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A B S T R A C T

The pinto bean is one of widely consumed legume crop that constitutes over 42% of the U.S

dry bean production. However, limited studies have been conducted in past to assess its

quantitative and qualitative yield potentials. Emerging remote sensing technologies can

help in such assessment. Therefore, this study evaluates the role of ground-based multi-

spectral imagery derived vegetation indices (VIs) for irrigated the pinto bean stress and

yield assessments. Studied were eight cultivars of the pinto bean grown under conven-

tional and strip tillage treatments and irrigated at 52% and 100% of required evapotranspi-

ration. Imagery data was acquired using a five-band multispectral imager at early, mid and

late growth stages. Commonly used 25 broadband VIs were derived to capture crop stress

traits and yield potential. Principal component analysis and Spearman’s rank correlation

tests were conducted to identify key VIs and their correlation (rs) with abiotic stress at each

growth stage. Transformed difference vegetation index, nonlinear vegetation index (NLI),

modified NLI and infrared percentage vegetation index (IPVI) were consistent in accounting

the stress response and crop yield at all growth stages (rs > 0.60, coefficient of determina-

tion (R2): 0.50–0.56, P < 0.05). Ten other VIs significantly accounted for crop stress at early

and late stages. Overall, identified key VIs may be helpful to growers for precise crop man-

agement decision making and breeders for crop stress response and yield assessments.

� 2019 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

1. Introduction

High yielding crop varieties with a significant level of toler-

ance towards stresses induced by disease, pests, climate

change, water shortage and reduced soil fertility have been

recognized as crucial needs to feed the burgeoning population
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[1–3]. In this regard, focus has been towards increasing crop

yield through timely and precision management of crop

inputs [4,5]. However, majorly existing techniques to manage

crop stressors have been time-consuming, labor-intensive

and most importantly destructive [6,7]. In recent times alter-

nate non-invasive advanced sensing technologies have cap-

tured huge attention in agricultural crop production

management [8–11]. Technologies such as multispectral,

hyperspectral, thermal imaging and light detection and rang-

ing (LiDAR) have been used for mapping plant photosynthe-

sis, biomass, nutrition, water use, thermal stress and crop

yield potentials [12–14]. These technologies can be integrated

with aerial or ground-located platforms depending on the

required scale and resolution of data acquisition. Until

recently, high orbiting satellite-based sensing was limited

due to frequency and resolution [15–17]. The small unmanned

aerial systems (UAS) based sensing can provide a needed spa-

tiotemporal resolution [18–20]. In addition, developing

ground-based rapid sensing tools can complement the pro-

cess for accurate mapping of plant characteristics [21]. Such

sensing devices can capture the effect of stress-inducing fac-

tors on crop canopy at specific wavelengths in emission spec-

tra. Spectral information, commonly interpreted as

vegetation indices (VIs) can be useful for crop growth and

stress assessment [18,22].

