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Abstract

The FDE family is a group of logics a many-valued semantics for
each system of which is obtained from classical logic by adding to the
classical truth-values true and false any subset of {both, neither, inde-
terminate}, where indeterminate is an infectious value (any formula
containing a subformula with the value indeterminate itself has the
value indeterminate). In this paper, we see how to extend a version
of star semantics for the logics whose many-valued semantics lacks in-
determinate to star semantics for logics whose many-valued semantics
includes indeterminate. The equivalence of the many-valued semantics
and star semantics is established by way of a soundness and complete-
ness proof. The upshot of the novel semantics in terms of the applied
semantics of these logics, and specifically infectiousness, is explored,
settling on the idea that infectiousness concerns ineffability.

1 Introduction
The interesting relationships between strong Kleene logic (K3), the logic of
paradox (LP), and classical logic are well known, as are relationships between
these three logics and first degree entailment (FDE), the conditional-free
fragment of relevant logics.1 When ordered by strength, this quartet forms a
lattice structure: the standard semantics for LP has a truth-value in between

∗This paper appears with minor differences in Undergraduate Philosophy Journal of
Australasia 2.2 at upja.online

1Some classic references and contemporary discussions are Asenjo 1966; Beall 2017;
Beall 2018; Beall 2019; Belnap 2019a; Belnap 2019b; Dunn 1976; Omori and Wansing
2017; Priest 1979. Note that strong Kleene logic differs from the logic of paradox only by
the intermediate value not being designated (as would befit neither true nor false).
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true and false interpreted as both, K3 an intermediate truth-value interpreted
as neither, and FDE (in its four-valued form) has both of these.

More recently, Graham Priest has generalised this quartet to an octect
he calls ‘the FDE family’ which contains, in addition to the four logics men-
tioned, weak Kleene logic, some other ‘logics of nonsense’, and a logic devel-
oped by Priest and Jay Garfield in studying Nāgārjuna’s use of the catus.kot.i.2
In the present paper, I extend existing star semantics (a form of semantics
making use of an operator ∗ rather than extra truth-values) to cover the
whole family. This has implications for how we interpret the logics.

First, I introduce the FDE family and its many-valued semantics (§2).
Then I give generalisations of existing star semantics for four of the logics
in the family—first degree entailment, the logic of paradox, strong Kleene,
and classical logic. The main contribution of the present paper (§3) is novel
star semantics for the ‘i-variants’, logics in the family whose many-valued se-
mantics involves the truth-value i. After presenting and discussing the star
semantics for these logics, I show that the many-valued semantics and the
star semantics are equivalent (§4). I then consider how the star semantics
affects interpretations of these logics, and specifically of the idea of infectious-
ness (§5). I suggest that three interpretations of infectiousness (the nonsense
interpretation, the off-topic interpretation, and the emptiness interpretation)
converge with one another, with infectiousness capturing something like in-
effability.

2 The FDE family and i

2.1 The FDE family
The FDE family consists of two quartets, each with a lattice structure when
ordered by strength (L is properly stronger than K iff everything which
is K-valid is L-valid, but not the other way round). The FDE quartet has
first degree entailment (BN) as its weakest logic and classical logic (Ø) as its
strongest, with strong Kleene logic (N) and the logic of paradox (B) between
them. The other four logics are what I’ll call the i-variants of each of these
systems, logics obtained by adding the value i to a many-valued semantics,
which are similarly arranged, with each i-variant being weaker than its i-free
twin. Figure 1 shows the relationship between the logics.

Many of the logics in the FDE family are familiar to logicians. Table 1
records the details. t is the value true only, f false only, b both true and
false, n neither true nor false, and i the infectious indeterminate value (some

2Garfield and Priest 2009; Priest 2010; Priest 2014; Priest 2019.
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Figure 1: The FDE family ordered by strength

authors write ‘e’ for ‘empty’ for this value). The names of the logics in this
paper are taken from the values added to t, f to arrive at the many-valued
semantics for the logic in question.

Often called Truth-values Name in this paper
Classical logic t, f Ø
Logic of paradox t, f, b B
Strong Kleene t, f, n N
Weak Kleene t, f, i I
First degree entailment t, f, b, n BN
Sfde t, f, b, i BI
—— t, f, n, i NI
FDEφ t, f, b, n, i BNI

Table 1: Logics in the FDE family3

Throughout this paper, a many-valued semantics for one of these logics
is marked with a ‘+’ (e.g. BN+ is the many-valued semantics for first degree
entailment) whereas a star semantics is marked with a ‘*’ (e.g. BN* is the
star semantics for first degree entailment). This paper is concerned only with
the propositional systems.

Before we provide a many-valued semantics, let’s, for sake of explicit-
ness, define our vocabulary (which is the same no matter the sort of seman-
tics). The set of sentences or formulae Sent is defined inductively from the
set of propositional parameters Prop = {p, q, . . . , p1, . . . }. Where A, . . . are
metavariables standing for sentences:

• All propositional parameters are sentences.
3cf. Priest 2019, p. 281
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• If pAq is a sentence, then p¬Aq is a sentence.

• If pAq and pBq are sentences, then p(A ∨B)q is a sentence.

• If pAq and pBq are sentences, then p(A ∧B)q is a sentence.

The material conditional can be defined as an abbreviation: p(A ⊃
B)q := p(¬A ∨ B)q. It shall not be discussed in detail. For the most part,
logics in the FDE family are extended by other conditionals, e.g. strict and
relevant conditionals. In all but Ø, it fails to satisfy at least one of |= A ⊃ A
and A,A ⊃ B |= B.

