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Abstract

We consider the problem of dividing one unit of an infinitely divisible object among a finite number

of agents. We provide a characterization of all single-peaked domains on which the uniform rule is

the unique division rule satisfying efficiency, strategy-proofness, and equal treatment of equals (ETE).

We also provide a class of division rules satisfying these properties on the remaining single-peaked

domains. Next, we consider non single-peaked domains and provide a characterization of all such

domains on which the uniform rule satisfies efficiency, strategy-proofness, and ETE. We also show

that under some mild richness conditions the uniform rule is the unique rule satisfying the mentioned

properties on these domains. Finally, we provide a class of division rules satisfying efficiency,

strategy-proofness, and ETE on the remaining non single-peaked domains. We conclude the paper by

providing a wide range of applications to justify the usefulness of our results.
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1. INTRODUCTION

We consider the problem of dividing one unit of an infinitely divisible good among a finite number of

agents. Each agent has a preference over his possible shares. A division rule decides a share for each

agent at every collection of preferences of the agents.

A division rule is efficient if there is no other way to divide the good so that no one is worse off and

someone is better off. It is strategy-proof if no agent can strictly benefit by misreporting his preferences.

It satisfies equal treatment of equals (ETE) if whenever two agents have the same preference, their shares

are equal. A division rule is anonymous if the identities of the agents do not play any role in the decision.

Note that anonymity implies ETE.

A preference over the possible shares (that is, over the interval [0,1]) is called single-peaked if there is

a most-preferred share, called the peak, such that as shares increase or decrease from that, preference

declines. The collection of all such continuous preferences is called the maximal continuous single-

peaked domain.1 Sprumont (1991) shows that a division rule satisfies efficiency, strategy-proofness, and

anonymity on the maximal continuous single-peaked domain if and only if it is the uniform rule. Later,

Weymark (1999) generalizes this result for supersets of maximal continuous single-peaked domains,

that is, domains that admit non-continuous single-peaked preferences in addition to all continuous

single-peaked preferences.

The assumptions of maximality, as well as continuity, are somewhat restrictive for their practical

applications. Maximality requires the presence of “extreme” preferences such as the ones where almost all

shares on the left side of the peak are preferred to almost all on the right. Many well-known single-peaked

domains such as Euclidean (and any of its variants) do not admit such preferences, and consequently the

existing result does not apply to these domains.2 On the other hand, continuity is a technical condition

and we do not see any reason why agents’ preferences should always be continuous. For instance, in the

problem of dividing a task among some agents (teaching hours among faculties) an agent’s preference

with peak 0.3 might fall suddenly beyond 0.8 as he might find it totally impossible (or, unacceptable) to

handle more than 0.8 amount of the task. In view of these observations, we intend to explore the structure

of division rules when the assumptions of continuity and maximality on a domain are dropped.

We provide a condition on a single-peaked domain which implies that a division rule satisfies efficiency,

strategy-proofness, and ETE if and only if it is the uniform rule. Our condition depends on the number of

agents. We further show that under some mild richness assumption, it is both necessary and sufficient for

a domain to ensure the property that a division on it satisfies efficiency, strategy-proofness, and ETE if

and only if it is the uniform rule.

1Informally speaking, a preference is continuous if it can be represented by a continuous utility function.
2A single-peaked domain is called Euclidean if preference declines as Euclidean distance increases from the peak.
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Although single-peakedness is quite plausible, there are situations where preferences do not exhibit this

property. Stiglitz (1974) shows that the preference of a person from low-income group over educational

subsidies has two peaks: one very low (so that the primary education is totally free) and one very high

(so that the higher education is totally free). The point is, a moderate amount of subsidy is not helpful

for such a person as he cannot afford to pay the remaining expenses. For another instance, consider the

preference of a faculty member over different amounts of a fund. Suppose that the faculty wants to buy

equipments using the fund and an equipment costs, say INR 1,00,000. Then, his preferences will have

multiple (local) peaks at multiples of 1,00,000. Similarly, if a corporation or a promoter needs some

minimum amount of land, say 1 acre, to setup a new factory, then, for instance, he might prefer both 5

acres and 6 acres of lands to 5.5 acres.

In view of the preceding discussion, we consider situations where agents’ preferences are arbitrary,

that is, not necessarily single-peaked. Let us call a domain possibility if there is a division rule on it

satisfying efficiency, strategy-proofness, and ETE. In a seminal paper, Massó and Neme (2001) provide a

characterization of all possibility domains.3 The contribution of our paper over theirs is as follows. Firstly,

to our understanding, knowing whether a domain is possibility or not might not be enough as, even if a

domain is so, one does not know the structure of division rules satisfying efficiency, strategy-proofness,

and ETE on it. Moreover, as we show in Example 6.1, the structure of such a division rule might indeed

be quite complicated (not even tops-only) for its practical use. We resolve these issues by requiring that

particularly the uniform rule satisfies all the mentioned desirable properties on the domains. Secondly,

the results in Massó and Neme (2001) require that all continuous single-peaked preferences are present in

the domain which seems to be a strong requirement, whereas we derive our results under a much weaker

richness condition called regularity.

Motivated by the preceding discussion and the importance of the uniform rule, we provide a necessary

and sufficient condition on a domain so that the uniform rule satisfies efficiency, strategy-proofness, and

ETE on it. Furthermore, we show that under some mild richness condition, the uniform rule is the unique

rule that satisfies these properties. It is worth mentioning that our result applies to domains which admit

indifference (even) on the same side of the peak of a preference. Note that continuous single-peaked

preferences too admit indifference, but only on the opposite sides of the peak of a preference. Thus, our

consideration of weak preferences is non-trivial.

The uniform rule is introduced by Benassy (1982) as a strategy-proof rule, and is considered to be

the most important rule for the division problem when agents have single-peaked preferences. This

rule is studied extensively in the literature and several characterizations of it using properties such as

monotonicity, consistency, maximality, etc., is available in the literature (see Thomson (1994), Thomson

3In a different paper, Massó and Neme (2004) provide a characterization of the maximal domain where a division rule

satisfying efficiency, strategy-proofness, tops-onlyness, and continuity exists.
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(1994), Thomson (1995), Otten et al. (1996), and de Frutos and Massó (1995) for details). Also, the

uniform reallocation rule is used in exchange economies with two goods and fixed prices. In view of

all these, we think our result establishing the full span of the uniform rule on both single-peaked and

non-single-peaked domains complements the existing literature.

All our aforementioned results are centered around the uniform rule: they characterize domains on

which the uniform rule satisfies efficiency, strategy-proofness, and ETE or it is the unique rule satisfying

these properties. Questions arise as to (i) if the uniform rule does not satisfy efficiency, strategy-proofness,

and ETE on a domain, then what type of rules will satisfy these properties, and (ii) if the uniform rule

is not the unique rule satisfying these properties on a domain, then what other rules will satisfy these

properties. Of course, these questions are worth investigating if the concerned domains are useful and the

corresponding rules are “simple” enough for practical purposes.

In response to (i), we note that in order for the uniform rule to be efficient and strategy-proof on a

domain, preferences in it must decline till the share
1

n
. As we have already mentioned, preferences often

exhibit “double-peakedness” with one high peak and one low. Considering this, we consider domains

where preferences with relatively high peak might have another local peak at a low level, and provide a

class of division rules that satisfy efficiency, strategy-proofness, and ETE on such domains.

In response to (ii), we note that efficient, strategy-proof, and ETE division rules other than the uniform

rule exist on a domain if it has the following property: there is some interval such that for all preferences

with peaks in that interval, one particular boundary is preferred to the other. For instance, it may happen

that for all preferences with peaks in the interval (0.3,0.4), the share 0.3 is preferred to the share 0.4.

As we have explained earlier, such situations occur in land or fund division problems where a particular

amount of land or fund is needed to set-up a factory or to buy an equipment. Therefore, we provide a

class of rules other than the uniform rule which satisfy efficiency, strategy-proofness, and ETE on these

domains.

We provide a wide range of applications of our results. We show that the uniform rule is the unique

division rule satisfying efficiency, strategy-proofness, and ETE on most single-peaked domains that

naturally occur, for instance, when agents have single-peaked utility functions that satisfy a convergence

property or satisfy a translation property, or when the preferences of agents exhibit the well known

single-crossing property (Saporiti (2009)). Simple examples of such preferences consist of Euclidean

ones and its different variants where preference declines on different sides of the peak following different

functional forms. Regarding applications of our results on non single-peaked domains, they provide

the structure of division rules satisfying efficiency, strategy-proofness, and ETE on semi-single-peaked

domains (Chatterji et al. (2013)) and partially single-peaked domains. It is worth mentioning that (i) for

single-peaked domains, we do not assume preferences to be continuous (in contrast to Sprumont (1991),
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Ching (1994), Weymark (1999)), and (ii) for non single-peaked domains, as we have mentioned, we do

not assume the presence of all continuous single-peaked preferences in the domain (in contrast to Massó

and Neme (2001)). Instead, for both these cases, we only need one preference for every share as the peak

that is continuous in an arbitrarily small neighborhood around the peak. We feel our weaker requirements

expand the applicability of our results considerably. Altogether, we feel our paper enriches the literature

of the classical division problem by establishing the full applicability of the well known uniform rule, as

well as, by introducing new division rules for scenarios where the uniform rule “fails”.

The rest of the paper is organized as follows. Section 2 introduces the model and basic definitions

regarding domains. Section 3 introduces division rules and discusses their relevant properties. Section 4

presents a characterization of all single-peaked domains on which the uniform rule is the unique division

rule satisfying efficiency, strategy-proofness, and ETE. Section 5 considers the remaining single-peaked

domains and provides a class of division rules satisfying those properties on these domains. Section 6

considers non single-peaked domains and provides a necessary condition for the uniform rule to satisfy

efficiency, strategy-proofness, and ETE. It further shows that the necessary condition is also sufficient (for

the same purpose) under a mild richness condition. Section 7 considers the non single-peaked domains

on which the uniform rule does not satisfy efficiency, strategy-proofness, and ETE, and provides a class

of division rules on these domains satisfying the mentioned properties. Section 8 provides applications of

our results to several well-known domains.

2. DOMAINS AND THEIR PROPERTIES

Let N = {1, . . . ,n} be a set of agents who must share one unit of some perfectly divisible good. Each

agent i ∈ N has a preference Ri over his possible shares which is a complete and transitive binary relation

on [0,1]. Throughout this paper we assume that each Ri has a unique top-ranked share τ(Ri), also called

the peak of Ri. For all x,y ∈ [0,1], xRiy means consuming a quantity x of the good is, from i’s viewpoint,

at least as good as consuming a quantity y. Strict preference of Ri is denoted by Pi, indifference by Ii.

A preference Ri is continuous if for each x ∈ [0,1], {y ∈ [0,1] | yRix} and {y ∈ [0,1] | xRiy} are closed

sets. A preference is locally continuous around the peak if there exists ε > 0 such that for all each

x ∈ (τ(Ri)− ε ,τ(Ri)+ ε), the sets {y ∈ [0,1] | yRix} and {y ∈ [0,1] | xRiy} are closed. Clearly, local

continuity is much weaker than continuity as the former requires continuity only on an arbitrarily small

neighborhood around the peak.

We denote a collection of preferences (henceforth, will be referred to as a domain) by D . We let

RN = (Ri)i∈N ∈ S
n denote the announced preferences (also called a profile) of all agents and R−i denote

(R j) j∈N\i for i ∈ N. For a profile RN , we define τ(RN) = (τ(R1), . . . ,τ(Rn)) as the collection of peaks at

the profile RN . For a profile RN and S ⊆ N, by T (RS) we denote ∑
i∈S

τ(Ri), i.e., the sum of peaks of the
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agents in S at the profile RN . We let S
n
+ = {RN ∈ S

n | T (RN) ≥ 1} denote the profiles where the total

demand is at least 1 and let S
n
− = {RN ∈ S

n | T (RN)< 1} denote the profiles where the total demand is

at most 1.4

A preference Ri is single-peaked if there exists τ(Ri) ∈ [0,1], called the peak of Ri, such that for all

x,y ∈ [0,1]

[τ(Ri) < x < y] or [y < x < τ(Ri)] =⇒ [τ(Ri)PixPiy].

Thus, a preference is single-peaked if it declines as one goes far away from its peak (in one particular

direction). Throughout this paper we denote by S a set of single-peaked preferences.

A single-peaked preference Ri is called scaled Euclidean if there exist positive numbers κ1,κ2 such

that for all x < τ(Ri)< y, κ1(τ(Ri)−x)< κ2(y−τ(Ri)) implies xPiy, and κ1(τ(Ri)−x)> κ2(y−τ(Ri))

implies yPix. A scaled Euclidean preference is called Euclidean if κ1 = κ2.

All the domains we consider in this paper are assumed to be regular: for all x ∈ [0,1], there exists a

single-peaked preference R ∈ S with τ(R) = x that is locally continuous around the peak.

3. DIVISION RULES AND THEIR PROPERTIES

Let ∆n be the set {(x1, . . . ,xn) ∈ [0,1]n |
n

∑
i=1

xi = 1} of all divisions of the good among n agents. A

division rule f is a function f : S
n → ∆n. In other words, a division rule decides a division of the good

at every given profile. For a division rule f , a profile RN , and an agent i ∈ N, we denote by fi(RN) the

share of agent i at the profile RN by the rule f . Below, we mention some desirable properties of a division

function.

A division rule is efficient if its outcome cannot be modified in a way so that everybody is weakly

better off and somebody is strictly better off, that is, for every other divisions, there will be some agent

who is worse off.

Definition 3.1. A division rule f : S n → ∆n is efficient if for all RN ∈ S
n and all x ∈ ∆n \ f (RN), there

exists i ∈ N such that fi(RN)Pixi.

Note that if preferences are single-peaked, then efficiency says that if the total demand at a profile, i.e.,

the sum of the peaks at that profile, is weakly less than the total available amount 1 (or weakly bigger

than that), then each agent will receive a share that is weakly bigger than (or weakly lesser than) his peak.

Strategy-proofness ensures that if an agent misreports his preferences, then he will not get a share that

is strictly preferred for him/her.

Definition 3.2. A division rule f : S
n → ∆n is strategy-proof if for all i ∈ N, all RN ∈ S

n, and all

4By the total demand at a profile RN , we mean the amount T (RN).
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R′
i ∈ S , we have

fi(RN)Ri fi(R
′
i,R−i).

Equal treatment of equals says that if two agents have the same preference, they will get the same

share of the good.

Definition 3.3. A division rule f : S n → ∆n satisfies equal treatment of equals (ETE) if for all i, j ∈ N

and all RN ∈ S
n, we have

[Ri = R j] =⇒ [ fi(RN) = f j(RN)].

Next, we introduce the notion of the uniform rule (Benassy (1982)).

Definition 3.4. A division rule u : S
n → ∆n is called the uniform rule if for all RN ∈ S

n and all i ∈ N,

ui(RN) =







min{τ(Ri),λ (RN)} if RN ∈ S
n
+, and

max{τ(Ri), µ(RN)} if RN ∈ S
n
−,

where λ (RN) ≥ 0 solves the equation ∑
i∈N

min{τ(Ri),λ (RN)} = 1 and µ(RN) ≥ 0 solves the equation

∑
i∈N

max{τ(Ri), µ(RN)}= 1.

REMARK 3.1. The uniform rule is monotonic, that is, as an agent (unilaterally) moves his peak in some

direction, his shares also move in that direction. More formally, for all RN ∈ S
n, all i ∈ N, all R′

i ∈ S ,

τ(Ri) ≤ τ(R′
i) =⇒ ui(RN) ≤ ui(R

′
i,R−i).

In what follows, we explain how the outcome of the uniform rule is computed at different profiles.

Consider a profile RN = (R1, . . . ,R5) with τ(RN) = (0.2,0.1,0,0.6,0.5). Note that the total demand at

RN is more than 1. For a “cut-off” λ (RN) ∈ [0,1], consider the following allocation vector: if some

agent’s peak is more than λ (RN) then he receives λ (RN), otherwise he receives his peak. For instance, if

λ (RN) = 0.4, then we obtain the following allocation vector (0.2,0.1,0,0.4,0.4). Note that this vector

is not a division as the total share is more than 1. So, keep decreasing the cut-off so that the total share

becomes 1. In this example, this happens when λ (RN) = 0.35 giving the division (0.2,0.1,0,0.35,0.35).

The uniform rule says that the outcome at RN must be the division (0.2,0.1,0,0.35,0.35). For profiles

with total demand less than 1, the uniform rule follows a symmetrically opposite procedure of increasing

the shares of agents to a cut-off to attain the total share 1.