Several research studies have been conducted to analyze

the VIs related to specific crop traits [15,23,24]. Leaf area index

(LAI) has been modeled as a crop growth indicator using nor-

malized difference vegetation index (NDVI), ratio vegetation

index (RVI) and perpendicular vegetation index (PVI) for soy-

bean [25] and sunflower [26]. Similarly, the green–red vegeta-

tion index (GRVI) has been used to estimate barley biomass

[27]. Crop growth and canopy coverage including atmospheric

effects have been modeled using NDVI, renormalized differ-

ence vegetation index (RDVI), infrared percentage vegetation

index (IPVI), normalized difference red-edge index (NDRE),

visible atmospherically resistance index (VARI) and green nor-

malized difference vegetation index (GNDVI) [28–30]. Crop

chlorophyll and nitrogen content under various soil and envi-

ronmental conditions have been also modeled using RVI, PVI,

soil-adjusted vegetation index (SAVI), optimized soil-adjusted

vegetation index (OSAVI), modified soil-adjusted vegetation

index (MSAVI), enhanced vegetation index (EVI), difference

vegetation index (DV), GNDVI, green difference vegetation

index (GDV), medium resolution imaging spectrometer

(MERIS) terrestrial chlorophyll index (MTCI), green chlorophyll

index (CIG) and red-edge chlorophyll index (CIRE) [31–34]. Fur-

thermore, for a variety of stress monitoring applications using

VIs, NDVI, green simple ratio (GSR), modified simple ratio

(MSR) and transformed chlorophyll absorption in reflectance

index (TCARI) have been found significant in estimating pho-

tosynthesis and evapotranspiration in corn [31,35,36]. Simi-

larly, the red-edge normalized difference vegetation index

(RENDVI) has been critically used to monitor the stem water

potential in pears [37]. The transformed difference vegetation

index (TDVI), nonlinear vegetation index (NLI) and modified

nonlinear vegetation index (MNLI) have been used as linear

indicators of vegetation cover unlike NDVI and SAVI that get

saturated with optical properties of soil [38,39]. Overall, crop

stress (or disease) and yield forecasting models critically

depend on chlorophyll content (TCARI/OSAVI) [40], biomass

and growth durations [41]. The VIs based models can assist

farmers and crop breeders in rapid stress assessment, trait

evaluation and cultivar-specific yield prediction.

The crop stress and yield-related researches so far have

covered most cereal crops, tuber crops, perennial crops, oil-

producing crops, fiber crops, and vegetables. For above crops,

efforts have been made to use satellite and aerial platforms

based remote sensing techniques. However, efforts onmaking

ground-based non-contact cum non-destructive tools for reli-

able and robust crop stress assessments are limited. Our study

focus is thus on integrating an emerging multispectral optical

sensing with a ground vehicle and exploring its suitability for

rapid assessment of crop stress and yield potential in irrigated

pinto bean (Phaseolus vulgaris L.). This is an important food

crop consumed worldwide and accounts for 42% of the U.S.

dry bean production [42]. Specifically, this study was focused

on (1) assessment of stress response and yield potential of irri-

gated pinto bean at three different growth stages using

ground-based non-contact multispectral imaging technique

and (2) identification of appropriate vegetation indices and

pertinent relationships to aid in such decisionmaking process.

2. Material and methods

2.1. Experimental design

The experiment was conducted on a field (Fig. 1) planted with

eight cultivars of the pinto bean at the Washington State

University research farm (latitude 46.251241_N, longitude

119.738106_W) near Prosser, WA, USA. The field was initially

divided into four plots of 80.10 � 12.20 m with a buffer land

of 4.60 m between each plot. Two of the plots were fully irri-

gated (100% evapotranspiration [ET]) and remaining two plots

received half of the required irrigation (52% ET), i.e. deficit irri-

gation. Each plot was further divided into four subplots of

18.30 � 12.20 m dimensions with a buffer land of 2.30 m

between each. Two of these subplots were treated randomly

with strip tillage and rest two were treated with conventional

tillage. Each subplot was then divided into eight sections of

4.60 � 6.10 m to be planted with eight different pinto bean

cultivars. The entire experiment was designed based on com-

pletely randomized block design (CRBD) with a total of 128

replicates where, each cultivar had 16 replications, with 4

under strip tillage and full irrigation, 4 under conventional til-

lage and full irrigation, 4 under strip tillage and half irrigation

and 4 under conventional tillage and half irrigation. Herbicide

was applied 28 days after plantation (DAP) while crops were

irrigated after 30 days of emergence until maturity. The crop

was harvested, and yield was quantified after 122 days of

the growth cycle on September 19, 2016.

2.2. Data acquisition

The data acquisition was performed at early (54 DAP), mid (76

DAP) and late (98 DAP) growth stages. A five-band comple-

mentary metal-oxidesemiconductor (CMOS) type multispec-

tral imager (RedEdge, MicaSense, Seattle, WA, USA) was
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employed for ground-based high resolution imaging with

spectra detector bands of blue (465–485 nm), green (550–

570 nm), red (663–673 nm), red-edge (RE, 712–722 nm) and

near-infrared (NIR, 820–860 nm). Imager had a pixel resolu-

tion of 1280 � 960 pixels, the focal length of 5.50 mm, sensor

size of 4.80 � 3.60 mm and horizontal field view of 47.20�.
The imager was mounted perpendicularly on a vertically

adjustable telescopic mast (LM20-S, Floatograph, Santa Bar-

bara, CA, USA) and was set at a height of 6.70 m above ground

(Fig. 2) resulting in ground sampling distance (GSD) of

4.6 mm/pixel and spatial coverage of 5.80 � 4.40 m. The mast

was translocated with the help of an agricultural utility vehi-

cle (4210, Deere & Company, Moline, IL, USA) for imaging each

of 128 plot sections. The imager was powered by a universal

serial bus power pack and triggered through wireless commu-

nication from a web-interface on a remote computer. Imaging

was conducted around solar noon (11:00 h to 13:30 h) and data

was stored in an onboard memory card. The platform was

operated as stop-n-go to image each section. During the field

data collection, a calibrated white reflectance panel (Active

size: 15.25 � 15.25 cm, MicaSense, Seattle, WA, USA) was

placedwithin field-of-view to adjust the spectral data for inci-

dent light variations.

