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Capsule (30): 23 

We reviewed and evaluated 120 prediction models published over the last 24 years. We 24 

identified twelve externally validated models that could be used to advise couples undergoing 25 

fertility treatments.  26 

 27 
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Abstract (250): 29 

Objective: Predicting the outcomes of assisted reproductive technology (ART) treatments is 30 

desirable, but adopting prediction models into clinical practice remains limited. We aimed to 31 

review available prediction models for ART treatments by conducting a systematic review of 32 

the literature to identify the best performing models for their accuracy, generalisability and 33 

applicability. 34 

Evidence review: We searched electronic databases (MEDLINE, EMBASE, and 35 

CENTRAL) until June 2020. We included studies reporting on the development or evaluation 36 

of models predicting the reproductive outcomes before (pre-ART) or after starting (Intra-37 

ART) treatment in couples undergoing any ART treatment. We evaluated the models’ 38 

discrimination, calibration, type of validation, and any implementation tools for clinical 39 

practice. 40 

Results: We included 69 cohort studies reporting on 120 unique prediction models. Half the 41 

studies reported on pre-ART (48%) and half on intra-ART (56%) prediction models. The 42 

commonest predictors used were maternal age (90%), tubal factor subfertility (50%), and 43 

embryo quality (60%).  44 

Only fourteen models were externally-validated (14/120, 12%) including eight pre-ART 45 

models (Templeton, Nelson, LaMarca, McLernon, Arvis, and the Stolwijk A/I,C,II models), 46 

and five intra-ART models (Cai, Hunault, van Loendersloot, Meijerink, Stolwijk B, and the 47 

McLernon post-treatment model) with a reported c-statistics ranging from 0.50 to 0.78. Ten 48 

of these models provided implementation tools for clinical practice with only two reported 49 

online calculators.  50 

Conclusion: We identified externally validated prediction models that could be used to 51 

advise couples undergoing ART treatments on their reproductive outcomes. The quality of 52 
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available models remains limited and more research is needed to improve their 53 

generalizability and applicability into clinical practice.  54 

 55 

Keywords: infertility, prediction, assisted reproduction, systematic review. 56 

 57 

Highlights: 58 

- Over the last 24 years a high number of studies attempted to produce useful prediction 59 

models and decision aids for clinicians and patients undergoing ART. 60 

- In this review we evaluated 69 studies reporting on 120 unique prediction models, but 61 

only a minority of these models were externally validated or useful in clinical 62 

practice. 63 

- Most of these models suffered from a high risk of bias driven by poor model 64 

development, data sampling and analysis methodology. 65 

- More research is needed to leverage available data, refine published models, and 66 

increase their applicability in clinical practice using novel technology such as 67 

artificial intelligence and dynamic intra-treatment prediction modelling.   68 

 69 

  70 
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Introduction 71 

Assisted reproductive technology (ART) has evolved over the last 40 years offering hope to a 72 

record number of  infertile couples worldwide (1–3). Currently ART is the first port of call 73 

for many couples inclusive of those experiencing unexplained and reversible causes of 74 

subfertility such as mild male factor and unilateral tubal pathology. The birth rate with 75 

assisted conception increased steadily over the last few decades from an average of 9% in 76 

1991 to 23% in 2018 (4). This mass adoption of ART, however, sparked the debate on the 77 

ethical use of some ART treatments (5), their cost-effectiveness, and the risk of profiteering 78 

to certain patient groups (6). Accurate prediction of clinical outcomes and any mitigating risk 79 

factors could help to rationalize the use of ART treatments and improve their clinical 80 

effectiveness (7). While many prediction models have been produced to aid clinicians and 81 

couples in planning their fertility treatments, implementing those models remains limited in 82 

practice (8). 83 

  84 

To be used effectively, prediction models should undergo rigorous development, validation, 85 

and impact assessment (9,10). Unsurprisingly, few published models complete this process 86 

which limits their clinical value and increase research wastage (7,8,11). Advances in data 87 

gathering and statistical methodology using machine learning and artificial intelligence could 88 

help to streamline the development and validation process of prediction models, but such 89 

practice remains limited in reproductive medicine (12). 90 

 91 

Our aim was to systematically review and evaluate the performance, generalisability and 92 

applicability of published prediction models for ART treatments to identify the best 93 

performing models that could be used in clinical practice.  94 

 95 
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Methods 96 

We conducted this systematic review using a prospectively registered protocol 97 

(CRD42019156606) and reported the findings following standard guidelines (13). 98 