4. A CHARACTERIZATION OF SINGLE-PEAKED DOMAINS FOR THE UNIFORM RULE

In Sprumont (1991), it is shown that if a domain contains all continuous single-peaked preferences, then

a division rule satisfies efficiency, strategy-proofness, and anonymity if and only if it is the uniform
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rule.5 Later, Ching (1994) derives the same result by replacing anonymity with ETE. In this section, we

characterize all single-peaked domains on which the above-mentioned result holds. Our characterization

depends on the number of agents. We distinguish cases accordingly.

4.1 THE CASE OF TWO AGENTS

We present a condition on a domain, called Condition U for 2 agents, that we use in our characterization

result. It says that for every interval (x,y) not containing the point
1

2
, there is a preference with peak

in that interval such that the boundary point of the interval that is closer to
1

2
is strictly preferred to the

other one, that is, if (x,y) ⊆
[

0,
1

2

]

then y is preferred to x, and if (x,y) ⊆
[1

2
,1
]

then x is preferred to y

according to that preference.

Definition 4.1. A domain S satisfies Condition U for 2 agents if

(i) for all intervals (x,y) ⊆
[

0,
1

2

]

there exists R ∈ S with τ(R) ∈ (x,y) such that yPx, and

(ii) for all intervals (x,y) ⊆
[1

2
,1
]

there exists R ∈ S with τ(R) ∈ (x,y) such that xPy.

Our next theorem provides a characterization of all domains on which every division rule for two

agents satisfying efficiency, strategy-proofness, and ETE is the uniform rule.

Theorem 4.1. (i) Suppose a single-peaked domain S satisfies Condition U for 2 agents. Then, a division

rule f : S
2 → ∆n satisfies efficiency, strategy-proofness, and ETE if and only if it is the uniform rule.

(ii) Suppose a single-peaked domain S does not satisfy Condition U for 2 agents. Then, there is a division

rule f : S
2 → ∆n other than the uniform rule that satisfies efficiency, strategy-proofness, and ETE.

The proof of Theorem 4.1 is relegated to Appendix A; we provide a brief sketch here. “If” part of (i)

of Theorem 4.1: First we argue that the share of an agent cannot change unless he changes his peak. This

is because, if an agent does not change his peak, by efficiency his share cannot go to the other side of the

peak, now by strategy-proofness, it must remain the same. Since there are two agents, this means the rule

will be peaks-only that is, will depend only on the peaks. In view of this, for the remaining discussion we

denote a profile by its peaks.

Consider a profile such that both the peaks are more than or equal to
1

2
. The uniform rule would

give the outcome (
1

2
,
1

2
) at this profile, so assume for contradiction that some agent receives less than

1

2
. However, then he will misreport his preference as the one the other agent has, and by ETE, he will

get
1

2
. Since the domain is single-peaked, he will prefer

1

2
to his original share which was less, and thus

5A division rule if anonymous if agents’ identities do not play any role in deciding the outcome. More formally, a division

rule f : S
n → ∆n is anonymous if for all permutations σ : N → N and for all RN ∈ S

n, we have fi(RN) = fσ(i)(R
σ
N) where

Rσ
N = (Rσ(1), . . . ,Rσ(n)).
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will manipulate, a contradiction. Note that just single-peaked structure of the domain is sufficient for

this argument. Similarly, it can be shown that when both the agents have peaks less than
1

2
, the outcome

will be (
1

2
,
1

2
), same as the uniform rule. Now, consider a profile (p1, p2) such that p1 <

1

2
and p2 >

1

2
.

Assume WLOG that p1 + p2 < 1. It can be verified that the outcome of the uniform rule at such a profile

is (1− p2, p2). By efficiency and single-peakedness, agent 2 cannot receive an amount that is less than

his peak. So, assume for contradiction that f2(p1, p2)> p2. Suppose that agent 2 continuously moves his

peak towards left till the outcome changes. Suppose the “boundary” at which the outcome changes is p∗2.

Mathematically, p∗2 is the infimum of all the peaks of agent 2 such that the outcome does not change from

f2(p1,P2). We claim that p∗2 ≥
1

2
. Assume for contradiction that p∗2 <

1

2
. Since p1 <

1

2
, by our earlier

argument, the outcome at all the profiles where agent 1 has peak p1 and 2 has the peak in the interval

[p∗2,
1

2
], must be (

1

2
,
1

2
). However, this is a contradiction to the fact that p∗2 is the infimum over the peaks

of agent 2 such that the outcome does not change.

Next, we argue that the share of agent 2 either remains the same (i.e. f (p1,P2)) or “jump” to p∗2 when

his peak is p∗2. To see this, first note that by efficiency the outcome cannot move to the left of p∗2. If the

outcome goes to the right of f2(p1, p2), then by single-peakedness agent 2 will manipulate by moving to

p2. Suppose that the outcome comes closer (but, remains strictly on the left) to p∗2. If agent 2 misreports

his peak as slightly more than p∗2 (less than the outcome), by strategy-proofness the outcome has to

remain the same. Since this outcome is different from the original outcome f2(p1, p2), this contradicts

the fact that p∗2 is the infimum of the peaks of agent 2 such that the outcome does not change.

Now, we distinguish two cases: (a) f2(p1, p∗2) = p∗2, and (b) f2(p1, p∗2) = f2(p1, p2). For Case (a),

we apply Condition U for 2 agents over the interval [p∗2, f2(p1, p2)] (as we have argued, this interval is

above
1

2
as p∗2 ≥

1

2
), and get hold of a preference R̃ such that p∗2P̃ f2(p1, p2). By construction, the share

of agent 2 when he has preference R̃ is f2(p1, p2), and hence, he will manipulate by misreporting his

sincere preference R̃ as any preference with p∗2 as peak. In Case (b), note that since the domain is regular,

by local continuity there is a preference R̂ with peak p∗2 such that for some x < p∗2 (arbitrarily close to p∗2),

we have xP̂ f2(p1, p2). By the definition of p∗2 and by the assumption of Case (b), if agent 2 misreports

his preference as one with x as the peak, then he will get a share in [x, p∗2) and manipulate at (p1, p∗2).

This proves that f2(p1, p2) = p2 as required by the uniform rule. The proof for other cases follows by

using similar argument.

4.2 THE CASE OF MORE THAN TWO AGENTS

We use a condition, called Condition U for n agents, where n > 2, for our characterization. It is a stricter

version of Condition U for 2 agents. Firstly (and somewhat naturally), it modifies (i) and (ii) of Condition

U for 2 agents by replacing
1

2
with

1

n
. Secondly, it additionally imposes two other conditions that are, in a
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sense, partial complements of (i) and (ii) in Condition U for 2 agents. Recall that (i) of the said condition

says that for every subset (x,y) of
[

0,
1

2

]

, there is a preference with the peak in that interval according

to which y is preferred to x. Part (iii) of Condition U for n agents requires that for such intervals (now

subsets of
[

0,
1

n

]

), there is another preference according to which x is preferred to y. In a similar manner,

(iv) of Condition U for n agents is kind of the complement of (ii) of Condition U for 2 agents with some

additional modification: in contrast to (ii), (iv) is imposed only on the intervals that are subsets of
[1

n
,
1

2

]

.

For such intervals (x,y), it requires that there is a preference with peak in that interval according to which

y is preferred to x.

Note that combining (i) and (iii), and (ii) and (iv) in Condition U for n agents, it follows that for every

interval (x,y) such that either (x,y) ⊆ [0,
1

n
] or (x,y) ⊆

[1

n
,
1

2

]

, there are two preferences with the peaks

in that interval such that preference over x and y is reversed in those two preferences. Note that apart from

the said implication, Condition (ii) additionally imposes some restrictions on intervals that are subsets of
[1

n
,1
]

.

Definition 4.2. A domain S satisfies Condition U for n agents, where n > 2, if

(i) for all intervals (x,y) ⊆
[

0,
1

n

]

, there exists R ∈ S with τ(R) ∈ (x,y) such that yPx,

(ii) for all intervals (x,y) ⊆
[1

n
,1
]

, there exists R ∈ S with τ(R) ∈ (x,y) such that xPy,

(iii) for all intervals (x,y) ⊆
[

0,
1

n

]

, there exists R ∈ S with τ(R) ∈ (x,y) such that xPy, and

(iv) for all intervals (x,y) ⊆
[1

n
,
1

2

]

, there exists R ∈ S with τ(R) ∈ (x,y) such that yPx.

Note that Condition U is satisfied if, for instance, the domain is Euclidean (or even scaled Euclidean).

Our next theorem presents a characterization of all domains on which every division rule for more

than two agents satisfying efficiency, strategy-proofness, and ETE is the uniform rule.

Theorem 4.2. (i) Suppose n > 2 and let a single-peaked domain S satisfy Condition U for n agents.

Then, a division rule f : S
n → ∆n satisfies efficiency, strategy-proofness, and ETE if and only if it is the

uniform rule.

(ii) Suppose n > 2 and let a single-peaked domain S do not satisfy Condition U for n agents. Then, there

is a division rule f : S
n → ∆n other than the uniform rule that satisfies efficiency, strategy-proofness,

and ETE.

The proof of Theorem 4.2 is relegated to Appendix B. The idea of this proof is somewhat similar to

that of Theorem 4.1, but much more involved. Firstly, note that the peaks-only property does not follow

so straightforwardly for this case. Furthermore, ETE was much stronger for two agents since an agent

can unilaterally deviate to the preference of the other agent, and can enforce ETE. However, for n agents

this is not possible. We leave the details for the formal proof.
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5. THE STRUCTURE OF DIVISION RULES ON SINGLE-PEAKED DOMAINS THAT VIOLATE

CONDITION U

In Section 4, we have presented the structure of division rules satisfying efficiency, strategy-proofness,

ETE on domains that satisfy condition U. In this section, we do this for the remaining domains. As before,

we treat the cases of 2 agents and more than 2 agents separately as our results vary over these cases.

5.1 THE CASE OF TWO AGENTS

Note that a domain violates Condition U for 2 agents if there is an interval (x,y) not containing the point

1

2
such that for each preferences with the peak in that interval, the boundary point of the interval that is

farther away from
1

2
is weakly preferred to the other one. Below, we present this observation formally.

Observation 5.1. A domain S violates Condition U for 2 agents on an interval (x,y) with
1

2
/∈ (x,y) if

for all R ∈ S , τ(R) ∈ (x,y) implies

(i) xRy if (x,y) ⊆
[

0,
1

2

]

, and

(ii) yRx if (x,y) ⊆
[1

2
,1
]

.

To ease our presentation, for two subsets A and B of [0,1], we write A < B to mean that each element

of A is less than each element of B, that is, a < b for all a ∈ A and all b ∈ B. Similarly, for a number x

and an interval (a,b), we write x < (a,b) to mean that x < a. We use similar notations without further

explanation.

To help the reader, we first consider domains that violates Condition U for 2 agents only on two

intervals (x,y) and (w,z), where (x,y) <
1

2
< (w,z). We present the notion of adjusted uniform rules for

2 agents on such domains. These rules behave like the uniform rule at every profile except a few where

they adjust the outcome of the uniform rule by giving some lesser preferred amount to some particular

agent i0. These profiles are those where (i) the total demand (that is, the sum of the peaks) is at least 1

and agent i0’s peak is lies the interval [x,y), or (ii) the total demand is at most 1 and agent i0’s peak lies in

the interval (w,z]. In Case (i), if x+ τ(R j)≥ 1 then agent i0 gets x and the other agent j gets the rest, and

if x+ τ(R j) < 1 then agent j gets his peak and agent i0 gets the rest. In Case (ii), if z+ τ(R j) ≤ 1 then

agent i0 gets z and agent j gets the rest, and if z+ τ(R j) > 1 then agent j gets his peak and agent i0 gets

the rest.

Note that in both Case (i) and Case (ii), agent i0 would get his peak and agent j would get the rest by

the uniform rule. Thus, these rules are in a sense negatively biased towards the agent i0 relative to the

uniform rule. For ease of presentation, we just mention the outcome share of one agent, that of the other

agent is the remaining share.
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Definition 5.1. A division rule f : S
2 → ∆2 is an adjusted uniform rule for 2 agents with respect to

intervals (x,y) and (w,z) if there exists an agent i0 ∈ N, such that

(i) for all (R1,R2) ∈ S
2
+ with τ(Ri0) ∈ [x,y), we have for j 6= i0

(a) x+ τ(R j) ≥ 1 =⇒ f j(RN) = 1− x,

(b) x+ τ(R j) < 1 =⇒ f j(RN) = τ(R j),

(ii) for all (R1,R2) ∈ S
2
− with τ(Ri0) ∈ (w,z], we have for j 6= i0

(a) z+ τ(R j) ≤ 1 =⇒ f j(RN) = 1− z,

(b) z+ τ(R j) > 1 =⇒ f j(RN) = τ(R j), and

(iii) for all other profiles (R1,R2) ∈ S
2, f (R1,R2) = u(R1,R2).

We are now ready to present our rules for the domains that violate Condition U for 2 agents over

multiple intervals. For intervals 0 < (x1,y1) < · · ·< (xk1
,yk1

) <
1

2
< (w1,z1) < · · ·< (wk2

,zk2
) < 1, we

say a domain violates Condition U for 2 agents on these intervals if each interval in this collection satisfies

the corresponding condition (based on whether it is less than or bigger than
1

2
) in Observation 5.1.

In what follows, we present a general class of division rules on domains that violate Condition U for 2

agents on multiple intervals. These rules treat each interval below
1

2
and each interval above

1

2
in the

same way as adjusted uniform rules presented above treat the intervals (x,y) and (w,z), respectively.

Definition 5.2. Let (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

) be a collection of intervals such that

0 < (x1,y1) < · · · < (xk1
,yk1

) <
1

2
< (w1,z1) < · · · < (wk2

,zk2
) < 1. A division rule f : S

2 → ∆2 is

an adjusted uniform rule for 2 agents with respect to intervals (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . ,

(wk2
,zk2

) if there exists an agent i0 ∈ N such that

(i) for all (R1,R2) ∈ S
2
+ for which there exists r ∈ {1, . . . ,k1} with τ(Ri0) ∈ [xr,yr), we have for all

j 6= i0

(a) xr + τ(R j) ≥ 1 =⇒ f j(RN) = 1− xr,

(b) xr + τ(R j) < 1 =⇒ f j(RN) = τ(R j),

(ii) for all (R1,R2) ∈ S
2
− for which there exists s ∈ {1, . . . ,k2} with τ(Ri0) ∈ (ws,zs], we have for all

j 6= i0

(a) zs + τ(R j) ≤ 1 =⇒ f j(RN) = 1− zs,

(b) zs + τ(R j) > 1 =⇒ f j(RN) = τ(R j), and

(iii) for all other profiles (R1,R2) ∈ S
2, f (R1,R2) = u(R1,R2).
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Clearly, adjusted uniform rules are different from the uniform rule. Our next theorem says that adjusted

uniform rule for 2 agents with respect to intervals (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

) rules

satisfy efficiency, strategy-proofness, and ETE on a domain that violates Condition U for 2 agents on

intervals (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

), where 0< (x1,y1)< · · ·< (xk1
,yk1

)<
1

2
< (w1,

z1) < · · ·< (wk2
,zk2

) < 1.

Theorem 5.1. Let (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

) be a collection of intervals such that

0 < (x1,y1)< · · ·< (xk1
,yk1

)<
1

2
< (w1,z1)< · · ·< (wk2

,zk2
)< 1 and let S be a single-peaked domain

that violates Condition U for 2 agents on these intervals. Then, every adjusted uniform rule for 2 agents

satisfies efficiency, strategy-proofness, and ETE.

The proof of Theorem 5.1 is relegated to Appendix C.

5.2 THE CASE OF n AGENTS

As we have mentioned earlier, (i) and (ii) of Condition U for n agents are suitable adaptation of (i) and

(ii) of Condition U for 2 agents (with
1

2
being replaced by

1

n
). Thus, if a domain violates any of these

conditions, then suitably modified (for n agents) versions of adjusted uniform rules will satisfy efficiency,

strategy-proofness, and ETE. For the sake of completeness, we present these rules below. As before, to

help the reader, we first present these rules for the case where a domain violates (i) and (ii) on just two

intervals (x,y) and (w,z) such that 0 < (x,y) <
1

n
< (w,z) < 1.

To describe the rules formally, we introduce a generalized version of the uniform rule. While the

uniform rule divides 1 amount of the good amongst all the agents, a generalized uniform rule does the

same for arbitrary amount of the good amongst arbitrary subsets of agents. It has a similar formulation as

the uniform rule.

To ease the presentation, we introduce the following notations. For an amount x ∈ [0,1] of the good

and a subset sN = {1, . . . , |sN|} ⊆ N of agents, we denote by ∆
x
|sN| the set of all divisions of the amount x

among the agents in sN, that is, ∆
x
|sN| = {(x1, . . . ,x|sN|) ∈ [0,1]|

sN| | ∑
i∈sN

xi = x}.

