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Capsule (30):

We reviewed and evaluated 120 prediction model$ighdd over the last 24 years. We
identified twelve externally validated models thatild be used to advise couples undergoing

fertility treatments.
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Abstract (250):

Objective: Predicting the outcomes of assisted reprodutsigbnology (ART) treatments is
desirable, but adopting prediction models intoicahpractice remains limited. We aimed to
review available prediction models for ART treatrselny conducting a systematic review of
the literature to identify the best performing misder their accuracy, generalisability and
applicability.

Evidencereview: We searched electronic databases (MEDLINE, EMBASIE,

CENTRAL) until June 2020. We included studies réipgron the development or evaluation
of models predicting the reproductive outcomes teefpre-ART) or after starting (Intra-
ART) treatment in couples undergoing any ART treaitnWe evaluated the models’
discrimination, calibration, type of validation,chany implementation tools for clinical
practice.

Results: We included 69 cohort studies reporting on 12iQue prediction models. Half the
studies reported on pre-ART (48%) and half on v&tRI (56%) prediction models. The
commonest predictors used were maternal age (20%@\ factor subfertility (50%), and
embryo quality (60%).

Only fourteen models were externally-validated {P4), 12%) including eight pre-ART
models (Templeton, Nelson, LaMarca, McLernon, Araisd the Stolwijk A/l,C,Il models),
and five intra-ART models (Cai, Hunault, van Loersii@ot, Meijerink, Stolwijk Band the
McLernon post-treatment model) with a reportedatistics ranging from 0.50 to 0.78. Ten
of these models provided implementation tools fmical practice with only two reported
online calculators.

Conclusion: We identified externally validated prediction net&lthat could be used to

advise couples undergoing ART treatments on tlep@iraductive outcomes. The quality of
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available models remains limited and more reseigroleded to improve their

generalizability and applicability into clinical gutice.

Keywords: infertility, prediction, assisted reproduction, ®matic review.

Highlights:

- Over the last 24 years a high number of studiesrgited to produce useful prediction
models and decision aids for clinicians and pasiemidergoing ART.

- In this review we evaluated 69 studies reportind. 2@ unique prediction models, but
only a minority of these models were externallyidated or useful in clinical
practice.

- Most of these models suffered from a high riskiaskdriven by poor model
development, data sampling and analysis methodology

- More research is needed to leverage available ddiae published models, and
increase their applicability in clinical practicsiig novel technology such as

artificial intelligence and dynamic intra-treatmemédiction modelling.
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Introduction
Assisted reproductive technology (ART) has evoluedr the last 40 years offering hope to a
record number of infertile couples worldwide (1-Gurrently ART is the first port of call

for many couples inclusive of those experiencingxphained and reversible causes of
subfertility such as mild male factor and unilatéudal pathology. The birth rate with
assisted conception increased steadily over thédasdecades from an average of 9% in
1991 to 23% in 2018 (4). This mass adoption of ARdwever, sparked the debate on the
ethical use of some ART treatments (5), their effgetiveness, and the risk of profiteering
to certain patient groups (6). Accurate predictidilinical outcomes and any mitigating risk
factors could help to rationalize the use of ARSatments and improve their clinical
effectiveness (7). While many prediction modelsenbgen produced to aid clinicians and
couples in planning their fertility treatments, lementing those models remains limited in

practice (8).

To be used effectively, prediction models shouldargo rigorous development, validation,
and impact assessment (9,10). Unsurprisingly, fellighed models complete this process
which limits their clinical value and increase ras# wastage (7,8,11). Advances in data
gathering and statistical methodology using maclgaming and artificial intelligence could
help to streamline the development and validatimegss of prediction models, but such

practice remains limited in reproductive medicih2)(

Our aim was to systematically review and evalulagepterformance, generalisability and
applicability of published prediction models for ARreatments to identify the best

performing models that could be used in clinicalgpice.



96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Methods
We conducted this systematic review using a prdspey registered protocol

(CRD42019156606) and reported the findings follgystandard guidelines (13).

