτ ) and θ(Xt) = θ̂(Mt) so that the
inhomogeneous Poisson process with rate (θ(Xt))t≥0 can be identified with the inhomogeneous Poisson

process with rate (θ̂(Mt))t≥0. Finally,

V̂θ̂(m) := sup
τ∈T (Tθ̂)

EM0=m
[
e−βτ ĝ(Mτ )

]
= sup
τ∈T (Tθ)

EX0=s−1(m)
[
e−βτg(Xτ )

]
= Vθ(s

−1(m))

so that V̂θ̂ = Vθ ◦ s−1.
Since s−1 is increasing we conclude that proving that Vθ is increasing is equivalent to proving

that V̂θ̂ is increasing. Hence we may restrict attention to diffusions in natural scale. The idea of
transforming time-homogeneous optimal stopping problems via a change of scale is fairly common
in the probabilistic optimal stopping literature. One of the most powerful examples is the work of
Dayanik and Karatzas [6] who give a complete and intuitive analysis of a class of optimal stopping
problems using change of scale type arguments.

When we turn to problems concerning convexity, then, recall Example 2.2, we only expect general
convexity results for Vθ in cases where the diffusion X is already in natural scale.
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3.4 Boundary behaviour

Suppose M is a regular diffusion in natural scale with state space IM with endpoints ˆ̀ and r̂ with
ˆ̀< r̂. Suppose M solves dMt = η(Mt)dBt where 1/η2 is locally integrable.

Suppose ê ∈ {ˆ̀, r̂} is finite. If M can reach ê in finite time then we say ê is accessible (see Rogers
and Williams [23, Section V.47] or Revuz and Yor [22, Section VII.3] for terminology). If ê is accessible
then we assume that M is absorbed at ê. The necessary and sufficient condition that ê can be reached
in finite time is Iη(ê) < ∞ where Iη(ê) =

∫
ê
|m − ê| dm

η(m)2 . Otherwise, if Iη(ê) = ∞, then ê cannot

be reached in finite time and we say ê is a natural boundary. If ê is a finite, accessible endpoint then
ê ∈ IM ; otherwise, if ê is natural then ê /∈ IM .

Now suppose ê ∈ {ˆ̀, r̂} is infinite. If, for y ∈ (ˆ̀, r̂) we have limx→ê Px(Hy <∞) > 0 (or equivalently
limx→ê Ex[e−γHy ] > 0 for each γ > 0) then ê is an entrance boundary. The condition that ê is an
entrance boundary is Jη(ê) < ∞ where Jη(ê) =

∫
ê

dm
η(m)2 . Otherwise ê is a natural boundary and

ê /∈ IM . It is not possible for M to explode to an infinite boundary point in finite time.
Suppose X solving (14) is a time-homogeneous regular diffusion, not in natural scale, on a state

space I with endpoints ` and r. We classify the boundary points of X by using the classification of
the corresponding boundary points for M = s(X). In particular, for e ∈ {`, r}, if |s(e)| < ∞ and∫
e
|s(x)−s(e)|
s′(x)a(x)2 dx <∞ then e can be reached in finite time, and we take e to be absorbing. If |s(e)| <∞

and
∫
e
|s(x)−s(e)|
s′(x)a(x)2 dx =∞ or if |s(e)| =∞ and

∫
e

1
s′(x)a(x)2 dx <∞ then e is natural.

Standing Assumption 2. Boundary points are either natural, or if they can be reached in finite
time, they are absorbing.

4 Monotonicity and convexity of V
(∞)
θ .

Consider the solution V
(n)
θ of the Poisson optimal stopping problem, under the restriction that stopping

must occur at one of the first n events of the Poisson process Nθ. We have

V
(n)
θ (x) = sup

τ∈T ({T θ1 ,T θ2 ...T θn})
Ex
[
e−βτg(Xτ )

]
. (20)

Set V
(0)
θ (x) = 0. Then V

(1)
θ = Gθ and V

(n)
θ (x) = Ex

[
e−βT

θ
1 max

{
g(XT θ1

), V
(n−1)
θ (XT θ1

)
}]

.

