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The pathophysiology of bile acid 
diarrhoea: differences in the colonic 
microbiome, metabolome and bile 
acids
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Bile acid diarrhoea (BAD) is a common disorder resulting from increased loss of bile acids (BAs), 
overlapping irritable bowel syndrome with diarrhoea (IBS-D). The gut microbiota metabolises primary 
BAs to secondary BAs, with differing impacts on metabolism and homeostasis. The aim of this study 
was to profile the microbiome, metabolic products and bile acids in BAD. Patients with BAD diagnosed 
by SeHCAT testing, were compared with other IBS-D patients, and healthy controls. Faecal 16S 
ribosomal RNA gene analysis was undertaken. Faecal short chain fatty acid (SCFA) and urinary volatile 
organic compounds (VOCs) were measured. BAs were quantified in serum and faeces. Faecal bacterial 
diversity was significantly reduced in patients with BAD. Several taxa were enriched compared to 
IBS-D. SCFA amounts differed in BAD, controls and IBS-D, with significantly more propionate in 
BAD. Separation of VOC profiles was evident, but the greatest discrimination was between IBS-D 
and controls. Unconjugated and primary BA in serum and faeces were significantly higher in BAD. 
The faecal percentage primary BA was inversely related to SeHCAT. BAD produces dysbiosis, with 
metabolite differences, including VOC, SCFA and primary BAs when compared to IBS-D. These findings 
provide new mechanistic insights into the pathophysiology of BAD.

Bile acid diarrhoea (BAD) is a commonly missed cause of chronic diarrhoea and has been demonstrated in 
excess of a quarter of patients who were previously diagnosed with IBS-D1,2. Functional bowel disorders such as 
IBS form the largest group of patients seen in a general gastroenterology clinic, but clinicians often neglect the 
opportunity to diagnose BAD. The established gold standard diagnostic tests for BAD, faecal bile acid measure-
ments, 75SeHCAT scan or serum 7α-hydroxy-4-cholesten-3-one (C4), are limited in their  availability3.

BAD may be due to malabsorption or overproduction of BAs. The ileal hormone fibroblast growth factor 
19 (FGF19) regulates hepatic BA synthesis and is low in  BAD4. Bile acids undergo an enterohepatic circulation. 
Less than 5% of the glycine- and taurine-conjugated primary BAs, cholic acid (CA) and chenodeoxycholic acid 
(CDCA), escape active absorption in the terminal  ileum5. Unabsorbed primary BAs can undergo biotransforma-
tion by the microbiota in the colon, to form the secondary BAs, deoxycholic acid (DCA), lithocholic acid (LCA) 
and ursodeoxycholic acid (UDCA). These are partially absorbed passively in the colon, or excreted in the  faeces5. 
Biotransformation enzymatic reactions comprise, first, deconjugation, via bile salt hydrolase (BSH), which cataly-
ses the hydrolysis of glycine or taurine from the C24 N-acyl amide bond of conjugated  BAs6. Epimerization, 
oxidation, dehydroxylation and hydroxylation by hydroxysteroid dehydrogenase (HSDHs) enzymes can then 
occur. 7α-dehydroxylation of primary BAs, forming secondary BAs, is the most quantitatively important and 
complex microbial bile salt  transformation5–8.
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BA act as signalling molecules through activation of receptors: farnesoid X receptor (FXR) is most potently 
stimulated by CDCA, and the secondary BAs stimulate TGR5 (also known as G-protein-coupled BA receptor 
1, GPBAR-1). BA regulate intestinal homeostasis by inhibiting inflammation, preventing pathogen invasion 
and maintaining cell integrity, and furthermore stimulate production of hormones including FGF19, GLP-1 
and  PYY5.

Increased colonic exposure to BAs influences stool volume, colonic transit time and bowel  habit5. The dihy-
droxy-BAs, DCA and CDCA, stimulate water  secretion9 and CDCA accelerates colonic transit, increases stool 
frequency and decreases stool consistency. Increased faecal primary BAs have been demonstrated in IBS-D and 
have been suggested as a diagnostic biomarker for  BAD10–13.

Data on the faecal or colonic microbial composition in IBS subjects are inconsistent and sometimes 
 contradictory14–18. Only recently have studies including IBS-D patients taken into account the possibility that 
some will have  BAD19,20. Dysbiosis occurs when imbalances in gut bacteria precipitate disease and has been 
linked to the changes in metabolism of BAs in the  gut21. Evidence suggests that dysbiosis may be secondary to a 
reduction in bacteria bearing BSH  activity8,22.