Definition 5.3. For sN ⊆ N and x ∈ [0,1], a division rule u(x,sN) : S |sN| → ∆
x
|sN| is the generalized uniform

rule for (x, sN) if for all RsN ∈ S
|sN| and all i ∈ sN,

u
(x,sN)
i (RsN) =















min{τ(Ri),λ (RsN)} if ∑
i∈sN

τ(Ri) ≥ x, and

max{τ(Ri), µ(RsN)} if ∑
i∈sN

τ(Ri) < x,

where λ (RsN) ≥ 0 solves the equation ∑
i∈sN

min{τ(Ri),λ (RsN)} = x and µ(RsN) ≥ 0 solves the equation

∑
i∈sN

max{τ(Ri), µ(RsN)}= x.
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Note that when x = 1 and sN = N, the rule u(x,sN) coincides with the uniform rule u.

We are now ready to present our rules. As before, we only specify the shares of n−1 agents in an

outcome, the remaining agent gets the remaining share. An adjusted uniform rule for n agents behaves in

the same manner as an adjusted uniform rule for 2 agents with the modification that the shares of the

agents other than the “particular agent” i0 are decided by using a generalized uniform rule.

Definition 5.4. A division rule f : S
n → ∆n is an adjusted uniform rule for n agents with respect to

intervals (x,y) and (w,z), where 0 < (x,y) <
1

n
< (w,z) < 1, if there exists an agent i0 ∈ N, such that

(i) for all RN ∈ S
n
+ with τ(Ri0) ∈ [x,y) and τ(R j) ≥ y for all j 6= i0, we have

(a) x+T (RN\i) ≥ 1 =⇒ f j(RN) = u1−x
j (RN\i0) for all j 6= i0,

(b) x+T (RN\i0) < 1 =⇒ f j(RN) = τ(R j) for all j 6= i0,

(ii) for all RN ∈ S
n
− with τ(Ri0) ∈ (w,z] and τ(R j) ≤ w for all j 6= i0, we have

(a) z+T (RN\i0) ≤ 1 =⇒ f j(RN) = u1−z
j (RN\i0) for all j 6= i0,

(b) z+T (RN\i) > 1 =⇒ f j(RN) = τ(R j) for all j 6= i0, and

(iii) for all other profiles RN ∈ S
n, f (RN) = u(RN).

We now present the notion of adjusted uniform rules for n agents for the general case where a domain

violates (i) and (ii) of Condition U for n agents on multiple intervals.

Definition 5.5. Let (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

) be a collection of intervals such that

0 < (x1,y1) < · · · < (xk1
,yk1

) <
1

n
< (w1,z1) < · · · < (wk2

,zk2
) < 1. A division rule f : S

n → ∆n is

an adjusted uniform rule for n agents with respect to intervals (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . ,

(wk2
,zk2

) if there exists an agent i0 ∈ N, such that

(i) for all RN ∈ S
n
+ such that there exists r ∈ {1, . . . ,k1} with τ(Ri0) ∈ [xr,yr) and τ(R j) ≥ yr for all

j 6= i0, we have

(a) xr +T (RN\i0) ≥ 1 =⇒ f j(RN) = u
1−xr

j (RN\i0) for all j 6= i0,

(b) xr +T (RN\i0) < 1 =⇒ f j(RN) = τ(R j) for all j 6= i0,

(ii) for all RN ∈ S
n
− such that there exists s ∈ {1, . . . ,k2} with τ(Ri0) ∈ (ws,zs] and τ(R j) ≤ ws for all

j 6= i0, we have

(a) zs +T (RN\i0) ≤ 1 =⇒ f j(RN) = u
1−zs

j (RN\i0) for all j 6= i0,

(b) zs +T (RN\i0) > 1 =⇒ f j(RN) = τ(R j) for all j 6= i0, and
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(iii) for all other profiles RN ∈ S
n, f (RN) = u(RN).

Our next theorem says that adjusted uniform rules satisfy efficiency, strategy-proofness, and ETE on a

domain that violates (i) and (ii) of Condition U for n agents.

Theorem 5.2. Let (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

) be a collection of intervals such that

0 < (x1,y1)< · · ·< (xk1
,yk1

)<
1

n
< (w1,z1)< · · ·< (wk2

,zk2
)< 1 and let S be a single-peaked domain

that violates (i) and (ii) of Condition U for n agents on these intervals. Then, every adjusted uniform rule

for n agents satisfies efficiency, strategy-proofness, and ETE.

The proof of Theorem 5.2 is relegated to Appendix D.

Next, we investigate what happens if a domain violates (iii) or (iv) of Condition U for n agents.

Note that a domain violates (iii) or (iv) if either there is an interval (x,y) ⊆
[

0,
1

n

]

such that y is weakly

preferred to x for every preference with peak in that interval, or there is an interval (x,y) ⊆
[1

n
,
1

2

]

such

that x is weakly preferred to y for every preference with peak in that interval.

Observation 5.2. A domain S is said to violate (iii) or (iv) of Condition U for n agents on an interval

(x,y) ⊆
[

0,
1

2

]

with
1

n
/∈ (x,y) if for all R ∈ S , τ(R) ∈ (x,y) implies

(i) yRx if (x,y) ⊆
[

0,
1

n

]

, and

(ii) xRy if (x,y) ⊆
[1

n
,
1

2

]

.

In what follows, we present a class of division rules on domains that violate (iii) and (iv) of Condition

U for n agents. With slight abuse of terminologies, we keep calling them adjusted uniform rules with

respect to the concerned intervals. For simplicity, we present them for the case where there are exactly

two intervals (x,y) and (w,z) with 0 < (x,y) <
1

n
< (w,z) <

1

2
on which (iii) or (iv) of Condition U for

n agents is violated. Versions of these rules for other cases (that is, when the said condition is violated on

multiple intervals) can be obtained in a similar way as we have done in Definition 5.5.

We explain the behaviour of adjusted* uniform rules for n agents with respect to an interval (x,y)<
1

n
,

the behaviour of the same with respect to an interval (w,z) >
1

n
is similar. Such a rule is based on a

collection of parameters: 0≤ (x1,y1)< (x,y)< x0 ≤ 1 such that (n−2)x0+x+y1 = (n−2)x0+y+x1 =

1, and two particular agents who we denote by i0 and j0. Note that the structure of the collection of

parameters implies that we can divide the good by giving each agent other than i0 and j0 a share x0, and

agents i0 and j0 shares either x and y1, or y and x1. An adjusted* uniform rule for n agents coincides

with the uniform rule at all profiles except a few as follows. Consider an arbitrary profile with total

demand at most 1 such that agents other than i0, j0 have peaks at x0 and agent i0 has peak in the interval

(x,y). Adjusted* uniform rule for n agents says that (a) if agent j0’s peak lies in the interval (x1,y1), then
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everybody except agent i0 will get their peaks, and (b) if agent j’s peak is less than or equal to x1, then

everybody except agents i0 and j0 will get their peaks, and agent j0 will get x1. Note that for the uniform

rule, agent i0 would get his peak in both the cases. Thus, adjusted uniform rules are negatively biased

towards some particular agent, who, in our case, is i0.

Definition 5.6. Let (x,y) and (w,z) be two intervals such that 0 < (x,y) <
1

n
< (w,z) <

1

2
. A division

rule f : S
n → ∆n is an adjusted* uniform rule for n agents with respect to (x,y) and (w,z) if there

are

(a) x0, (x1,y1),w0, (w1,z1) with

(a) (x1,y1) < (x,y) < x0 and w0 < (w,z) < (w1,z1),

(b) (n−2)x0+x+y1 = (n−2)x0+y+x1 = 1 and (n−2)w0+w+z1 = (n−2)w0+z+w1 = 1,

and

(b) two particular agents i0 and j0

such that

(i) for all RN ∈ S
n
− with τ(Rk) = x0 for all k ∈ N \{i0, j0} and τ(Ri0) ∈ (x,y), we have

(a) τ(R j0) ∈ (x1,y1) =⇒ fl(RN) = τ(Rl) for all l 6= i0, and

(b) τ(R j0) ≤ x1 =⇒ fl(RN) = τ(Rl) for all l ∈ N \{i0, j0} and f j0(RN) = x1,

(ii) for all RN ∈ S
n
+ with τ(Rk) = w0 for all k ∈ N \{i0, j0} and τ(Ri0) ∈ (w,z), we have

(a) τ(R j0) ∈ (w1,z1) =⇒ fl(RN) = τ(Rl) for all l 6= i0, and

(b) τ(R j0) ≥ z1 =⇒ fl(RN) = τ(Rl) for all l ∈ N \{i0, j0} and f j0(RN) = z1, and

(iii) for all other RN ∈ S
n, we have f (RN) = u(RN).

REMARK 5.1. The outcomes of an adjusted* uniform rule for n agents and the uniform rule can only

differ at the profiles where either (i) or (ii) in Definition 5.6 is satisfied. Moreover, even on those profiles,

the two rules can differ only over the shares of agents i0 and j0.

Our next theorem says that adjusted* uniform rules for n agents satisfy efficiency, strategy-proofness,

and ETE on a domain that violates (iii) and (iv) of Condition U for n agents.

Theorem 5.3. Let (x,y) and (w,z) be two intervals such that 0 < (x,y) <
1

n
< (w,z) <

1

2
and let S

be a single-peaked domain that violates (iii) and (iv) of Condition U for n agents on these intervals.

Then, every adjusted* uniform rule for n agents with respect to (x,y) and (w,z) satisfies efficiency,

strategy-proofness, and ETE.

The proof of Theorem 5.3 is relegated to Appendix E.
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Figure 1: A pictorial illustration of the feebly single-peaked preference in Example 6.1

6. A CHARACTERIZATION OF NON SINGLE-PEAKED DOMAINS FOR THE UNIFORM RULE

In Section 4, we have provided a necessary and sufficient condition on a single-peaked domain so that

the uniform rule is the only division rule satisfying efficiency, strategy-proofness, and ETE. Question

arises as to whether single-peakedness is necessary for the uniform rule to satisfy these properties. We

show that the answer is “no” , that is, the uniform rule can satisfy these properties even on non-single-

peaked domains. In what follows, we provide a necessary condition on an arbitrary domain so that the

uniform rule satisfies efficiency, strategy-proofness, and ETE. We further show that if a domain contains

all preferences satisfying our necessary condition, then the uniform rule is the unique rule satisfying

efficiency, strategy-proofness, and ETE.

Massó and Neme (2001) provide a characterization of possibility domains as feebly single-plateaued

domains. The following example shows that the structure of division rules satisfying efficiency, strategy-

proofness, ETE on a possibility domain might be quite complicated, even when the plateau is restricted to

be a peak.

Example 6.1. Let N = {1, . . . ,4} and let D be a domain containing exactly one non single-peaked

preference R̄ with τ(R̄) = 0.8 such that (i) yR̄x for all 0.25 ≤ x < y ≤ 0.8, (ii) yĪx if and only if x,y ∈

[0.35,0.7], and (iii) 0.25P̄w for all w < 0.25. See Figure 1 for a pictorial illustration of this preference.

It can be verified that the domain D is a feebly single-plateaued domain (as defined in Massó and

Neme (2001)), and hence, by Massó and Neme (2001) there exists a division rule that admits efficiency,

strategy-proofness, and ETE.

First, we show that the uniform rule violates efficiency on D . Consider the preference profile

(R1,R2,R3,R4) where Ri is a single-peaked preference for all i ∈ {1,2,3} and R4 = R̄. Let τ(R1) =

τ(R2) = 0.1 and τ(R3) = 0.8. By the definition of the uniform rule, u(RN) = (0.1,0.1,0.4,0.4). Let

yyy= (0.1,0.1,0.45,0.35). Since 0.35I40.4 and 0.45P30.4, we have yiRiui(RN) for all i∈N and y3P3u3(RN).

This shows the uniform rule u is not efficient.

Now, we provide a division rule f : D
4 → ∆4 satisfying efficiency, strategy-proofness, and ETE to
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show that the structure of such rules is quite complicated. Consider the division rule f : D
4 → ∆4 as

given below

(i) if T (RN) > 1 and there exists i ∈ N such that ui(RN) > 0.35, then

f j(RN) =







min{u j(RN)+λ (RN),τ(R j)} if R j 6= R̄,

min{0.35,u j(RN)−λ (RN)} if R j = R̄,

where λ (RN) > 0 is such that ∑
j∈N

f j(RN) = 1, and

(ii) for all other profiles RN , f (RN) = u(RN). �

It is worth mentioning that the division rule f presented above does not even satisfy the tops-only

property.6 The domain under consideration violates single-peakedness for exactly one preference; more

complicated division rules can be constructed for feebly single-peaked domains that violate single-

peakedness for more preferences. This constitutes the main motivation for the analysis of this section.

A domain (not necessarily single-peaked) satisfies Condition N if the following holds: (i) If the peak

of a preference is bigger than
1

n
, then preference weakly declines as one moves from the peak towards

the left direction until
1

2
(if

1

2
is on the left of the peak), it strictly declines after that until

1

n
, and all

the shares that are less than
1

n
are ranked below

1

n
. (ii) If the peak is smaller than

1

n
, then preference

strictly declines until
1

2
, and and all the shares that are more than

1

n
are ranked below

1

n
. Note that there

is no restriction on the relative ordering of two shares if they are less than
1

n
or bigger than the peak for

case (i), and if they are more than
1

n
or smaller than the peak for case (ii). Further note that Condition

N does not put any restrictions on the preferences with peak
1

n
. Chatterji et al. (2013) introduce the

notion of semi-single-peaked domains. It can be verified that Condition N is a generalization of semi

single-peakedness for (weak) preferences.

Definition 6.1. A domain D satisfies Condition N if for all R ∈ D the following holds:

(i) τ(R) >
1

n
implies that for all x,y,z with z <

1

n
≤ x < y ≤ τ(R),

(a) if x <
1

2
, we have yPxPz,

(b) if x ≥
1

2
, we have yRxPz, and

(ii) τ(R) <
1

n
implies that for all x,y,z with τ(R) ≤ y < x ≤

1

n
< z, we have yPxPz.

Our next theorem says that a domain must satisfy Condition N in order for the uniform rule to satisfy

efficiency, strategy-proofness, and ETE.

6A division rule f : D
n → ∆n is tops-only if for all RN ,R′

N ∈ D
n, [τ(Ri) = τ(R′

i) for all i ∈ N] =⇒ [ f (RN) = f (R′
N)].
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Theorem 6.1. The uniform rule satisfies efficiency, strategy-proofness, and ETE on a domain if and only

if it satisfies Condition N.

The proof of Theorem 6.1 is relegated to Appendix F.

Theorem 6.2 shows that if a domain satisfies an additional richness condition, then the uniform rule is

the unique rule that satisfies efficiency, strategy-proofness, and ETE on a domain satisfying Condition N.

Thus, Theorem 6.2 generalizes Theorem 4.1 and Theorem 4.2 for arbitrary (non-single-peaked) domains.

A domain D is minimally rich if for all x,y,z ∈ [0,1] with x < y < z, there exist single-peaked R,R′ ∈ D

with τ(R) = τ(R′) = y such that xPz and zP′x.

Theorem 6.2. Let D be a minimally rich domain satisfying Condition N. Then, a division rule f : D
n →

∆n satisfies efficiency, strategy-proofness, and ETE if and only if it is the uniform rule.

The proof of Theorem 6.2 is relegated to Appendix G.

7. THE STRUCTURE OF DIVISION RULES ON NON SINGLE-PEAKED DOMAINS THAT

VIOLATE CONDITION N

In this section, we investigate the structure of efficient, strategy-proof, and ETE divisions rules for

domains on which the uniform rule does not satisfy those properties, that is, domains which violate

Condition N. There are many ways a domain can violate Condition N, we consider the one that we find

important for practical applications.7

In what follows, we introduce the notion of local-peaked domains. To ease our presentation, we say

that a preference R strictly (or weakly) declines till a point z if z < τ(R) implies xPyPz (or xRyRz) for

all z < y < x < τ(R), and if τ(R) < z implies xPyPz (or xRyRz) for all z > y > x > τ(R). Recall that

Condition N implies that every preference weakly declines till the share
1

n
. For local-peaked domains,

every preference satisfies this property except (possibly) the ones with relatively high peak (more than

(1−
1

n
)) which might violate this by giving the share

1

n
some “special” preference: it strictly declines

towards left till a point p∗ >
(

1−
1

n

)

, and the share
1

n
dominates all shares on the left of p∗. Thus, the

share
1

n
acts like a “local peak” in such a preference. In Figures 2 and 3, we provide two instances of

such a preference.

We further assume that when the peak of a preference is relatively low (on the left of
1

n
), then the

share
1

n
strictly dominates any share on the left of the peak, which, again, says that the share

1

n
gets some

special preference.