Search strategy and study selection

We searched electronic databases (MEDLINE, EMBASIE, Cochrane CENTRAL) from
inception until June 2020 for all studies reportorgthe development or evaluation of any
prediction model for the outcome of any ART treatisgin vitro fertilization (IVF) and/or
intracytoplasmic sperm injection (ICSI)). We didt apply any search filters or language
restrictions. Articles in non-English were tranethif deemed relevant. We conducted
supplementary searches in Google Scholar and S¢opansy additional articles of interest
in the grey literature. We also searched the bgioiphies of relevant articles to identify any

missing citations.

We included longitudinal studies that reported lom development or evaluation of any
model for predicting clinical pregnancy (confirmel ultrasound) or live birth following any
ART treatments. We excluded studies reporting enctinde association between a single
independent variable and the outcomes of intettesse reporting on non-predictive models,
and those not reporting on the model performancsores. Models predicting non-
reproductive outcomes or solely predicting bioclehpregnancy were also excluded.
Similarly, we excluded models that used solely gmological or seminal parameters to
predict the outcomes of interest. Finally, we @goluded case series, conference abstracts

and review articles.

Assessment of study quality
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We assessed the risk of bias and applicabilithefincluded studies in duplicate using the
PROBAST tool (14). Studies were assessed in fonradias: population, predictors, outcome,
and analysis. Studies were deemed low risk of ibthgy were cohort studies, defined and
measured predictors consistently and independehthye pre-specified outcome, included
sufficient events per variable with appropriategoagterisation of predictors, included all
participants in the analysis, treated missing dagaropriately, did not include predictors
based on univariable analyses, assessed the mdaatgnination and calibration
appropriately, and accounted for model overfitimgl optimism based on the use of an
appropriate validation procedure and shrinkagestifrates in the presence of optimism
which were evaluated in the context of events peiable, appropriate parameterisation and
modelling strategy (14). We produced an overaksssient of both the risk of bias and

model applicability per study.

Models performance, generalizability and applicability

We evaluated models’ performance by their repadisdrimination (the model’s ability to
separate those with and without the outcome ofestgand calibration (the concordance
between predicted and observed outcome frequenegunes (15). Discrimination is
commonly described using the rank order statistiea under the receiver operating
characteristic curve’ (AUROC), which is equivalémthe concordance-statistic (c-statistic).
We considered a c-statistic value of 0.5 to represe discriminative ability, a value of 1 to
represent perfect discriminative ability (15). @adition is often assessed using the Hosmer-
Lemeshow statistic (16). A model is considered sallbrated when the average predicted
probability per sub-group matches the observedgatmm. Calibration is more informatively
assessed graphically by the calibration plot, wiieegoredicted probability per ordered sub-

group is plotted against the observed proportiemahstrating the nature and magnitude of



146  any miscalibration. An intercept of O and a slopé therefore represents perfect calibration
147  (17).

148

149  To evaluate generalizability, we reported on thigdation process for each model including
150 the validation type, procedures, and charactesisti¢he validation population. We divided
151 validation efforts into ‘internal’, ‘temporal’, dexternal’ depending the type of validation
152 population.

153

154  To evaluate the models’ applicability and translatinto clinical practice, we reported on
155  efforts to increase the model’'s accessibility tthdeealth professionals and lay consumers,
156 and the availability of any decision support taalduding predicted probabilities based on
157  patient profile, score-based decision aids, scaseth nomograms, to end-user web-based
158  predictive calculators.