2.2 Many-valued semantics
We turn to the many-valued semantics. A BNI+ model m : Sent → V is
a mapping of sentences to the truth-values V constrained by the evaluation
scheme, which is shown in table 2. (V is the union of {t, f} and some subset
of {b, n, i}, as in table 1.) The scheme for any logic with less than the full set
of truth-values just omits those entries in the tables containing truth-values
the logic lacks. In BN+ and stronger, the truth-values can be thought of
as forming a lattice as in figure 2,4 with conjunction as the greatest lower
bound, and disjunction as the least upper bound. (Negation is a De Morgan
involution with b, n, and e fixed points.)

¬
t f
f t
b b
n n
i i

∧ t f b n i
t t f b n i
f f f f f i
b b f b f i
n n f f n i
i i i i i i

∨ t f b n i
t t t t t i
f t f b n i
b t b b t i
n t n t n i
i i i i i i

Table 2: The connectives in BNI+

In systems with b ∈ V , the set of designated—roughly, at least true—
values D = {t, b}; otherwise D = {t}.

Definition. A model m : Sent→ V satisfies a sentence A iff m(A) ∈ D.

Definition. A model m satisfies set of sentences Γ iff for all A ∈ Γ, m
satisfies A.

4More generally, they form a bilattice (a set plus two lattice orderings) with a truth
ordering (shown) and an information ordering in which b carries maximal information, n
minimal information, and t, f incomparable with one another in between b and n.

5Belnap 2019a, p. 60.
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Figure 2: The truth (partial) order on {t, f, b, n}5

Validity is then informally understood as designation preservation over
all models.6 We can define a multiple-premiss, single-conclusion consequence
relation in the ordinary way: Γ A iff any model satisfying Γ satisfies A.
Formally:

Γ + A ⇐⇒ ∀m(∀B∈Γ(m(B) ∈ D) =⇒ (m(A) ∈ D).

3 Star semantics

3.1 The basic picture: BN*
Star semantics are a form of Kripke-style semantics developed for FDE by
Richard Sylvan and Val Plumwood.7 The basic insight is that instead of
adding truth-values, we add points (also called ‘situations’, ‘set-ups’, or
‘worlds’—though this term might have metaphysical undertones we want to
avoid) and make negation an intensional rather than extensional operator.
This results in a simpler, two-valued, evaluation scheme.

The following is a simplified form of the variant of star semantics for BN
I’ll call BN*.8 (The semantics in its most general form comes later.)

A model M is a triple 〈W,∗ ,〉 satisfying the following constraints:

• W = {@, . . . } is a set of points (@ is a designated point);
6A reviewer thought it a good idea for me to explain why I am not using the term

‘truth preservation’, which might be more familiar. Designation preservation concerns
the designated values t, b. Since there is a truth-value t for true only, truth preservation
might most naturally be thought of as preservation of the value t, but this isn’t what we
want: t is merely one of the values we are interested in preserving (the designated ones).
‘Designation preservation’ avoids this confusion.

7R. Routley and V. Routley 1972.
8This differs in some ways from standard contemporary presentations of FDE’s star

semantics. For those, see, e.g., Omori and Wansing 2017, p. 1024; Priest 2008, pp. 151–
152
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Figure 3: An example star model (A at a point means A fails there).

• ∗ : W → W is a function on points satisfying

– w∗∗ = w (involution); and

•  ⊆ W × Sent such that for w ∈ W :

– w  (A ∨B) iff w  A or w  B;
– w  (A ∧B) iff w  A and w  B;
– w  ¬A iff w∗ 6 A.

Figure 3 gives an example.

Definition. A point w (in some model) satisfies a sentence A iff w  A (in
that model).

Definition. A model M = 〈W,N,∗ ,〉 satisfies a sentence A iff @  A
(@ ∈ W ).

Definition. A model M satisfies set of sentences Γ iff for all A ∈ Γ, M
satisfies A. (Same as before.)

The definition of multiple-premiss, single-conclusion consequence is broadly
the same as before—Γ A iff any model satisfying Γ satisfies A—but differs
in terms of satisfaction of a sentence by a model:

Γ ∗ A ⇐⇒ ∀M(∀B∈Γ(@  B) =⇒ (@  A)).

3.2 Extensions of BN*
The semantic systems B*, N*, and Ø* are obtained from BN* as just pre-
sented by adding to the model structure and imposing additional constraints.
A model M is in this case a quintuple 〈W,G+, G−,∗ ,〉 constrained just as
a BN* model, but with the further constraints that

6



• G+, G− ⊆ W (G+ and G− are subsets of W );

• for w ∈ G+:

– w  A or w∗ 6 A (intensional exhaustion);9

• for w ∈ G−:

– w 6 A or w∗  A (intensional exclusion).

BN* in its more general form has this quintuple model structure and
satisfies these constraints, but places no further constraints on the models.

B* adds to BN* the constraint that

• @ ∈ G+,

ensuring (by exhaustion) that @ satisfies at least one of A, ¬A for all A,
ruling out the equivalent of n.10

N* adds to BN* the constraint that

• @ ∈ G−,

ensuring (by exclusion) that @ satisfies at most one of A, ¬A for all A, ruling
out the equivalent of b.

Ø* adds to BN* the constraint that

• @ ∈ G+ ∩G−,11

ensuring @ satisfies exactly one of A, ¬A for all A.12

9This principle comes from Beall 2009, p. 9.
10One will note that if w satisfies exhaustion, then w∗ will satisfy exclusion, and that if

w satisfies exclusion, w∗ will satisfy exhaustion.
11One can also get Ø* from the simpler BN* semantics by imposing constraint that ∗

satisfies w∗ = w (identity). This ensures that every point satisfies exactly one of A, ¬A
(ruling out the equivalents of b and n). Note that any identity function is an involutory
function, so we needn’t explicitly impose the constraint that w∗∗ = w.

