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Development of quantum architectures during the last decade has inspired hybrid classical-quantum
algorithms in physics and quantum chemistry that promise simulations of fermionic systems beyond the
capability of modern classical computers, even before the era of quantum computing fully arrives.
Strong research efforts have been recently made to obtain minimal depth quantum circuits which could
accurately represent chemical systems. Here, we show that unprecedented methods used in quantum
chemistry, designed to simulate molecules on quantum processors, can be extended to calculate
properties of periodic solids. In particular, we present minimal depth circuits implementing the
variational quantum eigensolver algorithm and successfully use it to compute the band structure
of silicon on a quantum machine for the first time. We are convinced that the presented quantum
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1 Introduction

Quantum computing aims to leverage superposition, entangle-
ment and interference of quantum bits in order to tackle
computational tasks that scale exponentially on classical
computers.”” While renowned quantum algorithms, such as
unsorted database search or integer factorization require
resources that remain out of reach,>* quantum chemistry calcula-
tions are gaining steam as a key application performed on
available quantum architectures.>® The idea of so-called quantum
simulations originally proposed by Feynman,”® relies on a
mapping between the fermionic system and the set of qubits,
so that the dynamics of the former is directly followed by the
latter. Therefore, wave functions of complex many-body systems
could be effectively reproduced in quantum measurements per-
formed on qubits, providing a tool to compute desired quantities
with an unprecedented accuracy. Even though available quantum
computers contain merely few tens of qubits,'® they have been
employed to solve quantum chemistry problems, such as the
estimation of nuclear binding energies or molecular ground
states.'’* Remarkably, these successful quantum experiments
relied on variational approaches that greatly reduced the
required hardware resources, inspiring more active research
in order to solve elusive condensed matter systems beyond
quantum chemistry.>™*°

Here, we put forward an approach to calculate the electronic
structure of the periodic crystal on a quantum computer.

Department of Physics, University of North Texas, Denton, TX 76203, USA.
E-mail: mbn@unt.edu
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electronic structure computation of advanced quantum materials.

While developments of quantum computation for molecules
were primarily focused on the ground state energies, to evaluate
a band structure one needs to determine the excited states.
We have shown that a standard hybrid quantum/classical
algorithm, variational quantum eigensolver (VQE) can be easily
adapted to provide an accurate estimation of the electronic
bands in the solid. In particular, by casting a Si tight-binding (TB)
Hamiltonian in terms of fermionic operators, we have designed
a low-depth quantum circuit, enough robust to capture the
electronic properties of a crystal in the reciprocal space. The
quantum measurements have been performed on sets of qubits
available remotely via cloud-based platforms provided by IBM
and Rigetti Computing. Importantly, we have tested different
classical optimization routines that minimize expectation
values, corrected beforehand against the readout errors.
Comparison between bands computed on the quantum processors,
the quantum virtual machine and by classical diagonalization
revealed a satisfactory agreement, confirming validity of the
algorithm which could be generalized to explore materials
more complex than crystalline silicon.

2 Hamiltonian representation

Let us consider a silicon lattice in the diamond cubic structure.
The Hamiltonian describing the electronic system can be
approximated, in atomic units, as

. v, Z 1 1
HEI__Z:T_%:’Rj—ri‘+§;|r,—ri\ (1)
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where r; (R;) are the positions of electrons (nuclei) and Z;
denotes the nuclear charge, respectively. We have assumed
the Born-Oppenheimer approximation and considered the
nuclei as stationary charges, thus neglecting their kinetic
energy and treating the ion repulsion as a constant. The last
term of eqn (1) represents the electron-electron interaction,
whose correct estimation is one of the long-term goals of
quantum simulation. However, we are now primarily focused
on the proof-of-principle band structure calculations, and have
disregarded the electronic correlations for the purpose of the
present study.