Lange et al [16] consider a multidimensional version of the Poisson optimal stopping problem (with

constant stopping rate) and consider the sequence {V (n)
λ }n≥0. They observe that V

(n)
λ is increasing in

n and show, under an assumption that a certain iterated expectation is finite, that V
(n)
λ converges to

V
(∞)
λ = Vλ geometrically fast. We work in one-dimension but allow for stopping opportunities arising

from a state-dependent Poisson process.

Since V
(n)
θ is increasing in n there must exist a limit which is finite on I since V

(n)
θ < w. Moreover,

by monotone convergence

V
(∞)
θ (x) = lim

n
Ex
[
e−βT

θ
1

{
g(XT θ1

) ∨ V (n)
θ (XT θ1

)
}]

= Ex
[
e−βT

θ
1

{
g(XT θ1

) ∨ V (∞)
θ (XT θ1

)
}]

. (21)

In this section we are interested in the shape of the value function V
(∞)
θ . We saw some preliminary

results in this direction in Section 3.2. In Theorem 3.1 we saw that if both g and θ are increasing
then so is Vθ; in Theorem 3.4 we saw that if g is convex and the arrival rate of the Poisson process
is constant then Gλ is convex. In section we argue that it is not the shape of g which is crucial, but
rather the monotonicity/convexity properties of Ψ where Ψ : I 7→ R+ is given by

Ψ(x) =
g(x)θ(x)

β + θ(x)
.
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In particular, if Ψ and θ are increasing then Gθ (Corollary 4.3) and V
(∞)
θ (Theorem 4.5) are increasing,

and if Ψ is convex then V
(∞)
θ is convex (Theorem 4.8). (In the next section we give conditions under

which V
(∞)
θ = Vθ, and then monotonicity and convexity of Vθ are inherited from V

(∞)
θ .) Since g

increasing and θ increasing implies Ψ is increasing, and g convex and θ constant implies Ψ is convex,
the results of this and the next section include the results of Section 3.2 as special cases, albeit under
slightly stronger assumptions.

Lemma 4.1. Suppose (θ/a2) is locally integrable, and further that if an endpoint e ∈ {`, r} is attain-

able, then
∫
e
θ(x) |s(x)−s(e)|

s′(x)a(x)2 dx <∞ and θ(e) ∈ [0,∞).

Then
∫ t

0
θ(Xu)du does not explode and T θn ↑ ∞ almost surely.

Proof. Fix c in the interior of I and define s(x) =
∫ x
c
dy exp

(
−
∫ y
c

b(z)
a(z)2 dz

)
. Then s is a scale function

for X and M = s(X) is a local martingale with dMt = η(Mt)dBt where η(·) = (s′a) ◦ s−1(·). Let
W be a Brownian motion started at s(x0), let H = HW

s(`),s(r) = inf{u : Wu /∈ (s(`), s(r))} and define

Φu =
∫ u

0
η(Ws)

−2ds on u < H with Φu = ∞ on u ≥ H. Then, by the Occupation Times Formula
(Revuz and Yor [22, VI.1.6]), for u < H we have

Φu =

∫
s(I)

1

η(w)2
LW,wu dw =

∫
I

1

s′(x)a(x)2
LW,s(x)
u dx

where LW,ws is the local time of W at w by time s. Necessarily Φ is strictly increasing and increases
to infinity.

Let A be inverse to Φ and let Mt = WAt . Then A does not explode in finite time and M solves
dMt = η(Mt)dBt for some Brownian motion B. Finally, let X = s−1(M). Then X solves (14) with
X0 = s−1(M0) = s−1(W0) = x0.

Now, with this set-up, for t ≤ HX
`,r = inf{t : Xt /∈ (`, r)} (note that HW

s(`),s(r) = AHX`,r ),∫ t

0

θ(Xu)du =

∫ t

0

θ ◦ s−1(WAu)du =

∫
s(I)

θ ◦ s−1(w)

η(w)2
LW,wAt

dw =

∫ r

`

θ(x)

s′(x)a(x)2
L
W,s(x)
At

dx (22)

and for t > HX
`,r,∫ t

0

θ(Xu)du =

∫ r

`

θ(x)

s′(x)a(x)2
L
W,s(x)

