
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

Fall 12-4-2020

SUFFIX TREE, MINWISE HASHING AND STREAMING SUFFIX TREE, MINWISE HASHING AND STREAMING

ALGORITHMS FOR BIG DATA ANALYSIS IN BIOINFORMATICS ALGORITHMS FOR BIG DATA ANALYSIS IN BIOINFORMATICS

Sairam Behera
University of Nebraska-Lincoln, srbehera@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Behera, Sairam, "SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR BIG DATA
ANALYSIS IN BIOINFORMATICS" (2020). Computer Science and Engineering: Theses, Dissertations, and
Student Research. 201.
https://digitalcommons.unl.edu/computerscidiss/201

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/201?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages

SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR

BIG DATA ANALYSIS IN BIOINFORMATICS

by

Sairam Behera

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Jitender S. Deogun

Lincoln, Nebraska

December, 2020

SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR

BIG DATA ANALYSIS IN BIOINFORMATICS

Sairam Behera, Ph.D.

University of Nebraska, 2020

Adviser: Jitender S. Deogun

In this dissertation, we worked on several algorithmic problems in bioinformatics using

mainly three approaches: (a) a streaming model, (b) suffix-tree based indexing, and

(c) minwise-hashing (minhash) and locality-sensitive hashing (LSH). The streaming

models are useful for large data problems where a good approximation needs to be

achieved with limited space usage. We developed an approximation algorithm (Kmer-

Estimate) using the streaming approach to obtain a better estimation of the frequency

of k-mer counts. A k-mer, a subsequence of length k, plays an important role in many

bioinformatics analyses such as genome distance estimation. We also developed new

methods that use suffix tree, a trie data structure, for alignment-free, non-pairwise

algorithms for a conserved non-coding sequence (CNS) identification problem. We

provided two different algorithms: STAG-CNS to identify exact-matched CNSs and

DiCE to identify CNSs with mismatches. Using our algorithms, CNSs among various

grass species were identified. A different approach was employed for identification of

longer CNSs (≥ 100 bp, mostly found in animals). In our new method (MinCNE),

the minhash approach was used to estimate the Jaccard similarity. Using also LSH,

k-mers extracted from genomic sequences were clustered and CNSs were identified.

Another new algorithm (MinIsoClust) that also uses minhash and LSH techniques

was developed for an isoform clustering problem. Isoforms are generated from the

same gene but by alternative splicing. As the isoform sequences share some exons but

in different combinations, regular sequencing clustering methods do not work well.

Our algorithm generates clusters for isoform sequences based on their shared minhash

signatures. Finally, we discuss de novo transcriptome assembly algorithms and how

to improve the assembly accuracy using ensemble approaches. First, we did a compre-

hensive performance analysis on different transcriptome assemblers using simulated

benchmark datasets. Then, we developed a new ensemble approach (Minsemble) for

the de novo transcriptome assembly problem that integrates isoform-clustering using

minhash technique to identify potentially correct transcripts from various de novo

transcriptome assemblers. Minsemble identified more correctly assembled transcripts

as well as genes compared to other de novo and ensemble methods.

iv

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr Jitender S.

Deogun for his support and guidance in the last few years here at UNL. We spent

a lot of time discussing the ideas and possible solutions for various problems. I am

really grateful to him for all his mentorship during my PhD research.

Besides my advisor, I would like to thank my committee members: Dr. Vinod

N. Variyam, Dr. Lisong Xu, Dr. James C. Schnable and Dr. Etsuko N. Moriyama.

It has been a matter of great pleasure and fortune to get a chance to collaborate

and work with Dr. Schnable, Dr. Vinod and Dr. Moriyama for different projects.

I thank Dr. Schnable for introducing me to the bioinformatics problems in plant

science research. I also thank Dr. Vinod for helping me to understand some big data

algorithms. My sincere thanks to Dr. Xu for his insightful comments on some of my

research and his advice on my research progress.

I would like to thank Dr. Moriyama for allowing me to join her research lab at

School of Biological Sciences. Without her support and guidance, it would not be

possible to conduct this research. I am grateful to Computer Science and Engineer-

ing Department, Center for Root and Rhizobiome Innovation (CRRI) and Nebraska

EPSCoR for supporting my research.

I thank my fellow lab-mates including Suraj, Baset, Natasha, Mohammed and

Aziza for all their support and insightful discussions. I thank all professors, staffs

and friends in CSE department for their help and encouragement throughout my PhD

research. I am so grateful to members of Schnable lab for helping me to understand

many concepts of biology and plant science. My sincere thank goes to Sutanu of

Vinod’s group, Xianjun and Zhikai from Schnable Lab and Adam and Kushagra from

Moriyama lab for their help and collaboration.

v

Last but not the least, I would like to thank my family: my parents, parents-in-

law, brothers, sisters, my wife and my beautiful daughter Saisha for supporting me

throughout my PhD and my life in general.

vi

PREFACE

• Some of the results presented in Chapter 2 have been published in [13].

• The results presented in Chapter 3 have been published in [74] and [11].

• The results presented in Chapter 4 will appear in [14].

• The results presented in Chapter 5 have been published in [15].

• Results presented in Chapter 6 have been published in [12], [145], and [17] and

are included in a manuscript currently in preparation [16].

vii

GRANT INFORMATION

This work has been partly supported by NSF EPSCoR RII Track-1: Center for Root

and Rhizobiome Innovation (CRRI) Award OIA-1557417 to Etsuko N. Moriyama.

Any opinions, findings, conclusions, or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of these agencies.

viii

Table of Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

2 Streaming algorithm for approximating k–mer frequency counts 5

2.1 Introduction . 5

2.1.1 Problem statement . 8

2.1.2 Related works . 8

2.2 Methods . 10

2.2.1 Implementation . 14

2.3 Results . 15

2.3.1 Experimental setup . 15

2.3.2 Accuracy . 18

2.3.3 Time and space . 19

2.3.4 Sample size . 21

2.4 Conclusion . 22

3 Discovery of conserved non-coding sequences efficiently 24

3.1 Introduction . 24

ix

3.2 Background and Related Works . 27

3.3 Methodology . 30

3.3.1 Problem definition . 31

3.3.2 Algorithm . 31

3.3.3 CNS with mismatches . 33

3.4 Experimental Results . 36

3.4.1 Accuracy and sensitivity of our approach 37

3.4.2 Comparison of results from our approach and CDP 38

3.4.3 Association of CNSs with DNase hypersensitive sites 40

3.4.4 Running time . 41

3.5 Conclusion and Future Works . 42

4 Identifying conserved non-coding elements using min-wise hashing 44

4.1 Introduction . 44

4.2 Materials and Methods . 46

4.2.1 Minhash signatures . 46

4.2.2 LSH-based clustering . 49

4.2.3 CNE identification . 52

4.2.4 Benchmark dataset . 53

4.2.5 Performance evaluation . 54

4.3 Results and Discussion . 55

4.3.1 CNE identification performance 55

4.3.2 Time and space usage . 57

4.4 Conclusion . 59

5 Isoform clustering using minhash and locality-sensitive hashing 60

5.1 Introduction . 60

x

5.2 Materials and Methods . 64

5.2.1 Sequence comparison using minhash signatures 64

5.2.2 MinIsoClust isoform-clustering strategy 66

5.2.3 LSH-based bucketing . 67

5.2.4 Identification of isoforms by clustering 68

5.2.5 Benchmark datasets . 69

5.2.6 Performance evaluation . 70

5.2.7 Program execution . 72

5.3 Results and Discussion . 72

5.3.1 Isoform-clustering accuracy 72

5.3.2 Computational time and space usage 74

5.4 Conclusion . 75

6 New ensemble approach for improving transcriptome assembly 77

6.1 Introduction . 78

6.2 Transcriptome Assembly Strategies 79

6.2.1 Genome-guided approach . 80

6.2.2 De novo approach . 81

6.2.3 Ensemble approach . 83

6.3 Performance Evaluation of Transcriptome Assembly 84

6.3.1 Performance metrics without references 85

6.3.2 Performance metrics using actual biological data 86

6.3.3 Performance metrics using simulated benchmark data 87

6.4 Simulated Benchmark Transcriptome Datasets Generation 89

6.4.1 RNA-seq simulation methods 90

6.4.2 Examples of RNA-seq simulation 90

xi

6.5 Performance Comparison among Transcriptome Assemblers 92

6.5.1 Genome-guided approach . 93

6.5.2 De novo approach . 95

6.5.3 Combining de novo assemblies generated using different k-mers 98

6.5.4 Analysis of k-mers used in assembled contigs 98

6.5.5 Ensemble approach . 100

6.6 Minsemble: a New Ensemble Approach 102

6.6.1 Minhash signature generation 103

6.6.2 Clustering of potential isoforms 107

6.6.3 Selection of contigs for final assembly 108

6.6.4 Minsemble transcriptome assembly pipeline 110

6.6.5 Assembly performance evaluation 111

6.6.6 Results and discussion . 113

6.6.6.1 Performance of transcriptome assembly at the tran-

script level . 113

6.6.6.2 Performance of transcriptome assembly at the gene level118

6.6.6.3 Performance of transcriptome assembly for the single-

isoform genes . 121

6.6.6.4 Performance of transcriptome assembly for the multiple-

isoform genes . 121

124

126

127

6.7 Conclusion .

7 Conclusion and future works

Bibliography

Appendix A 147

xii

List of Figures

2.1 Flow-chart of KmerEstimate . 11

2.2 Processing of streaming elements using hashmaps 13

2.3 k-mer count histogram for Human Chromosome 14 reads 16

2.4 k-mer count histogram for Bombus impatiens reads 16

2.5 k-mer count histogram for NA19238 reads 17

2.6 k-mer count histogram for HG004 reads 17

2.7 k-mer count histogram for HG14 reads 19

2.8 k-mer count histogram for Bumblebee reads 20

2.9 k-mer count histogram for NA19238 reads 21

2.10 k-mer count histogram for HG004 reads 22

3.1 Intersecting, overlapping, and independent MEMs 29

3.2 Algorithm for identifying CNSs . 32

3.3 MEMs and weighted directed acyclic graph 34

3.4 Ranking of CNSs . 35

3.5 Algorithm for finding exact-matched and mismatched CNSs 36

3.6 True positive discovery rate . 38

3.7 CNSs identification analysis for multiple species 39

3.8 CNSs and DHSs for rice seedings and callus 41

3.9 Overlap rate of CNSs and DHSs in rice seedings and callus 41

xiii

4.1 Flowchart of MinCNE . 48

4.2 Time and space usage of MinCNE and CNEFinder 58

5.1 Various alternative-splicing events . 64

5.2 Flowchat of MinIsoClust . 65

6.1 Contigs shared among genome-guided assemblers 96

6.2 Contigs shared among de novo assemblers (default) 97

6.3 Contigs shared among de novo assemblers (pooled) 99

6.4 performance comparison among different assembly methods 101

6.5 Minsemble procedure . 103

6.6 Minsemble pipeline . 104

6.7 Sequence similarity estimation using q-grams 105

6.8 Isoform and q-gram distribution . 106

6.9 Retention of highly similar contigs and potential isoforms 109

6.10 Transcriptome assembler performance at the transcript level 114

6.11 Comparison of ensemble assemblers for correctly assembled contigs . . . 116

6.12 Comparison of ensemble assemblers for incorrectly assembled contigs . . 117

6.13 Transcriptome assembler performance at the gene level 120

6.14 Transcriptome assembler performance for the single-isoform genes 122

6.15 Transcriptome assembler performance for the multiple-isoform genes . . . 123

A.1 Comparison of ensemble assemblers for the Human dataset 156

xiv

List of Tables

2.1 Dataset specification . 18

2.2 Accuracy of algorithms in estimating F0 and f1 for HG14 reads 18

2.3 Accuracy of algorithms in estimating F0 and f1 for Bumblebee reads . . 19

2.4 Accuracy of algorithms in estimating F0 and f1 for NA19238 reads . . . 20

2.5 Accuracy of algorithms in estimating F0 and f1 for HG004 reads 21

3.1 Summary of CNS distribution . 39

4.1 Generation of minhash signatures for two k-mer sequences S1 and S2. . 50

4.2 Comparison of MinCNE and CNEFinder 56

5.1 Distribution of numbers of isoforms in the four datasets 68

5.2 Isoform clustering performance among the four methods 69

5.3 Performance evaluation of isoform clustering using ARI 72

5.4 Number of singleton clusters generated by four methods 73

5.5 Run-time comparison among the four methodsa 74

5.6 Space usage comparison among the four methodsa 74

6.1 Comparison of transcriptome assembly performance among different meth-

ods . 94

6.2 The k-mer analysis for the de novo assemblies using the Z. mays B73 and

Rice datasets.a . 100

xv

6.3 Gene identification performance of transcriptome assemblers for “all genes”118

6.4 Gene identification performance of transcriptome assemblers for the single-

isoform genes . 119

6.5 Gene identification performance of transcriptome assemblers for multiple-

isoform genes . 119

A.1 Isoform distribution . 147

A.2 Transcriptome assembly performance for the A. thaliana No0 dataset at

the transcript level . 148

A.3 Transcriptome assembly performance for the A. thaliana Col0 dataset at

the transcript level . 148

A.4 Transcriptome assembly performance for the Rice dataset at the transcript

level . 148

A.5 Transcriptome assembly performance for the Soybean dataset at the tran-

script level . 149

A.6 Transcriptome assembly performance for the Z. mays B73 dataset at the

transcript level . 149

A.7 Transcriptome assembly performance for the Z. mays Mo17 dataset at the

transcript level . 149

A.8 Transcriptome assembly performance for the Human dataset at the tran-

script level . 150

A.9 Transcriptome assembly performance for the A. thaliana Col0 dataset at

the gene level . 150

A.10 Transcriptome assembly performance for the Human dataset at the gene

level . 150

A.11 Transcriptome assembly performance for the Rice dataset at the gene level 151

xvi

A.12 Transcriptome assembly performance for the Soybean dataset at the gene

level . 151

A.13 Transcriptome assembly performance for the Z. mays B73 dataset at the

gene level . 151

A.14 Transcriptome assembly performance for the Z. mays Mo17 dataset at the

gene level . 152

A.15 Transcriptome assembly performance for the A. thaliana Col0 dataset for

the single-isoform genes . 152

A.16 Transcriptome assembly performance for the Human dataset for the single-

isoform genes . 152

A.17 Transcriptome assembly performance for the Rice dataset for the single-

isoform genes . 153

A.18 Transcriptome assembly performance for the Soybean dataset for the single-

isoform genes . 153

A.19 Transcriptome assembly performance for the Z. mays B73 dataset for the

single-isoform genes . 153

A.20 Transcriptome assembly performance for the Z. mays Mo17 dataset for

the single-isoform genes . 154

A.21 Transcriptome assembly performance for the A. thaliana Col0 dataset for

the multiple-isoform genes . 154

A.22 Transcriptome assembly performance for the Human dataset for the multiple-

isoform genes . 154

A.23 Transcriptome assembly performance for the Rice dataset for the multiple-

isoform genes . 155

A.24 Transcriptome assembly performance for the Soybean dataset for the multiple-

isoform genes . 155

xvii

A.25 Transcriptome assembly performance for the Z. mays B73 dataset for the

multiple-isoform genes . 155

A.26 Transcriptome assembly performance for the Z. mays Mo17 dataset for

the multiple-isoform genes . 156

1

Chapter 1

Introduction

Computational biology or bioinformatics is an area of interdisciplinary research at

the intersection of Computer Science and Biology that studies the methods of stor-

ing, retrieving and analyzing biological data i.e., sequences of nucleic acids (deoxyri-

bonucleic acid “DNA” or ribonucleic acid “RNA”) and amino acids. The research

in bioinformatics has been revolutionized in the last few decades by the advent of

high-throughput technologies such as whole-genome sequencing and transcriptome se-

quencing. Traditional sequencing approaches have been replaced by next-generation

and third-generation sequencing technologies that produce millions of sequences con-

currently. The massive amount of sequencing data generated from these sequencing

technologies poses a significant challenge for efficient and accurate analysis and in-

terpretation of these large datasets. Currently used algorithms are often either not

suitable for current data or not robust enough to deal with these large-scale datasets.

More efficient methods and strategies are needed for better results.

One of the fundamental research area in bioinformatics is the analysis of nucleotide

or protein sequences to understand their features, functions, and structures. This

has brought a wide range of computational problems such as sequence alignment,

sequence assembly, gene prediction, protein structure prediction, phylogenetic recon-

2

struction, and motif finding. With the availability of high-throughput next-generation

sequencing (NGS) technologies, the field of sequence analysis requires efficient data

structures and algorithms for large-scale data analysis. From a computational point

of view, biological sequences (e.g., DNA, RNA, and amino acid sequences) can be

regarded as strings that consist of a finite set of letters (comprising of individual

four-letter alphabets for DNA and RNA, and 20-letter alphabets for proteins). The

efficient processing of these strings or sequences is necessary for almost all sequence

analysis techniques that are applied to bioinformatics data. Such techniques make

extensive use of several string algorithms and succinct data structures such as suffix

trees, suffix arrays, graphs, hashing methodologies, and sketching techniques.

In this dissertation research, we were interested developing new algorithms and

approaches using efficient data structures and approaches such as streaming algo-

rithm, suffix tree, sketching techniques, and efficient hashing methods. We developed

new efficient algorithms or strategies for the following problems: (a) k-mer count

frequency estimation, (b) conserved non-coding sequence discovery, (c) clustering of

isoforms, and (d) improvement of de novo transcriptome assembly using a new en-

semble approach.