 99 

Search strategy and study selection 100 

We searched electronic databases (MEDLINE, EMBASE, and Cochrane CENTRAL) from 101 

inception until June 2020 for all studies reporting on the development or evaluation of any 102 

prediction model for the outcome of any ART treatments (in vitro fertilization (IVF) and/or 103 

intracytoplasmic sperm injection (ICSI)). We did not apply any search filters or language 104 

restrictions. Articles in non-English were translated if deemed relevant. We conducted 105 

supplementary searches in Google Scholar and Scopus for any additional articles of interest 106 

in the grey literature. We also searched the bibliographies of relevant articles to identify any 107 

missing citations.    108 

 109 

We included longitudinal studies that reported on the development or evaluation of any 110 

model for predicting clinical pregnancy (confirmed on ultrasound) or live birth following any 111 

ART treatments. We excluded studies reporting on the crude association between a single 112 

independent variable and the outcomes of interest, those reporting on non-predictive models, 113 

and those not reporting on the model performance measures. Models predicting non-114 

reproductive outcomes or solely predicting biochemical pregnancy were also excluded. 115 

Similarly, we excluded models that used solely embryological or seminal parameters to 116 

predict the outcomes of interest. Finally, we also excluded case series, conference abstracts 117 

and review articles.  118 

 119 

Assessment of study quality  120 
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We assessed the risk of bias and applicability of the included studies in duplicate using the 121 

PROBAST tool (14). Studies were assessed in four domains: population, predictors, outcome, 122 

and analysis. Studies were deemed low risk of bias if they were cohort studies, defined and 123 

measured predictors consistently and independently of the pre-specified outcome, included 124 

sufficient events per variable with appropriate parameterisation of predictors, included all 125 

participants in the analysis, treated missing data appropriately, did not include predictors 126 

based on univariable analyses, assessed the model’s discrimination and calibration 127 

appropriately, and accounted for model overfitting and optimism based on the use of an 128 

appropriate validation procedure and shrinkage of estimates in the presence of optimism 129 

which were evaluated in the context of events per variable, appropriate parameterisation and 130 

modelling strategy (14). We produced an overall assessment of  both the risk of bias and 131 

model applicability per study.  132 

 133 

Models performance, generalizability and applicability 134 

We evaluated models’ performance by their reported discrimination (the model’s ability to 135 

separate those with and without the outcome of interest) and calibration (the concordance 136 

between predicted and observed outcome frequency) measures (15). Discrimination is 137 

commonly described using the rank order statistic ‘area under the receiver operating 138 

characteristic curve’ (AUROC), which is equivalent to the concordance-statistic (c-statistic). 139 

We considered a c-statistic value of 0.5 to represent no discriminative ability, a value of 1 to 140 

represent perfect discriminative ability (15). Calibration is often assessed using the Hosmer-141 

Lemeshow statistic (16). A model is considered well-calibrated when the average predicted 142 

probability per sub-group matches the observed proportion. Calibration is more informatively 143 

assessed graphically by the calibration plot, where the predicted probability per ordered sub-144 

group is plotted against the observed proportion, demonstrating the nature and magnitude of 145 
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any miscalibration. An intercept of 0 and a slope of 1 therefore represents perfect calibration 146 

(17). 147 

 148 

To evaluate generalizability, we reported on the validation process for each model including 149 

the validation type, procedures, and characteristics of the validation population. We divided 150 

validation efforts into ‘internal’, ‘temporal’, or ‘external’ depending the type of validation 151 

population.  152 

  153 

To evaluate the models’ applicability and translation into clinical practice, we reported on 154 

efforts to increase the model’s accessibility to both health professionals and lay consumers, 155 

and the availability of any decision support tools including predicted probabilities based on 156 

patient profile, score-based decision aids, score-based nomograms, to end-user web-based 157 

predictive calculators. 158 

 159 

Data extraction 160 

Two independent reviewers (IH and MPR) extracted data onto a custom designed collection 161 

database guided by the CHARMS checklist (18) to identify relevant data points for extraction 162 

and reporting. We extracted data on the study design, outcome, sample size, population 163 

characteristics, model development methods, performance and validation statistics, and 164 

clinical application. We divided models into (pre-ART) where outcome prediction was 165 