2.3. Imagery data analysis

A total of 25 commonly used broadband VIs (Table 1) were

identified as significant indicators of crop growth and yield

traits under varied conditions of vegetation, environment,

and soil tillage. The mean VI information was extracted

through an image analysis algorithm (Fig. 3) developed in

MATLAB� (ver. 2017a, The MathWorks, Inc. MA, USA). Firstly,

Fig. 1 – Completely randomized block design of the experimental field with 16 subplots and 8 sections planted with 8

different cultivars of the pinto bean within each subplot (total of 128). Dark blue dashed grids represent conventional tillage

and solid yellow grids represent strip tillage treatments. Subplots 1, 2, 3, 4, 13, 14, 15 and 16 were treated with full irrigation

while subplots 5, 6, 7, 8, 9, 10, 11 and 12 were treated with half irrigation.

(b) (a) 

Fig. 2 – (a) Ground vehicle-based setup for proximal

multispectral image acquisition and (b) close-up of

multispectral imager with blue, green, red, red-edge and

near-infrared as five spectral bands.
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images from all five bands were read in the algorithm and

performed were a series of adjustments and alignments

operations like image cropping, resizing and translation.

Imagery data from all bands was then corrected by relative

adjustment of pixel values with respect to the white refer-

ence panel in each image (Fig. 4). Thirdly, all the five cor-

rected images were concatenated into RGB (R, G and B)

and CIR (NIR, R, and G) images (Fig. 4). This process matches

corresponding pixels in all the spectral band images to

obtain a common region of interest. In the next step, the

pixelated mean and mapped VIs (Fig. 5) were calculated

through appropriate mathematical operations on spectral

reflectance information. These were later analyzed for crop

stress and yield characterization.

2.4. Data analysis

As a primary step in analysis, the data was checked for its

normality. The obtained VIs were then analyzed with princi-

pal component analysis (PCA) in MATLAB� for their relation-

ship with the yield at different growth stages. The PCA bi-

plots were constructed with two principle axes explaining

Table 1 – Multispectral imagery derived vegetation indices investigated in this study.

Vegetation index Equation Reference

Normalized Difference
Vegetation Index (NDVI)

NDVI ¼ RNIR�RRed
RNIRþRRed

[43]

Renormalized Difference
Vegetation Index (RDVI)

RDVI ¼ RNIR�RRedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RNIRþRRed

p [44]

Difference Vegetation Index (DV) DV ¼ RNIR � RRed [45]
Soil-Adjusted Vegetation Index
(SAVI)

SAVI ¼ 1þ Lð Þ � RNIR�RRed
RNIRþRRedþL [46]

Infrared Percentage Vegetation
Index (IPVI)

IPVI ¼ RNIR
RNIRþRRed

[28]

Green Simple Ratio (GSR) GSR ¼ RNIR
RGreen

[46]

Red-Edge Normalized Difference
Vegetation Index (RENDVI)

RENDVI ¼ RRed�Edge�RRed

RRed�EdgeþRRed
[47]

Non-Linear Index (NLI) NLI ¼ R2
NIR�RRed

R2
NIRþRRed

[38]

Modified Soil-Adjusted
Vegetation Index (MSAVI)

MSAVI ¼ 0:5 2RNIR þ 1� ffiffiffiffi
X

p� �
; X ¼ 2RNIR þ 1ð Þ2 � 8ðRNIR � RRedÞ [48]

Modified Simple Ratio (MSR) MSR ¼ ðRNIR
RRed

� 1Þ=ð
ffiffiffiffiffiffiffi
RNIR
RRed

q
þ 1Þ [49]

Optimized Soil-Adjusted
Vegetation Index (OSAVI)