159

160 Data extraction

161  Two independent reviewers (IH and MPR) extractdd dato a custom designed collection
162 database guided by the CHARMS checklist (18) totifierelevant data points for extraction
163  and reporting. We extracted data on the study desigtcome, sample size, population

164  characteristics, model development methods, pedoom and validation statistics, and

165 clinical application. We divided models into (pré&RA) where outcome prediction was

166  possible prior to commencing ovarian stimulatiamg &éntra-ART) where outcome

167  prediction was possible after commencing ovarianigation. We categorized the included
168 studies as per the TRIPOD guidelines into: typstlidies developing a model and evaluating
169 its predictive performance using the same datagiamp performance), type 1b studies

170 developing a prediction model using the entire sittavith resampling (e.g. bootstrapping or



171  cross-validation) techniques to evaluate the peréorce and optimise the developed model,
172  type 2a studies with data randomly split to develmpomodel and then to evaluate its

173  predictive performance, type 2b studies with data-randomly split (e.g. by location or

174  time) to develop the prediction model and thenviauate its predictive performance, type 3
175 studies developing a prediction model using onas#dtand an evaluation of its performance
176  on separate data (e.g. from a different populatiandl type 4 studies which are only

177  evaluating the predictive performance of an exgsprediction model in a separate dataset
178  (19).

179

180 Satistical analysis

181 We summarised data using descriptive statisticg@polted on continuous data using means
182  or medians with standard deviations where relevamtdichotomous data we reported using
183  frequencies and natural percentages. All analysedigures were produced using RStudio
184  version 1.2.1335 (RStudio, Boston, MA) (20).

185

186  Results

187  Study characteristics

188  Our search revealed 8052 potentially relevant unigjtations; of these, we reviewed 483 in
189  full and included 69 studies in our review repayton the development of 120 ART

190 prediction models (Figure 1). All included studiesre cohort studies, 55 of which were
191 retrospective (55/69, 79.7%) and 14 prospectivé6@,£20.3%). As per TRIPOD

192 classification, 18 (18/69, 26.1%) of these stuelese type la studies, 20 (20/69, 29.0%)
193  were type 1b, 6 (6/69, 8.7%) were type 2a, 10 @,014.5%) were type 2b, 5 (5/69, 7.2%)

194  were type 3, and 10 (10/69, 14.5%) type 4 (Figyrd Be majority were from Europe (49/69,
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71.0%) with only eleven from Asia (11/69, 15.9%)ddhree from North America (3/69,

4.3%).

There were variations in the population charadiessacross included studies. Nine studies
(13.4%) included unselected couples (for age, ayateellation, maternal comorbidity,
aetiology, and sperm source), seven included ucieeleouples but excluded women using
donor gametes (10.4%), and twelve studies (17.82t)ded couples with selected baseline
characteristics (Supplementary Table 1). About bithe included studies explicitly
excluded donor oocyte cycles (29/69, 42.0%), atidrd explicitly excluded cancelled cycles
(21/69, 30.4%), and a quarter explicitly excludezhven outside a specific age range (18/69,

26.1%).

Most of the included studies reported on the dguakent (with or without validation) of
novel models (62/69, 89.9%), with the remaindequaly reporting on the validation of pre-
existing models (7/69, 10.1%). Half of these stadi0/62, 48.3%) reported on pre-ART
predictive models (21-47), and 56% (35/62, 56.8pprted on intra-ART (48—78). Only
three studies (3/62, 4.8%) reported on both preitna-ART predictive models (79-81).
Three quarters of these developmental studies 24788%) involved IVF/ICSI treatments,
twelve IVF treatment only (12/62, 19.4%), and t@$l treatment only (2/62, 3.2%), with 1
unspecified by the authors. Two-thirds includedyarycles using a fresh embryo transfer
(41/62, 66.1%), while both fresh and frozen emlrydes were included in 21 studies

(21/62, 33.9%).

Predictors and outcomes

10
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For studies that developed pre-ART models, the conast included predictor was maternal
age (27/30, 90.0%) followed by tubal factor subligyt(15/30, 50.0%), gravidity (13/30,
43.3%), and the duration of subfertility (12/30,@8) (Figure 3a). A similar trend was seen
for intra-ART models as the commonest included otedwas also maternal age (33/35,
94.3%), followed by embryo quality (21/35, 60.0%evious ART success (16/35, 45.7%),
duration of subfertility (12/35, 34.3%), and tuliattor subfertility (10/35, 28.6%) (Figure

3b).