The k-mers, i.e., subsequences of length k, play an important role in many bioin-

formatics problems including genome and transcriptome assembly. The counting of

the occurrences of all k-mers and their frequency estimation is central steps in many

large-scale sequence analyses such as metagenome analysis. In Chapter 2, we pro-

posed an efficient hashing-based technique and streaming algorithm for approximating

k-mer count frequencies in sequencing data.

The variable-length k-mers that are shared among sequences are representations

of conserved regions in sequences. The conserved regions that do not code for proteins

are found to play an important role in regulating gene expression. These regions are

3

called conserved non-coding sequences (CNSs) in plant science research or conserved

non-coding elements (CNEs) in animal science research. The CNS (or CNE) discovery

is important for various studies in comparative genomics. The existing pair-wise

alignment methods are not scalable and efficient when multiple sequences are used

at once. In Chapter 3, we proposed an alignment-free technique using a succinct

data structure, e.g., suffix tree, for the discovery of exact matched CNSs and then we

extended that approach by including a brute-force approach to find CNSs with few

mismatches.

The CNSs in plants (15∼50 bp) are much smaller than those in animals (≥ 100bp).

Therefore, different approaches need to be adopted for identifying CNSs in plants

and animals. In Chapter 4, we developed a better and efficient method for iden-

tifying longer CNS using minwise hashing (minhash) and locality-sensitive hashing

(LSH) based techniques. As the conserved regions are shared among sequences, our

approaches for CNS identification adopted a clustering technique to gather similar

k-mers.

The clustering approaches are useful in many other bioinformatics applications.

Some of the clustering techniques that we used for the CNS identification problem

can also be reused for similar problems. In Chapter 5, we developed a new algorithm

for the isoform clustering problem. The sequence similarity-based clustering methods

usually generate false negatives when used for isoform clustering. Our algorithm

performs clustering using shared minhash signatures that are generated due to shared

exon regions in isoforms.

In bioinformatics, sequence assembly refers to aligning and merging short frag-

ments of DNA sequences in order to reconstruct the original transcript sequences.

Most of the existing de novo assembly algorithms misses many true original sequences.

In Chapter 6, we studied various transcriptome assembly algorithms using simulated

4

dataset and then proposed an ensemble strategy using the clustering method that

improves the recovery of isoforms.

Finally, in Chapter 7, we provide the conclusion of our dissertation research and

discuss some of the remaining future works.

5

Chapter 2

Streaming algorithm for approximating k–mer frequency

counts

Publication:

• Sairam Behera, Sutanu Gayen, Jitender S. Deogun, and N. V. Vinodchandran,

2018, “KmerEstimate: A Streaming Algorithm for Estimating k-mer Counts

with Optimal Space Usage”, In Proceedings of the 2018 ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics

(BCB ’18), Washington DC, USA, pp. 438–447. DOI: https://doi.org/10.

1145/3233547.3233587

2.1 Introduction

Counting distinct number of k-mers (substrings of length k in a DNA/RNA sequence),

and more generally computing the frequency distribution of k-mers (k-mer abundance

histogram), in a genome data is a central component of many methods in bioinformat-

ics including sequence assembly [50, 79, 153, 114, 25], read error correction [2, 150],

genome size prediction and estimation of its characteristics [61, 30, 83, 82], changes

in copy number of highly repetitive sequences [84], digital normalization, [154, 110],

and parameter tuning of k-mer analysis based tools [27, 28].

https://doi.org/10.1145/3233547.3233587
https://doi.org/10.1145/3233547.3233587

6

The next generation sequencing (NGS) technologies produce large amount of data

that can be used to infer the genomes using de novo assembly algorithms. Approaches

based on de Bruijn graphs [32] have been widely popular for both genome and tran-

scriptome assembly. In this approach, sequencing reads are broken into smaller frag-

ments of fixed size, i.e., k-mers. The distribution of k-mer frequency from sequencing

data can be used to estimate the genomic characteristics such as genome size, repeat

structure and heterozygous rate [83]. The sequencing reads always contain some er-

roneous bases due to the errors in sequencing process. In sequencing studies [95], it

has been shown that in modern sequencing methods (such as high coverage sequenc-

ing) the majority of singleton k-mers, k-mers with frequency one, do not come from

the genome, but are generated from sequencing errors and the number of erroneous

k-mers is always much much larger than non-erroneous k-mers. But the frequency of

these erroneous k-mers is very small because of high coverage used during sequenc-

ing. These erroneous k-mers can lead to mis-assembly when used in de Bruijn graph

based assembly algorithms. Therefore, it is essential to either remove or correct the

erroneous k-mers before using them in the assembly process. A first step towards this

is to compute the number of k-mers with low frequency.

Several approaches such as sorting, suffix-array, efficient hashing, bloom filter,

count-min sketch, burst trie, and parallel disk-based partitioning have been studied

for computing exact number of distinct k-mers and in general for computing number

of k-mers with a given frequency (for example frequency one). Various tools available

based on the above approaches include Tallymer [73], Jellyfish [94], BFCounter [96],

DSK [115], MSPKmerCountr [81], KAnalyze [6], Khmer [154], KMC2 and KMC3

[36, 69], MSPKmerCounter [81], Gerbil [42], KCMBT [90], Turtle [118] and Squeakr

[108]. However, the common problem with exact count methods is that it is not

feasible to use for large datasets due to their inherent inefficiency based on time

7

and space complexity. Most of the existing computing resources could easily see

their memory capacities used up due to high number of distinct k-mers that can be

expected from the input.

A more practical approach is to not seek exact counts, instead to compute ap-

proximate counts that can be use to construct an approximate k-mer abundance

histogram. Recently methods from data streaming algorithms have been proved to

be very effective for approximating k-mer abundance histogram and related counts

because of their very efficient memory and time usage. To date, the tools that use data

streaming approach for k-mer counting problems are KmerGenie [28], KmerStream

[95], ntCard [98], and Kmerlight [126].

We present KmerEstimate, a streaming algorithm that approximates the number

of k-mers with a given frequency in a genomic data set. Our algorithm is based

on a well known adaptive sampling based streaming algorithm for approximating

distinct elements in a data stream due to Bar-Yossef, Jayram, Kumar, Sivakumar,

and Trevisan [8]. In our implementation, the accuracy of the results are within 0.6%

error rate and in general better than existing frequency count estimation algorithms.

The time and space efficiency of our implementation of the algorithm is comparable

to that of ntCard, the best known streaming approach known so far. In addition,

our algorithm has provable approximation and space and time usage guarantees.

We also show lower bounds on the space usage of any algorithm that approximates

frequency distribution (one lower bound for additive approximation and another one

for multiplicative approximation). The additive approximation lower bound implies

that our algorithm is space optimal up to a polylogarithmic factor.

8

2.1.1 Problem statement

In data streaming model, the input is a stream of data items s1, s2, . . . , sm where each

si is coming from a known universe of items. The goal of a streaming algorithm is to

approximate a function of interest in an on-line manner: the algorithm can only store

limited amount of information and the computation is done in a single pass over the

stream. This model has been very popular in designing algorithms for massive data

set problems. The main resources of interest are the space usage, which is desired to

be much smaller than the size of the stream, and the processing times per data item.

We refer the reader to [99] for an overview and survey of data stream algorithms. In

our application, each data item is a k-mer, a sub-sequence of k consecutive bases. For

a k-mer κ, the frequency of κ is the number of occurrences of κ in the data set. Let

fi be the number of k-mers with frequency i. Thus f1, f2, . . . fm denotes the number

of k-mers with frequency 1, 2, . . .m respectively. We are interested in approximating

fi for all i (which is known as the k-mer abundance histogram of the data set). We

also denote by S the set of distinct items in the stream (the set of all distinct k-mers)

and by F0 the number of distinct items in the stream, thus F0 = |S|.

2.1.2 Related works

KmerGenie [28] is the first tool that uses a streaming approach to generate abun-

dance histograms of k-mers. To estimate the best k-value for de Bruijn graph based

assembly, kmerGenie generates the abundance histogram for different k-values and

then analyze them to select the optimum k-mer size. The basic intuition behind this

approach is that the optimum value of k should be the one that produces fewest erro-

neous k-mers. As compared to the exact count algorithms, it has demonstrated to be

an order of magnitude faster, while providing nearly accurate results. It uses the idea

9

explored in [33] to create an approximate histogram by sampling from the k-mers.

The hash function ρε : {A,C, T,G}k → [0, ε] uniformly distributes the universe of all

possible k-mers into ε buckets. Then it counts the abundances of only those k-mers

that hash to 0. The abundance histogram is then computed from the k-mer counts,

scaling the number of k-mers with a given abundance by ε.

KmerStream [95] is another algorithm that estimate frequency statistics of k-mers

using streaming approach. The authors of KmerStream focus on computing f1. To

estimate f1, they adapt an approach of Bar-Yossef et al [8] (a different algorithm from

[8] than the one our algorithm is based on). They also give a theoretical guarantee

on their algorithm’s performance. In particular, for estimating f1 of a data stream,

they give an algorithm with the performance guarantee stated in the next theorem

(for comparison sake, we state a stronger version of their result than that is given in

their paper)1.

[[98]] There is a streaming algorithm that, on a data stream over n items, outputs

an estimate f̂1 for f1 such that |f̂1−f1| ≤ εF0 with probability at least 2
3
, where F0 is

the number of distinct items in the data stream. It uses O(1
ε2

log n) space and O(1)

update time.2

Kmerlight [126] uses the approach from KmerStream to compute estimates of

k-mer abundance histogram (i.e. fi for all i).

The most recent addition to the list of streaming approaches for k-mer abundance

histogram estimation is ntCard [95]. It also uses a hash-based approach similar to

KmerStream [98]. For efficient implementation ntCard takes advantage of ntHash

[97] algorithm to compute the canonical hash values of k-mers. The s upper bits of

1Melsted and Halldórsson gave a proof in the supplementary materials and had to assume hash
functions are perfectly random for their analysis.

2It is assumed that any O(logm) bits operation, such as, computing and comparing each hash
value takes O(1) time, where m is the length of the stream. See [8, 66, 95]

10

64 bit hash value used for sampling the k-mers, picking the k-mers having at least

s leading zeros. The leading r bits are used to build a frequency table of size 2r for

sampled k-mers. The experimental results of ntCard has higher accuracy rates than

the existing approaches, using similar amount of memory. We note that none of these

existing algorithms, other than the f1 estimator due to Melsted and Halldórsson [98],

have any theoretical guarantees on their performance. The complexity of our algo-

rithm together with the lower bound on the additive approximation implies that our

algorithm is provably space optimal upto small polylogarithmic factors.

2.2 Methods

Our KmerEstimate algorithm for estimating fi for any i > 0, is a slightly modified

version of Algorithm 1. A schematic of our algorithm is given in Figure 2.1. The

basic idea is to sample a set of k-mers from S, the set of distinct k-mers appearing

in the stream. This is done by hashing each k-mer uniformly at random to 64 bits.

Then, we only keep those k-mers which has rightmost s bits all zeros, for some s as

specified below. This amounts to sampling rate 1/2s. Let Bs be the set of sampled

k-mers. For each sampled k-mer, we also count it’s frequency in the stream. Up to

this point, our algorithm is same as ntCard, but the next operations are different and

arguably simpler.

After the entire stream is processed, we compute the number ki, the number

of sampled k-mers which have frequency exactly i in the stream. Our estimate is

f̂i = ki · 2s.

Similar to ntCard algorithm, our algorithm samples k-mers with number of trailing

zeros ≥ s in the corresponding 64 bit hash value. However, unlike ntCard, our

algorithm chooses the value of s adaptively. The value of s is fixed to either 7 or 11

11

space complexity for small values of i , such as i = 1 which is near
optimal (as our lower-bound shows). Here Õ notation suppresses
polylogarithmic factors. For larger values of i , such as n, it has the
same space complexity as that of Melsted and Halldórsson algo-
rithm for f1. Notice the maximum value of i is the length of the
streamm. In the scenario of k-mers,m is typically much smaller
than n.

Our main observation is that the algorithm based on two-level
hashing for estimating F0 due to Bar-Yossef et al. [3] (Algorithm 3 in
the reference - we call this BJKST algorithm) can be readily adapted
to keep a sketch of a set of uniform and pairwise-independent
samples of distinct elements in the stream.

We also give two almost matching lower bound results: (1) es-
timating fi up to a multiplicative error will require Ω(n) space (2)
estimating fi up to additive ϵF0 error require Ω(1ϵ 2 + logn) space
(for a constant error probability). Thus our algorithm for small
values of i , is near-optimal in space complexity.

Theorem (Hardness of multiplicative approximation). For
any i ≥ 1 and for any constant c ≥ 1, any randomized stream-
ing algorithm that outputs f̂i on any stream, such that fic ≤ f̂i ≤ c fi ,
needs Ω(n) bits of space.

Theorem (Hardness of additive approximation). For ϵ < 0.5
and i ≥ 1, any streaming algorithm for estimating fi of n items, up
to at most ϵF0 absolute error, with probability at least 2

3 , requires
Ω(1ϵ 2 + logn) space.

2 METHOD
Our KmerEstimate algorithm for estimating fi for any i > 0, is
a slightly modified version of Algorithm 1 given in Section 4. A
schematic of our algorithm is given in Figure 1. The basic idea is to
sample a set of k-mers from S, the set of distinct k-mers appearing
in the stream. This is done by hashing each k-mer uniformly at
random to 64 bits. Then, we only keep those k-mers which have
rightmost s bits all zeros, for some s as specified below. This amounts
to sampling rate 1/2s . Let Bs be the set of sampled k-mers. For each
sampled k-mer, we also count its frequency in the stream. Up to this
point, our algorithm is same as ntCard , but the next operations are
different and arguably simpler. After the entire stream is processed,
we compute the number ki , the number of sampled k-mers which
have frequency exactly i in the stream. Our estimate is f̂i = ki · 2s .

Similar to ntCard , our algorithm samples k-mers with the num-
ber of trailing zeros ≥ s in the corresponding 64-bit hash value.
However, unlike ntCard , our algorithm chooses the value of s adap-
tively. The value of s is fixed to either 7 or 11 for ntCard depending
on the input size. We constrain the sample size < L based on our
desired approximation factor. We start with a sampling rate of s = 0,
and as soon as the sample size becomes L, we double the sampling
rate by making s = 1. It is simple to update the already sampled
items. All those samples which have at least 1 trailing zeros in their
64-bit hash value are retained. Those samples which have hash
value ending with a 1 are discarded. We keep on increasing s in this
manner if needed until the entire stream is processed. Let the final
value of s be sf . This is the sampling rate of our algorithm. Thus we
do not need to fix a sampling rate beforehand. We show provable

h(j) = hash(j)

If h(j) ends
with ≥ s 0s

go to next
k-mer

If h(j) is in
table T

Increment
frequency of
h(j) and go
to next k-mer

Insert h(j) into
table T with
frequency 1

If table
size = L

go to next
k-mer

Increment s
and remove
all entries
with hash

values having
s lsb bits 0’s

no

yes

yes

no

no

yes

(a)

hash freq.

Hashes whi-
ch end in 1

Hashes whi-
ch end in 10

Hashes whi-
ch end in 100

••
•

2
1
10
1
...

50
19
...

1
...

...

(b)

At the end
of stream:

ki ← number of
hashes in Table
T which have
frequency = i;
sf ← final
value of s;

f̂i = ki · 2sf
(c)

Figure 1: (a) The update process for the current k-mer j. The
variable s is initialized to 0. (b) Table T used by the update
and output process. T is partitioned into 65 hashmaps based
on the number of trailing zeros. Amaximumof (L−1) entries
are allowed in T, for a parameter L. (c) The estimate for fi for
any i > 1, at the end of stream. The details are in Section 2.

guarantees of the approximation factor and the space usage of this
algorithm in Section 4.

Algorithm 1 uses double hashing as a space-saving trick. The
idea is that if the required sample size is small, instead of storing
the entire hash value of each k-mer, a smaller hash of the first hash
(double-hash) of the k-mer is enough for distinctly identifying each
unique k-mer with high probability. But in our implementation, we
did not use this double hashing. Instead, we found the following
approach gives satisfactory results. For storing the sampled k-mers
in a multiplicity table that avoids the collision, we used 65 space-
efficient hashmaps instead of a single array. Each hashmap stores
sampledk-merswith a certain number of trailing zeros. For example,
the sampled k-mers with exactly 3 trailing zeros stored in 3rd

Figure 2.1: (a) The update process for the current k-mer j. The variable s is initialized
to 0. (b) Table T used by the update and output process. T is partitioned into 65
hashmaps based on the number of trailing zeros. A maximum of (L− 1) entries are
allowed in T, for a parameter L. (c) The estimate for fi for any i > 1, at the end of
stream. The details are in Section 2.2.

12

for ntCard depending on the input size. We constrain the sample size < L based on

our desired approximation factor. We start with a sampling rate of s = 0, and as

soon as the sample size becomes L, we double the sampling rate by making s = 1. It

is simple to update the already sampled items. All those samples which have at least

1 trailing zeros in their 64-bit hash value are retained. Those samples which have

hash value ending with a 1 are discarded. We keep on increasing s in this manner

if needed until the entire stream is processed. Let the final value of s be sf . This

is the sampling rate of our algorithm. Thus we do not need to fix a sampling rate

beforehand.