OSAVI ¼ 1:16�ðRNIR�RRedÞ
RNIRþRRedþ0:16 [50]

Green Normalized Difference
Vegetation Index (GNDVI)

GNDVI ¼ RNIR�RGreen
RNIRþRGreen

[51]

Transformed Difference
Vegetation Index (TDVI)

TDVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5þ RNIR�RRed

RNIRþRRed

q
[39]

Leaf Area Index (LAI) LAI ¼ 3:618 � EVI� 0:118 [52]
Visible Atmospherically
Resistant Index (VARI)

VARI ¼ RGreen�RRed
RGreenþRRed�RBlue

[53]

Enhanced Vegetation Index (EVI) EVI ¼ 2:5�ðRNIR�RRedÞ
RNIRþ6�RRed�7:5�RBlueþ1 [54]

Red-Edge Chlorophyll Index
(CIRE)

CIRE ¼ RNIR
RRed�Edge

� 1 [55]

Green Chlorophyll Index (CIG) CIG ¼ RNIR
RGreen

� 1 [56]

MERIS Terrestrial Chlorophyll
Index (MTCI)

MTCI =
RNIR�RRed�Edge

RRed�Edge�RRed
[57]

Green Difference Vegetation
Index (GDV)

GDV ¼ RNIR � RGreen [31]

Modified Non-Linear Index
(MNLI)

MNLI ¼ ðR2
NIR�RRedÞð1þLÞ
R2
NIRþRRedþL

[58]

Green-Red Vegetation Index
(GRVI)

GRVI ¼ RGreen�RRed
RGreenþRRed

[59]

Ratio Vegetation Index (RVI) RVI =RNIR
RRed

[60]

Normalized difference red-edge
index (NDRE)

NDRE ¼ RNIR�RRed�Edge

RNIRþRRed�Edge
[64]

Ratio Chlorophyll Absorption
Reflectance (RCAR = TCARI/
OSAVI)

RCAR ¼ 3 ðRRed�Edge�RRed½ Þ�0:2 RRed�Edge�RGreenð Þ�ðRRed�Edge=RRedÞ�
½ð1:16Þ�ðRNIR�RRedÞ=ðRNIRþRRedþ0:16Þ� [40]

RRed, RGreen, RBlue, RRed-Edge, and RNIR are the pixel values of the spectral responses in red, green, blue, red-edge and NIR images.
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major variability, inter-correlations and dominant pattern of

VIs in the data matrix. Furthermore, linear regression models

were developed, and Spearman’s rank correlation test was

conducted in R-Studio (Version 1.0.153, RStudio, Boston, MA,

USA) to quantify yield as the function of multispectral imag-

ing derived VIs at all the crop growth stages. The analyzed

correlation coefficients were further classified into three cat-

egories as strong, moderate and weak [61]. The treatment

effects of tillage and irrigation were also analyzed with two-

way analysis of variance (ANOVA) tests and all results were

inferred at 5% level of significance.

3. Results

3.1. Salient relationships between vegetation indices and
crop yield

The PCA bi-plots assessment provided with two major princi-

pal components of VIs which at an early stage of crop growth

explained a yield variability of 76% and 11%. Similarly, these

axes explained a yield variability of 64% and 17% at mid-

stage and 69% and 16% at the late stage. At the early stage,

(Fig. 6) eigenvalues for NLI, MNLI, TDVI, IPVI, MSAVI, MSR,

SAVI, NDVI, OSAVI, RVI, RDVI and DV formed a dense cluster

towards extreme right and that for RENDVI lied in the right-

upper region of the bi-plot. Furthermore, the eigenvalues for

VARI, GRVI, and RCAR were sparsely distributed at the top-

right region and CIG, GSR, NDRE, GNDVI, GDV, CIRE, and MTCI

were sparsely distributed at the lower-right or right-lower

region of the bi-plot. The mid-growth stage data bi-plot

(Fig. 7) showed that the eigenvalues for NLI, MNLI, TDVI, IPVI,

MSAVI, MSR, SAVI, NDVI, OSAVI, RVI, RDVI and DV were clus-

tered towards extreme right and that for RENDVI lied towards

the right-upper region. The VARI, GRVI, RCAR, LAI, and EVI

were sparsely distributed at the top-right region and CIG,

GSR, NDRE, GNDVI, GDV, CIRE and MTCI were sparsely dis-

tributed at the lower-right or right-lower region. In case of late

growth stage data, bi-plot (Fig. 8) showed that the eigenvalues

for NLI, MNLI, TDVI, IPVI, MSAVI, MSR, SAVI, NDVI, OSAVI,

RVI, RDVI, and DVI, densely acquired the extreme right region

and that for RENDVI lied towards the right-upper region.

