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Abstract

In this paper, we propose GreenSlot, a scheduler for parallel batch jobs in a data-

center powered by a photovoltaic solar array and the electrical grid (as a backup).

GreenSlot predicts the amount of solar energy that will be available in the near fu-

ture, and schedules the workload to maximize the green energy consumption while

meeting the jobs’ deadlines. If grid energy must be used to avoid deadline viola-

tions, the scheduler selects times when it is cheap. Our results for both scientific

computing workloads and data processing workloads demonstrate that GreenSlot

can increase solar energy consumption by up to 117% and decrease energy cost by

up to 39%, compared to conventional schedulers. Based on these positive results,

we conclude that green datacenters and green-energy-aware scheduling can have a

significant role in building a more sustainable IT ecosystem.

Keywords: Green energy, energy-aware job scheduling, datacenters.

1. Introduction

Datacenters consume an enormous amount of energy: estimates for 2010 in-

dicate that they consume around 1.5% of the total electricity used world-wide [1].

Electricity cost thus represents a significant burden for datacenter operators. More-

over, this electricity consumption contributes to climate change, since most of the

electricity is produced by burning fossil fuels. A 2008 study estimated world-wide

datacenters to emit 116 million metric tons of carbon, slightly more than the entire

country of Nigeria [2]. We refer to the energy produced by carbon-intensive means

and distributed via the electrical grid as “brown energy”.

✩This submission is a modified and extended version of “GreenSlot: Scheduling Energy Con-

sumption in Green Datacenters”, which was originally published in SC’11.
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These cost and environmental concerns have been prompting many “green”

energy initiatives. One initiative is for datacenters to either generate their own re-

newable energy or draw power directly from a nearby renewable power plant. This

approach is being implemented by many small and medium datacenters (partially

or completely) powered by solar and/or wind energy all over the globe [3]. Larger

companies are also investing in this direction. For example, Apple is building a

40MW solar array for its North Carolina datacenter [4]. McGraw-Hill has recently

completed a 14MW solar array for its datacenter [5].

We expect that this trend will continue, as these technologies’ capital costs

keep decreasing (e.g., the inflation-adjusted cost of solar panels has decreased by

10-fold in the last three decades [6]) and governments continue to provide generous

incentives for green power generation (e.g., federal and state incentives for solar

power in the United States can reduce capital costs by up to 60% [7]). In fact,

the trend may actually accelerate if carbon taxes and/or cap-and-trade schemes

spread from Europe and Asia to the rest of the world. For example, a cap-and-

trade scheme in the UK imposes caps on the brown energy consumption of large

consumers [8]. We present a more extensive discussion of the feasibility of using

green energy in datacenters in [9].

We argue that the ideal design for green datacenters connects them to both the

solar/wind energy source and the electrical grid (as a backup). The major research

challenge with solar and wind energy is that, differently from brown energy drawn

from the grid, it is not always available. For example, photovoltaic (PV) solar

energy is only available during the day and the amount produced depends on the

weather and the season. Datacenters sometimes can “bank” green energy in batter-

ies or on the grid itself (called net metering) to mitigate this variability. However,

both batteries and net metering have problems: (1) batteries involve energy losses

due to internal resistance and self-discharge; (2) the cost of purchasing and main-

taining batteries can dominate in a solar system [9, 10]; (3) today’s most popular

battery technology for datacenters (lead-acid) uses chemicals that are harmful to

the environment; (4) net metering incurs energy losses due to the voltage transfor-

mation involved in feeding the green energy into the grid; (5) net metering is not

available in many parts of the world; and (6) where net metering is available, the

power company may pay less than the retail electricity price for the green energy.

Thus, in this paper, we investigate how to manage a datacenter’s computational

workload to match the green energy supply. In particular, we design a scheduler

for parallel batch jobs, called GreenSlot, in a datacenter powered by an array of

PV solar panels and the electrical grid. Jobs submitted to GreenSlot come with

user-specified numbers of nodes, expected running times, and deadlines by which

they shall have completed. The deadline information provides the flexibility that

GreenSlot needs to manage energy consumption aggressively.
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GreenSlot seeks to maximize the green energy consumption (or equivalently

to minimize the brown energy consumption) while meeting the jobs’ deadlines. If

brown energy must be used to avoid deadline violations, it schedules jobs for times

when brown energy is cheap. In more detail, GreenSlot combines solar energy

prediction, energy-cost-awareness, and least slack time first (LSTF) job ordering

[11]. It first predicts the amount of solar energy that will likely be available in the

future, using historical data and weather forecasts. Based on its predictions and

the information provided by users, it schedules the workload by creating resource

reservations into the future. When a job’s scheduled start time arrives, GreenSlot

dispatches it for execution. Clearly, GreenSlot differs significantly from most job

schedulers, which seek to reduce completion times or bounded slowdown.

We implement two versions of GreenSlot: one extends the SLURM scheduler

for Linux [12], and the second extends the MapReduce scheduler of Hadoop [13].

We use real scientific workloads from the Life Sciences Department of the Barcelona

Supercomputing Center to evaluate our SLURM extension and a Facebook-inspired

workload to evaluate our Hadoop extension. Our results demonstrate that Green-

Slot accurately predicts the amount of solar energy to become available. The re-

sults also demonstrate that GreenSlot can increase green energy consumption and

decrease energy cost by up to 117% and 39%.

Based on these positive results, we conclude that green datacenters and green-

energy-aware scheduling can have a significant role in building a more sustainable

Information Technology ecosystem.

In summary, we make the following contributions: (1) Introduce GreenSlot,

a batch job scheduler for datacenters partly powered by solar energy; (2) Imple-

ment and evaluate GreenSlot in two different environments: a scientific computing

cluster and a data-processing MapReduce cluster; and (3) Present extensive results

isolating the impact of different aspects of the scheduler.

2. Background

Solar energy and datacenters. Solar is a promising clean energy technology, as it

does not cause the environmental disruption of hydroelectric energy and does not

have the waste storage problem of nuclear energy. Wind energy is also promising,

but is not as abundant in many locations. Except for our (solar) energy predictions,

our work is directly applicable to wind energy as well.

Transforming solar energy into (direct-current or DC) electricity is commonly

done using PV panels. The panels are made of cells containing PV materials, such

as monocrystalline and polycrystalline silicon. The photons of sunlight transfer

energy to the electrons in the material. This energy causes the electrons to transfer

between the two regions of the material, producing a current that is driven through

the electrical load (e.g., a datacenter).
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Figure 1: Components of a solar-powered system. Dashed boxes represent optional components.