Algorithm 1: Algorithm for estimating fi

1 h← a 2-wise independent uniformly random hash function mapping
[n]→ [n];

2 g ← a 2-wise independent uniformly random hash function mapping

[n]→ [Θ(1
ε4

log2 n)];
3 L← a parameter fixed in the analysis;
4 B0 ← φ;
5 s← 0;
6 for arrival of data item j ∈ {1, 2, · · · , n} in the stream do
7 if zeros(h(j)) ≥ s then
8 if key = (g(j), zeros(h(j)) ∈ Bs then
9 key.count = key.count+ 1;

10 else
11 Insert(key,Bs);
12 key.count = 1;

13 end

14 end
15 while |Bs| ≥ L do
16 Bs+1 ← Remove all keys (α, β) with β = s from Bs ;
17 s← s+ 1;

18 end

19 end
/* At the end of stream */

20 sf ← s; // final value of s
21 ki ← the number of samples in Bsf with count value exactly i;

22 Return f̂i = ki · 2sf ;

13

Algorithm 1 uses double hashing as a space-saving trick . The idea is that if the

required sample size is small, instead of storing the entire hash value of each k-mer,

a smaller hash of the first hash (double-hash) of the k-mer is enough for distinctly

identifying each unique k-mer with high probability. But in our implementation,

we did not use this double hashing. Instead we found the following approach gives

satisfactory results. For storing the sampled k-mers in a multiplicity table that avoids

collision, we used 65 space-efficient hashmaps instead of a single array. Each hashmap

stores sampled k-mers with certain number of trailing zeros. For example, the sampled

k-mers with exactly 3 trailing zeros stored in 3rd hashmap (as shown in Fig. 2.2). Our

program starts with s = 0 and once the total number of sampled k-mers reaches the

sample size, it deletes sth hashmap and increments s value. This process is continued

until it finishes reading of sequences. The size of sampled k-mers is fixed in our

algorithm and is given as an input parameter. The total number of sampled k-mers

are always less than or equal to the sample size. Use of array of 65 hashmaps, avoids

high error rates that is caused due to collisions.

Figure 2.2: Processing of streaming elements using hashmaps

14

We used nthash [97] for computing 64 bit hash values of canonical k-mers that

does not contain non-ACGT characters. The default hashmaps in C++ like map or

unordered map are not space efficient, so we used sparsepp [106] for storing sampled

k-mers. Our program is written in C++ and distributed under GNU Public License

(GPL). The current implementation does not support multi-threading. As input, it

gets fasta/fastq file, size of the k-mer and sample size. The source codes and relevant

documents including additional results are freely available at https://github.com/

srbehera11/kmerEstimate.

2.2.1 Implementation

Similar to ntCard algorithm, our algorithm samples k-mers with number of trailing

zeros ≥ s in the corresponding 64 bit hash value. However, unlike ntCard, our

algorithm choses the value of s adaptively. The value of s is fixed to either 7 or

11 for ntCard depending on the input size. For storing the sampled k-mers in a

multiplicity table that avoids collision, we used 64 space-efficient hashmaps instead

of a single array. Each hashmap stores sampled k-mers with certain number of trailing

zeros. For example, the sampled k-mers with exactly 3 trailing zeros stored in 3rd

hashmap. Our program starts with s = 1 and once the total number of sampled

k-mers reaches the sample size, it deletes sth hashmap and increments s value. This

process is continued until it finishes reading of sequences. The size of sampled k-mers

is fixed in our algorithm and is given as an input parameter. The total number of

sampled k-mers are always less than or equal to the sample size. Use of array of 65

hashmaps, avoids high error rates that is caused due to collisions.

We used nthash [97] for computing 64 bit hash values of canonical k-mers that

does not contain non-ACGT characters. The default hashmaps in C++ like map or

unordered map are not space efficient, so we used sparsepp [106] for storing sam-

https://github.com/srbehera11/kmerEstimate
https://github.com/srbehera11/kmerEstimate

15

pled k-mers. Our program is written in C++ and distributed under GNU Public

License (GPL). The current implementation does not support multi-threading. As

input, it gets fasta/fastq file, size of the k-mer and sample size. The source codes

and relevant documents are freely available at https://github.com/srbehera11/

kmerEstimate.

2.3 Results

2.3.1 Experimental setup

For evaluating the performance and accuracy of kmerEstimate, we used following

publicly available sequencing datasets. The first two dataset are used in KmerStream

and the last two datasets are used in ntCard. The information of all datasets are

given in Table 2.1.

• 2x101 bp Human Chromosome 14 from Genome Assembly Gold-standard Eval-

uation (GAGE) [120]

• 2x124 bp Bombus impatiens (bumblebee) from GAGE dataset

• 500 bp Homo Sapiens dataset from the 1000 Genomes Project, for the individual

NA19238 (SRA:ERR309932) [132]

• 2x250 bp paired-end Illumina whole genome shotgun sequencing data for the

Ashkenazi mother (HG004) from The Genome in a Bottle (GIAB) project.[158]

We evaluated the performance of kmerEstimate by comparing with KmerStream,

and ntCard. The accuracy of the results are compared against the result of DSK,

the exact k-mer counting tool. The results were obtained on a single Core of Xeon

E5-2697 v4 2.3GHz server.

https://github.com/srbehera11/kmerEstimate
https://github.com/srbehera11/kmerEstimate

16

Figure 2.3: k-mer count histogram for Human Chromosome 14 reads

Figure 2.4: k-mer count histogram for Bombus impatiens reads

17

Figure 2.5: k-mer count histogram for NA19238 reads

Figure 2.6: k-mer count histogram for HG004 reads

18

Table 2.1: Dataset specification

Dataset Total # of reads Read length Total bases Size
HG14 36,504,800 101 bp 3,686,984,800 7.8 GB
Bumblebee 303,118,594 124 bp 37,586,705,656 92 GB
NA19238 456,979,900 500 bp 228,489,950,000 462 GB
HG004 868,593,056 250 bp 217,148,264,000 448 GB

2.3.2 Accuracy

The results for number of singleton k-mers (f1), distinct k-mers (F0) and error per-

centages are shown in tables 2.2-2.5. The error percentages of estimated counts of

ntCard, KmerStream and KmerEstimate were calculated based on DSK results.

KmerStream has higher error rates compared to ntCard and KmerEstimate for all

four datasets. Compared to ntCard, KmerEstimate has lower error rates in most of

the experiments as shown by bold entries in Tables 2.2-2.5. Our algorithm estimates

the counts with error rates ≤ 0.6% in all the 16 experiments. (4 datasets, 4 k-mer

sizes).

The results of k-mer frequency histograms of DSK, ntCard and KmerEstimate are

shown in Fig 2.7-2.10. KmerStream is not included as it does not estimate the number

of k-mers with frequency ≥ 2. The frequency histograms are drawn using f2-f64. The

results show that the frequency histograms of both ntCard and KmerEstimate are

almost accurate as compared to DSK.

Table 2.2: Accuracy of algorithms in estimating F0 and f1 for HG14 reads

k F0/f1 DSK ntCard Error(%) KmerStream Error(%) KmerEstimate Error(%)
31 f1 372,088,750 372,502,884 0.1113 358,956,880 3.5292 372,163,712 0.0201

F0 472,030,322 472,542,056 0.1084 461,217,054 2.2908 472,005,440 0.0053
47 f1 385,778,023 386,070,380 0.0758 379,674,696 1.5821 385,892,800 0.0298

F0 484,389,437 484,849,139 0.0949 479,027,609 1.1069 484,519,296 0.0268
63 f1 336,752,336 337,125,461 0.1108 331,846,491 1.4568 336,800,384 0.0143

F0 432,569,742 433,072,480 0.1162 429,572,210 0.693 432,633,440 0.0147
79 f1 240,303,417 240,137,776 0.0689 238,103,508 0.9155 240,009,168 0.1224

F0 329,415,228 329,445,681 0.0092 328,564,210 0.2583 329,235,664 0.0545

19

Figure 2.7: k-mer count histogram for HG14 reads

Table 2.3: Accuracy of algorithms in estimating F0 and f1 for Bumblebee reads

k F0/f1 DSK ntCard Error(%) KmerStream Error(%) KmerEstimate Error(%)
31 f1 4,643,105,571 4,648,296,087 0.1118 4417927345 4.8497 4,642,798,080 0.0066

F0 5,188,072,759 5,192,697,532 0.0891 4,991,000,112 3.7986 5,187,693,312 0.0073
47 f1 5,055,109,675 5,581,373,383 0.0762 4,935,411,032 2.3679 5,056,776,192 0.33

F0 5,584,417,019 5,051,258,339 0.0545 5,475,881,764 1.9435 5,586,009,600 0.0285
63 f1 5,002,185,750 5,003,020,481 0.0167 4,925,922,211 1.5246 5,001,567,744 0.0124

F0 5,501,837,913 5,502,587,136 0.0136 5,437,010,148 1.1783 5,501,789,184 0.0009
79 f1 4,563,091,728 4,537,240,138 0.5665 4,518,206,449 0.9837 4,538,720,512 0.5341

F0 5,013,470,804 4,989,930,287 0.4695 4,967,653,605 0.9139 4,992,864,000 0.411

2.3.3 Time and space

It is shown in [95], ntCard uses 500 MB of RAM for computing the full k-mer fre-

quency histogram. It is significantly memory-efficient as compared to DSK. As DSK

counts the frequency of each solid k-mers i.e. k-mers with frequency≥ 1, it is expected

that more memory would be used. The memory requirement for KmerEstimate de-

pends on given sample size. We observed that a good sample size requires less than

450 MB of RAM that is slightly better than ntCard ’s memory usage. The current

implementation of KmerEstimate uses an array of hashmaps to store the sampled k-

20

Figure 2.8: k-mer count histogram for Bumblebee reads

Table 2.4: Accuracy of algorithms in estimating F0 and f1 for NA19238 reads

k F0/f1 DSK ntCard Error(%) KmerStream Error(%) KmerEstimate Error(%)
31 f1 27,062,279,171 27,065,865,034 0.0133 24,675,257,170 8.8205 27,058,696,192 0.0132

F0 30,475,635,517 30,479,602,836 0.013 28,632,428,352 0.0481 30,473,578,496 0.0067
47 f1 37,672,547,800 37,670,862,086 0.0045 37,215,397,047 1.2135 37,679,218,688 0.0177

F0 41,232,028,026 41,228,865,394 0.0077 40,834,786,551 0.9634 41,239,109,632 0.0172
63 f1 46,452,268,585 46,442,644,573 0.0207 46,183,895,819 0.5777 46,450,513,920 0.0038

F0 50,089,031,424 50,080,598,102 0.0168 4,979,319,5526 0.5906 50,088,712,192 0.0006
79 f1 54,321,071,396 54,241,229,869 0.147 54,132,773,870 0.3466 54,263,234,560 0.1065

F0 57,995,538,410 57,927,158,209 0.1179 57,838,450,523 0.2709 57,948,172,288 0.0817

mers whereas ntCard uses an array. Using space-efficient hashmaps, we could further

improve memory usage of KmerEstimate.

The runtime of KmerEstimate is almost similar to ntCard. It takes about 40

minutes to estimate k-mer frequency histograms of both the human dataset (HG004,

NA19238). The current implementation of KmerEstimate does not support multi-

threading, so we run all our experiments on a single core. The ntCard algorithm

takes about 6 minutes to compute k-mer frequency histogram for human genome

dataset when 12 cores are used. But it took around 46 minutes when it was run on a

21

Figure 2.9: k-mer count histogram for NA19238 reads

Table 2.5: Accuracy of algorithms in estimating F0 and f1 for HG004 reads

k F0/f1 DSK ntCard Error(%) KmerStream Error(%) KmerEstimate Error(%)
31 f1 13,040,267,779 13,040,041,802 0.0017 11,743,039,453 9.9479 13,042,160,640 0.0145

F0 16,245,764,745 16,245,869,976 0.0006 15,102,059,608 7.04 16,246,677,504 0.0056
47 f1 16,254,677,761 16,258,434,303 0.0231 15,862,419,428 2.4132 16,253,229,056 0.0089

F0 19,619,791,781 19,624,783,331 0.0254 19,237,376,370 1.9491 19,620,672,512 0.0045
63 f1 17,832,146,715 17,836,597,009 0.025 17,605,947,255 1.2685 17,833,374,720 0.0069

F0 21,273,945,928 21,276,906,756 0.0139 21,085,818,688 0.8843 21,276,222,464 0.0107
79 f1 18,592,930,567 18,526,819,210 0.3556 18,435,991,949 0.8441 18,522,447,872 0.3791

F0 22,070,254,735 22,017,619,287 0.2385 21,939,564,081 0.5922 21,276,222,464 0.0134

single core. Both ntCard and KmerEstimate is almost 15x faster than KmerStream

that computes only F0 and f1.

2.3.4 Sample size

The ntCard uses r trailing bits of 64 bit hash value to sample the k-mers. In their

implementation, the r value is fixed to 27 that means the maximum sample size is

227 ≈ 135 millions. By observing the memory usage vs sample size, we found that a

sample of 25 millions approximates the k-mer frequency counts with ≤ 0.6% that is

22

Figure 2.10: k-mer count histogram for HG004 reads

comparable to ntCard results. So, KmerEstimate performed better than ntCard by

using 7x less sampled k-mers.

2.4 Conclusion

With the availability of low cost sequencing technologies, more and more data is being

produced for studying different organisms. However, the handling of large amount of

data needs efficient computational approaches. The streaming algorithms has been

proven to be both space-efficient and time-efficient for computing approximate values

of a function while working with large-scale dataset. It uses a very small amount of

memory and is significantly faster as compared to algorithms that computes exact

results.

We developed a streaming algorithm, KmerEstimate, that approximates k-mer

abundance histogram. The k-mer abundance histogram is very useful in genome and

23

transcriptome assembly, error correction of sequencing reads, and sequence align-

ments. In this algorithm, we employed the techniques used in the BJKST algorithm

and approximates the abundance histogram by sampling a small number of k-mers

from a large stream of k-mers. The results of our algorithm is within 0.6% error rate

that is better than other streaming approaches used so far for this problem. It uses

less memory than ntCard as the size of the sample is (1/7)th of the sample size used

in later algorithm. Moreover, we also prove theoretical guarantees on our algorithm.

We expect that KmerEstimate can be used for estimating genome characteristics, er-

ror correction, copy number variation and various k-mer based downstream analysis.

Our future work includes improving the memory usage by using better space efficient

hashmaps for storing the sampled k-mers and updating our tool that will support

multi-threading.

24

Chapter 3

Discovery of conserved non-coding sequences efficiently

Publications:

• Xianjun Lai†, Sairam Behera†, Zhikai Liang, Yanli Lu , Jitender S. Deogun,

James C. Schnable, 2017, “STAG-CNS: An Order-Aware Conserved Noncod-

ing Sequences Discovery Tool for Arbitrary Numbers of Species”, Moleclar

Plant,10(7), pp. 990-999. doi: 10.1016/j.molp.2017.05.010.

† Joint first authors.

Author note: I developed and implemented the algorithm and helped X. lai

in running the program and analysis.

• Sairam Behera, Xianjun Lai, James C. Schnable and Jitender S. Deogun. 2018.

“DiCE: Discovery of conserved noncoding sequences efficiently”, 2017 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), Kansas

City, MO, USA, pp. 79-82, doi: 10.1109/BIBM.2017.8217628.

3.1 Introduction

The information in the functional DNAs are used for the transcription of RNAs that

leads to synthesis of proteins. This process is called gene expression that produces

the functional gene products. In related species, the sequences that regulate the

10.1016/j.molp.2017.05.010
10.1109/BIBM.2017.8217628

25

gene expression tend to be similar as compared to non-functional DNAs. These

sequences are called conserved non-coding sequences (CNS) and are highly associated

with transcription factor binding sites and cis-acting regulatory elements. The CNSs

like other small genomic regions lack well-defined signatures. Therefore, it has been a

challenging problem in both functional and evolutionary genomics to determine those

parts of genome that are under selective constraint [59]. It may be noted that the

genes have well-defined signatures. In animals, many CNSs are large (100bp)[130],

while different analyses in plants have primarily identified smaller 15–50 bp CNSs.

Therefore, the identification of CNS in plants is more challenging compared to animals

[133] [10].

Comparative genomics is the field of biological research in which the genomes

of similar species are compared to infer the biological functions. By using many

computational approaches on the analysis of genomic features that are conserved in

multiple organisms over million of years, researchers are able to pinpoint the signals

that control gene functions. The comparative genomics exploits the similarities as

well as differences in the proteins, RNA, and regulatory regions of different organisms

to infer how selection has acted upon these elements.

The regulation of gene expression in plants has been studied using comparative

genomics and gene expression data [100]. The conserved non-coding sequences are

the regions close to the genes which do not take part in the transcription process i.e.

do not code for proteins. However, it has been observed that these regions are func-

tionally constrained and show high levels of sequence conservation between orthologs

of multiple species. It has been discovered that these sequences are involved in reg-

ulation of gene expression. The functions of specific conserved noncoding sequences

still remain unknown for many cases. Therefore, it is desired to identify the conserved

noncoding regions to study their functions and mechanisms of gene–regulation.

26

Most of the existing approaches for the discovery of CNSs are based on either

multiple sequence alignment or multiple pairwise alignment. These approaches are

not efficient when large number of species are used. Moreover, finding small CNSs

(≤ 15bp) present in plants with high accuracy is still a bottleneck for these ap-

proaches. The multiple sequence alignment algorithms are based on the assumption

that most of the sequences are homologus. This makes a perfect sense for the protein

sequences where insertions or deletions are rare. However, the majority of sequences

in plant noncoding regions are non-homologus and have been shuffled over evolu-

tionary time scales by insertion and deletion of transposons. The objective of CNS

discovery problem is to find small islands of conserved sequences within that sea of

non-conserved sequences.

