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A key challenge for many infectious diseases is to predict the time to extinction
under specific interventions. In general, this question requires the use of stochas-
ticmodels which recognize the inherent individual-based, chance-driven nature
of the dynamics; yet stochastic models are inherently computationally expens-
ive, especially when parameter uncertainty also needs to be incorporated.
Deterministic models are often used for prediction as they are more tractable;
however, their inability to precisely reach zero infections makes forecasting
extinction times problematic. Here, we study the extinction problem in determi-
nistic models with the help of an effective ‘birth–death’ description of infection
and recovery processes. We present a practical method to estimate the distri-
bution, and therefore robust means and prediction intervals, of extinction
times by calculating their different moments within the birth–death framework.
We show that these predictions agree very well with the results of stochastic
models by analysing the simplified susceptible–infected–susceptible (SIS)
dynamics as well as studying an example of more complex and realistic
dynamics accounting for the infection and control of African sleeping sickness
(Trypanosoma brucei gambiense).
1. Introduction
For many infectious diseases, the eventual aim of control measures is eradica-
tion—completely removing the pathogen from host populations and the
environment. This has been accomplished for just two infections—smallpox
and rinderpest—but is the target for a number of other diseases, including
polio, Guinea worm and yaws [1–3]. A key question is, therefore, predicting
the time to eradication, which has clear implications for the likely duration
and hence cost of any control programme.

Markov chain models are often used to study the spread of infectious diseases
in a population [4,5]. In such approaches, the whole population is partitioned into
compartments and the system dynamics are described by the rates of exchange
between compartments. Both stochastic and deterministic versions of such
models have been developed to study the dynamics of a range of infectious dis-
eases. The results of the deterministic and stochastic versions of the same model
generally agree well for large compartment populations, but start to deviate either
when there are low numbers of infections or for small population sizes [4,6–9].

Deterministic models provide a mean-field approximation of infection
dynamics described by ordinary differential equations (ODEs). The steady
states and time evolution of these models are tractable and typicallywell behaved
in thewhole phase space. Various analytical and numerical methods are available
to solve a set of ODEs; this makes deterministic models computationally efficient
and therefore allows the exploration of large regions of parameter space relatively
quickly. This is particularly important for fitting such models to available data in
order to estimate the underlying mechanistic parameters.
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Deterministic descriptions are not very practical,
however, when it comes to studying rare events or very
small populations. Importantly, the endpoint of an infection
(when infection is eradicated) is by definition ambiguous
in these models since the populations are represented by
continuous variables that never reach zero. In practice, a
proxy threshold is needed to determine when extinction
may occur; however, it is not clear how such a threshold
should be defined. Infections dropping below 1 may seem a
natural measure, but in the literature different threshold
values are applied [10,11], generating shifts in the predicted
extinction times.

In such circumstances, stochastic models are more favour-
able. In these models, transitions between compartments are
generated by stochastic events, the average of which is well
captured by the mean-field image but that express divergent
behaviours individually. These events and accordingly
system state are specified by probability functions allowing
for uncommon incidents. Stochastic models are generally
computationally expensive; however, they come with a good
deal of flexibility and capabilities that we would like to take
advantage of to understand the extinction of diseases.

In this article, we will develop a basic framework to study
the peri-elimination phase for an infectious disease using a sim-
plified susceptible–infected–susceptible (SIS) model that takes
into account susceptible and infected compartments. We use
solutions of the corresponding forward Kolmogorov equation
to predict the point of infection extinction in deterministic sol-
utions. We then extend this framework to estimate the
extinction time of more complicated infection dynamics.
While other studies have indeed addressed similar questions
around the computation of mean extinction times of epidemio-
logical or other physical systems [12–20], the present study
focuses on the computation of the distribution in predicted
extinction times, which has not been done elsewhere. This
aspect is crucially important as the policy implications of extinc-
tion occurring within shorter or longer periods could lead to
different decision-making. Indeed, uncertainty inmodel predic-
tion is not accounted for often enough in epidemiological
modelling studies [21]. Representation of uncertainty allows
the modeller to answer policy-driven questions such as ‘At
what timewould we expect there to be a greater than 90% like-
lihood that elimination would be met?’ or ‘What is the earliest
we could hope to achieve zero infections?’, which the mean
value does not address.