HW
s(`),s(r)

dx+ θ(`)[t−HX
` ]+ + θ(r)[t−HX

r ]+. (23)

In particular, if both boundaries are natural, then using the fact that s′ is bounded on compact subsets
of (`, r) and θ/a2 is locally integrable we conclude from (22) that

∫ t
0
θ(Xu)du is finite almost surely for

each t. If one or more boundaries of I is accessible (say `) then the same conclusion follows from the

fact that for x0 > `, EW0=s(x0)[L
W,s(x)

HW
s(`),s(r)

] < EW0=s(x0)[L
W,s(x)

HW
s(`),∞

] = 2[(s(x) ∧ s(x0)) − s(`)] and hence

EX0=x0

[∫
`

θ(x)
s′(x)a(x)2L

W,s(x)

HW
s(`),s(r)

dx

]
≤ 2

∫
`

θ(x)
s′(x)a(x)2 (s(x)− s(`))dx <∞.

Let Γ be random, and let N be a Poisson process which is independent of Γ. It is easily seen that
NΓ <∞ almost surely if and only if Γ <∞ almost surely. It follows that N∫ t

0
θ(Xu)du <∞ for each t

almost surely and equivalently (T θn)n≥1 increases to infinity almost surely.

In addition to Standing Assumptions 1 and 2, for the rest of the paper we assume

Standing Assumption 3. (θ/a2) is locally integrable. If an endpoint e ∈ {`, r} is attainable, then∫
e
θ(x) |s(x)−s(e)|

s′(x)a(x)2 dx <∞ and θ(e) ∈ [0,∞).

For h : I 7→ R+ define Ψh : I 7→ R+ by Ψh(x) = h(x)θ(x)
β+θ(x) . Then Ψ = Ψg.
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Lemma 4.2. Let Y solve

dYs =
a(Ys)√
β + θ(Ys)

dWs +
b(Ys)

β + θ(Ys)
ds

with initial condition Y0 = x. Then

Ex[e−βT
θ
1 h(XT θ1

)] = Ex[Ψh(YT )] (24)

where T is a unit-rate exponential random variable which is independent of Y .

Proof. Let C = (Ct)t≥0 be given by Ct =
∫ t

0
(β+θ(Xx

s ))ds. Then by the local integrability assumption
on θ/a2 of Standing Assumption 3 we have that C increases to infinity, but does not explode in finite
time.

Let Λ be inverse to C. Our assumptions give us that Λu < ∞ for all finite u. Let Y be given by
Ys = XΛs . Then dΛ

du = 1
β+θ(XΛu ) = 1

β+θ(Yu) . Moreover Y is a time-homogeneous diffusion solving the

SDE

dYs = dXΛs = a(XΛs)dBΛs + b(XΛs)dΛs =
a(Ys)√
β + θ(Ys)

dB̃s +
b(Ys)

β + θ(Ys)
ds (25)

where B̃ is a Brownian motion given by B̃t =
∫ t

0

(
dΛs
ds

)−1/2
dBΛs . Note that since (β+ θ)/a2 is locally

integrable, Y is unique in law.

Conversely, given Y solving dYs = a(Ys)√
β+θ(Ys)

dB̂s + b(Ys)
β+θ(Ys)

ds we can define Λu =
∫ u

0
dv

β+θ(Yu) ,

C = Λ−1 and Xs = YCs . Then dXs = a(Xs)dWs + b(Xs)ds.
Conditioning on the first event of the Poisson process we have that

Ex
[
e−βT

θ
1 h(XT θ1

)
]

= Ex
[∫ ∞

0

θ(Xt)e
−Cth(Xt)dt

]
= Ex

[∫ ∞
0

θ(XΛu)e−uh(XΛu)dΛu

]
= Ex

[∫ ∞
0

e−u
h(Yu)θ(Yu)

β + θ(Yu)
du

]
= Ex

[∫ ∞
0

e−uΨh(Yu)du

]
= Ex[Ψh(YT )].

Corollary 4.3. Suppose Ψ is increasing. Then Gθ is increasing in x.