In this chapter, we present a novel algorithm for identifying CNSs in closely related

species especially the plant species where CNSs are very small. This algorithm is based

on the suffix tree and maximum weighted path in a directed acyclic graph (DAG). It

exploits the relationships between the conserved noncoding sequences (CNSs) and the

maximal exact matches (MEMs) that can be derived from suffix tree of sequences.

In our algorithm, the MEMs of sequences and the ordering of their locations are

represented in a weighted directed acyclic graph. The polynomial time algorithm for

finding maximum weighted path(s) in a DAG is used to determine a set of CNSs from

the MEMs. The use of suffix tree in this algorithm makes it independent of pairwise

alignments, thus avoids quadratic number of sequence alignments. We present two

algorithm, first for discovering exactly matched CNSs and second for CNSs with a

given rate of mismatches. The exact matched algorithm was used for comparative

genomic analysis of multiple grass species.

We tested our algorithm to find CNSs in the promoter regions of 17, 996 syntenic

genes of six grass species [74]. The results demonstrate that as larger number of

27

species is used in the comparison, CNSs with smaller sizes can be identified with high

level of confidence as well as high level of false positive tolerance. The comparison of

our algorithm with the best known pairwise alignment based CNS discovery pipeline

(CDP) [138] shows that our approach discovers almost 500 more CNSs that are not

identified by other approach. Also, the runtime of our algorithm is 5 times faster than

CDP. The accuracy of the CNSs are validated using permutation tests and comparing

with the available DNase Hypersensitivity Sites (DHS) data of rice callus and rice

seeding tissues.

3.2 Background and Related Works

In this section, we briefly explain the data structures and notations used in our

algorithm. Also, we discuss some of the existing methods that have been used for the

discovery of CNSs.

A sequence S of length m is a string of m characters of a given alphabet set Σ.

A subsequence, denoted as S[i, j] where 1 ≤ i ≤ j ≤ m, is a collection of contiguous

characters from ith position to jth position in S. Therefore, the sequence S can also

be denoted as S[1,m]. The suffix of a sequence is a subsequence that ends at the last

position of the sequence. Given a sequence S[1,m], each subsequence S[i,m], where

1 ≤ i ≤ m, is called a suffix of sequence S. Similarly, a prefix is defined to be a

subsequence starting at the first position i.e. S[1, i], where 1 ≤ i ≤ m.

For biological sequences, Σ = {A,C,G, T} i.e. the alphabet set contains four char-

acters A, C, G and T . Following are few definitions of terms used in our algorithm.

Definition 1: (Maximal Exact Match) Given a sequence S[1,m], two subse-

28

quences S[i1, j1] and S[i2, j2] with i1 6= i2 are called repeats if S[i1, j1] = S[i2, j2].

A pair of repeats are left-maximal or right-maximal if S[i1 − 1] 6= S[i2 − 1] or

S[j1 + 1] 6= S[j2 + 1], respectively. The maximal exact matches (MEMs) are the re-

peats (within a sequence or among several sequences) that are left- and right-maximal.

Definition 2: (Suffix Tree) Given a sequence S[1,m], the suffix tree for S, denoted

as ST (S) or ST , is a trie data structure that stores all suffixes of S in a compressed

manner. It is a rooted tree with m leaves and each leaf is labeled with an index i that

represents the suffix starting at ith position i.e. S[i,m]. A suffix link is a link between

two internal nodes N1 → N2 with N1 represents string aS and N2 represents string

S, where a is a single character and S is a possibly empty string. Suffix Tree was

first studied by Gusfield [54] and has been used in variety of applications in compu-

tational biology including: search applications, single sequence analysis applications,

and multiple sequence analysis applications [19].

Definition 3: (Generalized Suffix Tree) Given a set of n sequences S={S1, S2, · · · , Sn},

a generalized suffix tree of a set of sequences S, denoted GST (S) or simply GST , is a

trie data structure that stores all suffixes of all the sequences in a compressed man-

ner. The leaf nodes are labeled by an integer pair (i, j) denoting suffix starting from

position j in ith sequence Si i.e. Si[j,mi] where mi is the length of sequence Si.

Given a set of n sequences. For an integer k, M≥k,l denotes a maximal exact

match (MEM) with length ≥ k that is present in at least l different sequences where

1 < l ≤ n. Thus, M≥k,n is a MEM of length at least k that is present in all n sequences.

Two MEMs M1
≥k,n and M2

≥k,n are called non-intersecting MEMs if the end positions

of all repeat fragments of one MEM is strictly less than the start positions of repeat

29

fragments of other MEM. Similarly, two MEMs are called overlapping MEMs if at

least one of the repeat fragments of a MEM starts at a position that lies between

start and end positions of other MEM. Two non-overlapping and non-intersecting

MEMs are called independent MEMs. An independent set of MEMs is a collection

of MEMs where no two MEMs overlap or intersect each other. Figure 3.1 illustrates

the concept of overlapping, intersecting and independent MEMs. The MEM 1 (green

color) intersects the MEM 2 (red color). Similarly, MEM 3 intersects both MEM 4

and MEM 5. The MEM 4 and MEM 5 are the example of overlapping MEMs. A

set consisting of MEM 1, MEM 3 and MEM 6 is an example of independent set of

MEMs.

1 2 3 4 5

S1

S2

S3

S4

6

Figure 3.1: Intersecting, overlapping, and independent MEMs

A suffix tree (or generalized suffix tree) can be constructed in linear time and space

using suffix links [139]. The internal nodes of a suffix tree that are lowest common

ancestors of at least l leaf nodes belonging to l different sequences represent MEMs.

The internal nodes representing MEM nodes are called MEM nodes.

Several approaches are used to identify the small CNSs in plants. Most of the

approaches are based on either multiple pairwise alignments or multiple sequence

alignments. Thomas et al. worked on Arabidopsis thaliana plant species to discover

CNSs with length ranging from 15 to 285 bp by manual inspection of syntenic gene

30

pairs [133]. The pairwise genome alignments using aligners like BLAST[4], QUOTA-

ALIGN[131], LASTZ[57] etc. are also used for identifying CNSs [138] [46]. Baxter

et al. used a seaweed algorithm [134] based fast implementation of alignment plot

method to find CNSs by global alignment of orthologus promoter regions [10]. The

whole genome alignment methods using progressive alignment programs are also used

to discover the CNSs in plant species [59]. The detection of CNSs using a comparative

motif mapping and alignment-based phylogentic footprinting is used for dicot plant

genomes [140]. Turco et al. designed a pipeline based on pairwise comparisons for

detecting the CNSs in closely related grass genomes[138]. The pairwise BLAST search

result among all pairs are used to identify the regions with significance greater than

a 15bp exact match.

3.3 Methodology

In this section, we describe our algorithm to identify the CNSs from a set of given

sequences of closely related species.

The transcribed regions i.e. coding sequences of a DNA that take part in the

transcription process exhibit slower rate of mutations during the evolution process.

On the other-hand, it has been well-established that the noncoding sequences have

higher rate of mutations. A conserved noncoding sequences (CNSs) is a DNA sequence

that is conserved across non-transcribed regions of a large number of species. Many

researches have discovered that the CNSs are present in the both adjacent regions

i.e. upstream and downstream of a coding sequence. The identification of CNSs

requires comparison of long genomic DNA sequences of related species. Given the

genome sequences of two or more species and the annotation file that contains the

31

information about coding regions, the problem of CNS identification is to find all

small order-consistent conserved regions that exist in the upstream and downstream

regions of homologus genes.

3.3.1 Problem definition

A set of conserved non-coding sequences (CNSs) is a set of independent MEMs that

are present in non-genomic regions of all n sequences. If M is a set of all MEMs

that are present in all n sequence i.e. M = {all M≥k,n} and C is the set of CNSs,

then C ⊆ M. The score of C, denoted as score(C), is defined as the total length of

all CNSs present in that set. Let C = {C1, C2 · · ·Cm}, where Ci ∈ M, be a set of

m CNSs and |Ci| denotes the length of sequence associated with Ci, then score(C) is

defined below

score(C) =
m∑
i=1

Ci

Following is the formal definition of the CNS identification problem.

Given S = {S1, S2 · · ·Sn} a set of n sequences, find a set C that has maximum

score.

3.3.2 Algorithm

The main idea of our algorithm is identifying a set of CNSs from the set of MEM

nodes in the suffix tree of sequences. Given a target minimum CNS length k, the

objective is to extract the setM i.e. set of MEM M≥k,nṪhe MEMs inM are used to

construct a weighted directed acyclic graph (DAG). The set of MEMs associated with

the maximum weighted path in the DAG defines a set C of CNSs that has maximum

32

score.

and their length and start positions in each sequence.
The last column in the table shows the corresponding
nodes in the weighted DAG. The Figure 2(c) is the
weighted directed acyclic graph constructed using the
informations given in the table in Figure 2(b).

(a) MEMs in three sequences

(b) MEM positions and corresponding nodes

(c) DAG

Figure 2: MEMs and Weighted Directed Acyclic Graph

The start nodes of the DAG are the ones that do not
have any incoming edges and the end nodes are the ones
that do not have any outgoing edges. Consequently,
the algorithm performs the topological ordering of the
nodes in the DAG and finds the maximum weighted
path(s) between start node(s) and end node(s). The set
of MEMs corresponding to the nodes in the maximum
weighted is the CNS set C . If there are more than one
paths with exactly same weight, then the ties are broken
based on the distance between consecutive CNSs.

The above algorithm detects the CNSs present among
several species that are exact matches. But there is
also a possibility of mutation among these regulatory
elements which means some CNSs should not be exact
match. So it is desired to identify these CNSs. As the
above algorithm finds only exact matched CNSs, we
developed a different algorithm to find the CNSs with
few mismatches. This algorithm is almost similar to

Algorithm 1: Finding CNS

Input: Set of n sequences S = {S1, S2, · · ·Sn}
Output: A set of CNSs

1 Construct Generalized Suffix Tree T of sequences
S1, S2 · · ·Sn with suffix links

2 Mark the MEM nodes that represent M≥k,n and
are not present in genomic regions

3 Extract the MEMs from the marked nodes in T
4 Construct a weighted directed acyclic graph

(DAG) using MEMs
5 Perform a topological ordering of the weighted

DAG
6 Find the maximum weighted path P in the DAG
7 Store the MEMs associated with P in set C
8 Output C

the above algorithm, but it selects all MEMs that are
present in at least two different sequences in the STEP
3 of Algorithm 1. The MEMs that are not present in all
sequences can be used for another pair-wise processing
to generate the CNSs with some mismatches.

Algorithm 2: Finding CNS with mismatches

Input: Set of n sequences S = {S1, S2, · · ·Sn}
Output: A set of CNSs

1 Construct Generalized Suffix Tree T of sequences
S1, S2 · · ·Sn with suffix links

2 Mark the MEM nodes that represent M≥k,l, where
2 ≤ l ≤ n, and are not present in genomic regions

3 Extract the MEMs from the marked nodes in T
4 Check if MEMs of type M≥k,n can be extended to

construct pMEMs
5 Construct a weighted directed acyclic graph

(DAG) using MEMs and pMEMs
6 Perform a topological ordering of the weighted

DAG
7 Find the maximum weighted path P in the DAG
8 Store the MEMs and pMEMs associated with P in

set C
9 Output C

4 Experimental Results

Comparative analysis of DiCE and CDP
results

The CNS Discovery Pipeline (CDP) is one of the
tools previously used to identify conserved noncoding
sequences among different grass species [10]. Unlike
DiCE, the CDP works by performing pairwise compar-
isons based on BLASTN, and identifies CNS present

Figure 3.2: Algorithm for identifying CNSs

The pseudo-code of the algorithm is given in Figure 3.2. Our algorithm first

constructs a generalized suffix tree (GST) for given n sequences using Ukkonen’s

linear time algorithm [139]. The MEM nodes are marked in the GST using the

techniques of splitMEM [91]. However, not all MEMs present in GST are marked.

We are only interested in MEMs of the type M≥k,n present in non-genomic regions

and the repeat fragments are not in the both sides of genomic region. Then the

marked nodes are extracted by traversing the GST. Each MEM is given a score that

is equal to the length of the subsequence associated with it.

A weighted directed acyclic graph (DAG) is constructed using the MEMs extracted

from GST . Each node of DAG represents a MEM and the weight of a node is the

length of corresponding MEM. For two non-overlapping and non-intersecting MEMs,

a directed edge is constructed from the MEM that starts earlier in the sequences to

33

the other MEM. The transitive edges are deleted. The weight of each directed edge

is equal to the weight of the node it is pointing to. Figure 3.3 illustrates an example

of MEMs in four different sequences and the corresponding weighted directed acyclic

graph. Figure 3.3a shows the positions of MEMs in four sequences, the table in

Figure 3.3b contains MEMs, their length, start positions in each sequence and the

corresponding node in DAG. The Figure 3.3c is the weighted directed acyclic graph

constructed using the informations given in the table in Figure 3.3b.

A source is a node with zero in-degree and a sink is a node with zero out-degree.

A super-source node is added to DAG. A directed edge from super-node to each of

the source nodes is constructed and the weight of the edge is equal to the weight of

source node it is pointing to. Similarly, a super-sink node is also added to DAG. A

directed edge from each of the sink nodes to the super-sink node is constructed. The

weight of the edge is assigned to 0 (see Figure 3.3c). The algorithm finds maximum

weighted path(s) between super-source node (S) and super-sink node (T). The set of

MEMs corresponding to the nodes in the maximum weighted path is a set of CNSs,

denoted by C. The ties are broken based on the distance between consecutive CNSs

in C. The Figure 3.4 shows an example of ranking of the set of CNSs if more than one

sets of CNSs have same maximum score. Let d1, d2 and d3 be the distances between

two consecutive CNSs. The CNS set is ranked higher if |d1−d2|+ |d2−d3|+ |d3−d1|

is minimum. The highest ranked CNS set is chosen among set of all CNSs with equal

score.

3.3.3 CNS with mismatches

The algorithm described in the previous section identifies a set of CNSs where each

CNS is an exactly matched repeat fragment present in all sequences. It is also pos-

34

1 2

3

4 5

6

7

8
S1

S2

S3

S4

(a) MEMs in three sequences

MEM Length S1
(Start	Position)

S2
(Start	Position)

S3
(Start	Position)

S4
(Start	Position)

ID

10 100 131 100 132 1
10 115 117 115 117 2
9 120 120 127 120 3
8 146 176 176 173 4
9 160 158 161 159 5
10 181 165 168 181 6
10 183 183 183 183 7
5 190 196 196 195 8

(b) MEM positions and corresponding nodes

1

3

2

6

8

7

5

4

S T

10
10

9

10

10

10

10

10

10

5

5
5

8

8
8

9
9
9

0

0

(c) DAG

Figure 3.3: MEMs and weighted directed acyclic graph

sible to have conserved noncoding regions with few mismatches. In this section, we

present an algorithm for finding all CNSs with a given maximum mismatch rate p.

The Algorithm 2 is obtained by modifying the Algorithm 1 and presented in Figure

3.5.

35

								(1)	 								(2)	

							(3)	 									(4)	

 d1

 d1

 d1

 d1

 d2

 d2

 d2

 d2

 d3 d3

 d3
 d3

Figure 3.4: Ranking of CNSs

Given two sequences S and T of equal length ` and a mismatch rate of ρ, S and

T are said to be a match with mismatch rate ρ if number of mismatches in S and T

≤ (ρ/`)× 100.

Definition 4: (pMEM≥k) Given an integer p, we define pMEM≥k as the maximal

repeat fragment of length at least k present in all sequences with pairwise mismatch

rate ρ ≤ p. For p = 0, pMEM becomes an (exact) MEM i.e. MEM≥k,n.

Following is a brief description about the modifications done in Algorithm 1 to

obtain the CNSs with mismatches. In Algorithm 2, we construct GST of sequences

and extract both M i.e. set of all MEM≥k,n and set of all MEM≥k,l, 2 ≤ l < n,

denoted by M′. The pMEMs are constructed from MEMs in M and M′. The

algorithm uses the similar DAG based approach to identify a CNS set that includes

the CNSs with a mismatch rate ≤ p. The maximum weighted path in the DAG is a

set of CNSs that has maximum score.

36

and their length and start positions in each sequence.
The last column in the table shows the corresponding
nodes in the weighted DAG. The Figure 2(c) is the
weighted directed acyclic graph constructed using the
informations given in the table in Figure 2(b).

(a) MEMs in three sequences

(b) MEM positions and corresponding nodes

(c) DAG

Figure 2: MEMs and Weighted Directed Acyclic Graph

The start nodes of the DAG are the ones that do not
have any incoming edges and the end nodes are the ones
that do not have any outgoing edges. Consequently,
the algorithm performs the topological ordering of the
nodes in the DAG and finds the maximum weighted
path(s) between start node(s) and end node(s). The set
of MEMs corresponding to the nodes in the maximum
weighted is the CNS set C . If there are more than one
paths with exactly same weight, then the ties are broken
based on the distance between consecutive CNSs.