12‘What about G+ ∪ G−?’, one might ask. The constraint that @ ∈ G+ ∪ G− should
yield symmetric three-valued logic (Field 2008, pp. 78–81). Importantly, A∧¬A |= B∨¬B,
which is valid in this logic but not BN, will turn out valid: any model with @ ∈ G+ will
have @  B ∨¬B, and no model with @ ∈ G− will have @  A∧¬A, so every model with
@ ∈ G+ ∪G− will either fail to satisfy A ∧ ¬A or satisfy B ∨ ¬B.
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3.3 Generalisation to the i-variants
We are now in a position to present the semantics for BNI*. It is simi-
lar to BN*, though with different constraints. A model M is a sextuple
〈W,N,G+, G−,∗ ,〉 satisfying the following constraints:

• W = {@, . . . };

• N,G+, G− ⊆ W ;

• ∗ : W → W is a function on points satisfying

– w∗∗ = w (involution);
– w ∈ N =⇒ w∗ ∈ N (closure: N is closed under ∗);

•  ⊆ W × Sent such that

– for w ∈ G+:
∗ for w ∈ N :
· w  A or w∗ 6 A;

– for w ∈ G−:
∗ w 6 A or w∗  A;

– for w ∈ N :
∗ w  (A ∨B) iff w  A or w  B,
∗ w  (A ∧B) iff w  A and w  B,
∗ w  ¬A iff w∗ 6 A; and

– for w 6∈ N :
∗ w  (A ∨ B) iff w  A or w  B and w acknowledges A and
B,
∗ w  (A∧B) iff w  A and w  B and w acknowledges A and
B,
∗ w  ¬A iff w∗ 6 A, and
∗ w  A iff w∗ 6 A.

Note that G+’s exhaustion condition holds for points in N (that is, G+∩N).

Definition. A point w acknowledges a sentence A iff w stands in  to A or
¬A.

8



The definition of validity is unaffected, and business is as usual for normal
points (those in N). Let’s unpack those conditions on the points outside of
N (abnormal points). The constraint that w  A iff w∗ 6 A ensures that
whenever A holds at w (w abnormal), A fails at w∗, and whenever A holds
at w∗, A fails at w. By the truth-conditions of negation, this means that
whenever A holds at an abnormal point, so does ¬A and whenever ¬A holds,
so does A.

The acknowledgement condition requires that a point w stands in  to
A, ¬A. By the constraint on negation, the condition simplifies to:

Definition. A point w acknowledges a sentence A iff w stands in  to A.

The above conditions for conjunction and disjunction are therefore equiv-
alent to:

• w  (A ∨B) iff w  A and w  B,

• w  (A ∧B) iff w  A and w  B.

The result is that for a formula B containing any of the connectives as
a major connective, an abnormal point w satisfies B just in case it satisfies
all of the subformulae which are arguments of the main connective, and each
of those are satisfied just in case the same condition holds with respect to
their main connective (or, if the subformula in question is a propositional
parameter p, w satisfies p). Conversely, should any propositional parame-
ter p occurring in a formula B be unsatisfied at an abnormal point w, the
smallest subformula of B containing p as an argument of a connective will
be unsatisfied by w (if there is one—if not, B fails at w trivially), and the
smallest subformula of B containing this subformula as an argument of a
connective shall likewise be unsatisfied by w (if there is one, else the buck
stops here), . . . , and so B shall itself be unsatisfied by w.

All this is to say that nonsatisfaction by an abnormal point is infectious—
the failure of any subformula of a formula at an abnormal point ensures the
failure of that formula there.

Note well that this more general model structure holds for BN*, B*, and
N* too in their most general form, but is moot, since there are no abnormal
points (N = W so W − N = ∅)—hence we can use the simpler semantics
without any worries. From these more general models we obtain those of
BN* and its extensions by imposing the constraint that @ ∈ N .

To obtain BI*, NI*, and I* from BNI*, impose the same constraints
that when imposed on BN* yield B*, N*, an Ø*, respectively:

9



logic constraint
BI* @ ∈ G+

NI* @ ∈ G−
I* @ ∈ G+ ∩G−

4 Equivalence of many-valued and star se-
mantics

In this section, we see that the star semantics and the many-valued semantics
are equivalent for the logics BNI, BI, NI, and I. (I don’t discuss the other
logics in detail for sake of brevity.)

4.1 Natural deduction for the FDE family
In recent work, Graham Priest provides natural deduction systems for the
FDE family.13 Let us mark a natural deduction system of this kind with a
subscript ‘G’ (e.g. BNG is the natural deduction system for BN). Priest
has proved these systems sound and complete relative to the many-valued
semantics for all the logics in the FDE family. Soundness and completeness
results relative to the star semantics then establish the equivalence of the
star and many-valued semantics for the logic in question.

In the natural deduction systems, a basic deduction in the system is of the
form A; complex deductions are formed by applying rules to basic deductions
and other complex deductions. Then Γ B iff B is at the end of a deduction
whose undischarged assumptions (if there are any) are all in Γ. For example,
{A} A since A is a deduction whose undischarged assumptions are only in
{A}.