In order to convert the Hamiltonian into a computa-
tional problem, a suitable basis set needs to be selected.
While different representations were proposed for quantum
computation,”” we introduce here a simple basis of atomic
orbitals at each lattice site arising from the tight-binding (TB)
approximation. The unit cell of silicon contains two tetrahedrally
coordinated ions and is well described in terms of s, p, p, and p,
orbitals centered at each atom. Because magnetic order is absent,
the spin degrees of freedom can be omitted in the analysis.
Using the second quantization formalism, we can express
the TB Hamiltonian via creation and annihilation operators

(a}” and a;,) acting at the orbital n and the site R

FI = ZEna}:,ain - Z tin,jr?za:'[najm (2)

in (i,j)nm

In this expression, E, correspond to the atomic energies and
tinjm denote the hopping integrals whose numerical values
have been reported elsewhere.”® Only the tunneling between
pairs of nearest neighbors, denoted by the (7,j) summation,
have been considered. The Hamiltonian can be then easily
converted to the momentum space via standard Fourier trans-
form applied to the raising and lowering operators. Last, such
a representation (H;) needs to be mapped onto the system
of qubits.

In practice, qubits are manipulated on a quantum processor
by operating on a set of Pauli matrices X, Y, Z and I, the latter
denoting 2 x 2 identity matrix. Any Hermitian matrix can be
decomposed using a complete Pauli basis for matrices of
dimension N = 2" with n = log, N terms, that can be generated
by taking a tensor product:

{6}, =11, X, v, Z}®" (3)

Thus, TB Hamiltonian can be decomposed as follows:
~ 4"
H; = Z Cik0i (4)
i=1

where the set {6}, is the set of 4" possible basis matrices, and
{ci}n is a set of complex coefficients. {ci}, is known as the
spectral decomposition and can be determined easily. In parti-
cular, we can exploit the orthogonality of Pauli matrices and the
trace inner product between two of them:

Tr(&j&,) =25, (5)
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By taking the inner product H,T{&,-, we can eliminate all terms
but one from the sum, yielding:

Tr (HLG)
2

¢ = (6)

Therefore, the Hamiltonian is represented by a list of
coefficients corresponding to each of the 4" Pauli basis matrices
suitable for simulation on a QPU.*

3 Variational quantum eigensolver

We have computed the energy spectrum using the variational
quantum eigensolver in conjunction with overlap-based techniques.
VQE is a standard hybrid quantum-classical algorithm capable
to determine the lowest or highest eigenvalue of an operator
using minimal quantum resources, implemented by combining
measurements on a quantum computer with classical routines.**>*
The ground state wave function and energy can be found based on
Rayleigh-Ritz variational principle, whereby the energy expectation
value can be minimized by a specific set of parameters. In practice,
the state preparation and the expectation value measurements
are implemented on a quantum machine, while the optimization
of the parameters is performed classically. The whole algorithm
used for the ground state calculation can be summarized in three
following steps:

(1) We create a quantum circuit ¥{0) depending on a set of
parameters 6, known as a variational form. Then, we prepare a
trial wave function (or ansatz) |(0)) = V|0), where |0) denotes
an initial state ensuring the measurement of each qubit.

(2) We measure the expectation value of Hj, which depend
on the parameters 0, E(0) = (y/(0)|Hy|¥(0)). The Hamiltonian is
represented by series of operators. The wave function |y) is
measured in the Pauli basis, yielding each (g;). We can then
reconstruct () with the spectrum {c}:

qn

(He)y = cal) )
i=1

The measurement should be treated as a probabilistic
element of the algorithm and needs to be performed several
times. An arbitrary precision can be achieved with a sufficient
number of repetitions.

(3) We apply a classical optimization routine to explore
the parameter space and minimize E(f). We define & =
(z//(emin)|Hk|l//(9mm)) as a ground state energy, where Onin
denotes the set of parameters minimizing the expectation value
of Hk.