Live birth was the outcome of interest acrosstallies, for those that developed both pre-
ART (20/30, 66.7%) and intra-ART (18/35, 51.4%) ralzd A quarter of studies that
developed intra-ART models focused on clinical peagy (10/35, 28.6%) and ongoing
pregnancy (8/35, 22.9%) which were less frequeneiyprted in pre-ART models (clinical

pregnancy (5/30, 16.7%), ongoing pregnancy (5/807%)).

Sample size and modelling method

The median sample size for developing pre-ART nwdels 757 for participants (range 85-
113,873) and 1,061 for ART cycles (range 113-443),2Bor intra-ART models, the median
participant sample size was 1,419 (range 90-113 87@ median ART cycles was 1,676
(range 110-184,269). Most studies (48/69, 69.6%d)18 events per candidate variable
(degrees of freedom). The majority of studies dgwvedl models using logistic regression
(pre-ART (24/30, 80.0%), intra-ART (30/35, 85.7%)nly a minority used other methods,
including generalized estimating equations, Bayesgtworks, Cox regression, machine

learning techniques and deep learning techniqugspl8mentary Table 2).

Performance, generalizability and applicability

11
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Discrimination was reported for most of the inclddgudies (109/120, 90.8%) while
calibration was reported for over half (72/120,086). Both discrimination and calibration
were reported in only 61 studies (61/120, 50.8% dommonest methods to assess
calibration were the Hosmer-Lemeshow statistic{2,/87.5%), calibration plot (24/72,

33.3%), slope test (14/72, 19.4%), and calibratiothe-large (11/72, 15.3%).

We captured 31 unvalidated models from type laissudithout subsequent validation
(31/120, 25.8%), as well as six models that wecallg refit from validation studies (6/120,
5.0%). Fifty-five models were internally-validattdm 1b/2a studies without subsequent
validation (55/120, 45.8%), 15 were temporally-stated models from 2b studies without
subsequent validation (15/120, 12.5%). There wevers external validation studies (7/120,
5.8%). Four were type 4 studies by a team thatlapped with the model development team
(4/120, 3.3%)(35,80,82),(22,23,79), and three studiere performed by independent
validation teams (30,37,57)

We captured eight externally validated pre-ART medine Templeton model (n=6
validations), Nelson model (n=3), LaMarca modell)®McLernon pre-treatment model
(n=1), Arvis model (n=1), and The Stolwijk model4,AC, and Il (n=7). All models showed
similar performance with c-statistics ranging frOtb3 to 0.78. The Stolwijk models A/l and

Il were declared invalid (Table 1).

Among the intra-ART models, only five were exteinaialidated: the Cai model (n=1),
Hunault model (n=1), van Loendersloot model (n#4gjjerink model (n=1), and the
McLernon post-treatment model (n=1). All modelswhld similar performance with c-

statistics ranging from 0.63 to 0.78. However, ahly McLernon model was validated in a

12
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good quality external validation study with lowkrisf bias showing a c-statistic of 0.71

(95%CI1 0.69-0.74) and reportedly good calibratidal{le 1).

Only a quarter of all published models (33/120426). were presented in full either offering
the regression formula, coefficients with interceptbaseline hazard. Seven models
presented nomograms or score charts (7/120, 5a8%)seven were adapted into online risk
prediction calculators (7/120, 5.8%). Of theseydhtee calculators were functional at the
time of writing this review(83-85). Overall, half the included studies (35/62, 56.5%),
reporting on 47 models (47/120, 39.2%), enableddhder to generate a personalised
prediction in a useful format. All the externallglated models offered an implementation
tool except the Cai model and the invalid Stolvmjkdels. But only two presented an online
calculator for use by health professionals andepégi(the Nelson and the McLernon

calculators) (Table 1).