The rules are given in table 3, in which a double line means that a rule
goes both ways, φ(A) may be any sentence containing all of the propositional
parameters that occur within A (Priest’s notation for this is ‘A†’), and [A]n is
an assumption discharged by the rule labelled with ‘n’. Systems for stronger
i-variants add rules from table 4:

logic extra rules
BIG wxm
NIG efq
IG wxm, efq

In what follows, I shall write the inverse of the star function thus: ∗w = u
iff u∗ = w—sc. (∗w)∗ = ∗(w∗) = w.

13Priest 2019.
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dn: A
¬¬A

dem: ¬(A ∧B)
¬A ∨ ¬B

¬(A ∨B)
¬A ∧ ¬B

adj: A B
A ∧B s: A ∧B

A
A ∧B
B

wad: A φ(B)
A ∨B

φ(A) B

A ∨B

sc: A ∨B
[A]1
...
C

[B]2
...
C

1,2
C

Table 3: Priest’s rules for BNIG

efq: A ∧ ¬A
B

wxm: φ(A)
A ∨ ¬A

Table 4: The extra rules for stronger i-variants

4.2 Soundness
Theorem. Γ BNIG

A only if Γ BNI∗ A. Soundness for BNI.

Proof. By recursion: the base case shows that the basic deduction (A A)
is valid, and the step cases show that satisfaction carries over each rule. Base
case: A A only if A A. Take arbitrary model M ; if M satisfies A then
@  A, which is the conclusion.

The general idea for the step cases is that we start with a deduction

Γ1 Γ2
... ... · · ·

input1 input2
rule output

and for each rule show that any model M satisfies Γ = Γ1 ∪ Γ2 ∪ · · · (and
the rule inputs thereby) only if M satisfies the rule output. I will (except
in the case of sc) leave the deduction from Γ to the rule inputs implicit for
sake of brevity and simplicity, and show that M satisfies the inputs only if
it satisfies the outputs. (Another way to think of this is to restrict M to
models satisfying Γ.)

• dn↑: ¬¬A A. Suppose arbitrary M satisfies ¬¬A. Then @  ¬¬A.
By the truth-conditions of ¬, @  ¬¬A iff @∗ 6 ¬A iff @∗∗  A. By
involution, @∗∗ = @, so @  A.
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• dn↓: A ¬¬A. Suppose arbitrary M satisfies A. Then @  A. By
the truth-conditions of ¬, @  A iff ∗@ 6 ¬A iff ∗∗@  ¬¬A. By
involution, ∗∗@ = (∗∗@)∗∗ = @, so @  ¬¬A.

• demL ↓: ¬(A ∧ B) ¬A ∨ ¬B. Take arbitrary M such that @ 
¬(A∧B). If @ 6∈ N , @  ¬(A∧B) iff @  A∧B iff @  A and @  B
iff @  ¬A and @  ¬B iff @  ¬A ∨ ¬B. In case @ ∈ N , we have
@∗ 6 A ∧ B; so, by the truth-conditions of ∧, one of A,B must fail at
@∗: @ 6 A or @ 6 B. By the truth-conditions of ¬, in former case
@  ¬A, so by the truth-conditions of ∨, @  ¬A∨¬B; in latter case,
@  ¬B and thus @  ¬A ∨ ¬B.

• demL ↑: ¬A ∨ ¬B ¬(A ∧ B). Take arbitrary M such that @ 
¬A ∨ ¬B. The abnormal case is trivial. If @ ∈ N , either @  ¬A or
@  ¬B. From these follow, by the truth-conditions of ¬, @∗ 6 A and
@∗ 6 B, respectively. In either case, the truth-conditions for A∧B are
not met at @∗, so @∗ 6 A ∧B. But @  ¬(A ∧B) iff @∗ 6 A ∧B.

• demR ↓: ¬(A ∨ B) ¬A ∧ ¬B. Take arbitrary M such that @ 
¬(A∨B). The abnormal case is trivial. If @ ∈ N , we have @∗ 6 A∨B,
so, by the truth-conditions of ∨, @∗ 6 A and @∗ 6 B. By the truth-
conditions of ¬, @  ¬A and @  ¬B, and consequently @  ¬A∧¬B.

• demR ↑: ¬A ∧ ¬B ¬(A ∨ B). Take arbitrary M such that @ 
¬A ∧ ¬B. The abnormal case is trivial. If @ ∈ N , truth-conditions of
∧ yield that @  ¬A and @  ¬B, so @∗ 6 A and @∗ 6 B. Therefore
the truth-conditions of A ∨ B cannot be met at @∗, so @∗ 6 A ∨ B,
and thus, by the truth-conditions of ¬, @  ¬(A ∨B).

• adj: {A,B} A ∧ B. Take arbitrary M satisfying {A,B}; M then
satisfies A and satisfies B, so @  A and @  B. By the truth-
conditions of ∧, @  A ∧B.

• s: A ∧ B A. Take arbitrary M such that @  A ∧ B. By the
truth-conditions of ∧, @  A. The B case is analogous.

• wad: {A, φ(B)} A ∨ B. Take arbitrary M such that @  A and
@  φ(B). If @ ∈ N , then, by the truth-conditions of ∨, @  A ∨ B.
If @ 6∈ N , then, by definition of φ(), @ stands in  to all propositional
parameters occurring in B (call this set of sentences Φ0). Let Φn+1
be defined inductively as the union of Φn with the set of sentences
formed by negating, conjoining, or disjoining any of the sentences in
Φn, and let Φ be the union of Φn for all n. By the truth-conditions

12



of operators at abnormal points (given the acknowledgement condition
and the constraint that w  A iff w∗ 6 A), if @ stands in  to all the
sentences in Φn, @ stands in  to all the sentences in Φn+1. Since @
stands in  to everything in Φ0 and B ∈ Φ, @  B, and thus, by the
truth-conditions of ∨, @  A ∨B. The {B, φ(A)} case is analogous.