There are multiple ways to connect solar panels to a datacenter. Figure 1 shows

an example. The AC Load is the server and cooling equipment, which typically

runs on alternating-current (AC) electricity. The DC electricity is converted to AC

using an inverter. Any solar energy that is not consumed can be stored in batteries

via a charge controller. The controller may also connect to the electrical grid, in

case the datacenter must be operational even when solar energy is not available.

Where net metering is available, one can feed excess solar energy into the grid for

a reduction in brown energy costs.

The design we study in this paper does not include batteries or net metering,

for the reasons we mentioned in the Introduction. In this scenario, any energy

that is not immediately used by the datacenter is wasted. Fortunately, GreenSlot is

very successful at limiting waste. In fact, assuming the results from Section 5 and

the best governmental incentives in the United States, the current capital cost of

installing solar panels for the datacenter we model can be amortized by savings in

brown energy cost in 10-11 years of operation. This period is substantially shorter

than the 25+ years lifetime of the solar panels, and will be even shorter in the

future, as solar costs continue to decrease at a rapid pace [6].

Brown energy prices. Datacenters often contract with their power companies to

pay variable brown energy prices, i.e. different dollar amounts per kWh of con-

sumed brown energy. The most common arrangement is for the datacenter to pay

less for energy consumed during an off-peak period than during an on-peak period.

Typically, off-peak prices are in effect during the night, whereas on-peak prices

apply during the day. Thus, it would be profitable for the datacenter to sched-

ule part of its workload (e.g., maintenance or analytics tasks, activities with loose

deadlines) during the night.

3. Related Work

Exploiting green energy in datacenters. GreenSlot schedules the use of green

energy in datacenters to lower brown energy consumption, monetary costs, and

environmental impact. Like GreenSlot, [9, 14–16] focused on managing batch

jobs, whereas [17–20] considered interactive services or were not willing to delay

computations. Batch jobs typically run longer than interactive service requests

and often have loose deadlines, thereby increasing the opportunity to exploit green

energy. GreenSlot differs from [14, 15, 21] as it considers both green energy and
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brown energy prices in making its decisions. It differs from [15] in other important

ways: [15] used only short-term green energy predictions and runs more or fewer

batch jobs in arrival order as a function of green energy availability, without explicit

deadlines; if green energy runs out, any started jobs are terminated. In contrast,

GreenSlot schedules the jobs two days into the future, possibly reordering them,

within their explicit deadlines. Jobs are never terminated, and may run completely

on brown energy, if their deadlines so require.

GreenSlot differs from GreenHadoop [16] in that it leverages user-provided job

run times, numbers of servers, and deadlines to schedule jobs more accurately. Liu

et al. [22] focused on a similar problem as GreenSlot, but took a modeling and

optimization approach to it.

To study real green datacenters, we have recently built Parasol, a small proto-

type datacenter powered by a solar array and the electrical grid [9]. We also built

GreenSwitch, a software system for dynamically selecting the energy source, the

medium for energy storage, and for scheduling deferrable and non-deferrable jobs

[9]. GreenSwitch leverages some of the same ideas as GreenSlot for scheduling

deferrable jobs, but targets datacenters with energy storage and does not rely on

user-provided information about the jobs.

Other works [23–27] have considered green energy, but only in multi-datacenter

setups. These works focus on workload distribution/migration, rather than on green

energy-aware scheduling within each datacenter. Finally, [24, 28, 29] considered

carbon offsetting as a different approach to greening datacenters.

Managing energy prices. Most of the works that have considered variable energy

prices have targeted request distribution across multiple datacenters in interactive

Internet services [23, 24, 26, 30]. GreenSlot differs from these efforts as it seeks to

maximize green energy use, predict green energy availability, and schedule batch

jobs within a single datacenter.

GreenSlot vs. conventional job schedulers. GreenSlot has a few unique charac-

teristics, compared to other job schedulers, e.g. [12, 31]. First, it promotes the use

of green energy and cheap brown energy, possibility at the cost of increasing job

waiting times (but not violating deadlines). Talby and Feitelson [32] introduced the

notion of increasing waiting times up to certain bounds in the context of backfilling.

However, most job schedulers seek to minimize waiting times, makespan, and/or

bounded slowdown; they never consider green energy or brown energy prices.

Second, GreenSlot borrows ideas from (soft) real-time systems: (1) jobs and/or

workflows (i.e., sequences of related jobs [33]) have deadlines by which they shall

complete; (2) it keeps the queued jobs in LSTF order [11]; and (3) new jobs that

cannot be run before their deadlines are not admitted into the system. Although

some previous job schedulers have considered deadlines (e.g., [34, 35]), most of

them typically do not.
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If the underlying scheduler (e.g., SLURM) allows job suspensions, GreenSlot

suspends the jobs that outlast their allowed run times, instead of canceling them

like most other schedulers do. As these jobs have already consumed energy, it

would be wasteful to cancel them.

Run time estimates and deadlines. Prior research showed that users typically

provide inaccurate estimates of run time [36, 37]. In fact, users often consciously

overestimate to avoid job cancellations. Deadlines create another avenue for “gam-

ing” the system; users may provide unnecessarily tight deadlines so that the sched-

uler executes their jobs ahead of others.

To alleviate these problems, we envision a computation pricing model for use

with GreenSlot. To encourage users not to overestimate run times, users would pay

in proportion to the actual run time of their jobs/workflows, but also pay a charge

when they significantly overestimate those times. From this value, an amount pro-

portional to how loose the deadlines are would be deducted. This model would

achieve our two goals: tight expected run times, and loose deadlines. To compen-

sate the user for a missed deadline, the datacenter operator would reimburse the

user for an amount proportional to the length of the violation. Obviously, the pay-

ments in our model need not be in a real currency; rather, they could be effected in

a virtual currency representing the right to use resources in the future, for example.

As another way of tackling poor run time estimates, GreenSlot could combine

them with automatic predictions based on recent executions by the same users [38].