The above algorithm detects the CNSs present among
several species that are exact matches. But there is
also a possibility of mutation among these regulatory
elements which means some CNSs should not be exact
match. So it is desired to identify these CNSs. As the
above algorithm finds only exact matched CNSs, we
developed a different algorithm to find the CNSs with
few mismatches. This algorithm is almost similar to

Algorithm 1: Finding CNS

Input: Set of n sequences S = {S1, S2, · · ·Sn}
Output: A set of CNSs

1 Construct Generalized Suffix Tree T of sequences
S1, S2 · · ·Sn with suffix links

2 Mark the MEM nodes that represent M≥k,n and
are not present in genomic regions

3 Extract the MEMs from the marked nodes in T
4 Construct a weighted directed acyclic graph

(DAG) using MEMs
5 Perform a topological ordering of the weighted

DAG
6 Find the maximum weighted path P in the DAG
7 Store the MEMs associated with P in set C
8 Output C

the above algorithm, but it selects all MEMs that are
present in at least two different sequences in the STEP
3 of Algorithm 1. The MEMs that are not present in all
sequences can be used for another pair-wise processing
to generate the CNSs with some mismatches.

Algorithm 2: Finding CNS with mismatches

Input: Set of n sequences S = {S1, S2, · · ·Sn}
Output: A set of CNSs

1 Construct Generalized Suffix Tree T of sequences
S1, S2 · · ·Sn with suffix links

2 Mark the MEM nodes that represent M≥k,l, where
2 ≤ l ≤ n, and are not present in genomic regions

3 Extract the MEMs from the marked nodes in T
4 Check if MEMs of type M≥k,n can be extended to

construct pMEMs
5 Construct a weighted directed acyclic graph

(DAG) using MEMs and pMEMs
6 Perform a topological ordering of the weighted

DAG
7 Find the maximum weighted path P in the DAG
8 Store the MEMs and pMEMs associated with P in

set C
9 Output C

4 Experimental Results

Comparative analysis of DiCE and CDP
results

The CNS Discovery Pipeline (CDP) is one of the
tools previously used to identify conserved noncoding
sequences among different grass species [10]. Unlike
DiCE, the CDP works by performing pairwise compar-
isons based on BLASTN, and identifies CNS present

Figure 3.5: Algorithm for finding exact-matched and mismatched CNSs

3.4 Experimental Results

We implemented Algorithm 1 and 2 in C++ and it is available at https://github.

com/srbehera11/DiCE as the DiCE software. An earlier version of the algorithm,

called STAG-CNS, that can identify order-aware CNSs is available at https://

github.com/srbehera11/STAG-CNS. The algorithm requires three main parameters:

the fasta file containing gene sequences and their locations in the chromosome, the

minimum CNS length (k) and threshold mismatch rate (p). The output is a file

containing a set of CNSs with their lengths and starting positions in each sequences.

The algorithm also output three other files that are used in three different visualiza-

tion softwares. The algorithm has been tested on a single core of a Xeon E5-2697

v4 2.3GHz server with 2 CPU/36 crores per node and a total of 512GB of RAM at

https://github.com/srbehera11/DiCE
https://github.com/srbehera11/DiCE
https://github.com/srbehera11/STAG-CNS
https://github.com/srbehera11/STAG-CNS

37

Holland Computing Center (HCC), University of Nebraska-Lincoln.

In the following sections, we discuss the various results obtained from the analysis

of six closely related grass species. In Section A, we discusses the accuracy and

sensitivity of the CNSs identified using our approach. The comparative analysis of

three grass species using our approach and CDP is given in Section B. In Section C,

the identified CNSs are validated using available DNase Hypersensitive sites of two

different tissues of rice. A comparative analysis of the run time performances of DiCE

and CDP is given in section D.

3.4.1 Accuracy and sensitivity of our approach

Our algorithm is tested on a set of six grass species that are completely sequenced i.e.

the genomes and annotation files are available. We selected a set of 200 genes, con-

served at syntenic orthologous in sorghum, rice, setaria, brachypodium, oropetium,

and dichanthelium, from a previously published syntenic gene list [121]. First, the

exact matched CNSs (with p = 0) are identified among syntenic orthologous genes in

three species – sorghum, rice, and setaria – using k i.e. minimum CNS length between

8 and 22 bp. The average false positive discovery rates per gene are estimated using

100 random permutations of the dataset. The result of permutation test shows that

the false positives decreases and true positives increases with higher k values (Figure

3.6). The percentage of true positives reaches 99% when the k = 12 that explains the

accuracy of CNSs.

It is expected that the lengths of CNSs becomes shorter when the number of

species is increased. We tested our algorithm on the same set of 200 genes in 2, 3,

4, 5 and 6 species respectively to determine the minimum CNS lengths that gives

≥ 95% true positive discovery rate. For two species, ≥ 95% true positive discovery

rate is achieved by k = 22 and for six species, it is achieved for k = 9 (Figure 3.7).

38

Figure 2. A) The number of overlapping sequences of a given length between two noncoding sequences based on either a

statistical model assuming random sequence and equal frequencies of all four nucleotides, random regions extracted from

actual grass genomes, or syntenic orthologous noncoding regions extracted from grass genomes. B) Relationship between the

minimum length of shared subsequence before it is considered a CNS, number of CNS discovered, and false discovery

percentage. The dotted line showed the cut off of minimum length of CNS when used three species in the analysis.

21

Figure 3.6: True positive discovery rate

3.4.2 Comparison of results from our approach and CDP

The CNS Discovery Pipeline (CDP) is one of the tools used by many researchers in

the field of comparative genomics to identify CNSs among closely related species [138].

Unlike Our approach, the CDP performs pairwise comparisons based on BLASTN,

and then identifies CNS present in three or more species through overlap with a single

common reference.

We selected a set of 17, 996 orthologous syntenic genes in sorghum, setaria, and

rice that are previously shown to be CNS rich. The CNSs are identified using both

our method and CDP (sorghum and rice, sorghum and setaria, and then the pan-grass

39

(a) (b)

Figure 3.7: (a) The number of CNSs identified in different number of species with dif-
ferent minimum CNS length (b) True positive discovery rate of CNSs across different
number of species

Table 3.1: Summary of CNS distribution in 17,996 Orthologus syntenic genes in rice,
soybean and sorghum

CDP DiCE (p=0) DiCE (p=15)
Total # Orthologus CNSs 22,139 10,489 22,590
syntenic genes (at least one CNS) 7,428 4,968 8,142

(41.27%) (27.91%) (45.24%)
Average # CNSs (per gene) 1.23 0.58 1.25
Mean length of CNSs (in bp) 35.76 32.66 44.72
Median length of CNSs (in bp) 27 18 32
Total length of CNS (in bp) 791,640 162,250 804,817

species). The CDP was run with default parameters and our method was run with

k = 6 and p = 15. The CNS information from both methods is summarized in Table

3.1.

The mismatch rate (ρ) for CNSs identified by the CDP is 9.3% for sorghum–rice

and 11.6% for sorghum–setaria. The average mismatch rate of CDP is almost 10%.

As expected, DiCE identified fewer CNSs in sorghum–rice–setaria than CDP when it

is tested with p = 0 i.e. no mismatches allowed. However, more number of CNSs are

identified DiCE when it is tested with p = 15 i.e. mismatch rate ρ ≤ p and minimum

40

CNS length k = 6. To maintain the average mismatch rate of 10, DiCE is tested with

p value ranging from 10 to 20. The Table 3.1 shows a comparison of results for both

DiCE and CDP.

3.4.3 Association of CNSs with DNase hypersensitive sites

It is known that, the regions of open or accessible chromatin zones are functionally

related to transcriptional activities. Thus, the regulatory sequences are related to

these chromatin regions[137][116]. The open chromatins can be assayed in a whole

genome fashion using a range of techniques including FAIRE-seq, MNase-seq, and

DNase1 hypersensitivity-seq [155][116]. To validate the accuracy of the CNSs iden-

tified by DiCE, the overlap between CNSs and open chromatin regions was tested

using a pre-existing set of DNase hypersensitive sites (DH sites) generated from rice

seedling and callus tissue [155]. A total of 8, 934 CNSs identified from the syntenic

genes in sorghum, rice, and setaria with the minimum CNS length 12 bp are com-

pared with the DH sites and the overlap information is shown in Figure 3.8.

It is found that 34.0% (3, 037) and 58.1% (5, 190) of CNSs overlapped with DH sites

identified in seeding and callus tissues respectively. The overlap between CNSs and

DHSs that are not found within the 1, 000 bp of annotated transcription start–sites

shows that 1, 130 and 2, 289 CNSs overlapped with DH sites identified in seeding and

callus tissues respectively. These overlaps are significantly higher than the overlap of

CNSs identified by the CDP between rice and sorghum and the same rice open chro-

matin datasets (25.7% and 41.6% for seedling and callus tissue respectively) [155].

A set of 1, 873 rice genes with conserved syntenic orthologs across all 6 similar grass

species were used to test how the relative overlap between CNSs identified by DiCE

and DH open chromatin regions responded to variation in the number of species and

41

(a) (b)

Figure 3.8: (a) Overlap of CNSs of rice, sorghum and setaria with DNase1 hypersen-
sitivity sites (DHS) in rice seedings and rice callus (b) Excludes CNSs & DHSs within
1kb of transcription start sites

(a) (b)

Figure 3.9: Overlap rate of CNSs and DHSs in rice seedings and callus

minimum CNS length. The overlap between potential regulatory sites identified using

the DiCE and potential regulatory sites identified using DNase1 hypersensitivity-seq

increases either when the number of species used in the DiCE analysis is increased or

the minimum length of the CNS is increased (Figure 3.9).

3.4.4 Running time

Both CDP and DiCE were run on a single core of Xeon E5-2697 v4 2.3GHz server

at HCC, University of Nebraska-Lincoln. The CDP took almost 24 hours to identify

42

the CNSs among 17, 996 otrhologous syntenic gene sets of sorghum, setraia and rice.

However, DiCE takes only 4.5 hours and 5 hours when it is tested with p = 0 and

p = 15 respectively. Thus, it shows almost 5 times improvement of computational

speed over CDP. The pairwise BLAST based comparisons in CDP are the most time

consuming operations that makes it less efficient than DiCE.

3.5 Conclusion and Future Works

Comparative genomics approaches have been useful for studying the gene-regulatory

elements of closely related species. The fundamental principle of comparative ge-

nomics is that the function-less DNAs change more rapidly as compared to func-

tional DNAs. Many conserved noncoding sequences (CNSs) in the non-functional

DNAs have been found to be transcriptional regulatory elements. Because of avail-

ability of genomes and annotations of many closely related species, it is important to

identify the conserved regions across the species to study the functional properties of

CNSs and gene–regulation. The CNSs in plants are much smaller than the CNSs in

animals. Therefore, an efficient computational method to identify the accurate CNSs

is desirable.

Most of the existing alignment based methods are neither computationally efficient

nor sensitive to smaller CNSs found in plant species. In this paper, we present an

algorithm that is based on generalized suffix tree and maximum weighted path in

a DAG. Our algorithm, called DiCE, is not based on multiple pairwise alignments.

The DiCE identifies the CNSs from the maximal repeat fragments i.e. MEMs found

using a generalized suffix tree of sequences. It discovers the exact matches CNSs as

well as the CNSs with a given mismatch rate. We tested our algorithm to identify

the CNSs on set of 17, 996 genes of six grass species. The experimental results show

43

that DiCE is 5 times faster than CDP, the best existing CNS discovery pipeline and

it identifies almost 500 more CNSs. The accuracy and sensitivity of the results are

evaluated using a permutation test. The results are further validated by comparing

with previously known DHS sites of rice seed and callus that are related to CNSs.

In future, we plan to study scalability of the algorithms to a large number i.e. the

order of thousands of plant species.

44

Chapter 4

Identifying conserved non-coding elements using min-wise

hashing

Publication:

• Sairam Behera, Jitender S. Deogun, Etsuko N. Moriyama, 2020, “MinCNE:

Identifying Conserved Non-Coding Elements using. Min-Wise Hashing”, In:Advances

in Computer Vision and Computational-Biology. Arabnia HR, Deligiannidis L,

Shouno H, Tinetti FG, Tran Q, eds. Springer. (In Press)

4.1 Introduction

Non-coding regions such as introns and intergenic regions of a genome are usually

more divergent and exhibit higher molecular evolutionary rates compared to exon

regions. Conserved non-coding elements (CNEs) are the genomic regions that show

unusually extreme conservation. These elements are mostly clustered around the

genes and play important roles in regulating the transcription process [113]. These

elements (or regions) are also referred as conserved non–coding sequences (CNSs),

ultraconserved elements (UCEs) or ultraconserved non-coding elements (UCNEs).

The identification of CNEs in animal and plant genomes poses different challenges

due to their sizes. CNEs in plants are shorter (15∼50 bp) compared to animal CNEs

45

(≥ 100 bp) [130, 138]. The two major approaches that have been used to identify

CNEs are alignment-based and alignment-free methods. The approaches can also be

classified based on pairwise or multiple sequence comparison. Pairwise methods work

on exactly two input sequences. Therefore, it requires multiple pairwise operations to

process more than two sequences. The use of more than two sequences at once also

poses challenges for scalability and computational efficiency compared to pairwise

operations. Probabilistic data structures and apporoximate methods are often used

to address scalability challenges.

The alignment-based approaches for CNE identification employ either pairwise or

multiple sequence alignment methods. The most commonly used alignemnt tools are

BLAST [4], QUOTA-ALIGN [131], LASTZ [57], BLASTZ [122], and MULITZ [20].

In some studies, CNEs are identified by manual or automated curation of BLASTN

results [130, 138]. Others used global alignment with sliding window [10] or whole-

genome alignment [59] to identify CNEs.

Among the first alignment-free tools that were developed for finding CNEs in

plants were STAG-CNS [74] and DiCE [11]. STAG-CNS used suffix-tree based in-

dexing and a directed acyclic graph to discover order-aware exact matched CNEs in

various grass species, where the minimum length of CNEs can be as short as 8 bp.

DiCE is the extension of the STAG-CNS approach, where the exact-matched CNEs

are further processed in a brute-force manner allowing a given percentage of mis-

matches. CNEFinder [7] identifies CNEs longer than 200 bp in animal genomes. It

finds the maximal exact matches (MEMs) between two given sequences using k-mer

based methods and then extends the MEMs to produce the CNEs. CNEFinder em-

ploys a pairwise approach, whereas STAG-CNS and DiCE are designed to work with

multiple sequences simultaneously. The approach used in DiCE for finding CNEs

with mismatches is not computationally efficent due to its brute-force nature. This

46

motivated us to design an efficient algorithm for the CNE identification problem.

In this study, we propose an efficient alignment-free method, called MinCNE.

MinCNE identifies the CNEs conserved among more than two sequences with user-

defined constraints. Instead of finding exact-matched (identical) k-mers, our method

clusters the similar k-mers with a given mismatch rate using min-wise hashing (min-

hash) and locality-sensitive hashing (LSH). These two hashing approaches are highly

efficient for clustering the elements using the Jaccard similarity measure. It ensures

that the CNEs with the user-defined similarity are grouped together. MinCNE can

identify CNEs as short as 100 bp. With its fast and efficient resource usage as well

as the user-customizable similarity threshold, MinCNE is expected to contribute to

discovery of more CNEs from a wide range of organisms.

4.2 Materials and Methods

Given a set of sequences, S = {s1, s2, · · · , sn}, a minimum CNE length, k, and a

similarity threshold, θ, MinCNE uses minhash and LSH strategies to identify all

CNEs of length ≥ k present in all input sequences. The algorithm used in MinCNE is

given in Algorithm 3 and the flowchart summarizing the MinCNE process is shown in

Fig. 5.2. MinCNE is written in C++ and distributed under the GNU Public License

(GPL). The source codes and relevant documents are freely available at https://

github.com/srbehera/MinCNE.

4.2.1 Minhash signatures

The minhash is useful when the Jaccard similarity needs to be measured for large data

sets. The Jaccard similarity index, which is also known as Intersection over Union, is

used to represent the similarity between two sets. The similarity index between the

https://github.com/srbehera/MinCNE
https://github.com/srbehera/MinCNE

47

Algorithm 2: Identify CNEs using minhash and LSH

1 Set of sequences S = {s1 · · · sn}, k-mer size, number of hash functions N ,
q-gram size, band size b, similarity threshold θ, hash functions H minHash,
edlib, LSH List of CNEs with start and end positions Initialize cluster set
C ← φ (empty)

2 Initialize list L← φ (empty)
/* process all but the first sequence */

3 for each sequence si ∈ {s2, s3, · · · , sn} in the S do
4 extract all k-mers and put in set Ki

5 for each k-mer kj ∈ {k1, k2, · · · , k|si|−k+1} in Ki do
/* generate minhash signature of k-mer by using q-grams

and set of hash functions H */

6 min sketch← minhash(kj, q, H) // set of N 64-bit integers

7 r ← N
b

8 B ← LSH(min sketch, b, r) // set of bucket ids

9 Assign sequence ki in buckets whose ids are in B

10 end

11 end
/* process the first sequence */

12 extract all k-mers and put in set K1

13 for each k-mer kj ∈ {k1, k2, · · · , k|s1|−k+1} in K1 do
14 create a cluster C and assign kj to it
15 min sketch← minhash(kj, q, H)

16 r ← N
b

17 B ← LSH(min sketch, b, r) // set of bucket ids

18 for each bucket id bk in {b1, b2, · · · , br} in B do
19 B ← Bucket with id bk
20 if B has k-mers from n− 1 sequences then
21 for each k-mer ku in B do
22 per id ← edlib(kj, ku)
23 if per id ≥ θ then
24 Put ku into C
25 end

26 end

27 end

28 end
29 Process the cluster C to keep the one k-mer from each sequence with

highest per id score with kj
30 if C has n elements then
31 Add C to C
32 end
33 Clusters that contain consecutive k-mers are merged and put into CNE

list L
34 end
35 return L

48

	
Input sequences

	
Convert each k-mer to

q-gram set
	

	
Create minhash signature

for each set
	

	
Bucket sequences based on
shared subsets of signatures

(LSH approach)
	

	
Remove possible false

positives from each cluster
	

	
Merge clusters belonging

to consecutive k-mers
	

	
Extract k-mers from

each sequence

Figure 4.1: Flowchart of MinCNE: k-mers extracted from each sequence are converted
first to q–gram sets and next to minhash signatures. LSH creates the initial cluster.
k-mers in each cluster are compared to remove potential false positives. Clusters are
merged to generate the final set of CNEs.

two sets X and Y is given as:

J(X, Y) =
|X ∩ Y |
|X ∪ Y | (4.1)

The earliest work of estimating the Jaccard similarty between sets of any sizes

using minhash is found in [22]. A set of hash functions are used to convert each of

the two sets into a minhash signature as follows. Each independent hash function

generates a hash value for each element of the set. The minimum value among all hash

values generated by the same hash function across all elements of the set is collected

as an element of the minhash signature. With N independent hash functions, the

minhash signature is a set of N elements corresponding to these minimum values.