For this study, we are motivated by a desire to analyse the
endpoint of African sleeping sickness (gambiense human Afri-
can trypanosomiasis; gHAT), which is a vector-borne disease
transmitted to humans by tsetse [22–25]. Humans transition
through different stages of the disease and can either be diag-
nosed and recover through treatment or typically die without
it. Medical intervention campaigns have had great success in
bringing down the burden of this disease—from 37 385 in the
most recent peak in 1998 to a record low of 953 cases in 2018
[26]. To continue the drive forwards, the World Health
Organization (WHO) has a goal to achieve global elimination
of transmission (EOT) of sleeping sickness by 2030 [27].
Quantitative methods provide a way to forecast the expected
time to meet the goal under a variety of strategies; however,
there is a strong need for refinement of the methodology to
analyse the distribution of extinction times in a more rigorous
mathematical framework. Previous studies have used differ-
ent threshold criteria for the endpoint for gHAT by
considering when the incidence of new infections falls
below one of: 1 per 10 000, 1 per 100 000, less than 0.5 new
infections across the entire health zone (approx. 100 000)
per year, even to a more severe threshold of less than 1 per
1 000 000 [23,28–30].
2. Model structure
The simple SIS model is a one-dimensional characterization
of an infectious disease, in which recovery (by treatment or
otherwise) quickly leaves the individual susceptible to
further infection [4,5]. For a population of size N, the
number of infected individuals can be expressed as

dI
dt

¼ bSI=N � gI, where S ¼ N � I: (2:1)

Here, β is the transmission rate, γ is the recovery rate and S and
I are the numbers of susceptible and infectious individuals,
respectively. Another important metric, R0 = β/γ, is the basic
reproduction number. When R0 > 1 this model exhibits sigmoi-
dal growth to the non-zero equilibrium (I* = 1− 1/R0), whereas
when R0 < 1 we observe exponential decay of infection to zero.
Through changes to the transmission or recovery rates, it is
possible to modify the effective reproduction number, Reff, and
push it below this critical threshold. It is this latter case that
is of greatest interest here, as we are most concerned with dis-
eases that are bound for eventual extinction (assuming controls
remain in place and Reff continues to be less than 1).

The nonlinear SI term in equation (2.1) precludes many
analytical results; however, if we are purely interested in
extinction it is acceptable to assume that the number of
infected individuals is relatively small and hence that S≈N.
In this limit, we obtain a simple birth–death process for infec-
tions, where birth corresponds to infecting someone and
death refers to recovery [31]

dI
dt

¼ bI � gI ¼ bI � dI: (2:2)

Here, β plays the role of the per capita birth rate (b) and γ is
equivalent to the per capita death rate (d). Throughout the rest
of this paper, we will use the parameters b and d to stress
that we are approximating the dynamics as a birth–death
process. Our condition that Reff now corresponds to d> b.

2.1. Dynamics without births
We first consider the simplest case where b = β = 0, and so
each infected individual recovers (or is treated) at a Poisson
rate d, but no new infections occur. Starting with n infected
individuals, the expected time for the first individual to
recover is 1/(dn). After this recovery event, the population
then has n− 1 infected individuals and the process can be
iterated giving an expected time to extinction of

tn ¼ 1
d

Xn
m¼1

1
m
: (2:3)

Figure 1a illustrates how the average extinction time τn
depends on the initial number of infected people n, showing
a logarithmic scaling for large n.