Quality and risk of bias

Overall, a majority of the included studies werdigh risk of bias (56/69, 81.2%) and only
ten studies at low risk (10/69, 14.5%) (Figure dpdementary Table 3). Within the
‘participant’ domain, three-quarters of the incldd#udies were at low risk (50/69, 72.5%)
and nine at high risk (9/69, 13.0%). Similarly, kit the ‘outcome’ domain, the majority
were at low risk (66/69, 95.7%). In contrast, witkhe ‘predictor’ domain only half were at
low risk (32/69, 46.4%), with 36 studies of uncleiak due to providing inadequate
definitions, namely for candidate predictors (36/68.2%). For the ‘analysis’ domain, less
than a fifth were of low risk of bias (12/69, 17 X%alf (35/69, 50.7%) assessed model
performance appropriately, by discrimination andrdormative measure of calibration.

Only a quarter reported and handled missing dgteoppately (16/69, 23.2%); only 19

13
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studies (19/69, 27.5%) addressed overfitting artanmagm; only 48 had sufficient events per
candidate predictor@0 events (14)) (48/69, 69.6%), and only 38 paraned predictors

appropriately (38/69, 55.1%).

Discussion

Summary of main findings

Our findings depict an overall high investment ingucing working prediction models and
decision aids for clinicians and patients undergd\RT treatments with 120 models
produced over the last 24 years, an average ofdelm@roduced per year. However, while
huge resources and patient data were committecbttuping these models, only a minority

of these studies offered externally validated medeht could be used in everyday practice.

The majority of the included studies had a higk atbias, largely driven by poor model
development methodology specifically in data sangpénd analysis (Figure 4). Only a
minority of models were developed within large sizehorts (only 9 studies included
>10,000 women/cycles) and most were selected ARllations, thus reducing model’s
applicability in practice. In contrast, with mucrediction data available several clinical and
biochemical markers are now well established ashiel predictors of reproductive outcomes
(Figure 3a, 3b). Leveraging this large body of ewice could facilitate the process of
developing and validating future models to mininazglication of efforts. Logistic
regression modelling remains the commonest methioohddel development, though
alternative methodology is becoming popular sucaraficial intelligence aided techniques

(29,34,38,46,48,49,54,65,69,75,86).

Srengths and limitations

14
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The strengths of our review are several. In cohtmpreviously published reviews (7,8,11),
we used a prospectively registered protocol, agphecomprehensive search strategy,
extracted data in duplicate, assessed quality dicmpto PROBAST criteria, and included all
types of studies as per TRIPOD (both model devetyrand validation studies) to evaluate
models’ applicability into clinical practice. Comgeently, our findings offer a robust
assessment of the current state-of-the-art in ARR@iption modelling and the remaining
knowledge gap. To aid their adoption in practice,igentified top performing models
referencing their quantitative assessment markeliesyant population of interest and how

they can be accessed online (Table 1).

Our research was inclusive with almost double tnalver of studies included in the most
recent review (11) offering a more comprehensiwk systematic assessment of the
literature. A previous review by Ratna et al addpa arbitrary quality threshold of 80%
adherence to TRIPOD (19) in their inclusion craenihich could have limited the
generalizability of their findings. We refrainedin imposing any reporting thresholds and
assessed the methodological quality of all pubtisnedels to offer a comprehensive and

objective assessment of the literature.

Our findings still have some limitations. Severbthe studies reported vaguely on the
measures of calibration using terms like “goodhlralion” which limited our ability to
provide an objective assessment of these modeatthdfmore, given the lack of a universally
adopted definition of what constitutes good calibrafor ART models, it is difficult to
preferentially select top performing models. Chganhost subfertile couples have some
probability of conceiving independent of any treaiht) similarly the chance of conception in

healthy couples is never 100% in every cycle. Asrtethodological standards for model

15



343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

development improved over time, our contemporar@BRST assessment of risk of bias

might differ from older reviews and the findinge dherefore not completely reproducible.