possible prior to commencing ovarian stimulation, and (intra-ART) where outcome 166 

prediction was possible after commencing ovarian stimulation. We categorized the included 167 

studies as per the TRIPOD guidelines into: type 1a studies developing a model and evaluating 168 

its predictive performance using the same data (apparent performance), type 1b studies 169 

developing a prediction model using the entire dataset with resampling (e.g. bootstrapping or 170 
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cross-validation) techniques to evaluate the performance and optimise the developed model, 171 

type 2a studies with data randomly split to develop the model and then to evaluate its 172 

predictive performance, type 2b studies with data non-randomly split (e.g. by location or 173 

time) to develop the prediction model and then to evaluate its predictive performance, type 3 174 

studies developing a prediction model using one dataset and an evaluation of its performance 175 

on separate data (e.g. from a different population), and type 4 studies which are only 176 

evaluating the predictive performance of an existing prediction model in a separate dataset 177 

(19). 178 

 179 

Statistical analysis  180 

We summarised data using descriptive statistics and reported on continuous data using means 181 

or medians with standard deviations where relevant. For dichotomous data we reported using 182 

frequencies and natural percentages. All analyses and figures were produced using RStudio 183 

version 1.2.1335 (RStudio, Boston, MA) (20). 184 

 185 

Results 186 

Study characteristics 187 

Our search revealed 8052 potentially relevant unique citations; of these, we reviewed 483 in 188 

full and included 69 studies in our review reporting on the development of 120 ART 189 

prediction models (Figure 1). All included studies were cohort studies, 55 of which were 190 

retrospective (55/69, 79.7%) and 14 prospective (14/69, 20.3%). As per TRIPOD 191 

classification, 18 (18/69, 26.1%) of these studies were type 1a studies, 20 (20/69, 29.0%) 192 

were type 1b, 6 (6/69, 8.7%) were type 2a, 10 (10/69, 14.5%) were type 2b, 5 (5/69, 7.2%) 193 

were type 3, and 10 (10/69, 14.5%) type 4 (Figure 2). The majority were from Europe (49/69, 194 
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71.0%) with only eleven from Asia (11/69, 15.9%), and three from North America (3/69, 195 

4.3%). 196 

 197 

There were variations in the population characteristics across included studies. Nine studies 198 

(13.4%) included unselected couples (for age, cycle cancellation, maternal comorbidity, 199 

aetiology, and sperm source), seven included unselected couples but excluded women using 200 

donor gametes (10.4%), and twelve studies (17.9%) included couples with selected baseline 201 

characteristics (Supplementary Table 1). About half of the included studies explicitly 202 

excluded donor oocyte cycles (29/69, 42.0%), and a third explicitly excluded cancelled cycles 203 

(21/69, 30.4%), and a quarter explicitly excluded women outside a specific age range (18/69, 204 

26.1%). 205 

 206 

Most of the included studies reported on the development (with or without validation) of 207 

novel models (62/69, 89.9%), with the remainder uniquely reporting on the validation of pre-208 

existing models (7/69, 10.1%). Half of these studies (30/62, 48.3%) reported on pre-ART 209 

predictive models (21–47),  and 56% (35/62, 56.5%) reported on intra-ART (48–78). Only 210 

three studies (3/62, 4.8%) reported on both pre and intra-ART predictive models (79–81).  211 

Three quarters of these developmental studies (47/62, 75.8%) involved IVF/ICSI treatments, 212 

twelve IVF treatment only (12/62, 19.4%), and two ICSI treatment only (2/62, 3.2%), with 1 213 

unspecified by the authors. Two-thirds included only cycles using a fresh embryo transfer 214 

(41/62, 66.1%), while both fresh and frozen embryo cycles were included in 21 studies 215 

(21/62, 33.9%). 216 

  217 

Predictors and outcomes 218 
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For studies that developed pre-ART models, the commonest included predictor was maternal 219 

age (27/30, 90.0%) followed by tubal factor subfertility (15/30, 50.0%), gravidity (13/30, 220 

43.3%), and the duration of subfertility (12/30, 40.0%) (Figure 3a). A similar trend was seen 221 

for intra-ART models as the commonest included predictor was also maternal age (33/35, 222 

94.3%), followed by embryo quality (21/35, 60.0%), previous ART success (16/35, 45.7%), 223 

duration of subfertility (12/35, 34.3%), and tubal factor subfertility (10/35, 28.6%) (Figure 224 