Starting with I(0) = n, the deterministic model predicts an
exponential decay of the size of infected population

I(t) ¼ n exp (�dt);
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Figure 1. Extinction in a death process model. (a) The average extinction time τn and (b) the extinction threshold of infected population Iext are plotted as a
function of the initial number of infected population. Here, d = 1 per unit time, with no specific units considered.
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hence, at the expected extinction time we have

Iext ¼ n exp (�dtn)

¼ exp log (n)�
Xn
m¼1

1
m

 !
,

(2:4)

which we postulate gives us a threshold value of the determi-
nistic model that equates to the mean extinction time of
the associated stochastic model. Figure 1b shows how the
threshold value changes with the initial number of people
infected. For large n, the threshold plateaus to exp(−E),
where E is Euler’s constant (0.5772), and hence the threshold
is 0.5615. Therefore, we observe the useful property that the
threshold is largely independent of n.
2.2. Birth–death dynamics
Moving to the situation where b is non-zero, the dynamics are
more complex. The expected time to extinction has to be
formulated by considering the impact of birth and death
from a given number of infected individuals (n). This gener-
ates an iterated set of equations for the extinction time
starting with n infections

tn ¼ 1
n(dþ b)

þ d
dþ b

tn�1 þ b
dþ b

tnþ1, (2:5)

where the first term is the expected time until an event
occurs. The other two terms take into account the possibility
of a birth or death event transitioning to n + 1 or n− 1
infected individuals. There is a large relevant literature
using similar approaches in epidemiology or in other contexts
which lead to comparable equations for the mean extinction
time [12–17,32]. Equation (2.5) can be expressed as

(dþ b)tn � dtn�1 � btnþ1 ¼ 1
n
, (2:6)

which we solve as a matrix operation (Ax ¼ c) for
x ¼ (t0 . . . tM) with the boundary conditions τ0 = 0 and
τM+1 = τM + 1/(M(d− b)) for large M, the maximum number
of initial people infected.
We note that without loss of generality we can assume that
d = 1 as this simply acts as a rescaling of time. Figure 2a shows
the average extinction time calculated for different choices of b.
The average extinction time scales with 1/(d− b) and increases
logarithmically with n for large values.

With the same approach as in the previous section, we
can calculate the threshold of number of people infected
Iext ¼ n exp ((b� d)tn), using the predicted mean extinction
time from equation (2.5). Figure 2b shows how the threshold
depends on the initial size of the infected population, calcu-
lated for different choices of birth rate b. Our results
confirm the useful property that the threshold is largely inde-
pendent of n for moderate numbers of initially infected
people (e.g. n > 500) and that a scaled threshold (by a factor
of 1− b/d) reaches the constant value of exp(−E) (figure 2c).
2.3. Distribution of extinction times
The above approach to formulate the mean extinction times
can be extended to higher cumulative moments to estimate
the variation and distribution of extinction time in the
birth–death model. The second cumulative moment, S(2)n ,
defined as the expected value of the square of the time to
extinction, obeys

S(2)n ¼ d
dþ b

S(2)n�1 þ
2

n(dþ b)
tn�1 þ 2

n2(dþ b)2

� �

þ b
dþ b

S(2)nþ1 þ
2

n(dþ b)
tnþ1 þ 2

n2(dþ b)2

� �
:

Rearranging the above form, and using our previous
expression (equation (2.5)), we obtain the simplified sequential
relation

(dþ b)S(2)n � dS(2)n�1 � bS(2)nþ1 ¼
2
n
tn:

This can be solved with a similar matrix operation as before
(Ax ¼ c0) with the boundary conditions S0 = 0 and
SMþ1 ¼ SM þ 2

M(d�b) tM for large M to obtain S(2)n and hence
the variance is given by Vn ¼ S(2)n � t2n.
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Figure 2. Extinction in a death–birth process model. (a) The average extinction time, τn, (b) the extinction threshold of the infected population, Iext, and (c) a
rescaled version of this threshold are plotted as a function of the initial number of infected population for three choices of birth rate b. Again, d = 1 per unit time.
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Knowing that the distribution of extinction times is highly
asymmetric with a long right-hand tail, higher cumulative
moments help provide a more accurate estimate of prediction
intervals and the full distribution of extinction times. We find
that the average cube of extinction times, which is used to
calculate the third cumulative moment, obeys