4 Energies beyond the ground state

After having determined the ground state, we can calculate
excited states using a procedure similar to the quantum deflation
algorithm that exploits orthogonality of the Hamiltonian
eigenvectors.”>>” In particular, we define an effective
Hamiltonian (A’) whose lowest eigenstate is the excited state

Phys. Chem. Chem. Phys., 2020, 22, 21816-21822 | 21817
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of the original one (A). By subtracting from the latter a
corresponding ground state projector weighted by the ground
state energy, we obtain:

& 5,
Hi = Hy — eolth) (W :Z (Cf—80<(27;;>>&" (8)

i=1

We observe that the last equality provides the following spectral
decomposition of the excited Hamiltonian:

/ <6_l>

Ci :Ci—g()z”

)

The procedure is used iteratively to determine as many eigen-
values as desired. Updating the spectral decomposition
ci— ¢ — so% effectively removes all ground state contribu-
tions from the Hamiltonian.

We note that the effect of subtracting the ground state
density matrix weighted by its corresponding eigenvalue is to
project that eigenstate onto the zero value. Because an arbitrary
Hermitian matrix can have both positive and negative eigen-
values, special care must be taken to ensure that the zero is not
erroneously computed as a ground state after all negative
eigenvalues are determined. One reconciliation is to subtract
a value greater than the maximum eigenvalue from the diag-
onal elements of the Hamiltonian, ensuring that all eigenvalues
are lower than zero. Therefore, projecting an eigenstate to zero
would not affect the remaining eigenvalues that need to be
determined. Such a shift requires the modification of only one
coefficient of the spectral decomposition, which stands before
the identity matrix.

5 Data acquisition

Before discussing the results of quantum experiments, let us
remark on the various techniques that we have employed to
compute the band structure of silicon. A careful distinction
must be made between the use of quantum processor, quantum
virtual machine and quantum state simulation. In particular,
simulated qubits helped us analyze the performance of variational
forms and the effect of measurement uncertainty on a noiseless
machine. Three independent techniques will be further
referenced:

(1) Quantum processor unit (QPU) is prepared for measure-
ments under subsequent sets of parameters. The measure-
ments are performed in real time. The available APIs compile
quantum programs and directly manipulate qubits, providing
measured expectation values in the form of bitstrings.

(2) Quantum virtual machine (QVM) chooses one of the
possible outcomes to be “measured”, weighted by its respective
probability computed with the quantum state simulator
(see below). The quantum processor is mimicked, providing
a noiseless (unless noise is simulated) simulation of the
measurement process. This method helps to analyze the effects
in the band structure determined by discrete measurements of
the energy expectations values.

21818 | Phys. Chem. Chem. Phys., 2020, 22, 21816-21822
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(3) Quantum state simulator (QSS) carries out linear algebra
to obtain an exact wave function which would represent the
simulated state of a qubit on a quantum processor after the
application of specified gates. It can serve as an analytical
guideline for quantum measurements. Optimization can be
easily performed with the quantum state simulator, providing
a convenient framework to test the performance of varia-
tional forms.

6 Quantum experiments

Quantum computations of the band structure have been
performed following two different techniques, both yielding a
correct spectrum while compared with the classical diagonali-
zation of the TB Hamiltonian. The first approach relies on a
true quantum measurement, employing one qubit that we
access on remote quantum machines Rigetti Aspen and IBMQ
Armonk. Although these cloud platforms permit the use of
larger resources, the practical realization of the VQE algorithm
for diagonalization of the 8 x 8 Hamiltonian of Si required a
substantial amount of time. Therefore, we have started with
a reduced Hamiltonian, considering only the interactions
between s-states which give rise to the lowest bands of silicon.
After neglecting s-p hopping parameters in the original Ay,
a smaller 2 x 2 matrix block can be decoupled and diagonalized
using VQE on the QPU. Fig. 1 shows the two-gate circuit acting
on a single qubit, often referred to as the mean field ansatz,”®
which has been used in the experiment. In principle, to ensure
that finding the true minimum is possible, circuits must be
designed to span every state allowed by the operating qubits,
unless the space is restricted by physical arguments, such as
fermionic commutation relations in the UCC strategies.>® The
ansatz below takes a pure state |0) and applies two rotations
described by the angles 0 = (0,4). A polar rotation brings the
qubit into a superposition of |0) and |1) states, while an
azimuthal rotation scans the sphere’s latitude. The two rotations
produce a state represented by the following wave function:

[ (0, ¢)) = cos (g) 0) 4 € sin <g) 1) (10)

The band structure has been computed along a high-
symmetry line X-I'-L by repeating the whole algorithm for each
of the k-points. Fig. 2(a and b) report the two-band electronic
structure evaluated on the quantum machines of IBM (red
squares) and Rigetti (green circles), complemented by the data
from the classical diagonalization (black solid line). In addition,
we present the results obtained via quantum-classical algorithm

10) —{Ry(8) [ R2(9) [ H=

Fig. 1 Mean-field circuit acting on a single qubit has been employed to
determine the lowest bands of silicon. It consists of a polar rotation (R,)
followed by an azimuthal rotation (R,). In last step, the expectation value
of Hy is measured.
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(a) The two-band electronic structure of silicon computed along X—I'-L line using classical diagonalization (black solid line) and hybrid quantum-—

classical algorithm on quantum state simulator (blue squares) and quantum virtual machine (yellow circles). (b) Same as (a) realized on the QPUs of IBM
(red squares) and Rigetti (green circles). We report the data from Rigetti before and after correcting for the readout errors, marked as open and closed
circles, respectively. (c) Energy expectation value sampled over the entire parameter space [—mr,x] in the azimuthal angle and [0,x] in the polar angle on

QSS (blue), IBM (red) and Rigetti (red). Darker (brighter) colors denote lower

performed on QSS (blue squares) and QVM (yellow circles). While
the latter directly follow the bands calculated classically, the
quantum data reveal tiny deviations that can be noticed around
the high-symmetry points I and L for Rigetti and IBM, respec-
tively. The sources of errors in the experiment can be manifold.
The probabilistic aspect can obviously play a role, despite a large
number of measurements (8192) taken for each parameterization.
Importantly, simulation of noise on QVM have revealed that any
gate noise or readout error tends to increase the measured energy,
shifting the expectation value toward different eigenstates.
As described in the next sections, we have attempted to charac-
terize and reduce the effects of errors arising from the qubit
manipulation.

We note that the standard optimization routines have not
been here applied. Instead, we have used the mean-field circuit
to measure a dense grid of parameter angles in order to find the
minimum expectation value. Sampling the entire parameter
space provides a visual tool for analyzing the structure of
parameter space. Fig. 2(c) shows examples of the expectation

value surfaces computed for one selected point k = % (1,1, 1).

The three subsequent panels report the surfaces obtained
analytically on QSS (blue) and experimentally on IBM (red)

(higher) values of the energy expectation value.

and Rigetti (green). The two latter have been smoothed by
minimizing the root-mean-square error across all data points.
Again, the data collected on IBM reveals largest irregularities
in the energy contour lines, especially compared with the
analytical surface evaluated on QSS.

The second approach, employed to diagonalize full 8 x 8
Hamiltonian, relies on QSS. Fig. 3 presents a robust three-qubit
circuit that we have designed to variationally minimize the
expectation value of A at any k-point and each level of excita-
tion. The set of twelve parameters 0 = (04, 0,,..., 0;,) in this
ansatz, measured in the Pauli word basis from the Hamiltonian
decomposition defined in eqn (4), are varied to minimize
the energy expectation values. Fig. 4 displays the electronic
structure computed using this circuit, demonstrating that it
is indeed capable of representing the silicon Hamiltonian
anywhere along the k-line. Although small discrepancies are
again visible, the overall agreement with the bands calculated
classically seems to be sufficient. We note that now the results
do not depend on external factors that can perturb the behavior
of qubits. The deviations are related to the optimization
procedures whose proper choice is essential to correctly deter-
mine the energy spectrum.

0) —{H —&+- Ry|—&o{R: | —&¢{R: | o Ry|—4{Re| &R

Fig. 3 The circuit used to diagonalize the 8 x 8 Hamiltonian. Each qubit is initialized as a pure zero state.
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Fig. 4 Electronic structure of silicon computed via hybrid classical/
quantum algorithm on QSS. Different optimization routines BFGS and
COBYLA are compared on analytic surface. Black solid lines denote the
bands calculated classically.