Definition 7.1. A domain D is a local-peaked domain if for all R ∈ D ,

7See Section 1 for practical relevance of such domains.
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Figure 2: A graphic illustration of a preference satisfying (ii) in Definition 7.1

0 11

n
τ(R)

R

p∗(R)
(

1−
1

n

)

Figure 3: A graphic illustration of a preference satisfying (ii) in Definition 7.1

(i) τ(R) ≤ 1−
1

n
implies that R satisfies Condition N,

(ii) τ(R) > 1−
1

n
implies that either R satisfies Condition N or there exists p∗(R) ∈

(

(1−
1

n
),τ(R)

)

such that R strictly declines till p∗(R),
1

n
Px for all x < p∗(R), and p∗(R)I

1

n
, and

(iii) τ(R) <
1

n
implies

1

n
Px for all x < τ(R).

Definition 7.2. A division rule f : D
n → ∆n is called partially uniform rule if for all RN ∈ D

n,

(i) if T (RN) > 1 and ui(RN) < p∗(Ri) for all i ∈ N such that Ri satisfies (ii) of Definition 7.1, then

f (RN) = u(R̄N) where τ(R̄i) =
1

n
if Ri satisfies (ii) of Definition 7.1 and R̄i = Ri otherwise, and

(ii) f (RN) = u(RN) otherwise.

Theorem 7.1. Let D be a local-peaked domain. Then, the partially uniform rule satisfies efficiency,

strategy-proofness, and ETE.

The proof of this theorem is relegated to Appendix H.

8. APPLICATIONS

In this section we apply our results to analyse the structure of division rules satisfying efficiency, strategy-

proofness, and ETE on domains that arise naturally in practical scenarios. We assume that all the domains
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we consider in this section are regular. Throughout this section, whenever we say that a domain satisfies

Condition U we mean it for any number of agents (that is, both 2 agents and more than 2 agents).

8.1 PREFERENCES GIVEN BY UTILITY FUNCTIONS

In this subsection we consider scenarios where agents have specific (single-peaked) utility functions. The

main message of this subsection is that Condition U is satisfied for most utility functions of economic

interest leaving the uniform rule as the unique rule satisfying efficiency, strategy-proofness, ETE.

A (normalized) utility function is a function f : [0,1]→ [0,1]. For any property of a preference, we

say a utility function satisfies it if the preference it represents satisfies the same. We follow similar

terminologies for domains, for instance, we say a class F of utility functions is Euclidean if the class

of preferences it represents is Euclidean. We now present some general instances where Condition U is

satisfied. Throughout this subsection, we denote a single-peaked utility function with peak at x by f x.

8.1.1 UTILITY FUNCTIONS SATISFYING A CONVERGENCE PROPERTY

Suppose that a class of single-peaked utility functions F satisfies the following convergence property:

for every sequence {xn} in [0,1], xn converges to x implies that there exists a sequence { f xn} ∈ F such

that f xn converges to f x pointwise.8 Let F
c be a set of utility functions satisfying the above-mentioned

convergence property. The following proposition shows that it satisfies Condition U.

Proposition 8.1. The class of utility functions F
c satisfies Condition U.

Proof: Consider two points x,y ∈ [0,1] such that x < y. We show that there exists a utility function f z : [0,

1]→ [0,1] such that z ∈ (x,y) and f z(x) < f z(y). The existence of a utility function f w : [0,1]→ [0,1]

such that w ∈ (x,y) and f w(x)> f w(y) follows by using similar arguments. Consider a sequence {yn} of

real numbers such that {yn} converges to y and x < yn < y for all n ∈ N. By the definition of F
c, there

exists a sequence of utility functions f yn such that f yn converges to f y pointwise. Since the peak of f y is

y, we have f y(y) > f y(x), and hence, there must exist n̂ ∈ N, large enough, such that f yn̂(y) > f yn̂(x).

Because yn̂ ∈ (x,y), this completes the proof of the proposition. �

It follows from Theorem 4.1 and 4.2 that the uniform rule is the unique division rule satisfying

efficiency, strategy-proofness, and ETE on F
c.

8.1.2 UTILITY FUNCTIONS SATISFYING A TRANSLATION PROPERTY

Let F
0 be a finite class of single-peaked utility functions f 0 : R → [0,1] with peak at 0. For x ∈ [0,1] and

f 0 ∈ F
0, define f x : [0,1]→ [0,1] as f x(y) = f 0(y−x) for all y ∈ [0,1]. In other words, f x translates f 0

8A sequence of functions fn : [0,1]→ [0,1] converges pointwise to a function f : [0,1]→ [0,1] if for all x ∈ [0,1], fn(x)→
f (x).
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by shifting the peak of f 0 from 0 to x and maintaining the same functional structure as f 0. For instance,

if f 0 is Euclidean (with peak at 0), then f x is also Euclidean but with peak at x. Let F
T be a subset of

∪x∈[0,1]F
x. The following proposition shows that it satisfies Condition U.

Proposition 8.2. The class of utility functions F
T satisfies Condition U.

Proof: We show that for all x,y ∈ [0,1] with x < y, there exist w,z ∈ (x,y) and f̂ w, f̂ z ∈ F
T such that

f̂ w(x) > f̂ w(y) and f̂ z(y) > f̂ z(x). We show the existence of z and f̂ z; the same for w and f̂ w follows

using similar arguments.

Let F̄
0 be the subset of F

0 consisting of all the utility functions in F
0 that are locally continuous

around the peak. Since F
T is regular, for every s ∈ [0,1], there exists f̄ s ∈ F

T such that its translation

f̄ 0 to shift the peak to 0 is in F̄
0. Let u =

x+ y

2
. By the finiteness of F̄

0 and the local continuity around

the peak property of all f 0 ∈ F̄
0, there must exist ε > 0 such that f̄ 0(ε) > f̄ 0(x−u) for all f̄ 0 ∈ F̄

0.

Take z ∈ (x,y) such that z ≥ u and z+ ε > y. By the regularity of F
T , there exists f̂ z ∈ F

T such that

f̂ 0 ∈ F̄
0. Since f̂ 0(ε) > f̂ 0(x−u), single-peakedness of f̂ 0 implies f̂ 0(y− z) > f̂ 0(x− z). Therefore,

by definition, f̂ z(y) > f̂ z(x). This completes the proof of the proposition. �

Euclidean or scaled Euclidean utility functions are straightforward examples of F
T satisfying Con-

dition U. Moreover, one can (suitably) consider different types of utility functions for different peaks

maintaining Condition U. It follows from Theorem 4.1 and 4.2 that the uniform rule is the unique division

rule satisfying efficiency, strategy-proofness, and ETE on F
T .

8.1.3 MOST SINGLE-PEAKED DOMAINS SATISFY CONDITION U

In this subsection, we emphasize that most single-peaked domains satisfy Condition U and thereby the

uniform rule is the unique rule satisfying efficiency, strategy-proofness, and ETE on them. In what

follows, we present an example of a domain that violates Condition U to clarify that such a violation can

happen only under complicated structure of preferences.

Example 8.1. For simplicity consider the case where for each w∈ [0,1] there is a unique scaled Euclidean

utility function f w with (scale) parameters κ1(w) and κ2(w). Thus, different peaks can have different

values of κ’s. Let the class of such utility functions be F . Suppose this class F does not satisfy Condition

U. Then, there must exist x,y ∈ [0,1] with x < y such that for all z ∈ (x,y), we have, for instance, f z(x)≥

f z(y). By the definition of scaled Euclidean utility functions, this means κ1(z)(z− x) ≤ κ2(z)(y− z),

which means
κ1(z)

κ2(z)
≤

(y− z)

(z− x)
. For z arbitrarily close to y, this requires

κ1(z)

κ2(z)
to be arbitrarily close to

zero. However, by the definition of single-peakedness, the slopes κ’s cannot be zero or infinity. Therefore,

violation of Condition U requires preferences to be arbitrarily close to being flat but not flat. To our

understanding, such preferences are not “realistic”.
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8.2 SINGLE-CROSSING DOMAINS

Single-crossing preferences are important for their practical usefulness (see Saporiti (2009) for details).

Definition 8.1. A domain D satisfies the single-crossing property if for all x,y ∈ [0,1] with x < y, there

exists κxy ∈ [0,1] such that for all preferences R ∈ D , τ(R) < κxy implies xPy, and τ(R) > κxy implies

yPx.

Note that by the definition of κxy, we must have κxy ∈ [x,y]. Let us call a domain strictly single-

crossing if κxy ∈ (x,y) for all x,y ∈ [0,1]. It is easy to verify that strict single-crossing domains are

subsets of single-peaked domains and satisfy Condition U. Domains with nice functional structure such

as (scaled) Euclidean, etc., are simple examples of single-crossing domains. It is worth mentioning that

there are single-crossing domains with much complicated structure. It follows from Theorem 4.1 and 4.2

that the uniform rule is the unique division rule satisfying efficiency, strategy-proofness, and ETE on a

strict single-crossing domain.

8.3 SEMI-SINGLE-PEAKED DOMAINS

The notion of semi-single-peaked domains is introduced by Chatterji et al. (2013). A domain D is

semi-single-peaked with respect to a threshold κ ∈ [0,1], if (i) every preference R ∈ D is single-peaked

over the interval [τ(R),κ ], and (ii) each point located beyond the threshold is less preferred than the

threshold, that is, κ ∈ [τ(R),x] implies κPx. It can be verified that a semi-single-peaked domain satisfies

Condition N if and only if the threshold κ is
1

n
. In what follows, we generalize the notion of semi

single-peaked domains for two thresholds.

A generalized semi-single-peaked domain D involves two thresholds κ1 < κ2 and requires that

preferences are semi-single-peaked with respect to each of these thresholds, that is, (i) every preference

R ∈ D is single-peaked over the interval [τ(R),κ2] if τ(R) < κ1, over the interval [κ1,κ2] if τ(R) ∈ [κ1,

κ2], and over the interval [κ1,τ(R)] if τ(R) > κ2, and (ii) each point located beyond the threshold κi is

less preferred than the threshold κi, that is, κi ∈ [τ(R),x] implies κiPx for all i ∈ {1,2}, and (iii) there are

no κ ′
1 < κ1 and κ ′

2 > κ2 such that (i) and (ii) hold. One can think of a generalized semi-single-peaked

domain with more than two thresholds κ1, . . . ,κl but such a domain will be reduced to one with two

thresholds min{κ1, . . . ,κl} and max{κ1, . . . ,κl}. Our next proposition provides a characterization of

semi-single-peaked domains satisfying Condition N.

Proposition 8.3. A generalized semi-single-peaked domain D with thresholds κ1 < κ2 satisfies Condition

N if and only if κ1 ≤
1

n
≤ κ2.

Proof: (If part) Let D be a generalized semi-single-peaked domain with thresholds κ1 < κ2 such that

κ1 ≤
1

n
≤ κ2. We show that D satisfies Condition N. Without loss of generality, let R ∈ D be such that
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τ(R) >
1

n
. This in particular means τ(R) > κ1. By the definition of generalized semi-single-peaked

domains, if τ(R) ≤ κ2 then R is single-peaked over the interval [κ1,κ2], and if τ(R) > κ2 then R is

single-peaked over the interval [κ1,τ(R)]. Moreover, each point located on the left of the threshold

κ1 is less preferred to the threshold κ1 according to R. Combining all these observations, we have (i)

for all x,y ∈ [0,1] with κ1 ≤ x < y ≤ τ(R), we have yPx, and (ii) for all z < κ1, we have κ1Pz. Since

κ1 ≤
1

n
< τ(R), this implies R satisfies Condition N. This completes the proof of the if part of the

proposition.

(Only-if part) Let D be a generalized semi-single-peaked domain with threshold κ1 < κ2 that satisfies

Condition N. We show that κ1 ≤
1

n
≤ κ2. Assume for contradiction

1

n
< κ1. Recall that by the definition

of generalized intermediate domains, there is no κ ′
1 < κ1 such that D is generalized semi-single-peaked

with thresholds κ ′
1 and κ2. This implies that for all κ ′

1 < κ1, there exists R ∈ D such that R violates either

(i) or (ii) with respect to κ ′
1 and κ2. Let κ ′

1 =
1

n
and R ∈D be a preference that violates either (i) or (ii). If

R violates (i), then as
1

n
< κ1 < κ2, by the definition of generalized semi-single-peaked domains, we have

(i) τ(R) > κ ′
1, and (ii) xPy for some x,y with

1

n
≤ x < y ≤ τ(R). This means D violates Condition N. If

R violates (ii), then by the definition of generalized semi-single-peaked domains, (i) we have τ(R) > κ ′
1,

and (ii) xP
1

n
for some x with x <

1

n
≤ τ(R), which is again a violation of Condition N. This completes

the proof of the only-if part of the proposition. �

By Theorem 6.2 and Proposition 8.3, it follows that the uniform rule is the unique rule that satisfies

efficiency, strategy-proofness, and ETE on any minimally rich generalized semi-single-peaked domain

with thresholds κ1 and κ2 where κ1 ≤
1

n
≤ κ2.

8.4 PARTIALLY SINGLE-PEAKED DOMAIN

The notion of partially single-peaked domains is introduced in Achuthankutty and Roy (2017). As the

name suggests, these domains violate single-peakedness over a subinterval of [0,1] and satisfies it over

the remaining alternatives. We consider a slightly more general notion of partially single-peaked domains.

Let x and x be two fixed points with x < x.

Definition 8.2. A domain D satisfies single-peakedness outside [x,x] if for all R ∈ D , all u /∈ (x,x), and

all v ∈ X ,
[

v < u ≤ τ(R) or τ(R) ≤ u < v
]

implies uPv.

Definition 8.3. A domain D violates single-peakedness over [x,x] if there exist R̃ ≡ xy · · · , R̃′ ≡ xz · · · ∈ D̃

such that
[

y ∈ (x,x] and z ∈ [x,x)
]

.

Definition 8.4. A domain D is called [x,x]-partially single-peaked if it satisfies single-peakedness outside

[x,x] and violates it over [x,x].
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Proposition 8.4. No partially single-peaked domain satisfies Condition N.

Proof: Let D be a [x,x]-partially single-peaked domain. We show that D violates Condition N. Suppose

1

n
< x. By the definition of partially single-peaked domains, there exists R̃′ ∈ D with R̃′ ≡ xz · · · such

that z ∈ [x,x). Take w ∈ (z,x) such that w >
1

n
. By the definition of R̃′ we have zP̃′w. Combining all

these observations, we have z < w < τ(R̃′), w >
1

n
, and zP̃′w, which is a violation of Condition N. Now,

suppose x ≤
1

n
. This implies x <

1

n
. By the definition of partially single-peaked domains, there exists

R̃ ∈D with R̃ ≡ xy · · · such that y ∈ (x,x]. Take w ∈ (x,y) such that w <
1

n
. By the definition of R̃ we have

yP̃w. Combining all these observations, we have τ(R̃) < w < y, w <
1

n
, and yP̃w, which is a violation of

Condition N. This completes the proof of the proposition. �

By Theorem 6.1 and Proposition 8.4, it follows that the uniform rule does not satisfy efficiency,

strategy-proofness, and ETE on partially single-peaked domains.

A. PROOF OF THEOREM 4.1

Proof of Part (i): Let S be a regular single-peaked domain satisfying Condition U for 2 agents. We

show that a division rule f : S
2 → ∆2 satisfies efficiency, strategy-proofness, and ETE if and only if it is

the uniform rule. To ease the presentation of the proof, by Rx we denote a preference with peak x.

(“If” part) The “if” part of the theorem follows from Theorem 6.1 of this paper, where we show that the

uniform rule satisfies efficiency, strategy-proof, ETE on a domain satisfying a condition called Condition

N. It is straightforward to verify that Condition U for 2 agents implies Condition N.

(“Only if” part) Let S be a domain satisfying Condition U for 2 agents and let f : S
2 → ∆2 be a

division rule that satisfies efficiency, strategy-proofness, and ETE. We show that for all (R1,R2) ∈ S
2,

f (R1,R2) = u(R1,R2). Consider a profile (R1,R2) ∈ S
2. We distinguish the following cases:

Case 1: Suppose max{τ(R1),τ(R2)} ≤
1

2
or min{τ(R1),τ(R2)} ≥

1

2
.

We only prove for the case max{τ(R1),τ(R2)} ≤
1

2
. The proof of the remaining case min{τ(R1),

τ(R2)}≥
1

2
follows by using similar arguments. By the definition of the uniform rule, u(R1,R2) = (

1

2
,
1

2
).

Note that if τ(R1) = τ(R2)≤
1

2
, then by strategy-proofness, efficiency, and ETE, we have f (R1,R2) = (

1

2
,

1

2
). We claim that if τ(R1) < τ(R2) =

1

2
, then f (R1,R2) = (

1

2
,
1

2
). Suppose not. By efficiency we must

have f2(R1,R2) >
1

2
. However, this means agent 2 will manipulate at (R1,R2) via R1 as f2(R1,R1) =

1

2
,

a contradiction. Similarly, we have f (R1,R2) = (
1

2
,
1

2
) when τ(R2) < τ(R1) =

1

2
. Now, suppose

τ(R1) <
1

2
and τ(R2) <

1

2
. If f (R1,R2) 6= (

1

2
,
1

2
), then there exists i ∈ {1,2} such that fi(R1,R2) >

1

2
.