• sc: Priest has a proof that works just as well for us.14 To summarise,
suppose we have Γ1 A ∨ B, Γ2 ∪ {A} C, and Γ3 ∪ {B} C.
Assume for recursion that Γ1 ∪ Γ2 ∪ Γ3 ⊆ ∆ and that Γ1 A ∨ B,
Γ2 ∪{A} C, and Γ3 ∪{B} C. ∆ A∨B (since is monotonic),
so, by the truth-conditions of ∨, ∆ A or ∆ B, from each of which
follows ∆ C (since ∆ ∪ {A} C and ∆ ∪ {B} C).

Theorem. Γ BIG
A only if Γ BI∗ A. Soundness for BI.

Proof. We extend BNIG with wxm:

• wxm: φ(A) A ∨ ¬A. Suppose arbitrary M satisfies φ(A), so @ 
φ(A). If @ 6∈ N , by definition of φ(), @ stands in  to all propositional
parameters occurring in A (this set Φ0). Construct Φ as in wad. Then
since @ stands in  to all the sentences in Φ0, and A ∈ Φ (and thus
¬A ∈ Φ), we have @  A and @  ¬A and, by the truth-conditions of
∨, @  A ∨ ¬A.
In the case of @ ∈ N , we start with the fact that, since @ ∈ G+,
either @  A or @∗ 6 A. If @  A, @  A ∨ ¬A follows by the
truth-conditions for ∨. If @∗ 6 A, @  ¬A and so @  A ∨ ¬A.

Theorem. Γ NIG
A only if Γ NI∗ A. Soundness for NI.

Proof. We extend BNIG with efq:

• efq: A ∧ ¬A B. Suppose not: then there’s some model M such that
@  A ∧ ¬A, but @ 6 B. By the truth-conditions of ∧, @  A and
@  ¬A. But @  ¬A only if @∗ 6 A. Since NI* models require
w 6 A or w∗  A (since @ ∈ G−), M isn’t a model.

Theorem. Γ IG
A only if Γ I∗ A. Soundness for I.

Proof. We extend BNIG with efq and wxm.

For soundness results for BN, B, N, and Ø, we’d need to check the
soundness of the extra rules relative to the relevant models.15

14Ibid., pp. 282–283.
15See ibid., pp. 286–289.
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4.3 Completeness
Lemma. Henkin construction: Γ 6 A only if there’s some Π ⊇ Γ such that
Π 6 A; Π B only if B ∈ Π (closure); and Π B ∨ C only if Π B or
Π C (primeness).

Proof. Here I’ll summarise Priest’s proof.16 The formulae Bi are enumerated
and Π (a Henkin theory) is constructed from Γ = Π0 by taking the union of
each Πi defined as Πn+1 = Πn ∪ {Bn} iff Πn ∪ {Bn} 6 A, and Πn+1 = Πn

otherwise. Π 6 A follows from the fact that Π is compact. For closure,
suppose for reductio that Π Bn but Bn 6∈ Π; but then, by construction,
Πn∪{Bn} A, so Π A. For primeness, suppose Π Bn∨Bm but Bn 6∈ Π
and Bm 6∈ Π. Then Πn ∪ {Bn} A and Πm ∪ {Bm} A, so Π A.

Lemma. Antitheory construction: Let Π be a Henkin theory. There’s some
Σ extending {¬B | B 6∈ Π} such that Σ 6 C for all C in {C | ¬C ∈ Π};
Σ D only if D ∈ Σ (closure); and Σ D ∨ E only if Σ D or Σ E
(primeness). Call Σ the antitheory twin of Π.

Proof. Enumerate the formulae Bi and construct Σ from {¬C | C 6∈ Π} = Σ0
as in the Henkin construction but the with inductive definition of Σn changed
to Σn+1 = Σn ∪ {Bn} iff for all D ∈ {D | ¬D ∈ Π}, Σn ∪ {Bn} 6 D,
and Σn+1 = Σn otherwise. Closure, primeness, and that Σ 6 D for all
D ∈ {D | ¬D ∈ Π} are analogous to the Henkin case.

Lemma. Let Π be a Henkin theory and Σ its antitheory. Then Π is the
antitheory of Σ.

Proof. Let Φ be the antitheory of Σ, so we need to show that Φ = Π: A ∈ Π
iff A ∈ Φ. For the left-to-right conditional, suppose A ∈ Π: then, by closure
via dn, ¬¬A ∈ Π. By the construction of Σ, ¬A 6∈ Σ and hence, by the
construction of Φ, ¬¬A ∈ Φ, from which we get A ∈ Φ by closure via dn.
The right-to-left conditional is similar.

Theorem. Γ BNI∗ A only if Γ BNIG
A. Completeness for BNI.

Proof. By contraposition: Γ 6 A only if Γ 6 A. Let Π be a Henkin theory
extending Γ, and let Σ be the antitheory twin of Π. We then construct
a model M = 〈W,N,G+, G−,∗ ,〉 with W = {@,@∗} constrained in the
following way:17

16Ibid., p. 283.
17For discussion on the size of models, I’m grateful to an anonymous reviewer.
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• @  B iff B ∈ Π;

• @∗  B iff B ∈ Σ;

• @ ∈ N iff there’s some C such that φ(C) ∈ Π but C 6∈ Π;

• @∗ ∈ N iff there’s some C such that φ(C) ∈ Π but C 6∈ Σ;

We now need to check that M really is a model. If so, M is a model
satisfying Γ but not A, so Γ 6 A (as wanted). Specifically we need to
show that that  satisfies the truth-conditions of the connectives. We do so
by recursion on the truth-conditions of ∧ and ¬, with A ∨ B equivalent to
¬(¬A ∧ ¬B).