3b). 225 

 226 

Live birth was the outcome of interest across all studies, for those that developed both pre-227 

ART (20/30, 66.7%) and intra-ART (18/35, 51.4%) models. A quarter of studies that 228 

developed intra-ART models focused on clinical pregnancy (10/35, 28.6%) and ongoing 229 

pregnancy (8/35, 22.9%) which were less frequently reported in pre-ART models (clinical 230 

pregnancy (5/30, 16.7%), ongoing pregnancy (5/30, 16.7%)). 231 

 232 

Sample size and modelling method  233 

The median sample size for developing pre-ART models was 757 for participants (range 85-234 

113,873) and 1,061 for ART cycles (range 113-443,202). For intra-ART models, the median 235 

participant sample size was 1,419 (range 90-113,873) and median ART cycles was 1,676 236 

(range 110-184,269). Most studies (48/69, 69.6%) had ≥10 events per candidate variable 237 

(degrees of freedom). The majority of studies developed models using logistic regression 238 

(pre-ART (24/30, 80.0%), intra-ART (30/35, 85.7%)). Only a minority used other methods, 239 

including generalized estimating equations, Bayesian networks, Cox regression, machine 240 

learning techniques and deep learning techniques (Supplementary Table 2). 241 

 242 

Performance, generalizability and applicability 243 
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Discrimination was reported for most of the included studies (109/120, 90.8%) while 244 

calibration was reported for over half (72/120, 60.0%). Both discrimination and calibration 245 

were reported in only 61 studies (61/120, 50.8%). The commonest methods to assess 246 

calibration were the Hosmer-Lemeshow statistic (27/72, 37.5%), calibration plot (24/72, 247 

33.3%), slope test (14/72, 19.4%), and calibration-in-the-large (11/72, 15.3%). 248 

 249 

We captured 31 unvalidated models from type 1a studies without subsequent validation 250 

(31/120, 25.8%), as well as six models that were locally refit from validation studies (6/120, 251 

5.0%). Fifty-five models were internally-validated from 1b/2a studies without subsequent 252 

validation (55/120, 45.8%), 15 were temporally-validated models from 2b studies without 253 

subsequent validation (15/120, 12.5%). There were seven external validation studies (7/120, 254 

5.8%). Four were type 4 studies by a team that overlapped with the model development team 255 

(4/120, 3.3%)(35,80,82),(22,23,79), and three studies were performed by independent 256 

validation teams (30,37,57) 257 

We captured eight externally validated pre-ART models: the Templeton model (n=6 258 

validations), Nelson model (n=3), LaMarca model (n=1), McLernon pre-treatment model 259 

(n=1), Arvis model (n=1), and The Stolwijk models A/I, C, and II (n=7). All models showed 260 

similar performance with c-statistics ranging from 0.53 to 0.78. The Stolwijk models A/I and 261 

II were declared invalid (Table 1).  262 

 263 

Among the intra-ART models, only five were externally validated: the Cai model (n=1), 264 

Hunault model (n=1), van Loendersloot model (n=1), Meijerink model (n=1), and the 265 

McLernon post-treatment model (n=1). All models showed similar performance with c-266 

statistics ranging from 0.63 to 0.78. However, only the McLernon model was validated in a 267 

Jo
urn

al 
Pre-

pro
of



13 

 

good quality external validation study with low risk of bias showing a c-statistic of 0.71 268 

(95%CI 0.69-0.74) and reportedly good calibration (Table 1). 269 

 270 

Only a quarter of all published models (33/120, 25.4%) were presented in full either offering 271 

the regression formula, coefficients with intercept, or baseline hazard. Seven models 272 

presented nomograms or score charts (7/120, 5.8%), and seven were adapted into online risk 273 

prediction calculators (7/120, 5.8%). Of these, only three calculators were functional at the 274 

time of writing this review(83–85). Overall, half of the included studies (35/62, 56.5%), 275 

reporting on 47 models (47/120, 39.2%), enabled the reader to generate a personalised 276 

prediction in a useful format. All the externally validated models offered an implementation 277 

tool except the Cai model and the invalid Stolwijk models. But only two presented an online 278 

calculator for use by health professionals and patients (the Nelson and the McLernon 279 

calculators) (Table 1). 280 

 281 

Quality and risk of bias 282 

Overall, a majority of the included studies were at high risk of bias (56/69, 81.2%) and only 283 

ten studies at low risk (10/69, 14.5%) (Figure 4, Supplementary Table 3). Within the 284 