Therefore, the size of a minhash signature depends on the number of the independent

hash functions used and independent of the size of the original set.

49

Let hmin be a minhash function and the collection of minimum hash values of the

sets X and Y be hmin(X) and hmin(Y), respectively. It is shown that the probability

of the two minimum hash value sets being equal is the Jaccard similarity of the sets

X and Y [22]:

P (hmin(X) = hmin(Y)) = J(X, Y) (4.2)

Given the minhash signatures of the two sets, both with the size N, let z be the

number of minhash values that are shared, i.e. |hmin(X)∩hmin(Y)|. Then an unbiased

estimate of the Jaccard similarity is obtained by dividing z by N [157].

For MinCNE, the input sequences are pre-processed by enumerating all k-mers

from each sequences. Each k-mer is further tokenized by extracting all possible q-

grams (q-mers, q << k). A hash function converts each token into a 64-bit integer,

and the minimum among them is selected. This process is repeated several times with

different hash functions. With N different hash functions, a 64-bit integer vector of

size N is generated for each k-mer. This vector is the minhash signature for the

k-mer. This process is equivalent to selecting N random q-grams from a k-mer. It

is expected that if two k-mers are similar, they share many q-grams. The Jaccard

similarity between two k-mers, i.e. the proportion of shared q-grams between them,

can be approximated by comparing the signatures as discussed above. However,

the pairwise comparison of every possible k-mers is still computationally expensive.

Therefore, the LSH algorithm is used to cluster the k-mers with similarities.

4.2.2 LSH-based clustering

LSH indexing was first developed for a general approximate nearest-neighbor search

problem in high-dimensional spaces [65]. A family of hash functions are chosen in

such a way that the collision probabilities of those hash functions are always high for

50

Table 4.1: Generation of minhash signatures for two k-mer sequences S1 and S2.

S1 S2

5-grams H1 H2 H3 H4 H5 5-grams H1 H2 H3 H4 H5

caagt 11 67 9 89 56 cagtc 18 12 59 97 29
aagtc 98 53 16 9 67 agtct 88 32 99 7 23
agtct 88 32 99 7 23 gtcta 2 78 52 92 50
gtcta 2 78 52 92 50 tctag 10 7 88 70 39
tctag 10 7 88 70 39 ctagt 13 14 96 89 5
ctagt 13 14 96 89 5 tagta 58 61 28 1 15
tagta 58 61 28 1 15 agtag 76 58 43 11 52
agtag 76 58 43 11 52 gtaga 92 62 14 3 6
gtaga 78 42 59 82 31 tagat 19 39 23 88 97
tagac 66 71 45 92 4 agatg 86 10 77 31 3
agacg 32 38 93 72 21 gatga 44 96 29 9 47
gacga 69 51 94 6 7 atgac 29 52 75 95 53
acgac 73 71 99 88 14 tgact 20 23 9 82 88
cgact 92 75 8 62 22 gactt 59 40 86 18 28

H1, · · · , H5 are hash functions and hash values shown in red are the minimum
values of each column.

similar inputs and low for disimilar inputs. A formal definition of LSH functions is

found in [65]. The minhash function hmin belongs to the family of LSH functions for

the Jaccard distance, as the probability of collision is equal to the Jaccard similarity.

A minhash LSH index is built as follows. Once the minhash signatures are gen-

erated from all input data (e.g., sequences each represented by a set of q–grams), all

signatures are divided into b bands of a fixed size r. If the minhash signature size is

N , then N = b∗r. We define the hash function H, which generates a bucket signature

Bi for the ith band by taking minhash signature values from positions i ∗ 1 to i ∗ r as

input:

Bi = H(hmin,i∗1, hmin,i∗2, ..., hmin,i∗r) (4.3)

The bucket signature Bi maps a band in a signature to a bucket so that minhash

signatures with the same bucket signature on the band i are mapped to the same

51

bucket. The minhash signatures of the two sets compared are mapped to buckets using

the same set of hash functions. The two sets are considered to be the candidates of a

similar pair if the signatures map to at least one same bucket. The time complexity

of searching the candidate pairs using the LSH algorithm depends on the number of

minhash functions (the minhash signature size) and is sub-linear with respect to the

total number of sets in the search space. Let j be the Jaccard similarity between the

sets X and Y , i.e. j = J(X, Y). The probability that X and Y are the candidate

pair is calculated as:

P (j|b, r) = 1− (1− jr)b (4.4)

While the sets that meet a given Jaccard similarty threshold should have a high prob-

ability of becoming a candidate pair, those that do not meet the threshold should have

low probabilities of becoming candidate pairs. The parameters such as the number

of the bands b and band size r need to be adjusted to achieve these requirements.

In MinCNE, the LSH algorithm is used for clustering of k-mers as follows. The

minhash signature of each k-mer is broken into a series of bands. A hash function is

generated for each band and this becomes the bucket id. The index of the k-mer is

put into this bucket. If the signatures of two k-mers share a band, then their indices

(start positions in the sequences) will be found in the same bucket. The chances of

finding the two similar k-mers in the same bucket increases with the increase in the

number of bands.

How a pair of k–mers are compared using the minhash signatures and LSH-based

clustering is shown in the following example. Consider the following two k–mers

where k = 18:

S1 : caagtctagtagacgact

52

S2 : cagtctagtagatgactt

Each k-mer is first converted into a q-gram set that contains every possible q-grams of

the k-mer. Setting both q and the minhash signature size N to 5, five hash functions

(H1, · · · , H5) are used to generate five hash values as illustrated in Table 4.1. The

minhash signature of each k-mer is the vector containing the minimum value from

each hash function (shown in red in Table 4.1). Thus the minhash signatures of the

above two k-mers will be given as:

Sig(S1) = < 2, 7, 8, 1, 4 >

Sig(S2) = < 2, 7, 9, 1, 3 >

With the number of bands b=5 and band size r=1, we have the following clusters:

C1: <1, 2>, C2: <1, 2>, C3: < 2 >, C4: < 1 >, C7: < 1, 2 >, C8:

< 1 >, C9: < 1 >

4.2.3 CNE identification

Once the clusters are identified, the next task is to identify the CNEs. A CNE is

required to be present in all given sequences. Therefore, we first discard the clusters

that do not contain k-mers from all sequences. In the above example, clusters C3, C4,

C8, and C9 will be discarded. The k-mers clustered by LSH are likely to have higher

Jaccard similarity scores than those that are not clustered. To ensure the similarity

between every pair is greater than or equal to the given threshold (θ), sequences of

each k-mer pairs in each cluster is compared. Edit distances are calculated using

edlib, a lightweight and fast C++ library [159]. The clusters containing consecutive

53

k-mers are merged and extended until the similarity score drops below the threshold.

For example, if we have the following five clusters containing the start positions of

200-mers in the original sequence:

Ci: <10456, 39898, 78907 >

Cj: <10457, 39899, 78908 >

Ck: <10458, 39900, 78909 >

Cl: <10459, 39901, 78910 >

Cm: <10460, 39902, 78911 >

these clusters can be merged to generate a CNE of length 205. The start and end–

positions of three CNEs identified are as follows:

<10456-10660, 39898-40102, 78907-79111>

In this study, the size of the minhash signature (N) was set to 50 generated by

50 minhash functions. Other settings used include: q = 13, b = 25, r = 2, and k

= 200. The threshold for pairwise sequence similarity (θ) was set to 95%. These

parameters were found to be optimal for the test sequences used in this study and no

false positives were produced. Depending on the target CNEs, k-mer size can be set

as short as 100.

4.2.4 Benchmark dataset

UCNEbase [37] is a publicly available database that contains the information about

UCNEs of 18 vertebrate genomes. There are currently ∼4300 CNEs present in the

database. Almost half of them are from intergenic regions and others are from either

54

intron or untranslated exon regions. The non–coding regions of the human genome

that exhibits more than 95% identity with chicken sequences are considered to be

UCNEs. The minimum length of UCNE is 200 bp. To the best of our knowledge,

this is the most recently updated database for CNEs of the human genome. We

therefore chose this database to be the current benchmark. It should be noted that

no indepedent verification has been performed for any CNEs under the definition

of UCNEbase. We selected human intergenic UCNEs found in the following five

gene regions: ZEB2, TSHZ3, EBF3, BCL11A, and ZFHX4. From 1 Mbp regions

both upstream and downstream of the coding regions of the five genes, UCNEbase

recognized 271 UCNEs in total. The genomic sequences from five vertebrate species

included: human (hg19), mouse (mm10), opossum (monDom5), chicken (galGal3),

and zebra finch (taeGut1).

4.2.5 Performance evaluation

All experiemnts were run on the CentOS Linux server with Intel(R) Xeon(R) CPU

E5–2630 v4 at 2.20GHz. All programs were run on a single core.

An identified CNE is considered to be a true positive if sequences identified from

all species used have more than 95% sequence identity with the benchmark CNE

sequences. The CNE-finding performance was examined using following metrices:

• TP (true positives): the number of identified CNEs that are present in UC-

NEbase

• FP (false positives): the number of identified CNEs that are not found in

UCNEbase

• FN (false negatives): the number of CNEs that are present in UCNEbase, but

are not identified by the tool

55

• Precision or positive predictive value: TP
(TP+FP)

• Recall or true positive rate: TP
(TP+FN)

Note that we did not include negative data; hence no true negative was counted.

CNEs were identified from the 1 Mbp upstream and downstream of each gene region.

Some of these test regions overlapped with exon regions of neighboring genes. Since

our benchmark dataset was derived from UCNEbase, which does not recognize any

conserved sequences from exon regions, any CNE candidates identified in these regions

were excluded from the analyses.

We compared the performance of MinCNE with CNEFinder. CNEFinder works

only on a pair of sequences for CNE identification. Therefore, direct performance

comparisons were performed using only human and chicken sequences. The time and

space efficiency of CNEFinder for multiple sequence comparisons was estimated based

on the number of operations needed to be executed.

4.3 Results and Discussion

4.3.1 CNE identification performance

We first compared the CNE-finding performance between MinCNE and CNEFinder.

Because CNEFinder can be used only for pairwise comparisons, we limited the com-

parison for human and chicken sequences.

As shown in Table 4.2, both MinCNE and CNEFinder were able to identify most

of the bencmark CNEs. Out of 271 CNEs, MinCNE and CNEFinder missed 7 and 9

CNEs in total, respectively. MinCNE was able to find all 44 CNEs for EBF3 and 80

out of 81 CNEs for TSHZ3. CNEFinder identified all CNEs for TSHZ3, but missed

only one for EBF3. For ZFHX4, both MinCNE and CNEFinder failed to identify

56

Table 4.2: Comparison of MinCNE and CNEFinder using human and chicken dataset

Gene UCNEbase TP FN Recall N/A∗

MinCNE CNEFinder MinCNE CNEFinder MinCNE CNEFinder MinCNE CNEFinder
ZEB2 63 61 61 2 2 0.97 0.97 25 21

TSHZ3 81 80 81 1 0 0.99 1 16 16
EBF3 44 44 43 0 1 1 0.98 25 24

BCL11A 32 31 29 1 3 0.97 0.91 15 15
ZFHX4 57 54 54 3 3 0.95 0.95 20 18

∗All these sequences were found in the exon regions of other genes and not counted

for the performance analysis.

the same set of three out of 57 CNEs. The recall values were ≥ 95% and ≥ 91% for

MinCNE and CNEFinder, respectively. About a half of the FNs were the same CNEs

missed by both MinCNE and CNEFinder (4 of 7 and 4 of 9, respectively). As noted

above, the 1 Mbp test regions included some exon sequences of other genes. Both

MinCNE and CNEFinder found CNE candidates in these regions (shown as N/A in

Table 4.2), with many of them from the same regions. Neither of the tools produced

FPs from any gene regions. Thus, the precision values were one for all tests.

Unlike CNEFinder, MinCNE can identify CNEs among multiple sequences at once.

To demonstrate this capability, we performed the CNE identification using MinCNE

with the sequences from three, four, and five species. The performance was exactly the

same as shown in Table 2 (the same numbers of TPs and FNs were identified). This

was expected because the two species compared in Table 4.2 are human and chicken,

which are the most divergent pair of species among those compared (human, mouse,

opossum, zebra finch, and chicken). Therefore, even when more species were included,

since they were more closely related to either human or chicken, it did not increase

the number of CNEs identified. It should also be noted that MinCNE identified all

corresponding CNEs from additional species without exception. This demonstrates

that MinCNE can efficiently and accurately identify CNEs from multiple genomes.

57

4.3.2 Time and space usage

The time and space usage of MinCNE was examined using different numbers of se-

quences. For CNEFinder, usages for more than two sequences were estimated based

on the number of operations required in either serial or parallel execution. For exam-

ple, if there are 10 datasets used in an experiment, there will be 45 pairwise operations.

For serial executions, the estimated time for CNEfinder will be 45 times of a single

execution. If all the executions are done in parallel, then the estimated time for the

completion of all executions will be same as a single exceution.

CNEFinder was faster than MinCNE when only two sequences were used (3 min-

utes by CNEFinder and ∼9 minutes by MinCNE; Fig. 4.2a). The LSH-based cluster-

ing stage of MinCNE produces many clusters including many redundant ones. The

processing of those clusters is the time consuming step of MinCNE. The minhash

signature generation and initial clustering time increases sub-lineraly with increase of

the number of sequences. However, the time for identifying CNEs from the clusters

decreases with increase in the number of sequences. This is because if a cluster does

not contain a k-mer that is found in every sequence, it is eliminated. Therefore, the

time usage with MinCNE did not increase with the number of sequences. In contrast,

CNEFinder will require to be run ten times longer to compare five sequences. If these

ten operations are executed serially, as shown in Fig. 4.2a, CNEFinder will take al-

most 30 minutes. CNEFinder will also require additional time for the post-processing

of results from all pairwise runs.

The memory consumption of MinCNE was comparable to CNEFinder. Both

tools used approximately 3 gb of RAM. As shown in Fig. 4.2b, the space usage

increased only gradually when more sequences were used with MinCNE. Similar to

computational time analysis, CNEFinder will need to be run ten times either serially

58

Number of sequences

0

5

10

15

20

25

30

2 3 4 5

MinCNE
CNEFinder (serial)
CNEFinder (parallel)

Ti
m

e
(in

 m
in

ut
es

)
M

em
or

y
(in

 g
ig

ab
yt

es
)

(a)

(b)

Number of sequences

0

5

10

15

20

25

30

35

2 3 4 5

MinCNE
CNEFinder (serial)
CNEFinder (parallel)

Figure 4.2: Time (a) and space (b) usage of MinCNE and CNEFinder: For
CNEFinder, only the time and memory amount used for the two-sequence comparison
was based on the actual observation. Other data were estimates.

59

or parallely for five sequences. For parallel executions, the space usage for CNEFinder

will increase by ten times. Additional space is also needed for CNEFinder for post–

processing of pairwise results.

Although the current implementation of MinCNE does not support multi-threading,

this will be added in the future version of MinCNE. With multi-threading, the advan-

tage of using time and space efficient MinCNE is expected to be even more significant.

4.4 Conclusion

Minhash has been used in various bioinformatics applications especially for analyzing

large datasets. We applied this technique in MinCNE, a new computationally efficient

CNE finder. MinCNE does not require whole genome alignment nor multiple pairwise

alignments for generating indices for the given sequences. Unlike other CNE-finding

tools, MinCNE can work on more than two sequences at once. Our previous tool

STAG-CNS found only exact matched CNEs [74]. This requirement was relaxed in

DiCE [11]. However, DiCE was not computationally efficient especially with multiple

long sequences. With MinCNE, we addressed these challenges. MinCNE is also

flexible and the sequence identity threshold can be customized. Although CNEFinder

uses the k-mer based technique and computationally efficient, it works only on two

sequences at once. It requires multiple pairwise operations if multiple sequences need

to be analyzed. Currently available CNE datbases such as Ancora [41], CEGA [39],

cneViewer [111], CONDOR [148], UCBase [85], UCNEbase [37], and VISTA [142], are

mostly static and not updated regularly. MinCNE, with its computational efficiency,

high sensitivity, as well as the flexibility, will be useful for studies in large-scale

comparative genomics. The approximation techniques used by minhash and LSH can

be further improved to reduce both space and time efficiency.