Several classical optimization routines have been tested in
conjunction with the three-qubit circuit used for the evaluation
of full electronic structure. Minimizing a function in parameter
space of twelve dimensions is rather challenging and requires a
compromise between the number of measurements and
the smoothness of the space being optimized. We have found
that the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and
Constrained Optimization BY Linear Approximation (COBYLA)
routines®® yielded the most accurate results. The former
requires fewer function evaluations to reach a minimum, but
it suffers from instability due to the rough surface in parameter
space. The latter, being a direct search method, entirely omits
the idea of gradient decent which makes it more robust against
becoming trapped in a local minimum. Even though it may
provide more reliable global minima,*' it occasionally fails to
settle on the correct set of parameters. Fig. 4 clearly shows that
especially the excited energy levels are sensitive to fluctuations
in the determined parameters. The comparison of both routines,
BFGS and COBYLA, eventually indicates the superior performance
of the former, at least in the present case.

7 Additional remarks on measuring
expectation values

While the previous section was entirely focused on the realiza-
tion and results of quantum experiments, the measurements
of expectation values need a more detailed discussion. The
quantities we have measured on the quantum computer are the
expectation values (o;), where the operator o; is an n-length
Pauli word consisting of an I, X, Y, or Z for each qubit. They
depend on the state |y) of the qubits, and could be written as
the integral (|ox|y). Because we do not know |i/), we must

21820 | Phys. Chem. Chem. Phys., 2020, 22, 21816-21822
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measure the state of each qubit in the computational basis,
resulting in a single bitstring (e.g. |00101)). Repeating the
measurement a large number of times M, we construct
the expectation value (g;) from the ensemble of bitstrings.
In the following paragraphs, we will first consider the simple
single-qubit case o; = Z, then the multi-qubit case where g,
consists only of I and Z operators and last, the general case
including X and Y operators.
The Pauli operator Z can be written in a matrix form:

1 0
0 -1
It is a diagonal matrix with eigenvalues +1, corresponding to
the state |0), and —1, corresponding to the state |1). The
expectation value (Z) is the average of these two eigenvalues,
weighted by the number of measurements in each state. If p

is the probability that we measure |0) rather than |1), the
expectation value (Z) is given by:

Z=()p+(-1)2-p)=2p -1

Now, consider an operator A defined as a Kronecker product
of I and Z operators, each acting on their own qubit. It is a
degenerate operator with half the eigenvalues +1 and half —1.
Because its matrix form is diagonal, each bitstring we measure
corresponds exactly to an eigenstate. The parity (+1) of a given
bitstring z is precisely the parity of the substring z’ which omits
any index corresponding to an I operator in A. For example,
if A=15Z,7;I,Z, and z = |00101), the substring z’ leaves off the
second and fifth indices: 2z’ = |011). This string has a weight of
two, which is an even parity and therefore corresponds to the
eigenvalue +1. The expectation value (4) is once again an
average of +1 and —1, weighted by the frequency of bitstrings
corresponding to each of the two states.

Last, let us consider a general Pauli word ;. Half its
eigenvalues are again +1 and half —1, but bitstrings in the
computational basis do not correspond exactly to the eigen-
states. We therefore need to diagonalize 4. Let A; be the Pauli
word which replaces all X and Y in o4 by Z, and the operator Uy

7 =

changes the basis so that o, = U,IA «Uk. Then, for each expecta-
tion value we have (oy) = <U,1Ak Uk>. This is equivalent to

measuring the expectation value (4;) in a new state |¢/') = U|}).
Thus, we may apply at the end of the variational circuit the
sequence of gates representing Ui, and then apply the methods
of the previous paragraph to evaluate (o). One example of Uy
could be an operator applying the Hadamard gate H to each qubit
corresponding to an X operator in o, and the sequence of gates
HSZ to each qubit corresponding to a Y operator.