‘participant’ domain, three-quarters of the included studies were at low risk (50/69, 72.5%) 285 

and nine at high risk (9/69, 13.0%). Similarly, within the ‘outcome’ domain, the majority 286 

were at low risk (66/69, 95.7%). In contrast, within the ‘predictor’ domain only half were at 287 

low risk (32/69, 46.4%), with 36 studies of unclear risk due to providing inadequate 288 

definitions, namely for candidate predictors (36/69, 52.2%). For the ‘analysis’ domain, less 289 

than a fifth were of low risk of bias (12/69, 17.4%). Half (35/69, 50.7%) assessed model 290 

performance appropriately, by discrimination and an informative measure of calibration. 291 

Only a quarter reported and handled missing data appropriately (16/69, 23.2%); only 19 292 
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studies (19/69, 27.5%) addressed overfitting and optimism; only 48 had sufficient events per 293 

candidate predictor (≥20 events (14)) (48/69, 69.6%), and only 38 parameterized predictors 294 

appropriately (38/69, 55.1%). 295 

 296 

Discussion 297 

Summary of main findings 298 

Our findings depict an overall high investment in producing working prediction models and 299 

decision aids for clinicians and patients undergoing ART treatments with 120 models 300 

produced over the last 24 years, an average of 5 models produced per year. However, while 301 

huge resources and patient data were committed to producing these models, only a minority 302 

of these studies offered externally validated models that could be used in everyday practice.  303 

 304 

The majority of the included studies had a high risk of bias, largely driven by poor model 305 

development methodology specifically in data sampling and analysis (Figure 4). Only a 306 

minority of models were developed within large sizes cohorts (only 9 studies included 307 

>10,000 women/cycles) and most were selected ART populations, thus reducing model’s 308 

applicability in practice. In contrast, with much prediction data available several clinical and 309 

biochemical markers are now well established as reliable predictors of reproductive outcomes 310 

(Figure 3a, 3b). Leveraging this large body of evidence could facilitate the process of 311 

developing and validating future models to minimize duplication of efforts. Logistic 312 

regression modelling remains the commonest method for model development, though 313 

alternative methodology is becoming popular such as artificial intelligence aided techniques 314 

(29,34,38,46,48,49,54,65,69,75,86).  315 

 316 

Strengths and limitations 317 

Jo
urn

al 
Pre-

pro
of



15 

 

The strengths of our review are several. In contrast to previously published reviews (7,8,11), 318 

we used a prospectively registered protocol, applied  a comprehensive search strategy, 319 

extracted data in duplicate, assessed quality according to PROBAST criteria, and included all 320 

types of studies as per TRIPOD (both model development and validation studies) to evaluate 321 

models’ applicability into clinical practice. Consequently, our findings offer a robust 322 

assessment of the current state-of-the-art in ART prediction modelling and the remaining 323 

knowledge gap. To aid their adoption in practice, we identified top performing models 324 

referencing their quantitative assessment markers, relevant population of interest and how 325 

they can be accessed online (Table 1).  326 

 327 

Our research was inclusive with almost double the number of studies included in the most 328 

recent review (11) offering a more comprehensive and systematic assessment of the 329 

literature. A previous review by Ratna et al adopted an arbitrary quality threshold of 80% 330 

adherence to TRIPOD (19) in their inclusion criteria which could have limited the 331 

generalizability of their findings. We refrained from imposing any reporting thresholds and 332 

assessed the methodological quality of all published models to offer a comprehensive and 333 

objective assessment of the literature.   334 

 335 

Our findings still have some limitations. Several of the studies reported vaguely on the 336 

measures of calibration using terms like “good calibration” which limited our ability to 337 

provide an objective assessment of these models. Furthermore, given the lack of a universally 338 

adopted definition of what constitutes good calibration for ART models, it is difficult to 339 

preferentially select top performing models. Clearly, most subfertile couples have some 340 

probability of conceiving independent of any treatment, similarly the chance of conception in 341 

healthy couples is never 100% in every cycle. As the methodological standards for model 342 
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development improved over time, our contemporary PROBAST assessment of risk of bias 343 

might differ from older reviews and the findings are therefore not completely reproducible.  344 