Hadoop. Some efforts have sought to reduce the energy consumption of Hadoop

clusters. For example, [39, 40] focused on the careful placement of data replicas in

Hadoop’s distributed file system (HDFS), so that servers can be turned off without

affecting data availability. These efforts can be combined with GreenSlot to reduce

(or eliminate) the need for it to keep servers on only to serve data. In fact, our

GreenSlot extension of Hadoop assumes the Covering Subset approach [39], under

which one copy of the dataset is stored on the smallest possible number of servers;

other servers can be deactivated without affecting data availability.

Lang and Patel proposed a different approach, called All-In Strategy (AIS) [41].

Instead of turning some servers off when utilization is low, AIS either keeps the

entire cluster on or off. In essence, AIS attempts to concentrate load, possibly by

delaying job execution, to have high utilization during on periods and zero energy

use during off periods. AIS considers neither the availability of green energy nor

variable energy prices.

4. Scheduling in Green Datacenters

We propose GreenSlot, a parallel job scheduler for datacenters powered by PV

solar panels and the grid. GreenSlot relies on predictions of the availability of solar
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Figure 2: Scheduling 3 jobs (J1-J3) with backfilling (left) and GreenSlot (right). The jobs’ deadlines

are the vertical lines.

energy, as well as on a greedy job scheduling algorithm.

Figure 2 illustrates the behavior of GreenSlot (bottom), in comparison to a

conventional EASY backfilling scheduler (top) for three jobs. Each rectangle rep-

resents the number of nodes and time that each job will likely require. The dashed

vertical lines represent the jobs’ deadlines. Note that backfilling uses less green

energy (more brown energy), as it does not consider the energy supply in mak-

ing decisions. Any scheduler (including a real-time one) that is unaware of green

energy would behave similarly. In contrast, GreenSlot delays some jobs (within

their deadlines) to guarantee that they will use green energy. This delay is not a

concern since users only need their jobs completed by the jobs’ deadlines. Simi-

larly, GreenSlot may delay certain jobs to use cheaper brown energy (not shown).

GreenSlot is beneficial because datacenters are not fully utilized at all times.

We next describe GreenSlot in detail. First, we describe our scheduling algo-

rithm. Then, we present our model for solar energy prediction and discuss how

GreenSlot adjusts the predictions when it finds inaccuracies.

4.1. Greedy Scheduling Algorithm

Overview. GreenSlot seeks to minimize brown energy consumption by instead

using solar energy, while avoiding excessive performance degradation.

At submission, users can specify the workflows to which their jobs belong.

As in many other job schedulers, users must specify the number of nodes and the

expected running time for each job.Deadlines can be specified per job or workflow.

GreenSlot divides time into fixed-length “slots”. At the beginning of each slot,

GreenSlot determines if a new schedule must be prepared. If so, it goes through

the list of queued jobs and schedules them (i.e., reserves resources for them) into

the future. This scheduling window corresponds to the range of our hourly solar

energy predictions, i.e. two days. The window is divided into smaller time slots

(15 minutes in our experiments). The scheduling window moves with time; the

first slot always represents the current time.
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Figure 3: GreenSlot scheduling window at times T1 (top), T2 (middle), and T3 (bottom).

GreenSlot is cost-aware in that it favors scheduling jobs in time slots when

energy is cheapest. To prioritize green energy over brown energy, green energy

is assumed to have zero cost. In contrast, brown energy prices often depend on

time of use, as aforementioned. When the price is not fixed and brown energy

must be used, GreenSlot favors the cheaper time slots. To avoid selecting slots that

may cause deadline violations, GreenSlot assigns a high cost penalty to those slots.

Any penalty that is large compared to the highest possible cost of a usable slot is

appropriate.

GreenSlot is greedy in two ways: (1) it schedules jobs that are closer to vio-

lating their deadlines first; and (2) once it determines the best slots for a job, this

reservation does not change (unless it decides to prepare a new schedule during a

later scheduling round). The next job in the queue can only be scheduled on the re-

maining free slots. Moreover, GreenSlot constrains its scheduling decisions based

on workflow information, i.e. a job belonging to phase i of a workflow cannot

begin before all jobs of phases < i have completed.

GreenSlot dispatches the jobs for execution, according to the schedule. Dis-

patched jobs run to completion on the same nodes where they start execution.

GreenSlot deactivates any idle nodes to conserve energy.

Figure 3 illustrates GreenSlot’s operation, from time T1 (top) to T3 (bottom),

with a simple example. At T1, job J1 is executing and job J2 is queued waiting

for green energy to become available (according to GreenSlot’s predictions). More

than a day later than T1, at T2, J1 and J2 have completed, and J3 has just been

dispatched. Because GreenSlot predicts two days of very little green energy, J4 is
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scheduled for the following day during a period of cheap brown energy. More than

a day later than T2, at T3, we see that GreenSlot initially mispredicted the amount

of green energy at time T2. It later adjusted its prediction and ran J4 earlier. Finally,

we also see J5 queued waiting for green energy to become available.

Details. Figure 4 presents our scheduling algorithm. Line 0 lists the inputs that

users must provide about each of their jobs and workflows. GreenSlot adds a small

amount of tolerance (20% in our experiments) to each expected running time. If

the underlying scheduler allows job suspensions, jobs that take longer than this

extended amount of time are suspended and must be re-started by hand (suspen-

sions are not shown in Figure 4). Our goal is to tolerate some inaccuracy in the

user-provided information, while avoiding deadline violations.

When a workflow has a deadline, GreenSlot creates tight internal deadlines for

each of the phases of the workflow, based on the final deadline and the expected

duration of the jobs (plus tolerance) in those phases. For example, consider a

workflow with three phases that must be executed without overlap, each of which

is expected to take 60 minutes. Suppose that the tolerance is 20%, i.e. the adjusted

expected phase durations are 72 (60 + 12) minutes each. If the deadline for the

workflow is 4pm, the internal deadlines for the first phase would be 4pm minus

144 minutes (1:36pm) and for the second phase 4pm minus 72 minutes (2:48pm).

Using the deadlines and the expected running times, GreenSlot determines the

latest possible start time for each job. In the example above, the jobs of the first

phase can start no later than 12:24pm, those of the second phase no later than

1:36pm, and those of the third phase no later than 2:48pm.