Volatile organic compounds (VOCs) are the resultant gas by-products of colonic fermentation by gut bacteria, 
which derive energy through oxidation of organic compounds. Changes in VOC, measured in breath, faeces 
or urine, indirectly reflect changes of the metabolome. A reduction in the number of faecal VOCs in certain 
diarrhoeal conditions has been observed, suggesting reduced overall biodiversity of the gut flora and decreased 
synthesis of compounds, perhaps due to more rapid intestinal  transit23. We expect patients with IBS-D and 
BAD to exhibit altered VOC profiles compared to healthy controls (HCs)24, reflecting underlying dysbiosis with 
altered metabolic output. Furthermore, rapid intestinal transit could reduce the time for bacteria to metabolise 
and absorb nutrients and their products, in particular, the short-chain fatty acids (SCFAs). The three primary 
SCFAs produced by the microbiome are acetate, propionate and butyrate and are integral to health, including 
providing 5–10% of human basal energy  requirements25,26.

The objective of this study was to define mechanisms associated with the pathophysiology of BAD, through 
characterisation of the colonic microbiome, SCFA, VOC metabolites, and quantification of serum and faecal BAs.

Results
In this exploratory mechanistic study, 156 subjects participated, including 62 with BAD, 55 with IBS-D and 39 
healthy controls (HC). Different subsets of patients were involved in the various parts of the study; the demo-
graphic and clinical characteristics are outlined in Supplemental Table 1.

Microbiome. 668 operational taxonomic units (OTUs) were identified from the faecal microbiota in 
patients from the BAD and IBS-D groups. There was statistically significant difference in the alpha-diversity of 
OTUs with reduced bacterial diversity in BAD compared to IBS-D. This is demonstrated in the rarefaction curve 
(p = 0.01), and Shannon’s diversity box plot (p = 0.014) shown in Fig. 1A.

Taxa identified from these OTUs showed, at the phylum level, that Firmicutes were most abundant in IBS-
D, but in BAD they were more reduced compared to the reduction of Bacteroidetes (Fig. 1B). Most families, 
including Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae were lower in abundance in BAD, but there 
were increases in Prevotellaceae and Verrcomicrobiaceae (Fig. 1C) Differences in the abundances of many OTUs 
were found, but the statistical significances of these were not robust when p values were adjusted for multiple 
comparisons. The 10 OTUs that were most significantly enriched in BAD (all uncorrected p < 0.01) were two 
unidentified members of the Lachnospiraceae family {OTU_136 and 268}, another from the Ruminococcaceae 
family {OTU_356}, a member of the Ruminococcus genus {OTU_519}, Bifidobacterium longum {OTU_283}, 
Prevotella copri {OTU_17 and OTU_127}, Akkermansia muciniphila {OTU_319} and two members of the Bac-
teroides genus {OTU_72 and OTU_553} (Supplemental Table 2).

Faecal SCFAs. Faecal water content differed between the three groups (Kruskal–Wallis, p = 0.02). The 
median water content was higher in the BAD group (75.6%) and IBS-D (71.7%) compared to the HC (69.3%; 
p = 0.01 and 0.04 respectively). The total amount of SCFA varied between individuals, particularly in the IBS-D 
group, but was not significantly different between the three groups (Table 1). In each group, acetate was the most 
prevalent SCFA. Comparing all the groups, there were significant differences (Kruskal–Wallis, p < 0.05) in the 
concentration of isocaproic, and in the proportions of isobutyric, valeric and caproic.

Direct comparison of the BAD and HC groups showed significantly greater concentrations of propionate 
(p = 0.04) and isocaproic (p < 0.01) in the BAD cohort. The increase in proportion of propionate was less signifi-
cant (p = 0.12). The proportion of isobutyrate was significantly lower (p = 0.04). Concentrations of caproic and 
heptanoic were significantly lower, as were their proportions and that of valeric. The proportion of isocaproic 
was higher. Comparison of the BAD and IBS-D groups gave broadly similar differences to those found in the 
comparison of BAD and HC, although the significance was usually weaker. There were no significant differences 
between the IBS-D and HC cohorts.

The specific SCFA associations with the total amount of SCFA in each group showed differences again in 
the associations of minor SCFA (caproic, heptanoic, and octanoic) with total SCFA in the separate groups, with 
stronger negative correlations in the BAD group (Supplemental Table 3). In the combined IBS-D and BAD 
groups, there were strong associations between individual SCFA values and the percentage of faecal water, but 
not with SeHCAT values (Table 2).
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Table 1.  Short chain fatty acids in healthy controls, IBS-D and bile acid diarrhoea subjects. Data are expressed 
as medians and interquartile ranges (IQR). Total SCFA and individual SCFA are expressed as µmol g−1 dry 
weight. Data from healthy controls (n = 26), IBS-D (n = 20) and BAD (n = 20) groups. Statistical comparisons 
were by Kruskal Wallis tests between all three groups and Mann Witney U-test between two groups. P 
values < 0.05 are shown in bold.

