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Acceptance of mixed gambles is sensitive to the range of gains and losses experienced, and 

estimates of lambda (λ) are not a reliable measure of loss aversion: Reply to André and De Langhe 

(2020) 
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Abstract 

Walasek and Stewart (2015) demonstrated that loss aversion estimated from fitting accept-reject 

choice data from a set of 50/50 gambles can be made to disappear or even reverse by manipulating 

the range of gains and losses experienced in different conditions. André and de Langhe (2020) 

critique this conclusion because in estimating loss aversion on different choice sets, Walasek and 

Stewart (2015) have violated measurement invariance. They show, and we agree, that when loss 

aversion is estimated on the choices common to all conditions there is no difference in prospect 

theory’s λ parameter. But there are two problems here. First, while there are no differences in λs 

across conditions, there are very large differences in the proportion of the common gambles that are 

accepted, which André and de Langhe chose not to report. These choice proportion differences are 

consistent with decision by sampling (but are inconsistent with prospect theory or any of the 

alternative mechanisms proposed by André and de Langhe, 2020). Second, we demonstrate a much 

more general issue related to the issue of measurement invariance: that λ estimated from the 

accept-reject choices is extremely unreliable and does not generalise even across random splits 

within large, balanced choice sets. It is therefore not possible to determine whether differences in 

choice proportions are due to loss aversion or to a bias in accepting or rejecting mixed gambles. We 

conclude that context has large effects on the acceptance of mixed gambles and that it is futile to 

estimate λ from accept-reject choices.  

Keywords: Loss aversion, decision by sampling, prospect theory, modelling, accept-reject task 
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In the accept-reject task, people are presented 50/50 gambles offering a monetary gain and a loss 

and asked whether they accept or reject the opportunity to play. For example, consider a 50/50 

chance to win $20 or lose $10. If people reject this gamble we say that they are loss averse, because 

the $10 loss is looming larger than the $20 gain. Walasek and Stewart (2015) manipulated the ranges 

of gains and losses in the choice set and showed that loss aversion, as measured by prospect 

theory’s λ parameter, disappears or reverses in a way predicted in advance by decision by sampling 

theory (DbS, Stewart, Chater, & Brown, 2006). André and de Langhe (2020) present a critique of this 

result. The focal claim made by André and de Langhe is that Walasek and Stewart (2015) violated 

measurement invariance by estimating loss aversion on different gambles in different conditions.  

We agree that the approach taken in Walasek and Stewart (2015) of comparing estimates of λ 

across conditions was problematic because λ was estimated on different choices in different 

conditions. However, in this two-part reply, we show that a model-free analysis using simple accept 

proportions on a common set of gambles shows strong context sensitivity, one that is entirely 

consistent with the predictions of DbS. We also draw on our own recent work to show that the 

accept-reject method is not suitable for determining whether shifts in acceptance rates are due to 

loss aversion (λ) or a bias to accept or reject mixed gambles, irrespective of the gains and losses on 

offer. In the second part of this reply, we expand on this issue and show that results of the André 

and de Langhe’s simulations are a special case of a much more general, and worrying, issue. More 

specifically, we argue that the issue is not about the experimental design in Walasek and Stewart 

(2015), as André and de Langhe claim, but with the parameter estimation procedure. This issue 

affects all research which relies on estimating parameters for, for example, risk aversion, loss 

aversion and probability weighting from choice behaviour. 

A model-free analysis of choice proportions 

André and de Langhe reanalysed data from Walasek and Stewart (2015) focusing on gambles 

that were shared between the conditions (i.e. common gambles), thus avoiding violations of 



4 
 

measurement invariance. They found that λ did not differ between the conditions when estimated 

on the common choices and therefore concluded that the Walasek and Stewart (2015) experiments 

“should not be taken as evidence that loss aversion can disappear and reverse” (COPY EDITOR 

PLEASE INSERT PAGE NUMBER FROM IN-PRESS PROOF WHEN AVAILABLE). 