Lines 1-6 describe GreenSlot’s behavior at the beginning of each time slot. It

first determines whether its prediction for the amount of solar energy was accurate

in the most recent slot (line 2). A prediction is deemed accurate if it had less than

a 10% error (other reasonable thresholds produce similar results). If the predic-

tions were inaccurate, GreenSlot adjusts the future predictions (line 3). We detail

our approach to green energy prediction in the next subsection. If the predictions

were adjusted, a new schedule must be prepared (line 4-5). A new schedule is also

needed whenever a job arrives, a job completes, a job that was supposed to com-

plete in the previous slot did not terminate, or there are jobs that were not scheduled

in the previous scheduling round.

If a new schedule is needed, GreenSlot first subtracts the energy that the cur-

rently running jobs are likely to consume from the predicted amount of green en-

ergy for the scheduling window (line 8). (Currently, GreenSlot assumes that the

administrator determines the average energy consumed by the jobs of each work-

flow based on their previous executions. We plan to automate this monitoring and

integrate it into the scheduler.)
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0. Users specify number of nodes, expected running time, deadline for each job/workflow

Add tolerance to expected running times

1. At the beginning of each time slot:

2. Determine whether the green energy predictions produced most recently were accurate

3. If they were inaccurate: adjust the future predictions

4. If predictions were just adjusted, a job arrived, a job completed,

a job expected to complete on the previous slot did not, OR

there are jobs to schedule:

5. Prepare a new schedule

6. Dispatch jobs according to schedule

7. Prepare schedule:

8. Update the availability of green energy over time based on currently running jobs

9. Try to schedule the next queued job in Least Slack Time First (LSTF) order

10. Calculate cost of scheduling the job to start in each slot in the scheduling window

11. The cost of starting the job on a slot should be infinite in the following cases:

12. (1) a preceding job in the same workflow will not have completed until this slot

13. (2) the job will end outside of the window

14. (3) there are not enough nodes on this or at least one other needed slot

15. When the cost is not infinite and brown energy is likely to be used:

16. Account for the cost of the brown energy

17. When the cost is not infinite, but the deadline will likely be violated:

18. Add a violation penalty to the cost of the appropriate slots

19. If cost is infinite for every slot:

20. If job was submitted in this slot and deadline is within the window: reject it

21. Otherwise: try to schedule this job in the next scheduling round

22. Move to the next job (line 9)

23. If a job would likely violate the deadline in every slot:

24. Decrease its deadline (internally) by one slot

25. Schedule job at the cheapest slot, except:

26. A job with deadline outside the window should only be scheduled in the window

if it can use green energy only (i.e., cost for cheapest slot = 0)

27. Account for the energy and the nodes that will be used by the job

28.Dispatch jobs and adjust the number of active nodes:

29. Activate nodes from S3 state, if necessary

30. Start jobs that should be started now, according to the current schedule

31. Send idle nodes to S3 state

Figure 4: GreenSlot algorithm. For simplicity, the pseudo-code assumes that no single job takes

longer than the scheduling window. In addition, it does not show the suspension of jobs that have

exceeded their expected running times (plus the tolerance).

After updating the green energy availability, GreenSlot sorts the queued jobs

in LSTF order. In more detail, it orders the queued jobs based on their remain-

ing “slack”, i.e. the difference between the current time and the latest possible

start time (line 9). It then goes through the ordered list and schedules (reserves re-

sources for) the jobs into the future (line 10-26). The key to scheduling each job is

computing the energy cost of starting the job at each slot (lines 11-18). GreenSlot

selects the starting slot that will lead to the lowest overall cost for the job (line 25),

assuming that: (1) solar energy has zero cost; (2) the cost is infinite for any slot on

which the job cannot start (lines 11-14); and (3) violating the deadline incurs an

extra cost (lines 17-18). In computing costs, GreenSlot accounts for brown energy

prices (line 16). Importantly, it requires no modifications to tackle scenarios in
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which the brown energy price is fixed.

When multiple slots would lead to the same lowest overall cost, GreenSlot

selects the earliest of the tied slots for the job, if the lowest cost is zero (only green

energy would be used). When there is a tie but the lowest cost is not zero, GreenSlot

selects the latest of the tied slots but only if there is a chance that more green energy

may become available (due to a misprediction) until then. In this case, when the

prediction is corrected, GreenSlot can move the job back earlier in the schedule

so that it uses all the green energy that is really available. If instead GreenSlot

overestimated the amount of green energy, it will still use all the available green

energy. However, it might have to resort to using expensive brown energy for some

of the jobs that were delayed.

A new job with deadline within the current window that cannot be scheduled

on any slot of the window is not admitted into the system (line 20). This behavior

allows the user to re-submit the job with a later deadline or fewer nodes. Any other

job that cannot be scheduled is simply put back on the queue; the job has already

been admitted into the system, so GreenSlot cannot reject it any more. GreenSlot

will try to schedule it in the next scheduling round (line 21). Similarly, Green-

Slot leaves any job with a deadline beyond the current window for the following

scheduling rounds, unless it predicts to have enough green energy to execute it

within the current window (line 26).

GreenSlot treats jobs that are expected to take longer to execute than the length

of the time window differently (not shown in Figure 4 for clarity). These jobs are

scheduled as soon as resources allow.

Because GreenSlot is greedy and only sees a finite amount of time into the

future, it may be unable to prevent deadline violations by leaving too many jobs to

be executed beyond its horizon. It mitigates this problem by internally decreasing

by one slot the deadline of any job expected to miss its deadline according to the

schedule (line 23-24). The earlier deadline decreases the job’s slack time. As a

result, the next time the schedule is prepared, this job will have a greater chance of

being scheduled before the jobs that are preventing it from meeting its deadline.

Finally, lines 28-31 implement GreenSlot’s job dispatcher. The dispatcher is

mainly tasked with starting the jobs scheduled to start on the current time slot (the

first slot of the window). Before doing so, the dispatcher may need to activate

nodes that it earlier transitioned to ACPI’s S3 state (also known as suspend-to-

RAM state). This state consumes very low power (8.6 Watts in our machines) and

can be transitioned to and from quickly (7 seconds total in our machines). Because

of these fast transitions, the dispatcher sends any idle nodes to S3 state instead of

turning them completely off. Turning nodes off would involve transition times of

multiple minutes, which would represent a significant overhead compared to the

length of GreenSlot’s time slots.
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Limitations. GreenSlot may potentially reject more jobs or miss more deadlines

than a scheduler that delays fewer jobs. However, as our sensitivity study in Sec-

tion 5.3.1 shows, this is only likely to occur in datacenters with unusually high

utilizations. In fact, we have not seen any job rejections or missed deadlines un-

der the more common (yet still relatively high) utilizations and real workloads we

study. A full evaluation of these effects is a topic for our future work.