Healthy controls IBS-D BAD

Median IQR Median IQR Median IQR

% Faecal Water 69.3 (63.0–72.9) 71.7 (67.6–82.8) 75.6 (64.5–81.2)

Total SCFA 522.9 (418.7–703.5) 465.1 (308.7–944.7) 545.2 (417.8–1075.9)

Acetate 329.9 (252.7–451.5) 286.0 (186.7–610.0) 353.7 (265.7–708.0)

Propionate 78.1 (49.0–103.6) 81.5 (41.9–129.3) 128.4 (51.3–207.7)

Butyrate 73.6 (46.5–100.7) 74.7 (37.7–138.3) 65.4 (36.7–155.2)

Isobutyrate 8.1 (6.0–10.8) 9.3 (7.0–11.9) 7.0 (3.7–11.3)

Valeric 10.9 (7.6–16.7) 11.7 (7.7–15.8) 6.9 (2.4–16.8)

Isovaleric 7.5 (5.6–10.6) 9.7 (6.0–11.4) 8.1 (6.3–12.5)

Caproic 4.7 (1.0–7.8) 2.9 (1.0–9.8) 1.2 (1.0–2.1)

Isocaproic 0.17 (0.13–0.26) 0.22 (0.15–0.48) 0.32 (0.25–0.58)

Heptanoic 0.42 (0.06–1.04) 0.22 (0.06–1.19) 0.09 (0.05–0.25)

Octanoic 0.14 (0.00–0.32) 0.09 (0.0–0.29) 0.06 (0.0–0.26)

% Acetate 65.1 (61.5–67.9) 62.5 (58.4–67.5) 60.1 (53.0–72.5)

% Propionate 14.8 (13.4–16.2) 14.2 (11.2–18.2) 16.8 (13.5–25.3)

% Butyrate 13.8 (11.5–15.1) 13.8 (11.9–16.3) 10.6 (7.7–17.3)

% Isobutyrate 1.6 (1.3–2.0) 2.1 (0.8–3.1) 1.1 (0.5–1.7)

% Valeric 2.2 (1.8–2.5) 2.2 (1.4–2.7) 1.3 (0.3–2.3)

% Isovaleric 1.6 (1.2–2.0) 2.1 (0.6–3.2) 1.7 (0.9–2.3)

% Caproic 0.70 (0.31–1.45) 0.84 (0.36–1.56) 0.22 (0.12–0.43)

% Isocaproic 0.03 (0.02–0.06) 0.04 (0.03–0.09) 0.05 (0.04–0.08)

% Heptanoic 0.07 (0.01–0.21) 0.03 (0.01–0.21) 0.02 (0.01–0.04)

% Octanoic 0.03 (0.01–0.06) 0.02 (0.00–0.06) 0.01 (0.0–0–0.04)

Ratios P value

IBS/HC BAD/HC BAD/IBS Overall BAD/HC BAD/IBS

% Faecal Water 1.04 1.09 1.05 0.02 0.01 0.81

Total SCFA 0.89 1.04 1.17 0.32 0.16 0.21

Acetate 0.87 1.07 1.24 0.31 0.24 0.17

Propionate 1.04 1.64 1.58 0.11 0.04 0.11

Butyrate 1.01 0.89 0.88 0.99 0.98 0.89

Isobutyrate 1.15 0.86 0.75 0.40 0.41 0.28

Valeric 1.07 0.63 0.59 0.41 0.24 0.26

Isovaleric 1.29 1.08 0.84 0.61 0.43 0.98

Caproic 0.61 0.26 0.43 0.11 0.04 0.14

Isocaproic 1.31 1.87 1.43 0.01 0.003 0.09

Heptanoic 0.52 0.22 0.43 0.14 0.05 0.15

Octanoic 0.62 0.42 0.68 0.91 0.78 0.64

% Acetate 0.96 0.92 0.96 0.39 0.25 0.79

% Propionate 0.96 1.13 1.18 0.19 0.12 0.13

% Butyrate 1.00 0.77 0.77 0.47 0.27 0.30

% Isobutyrate 1.29 0.65 0.50 0.00 0.04 0.06

% Valeric 1.01 0.58 0.58 0.04 0.02 0.04

% Isovaleric 1.32 1.08 0.82 0.70 0.79 0.42

% Caproic 1.19 0.31 0.26 0.007 0.001 0.003

% Isocaproic 1.29 1.41 1.09 0.11 0.05 0.57

% Heptanoic 0.45 0.27 0.60 0.09 0.03 0.10

% Octanoic 0.77 0.39 0.51 0.85 0.69 0.55
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Figure 1.  Taxonomic analysis of data from16S rRNA gene sequencing of faecal microbiota in patients with 
BAD and IBS-D. (A) Rarefaction curve and Shannon’s diversity box plot (inset) analysing the diversity of OTUs 
in BAD compared to IBS. (B) Phylum level differences in abundance of assigned species between BAD and IBS-
D. (C) Family level differences in abundance of assigned species between BAD and IBS.
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Urinary VOC profiles. To analyse urinary VOCs, five different classification algorithms were assessed. The 
Support Vector Machine algorithm produced the best results to predict the probability of a sample being from 
one of the three groups of HC, IBS-D or BAD. Predictive values comparing pairs of groups are shown in Table 3. 
There were subtle but significant differences between BAD and HC (sensitivity and specificity 69%, p = 0.042) 
and between BAD and IBS-D (sensitivity 85% specificity 46%, p = 0.041). However, there was a clearly significant 
separation of VOC profiles between the IBS-D and HC groups (sensitivity 88%, specificity 92%, p < 0.001).