The base case is trivial, since  imposes no constraints on the assignment
of propositional parameters. The connectives need to satisfy:

• w  A ∧B iff w  A and w  B

• w  ¬A iff w∗ 6 A

In the following I use @ and Π (matters are similar for @∗ and Σ).

• ∧: @  A ∧ B iff @  A and @  B—viz. A ∧ B ∈ Π iff A ∈ Π and
B ∈ Π. Left-to-right is by closure via s. Right-to-left is by closure via
adj.

• ¬: @  ¬A iff @∗ 6 A—viz. ¬A ∈ Π iff A 6∈ Σ. Left-to-right is from
the construction of Σ by closure: since Σ 6 A for {A | ¬A ∈ Π}, each
such A 6∈ Σ. Right-to-left is by the fact that Π and Σ are antitheory
twins.

Since A ∨B is equivalent to ¬(¬A ∧ ¬B), we can define ∨ in terms of ∧
and ¬, meaning there’s no need for a separate case for ∨. The deductions
are simple.18 Since the rules are sound, they show semantic equivalence too.

18

¬(¬A ∧ ¬B)
¬¬A ∨ ¬¬B

[¬¬A]1

A

[¬¬B]2

B 1,2
A ∨B

A ∨B

[A]1

¬¬A
¬¬A ∨ ¬¬B

[B]2

¬¬B
¬¬A ∨ ¬¬B 1,2

¬¬A ∨ ¬¬B
¬(¬A ∧ ¬B)
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Theorem. Γ BI∗ A only if Γ BIG
A. Completeness for BI.

Proof. For wxm, we add the constraint to M that @ ∈ G+. The truth
conditions are unaffected.

Theorem. Γ NI∗ A only if Γ NIG
A. Completeness for NI.

Proof. For efq, we add the constraint to M that @ ∈ G−. The truth condi-
tions are unaffected.

Theorem. Γ I∗ A only if Γ IG
A. Completeness for I.

Proof. For both wxm and efq, we add both constraints, so @ ∈ G+∩G−.

5 From pure to applied semantics

5.1 What does it all mean?
Up until now, we have been broadly concerned with the ‘pure’ semantics
of the FDE family and of infectiousness. Let us now turn to the ‘applied’
semantics. A pertinent motivation for considering this is given by reflecting
on what the semantics mean—really mean. Johan van Benthem puts this
concern bluntly for star semantics when he says: ‘[p]ending further explana-
tion of the nature of [the * operator], one cannot even begin to say if [star
semantics] is more than just a formal trick’.19

What is at stake in the choice of semantics? Briefly, one important dif-
ference between the many-valued and star semantics concerns what is the
most natural interpretation of negation. On the star semantics it is natu-
ral to think of negation as an intensional exclusion operator : the fact that
¬A holds at w is grounded in the fact that A fails at w∗, w∗ being the
point (‘world’, with all its metaphysical import, is perhaps appropriate here)
recording what is compatible with w.20 The many-valued semantics would
seem to retain the classical interpretation of negation as the operator that
makes the (at least) true (at least) false and the (at least) false (at least)
true, but admits as logical possibilities those cases where sentences are both
true and false and those where sentences are neither true nor false (and the
strange cases, too).

Detailed discussion of each of these interpretations is outside the scope
of this paper, but I would like to take the opportunity to briefly gesture in
the direction of negation as an exclusion operator, which I hope will frame

19Van Benthem 1979, p. 341.
20Meyer and Martin 1986, pp. 306–310.
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discussion in the rest of this section. We first note that the two interpretations
are equivalent in terms of when something’s true/false, at least when we think
of falsity as truth of negation (which is widely-held).21 The consideration
in favour of negation as exclusion is then the fact that this interpretation
explains why falsity is truth of negation, whereas the classical interpretation
says nothing beyond that falsity is truth of negation, and is thus open to the
charge of adhocery. A is false at w when ¬A is true at w because w  ¬A
means w∗ 6 A—that is, A fails to be compatible with the way things are at
w, so it’s false.

So, the star semantics has something going for it. But how much has it
going for it? Let us consider some interpretations of the i value, and try to
make sense of them in terms of the semantics presented in this paper.

Three of the candidates for an interpretation of logics containing i are:

• the nonsense interpretation,

• the off-topic interpretation, and

• the emptiness interpretation.

5.2 Nonsense
Perhaps the most prominent interpretation of i is due to Bochvar.22 On the
nonsense interpretation, a sentence assigned i is meaningless or senseless.
This senselessness, it’s thought, is inherited by any sentence in which it
occurs. Let’s take the liar sentence (‘this sentence is false’) as our candidate
for the bearer of our infectious value. Infectiousness means the following are
meaningless:

• ‘It’s not the case that this setence is false’

• ‘Hillary climbed Everest and this sentence is false’

• ‘Hillary climbed Everest or this sentence is false’

How is this thought extended to the star semantics? A natural thought
is as follows. To fail at one of the abnormal points is to be senseless—it’s
just like being i. When we are in a context in which the meaningfulness of
our expressions is guaranteed, then, we can constrain our models to those in
which @ is normal. When our expressions may lack meaning/sense, @ may
be abnormal.