4.2. Predicting the Availability of Solar Energy

Our model for predicting the generation of solar energy is based on a simple

premise: various weather conditions, e.g., partly cloudy, reduce the energy gen-

erated in a predictable manner from that generated on an ideal sunny day. This

premise is expressed as Ep(t) = f (w(t))B(t), where Ep(t) is the amount of energy

predicted for time t, w(t) is the weather forecast, f (w(t)) is a weather-dependent

attenuation factor (between 0 and 1), and B(t) is the amount of energy expected

under ideal conditions.

We implement solar energy prediction using the above model at the granu-

larity of an hour. We use weather forecasts available from sites such as The

Weather Channel to instantiate w(t). These sites provide hourly predictions for

up to 48 hours into the future (which explains why the scheduling window is two

days). Each prediction includes a string describing the forecasted condition such

as “cloudy” or “scattered thunderstorms”. This string is the output of w(t).

We use historical data to instantiate both B(t) and f (w(t)). Specifically, for a

given hour t, we use the actual weather conditions and energy generated during the

month centered on t from the previous year. We choose this “reference” month

around t to account for seasonal effects. We set B(t) to the maximum energy gen-

erated for the same hour of any day in the reference month. For each weather

condition wc, we compute f (wc) as the median amount by which wc decreased

B(t) whenever this condition was reported during the reference month.

Unfortunately, weather forecasts can be wrong. For example, we have observed

that thunderstorm forecasts are frequently inaccurate and can remain inaccurate

throughout a day; i.e., the forecast continues to predict a thunderstorm hour-by-

hour but the storm never arrives. Further, weather is not the only factor that affects

energy generation. For example, after a snow storm, little energy will be generated

while the solar panels remain covered by snow even if the weather is sunny.

To increase accuracy during the above “mispredictions”, we also use an alter-

nate method of instantiating the attenuation factor for time t. Specifically, we as-

sume that the recent past can predict the near future, and compute this factor using

the observed energy generated in the previous hour. When invoked, our prediction

module compares the accuracy of the two methods for predicting the energy gener-

ated during the last hour, and chooses the more accurate method to instantiate the
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attenuation factor for the remainder of the current day. Beyond the current day, we

always instantiate this factor using weather forecasts because weather conditions

can change significantly from one day to the next.

Although we do not claim our prediction approach as a contribution of this

paper, it does have three important characteristics: it is simple, relies on widely

available data, and is accurate at medium time scales, e.g. a few hours to a few

days. Previous works have proposed more complex models based on historical

weather data [42]. However, these models tend to be inaccurate at medium time

scales [43]. Based on this observation, Sharma et al. proposed a simple model

based on historical data and weather forecasts [43]. Our approach is similar, but

also embodies error correction based on the recent green energy production.

4.3. GreenSlot Implementations

We built two implementations of GreenSlot: the first extends the SLURM par-

allel job scheduler for Linux, and the second extends the MapReduce scheduler of

Hadoop. The core of GreenSlot consists of 2300 uncommented lines of Python

code that are independent of the underlying scheduler. The first implementation

adds another 500 uncommented lines of SLURM-related Python code for a total

of 2800 lines. The second implementation consists of 60 uncommented lines of

Java code to make Hadoop energy-aware and another 200 lines of Hadoop-related

Python code. In the absence of GreenSlot, both SLURM and Hadoop schedule

jobs in First-Come First-Served fashion without any delays.

5. Evaluation

5.1. Methodology

Hardware and software. We evaluate GreenSlot using a 16-node cluster, where

each node is a 4-core Xeon server with 8GB of memory, 1 7200rpm SATA disk,

and a 1Gb/s Ethernet card. GreenSlot runs on an additional server. The servers

are connected by a Gigabit Ethernet switch. We measure power with an accurate

Yokogawa multimeter. Our servers consume up to roughly 150W, whereas the

switch consumes 55W and the low-power server that runs GreenSlot consumes

roughly 30W.

Solar panel array. We model the solar panel array as a scaled-down version of

the Rutgers solar farm. The farm can produce 1.4MW of power (after DC to AC

conversion) that is used by the entire campus. By computing the actual energy

production over time with respect to this maximum power, we can estimate the

production of smaller installations. In particular, we scale the farm’s AC produc-

tion down to 10 solar panels capable of producing 2.3kW of power. We selected
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this scaled size because, after conversion, it produces roughly the common-case

peak power consumption of our system.

We considered one year worth of solar energy production by the farm, from

March 8th 2010 to March 7th 2011. The scaled-down daily productions for the

weekdays in this period can be found in http://www.darklab.rutgers.edu/

GreenDC/solar.html. We collected weather forecast data for 30 of these weeks.

From this set, we picked 4 weeks to study in detail: the week with the most solar

energy (starting on May 31th 2010), the week with the average amount of solar

energy (starting on July 12th 2010), a week with little solar energy in the first

three days but later significant energy (starting on August 23rd 2010), and a week

with lots of solar energy in the first two days but later little solar energy (starting

on March 7th 2010). We call these weeks “Most”, “Average”, “Low-High”, and

“High-Low”, respectively.

Brown energy prices. We assume the most common type of variable pricing,

namely on-peak/off-peak pricing. In on-peak/off-peak pricing, brown energy costs

less when used during off-peak consumption times (from 11pm to 9am) and more

when consumed during on-peak times (from 9am until 11pm). The difference be-

tween on-peak and off-peak prices is largest in the summer time (June-September).

We assume the prices charged by PSEG in New Jersey: $0.13/kWh and $0.08/kWh

(summer) and $0.12/kWh and $0.08/kWh (rest of year). Summer prices apply to

the Most, Average, and Low-High weeks.

Accelerating and validating the experiments. It would be impossible to perform

all of the experiments in this paper in real time. This would require hundreds of

days of non-stop experiments. To speed up our study, we accelerate the experi-

ments by a factor of 100. This means that a job that takes 100 minutes in real time

completes in just 1 minute in the accelerated experiment. In addition, it means that

five days of real time elapse in 72 minutes.