BA profiles: serum. Comparing the BAD and IBS-D patients with known SeHCAT tests, there was consid-
erable individual variability, and total serum BA were similar in both groups: medians 2.08 (IQR 1.13–4.15) and 
1.94 μmol L−1 (1.33–3.11). Total secondary BA were lower in the BAD group at 0.56 (0–1.34) versus 1.04 μmol L−1 
(0.49–1.51), p = 0.22, and were very low or absent in three subjects with severe BAD. The amounts of DCA, LCA, 
tauro- and sulfo-conjugates were reduced to 40–70% with p values between 0.13 and 0.28.

Individual serum BA when expressed as a proportion of the total showed broadly similar findings. The median 
percentage of LCA was lower in BAD, at 2.9% vs. 9.8% in IBS-D (p = 0.09). The median percentages for total 
glyco-, tauro- and sulfo-conjugates were all reduced in BAD to around half of the values in IBS-D (p = 0.09, 0.03, 
0.11 respectively). The proportions of GCDCA and UDCA were not increased.

Along with the reduction in conjugated BA, there were increases in the proportion of unconjugated (free) BAs, 
to a median of 55.6% (25.6–72.4) in BAD vs. 21.5% (7.0–55.5) in IBS-D (p = 0.08). The unconjugated primary 
BAs were specifically increased (Fig. 2A,B); the median percentage of serum unconjugated CDCA was 13.5% 

Table 2.  Correlation coefficients of fecal water, short chain fatty acids and SeHCAT. SCFA amounts were 
measured as µmol∙g−1 of dry stool. SeHCAT % retention at 7d. N = 38 patients in the combined IBS-D and BAD 
groups with SeHCAT results. Rs = Spearman rank correlation coefficients. P values < 0.05 are shown in bold.

% Fecal water SeHCAT %

Rs p Rs p

SeHCAT 0.08 0.33 – –

Total SCFA 0.60 0.0001 − 0.07 0.35

Acetate 0.67 0.0001 − 0.09 0.30

Propionate 0.57 0.0001 − 0.11 0.25

Butyrate 0.42 0.004 0.07 0.35

Isobutyrate − 0.08 0.32 0.15 0.18

Valeric 0.01 0.48 0.30 0.03

Isovaleric − 0.31 0.03 − 0.05 0.39

Caproic − 0.11 0.26 0.28 0.05

Isocaproic 0.20 0.12 − 0.24 0.08

Heptanoic − 0.06 0.35 0.27 0.05

Octanoic − 0.09 0.29 0.04 0.41

% Acetate − 0.03 0.42 0.10 0.28

% Propionate 0.18 0.14 − 0.19 0.13

% Butyrate − 0.02 0.46 0.20 0.12

% Isobutyrate − 0.54 0.0003 0.24 0.07

% Valeric − 0.56 0.0001 0.33 0.02

% Isovaleric − 0.64 0.0001 0.06 0.36

% Caproic − 0.36 0.01 0.39 0.01

% Isocaproic − 0.41 0.005 − 0.23 0.09

% Heptanoic − 0.24 0.14 0.21 0.10

% Octanoic − 0.18 0.14 0.06 0.35

Table 3.  Predictive values of VOC analysis for different groups. AUC, area under the curve; PPV, positive 
predictive value; NPV negative predictive value; Numbers in brackets are 95% confidence intervals.

Comparison AUC Sensitivity Specificity PPV NPV P value

BAD versus HC 70%
(49–91%)

69%
(39–91%)

69%
(39–91%) 69% 69% 0.042

BAD versus IBS 67%
(49–85%)

85%
(55–98%)

46%
(27–67%) 44% 86% 0.041

IBS versus HC 95%
(89–100%)

89%
(70–98%)

92%
(64–100%) 96% 80% < 0.001
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Figure 2.  Specific primary bile acid differences in serum and faeces. The percentage of total serum bile acids is 
shown, in (A) unconjugated chenodeoxycholic acid (CDCA); (B) unconjugated cholic acid (CA). Concentration 
in faeces is shown in (C) CDCA; (D) CA. Each figure shows medians, 25th and 75th centiles, and ranges for 
IBS-D and BAD patients. P-values are for comparisons of the two groups by Mann–Whitney testing.
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(3.9–37.5) in BAD vs. 1.6% (0.1–5.8) in IBS-D (p = 0.02), with a similar ninefold difference found for unconju-
gated cholic acid (p = 0.15), but not for DCA (p = 0.96).