Here we present a model-free analysis on those same common gambles which leads to a 

rather different conclusion. We measure the effect of our range manipulation by simply counting the 

proportion of accept choices for the gambles that are common across experimental conditions 

(which is equivalent to the area under the indifference curve method from Walasek & Stewart, 2019, 

2020; see also Pachur & Kellen, 2013 for other operationalizations). For now we also note that this 

could be taken as an alternative measure of loss aversion if not for the fact that acceptance rates 

may also reflect status quo bias (Gal, 2006). We return to this issue shortly. 

Walasek and Stewart (2015) varied the ranges from which gains and losses were drawn across 

conditions. In DbS, the subjective magnitude of a gain is derived from a series of comparisons with 

other recently experienced gains, and the subjective magnitude of a loss is derived from a series of 

comparisons with other recently experienced losses. The intuition as to how a range manipulation 

should influence acceptance rates is as follows. Consider an accept/reject decision for a 50/50 

gamble offering either a loss of £10 or a gain of £10. A gain of £10 seems larger when the range of 

gains experienced runs from £0-£20, where it is larger than half of the gains people experience, than 

£0-£40, where it is larger than only one quarter of the gains people experience. Similarly, a loss of 

£10 seems larger (i.e., a bigger loss) when the range of losses experienced is £0-£20 rather than £0-

£40. The left panel of Figure 1 shows the predictions of DbS. In the symmetrical low maximum gain 

low maximum loss condition (e.g., where both losses and gains range from £0-£20) the £10 gain and 

£10 loss will have similar subjective values and people will be indifferent between accepting and 

rejecting this gamble. In the symmetrical high maximum gain high maximum loss condition (e.g., 

where both losses and gains range from £0-£40), people will also be indifferent by the same logic. 

But in the asymmetric conditions, where the maximum gain is high (£40) and the maximum loss is 



5 
 

low (i.e., £20), the £10 loss will have a larger subjective magnitude than the £10 gain, and people will 

be rejecting the gamble. Finally, in the condition where the maximum gain is low (£20) and the 

maximum loss is high (£40) the £10 loss will have a smaller subjective magnitude than the £10 gain, 

and people will accept the gamble.  

 

 

Figure 1. Leftmost panel: Decision by sampling predictions about accept proportions as a function of 

maximum gain and maximum loss in the choice set. Remaining panels: Accept proportions in all four 

experiments reported by Walasek and Stewart (2015). Code to reproduce this figure is available at 

https://github.com/neil-stewart/loss_aversion_common_gambles 

 

André and de Langhe have calculated these choice proportions during the peer review process 

but chose not to describe this pattern and mention only that prospect theory’s λ, when estimated on 

the common choices, does not differ between conditions. However, we think that the large 

https://github.com/neil-stewart/loss_aversion_common_gambles
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differences in choice proportions are important because they are consistent with DbS (which makes 

direct predictions about choice proportions). Furthermore, the choice proportion pattern is not 

consistent with the three alternative mechanisms that André and de Langhe propose (because only 

in DbS is subjective value a function of other gains and losses in the task).  

The limitation of using choice proportions is that people’s willingness to accept mixed lotteries 

cannot be attributed to loss aversion alone. One could argue that the differences described above 

are a product of variation in a bias to accept or reject mixed lotteries – general tendency to reject 

lotteries without asymmetric weighting of gains and losses. For example, one cannot tell whether 

the tendency to reject a 50/50 chance to win $20 or lose $10 is because the loss of $10 looms large 

because of loss aversion or is because of a bias to rejects all mixed gambles, irrespective of the exact 

gain and loss on offer. Parenthetically, we do not think the effect should be dismissed as a status 

quo bias, where people prefer the status quo of not playing the gamble. Although it is an empirical 

question, we think people would still be averse to playing these mixed gambles even if they are 

presented as an active choice between the gamble or zero, rather than as an acceptance of the 

gamble. Further, we do not think the effect should be dismissed because it could be a bias rather 

than loss aversion. What is required is a model to explain why the acceptance rates for these 

gambles are so strongly affected by the range of gains and losses on offer. Only a model where the 

wider experience of gains and losses affects the decision to accept the gain/loss pair in a specific 

question, such as DbS, can do this.  