 345 

Implications for clinical practice 346 

Introducing prediction modelling into clinical practice was aimed to tailor treatments to each 347 

patient’s individual needs, thus maximising effectiveness and reducing personal harm (9). 348 

Models can aid decision making on starting treatment (87) or to adjust a treatment to the 349 

patient characteristics (88). Whilst most treatments are static (e.g., medication or surgery), the 350 

process of undergoing IVF or ICSI treatments is heterogeneous and dynamic, continuously 351 

changing through a series of interconnected complex decisions made to optimise successful 352 

conception. Coupled with the rapid progress in ART, it is likely that most models will be 353 

over-simplistic and become outdated. This applies especially to pre-ART models which are 354 

dependent on a limited range of predictors that cannot adjust for initial treatment response 355 

(e.g., ovulation stimulation and embryo fertilisation). Consequently, the clinical value of 356 

available models is currently limited to counselling patients on the value of starting ART 357 

treatment rather than tailoring those treatments to maximize chances of conception. A 358 

solution could lie in the development, validation and continuous update of dynamic models 359 

that could adjust for the within-treatment changes and offer a refined estimate of successful 360 

conception throughout the ART treatment process (89). 361 

 362 

The process of IVF/ICSI is emotionally and psychologically demanding with patients often 363 

having to make difficult decisions such as the use of frozen embryos or consider add-on 364 

therapies (90). Predicting the chances of conception in itself can be stressful (91) which could 365 

limit the adoption of these models in practice. As such, developing any prediction models 366 

should be guided by expressed patients’ needs (92), a practice we did not observe in the 367 
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models included in this review. Future model development should take into account the 368 

various decision-making processes involved in the ART treatment process and the associated 369 

predictors that could add cumulative information to aid patients and their caring clinicians in 370 

the decision-making process. Lastly, successful model implementation into clinical practice 371 

could be facilitated by improved interpretability (93) and user-friendly interfaces that enable 372 

end users to input and access data effortlessly in jargon-free outputs such as online risk 373 

calculators or decision aid tools hosted on mobile apps (83–85). 374 

 375 

Future research need 376 

Our findings illustrate an abundance of data dedicated to predict ART outcomes, yet 377 

translation into practice remains limited. As our ability to collect and analysis large datasets 378 

improves over time, perhaps future steps should focus more on harmonizing data collection 379 

across institutions, regulators and countries to facilitate streamlined model development, 380 

validation, and update while reducing associated costs. Crucially, there is a need to focus 381 

available resources on combining data from published models (e.g., using individual patient 382 

data meta-analysis methodology) and externally validating ensuing ones rather than on 383 

developing newer models.   384 

 385 

We captured a recent trend towards using artificial intelligence (AI) technology in model 386 

development (29,34,38,46,48,49,54,65,69,75,86). While promising, most of these models did 387 

not achieve improved prediction performance nor followed sound methodology compared to 388 

older ones (94). Specifically, the work on many of these models seem to be driven by an 389 

experimental approach evaluating the different AI technologies rather than a multi-390 

disciplinary approach aiming to address real patients’ needs. Still, leveraging the power of AI 391 

technology and big data research methods to simulate the complex decision making process 392 
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involved in ART treatments could be a game changer to provide accurate individualized 393 

fertility assessment to couples in need (95). Large multi-national multi-disciplinary teams are 394 

best equipped to address this complex and important health problem.  395 

 396 

Conclusions 397 

We identified externally validated prediction models that could be used to advise couples 398 

undergoing ART treatments on their reproductive outcomes. The quality of available models 399 

remains limited and more research is needed to improve their generalisability and 400 

applicability in clinical practice. 401 
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Figure legends: 699 

 700 

Figure (1): Study selection and inclusion process on prediction models for reproductive 701 

outcomes following assisted reproductive technology treatments. 702 

 703 

Figure (2): TRIPOD classification of included studies reporting on prediction models for 704 

reproductive outcomes following assisted reproductive technology treatments 705 

 706 

Figure (3): Predictors used in the development of prediction models for reproductive 707 

outcomes following assisted reproductive technology treatments. 708 

3a: predictors in pre-ART treatment models 709 

3b: predictors for intra-ART treatment models 710 

 711 

Figure (4): Risk of bias assessment in included studies reporting on prediction models for 712 

reproductive outcomes following assisted reproductive technology treatments 713 
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