8 Error analysis and mitigation

Quantum error correction, or more often error mitigation is
essential for a reliable attainment of computations on a real
QPU.>** The quantum measurement, an integral element
of any algorithm, is by itself probabilistic. In particular,

This journal is © the Owner Societies 2020
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expectation values of an operator are estimated over a large
number (M) of discrete measurements. On a noiseless quantum
computer, the variance in the expectation value of the
Hamiltonian is limited by

Sk

() < (11)
where E? is the average of the squared energy. It defines
an uncertainty and can be resolved to an arbitrary level of
precision by increasing the number of measurements.

Importantly, the qubits may accumulate errors either due to
the imprecise manipulation or interactions with environment.
One of the major sources of errors that we have identified while
collecting the data from the quantum processors is the readout
error, emerging due to a certain probability that a qubit in a
true |0) state is measured as a |1) or vice versa. Repeated
measurements of prepared |0) or |1) states reveal transition
rates Wy, and wj, defined as the probability that |0)
is erroneously measured as |1) or |1) is measured as |0),
respectively. Moreover, the application of a particular circuit
element may result in an imperfect transformation of the qubit
state. The so-called gate noise is typically classified as a
separate source of error but for the purpose of this study we
have assumed it to be intrinsic to the readout error.

The procedure of error mitigation is based on the computa-
tion of the transition rates wy; and w;, and deriving an
appropriate expression to correct the measured expectation
values. In order to estimate these rates, we have explicitly
prepared the state |0) (|1)) 100000 times and counted
how many |1)s (]0)s) were measured, which determines the
probability that a bit flip occurs on a readout for a given
computational state of each qubit. The transition rates need
to be measured and updated often to ensure that the correction
scheme remains effective across the duration of the trials.
In fact, they are calculated every time before the optimization
step is reached to take into account changes in behavior of a
specific qubit. Fig. 5 reports the transition rates wy; and wy,
evaluated for each qubit while computing band energies.
The transition rates are sampled once per minute across the
duration of a 50 minute run. The rates corresponding to a flip
from |1) to |0) seem to oscillate with a period of roughly
18 minutes, suggesting that environmental effects indeed
modulate the behavior of qubits.

The measured expectation value, on a single qubit, can
be corrected using the following expression, derived in the
Supplementary Material (SM):

(60) = @) —p”

— (12)

with p* defined in terms of the transition probabilities for the
single qubit, p* = wy, £ wy,. The procedure can be easily
generalized to any number of qubits measured in the computa-
tional basis,* as follows:

= [ (19

26l
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Fig. 5 Transition rates estimated for a qubit on Rigetti's QPU. Blue circles
denote the rates from state |1) to state |0), while red circles correspond to
the rates from state |0) to state |1). The fitted trend in transitions suffering
from less noise is marked with the gray line. We believe these transitions to
arise due the environmental coupling.

where z; is the ith element of bitstring z, and z is among the
set of bitstrings of length n(Z3). The fraction of measured
bitstrings resulting in z is denoted as p(z). The correction have
been successfully applied to the quantum computation of two-
band electronic structure performed on Rigetti. Fig. 2(b) shows
a comparison between the corrected and uncorrected data
points (closed and open circles, respectively), demonstrating
that the errors have been significantly reduced.

9 Summary and perspectives

In summary, we have computed the band structure of silicon
along high symmetry lines in the momentum space using
quantum machine accessible via cloud. In order to perform
quantum simulations beyond the tractability of modern super-
computers, we need to establish methods of translating a
desired physical system to the language of qubits founded with
quantum logic gates. The VQE algorithm adapted from quan-
tum chemistry seems to be suitable for electronic structure
computation and remarkably, is able to leverage even minimal
quantum resources, as demonstrated by the results discussed
in this work. In analogy to early quantum chemistry computa-
tion tackling the problems with known analytical solutions,
we have selected the electronic structure of silicon which is
considered trivial in materials science. The presented studies
can be thus regarded as a first step towards scalable electronic
structure quantum computation that would not be limited to
a specific interaction or one particular quantum system. Even
though the analyzed Hamiltonian was quite simple, we are
convinced that adding interactions, field effects, or corrective
terms will be possible in the nearest future.
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