60

Chapter 5

Isoform clustering using minhash and locality-sensitive

hashing

Publication:

• Sairam Behera, Jitender S. Deogun, and Etsuko N. Moriyama. 2020. MinIso-

Clust: Isoform clustering using minhash and locality sensitive hashing. In Pro-

ceedings of the 11th ACM International Conference on Bioinformatics, Compu-

tational Biology and Health Informatics (BCB ’20). Association for Computing

Machinery, New York, NY, USA, Article 64, 1–7.

DOI:https://doi.org/10.1145/3388440.3412424

5.1 Introduction

Using next-generation sequencing technologies, it is now easy to perform RNA se-

quencing (RNA-seq) for gene expression analysis and transcriptom assembly. How-

ever, especially in eukaryotes, a large proportion of genes are transcribed into multiple

forms of transcripts (isoforms) through alternative splicing events. As shown in Fig

5.1, isoforms, although derived from a same gene, can code different protein sequences

and hence can function differently. Differential expression of isoforms among tissues

or developmental stages also contributes to increased complexity in eukaryotic tran-

https://doi.org/10.1145/3388440.3412424

61

scriptomes and proteomes. It has been reported that 95% of multi-exon genes in

human undergo alternative splicing patterns[107]. Furthermore, more than 50% of

disease-causing mutations in the human genome is estimated to affect splicing [86].

Therefore, accurate identification and quantification of isoforms is important not only

for understanding of the mechanisms of biological complexity, but also for biomedical

application.

There are two main strategies in computational transcriptome assembly: genome-

guided and de novo methods [143]. In genome-guided methods such as Cufflinks

[136] and StringTie [112, 71], short RNA-seq reads are mapped against a reference

genome and splice graphs can be built. Most of the de novo transcriptome assemblers

construct de Bruijn graphs using k–mers (substrings of length k in a DNA sequence)

during the assembly process. For both strategies, existence of isoforms affects the per-

formance of transcriptome assembly, often generating fragmented contigs. With the

arrival of third–generation sequencing techniques (e.g., PacBio), long-read sequenc-

ing can be used to obtain the full-length isoform sequences. While this approach

can potentially eliminate the need of isoform assembly, in contrast to the short-read

sequencing performed by the Illumina platform, long-read sequencing is known to be

highly error prone. Using any of these strategies, as shown in Fig 5.1, assembled con-

tigs derived from the same gene are expected to both share highly similar or identical

sequence regions (shared exons) have other regions that are unique to each isoform.

To identify the sets of potential isoforms, these partially highly similar sequences need

to be clustered, and such methods need to be scalable to deal with a large number of

contigs generated from complex transcrtipomes.

The classical clustering techniques are useful when the overall identities between

two sequences are used. However, clustering of the isoforms that are generated with

various splicing patterns poses a major challenge to existing clustering techniques be-

62

cause sequences include both highly similar shared exons regions as well as dissimilar

unique exons regions.

CD-HIT is the most often used sequence clustering tools , which was originally de-

veloped for protein sequence clustering and now is applicable for nucleotide sequences

[80]. The greedy clustering approach with short-word filtering used with CD-HIT

makes it computationally highly efficient. However, it is known to generate false neg-

atives when the contigs are clustered at the isoform level [35]. MMseqs2/Linclust is

another clustering method that is expected to run faster than CD-HIT [129]. The

algorithm of MMseqs2/Linclust is based on shared k-mers between the sequences.

isONclust is one of the recent clustering tool that is designed to cluster PacBio and

nanopore data efficiently. The clustering method in isONclust uses shared k-mer and

minimizer scheme [119]. Although MMseqs2/Linclust is not designed to work for iso-

forms, we included this tool as the results in [129] show that it is faster than CD-HIT.

isONclust is also included as it works for transcriptome data.

To address the challenges related to scalability and accuracy of isoform identifica-

tion, in this study, we developed a novel approach to cluster the transcript sequences

potentially derived from isoforms, MinIsoClust. MinIsoClust makes use of minwise-

hashing (minhash) technique to generate signatures for input sequences and locality-

sensitive hashing (LSH) approach for initial clustering eliminating the requirement

of pairwise comparisons of all input sequences. We further use efficient edit-distance

computation tool and bloom-filter based approximation to find the containment of a

sequence in another sequence. To test this new method, we generated four simulated

datasets. Isoform clustering performance of MinIsoClust was compared against CD-

HIT, isONclust, and MMseqs2/Linclust. MinIsoClust demonstrated more accurate

isoform clustering for most of the datasets and maintained very high computational

efficiency.

63

Algorithm 3: MinIsoClust isoform clustering

1 Set of sequences S = {s1 · · · sn}, number of hash functions N , q-gram size,
band size b, similarity threshold θ, hash functions H, shared length ls
minHash, edlib, LSH Clusters each containing potential isoforms Initialize
cluster set K ← φ (empty)

2 Initialize list L← φ (empty)
3 lm ← length of shortest sequence
/* process all sequences */

4 for each sequence si ∈ {s2, s3, · · · , sn} in the S do
5 Initialize minhash signature set MHi ← φ (empty)
6 li ← length of sequence si
7 t← 2× ∗ li

lm

8 Generate t random positions between 0 and (li − lm − 1)
9 Extract subsequences of length lm from these positions and put it in set Fi

10 for each subsequence fj ∈ {f1, f2, · · · , ft} in Fi do
/* generate minhash signature of fj by using q-grams and

set of hash functions H */

11 min sketch← minhash(fj, q, H) // set of N 64-bit integers

12 Add min sketch to MHi

13 r ← N
b

14 buk ← LSH(min sketch, b, r) // set of bucket ids

15 Assign sequence si in buckets whose ids are in buk

16 end

17 end
18 Set of isoform clusters I ← φ (empty)

/* Second pass of sequences */

19 For each sequence si, assign a flag g(si) and set it to zero
20 for each sequence si ∈ {s2, s3, · · · , sn} in the S do
21 cluster K ← si /* Not yet added to any cluster */

22 if g(si) == 0 then
23 B ← sequences from its corresponding buckets
24 for each sequence su in B with g(su) == 0 do
25 Add su to cluster C if it satisfies for any z ∈ C
26 1. edlib(su, z) ≥ θ
27 2.su is contained in any z
28 3.su shared at least ls long sequence with any z
29 g(su)← 1

30 end

31 end
32 Add C to I

33 end
34 return I

64

A

B

C

D

A.1

B.1

B.2

C.1

C.2

D.1

D.2

Figure 5.1: Various alternative-splicing events: Exons are represented by boxes, and
introns connecting exons are represented by the solid lines. Dotted lines show the
splicing events. Transcripts produced by various splicing events are shown on the right
side. A-D illustrate the gene structures. A.1, B.1, ..., D.2 illustrate the transcripts
produced after splicing events. While gene A produces only one type of the transcript
(A.1), genes B, C, and D undergo alternative splicing events and produce more than
one forms of transcripts (isoforms) as illustrated in B.1, B.2, ..., D.2.

5.2 Materials and Methods

5.2.1 Sequence comparison using minhash signatures

The Jaccard similarity is popularly used to assess the similarity between any two

sets and defined as the ratio of the size of the intersection to the size of the union.

For genomic sequences similarity, the Jaccard similarity score can be computed by

converting each sequence into a set of smaller words, i.e. q-grams and then computing

the intersection over union ratio for a pair of sequences. This requires extraction

of all possible q-grams from all sequences. For genomic-level and high-throughput

datasets, this is not an efficient apprach. The minhash approach can be used to

65

Subdivide each
sequence into

shorter
subsequences

Bucket each
sequence using LSH

Generate minhash
signatures for each

subsequence

Post-process initial
clusters

Identification and
refinement of

isoform clusters

Sequences

Figure 5.2: Flowchat of MinIsoClust: The sequences are first divided into subse-
quences Each sequence is represented by a set of minhash signatures corrsponding to
its subsequences. LSH is used for bucketing each sequence based on the signatures.
Post-processing of the initial clusters generated by LSH remove redundant clusters.
Final refinement and identification of isoform clusters are done by pairwise processing
of sequences and bloom filter.

approximate the Jaccard similarity score by converting the sequences into fixed-size

integer sets chosen from hash values of randomly picked q-grams and then computing

the intersection-over- union ratio for these sets instead [22].

However, while the minhash approach works well when the input sequences are of

similar lengths, if the lengths of two sequences differ significantly and one sequence

is either contained in another or if only segments of a longer sequence is similar to a

shorter sequence, the minhash does not work well [31] . This is because many of the

randomly picked q-grams from the longer sequence could come from the segments that

are shared with the shorter sequence. Thus, even if a shorter sequence is completely

contained in a longer sequence, the minhash-approximated similarity index becomes

low. As shown in Fig 5.1, some isoforms share only a limited region, and all such

potential isoform sequences need to be clustered. Therefore, we modified the minhash

approach to ensure that it works well for sequences with varying lengths. This is

called containment minhash approach and it has been studied for various applications

66

[124, 70]. Given two sequences X and Y where X is much longer than Y , we used

the containment minhash approach as follows. Let LX and LY be the lengths of X

and Y , respectively, and LY < LX . We divide the sequence X into several several

subsequences of length LY . If the Jaccard similarity score between Y and one of the

subsequences of X is higher than given similarity threshold, sequence Y is contained

in X. We used this containment-sensitive minhash approach to identify isoforms.

5.2.2 MinIsoClust isoform-clustering strategy

The overall process of MinIsoClust is shown in Fig 2. MinIsoClust clustering is

composed of three stages: 1) generation of minhash signatures of input sequences

using minwise hashing (minhash) 2) the bucketing of potential isoform sequences using

LSH, and 3) isoform clustering using bloom filter and pairwise sequence comparisons

of sequences within the buckets. The algorithm is given in Algorithm 3.

Let S = {s1, s2, · · · , sn} be the set of sequences of varying lengths, and li and

lm be the lengths of sequence si and the shortest sequence of the set respectively.

A q–gram is a subsequence of q consecutive characters with q ≤ 10. Let r be the

number of random positions, and H be the set of N hash functions {H1, · · · , HN}.

A minhash signature of each sequence is generated as follows. For each sequence

si, 2× ∗ li
lm

subsequences, each with length lm, are extracted from random positions.

This ensures that there are at least two overlapping subsequences for each position.

Each subsequence is then converted into a q-grams set. A set of N hash functions

(H) is used to generate hash values for each q–gram in the set. Let vi be the set of the

hash values generated for all q-grams in the subsequence by a hash function Hi and

vi,min be the minimum value in vi. The minhash signature of the subsequence is the

set of N minimum hash values, i.e. {v1,min, · · · , vN,min}. The collection of minhash

signatures obtained from all subsequences becomes the minhash signature set of a

67

sequence. Thus, each sequence whose length is greater than lm contains more than

two minhash signatures.

Jaccard similarity scores between sequences and subsequences can be now calcu-

lated using the minhash signature sets. However, performing all pairwise comparisons

using minhash signatures is still computationally expensive for a large number of se-

quences. To address this challenge, LSH-based bucketing method is used.

5.2.3 LSH-based bucketing

LSH is useful for hashing similar items into the same bucket with high probability [49].

For sequence similaity, the probability of two sequences are being similar increases

with the increase in the number of shared elements in their minhash signatures. The

LSH algorithm makes use of information about shared elements in minhash signatures

to create buckets and put similar sequences into the same bucket. The minhash

signatures are divided into b bands with each band containing N
b

elements. A hash

value that is generated for each band becomes the signature of the bucket. If two

signatures share the same band, then they should share the same bucket.

If the minhash signature of a shorter sequence Y and minhash signature of the

subsequence of a longer sequence X share the same band, then both X and Y share

the same bucket. Similary, if the signatures of the subsequences of sequences Z and

X share same band, then both X and Z share a bucket. As shown in Fig 5.1, these

subsequence relationships represent shared exons between isoforms. The sequences

that share similar subsequences are put into the same bucket. This effectively cluster

potential isoforms. Note also that at this stage, each sequence can be put into several

buckets as each subsequence can be put into at most b buckets.

68

Table 5.1: Distribution of numbers of isoforms in the four datasets

isoforms Rice Soybean Arabidopsis Human
per gene (16,894a) (17,226a) (16,071a) (18,348a)

1b 16,613 15,782 9,109 8,481
2 267 1,228 1,915 2,393
3 14 171 514 795
4 31 168 288
5 10 41 77
6 2 17 30
7 2 3 17
8 2 6
9 0 2
≥10 1 9

% single gene 98.34% 91.62% 56.68% 46.22%
Total # transcripts 17,189 18,951 15,507 17,668

Expected isoform/gene 1.05 1.34 2.22 2.90
a

Total number of genes
b No alternative splicing

5.2.4 Identification of isoforms by clustering

The initial clusters generated in the bucketing stage contain redundant clusters and

also some potential false positives. Therefore, we remove redundancy of the clusters

and reduce potential false positives as follows. The buckets that share the same

sequences are merged. Pairwise comparisions are done on the sequences in the merged

bucket to check if they can form an isoform cluster. The edlib tool is used with the

infix alignment mode to compute the edit distance between sequences [159]. The infix

mode does not penalize the gaps at the start and end of the query, which is useful for

finding if a sequence is completely contained in another. The threshold for the edit

distance similarity is set to 95%.

To identify the isoforms such as those shown in Fig 5.1 B-D, bloom-filter based

fast dictionary search is used. If the candidate isoforms I1 and I2 share all exons

except some additional exons only in I1 as shown in Fig 5.1C, all q-grams of I2 is

69

present in I1. To quickly check the presence of all q-grams of I2 in I1, a bloom filter

is created for I1 and filled with q-grams found in I1. All the q-grams of I2 are queried

against the bloom filter and if all of them pass the membership test, I1 and I2 are

considered to be part of the same cluster. Similarly, if two candidate isoforms share

some exons and each contain additional unique exons (as shown in Fig 5.1B and D),

a bloom filter is also used to test for the membership of a subset of q-grams. The

bloom filter [21] is a powerful probabilistic data structure that can be used for fast

set-membership testing. It can perform pairwise processing very fast.

Table 5.2: Isoform clustering performance among the four methods

Dataset MinIsoClust isONclust MMseqs2 CD-HIT
h c v h c v h c v h c v

Rice 1 0.985 0.958 0.999 0.983 0.992 0.999 0.932 0.964 0.998 0.984 0.991
Soybean 1 0.900 0.947 0.683 0.968 0.801 0.663 0.871 0.753 0.687 0.999 0.815

Arabidopsis 0.958 1 0.979 0.990 0.996 0.993 0.975 0.956 0.965 0.958 0.995 0.979
Human 0.954 0.995 0.974 0.962 0.993 0.969 0.951 0.995 0.973 0.948 0.991 0.973

The scores in bold are the highest scores achieved by a tool for a particular dataset.

5.2.5 Benchmark datasets

We generated four simulated benchmark datasets based on four organismal model

(Arabdopisis, Rice, Soybean, and Human). The data sources for the reference tran-

scriptome of these four species are as follows: Arabidopsis thaliana Columbia (Col-0),

human reference genome (HG38), Oryza sativa Japonica Nipponbare, Glycine max

Williams 82. The simulated benchmark datasets were generated using Flux Simulator

[152] with the four reference transcriptomes. The protocol to generate the benchmark

datasets is detailed in [145]. These four datasets are selected based on the different

levels of complexity in isoform distribution (shown in Table 5.1). Rice dataset is the

simple dataset with no genes containing more than three isoforms. It also has the

the largest proportion of the genes with no isoforms (98.34%). Soybean dataset con-

tains more than thousand genes with two isoforms (7.12%). Both Arabidopsis and

70

Human datasets have higher proportions of genes with multiple isoforms (43.32% and

53.78%, respectively). Human dataset has 9 genes with more than 10 isoforms. Thus

we have a range of complexity in these datasets. These simulated datasets provided

both ground-truth information as well as input data.

5.2.6 Performance evaluation

Clustering performance of MinIsoClust was compared against three other methods:

CD-HIT, isONclust, and MMseqss. The following three metrices were used: homo-

geneity, completeness, and V -measure. Let K = {k1, · · · , kN} be the set of clusters

generated by any clustering algorithm, G = {g1, · · · , gM} be the set of classes defined

by the ground truth (benchmark data). n is the total number of input sequences,

nG is the number of sequences belonging to class G, nK be the number of sequences

belonging to cluster K, and nG,K be the number of elements of class G in cluster K.

The homogeneity (h), completeness (c), and V -measures (v) are defined as follows

[117]:

h = 1− H(G|K)

H(G)
(5.1)

c = 1− H(K|G)

H(K)
(5.2)

where H(G|K) is the conditional entropy of the classes given the cluster assignments:

H(G|K) = −
N∑
i=1

M∑
j=1

ng,k
n
· log

(
ng,k
nk

)
(5.3)

and H(G) is the entropy of the classes:

H(G) = −
N∑
i=1

ng
n
· log

(ng
n

)
(5.4)

71

The V -measure is defined as the harmonic mean of homogeneity and completeness:

v = 2 · h · c
h+ c

(5.5)

Homogeneity is a measure of the ratio of samples of a single class pertaining to a

single cluster. The fewer the classes included in one cluster, the better. It ranges

from 0.0 to 1.0. Completeness measures the ratio of the member of a given class that

is assigned to the same cluster. The V -measure is calculated similar to the F -measure

where precision and recall are combined. It is more comprehensive than using only

either homogeneity or completeness.