Proof. Fix x < y. Let Y x and Y y denote solutions of (25) started at x and y respectively. Since Y x

and Y y are diffusions which are unique in law, there exists a coupling such that Y x ≤ Y y pathwise
(recall Theorem 3.1). In particular, there is a coupling such that Y is increasing in its initial value on
each sample path, and it follows that for x < y and any increasing ψ, ψ(Y xT ) ≤ ψ(Y yT ). Then applying
Lemma 4.2 with h = g and Ψg = Ψ, Gθ(x) = E[Ψ(Y xT )] ≤ E[Ψ(Y yT )] = Gθ(y).

Example 4.4. Let X be a diffusion in natural scale on [0,∞) or (0,∞). Let g(x) = 1+x and suppose
θ(x) = β/(1 + 2x), with θ(0) = β if 0 is attainable. Then Ψ = 1/2 and hence Gθ(x) = 1

2 ≤ g.

Furthermore, applying Proposition 3.6 we conclude that τ = T θ1 is optimal and V
(∞)
θ = Gθ = 1

2 .

Theorem 4.5. Suppose θ and Ψ are increasing. Then V
(∞)
θ is increasing.

Proof. By Lemma 4.2

V
(n+1)
θ (x) = Ex

[
e−βT

θ
1 (g ∨ V (n)

θ )(XT θ1
)
]

= Ex[Ψ
g∨V (n)

θ

(YT )] (26)

where Ψg∨v(y) = (g(y)∨v(y))θ(y)
β+θ(y) = Ψ(y) ∨ v(y)θ(y)

β+θ(y) .
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If V
(n)
θ is increasing, then since θ and Ψ are also increasing, Ψ

g∨V (n)
θ

is increasing. Then, using

(26) and a coupling argument as in the proof of Theorem 3.1, V
(n+1)
θ is increasing. Hence, since by

Corollary 4.3 we have V
(1)
θ = Gθ is increasing, we have by induction that V

(k)
θ is increasing for each

k. The increasing limit of increasing functions is increasing. Hence V
(∞)
θ is increasing.

Now we turn to the issue of convexity. Since we do not expect convexity unless X is in natural
scale, for the rest of this section we suppose that X is in natural scale. Note that in the results that
follow there are assumptions on Ψ, but unlike Corollary 4.3 and Theorem 4.5, there are no separate
assumptions on θ.

Proposition 4.6. Suppose that X is in natural scale. Suppose that if ` = −∞ then
∫
−∞

|y|(β+θ(y))
a(y)2 dy =

∞ and if r = +∞ then
∫∞ y(β+θ(y))

a(y)2 dy =∞. There is no condition at finite endpoints.

Suppose Ψ is convex. Then Gθ is convex in x and Gθ ≥ Ψ.
Alternatively, if Ψ is concave then Gθ is concave and Gθ ≤ Ψ.

Proof. By a result of Kotani [15] the conditions at the boundaries are exactly sufficient to guarantee

that Y given by dYs = dXΛs = a(Ys)√
β+θ(Ys)

dBs is a martingale. The result then follows from the

representation in (24) and Theorem 3.4 (or Remark 3.5 in the case of concavity) with β = 0.

Remark 4.7. The martingale property is essential here, and it is easy to construct a counterexample
in the strict local martingale case using a linear payoff and a three-dimensional Bessel process.

Theorem 4.8. Suppose that X is in natural scale. Suppose that if ` = −∞ then
∫
−∞

|y|(β+θ(y))
a(y)2 dy =∞

and similarly if r = +∞ then
∫∞ y(β+θ(y))

a(y)2 dy =∞. There is no condition at finite endpoints.

Suppose Ψ is convex. Then V
(∞)
θ is convex.

Suppose Ψ is concave. Then V
(∞)
θ is concave.

Proof. Suppose the conditions of the theorem hold and Ψ is convex. By Proposition 4.6, V
(1)
θ ≡ Gθ ≥

Ψ.
Suppose inductively that V nθ ≥ V

(n−1)
θ ≥ . . . ≥ V (1)

θ = Gθ ≥ Ψ.