Implications for clinical practice

Introducing prediction modelling into clinical ptase was aimed to tailor treatments to each
patient’s individual needs, thus maximising effeetiess and reducing personal harm (9).
Models can aid decision making on starting treatn(@n) or to adjust a treatment to the
patient characteristics (88). Whilst most treatraeme static (e.g., medication or surgery), the
process of undergoing IVF or ICSI treatments igtegeneous and dynamic, continuously
changing through a series of interconnected comgideisions made to optimise successful
conception. Coupled with the rapid progress in ARTE likely that most models will be
over-simplistic and become outdated. This applgg®eeially to pre-ART models which are
dependent on a limited range of predictors thahctadjust for initial treatment response
(e.g., ovulation stimulation and embryo fertilisat). Consequently, the clinical value of
available models is currently limited to counselipatients on the value of starting ART
treatment rather than tailoring those treatmentad&imize chances of conception. A
solution could lie in the development, validatiordacontinuous update of dynamic models
that could adjust for the within-treatment changes offer a refined estimate of successful

conception throughout the ART treatment procesk (89

The process of IVF/ICSI is emotionally and psyclgotally demanding with patients often
having to make difficult decisions such as the afsitozen embryos or consider add-on
therapies (90). Predicting the chances of conceptidgtself can be stressful (91) which could
limit the adoption of these models in practice.sish, developing any prediction models

should be guided by expressed patients’ needs §9#actice we did not observe in the

16



368 models included in this review. Future model depeient should take into account the

369 various decision-making processes involved in tRT Areatment process and the associated
370 predictors that could add cumulative informatiorat patients and their caring clinicians in
371 the decision-making process. Lastly, successfulehimapblementation into clinical practice
372  could be facilitated by improved interpretabili83) and user-friendly interfaces that enable
373 end users to input and access data effortlesg@rgon-free outputs such as online risk

374  calculators or decision aid tools hosted on mddgies (83—85).

375

376  Future research need

377  Our findings illustrate an abundance of data dedatéo predict ART outcomes, yet

378 translation into practice remains limited. As obility to collect and analysis large datasets
379 improves over time, perhaps future steps shouldsocore on harmonizing data collection
380 across institutions, regulators and countries ¢difate streamlined model development,

381 validation, and update while reducing associatetisc&rucially, there is a need to focus
382 available resources on combining data from pubtishedels (e.g., using individual patient
383 data meta-analysis methodology) and externallydasihg ensuing ones rather than on

384 developing newer models.

385

386 We captured a recent trend towards using artifioi@lligence (Al) technology in model

387 development (29,34,38,46,48,49,54,65,69,75,86) I&\thromising, most of these models did
388 not achieve improved prediction performance ndofeéd sound methodology compared to
389 older ones (94). Specifically, the work on manytase models seem to be driven by an
390 experimental approach evaluating the differenteshinologies rather than a multi-

391 disciplinary approach aiming to address real p#tiereeds. Still, leveraging the power of Al

392 technology and big data research methods to simthiatcomplex decision making process
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involved in ART treatments could be a game chahtgerovide accurate individualized
fertility assessment to couples in need (95). Langédti-national multi-disciplinary teams are

best equipped to address this complex and impaneadth problem.

Conclusions

We identified externally validated prediction magldlat could be used to advise couples
undergoing ART treatments on their reproductivecontes. The quality of available models
remains limited and more research is needed toaveptheir generalisability and

applicability in clinical practice.
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Figurelegends:

Figure (1): Study selection and inclusion process on prediatiodels for reproductive

outcomes following assisted reproductive technolmggtments.

Figure (2): TRIPOD classification of included studies reportorgprediction models for

reproductive outcomes following assisted reprogectechnology treatments

Figure (3): Predictors used in the development of predictionl@efor reproductive
outcomes following assisted reproductive technolwggtments.
3a: predictors in pre-ART treatment models

3b: predictors for intra-ART treatment models

Figure (4): Risk of bias assessment in included studies regpoin prediction models for

reproductive outcomes following assisted reprogectechnology treatments
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