Faecal BA. The individual faecal BA composition on a single sample showed considerable variation, but sev-
eral differences were apparent between the two groups. The median total faecal BA in the BAD group was about 
twofold higher than in the IBS-D group, at 9.17 (IQR 7.79–14.12) vs. 4.72 µmol g−1 (2.26–6.17), p = 0.01, Table 4. 
The median total primary BA was sixfold higher, with both cholic acid 11.6-fold and CDCA 3.5-fold higher, each 
p < 0.05, (Fig. 2C,D). Medians for the various secondary BAs were also higher, but were less marked, not reaching 
statistical significance. Other notable findings were higher amounts of total UDCA (13.5-fold, p = 0.06), sulfated 
BA (3.4-fold, p = 0.03), and the sum of all unconjugated BA excluding UDCA (1.9-fold, p = 0.01).

The percentage proportion of primary BA (%PBA) in the total was double (median 14.3% BAD vs. 7.1% 
IBS-D), with both cholic acid and CDCA increased (Supplemental Table 4). There were corresponding reduc-
tions in total secondary BA, DCA and LCA. The percentage of UDCA was higher, but none of these percentage 
changes reached significance.

The data were analysed to see whether BA measured in a single stool sample correlated with the SeHCAT 
result. In the combined group of BAD and IBS-D patients, SeHCAT retention was inversely related to total 
faecal BA (Rs =  − 0.53, p < 0.01). The individual values for %PBA and SeHCAT, shown in Fig. 3, were variable. 
The relationship between %PBA and total BA was weaker, not reaching significance (Rs = 0.22, p = 0.19). The 
percentages of the individual primary BA acids (CA or CDCA) were also negatively associated with SeHCAT, 
whereas the secondary BA, except UDCA, were positively related (Table 5).

Calculation of the predictive values gave the sensitivity and specificity of %PBA > 10% to detect a SeHCAT 
of < 15% of 45% and 63%. These were improved using a %PBA cut-off of 15% and SeHCAT < 10% (Table 6).

Discussion
We have identified differences in bacterial diversity and metabolites, including SCFA, VOC and BA, between 
cohorts of patients with well-defined BAD and IBS-D. Overall reduced bacterial diversity was observed in BAD, 
but a greater abundance was found of certain anaerobic taxa, including specific members of Lachnospiraceae, 
Bifidobacteria, Prevotella, Verrucomicrobia and Bacteroides. It is unclear whether this results from the effects of 
the higher concentrations of BAs entering the colon or, if this is also a causative factor in the development of 
the disease.

Increasing, and sometimes conflictory, information relate the gut microbiome to the metabolome and BAs. 
For example, cholic acid feeding increased Firmicutes and reduced Bacteroidetes in  rats27. However Bacteroi-
detes decreased less than Firmicutes in our BAD patients despite increased colonic BAs. The relative abundance 
of Bacteroidetes has been shown to correlate with the proportion of  propionate28, and we found also increased 
propionate in BAD. Presumably, particular propionate-producing species become more abundant in BAD, and 
excess BAs selectively reduce other  species7.

In addition to the effects of gut microbiota, SCFA production may also be altered in both BAD and IBS-D by 
gastrointestinal transit time, motility and physiology, and the amount and type of fermentable substrate ingested, 
especially if patients have already modified their diet to help with symptoms. The clear relationships we found of 
percentage faecal water with total SCFA, acetate, butyrate and propionate support this, and show that the effects 
of BAs, indicated by the SeHCAT, on most SCFA were small.

Looking more broadly at the metabolome, the separation of VOC profiles between the IBS-D and HC cohorts, 
and between the BAD and HC groups supports the notion that VOCs reflect the metabolic processes of the 

Table 4.  Faecal bile acids in patients with IBS-D or bile acid diarrhoea. BA were measured in a single stool 
sample from patients with IBS-D with (SeHCAT > 15%; n = 9), or BAD (SeHCAT < 15%; n = 10). Comparisons 
were made by Mann–Whitney U-tests. P values < 0.05 are shown in bold.

BA concentration (nmol∙g−1)

IBS-D BAD

P valuesMedian IQR Median IQR

Total faecal BA 4716 (2259–6168) 9170 (7791–14,118) 0.01

Primary BA 246 (107–476) 1502 (299–7222) 0.03

CA 86 (61–266) 995 (129–3544) 0.05

CDCA 149 (48–256) 523 (184–1961) 0.04

Secondary BA 4412 (1979–5725) 7130 (3200–9626) 0.14

DCA 3661 (1234–4670) 5295 (2734–7469) 0.14

LCA 766 (675–1240) 1447 (466–2338) 0.25

UDCA 17 (9–52) 232 (27–702) 0.06

Glycoconjugates 67 (29–168) 79 (61–107) 0.81

Tauroconjugates 26 (17–59) 25 (12–95) 0.93

Sulfoconjugates 30 (13–91) 101 (73–553) 0.03

Unconjugated BA–Urso 4484 (2132–5793) 8465 (7145–11,723) 0.01

Ratio primary/secondary 0.08 (0.03–0.13) 0.19 (0.04–5.26) 0.37
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microbiota, with evidence of dysbiosis in both BAD and IBS-D cohorts. The differences in the branched SCFA 
levels contribute to this. Some, like isobutyrate were lower in the BAD compared to IBS-D and HCs, but others 
like isocaproic were higher. These result from protein fermentation, where amino acids are utilized by the colonic 
 bacteria29. Differences in precursors supplied to the microbiota, with different enzymatic processes, produce 
variation in metabolic end-products, and in the VOC fermentation ‘chemical print’.