In the second part of this reply, we summarize our recent work showing how bias and loss 

aversion cannot be reliably estimated using responses on the accept-reject task1. 

 

 
1 In personal communication, André and de Langhe propose that loss aversion and status quo bias can be 
separated in a model-free analysis, by comparing the rate with which aggregate rejection rates increase for 
common gambles as the amounts of money at stake increase. They show that these rates are not different 
between the conditions in experiments of Walasek and Stewart (2015), which goes against the argument that 
range manipulations influence loss aversion. The issue of differentiating status quo (or bias) and loss aversion 
in the accept-reject task is the focus of the rest of our reply.  
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Estimates of λ 

In the second part of our reply we consider loss aversion as operationalised by prospect 

theory’s λ. Walasek and Stewart (2015) estimated λ could drop to 1 (meaning loss aversion had 

disappeared) or below 1 (a reversal of loss aversion). However, André and de Langhe (2020) show 

that when λ is estimated using only the gambles that appeared in all conditions, to avoid violating 

measurement invariance, there are no significant changes in λ across conditions. How can we see no 

difference in λ on the common gambles but see such a large difference in the probability of 

accepting the common gambles?  

This null result can be attributed to the poor recoverability of the λ parameter. Simulation and 

recovery analyses have shown that this is the least reliable parameter within prospect theory 

(Broomell & Bhatia, 2014). In our own work (Walasek & Stewart, 2020), we performed a parameter 

recoverability exercise for the accept-reject task. We found that the bias parameter governing the 

overall tendency to reject/accept gambles and the λ parameter are highly correlated. As a result, 

both parameters suffer from poor recoverability, which led us to the conclusion that “you cannot 

accurately estimate an individual’s loss aversion using an accept-reject task” (title). Poor 

recoverability is likely to be exacerbated by choice sets that are less varied or contain fewer unique 

gambles, both of which are properties of fitting models only using the common gambles.  

We also share André and de Langhe’s concerns about comparing λ estimates across different 

choice sets. Here we show that André and de Langhe’s measurement invariance critique of λ 

estimates is a special case of a much more serious model recovery problem. Stewart, Canic, and 

Mullett (2020) (see also Walasek & Stewart, 2020) show how fitting an incorrect model (so one from 

which the data systematically depart) leads to an omitted variable bias, and further, that this bias is 

different in choice sets spanning different parts of choice space. Stewart et al. (2020) show it is futile 

to estimate risk aversion from choices, because the risk aversion parameter estimate does not 

generalise even between random splits of a large and balanced choice set. Of course, all models are 
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“wrong” to some degree as no model captures all variance in the world or perfectly predicts 100% of 

choices. But here we show that the magnitude of the bias introduced is so large—the same order of 

magnitude of as the differences between individuals—as to render prospect theory parameter 

estimation (including λ) very troublesome.   

We take the same approach as Stewart et al. (2020) fitting a version of the cumulative 

prospect theory (CPT) to different random subsets of the large risky choice dataset reported in 

Glöckner and Pachur (2012). From these fits, we ranked individual participants according to the 

magnitude of their estimated λ based on a first, randomly selected, half of choices. We then 

estimated λ for the same individuals on the second half of choices to assess whether their rank 

would change.  

The results are shown in Figure 2. Each panel represents individuals whose λ from the first 

subset fit corresponds to the 5th, 25th, 50th, 75th and 95th percentile individuals. The middle panel 

shows what happens when you take individuals with the median λ in the first subset of the data and 

plot the distribution of rank positions (in orange) of their λ as estimated on a second subset of the 

data. We can see here clearly that the rank positions are extremely noisy—on some occasions the 

estimate for the same person now ranks that person as one of the least loss averse individuals, on 

another occasion the same person is among the most loss averse individuals. The same story holds 

true for all panels, revealing that estimates of λ are extremely unreliable. Why does this happen? 