WLG assume i = 1. However, then agent 1 will manipulate via R2 since f (R2,R2) = (
1

2
,
1

2
) and by
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single-peakedness
1

2
P1 f1(R1,R2).

Case 2: Suppose max{τ(R1),τ(R2)}>
1

2
and min{τ(R1),τ(R2)}<

1

2
.

WLG assume that max{τ(R1),τ(R2)} = τ(R1) and min{τ(R1),τ(R2)} = τ(R2). Suppose τ(R1) +

τ(R2) < 1. By the definition of the uniform rule, we have u(R1,R2) = (τ(R1),1− τ(R1)). Assume for

contradiction that u(R1,R2) 6= f (R1,R2). This means by efficiency f1(R1,R2) > τ(R1). Note that by

efficiency and strategy-proofness, we have for all y ∈ [0,1] and all Ry,R
y
1 ∈ S , f1(R

y,R2) = f1(R
y
1,R2).

Consider the set {y ∈ [0,1] | f1(R1,R2) = f1(R
y,R2)}. Let x = inf{y ∈ [0,1] | f1(R1,R2) = f1(R

y,R2)}.

Note that by strategy-proofness, we have for all y ∈ (x, f1(R1,R2)], f1(R
y,R2) = f1(R1,R2). Since

f1(R1,R2) > τ(R1), we have x < f1(R1,R2) and by Case 1, x >
1

2
. Suppose x ∈ {y ∈ [0,1] | f1(R1,

R2) = f1(R
y,R2)}, i.e., f1(R

x,R2) = f1(R1,R2). Note that since S is a regular domain, there exists a

preference R with τ(R) = x such that R is locally continuous around the peak. This implies there exists

z such that z < x and zP f1(R1,R2). By efficiency and the fact that f1(R
x,R2) = f1(R1,R2), we have

f1(R
z,R2) ∈ [z,x). This means agent 1 manipulates at (R,R2) via Rz, a contradiction. Thus, x /∈ {y ∈ [0,

1] | f1(R1,R2) = f1(R
y,R2)}. By efficiency, we have f1(R

x,R2) = x. Since x >
1

2
by Condition U

for 2 agents, there exists a preference R′ with τ(R′) ∈ (x, f1(R1,R2)) such that xP′ f1(R1,R2). But this

means f is manipulable at (R′,R2) via Rx as f1(R
y,R2) = f1(R1,R2) for all y ∈ (x,τ(R1)]. Thus f1(R1,

R2) = τ(R1) and f2(R1,R2) = 1− τ(R1), which in turn implies that f (R1,R2) = u(R1,R2). The proof

for the case τ(R1)+ τ(R2) > 1 follows in a similar way. This completes the proof of the “only if” part.

Proof of Part (ii): Part (ii) of the theorem follows from Theorem 5.1. �

B. PROOF OF THEOREM 4.2

Proof of Part (i): Let n ≥ 3 and let S be a regular single-peaked domain satisfying Condition U for n

agents. We show that a division rule f : S
n → ∆n satisfies efficiency, strategy-proofness, and ETE if and

only if it is the uniform rule.

(“If” part) The “if” part of the theorem follows from Theorem 6.1 of this paper, where we show that the

uniform rule satisfies efficiency, strategy-proof, ETE on a domain satisfying a condition called Condition

N. It is straightforward to verify that Condition U for 2 agents implies Condition N.

(“Only if” part) We first prove a lemma.

Lemma B.1. (i) Let RN ∈ S
n and i ∈ N be such that fi(RN) < τ(Ri). Further let R′

i ∈ S be such that

fi(RN) ≤ τ(R′
i). Then, fi(R

′
i,R−i) ≤

1

2
implies fi(RN) = fi(R

′
i,R−i).

(ii) Let RN ∈ S
n and i ∈ N be such that fi(RN) > τ(Ri). Further let R′

i ∈ S be such that fi(RN) ≥

τ(R′
i). Then, fi(RN) = fi(R

′
i,R−i).
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Proof: We show that (i) holds and the proof of (ii) follows using similar arguments. Since fi(RN)< τ(Ri),

by efficiency f j(RN) ≤ τ(R j) for all j ∈ N, and hence, T (RN) > 1. Similarly, as fi(RN) ≤ τ(R′
i) and

f j(RN) ≤ τ(R j) for all j 6= i, we have T (R′
i,R−i) ≥

n

∑
j=1

f j(RN) = 1. This means by efficiency, fi(R
′
i,

R−i) ≤ τ(R′
i).

Assume for contradiction fi(R
′
i,R−i) ≤

1

2
but fi(R

′
i,R−i) 6= fi(RN). This together with strategy-

proofness imply, fi(RN) < τ(Ri) < fi(R
′
i,R−i) ≤ τ(R′

i). Let x = sup{y ∈ [0,1] | fi(R
y,R−i) = fi(RN)}.

This is well defined since by strategy-proofness and efficiency, fi(R
y,R−i) = fi(R̄

y,R−i) for all y ∈ [0,

1], and all Ry, R̄y ∈ S . Note that since fi(RN) < τ(Ri) < fi(R
′
i,R−i) ≤

1

2
, fi(RN) < x <

1

2
. Suppose

x ∈ {y ∈ [0,1] | fi(R
y,R−i) = fi(RN)}. Let R be a locally continuous around the peak preference with

τ(R) = x. Such a preference exists as S is regular. This means there exists z such that x < z and zP fi(RN).

Consider Rz ∈ S . By efficiency, fi(R
z,R−i) ∈ (x,z]. This means agent i manipulates at (R,R−i) via

Rz, a contradiction, and hence, x /∈ {y ∈ [0,1] | fi(R
y,R−i) = fi(RN)}. This together with efficiency

imply fi(R,R−i) = x. Note that by strategy-proofness for all y ∈ [ fi(RN),x), fi(R
y,R−i) = fi(RN). Since

S satisfies Condition U for n agents and x <
1

2
, there exists a preference R̂ with (i) τ(R̂) ∈ ( fi(RN),

x) if either ( fi(RN),x) ⊆ (0,
1

n
) or ( fi(RN),x) ⊆ (

1

n
,
1

2
) such that xP̂ fi(RN), or (ii) τ(R̂) ∈ (

1

n
,x) if

fi(RN) <
1

n
< x such that xP̂

1

n
. In both the cases agent i manipulates at RN via R, a contradiction, and

hence, fi(RN) = fi(R
′
i,R−i). �

Let RN ∈ S
n. If T (RN) = 1, then by efficiency, τ(Ri) = fi(RN) = gi(RN) for all i ∈ N. Suppose

T (RN) > 1. Note that by efficiency, fi(RN) ≤ τ(Ri) and gi(RN) ≤ τ(Ri) for all i ∈ N. WLG assume

that τ(R1)≤ ·· · ≤ τ(Rn). Assume for contradiction f (RN) 6= g(RN). If RN = (Rn, . . . ,Rn), then by ETE

fi(RN) = gi(RN) for all i ∈ N, a contradiction. Therefore, assume RN 6= (Rn, . . . ,Rn). We complete the

proof in the following steps.

Step 1: Since f (RN) 6= g(RN), there exists i ∈ N such that fi(RN) < gi(RN) ≤ τ(Ri). Let R′
i = Rn. We

show fi(R
′
i,R−i) < gi(R

′
i,R−i). If i = n, then there is nothing to show. Suppose i 6= n. First we show

fi(R
′
i,R−i) ≤

1

2
. Since R′

i = Rn at (R′
i,R−i), by ETE we have fi(R

′
i,R−i) = fn(R

′
i,R−i), which in turn

implies that fi(R
′
i,R−i) ≤

1

2
. By Lemma B.1, this yields fi(RN) = fi(R

′
i,R−i). By the definition of the

uniform rule, τ(Ri) ≤ τ(R′
i) implies gi(RN) ≤ gi(R

′
i,R−i). Combining all these observations, we get

fi(R
′
i,R−i) < gi(R

′
i,R−i). If (R′

i,R−i) = (Rn, . . . ,Rn), then by ETE we have a contradiction. Suppose

(R′
i,R−i) 6= (Rn, . . . ,Rn). We proceed to Step 2.

Step 2: Since fk(R
′
i,R−i) < gk(R

′
i,R−i) for all k ∈ {i,n}, there exists j /∈ {i,n} such that g j(R

′
i,R−i) <

f j(R
′
i,R−i). By efficiency, g j(R

′
i,R−i) < f j(R

′
i,R−i) ≤ τ(R j). Let R′

j = Rn. Strategy-proofness of f

implies f j(R
′
i,R−i) ≤ f j(R

′
i,R

′
j,R−{i, j}). By the definition of the uniform rule, g j(R

′
i,R−i) = g j(R

′
i,

R′
j,R−{i, j}) since g j(R

′
i,R−i) < τ(R j) < τ(R′

j). Combining all these observations, we get g j(R
′
i,R

′
j,
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R−{i, j}) < f j(R
′
i,R

′
j,R−{i, j}). If (R′

i,R
′
j,R−{i, j}) = (Rn, . . . ,Rn), then by ETE we have a contradiction,

otherwise we apply Step 1 to (R′
i,R

′
j,R−{i, j}).

Since N is finite and at every step we change the preference of a new agent by Rn, eventually it will

lead to a contradiction.

Proof of Part (ii): Part (ii) of the theorem follows from Theorem 5.2 and Theorem 5.3. �

C. PROOF OF THEOREM 5.1

Proof: Let (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

) be a collection of intervals such that 0 < (x1,

y1) < · · ·< (xk1
,yk1

) <
1

2
< (w1,z1) < · · ·< (wk2

,zk2
) < 1. Suppose that S is a single-peaked domain

that violates Condition U for 2 agents on these intervals and f is an adjusted uniform rule for 2 agents

with respect to intervals (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

). Let i0 be the particular agent

mentioned in Definition 5.2. It is left to the reader to check that f satisfies efficiency and ETE. We

establish strategy-proofness of f by considering different cases with respect to RN .

Suppose part (a) of condition (i) of Definition 5.2 holds, i.e., there exists r ∈ {1, . . . ,k1} such that

τ(Ri0) ∈ [xr,yr) and τ(Ri0)+ τ(R j) ≥ xr + τ(R j) ≥ 1. This implies fi0(Ri0 ,R j) = xr and f j(Ri0 ,R j) =

1− xr. Consider R′
j ∈ S . If 1− xr ≤ τ(R′

j), then by definition f j(Ri0 ,R′
j) = 1− xr, so agent j cannot

manipulate. If 1− τ(Ri0) ≤ τ(R′
j) < 1− xr, then by the definition of adjusted uniform rule for 2 agents,

f j(Ri0 ,R′
j) = τ(R′

j). Since τ(R′
j) < 1− xr and τ(R j) ≥ 1− xr = f j(Ri0 ,R j), agent j cannot manipulate.

Let R′
i0
∈ S . If τ(R′

i0
) ≥ τ(Ri0), then by the definition of adjusted uniform rule for 2 agents, f1(R

′
i0

,

R j) ≥ yr. As S violates Condition U for 2 agents, we have xrRi0yr. So agent i0 cannot manipulate. If

xr ≤ τ(R′
i0
) < τ(Ri0) then fi0(R

′
i0

,R j) = xr, so agent i0 cannot manipulate. If yr−1 ≤ τ(R′
i0
) < xr, then

either fi0(R
′
i0

,R j) = τ(R′
i0
) or fi0(R

′
i0

,R j) = 1− τ(R j). In both these cases, agent i0 cannot manipulate

since τ(R′
i0
) < xr and 1− τ(R j) ≤ xr. If τ(R′

i0
) ∈ [xr−1,yr), then either fi0(R

′
i0

,R j) = xr−1 or fi0(R
′
i0

,

R j) = 1−τ(R j). Again, in both these cases, agent i0 cannot manipulate since xr−1 < xr and 1−τ(R j)≤ xr.

Using similar arguments, it follows that agent i0 cannot manipulate if τ(R′
i0
) ≤ xr−1.

Suppose part (b) of condition (i) of Definition 5.2 holds, i.e., there exists r ∈ {1, . . . ,k1} with τ(Ri0) ∈

[xr,yr) and xr + τ(R j) < 1 ≤ τ(Ri0)+ τ(R j). By the definition of adjusted uniform rule for 2 agents,

fi0(Ri0 ,R j) = 1− τ(R j) > xr and f j(Ri0 ,R j) = τ(R j). Agent j cannot manipulate as his share is equal

to his peak τ(R j). Consider R′
i0
∈ S . If xr ≤ τ(R′

i0
) < yr, then by the definition of adjusted uniform rule

for 2 agents, fi0(Ri0 ,R j) = 1− τ(R j) and agent i0 cannot manipulate. If yr ≤ τ(R′
i0
) < xr+1, then by the

definition of adjusted uniform rule for 2 agents, fi0(R
′
i0

,R j) = τ(R′
i0
), which implies fi0(R

′
i0

,R j). As S

violates Condition U for 2 agents, we have xrRi0yr and fi0(Ri0 ,R j)Pi0xr. So agent i0 cannot manipulate. If

xr+1 ≤ τ(R′
i0
)< yr+1, then fi0(R

′
i0

,R j) = xr+1 > yr, and by the same argument as presented above, agent

i0 cannot manipulate. Using similar arguments, it follows that agent i0 cannot manipulate if τ(R′
i0
)≥ yr+1.
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If τ(R′
i0
) < xr, then by the definition of adjusted uniform rule for 2 agents, fi0(Ri0 ,R j) = 1− τ(R j), and

hence agent i0 cannot manipulate.

Using similar arguments as for condition (i), it follows that no agent can manipulate f if condition (ii)

of Definition 5.2 holds.

Suppose condition (iii) of Definition 5.2 holds. Then, f (Ri0 ,R j) = u(Ri0 ,R j). Note that agent j cannot

manipulate as no matter how he misreports his preferences, f will continue to follow the uniform rule,

and the uniform rule is not manipulable. We proceed to show that agent i0 cannot manipulate. Consider

R′
i0
∈ S . Note that agent i0 can manipulate only if (R′

i0
,R j) satisfies either condition (i) or condition (ii).

We distinguish the following cases.

Case 1: Suppose either τ(Ri0),τ(R j) ≥
1

2
or τ(Ri0),τ(R j) ≤

1

2
.

By the definition of adjusted uniform rule for 2 agents, we have fk(Ri0 ,R j) =
1

2
for all k ∈ {i0, j}. Let

R′
i0

be such that (R′
i0

,R j) satisfies condition (i), i.e., τ(R′
i0
) ∈ [xr,yr) for some r ∈ {1, . . . ,k1} and (R′

i0
,

R j) ∈ S
2
+. Then, either fi0(R

′
i0

,R j) = xr or fi0(R
′
i0

,R j) = 1− τ(R j), which implies fi0(R
′
i0

,R j) ≤
1

2
. So,

agent i0 cannot manipulate.

Case 2: Suppose τ(Ri0) <
1

2
and τ(R j) ≥

1

2
.

By condition (iii), τ(Ri0) ∈ [yr,xr+1) for some r ∈ {1, . . . ,k1}, and either fi0(Ri0 ,R j) = τ(Ri0) or fi0(Ri0 ,

R j) = 1− τ(R j). If fi0(Ri0 ,R j) = τ(Ri0), then agent i0 cannot manipulate. So, assume fi0(Ri0 ,R j) =

1− τ(R j), which implies τ(Ri0)+ τ(R j) < 1. Let R′
i0

be such that (R′
i0

,R j) satisfies condition (i), i.e.,

τ(R′
i0
) ∈ [xr,yr) for some r ∈ {1, . . . ,k1} and (R′

i0
,R j) ∈ S

2
+. If xr + τ(R j) ≥ 1, then fi0(R

′
i0

,R j) = xr,

and if xr + τ(R j) < 1, then fi0(R
′
i0

,R j) = 1− τ(R j). If fi0(R
′
i0

,R j) = 1− τ(R j), then agent i0 cannot

manipulate as fi0(Ri0 ,R j) = 1−τ(R j). On the other hand, if xr+τ(R j)≥ 1, then τ(Ri0)< 1−τ(R j)≤ xr,

and hence agent i0 cannot manipulate.

Case 3: Suppose τ(Ri0) >
1

2
and τ(R j) ≤

1

2
.