The dissimilar faecal BA composition of BAD and IBS-D cohorts is are not unexpected given the differences 
in bacterial diversity observed between the two groups. The increase in unconjugated, primary BAs in BAD in 
faeces and in serum is likely due to reduced biotransformation in the conversion of primary to secondary  BAs6. 
There are multiple bacterial species, including many members of the Bacteroidetes phylum, that express forms of 
BSH and are capable of the first step of  deconjugation8,30. Fewer species express enzymes for 7α-dehydroxylation 
to secondary BAs. These are predominantly Firmicutes, with various species of Clostridium (such as C. scindens) 
and the Ruminococcus family, (including former C. leptum)6,8. Reduction in their abundance in BAD will con-
tribute to the increases in faecal primary BAs and ratio of primary/secondary BAs.

Figure 3.  The relationship between percentage of faecal total primary BAs and SeHCAT retention. Values for 
the percentage of total primary BA (cholic and chenodeoxycholic acids) in faeces and SeHCAT retention are 
shown for 10 patients with SeHCAT < 15% (BAD) and 9 patients with SeHCAT > 15% (IBS-D).

Table 5.  Correlation of SeHCAT and faecal BA percentages. Nonparametric correlations with Spearman 
rank coefficients (Rs). Other relationships to SeHCAT, including the percentage free, glyco-, tauro-, sulfo-
conjugates, glyco/tauro ratio, CA/CDCA ratio were not significant.

Correlation (Rs) p value

Total BA  − 0.53 0.01

Percentages

Cholate  − 0.40 0.05

Chenodeoxycholate  − 0.41 0.04

Total primary BA  − 0.37 0.06

Deoxycholate 0.40 0.05

Lithocholate 0.59 0.004

Ursodeoxycholate  − 0.20 0.19

Total secondary 0.46 0.02

Ratio primary/secondary  − 0.40 0.05

Table 6.  Predictive values of % primary BAs for SeHCAT. %PBA, percentage primary bile acids; PPV, positive 
predictive value; NPV negative predictive value.

%PBA SeHCAT (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Diagnostic odds ratio

> 10 < 15 45 63 63 45 1.39

> 15 < 15 45 88 83 54 5.83

> 15 < 10 56 90 83 69 11.25
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Faecal ursodeoxycholic acid was higher in BAD, which suggest that the several species (mostly Clostridia) 
with HSDH responsible for 7α/β epimerisation were  maintained6,8. We have only limited species-level data to 
address this. An increase in faecal sulfated BAs was also observed in BAD. The liver is the predominant site of 
3-sulfation, which decreases BA toxicity and enhances elimination. In the colon, various bacteria, including 
Clostridia species, can desulfate BA, allowing  reabsorption31. The increase may be a further adaptive change to 
alleviate BA accumulation in BAD and a protective mechanism in intestinal  dysbiosis32.

The concept of dysbiosis-driven changes in BA metabolism reflects data from earlier studies of unselected 
IBS-D patients. These demonstrated increases in primary BAs, decreases in secondary BAs and changes in micro-
biota, including increased C. leptum, and suggested that altered BA transformation by a changed microbiome 
was a driver for BA dysregulation in IBS-D10,18.

Two recently published studies have expanded these findings  significantly19,20. In a large and thorough study, 
Zhao et al. identified a subset (24%) of IBS-D patients with higher total BA on a single stool sample (> 90th-centile 
of controls) and compared them to control and IBS-D subjects with lower  BA19. Their cut-off was 10.61 µmol∙g−1 
stool, slightly higher than our median of 9.17 µmol g−1. These BA + IBS-D patients had not undergone SeHCAT 
testing, but had fasting C4 and FGF19 values similar to other cohorts with  BAD4. As in our current study, fae-
cal primary BA (CDCA and CA) and UDCA were higher in their BAD group. Faecal bacterial α-diversity did 
not differ between their two groups although the β-diversity (instability) was higher in BAD. Their taxonomic 
analysis showed their BAD group had increased Firmicutes, and an abundance of Clostridia, including Rumi-
nococcus species and C. scindens. These were then related to BA production (C4), feedback (FGF19) and to 
BA-transforming enzymes (BSH and HSDH). It should be noted that their group definition was BA in a single 
stool sample, rather from 7-day SeHCAT test. Potentially, adaptation of the microbiota and BA synthesis may 
occur with more prolonged BA loss.