21Ibid., 308, do not hold this, thinking of falsity as failure at a point.
22Bochvar and Bergmann 1981.
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But what grounds have we to say that this nonsense value is infectious?
In the case of paradoxes like the liar, this is far from obvious. Bochvar takes
these paradoxes as paradigm examples of meaningless sentences (the logic
of his concern being I),23 but in N or weaker or B or weaker indeterminate
doesn’t seem the most obvious assignment. The liar sentence looks like it
should be both true and false, and its twin (‘this sentence is true’) looks like
it should be neither true nor false, and the thought that those things which
walk and quack like ducks are probably ducks is a compelling one.24

Even if the liar and related puzzles are not genuinely antinomous in the
sense indeterminate requires, there may well be other candidates, but it’s not
altogether obvious what these would be. This would seem to leave i-variant
infectious logics insufficiently motivated with respect to their i-free unin-
fectious twins, offering little in the way of explanatory resources we didn’t
already have—that pigs could, for all we know, fly is not a strong reason to
revise our folk theory of porcine aviation. (But a flying pig is.)

The more underlying worry here is that if we can’t sensibly talk about
something (in the way required for infectiousness to apply), why are there
sentences in our language about it? Why can we conjoin, disjoin, and negate
it? We leave this thought for now, and shall return to it later.

5.3 Incongruity
The off-topic interpretation is a more recent suggestion of Jc Beall’s, for-
mulated in response to weaknesses in the nonsense interpretation.25 On this
account, the truth-values go:

• t: true (and not false) and on-topic;

• f : false (and not true) and on-topic;

• b: both true and false, and on-topic;

• n: neither true nor false, and on-topic;

• i: off-topic.

Suppose we have it that Marmite is tasty. Does it follow that Marmite is
tasty or Wellington is in New Zealand? In the i-variants, no. But why not?
On the off-topic interpretation, while truth is preserved over the inference,

23Ibid., pp. 105–107.
24Beall 2018, pp. 48–49.
25Beall 2016.

18



topic is not. The topic of ‘Marmite is tasty’ is Marmite or tasty food or sim-
ilar, whereas the topic of ‘Marmite is tasty or Wellington is in New Zealand’
is some compound or product of the topics of the disjuncts.

The application to the star semantics is analogous to the nonsense in-
terpretation case. The normal points are ones where everything is on-topic,
and the abnormal points ones where things may be off-topic. When @ is
constrained to the normal points, we are guaranteed to be on-topic; when it
isn’t, we aren’t.

On such an interpretation, it is natural to think of points (normal points,
at any rate) as theories concerning some topic, and classes of points as collec-
tions of theories concerning that topic. We might add the qualification that
a theory may not be exhaustive with respect to its topic, so let’s concern
ourselves only with exhaustive theories.26

It is then natural to think of a model as a an exhaustive theoretical position
with respect to some topic: @ is the correct theory of the topic according
to that position, other normal points are rival theories concerning the topic,
regarded by that position as incorrect, and abnormal points are theories
which are off-topic by the lights of that position.

Let us consider the topic that encompasses everything. There will be
a class of exhaustive theoretical positions (models) concerned with such a
topic, and among such a class of exhaustive theoretical positions, there will
be a correct one—the theory of everything. @ will be the way that everything
is and other normal points will be ways that everything isn’t. But what are
we to say about abnormal points?

When faced with such a question, two options seem salient. The first
is to say that such a model will have no abnormal points, since it concerns
everything, and everything means everything. Such an answer would yield
that the correct logic, insofar as logic is concerned with ‘absolute generality’
or ‘universal closure’, is BN (FDE) or one of its extensions—at any rate, not
an infectious logic. Indeed, Beall has made an argument along such lines for
BN.27 (Note that this wouldn’t make infectious logics useless, since we are
nearly always concerned with less than everything, so things might still be
off-topic with respect to what we’re interested in.)

The second is to countenance the idea that there are certain matters
which are off-topic with respect to everything. This is difficult to get one’s

26What to say about inexhaustive theories on this sort of account is not totally clear. We
could have it such that claims w doesn’t decide A are such that w 6 A and w∗  A (neither
true nor false), but then it is unclear how to draw the distinction between matters a theory
makes no decision on, and matters a theory holds are underdetermined or otherwise neither
true nor false.

27Beall 2018; Beall 2019.
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head around, but it’s to be expected that the theory of everything seems
strange in certain respects. But even stranger is the idea that @ could be
abnormal (as the i-variant models allow). To these thoughts we shall return.

5.4 Emptiness
It has been suggested that the catus.kot.i (‘four corners’ or tetralemma) of
classical Buddhist philosophy corresponds to BN.28 The catus.kot.i’s exclusive
corners (and their BN counterparts) are:

corner BN+ BN*
being A m(A) = t @  A, @∗  A;

not being A m(A) = f @ 6 A, @∗ 6 A;
both being and not being A m(A) = b @  A, @∗ 6 A;
neither being nor not being A m(A) = n @ 6 A, @∗  A

But Nāgārjuna, founder of the Madhyamaka school, sometimes rejects all
the corners—the fourfold negation—:

Having passed into nirvana, the Victorious Conqueror
Is neither said to be existent
Nor said to be nonexistent.
Neither both nor neither are said.29

Garfield and Priest analyse this as demanding another truth-value—our
i, yielding BNI+—to formally capture the Madhyamaka concept of śūnyatā
(emptiness, the absence of svabhāva or essence).30 Madhyamaka metaphysics
holds that ultimate reality (linked to ultimate truth) exhibits emptiness in this
sense—everything is grounded (in a certain sense) in other things. Conven-
tional reality (linked to conventional truth) isn’t empty, since we speak and
think of things as having essence. The picture is nihilistic with respect to the
ultimate truth of our views while allowing them some sort of (conventional)
truth, forming a middle way (three guesses what ‘Madhyamaka’ translates
to). So the trick, roughly, on the many-valued semantics is to assign i when
we’re speaking of ultimate reality, which defies theorisation, and assign the
normal four truth values when we’re talking about conventional matters.31