By condition (iii), τ(Ri0) ∈ [zl ,wl+1) for some l ∈ {1, . . . ,k2}, and either fi0(Ri0 ,R j) = τ(Ri0) or fi0(Ri0 ,

R j) = 1− τ(R j). If fi0(Ri0 ,R j) = τ(Ri0), then agent i0 cannot manipulate. So, assume fi0(Ri0 ,R j) =

1− τ(R j), which implies τ(Ri0)+ τ(R j) > 1. Let R′
i0

be such that (R′
i0

,R j) satisfies condition (ii), i.e.,

τ(R′
i0
) ∈ [ws,zs) for some s ∈ {1, . . . ,k2} and (R′

i0
,R j) ∈ S

2
−. If zs + τ(R j) ≤ 1, then fi0(R

′
i0

,R j) = zs,

and if zs + τ(R j) > 1, then fi0(R
′
i0

,R j) = 1− τ(R j). If fi0(R
′
i0

,R j) = 1− τ(R j), then agent i0 cannot

manipulate as fi0(Ri0 ,R j) = 1−τ(R j). On the other hand, if zs+τ(R j)≤ 1, then τ(Ri0)> 1−τ(R j)≥ zs,

and hence agent i0 cannot manipulate.

Since Cases 1,2, and 3 are exhaustive, it follows that agent i0 cannot manipulate f if condition (iii)

holds. �
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D. PROOF OF THE THEOREM 5.2

Proof: Let (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

) be a collection of intervals such that 0 < (x1,

y1) < · · ·< (xk1
,yk1

) <
1

n
< (w1,z1) < · · ·< (wk2

,zk2
) < 1. Suppose S is a single-peaked domain that

violates (i) and (ii) of Condition U for n agents on these intervals and f is an adjusted uniform rule

for n agents with respect to intervals (x1,y1), . . . , (xk1
,yk1

) and (w1,z1), . . . , (wk2
,zk2

). Let i0 ∈ N be the

particular agent mentioned in Definition 5.5. We first show that f satisfies efficiency and ETE. Since the

uniform rule satisfies efficiency and ETE, we need to show efficiency and ETE only for the profiles where

f differs from the uniform rule.

Consider RN ∈ S
n such that part (a) of condition (i) of Definition 5.5 holds. This means RN ∈ S

n
+

and for some r ∈ {1, . . . ,k1}, τ(Ri0) ∈ [xr,yr) and τ(R j) ≥ yr for all j 6= i0, and xr +T (RN\i0) ≥ 1. By

the definition of adjusted uniform rule for n agents, fi0(RN) = xr and f j(RN) = u
1−xr

j (RN\i0) for all

j 6= i0. Since T (RN\i0) ≥ 1− xr, by the definition of the uniform rule, u
1−xr

j (RN\i0) ≤ τ(R j) for all

j 6= i0. Moreover, as τ(Ri0) ∈ [xr,yr) and fi0(RN) = xr, we have fi0(RN) ≤ τ(Ri0). Combining these

two observations, we obtain f j(RN) ≤ τ(R j) for all j ∈ N which implies f is efficient at RN . Suppose

Rk = Rl for some k, l ∈ N. As τ(Ri0) ∈ [xr,yr) and τ(R j) ≥ yr for all j 6= i0, we have k, l ∈ N \ i0. By

the definition of adjusted uniform rule for n agents, this implies fk(RN) = u
1−xr

k (RN\i0) and fl(RN) =

u
1−xr

l (RN\i0). Since the uniform rule satisfies ETE, Rk = Rl implies u
1−xr

k (RN\i0) = u
1−xr

l (RN\i0), and

hence, fk(RN) = fl(RN). Therefore, f satisfies ETE at RN .

Consider RN ∈ S
n such that part (b) of condition (i) of Definition 5.5 holds, i.e., RN ∈ S

n
+, and for

some r ∈ {1, . . . ,k1}, τ(Ri0) ∈ [xr,yr), τ(R j)≥ yr for all j 6= i0, and xr +T (RN\i0)< 1. By the definition

of the adjusted uniform rule for n agents, this means f j(RN) = τ(R j) for all j 6= i0. Since RN ∈ S
n
+,

we have τ(Ri0) ≥ 1−T (RN\i0) = fi0(RN). This shows f is efficient at RN . Suppose Rk = Rl for some

k, l ∈ N. Note that k, l 6= i0 as by the definition of adjusted uniform rule for n agents, τ(Ri0) ∈ [xr,yr),

τ(R j) ≥ yr for all j 6= i0. As f j(RN) = τ(R j) for all j 6= i0, this implies fk(RN) = fl(RN). Therefore, f

satisfies ETE at RN .

Using similar arguments, it follows that f satisfies ETE for the profiles satisfying condition (ii) of

Definition 5.5.

Now, we show that f is strategy-proof. We show this by considering different cases with respect to

RN .

Case 1: Suppose part (a) of condition (i) of Definition 5.5 holds, i.e., RN ∈ S
n
+, and for some r ∈ {1,

. . . ,k1}, τ(Ri0) ∈ [xr,yr), τ(R j) ≥ yr for all j 6= i0, and xr +T (RN\i) ≥ 1. We show that no agent can

manipulate at this profile.

First consider agent i0. Let R′
i0
∈ S . By the definition of adjusted uniform rules for n agents, if

τ(R′
i0
) ∈ [xr,yr), then f (R′

i0
,R−i0) = f (RN) = xr. Suppose τ(R′

i0
) ∈ [yr,xr+1). Again, by the definition
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of the mentioned rules, we have fi0(R
′
i0

,R−i0) = ui0(R
′
i0

,R−i0) = τ(R′
i0
). Since T (R′

i0
,R−i0)≥ T (RN)≥ 1

and τ(R′
i0
) ∈ [yr,xr+1) where [yr,xr+1) <

1

n
, by the definition of the uniform rule, we have ui0(R

′
i0

,

R−i0) = τ(R′
i0
) ≥ yr. Because S violates part (i) of Condition U for n agents, we have xrRi0yr. Since

τ(Ri0)≤ yr ≤ τ(R′
i0
), by single-peakedness this means xrRi0τ(R′

i0
). Therefore, agent i0 cannot manipulate.

Suppose τ(R′
i0
) ∈ [xr+1,yr+1). By the definition of adjusted uniform rule for n agents, this means

fi0(R
′
i0

,R−i0) is either xr+1 or τ(R′
i0
). In any case, fi0(R

′
i0

,R−i0) ≥ xr+1. Since xr+1 ≥ yr, by using

the arguments in the preceding paragraph, agent i0 cannot manipulate. The fact that agent i0 cannot

manipulate when τ(R′
i0
) ≥ yr follows by using similar arguments. Now, suppose τ(R′

i0
) < xr. If T (R′

i0
,

R−i0) > 1, by efficiency of f , fi0(R
′
i0

,R−i0) ≤ τ(R′
i0
) < xr. Since τ(R′

i0
) < xr ≤ τ(Ri0) and fi0(RN) = xr,

by single-peakedness, agent i0 cannot manipulate. If T (R′
i0

,R−i0) ≤ 1, by the definition of f , f (R′
i0

,

R−i0) = u(R′
i0

,R−i0). By the definition of the uniform rule, this means fi0(R
′
i0

,R−i0) ≤ 1− T (RN\i0).

Since xr ≥ 1−T (RN\i0), this implies fi0(R
′
i0

,R−i0) ≤ xr. Using similar arguments as before we can show

that agent i0 cannot manipulate.

Now, consider an agent j 6= i0. Since f j(RN) = u
1−xr

j (RN\i0) and T (RN\i0) ≥ 1− xr, by the definition

of the uniform rule, either f j(RN) = τ(R j) or f j(RN)< τ(R j) and f j(RN)≥
1− xr

n−1
. If f j(RN) = τ(R j),

then agent j cannot manipulate. So, assume τ(R j) ≥ f j(RN) ≥
1− xr

n−1
. Since xr <

1

n
, this implies

τ(R j)≥ f j(RN)≥
1

n
. Consider R′

j ∈S . If τ(R′
j)≥ yr, then by the definition of f , f j(R

′
j,R− j) = f j(RN).

So, agent j cannot manipulate. If τ(R′
j) < yr, then by the definition of f , f j(R

′
j,R− j) = u j(R

′
j,R− j).

Since τ(R′
j) < yr ≤

1

n
, by the definition of the uniform rule, f j(R

′
j,R− j) ≤

1

n
, which means agent j

cannot manipulate.

Case 2: Suppose part (b) of condition (i) of Definition 5.5 holds, i.e., RN ∈ S
n
+, and for some r ∈ {1, . . . ,

k1}, τ(Ri0) ∈ [xr,yr), τ(R j) ≥ yr for all j 6= i0, and xr +T (RN\i0) < 1.

By the definition of f , f j(RN) = τ(R j) for all j 6= i0. Since f j(RN) = τ(R j) for all j 6= i0, agents

other than i0 cannot manipulate. By the definition of f , fi0(RN) = 1−T (RN\i0) ≥ xr. Consider R′
i0
∈ S .

If τ(R′
i0
) ∈ [xr,yr), then by the definition of f , fi0(R

′
i0

,R−i0) = fi0(RN) and agent i0 cannot manipulate. If

τ(R′
i0
) ≥ yr, then by following our previous arguments it can be shown that fi0(R

′
i0

,R−i0) ≥ yr. Because

S violates condition (i) of Definition 4.2, we have xrRi0yr. Since xr ≤ 1−T (RN\i0) ≤ τ(Ri0) ≤ yr, by

single-peakedness,
[

1−T (RN\i0)
]

Ri0yr. Therefore, agent i0 cannot manipulate. If τ(R′
i0
)< xr, then using

similar arguments as in the previous paragraph, we can show that agent i0 can not manipulate.

The fact that no agent can manipulate f when parts (a) and (b) of Condition (ii) of Definition 5.5 hold

follows by using similar arguments. This completes the proof of the theorem. �
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E. PROOF OF THEOREM 5.3

Proof: Let (x,y) and (w,z) be two intervals such that 0 < (x,y) <
1

n
< (w,z) <

1

2
and let S be a

single-peaked domain that violates (iii) and (iv) of Condition U for n agents on these intervals. Consider

an adjusted* uniform rule for n agents with respect to (x,y) and (w,z). Let i0 and j0 be the two particular

agents as mentioned in Definition 5.6. We first show that f satisfies efficiency and ETE. As the uniform

rule satisfies efficiency and ETE, by Remark 5.1, it is sufficient to check efficiency and ETE for the

profiles where either condition (i) or condition (ii) of Definition 5.6 is satisfied. Let RN ∈ S
n be such that

part (a) of condition (i) of Definition 5.6 is satisfied, i.e., RN ∈ S
n
− with τ(Rk) = x0 for all k ∈ N \{i0,

j0}, τ(Ri0) ∈ (x,y), and τ(R j0) ∈ (x1,y1). By the definition of f , fl(RN) = τ(Rl) for all l 6= i0 and

fi0(RN) = 1−T (RN\i0). Since RN ∈ S
n
−, τ(Ri0) ≤ 1−T (RN\i0). This means τ(Rl) ≤ fl(RN) for all

l ∈ N which implies f is efficient at RN . Suppose Rk = Rl for some k, l ∈ N. Since (x1,y1) < (x,y) < x0,

it must be that k, l ∈ N \{i0, j0}. By the definition of f , fs(RN) = x0 for all s ∈ N \{i0, j0}, which implies

fk(RN) = fl(RN), and hence f satisfies ETE at RN . The same arguments hold for the profiles satisfying

part (b) of condition (i) and condition (ii) in Definition 5.6.

To show strategy-proofness f , we distinguish the following cases with respect to RN .

Case 1: Suppose part (a) of condition (i) of Definition 5.6 holds, i.e., RN ∈ S
n
− with τ(Rk) = x0 for all

k ∈ N \{i0, j0}, τ(Ri0) ∈ (x,y), and τ(R j0) ∈ (x1,y1).

By the definition of adjusted* uniform rule for n agents, all agents except agent i0 get shares equal to

their peaks, so they cannot manipulate. Consider the agent i0. He gets fi0(RN) = 1− (n−2)x0 − τ(R j0).

Note that as RN ∈ S
n
−, by efficiency of f , fi0(RN) = 1 − (n − 2)x0 − τ(R j0) ≥ τ(Ri0). Again, as

(n−2)x0+y+x1 = 1, we have fi0(RN) = 1− (n−2)x0−τ(R j0)≤ 1− (n−2)x0−x1 = y. So, τ(Ri0)≤

fi0(RN)≤ y. Consider R′
i0
∈S . If τ(R′

i0
)∈ (x,y) and (R′

i0
,R−i0)∈S

n
−, then by the definition of adjusted*

uniform rule for n agents, we have fi0(RN) = fi0(R
′
i0

,R−i0), and hence agent i0 cannot manipulate. If

τ(R′
i0
) ∈ (x,y) and (R′

i0
,R−i0) ∈S

n
+, then by the definition of adjusted* uniform rule for n agents, fi0(R

′
i0

,

R−i0) = τ(R′
i0
)≥ 1−(n−2)x0−τ(R j0) = fi0(RN). Since fi0(RN)≥ τ(Ri0), by single-peakedness, agent

i0 cannot manipulate. If τ(R′
i0
) ≥ y, then (R′

i0
,R−i0) ∈ S

n
+, and by the definition of f , fi0(R

′
i0

,R−i0) ≥ y.

As y ≥ fi0(RN) ≥ τ(Ri0), by single-peakedness, agent i0 cannot manipulate. If τ(R′
i0
) ≤ x, then by

the definition of f , f (R′
i0

,R−i0) = u(R′
i0

,R−i0). Since (R′
i0

,R−i0) ∈ S
n
−, this means by the definition of

the uniform rule, fk(R
′
i0

,R−i0) = x0 for all k ∈ N \ {i0, j0}. Moreover, as (n− 2)x0 + x+ y1 = 1 and

y1 < x, we have by the definition of uniform rule that fi0(R
′
i0

,R−i0) ≤ x. Since S violates condition

(iii) Condition U for n agents on (x,y), we have yRi0x. As τ(Ri0) ≤ fi0(RN) ≤ y, combining all these

observations together, we get fi0(RN)Ri0 fi0(R
′
i0

,R−i0). This implies agent i0 cannot manipulate.

Case 2: Suppose part (b) of condition (i) of 5.6 holds, i.e., RN ∈ S
n
− with τ(Rk) = x0 for all k ∈ N \{i0,

j0}, τ(Ri0) ∈ (x,y), and τ(R j0) ≤ x1.
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By the definition of adjusted* uniform rule for n agents, all agents except agent i0 and j0 get shares equal

to their peaks, so they cannot manipulate. Using similar arguments as in Case 1, we can show that agent

i0 cannot manipulate. Consider R′
j0
∈ S . If τ(R′

j0
) ≤ x1, then by the definition of adjusted* uniform rule

for n agents, f j0(RN) = f j0(R
′
j0

,R− j0) and agent j0 cannot manipulate. If τ(R′
j0
) ∈ (x1,y1), then by the

definition of adjusted* uniform rule for n agents, f j0(R
′
j0

,R− j0) = τ(R′
j0
), and as τ(R j0) ≤ x1 < τ(R′

j0
),

agent j0 cannot manipulate. If y1 ≤ τ(R j0) ≤
1

n
, then (R′

j0
,R− j0) ∈ S

n
+, and by the definition of

adjusted* uniform rule for n agents, f j0(R
′
j0

,R− j0) = τ(R′
j0
), which implies agent j0 cannot manipulate.

If τ(R j0) ≥
1

n
, then by the definition of adjusted* uniform rule for n agents , f j0(R

′
j0

,R− j0) ≥
1

n
, and

hence agent j0 cannot manipulate.

Case 3: Suppose condition (ii) of Definition 5.6 holds. The fact that f is strategy-proof in this case

follows by using similar arguments as in Case 1 and Case 2.

Case 4: Suppose condition (iii) of Definition 5.6 holds, i.e., f (RN) = u(RN).

Since the uniform rule is strategy-proof, an agent k can manipulate at RN via R′
k if (R′

k,R−k) satisfies either

condition (i) or condition (ii) of Defintion 5.6. By Remark 5.1, it is sufficient to check strategy-proofness

for agents i0 and j0. Let RN ∈ S
n be such that τ(Rk) = x0 for all k ∈ N \{i0, j0}, τ(Ri0) ∈ (x,y), and

τ(R j0) ≥ y1. Since (n−2)x0 + x+ y1 = 1, this means RN ∈ S
n
+. If τ(R j0) ≤

1

n
, then f j0(RN) = τ(R j0).