Whereas the same for VARI, GRVI, and RCAR were sparsely

distributed towards the top-right region and for GDV, GNDVI,

CIG, GSR, NDRE CIRE and MTCI spread in the lower-right or

right-lower regions.

Overall, the VIs that are consistently clustered densely

towards the extreme right region of the PCA bi-plot may be

significant in accounting for the pinto bean crop stress and

yield. Similarly, the indices clustered in other regions may

not be considered significant in explaining the variability in

response.

3.2. Correlation of vegetation indices with potential stress
and crop yield

The results from Spearman’s rank correlation analysis

(Table 2) agreed strongly with the PCA results and revealed

that the IPVI, TDVI, NLI, and MNLI were consistently sensitive

and held a significantly positive correlation with crop yield

(Spearman’s correlation, rs = 0.60–0.62, p < 0.05) at all the

growth stages. Whereas, the NDVI, RDVI, DV, MSR, SAVI,

MSAVI, OSAVI and RVI showed a significantly strong relation-

ship (rs = 0.61–0.63, p < 0.05) at the early and late stages, while

a moderate (rs = 0.50–0.59, p < 0.05) or weak (rs < 0.50) relation-

ship at mid-stage. The relationship of yield with GDV, GNDVI,

and GSR varied from significantly strong at early stage

(rs = 0.61–0.65, p < 0.05) to significantly weak at mid-stage

(rs = 0.46–0.49, p < 0.05) and moderate at late stage (rs = 0.54–

0.58, p < 0.05). The VIs, EVI, LAI, CIG, VARI, GRVI, CIRE, MTCI,

RENDVI and RCAR consistently depicted either moderate

(rs = 0.50–0.59, p < 0.05) or weak (rs < 0.50) correlation with

yield (or stress) at all three growth stages. The NDRE depicted

a strong correlation only at the early stage of crop growth.

Furthermore, the exponential relationships (best-fit curves)

were majorly established between the stronger VIs and

obtained yield (Fig. 9).

3.3. Effect of tillage and irrigation treatments on
vegetation indices and yield potential

The analysis (Table 3) revealed that the yield of the pinto bean

varied significantly with the tillage (Two-way ANOVA, F1,

124 = 4.86, p = 0.049) and irrigation treatments (F1, 124 = 254.09,

p < 0.001). Moreover, the post-hoc analysis suggests that the

yield at full irrigation (Mean = 5.81, standard error (SE) = 0.78)

was significantly higher than that at half irrigation (Tukey

Fig. 3 – Flow chart of the multispectral image analysis

algorithm.
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)d(

)b()a(

)c(

Fig. 5 – Mapped (a) NDVI, (b) TDVI, (c) GRVI and (d) CIG output images from image analysis.

(a)  (b) 

 (c)  (d)  

Fig. 4 – Intermediate image outputs from image analysis algorithm with (a) raw and (b) corrected near-infrared channel

images and concatenated (c) RGB (Red, Green, and Blue) and (d) CIR (Red, Green, and NIR) images.
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Fig. 6 – PCA bi-plot of VIs at the early stage of the Pinto bean growth period.

Fig. 7 – PCA bi-plot of VIs at the mid-stage of the pinto bean growth period.

508 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 6 ( 2 0 1 9 ) 5 0 2 –5 1 4



Fig. 8 – PCA bi-plot of 25 VIs at the late stage of the pinto bean growth period.

Table 2 – Correlation between different VIs and yield of the pinto bean cultivars at different growth stages.