Stewart et al. (2020) show that the differences between the statistical properties of the choice set, 

which occur even when choices are drawn from the same choice population, are such that 

behavioural departures from prospect theory cause considerable bias in the estimation of prospect 

theory parameters.  Crucially, this bias varies considerably with the summary statistics of the 

gambles on offer and is large when compared to individual differences in parameters.  

The failure of λ to generalize across even random splits of the choice set is not due simply to 

the stochasticity of responses. The green distribution (Figure 2) shows the lack of generalisation that 
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we would expect as latent choice probabilities are resolved into Bernoulli accept/reject decisions 

(see Stewart et al., 2020, for more details). Although generalisation is not great because of 

stochasticity (thus we replicate earlier studies showing poor reliability of the λ parameter), it is the 

change of choice set that roundly kills generalisation.  

 

Figure 2. Rank positions of recovered λ. Each panel corresponds to the rank position of λ from the 

initial model fit on subset of data (5th, 25th, 50th, 75th, and 95th). The “Stochasticity and 

Generalisation” histograms show how people who all ranked the same in the initial set have very 

different ranks in second subset. There is no relation between participants’ rank λ in the first and 

second sets of choices. The “Stochasticity alone” histogram shows what we would expect from noise 

as choices are resolved by a Bernoulli process. 

Thus, the argument made by Stewart et al. (2020), about the futility of estimating risk 

aversion, applies to loss aversion as well. The conclusion here is that it is futile to estimate λ from 

risky choice data. This is a profoundly worrying conclusion.  
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André and de Langhe attribute the problem in Walasek and Stewart (2015) to the fact that 

one should not generalise about parameter values estimated from different stimuli sets. Here we 

show that it is indeed true that parameter values do not generalise across choice sets. But if 

parameter estimates are completely local as André and de Langhe argue, and we cannot generalise 

the parameter even across random splits of a choice set, then we must ask: What is the point of the 

parameter? 

The insight here also explains why André and de Langhe were able to make loss aversion to 

disappear and reverse in their simulation of three models. What all these models had in common 

was that they incorporated some departure from prospect theory. Thus, the data generated from 

these models created an omitted variable problem for the version of prospect theory being used to 

recover λ, which had differential effects in choice sets with different ranges of gains and losses. 

Conclusion 

We agree with André and de Langhe that it is not appropriate to estimate prospect theory’s λ 

from different choice sets. Here we show a much more general problem: λ does not generalise 

across even random splits of a choice set. Thus, Walasek and Stewart’s error was in assuming that 

the λ parameter could be used to abstract something of an individual’s differential sensitivity to 

gains and losses from different choice sets—it cannot. Since the publication of the 2015 paper, 

Walasek and Stewart have made this point very clear in two publications (Walasek & Stewart, 2019, 

2020). In this response, we extend André and de Langhe’s critique from just Walasek and Stewart 

(2015) to all empirical work where parameter estimates are compared across different choice sets.  

We have demonstrated a large and reliable effect of range manipulation on the people’s 

willingness to accept or reject mixed gambles. There are very large differences in acceptance rates 

for the gambles that are common between different conditions in the design used by Walasek and 

Stewart (2015). It would be misleading to omit to report this result and focus only on the null result 
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for λ, because this result clearly implicates the role of the wider experience of gains and losses in 

accept/reject decisions for specific mixed gambles.  

In sum, the tendency to reject 50-50 mixed gambles can be made to disappear or reverse. This 

was predicted in advance by decision by sampling but not prospect theory. It is now less clear how 

this tendency should be decomposed into loss aversion and a bias towards rejecting mixed gambles. 

These individual mechanisms cannot be separately or reliably estimated from people’s choices in the 

accept-reject task (Walasek & Stewart, 2020). 
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