So, agent j0 cannot manipulate. If τ(R j0) >
1

n
, then f j0(RN) ≥

1

n
. Since τ(R′

j0
) ≤ y1, we have f j0(R

′
j0

,

R− j0) < y1, and hence, agent j0 cannot manipulate. Let RN ∈ S
n
− be such that τ(Rk) = x0 for all

k ∈ N \{i0, j0} and τ(R j)< y1. Since condition (iii) of Definition 5.6 holds, τ(Ri0) /∈ (x,y). If τ(Ri0)≥ y

and RN ∈S
n
−, then by the definition of adjusted* uniform rule for n agents, fk(RN) = x0 for all k ∈N \{i0,

j0}. As (n− 2)x0 + x1 + y = 1 and x1 < y, we have fi0(RN) = τ(Ri0), and hence agent i0 cannot

manipulate. Suppose τ(Ri0) ≥ y and RN ∈ S
n
+. If τ(Ri0) ≤

1

n
, then we have fi0(RN) = τ(Ri0), on the

other hand, if τ(Ri0) >
1

n
, then we have fi0(RN) ≥

1

n
. In both the cases, agent i0 cannot manipulate

since τ(R′
i0
) ∈ (x,y) implies fi0(R

′
i0

,R−i0) ∈ (x,y). If τ(Ri0) = x, then RN ∈ S
n
− and fk(RN) = x0 for all

k ∈ N \ {i0, j0}. Since (n−2)x0 + y1 + x = 1 and τ(R j0) < y1, by the definition of adjusted* uniform

rule for n agents, fi0(RN) = x and agent i0 cannot manipulate. If τ(Ri0) < x, then by monotonicity

of the uniform rule, we know fi0(RN) < x, and hence agent i0 cannot manipulate as τ(R′
i0
) ∈ (x,y)

implies fi0(R
′
i0

,R−i0) ∈ (x,y). Using similar arguments, it follows that each of the agents i0 and j0 cannot

manipulate via some R′
l such that (R′

l ,R−l) satisfies condition (ii) of Definition 5.6 for all l ∈ {i0, j0}. �

F. PROOF OF THEOREM 6.1

Proof: (“If” part) Let D be a domain satisfying Condition N and let u : D
n → ∆n be the uniform rule.

Note that u satisfies ETE by definition. We show that u satisfies efficiency and strategy proofness.

Efficiency: Suppose u is not efficient and there exists RN ∈ D
n and xxx = (x1, . . . ,xn) ∈ ∆n such that

33



xiRiui(RN) for all i ∈ N and xiPi fi(RN) for some i ∈ N. Without loss of generality, assume T (RN) > 1.

By the definition of the uniform rule, all agents i with τ(Ri)≤
1

n
get shares equal to their peaks, and each

agent i with τ(Ri) >
1

n
gets a share between

1

n
and τ(Ri). Since there exists i ∈ N such that xiPiui(RN),

this implies
1

n
< τ(Ri). Moreover, as D satisfies Condition N, it must be that ui(RN) < xi ≤ τ(Ri). This

implies there exists j ∈ N such that x j < u j(RN). If τ(R j)≤
1

n
, then by the definition of the uniform rule,

u j(RN) = τ(R j), and hence, u j(RN)Pjx j, which is a contradiction. So τ(R j) >
1

n
. By the definition of

the uniform rule, this means
1

n
≤ u j(RN)≤ τ(R j) and x j < u j(RN). However, since D satisfies Condition

N, this is a contradiction to x jR ju j(RN). This proves that u satisfies efficiency.

Strategy-proofness: Let RN ∈ D
n be such that T (RN) > 1. We show that no agent can manipulate at

RN . By the definition of the uniform rule, for an agent i with τ(Ri) ≤
1

n
, we have ui(RN) = τ(Ri).

So, such an agent i cannot manipulate. Consider an agent i with τ(Ri) >
1

n
. By the definition of the

uniform rule,
1

n
≤ ui(RN) ≤ τ(Ri). If ui(RN) = τ(Ri), then agent i cannot manipulate. So, assume

ui(RN) < τ(Ri). Consider R′
i ∈ D . If τ(R′

i) ∈ [ui(RN),1], then by the definition of the uniform rule,

we have ui(RN) = ui(R
′
i,R−i), and hence, agent i cannot manipulate. Suppose τ(R′

i) < ui(RN). By the

monotonicity of the uniform rule, this means ui(R
′
i,R−i) < ui(RN). Since

1

n
≤ ui(RN) < τ(Ri) and D

satisfies Condition N, we have ui(RN)Pix for all x < ui(RN). This means agent i cannot manipulate at RN

via R′
i. This proves that u is strategy-proof.

(“Only if” part) Let D be a regular domain such that the uniform rule u : D
n → ∆n satisfies efficiency,

strategy-proofness, and ETE. We prove that D satisfies Condition N. We show that (i) of Condition N

holds; the fact that (ii) of Condition N also holds follows from similar arguments.

Assume for contradiction that there exists R ∈ D with τ(R)>
1

n
such that R does not satisfy condition

(i) of Condition N. We distinguish the following cases.

Case 1: For some x,y with x,y ∈ [
1

n
,
1

2
] and x < y ≤ τ(R), we have xRy.

Let R̄ ∈ D be a single-peaked preference with 1 as the peak. Consider RN ∈ D
n where R1 = R, R2 = R̄,

τ(R3) = 1−
(n−3)

n
− 2y, and τ(Ri) =

1

n
for all i > 3. Since 1−

(n−3)

n
− 2y ≤

1

n
, by the definition

of the uniform rule, f1(RN) = f2(RN) = y, f3(RN) = 1−
(n−3)

n
− 2y, and fi(RN) =

1

n
for all i > 3.

Let qqq = (q1, . . . ,qn) ∈ ∆n be such that q1 = x, q2 = 2y− x, and qi = fi(RN) for all i ≥ 3. Since xRy and

R̄ is single-peaked with 1 as the peak, we have q1R1 f1(RN), q2P2 f2(RN), and qiIi fi(RN) for all i ≥ 3.

However, this is a contradiction to efficiency.

Case 2: For some x,y with x,y ∈ [
1

2
,1] and x < y ≤ τ(R), we have xPy.

Consider RN ∈ D
n where R1 = R, τ(R2) = 1− y, and τ(Ri) = 0 for all i > 2. Since T (RN) = τ(R1)+

1−y ≥ 1, by the definition of the uniform rule, f1(RN) = y, f2(RN) = 1−y, and fi(RN) = 0 for all i > 2.
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Let R′
1 ∈ D be such that τ(R′

1) = x. Since T (R′
1,R−i) = 1− y+ x < 1, by the definition of the uniform

rule, f1(R
′
1,R−1) = x. However, this means agent 1 manipulates at RN via R′

1, a contradiction.

Case 3: For some x ∈ [0,
1

n
], we have xP

1

n
.

Consider RN ∈ D
n such that R1 = R and τ(Ri) =

1

n
for all i > 1. Since T (RN) > 1, by the definition of

the uniform rule, fi(RN) =
1

n
for all i ∈ N. Let R′

1 ∈ D be such that τ(R′
1) = x. Since T (R′

1,R−1) < 1,

by the definition of uniform rule, f1(R
′
1,R−1) = x. However, this means agent 1 manipulates at RN via

R′
1, a contradiction. This completes the proof of the “only if” part of the theorem. �

G. PROOF OF THEOREM 6.2

Proof: Let D be a minimally rich single-peaked domain satisfying Condition N. We show that a division

rule f : D
n → ∆n satisfies efficiency, strategy-proofness, and ETE if and only if it is the uniform rule.

(“If” part) The “if” part of the theorem follows from the “if” part of Theorem 6.1.

(“Only if” part) Let us denote the set of all single-peaked preferences in D by S0. Since D is minimally

rich, for every x,y,z ∈ [0,1] with x < y < z we have R,R′ ∈ S0 such that (i) τ(R) = τ(R′) = y and (ii)

xPz and zP′x. We show that f (RN) = u(RN) for all RN ∈ D
n where u is the uniform rule. Let RN ∈ D

n

and let us denote by N(RN) the set {i ∈ N | Ri ∈ D \S0}. We prove the “only if” part by using induction

on |N(RN)|. We consider the case |N(RN)|= 0 as the base case.

Base case Suppose |N(RN)|= 0. This means all agents have single-peaked preferences. Since S0 ⊆ D ,

the proof for this case follows from Sprumont (1991).

Induction step Suppose the theorem holds for all RN ∈ D
n with |N(RN)|= p for some p ≥ 0. We show

that the theorem holds for all RN ∈ D
n with |N(RN)|= p+ 1. Consider RN ∈ D

n with |N(RN)|= p+ 1

and i ∈ N(RN). Let R̂i ∈ S0 be such that τ(Ri) = τ(R̂i). Note that since |N(R̂i,R−i)| = p, by the

induction hypothesis, f (R̂i,R−i) = u(R̂i,R−i). So, to prove the theorem, it is enough to show that

f (RN) = f (R̂i,R−i). We prove for the case where T (RN) ≥ 1. The proof for the case where T (RN) < 1

follows from similar arguments. We first prove a few claims.

Claim 1: fi(RN) = fi(R̂i,R−i).

Since T (R̂i,R−i)≥ 1, by the definition of the uniform rule, if τ(R̂i)<
1

n
, then ui(R̂i,R−i) = τ(R̂i), and if

τ(R̂i)≥
1

n
, then

1

n
≤ ui(R̂i,R−i)≤ τ(R̂i). Since f (R̂i,R−i) = u(R̂i,R−i), by strategy-proofness, τ(R̂i)<

1

n

implies fi(RN) = fi(R̂i,R−i). Suppose τ(R̂i) ≥
1

n
and fi(RN) 6= fi(R̂i,R−i). Suppose further that fi(R̂i,

R−i) < fi(RN) ≤ τ(Ri). Since R̂i is single-peaked, this implies agent i manipulates at (R̂i,R−i) via Ri, a

contradiction. Now suppose fi(RN) < fi(R̂i,R−i) ≤ τ(Ri). If fi(RN) <
1

2
, then by Condition N, fi(R̂i,

R−i)Pi fi(RN), and hence, agent i manipulates at RN via R̂i, a contradiction. Suppose fi(RN) ≥
1

2
, which

by Condition N means fi(R̂i,R−i)Ri fi(RN). If fi(R̂i,R−i)Pi fi(RN), then agent i manipulates at RN via R̂i,
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a contradiction. So, suppose fi(R̂i,R−i)Ii fi(RN). Then, since fi(R̂i,R−i) >
1

2
, by the definition of the

uniform rule, for all j 6= i, we have f j(R̂i,R−i) = τ(R j). As fi(RN)< fi(R̂i,R−i), this implies there exists

k 6= i such that fk(RN) > τ(Rk). However, this contradicts efficiency of f as f j(R̂i,R−i)R j f j(RN) for

all j ∈ N and fk(R̂i,R−i)Pk fk(RN). Therefore, τ(Ri) < fi(RN). This implies if fi(R̂i,R−i) = τ(Ri), then

agent i manipulates at RN via R̂i. Combining all these observations, we get fi(R̂i,R−i) < τ(Ri) < fi(RN).

Let R̄i ∈ D be such that (i) R̄i ∈ S0, (ii) τ(Ri) = τ(R̄i), and (iii) fi(RN)P̄i fi(R̂i,R−i). Such a preference

exists as D is minimally rich. Note that |N(R̄i,R−i)|= p, and hence, fi(R̂i,R−i) = fi(R̄i,R−i). However,

this means agent i manipulates at (R̄i,R−i) via Ri, a contradiction. This completes the proof of Claim 1.

�

Claim 2: f j(RN) = f j(R̂i,R−i) for all j ∈ N(RN).

By Claim 1, fi(RN) = fi(R̂i,R−i). So, consider j ∈ N(RN) \ i. Let R̂ j ∈ S0 be such that τ(R j) = τ(R̂ j).

Note that by the induction hypothesis, f (R̂ j,R− j) = u(R̂ j,R− j) and f (R̂i,R−i) = u(R̂i,R−i). Since

τ(R̂i) = τ(Ri) and τ(R̂ j) = τ(R j), by the definition of the uniform rule, u(R̂i,R−i) = u(R̂ j,R− j). This

means f (R̂i,R−i) = f (R̂ j,R− j), and hence, to prove Claim 2 it is enough to show that f j(RN) = f j(R̂ j,

R− j) where j ∈ N(RN). However, this follows by using similar arguments as in the proof of Claim 1.

This completes the proof of Claim 2. �

Note that since by our induction hypothesis we have f (R̂i,R−i) = u(R̂i,R−i), by the definition of the

uniform rule, fi(R̂i,R−i) ≤ τ(R̂i). This, together with Claim 1 and the fact that τ(Ri) = τ(R̂i), imply

fi(RN) ≤ τ(Ri). Since f (R̂ j,R− j) = u(R̂ j,R− j) where R̂ j ∈ S0 and τ(R̂ j) = τ(R j), using Claim 2 and

arguments similar to the above, it follows that f j(RN) ≤ τ(R j) for all j ∈ N(RN). In the following claim

we show that the same happens for the agents outside N(RN) as well.

Claim 3: fl(RN) ≤ τ(Rl) for all l ∈ N \N(RN).

Assume for contradiction that there exists l ∈ N \N(RN) such that fl(RN) > τ(Rl). Since T (RN) ≥ 1,

this means there exists j 6= l such that f j(RN) < τ(R j). Suppose j /∈ N(RN). Let ε > 0 be such that

fl(RN)− ε ≥ τ(Rl) and f j(RN) + ε ≤ τ(R j). Since j /∈ N(RN), we have Rl ,R j ∈ S0. This means

fl(RN)−εPl fl(RN) and f j(RN)+εPj f j(RN). Consider x ∈ ∆n such that x j = f j(RN)+ε , xl = fl(RN)−

ε , and xk = fk(RN) for all k 6= j, l. However, since xkRk fk(RN) for all k ∈ N and xkPk fk(RN) for all

k ∈ { j, l}, this is a contradiction to efficiency of f . Suppose j ∈ N(RN). This means f j(RN) < τ(R j).

Since f j(RN) = f j(R̂i,R−i) (by Claim 2) and f j(R̂i,R−i) = u j(R̂i,R−i) (by the induction hypothesis),

T (RN) > 1 and f j(RN) < τ(R j) together with the definition of the uniform rule imply
1

n
≤ f j(RN). By

Condition N, this implies that for all ε > 0 such that f j(RN)+ ε ≤ τ(R j), we have f j(RN)+ εPj f j(RN).

Now, using similar arguments as in the case of j /∈ N(RN), it can be shown that this leads to a contradiction.

This completes the proof of Claim 3. �

We now complete the proof of induction step by showing f j(RN) = f j(R̂i,R−i) for all j /∈ N(RN).
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Suppose not. Without loss of generality, assume that Rn = max
j/∈N(RN)

R j. Note that by Claim 2, f j(RN) =

f j(R̂i,R−i) for all j ∈ N(RN). This means if Rl = Rn for all l /∈ N(RN), then by ETE, f j(RN) = f j(R̂i,

R−i) for all j /∈ N(RN), a contradiction. Therefore, assume that R j 6= Rn for some j /∈ N(RN). We

proceed in few steps.

Step 1. Since f j(RN) 6= f j(R̂i,R−i) for some j /∈ N(RN), there exists k ∈ N \N(RN) such that fk(RN) <

fk(R̂i,R−i). By the induction hypothesis, fk(R̂i,R−i) = uk(R̂i,R−i), and hence, by the definition of the

uniform rule, fk(R̂i,R−i) ≤ τ(Rk). Combining all these observations, we get fk(RN) < fk(R̂i,R−i) ≤

τ(Rk). Let R′
k = Rn. Note that for the profile (R̂i,R

′
k,R−{i,k}), |N(R̂i,R

′
k,R−{i,k})|= p and hence by the

induction hypothesis f (R̂i,R
′
k,R−{i,k}) = u(R̂i,R

′
k,R−{i,k}). By the definition of the uniform rule, this,

together with the fact that fk(R̂i,R−i) ≤ τ(Rk), implies fk(R̂i,R−i) ≤ f (R̂i,R
′
k,R−{i,k}). Since τ(Rk) ≤

τ(R′
k) and fk(RN) < τ(Rk), we claim fk(RN) = fk(R

′
k,R−k). Suppose not. By strategy-proofness, this

means fk(RN)< τ(Rk)< fk(R
′
k,R−k). Let R̄k ∈S0 be such that τ(Rk) = τ(R̄k) and fk(R

′
k,R−k)P̄k fk(RN).

Such a preference exists as D is minimally rich. Since τ(Rk) = τ(R̄k) and |N(R̄k,R−k)|= p, using similar

arguments as in Claim 3, it can be shown that fk(R̄k,R−k) ≤ τ(R̄k). By strategy-proofness, this means

fk(Rk,R−k) = fk(R̄k,R−k). However, since fk(R
′
k,R−k)P̄k fk(RN), this means agent k manipulates at

(R̄k,R−k) via R′
k, a contradiction. Therefore, fk(RN) = fk(R

′
k,R−k). Combining all these observations,

we get fk(R
′
k,R−k)< fk(R̂i,R

′
k,R−{i,k}). Note that for the profile (R̂i,R

′
k,R−{i,k}), |N(R̂i,R

′
k,R−{i,k})|= p,

and for the profile (R′
k,R−k), |N(R′

k,R−i)|= p+ 1. By using similar arguments as in the proof of Claim

2, this implies f j(R
′
k,R−k) = f j(R̂i,R

′
k,R−{i,k}) for all j ∈ N(R′

k,R−k). Therefore, if R j = Rn for all

j /∈ N(R′
k,R−k), then by ETE, we have f j(R

′
k,R−i) = f j(R̂i,R

′
k,R−{i,k}) for all j /∈ N(R′

k,R−k), which is a

contradiction since fk(R
′
k,R−k)< fk(R̂i,R

′
k,R−{i,k}). So, assume that R j 6= Rn for some j /∈ N(R′

k,R−k)∪k.