Faecal microbiomes and metabolomes in IBS patients, including a subset with SeHCAT tests, were investi-
gated by Jeffery et al.20 Principal component analysis of the microbiota was able to separate those with severe BAD 
(SeHCAT < 5%) from those with less severe BAD or normal SeHCAT. Analysis of the metabolome could separate 
groups with BAD, identifying glycerophospholipids and oligopeptides among the main predictive metabolites, 
although BA were less clear.

We have shown that the faecal % primary BA is inversely related to SeHCAT. This extends studies from 
the Mayo clinic, which suggested this measurement detects a group of BAD patients with different char-
acteristics to those with elevated total  BA12,33. (Their diagnostic cut-off for % PBA is > 10% and total faecal 
BAs > 2337 µmol/48 h. With a median 516 g stool/48 h12 this is equivalent to > 4.5 µmol g−1, close to the median 
of our SeHCAT-negative IBS-D group. Their group median total BA of 6.67 µmol g−1 is also lower than our 
SeHCAT positive group). We used a single stool sample, which is more variable and affected by diet, but is more 
user friendly than a 48 h collection on a defined diet. The Mayo group have recently extended their findings 
to also use a single stool  sample33. We found that predictive values improved, to a diagnostic odds ratio of 11, 
using 15% PBA to detect moderate BAD (SeHCAT < 10%). However, we demonstrate (Fig. 3) a wide variability 
in the BAD group, indicating there may be several different mechanisms involved. Whether other microbial or 
metabolomic findings can be similarly developed for diagnostic purposes is unclear.

Our study has several limitations. The 16S rRNA sequencing mostly analysed bacteria at the genus taxonomic 
level. Some genera abundant in both cohorts could differ if information on species was available. This would have 
improved microbial characterization, but as BA metabolism, VOC and SCFA production occur via overlapping 
functional groups, this assessment might not have provided further answers regarding overall functionality and 
pathogenesis. More information could have been obtained with larger numbers, but our findings help identify 
areas for further confirmatory studies.

In summary, our results show that BAD patients, defined by SeHCAT testing, exhibit intestinal dysbiosis, 
altered BA metabolism and SCFA production, with a distinct VOC profile. The percentage of primary BA, 
dependent on metabolic changes produced by multiple bacteria, can predict SeHCAT and detect patients with 
BAD. The functional output of the microbiota, rather than abundance of specific taxa, may thus be more impor-
tant in producing changes in BAD.

Materials and methods
Study population. Patients were recruited as part of the FAMISHED (Food and Fermentation using 
Metagenomics in Health and Disease) study. Scientific and ethical approval was acquired from the local Research 
and Development Office as well as Warwickshire Ethical committee ref: 09/H1211/38. Written informed consent 
was obtained from all participants in the study. In line with good medical practice and research governance 
framework, the study was undertaken in accordance with relevant guidelines and regulations.

Patient and public involvement–This study was reviewed and presented at the Bile Acid Diarrhoea charity 
(https ://www.bad-uk.org) meeting led by patients. The aims of the study were presented and outline especially 
of recruitment process was discussed. Specific advice was sought in that regard and changes made to improve 
recruitment pathway. The study received support from the group and upon publication, results will be dissemi-
nated on the charity website and Facebook patient group. Study results were also presented at the UK Bile Acid 
Diarrhoea Network annual meeting.

Participants with chronic diarrhoea were included in the BAD or IBS-D groups based on 75SeHCAT testing. 
BAD was diagnosed with a 75SeHCAT 7d retention value ≤ 15%; and categorised as severe if < 5%, moderate if 
between 5–10% and mild if between 11–15%. The diagnosis of IBS-D was based on Rome III criteria with a 
negative 75SeHCAT test. Patients with inflammatory bowel disease (IBD) or a previous cholecystectomy were 
only included if 75SeHCAT was < 15% (type 1 and type 3 BAD respectively). Participants were excluded if they 
suffered from coeliac disease, active IBD (faecal calprotectin > 50 μg/g or CRP > 11 mg/L), colorectal cancer, 

https://www.bad-uk.org


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20436  | https://doi.org/10.1038/s41598-020-77374-7

www.nature.com/scientificreports/

antibiotics/probiotics use in the last three months, or recent bile acid sequestrants. HCs had no evidence of 
chronic disease, were not on any regular medications, pregnant or had taken antibiotics/probiotics in at least 
three months. Urine, stool and serum samples were collected in standard specimen collection bottles at 9am 
and stored at − 80 °C within 2 h.