To verify that an accelerated run is faithful to its real-time counterpart, we run

a validation experiment for 31 hours — from Monday at 9am until Tuesday at 4pm

— with GreenSlot for SLURM scheduling our real scientific computing workloads

(described in Section 5.3 below) with their estimated run times and deadlines. The

corresponding accelerated run shortens all job-related times by 100x. Specifically,

the accelerated jobs do not perform actual work; they simply occupy the nodes

for the proper amount of time. Both runs assume on-peak/on-peak brown prices.

GreenSlot itself cannot be accelerated. In this experiment, it takes a maximum

of 0.3 seconds (without any optimizations) to prepare a full schedule on an Intel

Atom-based server. This maximum occurs when the largest number of jobs (70) is

in the queue. As Figure 4 suggests, GreenSlot’s execution time is proportional to

the number of jobs in the system.
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Prediction Error (%)

1 3 6 12 24 48

Median 12.9 15.6 15.8 16.1 16.5 19.0

90th % 24.6 33.9 40.5 44.1 42.5 44.4

Table 1: Error when predicting 1, 3, 6, 12, 24, and 48 hours ahead.

The validation results demonstrate that the accelerated runs are very accurate.

In detail, the real-time and accelerated runs differ by at most 2.3% with respect to

the 4 metrics of interest: amount of green energy used (difference of 0.7%), amount

of brown energy used (2.3%), energy cost (1.9%), and number of deadlines violated

(no violations in either run).

5.2. Solar Energy Predictions

We evaluate our solar energy predictor using data collected from the Rutgers

solar farm, scaled as described above, and weather.com (actual and predicted con-

ditions) for seven months: June–September 2010 and January–March 2011. Ta-

ble 1 shows the normalized percentage prediction error for daily energy production

when predicting 1 to 48 hours ahead. We compute this error as the sum of the

absolute difference between the predicted value and actual energy production for

each hour in a day, divided by the ideal daily production (i.e.,
∑23

t=0 B(t)). When

predicting x hours ahead, we use the weather forecast obtained at time t − x to

predict production at time t.

These results show that our predictor is reasonably accurate, achieving me-

dian and 90th percentile errors of 12.9% and 24.6%, respectively, when predicting

energy production for the next hour. That is, 50% of the time, our predictions

across the hours of a day is off by 12.9% or less of the daily generation capac-

ity (∼14.8kWh). Further, though accuracy degrades with prediction horizon, this

degradation is small beyond 3 hours. Even when predicting 48 hours ahead, the

median error is 19.0%.

Of the 4 weeks we use, week Low-High has the best prediction accuracy, with

a median 1-hour ahead prediction error of 9.3%, while week High-Low has the

worst prediction accuracy, with a median 1-hour ahead prediction error of 18.4%.

The other two weeks have errors close to the ones listed above.

5.3. GreenSlot for SLURM

GreenSlot variations and baseline for comparison. We study two variations

of the SLURM-based version of GreenSlot: “GreenOnly”, which considers green

energy availability, but not variable brown energy prices; and “GreenVarPrices”,

which considers both green energy and variable brown energy prices.
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For comparison, we study a variant of EASY backfilling [44] that considers

the deadlines in sorting the job queue in LSTF order. The scheduler backfills jobs,

as long as the first job in the queue is not delayed. We refer to this scheduler as

“Conventional”. Like GreenSlot, Conventional assigns a 20% tolerance to the user-

estimated run times. If a job’s estimate and tolerance are exceeded, Conventional

cancels the job. It transitions unneeded servers to ACPI’s S3 state to save energy.

Workloads. We use 3 scientific computing workloads in production use at the

Life Sciences Department of the Barcelona Supercomputing Center [45]. Each

workload implements a different pipelined approach to the sequencing and mining

of the genome of a baker’s yeast. Each workload runs for 5 days and comprises a

set of workflows, each of which analyzes a different yeast sample. Workload1 and

Workload3 have 8 workflows each, whereas Workload2 has 12 workflows. Each

workflow of Workload1 comprises 4 phases: initialization (1 job that runs for 8

minutes on our cluster), data splitting (1 job that runs for 1 minute), computation

(16 jobs that last between 6 minutes and 9 hours, with an average of 2.4 hours), and

collect/visualization (1 job that runs for 5 minutes). Each workflow of Workload2

comprises 3 phases: initialization and splitting (1 job that runs for 10 minutes),

computation (8 jobs that last between 2 hours and 9 hours, with an average of 4

hours), and collect/visualization (1 job that runs for 5 minutes). Each workflow of

Workload3 also comprises 3 phases: initialization and splitting (1 job that runs for

10 minutes), computation (8 jobs that last between 1.25 hours and 2.27 hours, with

an average of 1.26 hours), and collect/visualization (1 job that runs for 5 minutes).

In total, there are 352 jobs and 28 workflows in these workloads. On average, the

input data for each workflow is 1.2 GB, the intermediate file sizes are 800 MB

each, and the final output size is 100 MB. Our Life Sciences colleagues run these

workloads on a cluster of the same size as our own, so we do not scale them.

Starting on Monday at 9:30am of every week, a workflow from each work-

load is submitted every 30 minutes. The workflows of Workload1 and Workload3

have deadlines every day at 9:00am and 2:00pm from Tuesday until Friday. The

workflows of Workload2 have deadlines every day at 9:00am, 1:00pm, and 4:00pm

from Tuesday until Friday. The reason for the staggered deadlines is that they give

the researchers time to interpret the results before they are shipped to another re-

search group. Since our workloads run from Monday to Friday, we loosely refer

to these five days as a week. This configuration corresponds to approximately

50% cluster utilization, which is comparable to (or even higher than) many real

scientific-computing datacenters and grids [46, 47].

As it is clear from the description above, the computation jobs represent the

vast majority of the jobs and the time in the workloads. These are multithreaded

jobs that use as many cores as are available at the server on which they run. There
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Figure 5: Conventional scheduler and Average

week.
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Figure 6: GreenOnly scheduler and Average

week.
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Figure 8: GreenOnly with actual green energy

availability.

are no multi-node jobs in the real workloads. In Section 5.4, we evaluate a work-

load with multi-node jobs that arrive over time, rather than clustered on Monday.

Finally, our experiments assume that the user-provided estimates of job run time

are exactly the run times listed above. We have studied the impact of inaccuracies

in runtime estimates of up to [-40%,+20%], and our results (not shown here be-

cause of space constraints) show that such inaccuracies have essentially negligible

impact on GreenSlot.