S(3)n ¼ d
dþb

S(3)n�1þ
3

n(dþb)
S(2)n�1þ

6

n2(dþb)2
tn�1þ 6

n3(dþb)3

� �

þ b
dþb

S(3)nþ1þ
3

n(dþb)
S(2)nþ1þ

6

n2(dþb)2
tnþ1þ 6

n3(dþb)3

� �
,

which can be simplified as

(dþ b)S(3)n � dS(3)n�1 � bS(3)nþ1 ¼
3
n
S(2)n :

This approach can be extended to calculate sequential
relations of cumulative moments of higher orders m

(dþ b)S(m)
n � dS(m)

n�1 � bS(m)
nþ1 ¼

m
n
S(m�1)
n :

The full set of cumulative moments allows the probability
distribution of extinction times to be calculated. Our numeri-
cal solutions suggest that the first four moments can give a
good estimate of the distribution, approximated by a general-
ized F probability distribution function with four free
parameters. This allows us to determine the prediction
intervals for a given set of parameters (for details, see the
electronic supplementary material).

As an alternative approach, we consider the Kolmogorov
forward equations to describe the time evolution of probabil-
ities for the numbers infected [33]. These high-dimensional
models are a numerically exact realization of the full stochas-
tic model, which can be computed for the SIS model because
of the relatively low number of states. The Kolmogorov
forward equations are give by

dPi

dt
¼ �i(bþ d)Pi þ d(iþ 1)Piþ1 � b(i� 1)Pi�1:

Here, Pi depicts the probability of having i individuals
infected. The solution of this equation is given by
P = exp(At) · P0 for the vector of Pis over time, where A is
the coefficient matrix and P0 is the initial state of the
system. We can accordingly calculate the probability of
extinction over time and therefore the distribution.
Figure 3 compares the estimated F distributions of
extinction times from the cumulative moments with the
corresponding prediction intervals with the solutions of the
Kolmogorov forward equations. Again, without loss of
generality we have taken d = 1, and varied b < d. The distri-
bution shifts to the right and flattens as birth rate increases.
These results demonstrate the very good agreement between
the distributions, as well as the mean values and 95% predic-
tion intervals. This analysis, therefore, provides confidence
that our simple approach is a useful tool to estimate extinc-
tion times and prediction intervals for any choice of b and
d. In the electronic supplementary material, we plot how
variance, skewness and kortosis change as a function initial
population infected n.
3. Application to the complex dynamics of
sleeping sickness

We now investigate how well our theory holds against more
realistic, and hence more complex, simulation models. Our
previously developed model for gHAT [28,34] is high dimen-
sional, describing the dynamics of vectors and two human
risk groups. The model accounts for the natural history of dis-
ease progression: infected humans initially develop mild
disease (stage 1) before progressing to more severe disease
(stage 2) with neurological symptoms as the parasite crosses
the blood–brain barrier. The infectious period ends with
either death or successful diagnosis and treatment by screen-
ing programmes [35]. This model is fitted to the human case
incidence data recorded in different administrative regions
(health zones of approximately 100 000 people) across
the Democratic Republic of Congo to estimate the free
parameters of the deterministic model [34].

Using a Markov chain Monte Carlo approach, posterior
parameter sets that match available case data have previously
been generated (see [34] and the electronic supplementary
material for details). The deterministic equations can be
numerically solved to generate the disease dynamics includ-
ing the number of humans infected and new transmissions
each year for posterior parameter sets. We use these results
and our knowledge of the underlying epidemiology to deter-
mine appropriate values of d and b that approximate the
linear birth–death process (see electronic supplementary
material for details). This allows us to generate the first
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four moments, and accordingly the distribution of extinction
times for specific d and b rates following the framework
developed in the previous sections.