Consider V
(n+1)
θ (y). By (26) we have V

(n+1)
θ (y) = Ey[Ψ

g∨V (n)
θ

(YT )]. Since V
(n)
θ ≥ V

(n−1)
θ it

follows that V
(n+1)
θ ≥ V

(n)
θ ≥ . . . ≥ V

(1)
θ = Gθ ≥ Ψ(y). Moreover, V

(n+1)
θ ≥ V

(n)
θ ≥ V

(n)
θ (y)θ(y)

β+θ(y) . In

particular, V
(n+1)
θ ≥ Ψ ∨ V

(n)
θ θ

β+θ = Ψ
g∨V (n)

θ

. Thus, V
(n+1)
θ (y) = Ey[Ψ

g∨V (n)
θ

(YT )] ≥ Ψ
g∨V (n)

θ

(y), and by

Proposition 3.7 with c = Ψ
g∨V (n)

θ

we conclude that V
(n+1)
θ is convex.

Finally, since the increasing limit of convex functions is convex we conclude that V
(∞)
θ is convex.

The corresponding result for concavity is more direct: if Ψ is concave then Gθ ≤ Ψ = gθ
β+θ ≤ g.

Then V
(n)
θ = V

(1)
θ = Gθ and V

(∞)
θ = Gθ. Since Gθ is concave by Proposition 4.6, the result follows.

5 Monotonicity and convexity of Vθ

Standing Assumptions 1, 2 and 3 remain in force.

Proposition 5.1. Suppose

E
[
sup
s≥0

{
e−βsg(Xs)

}]
<∞ and lim

t↑∞
E
[
sup
s≥t

{
e−βsg(Xs)

}]
= 0. (27)

Then Vθ(x) = V
(∞)
θ (x).
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Remark 5.2. From the discussion at the end of Example 2.3 we know that (27) holds in that setting,
and clearly it also holds whenever g is bounded. Indeed it holds for all the examples in Section 2.

Proof. Let K = E
[
sups≥0

{
e−βsg(Xs)

}]
. Given ε > 0, choose t0 such that E

[
sups≥t0

{
e−βsg(Xs)

}]
<

ε/2, and, recalling that by Lemma 4.1 we have that T θn ↑ ∞ almost surely, choose n0 such that
P(T θn0

≤ t0) < ε
2K .

Then, for any stopping time τ ∈ T (Tθ) and n ≥ n0,

Ex
[
I{τ>T θn}e

−βτg(Xτ )
]

= Ex
[
I{τ>T θn>t0}e

−βτg(Xτ )
]

+ Ex
[
I{τ>T θn}I{t0≥T θn}e

−βτg(Xτ )
]

≤ Ex
[
I{τ>t0}e

−βτg(Xτ )
]

+ Ex
[
I{t0≥T θn} sup

s≥0

{
e−βsg(Xs)

}]
≤ Ex

[
sup
s≥t0

{
e−βsg(Xs)

}]
+ Px(T θn ≤ t0)Ex

[
sup
s≥0

{
e−βsg(Xs)

}]
<

ε

2
+

ε

2K
K = ε.

It follows that

sup
τ∈T (Tθ)

Ex
[
e−βτg(Xτ )

]
= sup

τ∈T (Tθ)

{
Ex
[
e−βτg(Xτ )I{τ≤Tn}

]
+ Ex

[
e−βτg(Xτ )I{τ>Tn}

]}
≤ sup

τ∈T ({T θ1 ,...T θn)

Ex
[
e−βτg(Xτ )

]
+ ε

= V
(n)
θ (x) + ε

Hence, for large enough n, V
(n)
θ (x) ≤ Vθ(x) ≤ V (n)

θ (x) + ε. Taking limits we find Vθ = V
(∞)
θ .

Combining Proposition 5.1 and Theorem 4.5 we obtain:

Corollary 5.3. Suppose θ and Ψ are increasing and that (27) holds. Then Vθ is increasing.

Combining Theorem 4.8 and Proposition 5.1 we obtain the corresponding result for Vθ:

Corollary 5.4. Suppose that X is in natural scale. Suppose that if ` = −∞ then
∫
−∞

|y|(β+θ(y))
a(y)2 dy =

∞ and similarly if r = +∞ then
∫∞ y(β+θ(y))

a(y)2 dy = ∞. There is no condition at finite endpoints.

Suppose that (27) holds.
Suppose Ψ is convex. Then Vθ is convex.
Suppose Ψ is concave. Then Vθ is concave.
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