Power consumption. We measured the power consumption of each job in each

workflow. The computation jobs almost constantly consume 105W, whereas the

initialization jobs consume 140W, the splitting jobs consume 90W, and the col-

lection/visualization jobs consume 102W. Overall, the common-case peak power

consumption for our scientific workloads is 1765W = 16 × 105W + 55W (switch)

+ 30W (GreenSlot). When a server is idle, GreenSlot sends it to S3 state, which

consumes 8.6W. Transitioning into and out of S3 takes 7 seconds.

5.3.1. Results

This section presents our experimental results. First, we isolate the impact of

being aware of green energy by comparing GreenOnly with Conventional. These

results also assess the impact of the quality of green energy predictions on our

scheduling. Second, we study GreenVarPrices to isolate the benefit of being aware

of brown energy prices. Third, we study the impact of the datacenter utilization on

GreenVarPrices. Finally, we quantify the impact of poor run time estimates.
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Figure 9: GreenVarPrices and Average week.
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crease and savings.

In our experiments, Conventional and GreenSlot do not violate any deadlines,

except when we explore high datacenter utilizations to purposely cause violations.

Scheduling for solar energy and impact of predictions. Figure 5 shows the

behavior of Conventional for our workloads, the Average week, and accurate job

run time estimates. The X-axis represents time, whereas the Y-axis represents

cluster-wide power consumption (left) and brown energy prices (right). The figure

depicts the green and brown energy consumptions in light gray and dark gray,

respectively. The two line curves represent the green energy available (labeled

“Green actual”) and the brown energy price (“Brown price”).

As Conventional schedules the workloads to complete as soon as possible, it

heavily uses the servers early in the week and leave them in deep-sleep state late

in the week. This approach is ideal in terms of conserving energy, since keeping

modern servers powered on involves a high “static” energy. However, Conventional

wastes a large amount of green energy, which could be used instead of brown

energy. In this experiment, only 26% of the energy consumed is green.

Figure 6 depicts the behavior of GreenOnly, under the same conditions as in

Figure 5. In this figure, we plot the amount of green energy that GreenSlot pre-

dicted to be available an hour earlier (labeled “Green predicted”). The green pre-

diction line does not exactly demarcate the light gray area, because our predictions

sometimes do not match the actual green energy available.

A comparison between Figures 5 and 6 clearly illustrates how GreenOnly is ca-

pable of using substantially more green energy than Conventional, while meeting

all job/workflow deadlines. GreenOnly spreads out job execution across the week,

always seeking to reduce the consumption of brown energy within resource and

deadline constraints. Overall, GreenOnly consumes 47% more green energy than

Conventional in this experiment. Although GreenOnly does not explicitly consider

brown energy prices in making decisions, its energy cost savings reach 20% com-

pared to Conventional. More than 80% of these cost savings comes from replacing

brown energy with green energy.

The results for the other weeks are similar, as seen in Figure 7. The figure

shows two sets of 4 bars. The set on the left represents the increase in green energy

18



consumption, whereas the set on the right represents the energy cost savings. Each

bar represents a week. Overall, GreenOnly increases green energy consumption

between 13% and 118%, and reduces costs between 7% and 35%. GreenOnly

improves on Conventional even for the worst-case week (High-Low) for us.

Another interesting observation is that our predictions of green energy avail-

ability are plenty accurate for our purposes. The green availability curve traces the

gray area in Figure 6 well. To quantify the impact of prediction accuracy, consider

Figure 8. The figure shows the behavior of GreenOnly under the same conditions,

except that we use the actual green energy availability (representing idealized per-

fect knowledge of future energy production) instead of our predictions of it. A

comparison of Figures 6 and 8 shows similar schedules. Overall, we find that per-

fect knowledge increases green energy use and decreases cost both by only 1%.

Thus, this experiment is the only one in which we consider perfect knowledge of

green energy availability.

Scheduling for solar energy and brown energy prices. So far, we have studied

scheduling that does not explicitly exploit variable brown energy prices. However,

GreenSlot can reduce costs further when brown energy prices vary and brown en-

ergy must be consumed to avoid deadline violations. To quantify these savings, we

now consider the GreenVarPrices version of GreenSlot.

Figure 9 shows the behavior of GreenVarPrices again for our real workloads,

the Average week, and accurate job run time estimates. Comparing this figure

against Figure 6, one can clearly see that GreenVarPrices moves many jobs that

must consume brown energy to periods with cheap brown energy. For example,

GreenOnly runs many jobs on Tuesday night, Wednesday night, and Thursday

night that consume expensive brown energy. Those jobs get scheduled during pe-

riods of cheap energy under GreenVarPrices. As a result, GreenVarPrices exhibits

higher energy cost savings of 25% compared to Conventional for this week, while

consuming almost the same amount of green energy as GreenOnly.

GreenVarPrices achieves positive results for the other weeks as well, as illus-

trated in Figure 10. Overall, the GreenVarPrices cost savings range from 13% to

39%, whereas its increases in green energy consumption range from 11% to 117%.

A comparison between Figures 7 and 10 illustrates the benefit of considering

brown energy prices explicitly in GreenSlot. As one would expect, doing so de-

creases costs with respect to GreenOnly. To isolate GreenSlot’s ability to exploit

cheap brown energy in the absence of green energy, we also consider an idealized

week with no solar energy. For this week, GreenVarPrices reduces energy cost by

13% with respect to Conventional.

Impact of datacenter utilization. Another important factor in evaluating Green-

Slot is its behavior as a function of datacenter utilization. Under high enough
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Map Tasks

Reduce Tasks 0 1 2 3 4

0 62.0 79.2 87.1 91.3 95.0

1 82.0 81.3 84.3 91.3 99.5

2 94.4 87.7 84.1 97.6 103.9

Table 2: Power (in Watts) vs. number of map and reduce tasks.

utilization, GreenSlot may unable to avoid using expensive brown energy, may be

forced to violate deadlines, and/or even cancel newly submitted jobs.

To investigate these effects, we perform experiments with Conventional and

GreenVarPrices for four additional datacenter utilizations: 67%, 72%, 87%, and

92%. We achieve these higher utilizations by adding four, five, eight, and nine extra

copies of Workload3, respectively. Recall that our other experiments utilize the

datacenter at 50%, which is already a relatively high utilization in many scientific

environments [46, 47].