Index Spearman rank correlation coefficient (rs)

Early stage Mid stage Late stage

NDVI 0.62* 0.51* 0.62*

IPVI 0.62* 0.61* 0.62*

RDVI 0.62* 0.50* 0.62*

TDVI 0.62* 0.61* 0.62*

DV 0.63* 0.48* 0.61*

GDV 0.65* 0.47* 0.58*

EVI 0.48* 0.26* 0.39*

LAI 0.48* 0.26* 0.39*

GNDVI 0.62* 0.49* 0.54*

NLI 0.61* 0.60* 0.60*

MNLI 0.61* 0.60* 0.60*

GSR 0.61* 0.46* 0.54*

MSR 0.60* 0.45* 0.61*

SAVI 0.62* 0.51* 0.62*

MSAVI 0.62* 0.52* 0.63*

OSAVI 0.62* 0.51* 0.62*

VARI 0.39* 0.13 0.21*

GRVI 0.40* 0.14* 0.26*

RENDVI 0.52* 0.44* 0.56*

NDRE 0.60* 0.30* 0.45*

CIRE 0.39* �0.04 0.28*

CIG 0.59* 0.40* 0.49*

RVI 0.60* 0.42* 0.61*

MTCI 0.42* 0.15 0.25*

RCAR 0.43* 0.44* 0.30*

* Correlation is significant at the 0.05 level.
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HSD test, Mean = 2.99, SE = 3.17). Similarly, the yield obtained

at strip tillage treatment (Mean = 4.59, SE = 1.80) was signifi-

cantly higher than the yield at conventional tillage treatment

(Tukey HSD test, Mean = 4.21, SE = 1.78). Note that the discus-

sion on cultivar specific effect of tillage and irrigation treat-

ments is beyond the scope of this work.

The analysis of VIs at all growth stages indicated that the

IPVI, TDVI, NLI, MNLI, OSAVI, NDVI and GNDVI (crop vigor)

were significantly affected by the irrigation treatments (Two-

way ANOVA, p < 0.001) and were higher at 100% ET treatment.

Additionally, the effect of tillage treatments was significant

on crop vigor expressed by IPVI, TDVI, OSAVI and NDVI at

early and mid-growth stages, while that on NLI and MNLI

was significant at early stage only (Two-way ANOVA,

p < 0.05). Furthermore, there was no prominent effect of the

interaction between tillage and irrigation on crop yield and

extracted VIs (p > 0.05).

4. Discussion

EVI and LAI in this study, deteriorated in their relationships

with yield from moderate to weak with the growth stages as

seen from their eigenvalues in PCA and inconsistent correla-

tions coefficients. Thus, EVI and LAI were considered as being

ineffective as compared to other VIs in accounting for crop

yield and stress variations. The reason for such inconsistency

)d()c(

)f()e(

 (a)  (b) 

Fig. 9 – The pinto bean yield as best fit function of (a) MNLI, (b) TDVI (c) IPVI, (d) NDVI (e) GNDVI at the mid-growth stage and of

(f) LAI at early stage.
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may be a low signal to noise ratio in the blue band of the spec-

tra [62]. In this study, NLI and MNLI coincided with each other

and so did the SAVI, NDVI, OSAVI, and MSAVI, depicting

strong mutual correlations (or collinearity). However, MNLI

can address the limitations of NLI and SAVI that are affected

by optical response of the soil properties. Similarly, OSAVI [63]

is capable to address the saturating nature of NDVI, SAVI and

MSAVI [64]. Overall, MNLI and OSAVI may be considered

solely instead of other collinear indices for efficient yield

and stress assessments and eliminated cofounding effects

[65]. Correlation between GNDVI and yield was found stronger

at early stages, similar to couple of other studies [66,67]. How-

ever, it was weaker at later stages may be due to its stagnating

nature with increased interception of photosynthetically

active radiation [68]. Thus, GNDVI may be considered for

crop-related management decisions only at early growth

stages.

VIs such as NDVI, RDVI and OSAVI were found to either

correlate strongly or moderately with the crop yield during

its growth cycle. These VIs account for dynamic changes in

canopy water, chlorophyll and nitrogen contents within the

visible-NIR region [69–72]. In addition, a negative correlation

between crop stress and yield [73] potentially depicts a strong

correlation between identified VIs and stresses in the pinto

bean. The spectral information from four bands viz. red (R),

green (G), blue (B) and near-infrared (NIR) was sufficient for

the scope of this study. The red and NIR bands provided the

significant VIs viz. MNLI, NLI, TDVI etc., capable of yield and

stress assessments. The difference in the significance of these

VIs might be due to different combination of mathematical

operators applied for their derivations. Ground-based sensing

utilized in the study provides a high-resolution imagery data

compared to the the satellites that may be necessary for crit-

ical crop trait assessments [74].