We proceed to Step 2.

Step 2. Since fk(R
′
k,R−i) < fk(R̂i,R

′
k,R−{i,k}), there exists l ∈ N \N(RN) such that fl(R̂i,R

′
k,R−{i,k}) <

fl(R
′
k,R−i). As f j(R

′
k,R−k) = f j(R̂i,R

′
k,R−{i,k}) for all j ∈ N(R′

k,R−k) and |N(R′
k,R−i)| = p+ 1, us-

ing similar arguments as in the proof of Claim 3, we can show that f j(R
′
k,R−k) ≤ τ(R j) for all

j /∈ N(RN). Combining all these observations, we get fl(R̂i,R
′
k,R−{i,k}) < fl(R

′
k,R−k) ≤ τ(Rl). Let

R′
l = Rn. Since |N(R̂i,R

′
k,R−{i,k})| = |N(R̂i,R

′
k,R′

l ,R−{i,k,l})| = p, we have f (R̂i,R
′
k,R−{i,k}) = u(R̂i,

R′
k,R−{i,k}) and f (R̂i,R

′
k,R′

l ,R−{i,k,l}) = u(R̂i,R
′
k,R′

l ,R−{i,k,l}). This, together with the fact that, fl(R̂i,

R′
k,R−{i,k}) < τ(Rl) ≤ τ(R′

l) implies f (R̂i,R
′
k,R−{i,k}) = f (R̂i,R

′
k,R′

l ,R−{i,k,l}). Since Rl ,R
′
l ∈ S0, by

strategy-proofness, τ(Rl) ≤ τ(R′
l) implies fl(R

′
k,R−k) ≤ fl(R

′
k,R′

l ,R−{k,l}). Since fl(R̂i,R
′
k,R−{i,k}) <

fl(R
′
k,R−k), we have fl(R̂i,R

′
k,R′

l ,R−{i,k,l}) < fl(R
′
k,R′

l ,R−{k,l}). Note that |N(R̂i,R
′
k,R′

l ,R−{i,k,l})| = p

and |N(R′
k,R′

l ,R−{k,l})|= p+ 1. Combining these observations, and using similar arguments as in the

proof of Claim 1 and Claim 2, we obtain f j(R
′
k,R′

l ,R−{k,l}) = f j(R̂i,R
′
k,R′

l ,R−{i,k,l}) for all j ∈ N(R′
k,R′

l ,

R−{k,l}). This means if R j = Rn for all j /∈ N(R′
k,R′

l ,R−{k,l}), then by ETE we have f j(R
′
k,R′

l ,R−{k,l}) =
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f j(R̂i,R
′
k,R′

l ,R−{i,k,l}) for all j /∈ N(R′
k,R′

l ,R−{k,l}), a contradiction to fl(R̂i,R
′
k,R′

l ,R−{i,k,l}) < fl(R
′
k,R′

l ,

R−{k,l}). Therefore, assume that R j 6= Rn for some j /∈ N(R′
k,R′

l ,R−{k,l})∪{k, l}. We apply Step 1 to

(R̂i,R
′
k,R′

l ,R−{i,k,l}) and (R′
k,R′

l ,R−{k,l}).

Since N is finite and at every step we change the preference of a new agent by Rn, eventually it will

lead to a contradiction. This completes the proof of the “only if” part of the theorem. �

H. PROOF OF THEOREM 7.1

Proof: Let D be a local-peaked domain and f : D
n → ∆n be the partially uniform rule. We show that f

satisfies efficiency, strategy-proofness, and ETE.

Efficiency: Consider RN ∈ D
n. Suppose RN is such that f (RN) = u(RN), i.e., either T (RN) ≤ 1, or

T (RN) > 1 and there does not exist j ∈ N such that R j satisfies condition (i) in Definition 7.1 and

u j(RN)< p∗(R j). If R j satisfies Condition N for all j ∈ N, then by Theorem 6.1, f (RN) is efficient. Note

that by the definition of the partially uniform rule, if f (RN) = u(RN), then there can be at most one agent

i ∈ N such that Ri satisfies condition (i) in Definition 7.1. We proceed through distinguishing few cases.

Case 1: Suppose T (RN) ≤ 1. Then, by the definition of the partially uniform rule, fi(RN) = τ(Ri), and

for all j 6= i, τ(R j)≥
1

n
implies f j(RN) = τ(R j) and τ(R j)<

1

n
implies f j(RN)≤ τ(R j). Since each R j

satisfies Condition N, f (RN) is efficient.

Case 2: Suppose that T (RN) > 1.

Case 2.a: Suppose further that for some k ∈ N, uk(RN) ≥ p∗(Rk). Since τ(Ri) > p∗(Ri) and p∗(Ri) >

(1−
1

n
), by the definition of the uniform rule, we have k = i. This implies for all j 6= i, f j(RN) = τ(R j),

and hence, f (RN) is efficient.

Case 2.b: Suppose further that u j(RN)< p∗(R j) for all j ∈N with R j satisfying condition (i) in Definition

7.1. If each R j satisfies Condition N, then f (RN) is efficient. Suppose there exists i ∈ N such that Ri

satisfies condition (i) in Definition 7.1.

Case 2.b.i: Suppose T (R̄N) ≤ 1. This means for all j ∈ N with τ(R j) ≥
1

n
, f j(RN) = τ(R̄ j), and for

all j ∈ N with τ(R j) <
1

n
, τ(R j) ≤ f j(RN). Assume for contradiction that there exists xxx = (x1, . . . ,

xn) ∈ ∆n such that x jR j f j(RN) for all j ∈ N and xkPk fk(RN) for some k ∈ N. Combining all these

observations, we have either Rk satisfies condition (i) in Definition 7.1 or τ(Rk) <
1

n
. If Rk satisfies

condition (i) in Definition 7.1, then xk must be greater than p∗(Rk), and hence, for all j 6= k, x j <
1

n
. Since

uk(RN) < p∗(Rk), this implies there exists l ∈ N such that xl < ul(RN) ≤ τ(Rl). If Rl satisfies condition

(i) in Definition 7.1, then it is a contradiction xlRl fl(RN) as fl(RN) =
1

n
and xl <

1

n
. If τ(Rl) <

1

n
,

then
1

n
≥ fl(RN) > τ(Rl), which is a contradiction xlRl fl(RN) as by Definition 7.1, τ(Rl) ≤

1

n
implies

1

n
Plxl . If τ(Rl) >

1

n
and Rl satisfies Condition N, then fl(RN) = τ(Rl), which is a contradiction to
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xlRl fl(RN). If τ(Rk) <
1

n
, then it must be that τ(Rk) ≤ xk < fk(RN) ≤

1

n
. This means there exists l ∈ N

such that xl > fl(RN). If τ(Rl)<
1

n
, then fl(RN)Plxl , a contradiction to xlRl fl(RN). If τ(Rl)≥

1

n
and Rl

satisfies condition (i) of Definition 7.1, then we can come up with a contradiction to xlRl fl(RN) by using

similar arguments as above. If τ(Rl) ≥
1

n
and Rl satisfies Condition N, then fl(RN) = τ(RN), and hence,

fl(RN)Plxl , a contradiction to xlRl fl(RN).

Case 2.b.ii: Suppose T (R̄N) > 1. This means for all j ∈ N with τ(R j) ≤
1

n
, we have f j(RN) = τ(R̄ j),

and for all j ∈ N with τ(R j) >
1

n
, we have f j(RN) ≤ τ(R j), and fi(RN) =

1

n
for all i ∈ N such that

condition (i) of Definition 7.1 is satisfied. Assume for contradiction that there exists xxx = (x1, . . . ,xn) ∈ ∆n

such that x jR j f j(RN) for all j ∈ N and xkPk fk(RN) for some k ∈ N. Combining all these observations, it

follows that either Rk satisfies condition (i) in Definition 7.1 or Rk satisfies Condition N with τ(Rk) >
1

n
.

If Rk satisfies condition (i) in Definition 7.1, then we can show a contradiction to x jR j f j(RN) for all

j ∈ N by using similar arguments as in Case 2.b.i. If Rk satisfies Condition N with τ(Rk) >
1

n
, then it

must be that
1

n
≤ fk(RN) < xk ≤ τ(Rk). This implies there exists l ∈ N such that xl < fl(RN). Since

f j(RN) ≤ τ(R j) for all j ∈ N and fi(RN) =
1

n
for each Ri satisfying condition (i) in Definition 7.1, this

yields fl(RN)Plxl , a contradiction to x jR j f j(RN) for all j ∈ N.

Since Cases 1 and 2 are exhaustive, it follows that f is efficient.

Strategy-proofness: Consider RN ∈ D
n and an arbitrary agent i. We show that i cannot manipulate at RN .

Consider R′
i ∈ D . Suppose RN ∈ D

n is such that f (RN) = u(RN), i.e., either T (RN) ≤ 1, or T (RN) ≥ 1

and there does not exist j ∈ N such that R j satisfies condition (i) in Definition 7.1 and u j(RN) < p∗(R j).

We distinguish these cases in the following.

Case 1: Suppose T (RN)≤ 1. By the definition of the partially uniform rule, for all j ∈N, f j(RN)≤ τ(R j)

and f j(RN) < τ(R j) imply τ(R j) <
1

n
. Suppose τ(Ri) <

1

n
and fi(RN) < τ(Ri). By the definition of

the partially uniform rule, agent i can manipulate only if (R′
i,R−i) is such that T (R′

i,R−i) > 1 and u j(R
′
i,

R−i) < p∗(R j) for all j ∈ N with R j satisfying condition (i) in Definition 7.1. Since T (R′
i,R−i) > 1, by

the definition of the uniform rule, this implies τ(R′
i) > fi(RN), and hence, either fi(R

′
i,R−i) ≥ τ(R′

i) or

fi(R
′
i,R−i) =

1

n
. Since Ri satisfies Condition N, this implies agent i cannot manipulate at RN via R′

i.

Case 2: Suppose T (RN)≥ 1. If there is j ∈ N such that R j satisfies condition (i) in Definition 7.1, then by

using similar arguments as in Case 1, we can show that no agent can manipulate. Suppose for some j ∈ N

with R j satisfying condition (i) in Definition 7.1, we have u j(RN)≥ p∗(R j). This means all agents except

j get shares equal to their peaks, and p∗(R j)≤ f j(RN)< τ(R j). Suppose i = j. Then, agent i can change

the outcome only by choosing τ(R′
i) < fi(RN), which implies fi(R

′
i,R−i) < fi(RN). However, by the

definition of local-peaked domains, fi(RN)Pix for all x < fi(RN), and hence, agent i cannot manipulate.

Suppose RN ∈ D
n such that T (RN)> 1 and for all j ∈ N with R j satisfying condition (i) in Definition
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7.1, we have u j(RN)< p∗(R j). If i is such that Ri satisfies condition (i) of Definition 7.1, then fi(RN) =
1

n
.

Since u j(RN)≤ p∗(R j) for all j ∈ N with R j satisfying condition (i) of Definition 7.1, we have ui(RN)<

p∗(Ri). By the definition of the uniform rule, agent i can only change his (uniform) share by choosing

τ(R′
i) < ui(RN). However, this implies ui(R

′
i,R−i) ≤ ui(RN), and hence, agent i cannot manipulate.

Suppose i ∈ N is such that Ri satisfies Condition N. Assume T (R̄N) ≤ 1. If τ(Ri) ≥
1

n
, by the definition

of partially uniform rule this means fi(RN) = τ(Ri) and hence, agent i cannot manipulate. If τ(Ri) <
1

n

then τ(Ri) ≤ fi(RN) ≤
1

n
. Assume τ(Ri) < fi(RN). If R′

i satisfies condition (i) of Definition 7.1, then

fi(R
′
i,R−i) =

1

n
. However, since τ(Ri)≤ fi(RN)≤

1

n
, agent i cannot manipulate in this case. If R′

i satisfies

Condition N and τ(R′
i) ≥ τ(Ri), then T (R′

i,R−i) > 1 and for all j ∈ N with R j satisfying condition (i) in

Definition 7.1, we have u j(RN) < p∗(R j). By the definition of the partially uniform rule, this implies

f (R′
i,R−i) = u(R̄′

i, R̄−i). Since τ(R̄′
i)≥ τ(R̄i), by the definition of the uniform rule, u(R̄′

i, R̄−i)i ≥ ui(R̄N),

and hence, agent i cannot manipulate. If R′
i is such that τ(R′

i) < τ(Ri), T (R′
i,R−i) > 1, and for all j ∈ N

with R j satisfying condition (i) of Definition 7.1, we have u j(RN) < p∗(R j), then by the definition of

the partially uniform rule, fi(RN) = fi(R
′
i,R−i). Hence, agent i cannot manipulate. If T (R′

i,R−i) > 1,

and for all j ∈ N with R j satisfying condition (i) in Definition 7.1, we have u j(R
′
i,R−i) > p∗(R j), then

by the definition of the partially uniform rule, fi(R
′
i,R−i) = τ(R′

i). Since τ(R′
i) < τ(Ri) < fi(RN) ≤

1

n

and Ri satisfies Condition N with
1

n
Pix for all x with x < τ(Ri), agent i cannot manipulate. If R′

i is

such that τ(R′
i) < τ(Ri) and T (R′

i,R−i) ≤ 1, then, as T (RN) > 1, by the definition of the uniform rule,

τ(R′
i) ≤ ui(R

′
i,R−i) < τ(Ri). This means fi(R

′
i,R−i) < τ(Ri), and hence, agent i cannot manipulate. If

T (R̄N) > 1, then using similar arguments it follows that agent i cannot manipulate. This shows that f is

strategy-proof.

ETE: Note that at any profile RN , the outcome of f is defined by the outcome of u at some profile, which

we have denoted by R̄N . Moreover, if Ri = R j for some i, j ∈ N, then the description of R̄N implies that

R̄i = R̄ j. Therefore, since the uniform rule satisfies ETE, it follows that the partially uniform rule also

satisfies ETE. �
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[7] Jordi Massó and Alejandro Neme. A maximal domain of preferences for strategy-proof, efficient,

and simple rules in the division problem. Social Choice and Welfare, 23(2):187–206, 2004.

[8] Gert-Jan Otten, Hans Peters, and Oscar Volij. Two characterizations of the uniform rule for division

problems with single-peaked preferences. Economic Theory, 7(2):291–306, 1996.

[9] Alejandro Saporiti. Strategy-proofness and single-crossing. Theoretical Economics, 4(2):127–163,

2009.

[10] Yves Sprumont. The division problem with single-peaked preferences: a characterization of the

uniform allocation rule. Econometrica: Journal of the Econometric Society, pages 509–519, 1991.

[11] Joseph E Stiglitz. The demand for education in public and private school systems. Journal of public

economics, 3(4):349–385, 1974.

[12] William Thomson. Consistent solutions to the problem of fair division when preferences are

single-peaked. Journal of Economic Theory, 63(2):219–245, 1994.

[13] William Thomson. Resource-monotonic solutions to the problem of fair division when preferences

are single-peaked. Social Choice and Welfare, 11(3):205–223, 1994.

[14] William Thomson. Population-monotonic solutions to the problem of fair division when preferences

are single-peaked. Economic Theory, 5(2):229–246, 1995.

[15] John A Weymark. Sprumont’s characterization of the uniform rule when all single-peaked prefer-

ences are admissible. Review of Economic Design, 4:389–393, 1999.

41


	Introduction
	Domains and their properties
	Division rules and their properties
	A characterization of single-peaked domains for the uniform rule
	The case of two agents
	The case of more than two agents

	The structure of division rules on single-peaked domains that violate Condition U
	The case of two agents
	The case of n agents

	A characterization of non single-peaked domains for the uniform rule
	The structure of division rules on non single-peaked domains that violate Condition N
	Applications
	Preferences given by utility functions
	Utility functions satisfying a convergence property
	Utility functions satisfying a translation property
	Most single-peaked domains satisfy Condition U

	Single-crossing domains
	Semi-single-peaked domains
	Partially single-peaked domain

	Appendix Proof of Theorem 4.1
	Appendix Proof of Theorem 4.2
	Appendix Proof of Theorem 5.1
	Appendix Proof of the Theorem 5.2
	Appendix Proof of Theorem 5.3
	Appendix Proof of Theorem 6.1
	Appendix Proof of Theorem 6.2
	Appendix Proof of Theorem 7.1