28Priest 2010.
29Nāgārjuna and Garfield 1995, §21.17.
30Garfield and Priest 2009; Priest 2010, §4.
31Ibid., §5, thinks the picture is ultimately more complicated, and we end up with a

five-valued plurivalent logic.
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The story here for the star semantics is similar too. Normal points are
linked to effable conventional reality, and abnormal points to ineffable ulti-
mate reality. A sentence evaluated at a normal point concerns conventional
reality, and, at an abnormal point, ultimate reality. Since ultimate reality
is ineffable, abnormal points won’t satisfy sentences said of it. Hence infec-
tiousness is motivated. So, when we allow ourselves to speak of ultimate
reality, @ may be abnormal.

5.5 Disjunction and its simulacra
Hitoshi Omori and Damian Szmuc have argued that one interesting feature of
infectious logics (when they are given a plurivalent semantics) is this: while
their conjunction operator does capture genuine conjunction, their disjunc-
tion operator does not capture genuine disjunction.32 To see the force of this
claim, consider the fact that A ∧ B is at least true iff A is at least true and
B is at least true, but it’s not necessarily the case that A∨B is at least true
iff A is at least true or B is at least true, since one of A, B could be at least
true, while the other is infectiously untrue—in which case A ∨ B wouldn’t
be at least true.

That the disjunction operator doesn’t capture genuine disjunction—doesn’t
respect the truth-conditions of disjunction—seems even more stark on the
star semantics, since the truth-conditions for A ∨B at abnormal points are

• w  A ∨B iff w  A and w  B,

equivalent to to those of A ∧ B. To put it baldly, disjunctions at abnormal
points are effectively conjunctions:

• w  A ∨B iff w  A ∧B.33

5.6 Putting these thoughts together
We saw that infectiousness (and that to which it applies), on the pure seman-
tics given in this paper, can be interpreted as capturing some sort of meaning-
lessness or senselessness (on the nonsense interpretation), falling outside the
scope of the most general topic (on the off-topic interpretation), and taking
a view on ineffable ultimate reality (on the emptiness interpretation). But
we were left with two headscratchers: what are the candidates for senseless

32Omori and Szmuc 2017, pp. 279–281; for discussion of plurivalence, see Priest 2014.
33One might wonder whether something funny is going on with negation, too. Omori

and Szmuc point out that it satisfies the ¬A is at least true/false iff A is at least false/true
condition, and it satisfies w  ¬A iff w∗ 6 A too. So all seems fine here.
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sentences, if not the traditional paradoxes, and how are we to understand
abnormal points in our theory of everything?

These thoughts, which seemed puzzling in isolation, seem to fit together
now. This is to say that the three interpretations considered, on the star
semantics, seem to converge: What is senseless? Answer: that which is off-
topic with respect to the absolutely general topic according to the correct
absolutely general exhaustive theoretical position. But what could that be?
Answer: ineffable ultimate reality. (According to the real world, on such a
picture, @ would be abnormal.)

What this would seem to suggest is that there is something in this pic-
ture, and infectious logics are modelling something interesting. Three broken
clocks do not often agree on the time.

However, interesting as that which is infectious seems, so too does there
just seem to be something wrong with it—if something is infectious, you
probably don’t want it. This intuition would seem vindicated by the first
option we considered about what to say about abnormal points with respect
to the theory of everyting, and by Omori and Szmuc’s worries about dis-
junction. These thoughts fit together too: disjunction in infectious logic is
not the right account of disjunction because infectious logic is not the right
account of logic: logic is interested in relations between sentences in true
theories about some topic or other (or perhaps about the absolutely general
topic in particular, depending on how we think of topic-neutrality).34

Here we find ourselves back with the distinction between many-valued
and star semantics, for an interesting difference here emerges in terms of
what it might be appropriate to call their quarantine strategies. How do we
keep this abnormal infectious stuff from tearing down the logical edifice (and
everything else with it)? In less dramatic language, how do we quarantine
such a pathosis?

The star semantics, in a sense, handles quarantine all by itself. As one will
recall, points in a star model for an infectious logic are split into the normal
points, where disjunction is disjunction and all is well with the world, and
the abnormal points, where things get quite strange. Mathematicians like
to describe this sort of distinction as that between the well-behaved and the
pathological, the latter of which seeming particularly appropriate terminology
to describe infectious logics.

In the star semantics a sharp line is drawn between well-behaved points
and pathological points—the abnormality is confined to W − N . In the
many-valued semantics, however, models lack such a structural difference,
and sentences assigned i are treated like everything else—they pathologise

34For an account of logic along these lines, see Beall 2018; Beall 2019.
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the whole model, so to speak. Quarantining then must be done at the level
of models. (Maybe this difference counts as some sort of reason in favour of
a star semantical treatment of infectiousness, and, by extension, negation as
an exclusion operator, or perhaps it’s just an interesting observation.)

6 Conclusion
In this paper, I’ve extended star semantics to the infectious logics in the
FDE family, mirroring the existing many-valued semantics. Discussion of
the interpretation of infectiousness started with the idea that both what in-
fectiousness is and what is infectious seem of significant philosophical interest
but also very difficult to pin down, and came to rest on the idea that three
prominent interpretations of infectious logics (when adapted to match the
star semantics) seem to converge on taking infectiousness to concern some-
thing like ineffability. There’s gold in them thar hills, but there aren’t really
any hills.35
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