Faecal gut microbiome analysis: 16S rRNA sequencing. Stool DNA was isolated from 200 mg of 
stool samples using the QIAamp Fast DNA stool extraction kit (QIAGEN, UK), following the manufacturer’s 
protocol for pathogen detection. Methods were similar to those previously  published34. To amplify genes for 
coding and sequencing, polymerase chain reaction (PCR) was used. V3-V4 primers and extensor ready mix 
(Thermo scientific) were used to amplify the 16S rRNA gene V3-V4 gene fragment from isolated metagenomic 
DNA using a PCR thermal cycler program. After PCR, the DNA samples were separated and sequenced using 
the ILLUMINA MISEQ V2 2 × 300 bp paired end protocol.

Default Illumina software trimmed sequences to remove adapter sequences, primers, barcodes, low-quality 
sequences and those with < 1000 reads. Using a custom Java program, formation of contigs was performed by 
joining together forward and reverse reads with a quality filtering step to remove contigs that had more than three 
mismatches. The contigs were de-replicated and then clustered at 97% identity to form operational taxonomic 
units (OTUs) using the UPARSE pipeline. Singleton contigs from the dataset were discarded and chimeras were 
removed. The UPARSE pipeline calculated the abundance of each OTU by mapping the de-replicated contigs 
against the OTUs sequences. Taxonomy was assigned to 16S RNA gene OTU sequences using QIIME (Quan-
titative Insights into Microbial Ecology) and the RDP classifier. Using the QIIME pipeline, the level of alpha 
diversity in our samples was determined by generation of rarefied OTU tables, computing measures of alpha 
diversity for each rarefied OTU table, collating the rarefied OTU tables and then generating rarefaction curves. 
The depth of rarefaction was defined by either the lowest number or median number of sequences assigned to a 
sample within a group that was analysed. The Shannon index was used to calculate alpha diversity indexes from 
rarefied samples. Rarefaction was performed on OTU tables to remove sample heterogeneity.

Faecal SCFAs. Absolute and relative quantification of SCFAs (C2-C8) and branched-chain fatty acids 
(isobutyrate, isocaproic and isovaleric) was undertaken using gas chromatography in diethyl ether extracts as 
described  previously35. Moisture content (faecal water content %) was measured the day prior to SCFA analysis 
with the samples being freeze dried for 24 h in an Edwards apparatus (Freezer Dryer Micro Modulyo). Each sam-
ple was measured in duplicate to improve accuracy of results. Data are presented per mass of dry faecal material 
(µmol g−1) and as the proportion (%) of total SCFAs.

Analysis of urinary VOCs. The samples were analysed using a commercial field asymmetric ion mobility 
spectrometry (FAIMS) instrument (LONESTAR, Owlstone, Cambridge, UK), fitted with an ATLAS headspace 
sampling system. This instrument operates at room temperature and pressure, undertaking separation of com-
plex chemical mixtures by measuring ionised molecular movement in high-electric fields. By scanning through 
a range of electric field strengths and compensation voltages, the instrument is able to produce a mobility map 
of a  sample24.

Frozen urine samples were defrosted; 5 ml was aliquoted into a 20 ml vial and placed in the ATLAS sampling 
system (no cap is fitted), set to 40 °C and left for 10 min to equilibrate and generate an VOC headspace. Clean 
synthetic air is the passed over the sample and into the Lonestar instrument. The instrument was set to sweep the 
dispersion field between 0 to 90% in 51 steps, the compensation voltage from − 6 to + 6 V in 512 steps and both 
positive and negative ion measurement undertaken, resulting in 52,254 data points being generated per  sample24.

Measurement of faecal and serum bile acids. Serum and faecal BA profiles were generated using high-
performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Faecal samples 
were prepared by the addition of ammonium carbonate to release the BA from the binding protein, followed 
by centrifugation and solid-phase extraction using reversed-phase silica Chromabond C18 cartridges (100 mg; 
MACHEREY-NAGEL, Duren, Germany) for pre-analysis clean up.

An analytical column (Pinnacle II C18, RESTEK, Lisses, France; 250 × 3.2 mm) with a 5 µm silica particle 
(RESTEK) fitted on an HPLC binary pump (AGILENT 1100; Agilent Technologies, Massy, France) was used 
for the chromatographic separation of BAs. Mass spectra were obtained using an API 2000 Q-Trap (AB-SCIEX, 
Concord, Ontario, Canada) equipped with a turbo ion-spray (ESI) source. Analyst software (version 1.4.2, AB-
SCIEX) was used to acquire the data.

The total primary BAs is the sum of CA and CDCA and their respective glyco-, tauro- and sulfo-derivatives. 
The total secondary BAs is the sum of LCA and DCA and their respective glyco-, tauro- and sulfo-derivatives, 
as well as hyodeoxycholic acid and its tauro-derivate.

Statistical analyses. Data for patient demographics are presented as means and standard deviations (SD). 
The data for SCFA and BA are presented as medians with interquartile ranges (IQR). VOC data were analysed 
using a previously developed processing  pipeline24. Kruskal–Wallis analyses were used to compare 3 groups and 
the Mann–Whitney U test was used for two groups. Spearman rank correlations were used to identify associa-
tions. P values < 0.05 were considered statistically significant.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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