Overall, four VIs were strongly, and ten VIs were moder-

ately significant in the assessment of irrigated pinto bean

yield and stress. The effects of irrigation and tillage treat-

ments on yield was successfully characterized by the identi-

fied significant VIs as supported by previous research

studies [67,75].

Findings of this study may be utilized by crop breeders to

determine the stress tolerant crops. Additional decisions

can be made for timely and precise crop management prac-

tices for stress alleviations at an early stage and mitigate its

effect or further need at mid and late stages. Overall, five

band multispectral imager on-board ground platform holds

a sufficient potential for robust assessments of the pinto bean

yield and stress. The group of significant VIs may be analyzed

by the growers and breeders to identify most suitable index

for their research goals of managing a specific stress, disease

or crop trait. As an advancement to this study, multispectral

imager may be used on-board small UAS to assess the suit-

ability for crop yield and stress monitoring at different alti-

tudes and resolutions (or GSDs).

5. Conclusions

This study focused on evaluating applicability of ground

based remote sensing technology for irrigated pinto bean crop

response assessments during its various growth stages. Com-

monly used VIs derived at high spatial resolution (4.60 mm/

pixel) aided in qualitative and quantitative crop assessment.

Identifiedwere the spectral band specific VIs that consistently

accounted spatiotemporal crop stress response and yield

Table 3 – Effect of irrigation and tillage treatments on the pinto bean vigor expressed as vegetation indices.

Vegetation index Growth stage Test statistic (Fa,b) p value Inference

Irrigation Tillage Irrigation Tillage Irrigation Tillage

IPVI Early 0.74 0.16 <0.001 <0.001 S S
Mid 0.26 0.04 <0.001 0.04 S S
Late 0.55 0.001 <0.001 0.76 S NS

TDVI Early 37.20 7.70 <0.001 <0.01 S S
Mid 27.10 4.30 <0.001 0.04 S S
Late 62.66 0.07 <0.001 0.79 S NS

NLI Early 39.06 7.84 <0.001 <0.01 S S
Mid 25.20 3.60 <0.001 0.06 S NS
Late 48.70 0.01 <0.001 0.93 S NS

MNLI Early 39.06 7.84 <0.001 <0.01 S S
Mid 25.20 3.60 <0.001 0.06 S NS
Late 48.68 0.01 <0.001 0.93 S NS

OSAVI Early 30.50 6.73 <0.001 0.01 S S
Mid 23.77 4.49 <0.001 0.04 S S
Late 73.20 0.26 <0.001 0.61 S NS

NDVI Early 30.50 7.84 <0.001 <0.01 S S
Mid 23.77 4.49 <0.001 0.04 S S
Late 73.20 0.26 <0.001 0.61 S NS

GNDVI Early 31.05 6.94 <0.001 <0.01 S S
Mid 25.41 5.00 <0.001 0.03 S S
Late 36.12 0.12 <0.001 0.73 S NS

‘S’ refers to the significant effect while ‘NS’ refers to the non-significant effect. The alphabet pairs (a, b) are degrees of freedom equal to (1,112)

for early, (1,104) for mid and (1,123) for late stages of crop growth.
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characteristics. Study followed a robust field experimentation

that considered eight different cultivars, two tillage treat-

ments, two irrigation levels and three growth stages. Results

are based on reliable imagery data analysis methods with fol-

lowing specific conclusions.

� A five-band multispectral imager with red, green, blue,

red-edge and NIR bands sufficiently acquired spectral

information for consistent characterization of the pinto

bean stress and crop yield potential at each of the growth

stages. Most consistent VIs were obtained from the red and

NIR image bands.

� Indices such as IPVI, TDVI, NLI, andMNLI clustered densely

in the extreme right region of PCA bi-plots andwere consis-

tently significant in the pinto bean stress as well as yield

characterization (rs > 0.60 and R2: 0.50–0.56). Additionally,

NDVI, RDVI, DV, MSR, GSR, SAVI, MSAVI, OSAVI, and RVI

may be used as complementary indicators. Furthermore,

the consistent VIs may be inferred to significantly accom-

modate the effects of irrigation and tillage treatments.
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