To verify these results, we run the stochastic discrete simu-
lations of the gHAT model using the tau-leaping approach
described elsewhere [25,36] and select a 1 day time step
which approximates the full dynamics well due to the long
time scale of gHAT infections (a Gillespie method could be
used for more accurate simulations; however, it is unlikely to
modify the resultswe present here).We compute the extinction
times for multiple stochastic realizations. These simulations
assume that active screening (the fundamental driver of case
identification and control) continues at a constant level, lead-
ing to decaying infection levels (electronic supplementary
material, figures). Figure 4 compares the F probability distri-
bution function derived from the estimated cumulants with
the distribution of extinction times of 1 000 000 stochastic
simulations for two different parameter sets. The parameter
sets represent the most likely of all posterior parameter sets
found by fitting to data for two health zones named Mosango
(a ‘moderate-risk’ zone) and Kwamouth (a ‘high-risk’ zone)
[34] that reveal different infection dynamics over time, and
therefore different predicted extinction times. Despite the com-
plexity of the model for gHAT dynamics, there is still a very
good agreement between the birth–death model with F distri-
bution predictions and full stochastic gHAT infection
dynamics (with differences in mean and 95% prediction inter-
val (PI) of less than a year), confirming that the analysis based
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on the birth–death model can deliver robust and accurate esti-
mates of mean extinction time and the prediction intervals.
Examples using other levels of screening coverage are shown
in the electronic supplementary material. In these examples,
for a fixed parameter set, we computed that the deterministic
threshold, Iext, to compute the expected extinction time was
1.50 and 2.26 for Mosango and Kwamouth, respectively.
Other threshold values would need to be calculated for
alternative parameter sets and alternative screening strategies
for the same health zones.

It should be noted that this study provides a simplified
picture of eradication of a disease taking into account
instant feedback between transmission and the infected
population. However, in epidemiology, other measures such
as elimination of transmission may be of interest. In the
case of complex dynamics like gHAT, because of the phase
difference of humans and vectors as well as the slow pro-
gression of the disease and recovery process, there is a
delay between elimination of transmission and disease
extinction. We speculate that the lag period can be estimated
based on the underlying dynamics.

Another challenge is to extend such an analysis to allow for
more general noise models, while our current stochastic
models mainly account for Poisson events. In the case of
gHAT dynamics, we are aware of possible over-dispersion
terms that can be considered in the infection dynamics
[25,34]. It is important to study how the predicted distribution
of extinction time will be modified by such noise models.
4. Conclusion
In this article, we study the extinction times of diseases when
Reff , 1 starting from a finite population infected, using
results from a simplified birth–death model. We formulate
the mean extinction time that is in agreement with the pre-
vious studies in the analogous limits [13–17]. Beyond that,
our analysis provides a novel method to approximate the dis-
tribution of extinction times by calculating additional
moments of extinction time. Our results agree well with the
solutions of forward Kolmogorov equations, which offer a
numerical exact prediction of the birth–death dynamics.
Our findings are a vital extension to deterministic models,
allowing a robust and rigorous assessment of extinction in
a modelling framework that cannot naturally capture this
phenomenon. We considered the simplistic assumption of
constant birth and death rates; however, the results can be
easily extended by modifying the coefficient matrix when
these rates are functions of the infected population.

Moreover, our analysis helps us to quantify a simple
threshold that can be used to determine the mean extinction
time from deterministic solutions. We showed that this
threshold asymptotes to a universal plateau given by the
effective reproduction ratio for large initial numbers of
infected individuals. This asymptotic threshold is likely to
be a reasonable approximation for large populations where
the number of infections is also likely to be large.

Interestingly, the birth–death approach can be applied to
diseases with more complex disease dynamics in order to pre-
dict their extinction times. We showed that it is valid for the
example of local elimination of sleeping sickness, yet in a
broad sense the dynamics are approximately SIS decaying to
zero infection. Our study can be extended for SIR models,
where the system state is two-dimensional by considering
the recovered (R) compartment. A non-trivial modification
of the birth–death process would be helpful to consider to
understand the richer dynamics of the SIR model [37].
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