These results show that GreenVarPrices does not start violating deadlines until

the utilization reaches an uncommon 72%. At 67% utilization, GreenVarPrices still

increases green energy consumption by 31% and reduces energy cost by 14% in

comparison to Conventional at the same utilization. In contrast, Conventional only

starts violating deadlines at 92% utilization.

Although one could concoct scenarios that would challenge GreenSlot to a

greater extent, these results with real workloads suggest that GreenSlot is robust to

high but still realistic utilizations. Moreover, a higher level scheduler could easily

select between GreenSlot or Conventional based on the current utilization.

5.4. GreenSlot for Hadoop

The results thus far used real workloads. However, one may argue that these

workloads favor GreenSlot, in that there are no multi-node jobs and all workflows

are submitted on Monday. To show that GreenSlot is robust to different environ-

ments and different workload characteristics, in this section, we evaluate GreenSlot

as implemented for Hadoop. Besides the different underlying scheduler, this eval-

uation involves jobs that run on multiple servers, and arrive throughout the week.

GreenSlot variations and baseline. We first modify Hadoop to allow jobs to be

submitted with the number of nodes that they should run on, and to ensure that

each job is scheduled on no more than the specified number of nodes. In addition,

we modify Hadoop such that any unneeded servers outside the Covering Subset are

transitioned to ACPI’s S3 state to save energy. We call this system “EAHadoop”

(short for Energy-Aware Hadoop), and use it as the baseline for comparison.

We built GreenSlot as an extension of EAHadoop. We again call the full imple-

mentation “GreenVarPrices”. In this system, each MapReduce job is represented
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by a simple workflow comprising a map phase and a reduce phase. Each Hadoop

node is configured to have m map slots and r reduce slots, i.e. a node can simulta-

neously run m map tasks and r reduce tasks. GreenSlot must schedule map tasks

only in the map slots and reduce tasks only in the reduce slots. The user-provided

number of nodes n is multiplied by m to get the maximum number of map tasks that

can be run simultaneously, and multiplied by r to get the total number of reduce

tasks. In our experiments, m = 4 and r = 2.

Workload. Our data-processing workload is modeled after the Facebook work-

load described in [48], but simplified (by consolidating 9 groups of different job

sizes into 3 groups) and scaled down for our smaller cluster. It consists of 75%

small, 13% medium, and 12% large jobs. Each of the jobs is a TeraSort appli-

cation [49], a common Hadoop benchmark. Each small job comprises 20 map

tasks and 10 reduce tasks, runs on 5 nodes,1 and takes 2.8 hours on average. Each

medium job comprises 40 map tasks and 20 reduce tasks, runs on 7 nodes, and

takes 4.5 hours on average. Each large job comprises 80 map tasks and 40 reduce

tasks, runs on 11 nodes, and takes 5.4 hours on average. Job arrival follows a Pois-

son distribution with an average inter-arrival time of 40 seconds, corresponding to

approximately 50% cluster utilization. Other researchers have assumed Poisson

arrivals for Hadoop [50]. Deadlines are 6 hours, 12 hours, and 24 hours for small,

medium, and large jobs, respectively. Recall that we accelerate all job run times

and deadlines.

Power consumption. As Table 2 shows, the per-node power consumption depends

on the number of map and reduce tasks currently running on the node. When a

node is kept active just to provide data, i.e., 0 map and 0 reduce tasks, it consumes

approximately 62W.

5.4.1. Results

We compare the behaviors of GreenVarPrices and EAHadoop for the same 4

weeks as before. Again, neither system violated any deadlines.

Figures 11–14 show the behaviors of EAHadoop and GreenVarPrices for the

Most and Average weeks. Figure 15 plots the increase in green energy usage and

cost savings for GreenVarPrices compared to EAHadoop.

Overall, GreenVarPrices achieves cost savings from 28% to 31%, and increases

green energy consumption from 19% to 21%. Figures 11–14 show that the work-

load peaks can be misaligned with green energy production when jobs are executed

1We carefully chose the number of nodes per job to create fragmentation in our 16-node cluster.

For example, 2 small jobs and 1 medium job cannot be scheduled simultaneously because they

require 17 nodes. This makes it harder for GreenSlot to maximize green energy usage.
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Figure 11: EAHadoop and Most week.
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Figure 12: GreenVarPrices for EAHadoop and

Most week.
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Figure 13: EAHadoop and Average week.
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Figure 14: GreenVarPrices for EAHadoop and

Average week.

immediately on their arrivals. Also, jobs may be executed during periods of high

energy prices. GreenVarPrices achieves its cost savings and increases in green

energy usage by delaying jobs to execute during periods of high green energy pro-

duction or low brown energy prices.

These experiments exhibit smaller benefits than GreenSlot for SLURM for two

reasons. First, some of the nodes (the Covering Subset) must be kept on all the

time to ensure data availability. Thus, some green energy is always consumed by

these nodes. Second, the workload is more spread out throughout the week, so

that entire periods of green energy production (end of the week) are not missed

as before. This characteristic of the workload is also the reason for all the weeks

to exhibit similar results. Despite these factors, the cost savings and increases in

green energy consumption remain substantial, showing that GreenSlot is robust to

different underlying schedulers, implementations, and workload characteristics.

6. Conclusions

In this paper, we proposed GreenSlot, a parallel job scheduler for datacenters

partially powered by solar energy. We implemented two versions of it: one for the

SLURM scheduler and the other for the MapReduce scheduler of Hadoop. Our

results demonstrated that GreenSlot’s schedules consume significantly more green

energy and incur substantially lower brown energy costs than those of a conven-

tional or even an energy-aware scheduler. With GreenSlot, the capital cost of our

datacenter’s solar array can be amortized in 10-11 years, whereas it would take
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Figure 15: GreenVarPrices’ for EAHadoop green energy increase and cost savings.

18-22 years to amortize those costs under the conventional or even energy-aware

schedulers. Our results also showed that GreenSlot is robust to different underlying

schedulers, implementations, and workloads. We conclude that green datacenters

and green energy-aware scheduling can have a significant role in building a more

sustainable IT ecosystem.

Although we did not consider batteries in this work, GreenSlot could be ex-

tended to leverage them and reduce brown energy consumption further. Specifi-

cally, we could extend it to run jobs at low cost (corresponding to battery losses)

during slots when green energy is not being produced but the batteries are suffi-

ciently charged.
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