One of the drawbacks of the above metrics is that those are not normalized with

regards to random labeling. A complete random label is not always guaranteed to

produce same values for homogeneity and completeness based on the numbers of the

samples, clusters, and ground-truth classes. An adjusted index such as the Adjusted

Rand Index (ARI) is used to address these issues. ARI measures the similarity of

the two assignments, ignoring permutations and with chance normalization. Let a be

the number of pairs of elements that are in the same set in G and in the same set in

K, b be the number of pairs of elements that are in different sets in G and in different

sets in K. The Rand index (RI) is given by:

RI =
a+ b

G
nsamples

2

(5.6)

where G
nsamples

2 is the total number of possible pairs in the dataset (without ordering).

The ARI is given by:

ARI =
RI− E[RI]

max(RI)− E[RI]
(5.7)

where E[RI] and max(RI) are the expected and and maximum RI. The formal

72

definitions and mathematical equations of above metrices can be found in [64].

5.2.7 Program execution

All experiemnts were run on the CentOS Linux server with Intel(Xeon CPU E5–2630

v4 at 2.20GHz using a single core. CD-HIT-EST, isONclust, and MMseqs2/Linclust

were run with their default parameters. For MinIsoClust, the size of the minhash

signature (N) was set to 200 and the number of bands (b) to be used in LSH bucketing

was set to 40. The q-gram size was set to 5. The threshold for the pairwise sequence

similarity (θ) was set to 95%. These parameters were found to be optimal for the

test sequences used in this study. All evaluation metrices were computed using the

scikit-learn library [109].

5.3 Results and Discussion

Table 5.3: Performance evaluation of isoform clustering using ARI

Dataset MinIsoClust isONclust MMseqs2 CD-HIT
Rice 0.083 0.081 0.004 0.071

Soybean 0.331 0.003 0.008 0.01
Arabidopsis 0.954 0.826 0.224 0.003

Human 0.154 0.372 0.100 0.001
The scores in bold are the highest scores achieved by a tool for a particular

dataset.

5.3.1 Isoform-clustering accuracy

The acuracy of all clustering tools were evaluated using the three metrices: homogene-

ity (h), completeness (c), and V -measure (v). The accuracy of the tools is directly

proportional to the scores of these three metrices. Higher the h value, higher the

chances that each cluster has member from a single class in the ground truth dataset.

73

Table 5.4: Number of singleton clusters generated by four methods

Dataset Benchmark MinIsoClust isONclust MMseqs2 CD-HIT
Rice 16,613 16,210 16,895 12,996 18,542
Soybean 15,782 14,876 11,997 12,585 17,734
Arabidopsis 9,109 9976 10,353 8682 13,724
Human 8,481 8643 8461 7311 9081

Similarly, a high c score indicates many of the members of a given class in the ground

truth are grouped together in the same cluster. Table 5.2 shows that MinIsoClust

outperformed all other tools in most of the cases. The Rice benchmark dataset is the

least complex and has only 281 classes with more than one isoforms. All four tools

had very high h score with this dataset. For the Rice and Soybean datasets, MinIso-

Clust had the perfect score (1) for the homogeneity indicating that for all identified

isoform groups no other transcripts were incorrectly included. In contrast, especially

for the Soybean dataset, other tools tended to cluster isoforms with incorrect tran-

scripts. For the Arabidopsis dataset, one of the most complex datasets used in this

study, MinIsoClust also showed the perfect score for the completeness indicating all

isoforms were clustered together correctly..

In Table 5.3, the isoform clustering accuracy is compared using ARI. ARI en-

sures that there is no bias with respect to single accuracy measure. The scores of

ARI ranges from −1 to 1 with 1 being the best. Note that while in Table 5.2, the

differences in scores are not very large, in Table 5.3, the score differences are much

more pronounced and MinIsoClust showed significantly better performance compared

to others. To explore the performance difference in more detail, in Table 5.4, the num-

bers of singleton clusters predicted by each method is compared. It shows that while

MMseqs2/Linclust tends to underestimate the number of singleton clusters, CD-HIT

shows significant overestimation for all datasets. For all datasets, MinIsoClust shows

the best estimates for singleton clusters.

74

5.3.2 Computational time and space usage

The computational time and space usage of MinIsoClust was examined and com-

pared against the other three tools. As shown in Table 5.5, CD-HIT was the fastest

among all methods. MinIsoClust was significantly faster than isONClust and MM-

seqs2/Linclust. Although for more complex Human dataset, the run-time was higher

than for all other datasets with all tools, sometimes (e.g., for the Rice dataset), the

run-time did not correlate with the complexity perceived simply based on the isoform

numbers, indicating other factors affecting the process of isoform clustering.

Table 5.5: Run-time comparison among the four methodsa

Dataset MinIsoClust CD-HIT MMseqs2 isONclust
Rice 17.22 2.46 323.99 85.97
Soybean 18.43 1.23 78.52 221.79
Arabidopsis 7.43 0.54 19.42 31.79
Human 19.57 3.24 569.78 319.03

aThe run-time is shown in seconds.
For each dataset, the best performing method is shown in bold

The space usage of the four tools are given in Table 5.6. CD-HIT was the most

space efficient among the four tools. isONclust consumed more memory than others

for all the datasets. The memory consumption of MinIsoClust was comparable to CD-

HIT. Similar to computational time efficieny, MinIsoClust was more space efficient

than MMseqs2/Linclust and isONclust.

Table 5.6: Space usage comparison among the four methodsa

Dataset MinIsoClust CD-HIT MMseqs2 isONclust
Rice 0.27 0.06 1.52 6.4
Soybean 0.1 0.05 0.32 3.30
Arabidopsis 0.13 0.58 1.47 3.59
Human 0.09 0.1 1.9 7.23

aThe space usage is shown in GB.
For each dataset, the best performing method is shown in bold.

75

5.4 Conclusion

Clustering or cluster analysis is an important task for various bioinformatics appli-

cations. In this work, we proposed MinIsoClust, a minhash-based clustering tool for

transcripotomes that contain isoforms. The minhash techniques have been proven to

be efficient for estimating similarty in many applications that involve large datasets

[76]. It has also been used for many bioinformatics applications especially for analyz-

ing large-scale sequencing datasets. Our algorithm makes use of LSH-based bucketing

from minhash signatures to cluster the isoform sequences. The conventional cluster-

ing tools such as CD-HIT is based purely on the sequence similarity and it was not

expected to perform well for clustering trasncriptoms that include alternative splic-

ing events. Furthermore, for most of the clustering techniques, scalability is still a

challenging issue. We addressed both of these challanges by integrating the contain-

ment componet to the minhash approach and avoiding pairwise comparisons with

the use of LSH bucketing. By using the four simulated benchmark datasets where

the ground-truth isoform clustering is known, we could also conduct a fair clustering

performance evaluation among the methods using various statistics.

Our results showed that MinIsoClust generated more accurate clusters than the

other three tools. As expected, the computaional time efficieny of MinIsoClust was

significantly better than MMseqs2 and isONclust. While CD-HIT was more efficient

than MinIsoClust, it was at the cost of generating false negatives i.e. missing isoforms

in the clusters indicated by lower completeness scores. The space usage of MinIso-

Clsut and CD-HIT was comparable and both performed better than isONclust and

MMseqs2/Linclust. We plan to perform more analyses using larger datasets with

more varied isoform distributions to investigate how these methods perform differ-

ently depending on the types of datasets.

76

One advantage of MinIsoClust is the flexible option to change the sequence sim-

ilarity threshold (θ) for clustering shared sequences. By using lower threshold, Min-

IsoClust can be applied to both gene family clustering as well as error-prone third-

generation sequence clustering. We plan to explore such applications of MinIsoClust

in the future.

77

Chapter 6

New ensemble approach for improving transcriptome

assembly

Publications:

• Sairam Behera, Adam Voshall, Jitender S. Deogun and Etsuko N. Moriyama,

2017, “Performance comparison and an ensemble approach of transcriptome as-

sembly,” 2017 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM ’17), Kansas City, MO, pp. 2226-2228, doi: 10.1109/BIBM.2017.

8218005.

• Adam Voshall, Sairam Behera1, Xiangjun Li, Xiao-Hong Yu, Kushagra Kapil,

Jitender S. Deogun, John Shanklin, Edgar B. Cahoon, Etsuko N. Moriyama,

2020, “A consensus-based ensemble approach to improve de novo transcriptome

assembly”, bioRxiv ; doi: https://doi.org/10.1101/2020.06.08.139964.

• Sairam Behera, Adam Voshall, Etsuko N. Moriyama. “Plant transcriptome

assembly: review and benchmarking”, Bioinformatics, Brisbane: Exon publica-

tions; 2020. (In Press).

1Helped in analysis for assembly using different identity thresholds

10.1109/BIBM.2017.8218005
10.1109/BIBM.2017.8218005
https://doi.org/10.1101/2020.06.08.139964

78

• Sairam Behera, Adam Voshall, Kushagra Kapil, Jitender S. Deogun, Etsuko N.

Moriyama, 2020, “Minsemble: clustering besed ensemble transcriptome assem-

bly”(manuscript under preparation).

6.1 Introduction

A transcriptome is the entire set of transcripts in a cell. The content of a tran-

scriptome varies between different types of cells (tissues) and between developmental

stages. Understanding the content of transcriptomes and tracking their spatial and

temporal differentiation is important when we study the mechanisms of, e.g., cellu-

lar differentiation, carcinogenesis, and gene regulation. RNA-sequencing (RNA-seq)

is a transcriptome profiling technology that utilizes high-throughput next-generation

sequencing. The majority of RNA-seq data are generated from the complementary

DNAs (cDNAs) converted from messenger RNAs (mRNAs) by using the Illumina

short-read sequencing platform [105, 93]. More recently, long-read and direct-RNA

sequencing has also become available for RNA-seq using third-generation sequencing

platforms [e.g., Pacific Biosciences (PacBio) and Oxford Nanopore (ONT)] [128].

RNA-seq provides a quantitative snapshot of a transcriptome of the cells at a given

time point. RNA-seq data can be used to reconstruct transcriptomes and also to an-

alyze differential gene expression and differential splicing of mRNAs. However, many

challenges remain in assembling the transcripts correctly using the available assembly

algorithms [141]. The sequencing errors and presence of repetitive sequences most

often cause mis-assembly of transcripts. Shared exon regions and different expres-

sion levels among alternatively spliced transcripts (isoforms) make the identification

and quantification of genes and isoforms challenging for transcriptome assembly and

quantification tools [62]. For many plant species, polyploidy adds another level of

79

complexity for transcriptome assembly. The high sequence similarity among sub-

genomes, among duplicate genes, as well as among isoforms all makes the de novo

transcriptome assembly a significant challenge [55, 144].

In the following sections, we will first review three transcriptome assembly strate-

gies: genome-guided, de novo, and ensemble. Next we will describe how the transcrip-

tome assembly performance can be evaluated. We will discuss the advantage of using

simulated benchmark data instead of actual data and outline how such simulated

benchmark transcriptome datasets can be generated. Finally, we will demonstrate

how transcriptome assemblies generated from different methods can be compared

and how the transcriptome assembly quality can be evaluated using simulated plant

transcriptomes with varied complexity.

6.2 Transcriptome Assembly Strategies

Transcriptome assembly is a process of reconstructing the complete set of full-length

transcripts from RNA-seq data, which often include tens of millions of short-read

sequences. Genome assembly methods cannot be used for transcriptome assembly

due to drastically varied sequencing depth among transcripts (due to gene-expression

variation), strand-specific experiments with RNA-seq, and existence of isoforms. For

transcriptome assembly, genome-guided or reference-based assembly methods are

preferred when a high-quality reference genome is available [93, 143]. De novo or

reference-free transcriptome assembly methods do not require reference genomes.

These methods are particularly useful for non-model organisms where often high-

quality reference genomes are not available [51, 63, 89].

80

6.2.1 Genome-guided approach

The genome-guided approach of transcriptome assembly makes use of a genome se-

quence while reconstructing the transcripts [44]. These approaches first map the se-

quenced reads to the reference genome using a splice-aware aligner such as TopHat2

[67], HISAT2 [68] or STAR [38]. The mapping information is then used to construct

a graph that represents the splice junction of the transcripts (splice graph). The final

transcripts are extracted by traversing the graph. Bayesembler [92], Cufflinks [135],

StringTie [112], and Scallop [123] are some examples of genome-guided assembly tools

that have been used extensively. To handle the presence of introns in the genome, the

aligners take splice-junction sites into consideration and allow split-mapping where

one part of a read is mapped to one exon and another part to another exon. One issue

with using short reads is that they can be mapped to multiple locations in the genome

due to the existence of repetitive sequences or highly similar duplicated genes. The

read-mapping strategies used by different aligners handle such ambiguities differently

[104]. The techniques used to construct the graph and the contig sequences from the

mapping information are also different among the methods. Selection of aligners and

assembly methods, therefore, has a significant impact on the assembly results. The

availability of a high-quality reference genome is also necessary for accurate assembly.

If the read sequences and the reference genome are not from the same strain of the

same species, the resulting divergence in the read and reference sequences could also

cause assembly mistakes.

Cufflinks is one of the most widely used genome-guided transcriptome assemblers

[135]. It can be used not only to assemble transcripts but also to estimate their

abundance and to test differential expression. Cufflinks constructs an overlap graph

based on the alignments of the overlapping reads on the genome. Transcripts are

81

identified by traversing the minimal paths that cover all alignments in the graph

(each path represents a different isoform). Since Cufflinks performs transcriptome

assembly and expression-level estimation separately, it does not consider transcript

abundance when finding the minimal set of transcripts. StringTie simultaneously

assembles transcripts and estimates their expression levels [112]. From the clusters

of reads mapped to the genome, it creates a splice graph for each cluster. It then

traverses the splice graph to construct transcripts. For each transcript, it creates a

flow network to estimate its expression level using an optimization technique known as

the maximum flow algorithm. This information is iteratively used to update the splice

graph. Scallop, a more recent genome-guided tool, also creates a splice graph from

the clustered reads mapped on the genome [123]. It preserves phasing paths using the

reads that span more than two exons. By iteratively decomposing each splice graph,

it reduces false transcripts. By incorporating phasing information, Scallop achieves

improved assembly of multi-exon transcripts and lowly expressed transcripts.

6.2.2 De novo approach

The de novo approach of transcriptome assembly reconstructs transcript sequences

from short reads without using a reference genome. Most of the de novo transcriptome

assembly techniques use the de Bruijn graph based on k-mers [32], which include

Trinity [52, 58], IDBA-Tran [29], SOAPdenovo-Trans [149], and rnaSPAdes [24]. A

k-mer of a sequence is a subsequence of length k, i.e., k consecutive nucleotides.

During the assembly process, each sequence is decomposed into all possible fixed-size

k-mers. The nodes or vertices of a de Bruijn graph are represented by the k-mers.

An edge is created between two nodes if the corresponding k-mers have a suffix-prefix

overlap of length k-1, i.e., the last k-1 nucleotides of one k-mer exactly match with first

k-1 nucleotides of the other k-mer. Two consecutive k-mers of a sequence, therefore,

82

can be represented as two nodes with an edge between them. Thus, a de Bruijn

graph represents a set of reads as each read induces a sequence of edges that joins

a sequence of vertices, i.e., a path. If two read sequences share a subsequence, then

a common path is induced in the graph. If two read sequences have a suffix-prefix

overlap, then a single path is induced for both sequences. After a de Bruijn graph is

constructed, different paths are traversed to generate the putative transcripts. Note

that if the reads are derived from highly similar (but not identical) sequences, they

create isolated nodes and loops, which affects the accuracy of the graph construction.

Sequencing errors can also cause false k-mers (those containing erroneous nucleotides)

to participate in the graph construction by creating false nodes. The false nodes either

break the path or creates a false path if overlapped with another k-mer.

For de Bruijn graph-based assembly methods, the choice of the k-mer size plays

an important role on the quality of the assembly and also creates trade-offs between

several effects [40]. While short k-mers are expected to cover the original transcript

fully and resolve the problems caused by errors in the sequences, they also create

ambiguity because they can be shared among multiple transcripts. If repeats are

longer than k, it creates forks in the graph, which causes the contig to break up.

Longer k-mers, on the other hand, are expected to have higher chances of containing

sequence errors. The errors in the k-mers cause the loss of overlap information, which

affects the accuracy of the de Bruijn graph construction. In reality, it is difficult to

determine which k-mer size generates the optimal assembly for a given data using

a given assembler. Different assemblers result in different sets of transcripts even if

they are used with the same k-mer size. When the same method is used with different

k-mer sizes, assembly outputs can be also different.

Trinity includes three modules: Inchworm, Chrysalis, and Butterfly [52, 58]. Inch-

worm removes the erroneous k-mers from the read sequences, and then uses a greedy-

83

extension based overlap method to assemble reads into contigs. Chrysalis clusters

the contigs and constructs a de Bruijn graph for each cluster. Finally, Butterfly tra-

verses the graphs to construct transcripts. SOAPdenovo-Trans is an extension of the

SOAPdenovo2 genome assembler [149, 88]. It uses the error removal methods of Trin-

ity to remove edges representing the erroneous k-mers. The contigs extracted from

the de Bruijn graphs are mapped to reads to build linkage between them, and the

contigs are clustered into subgraphs based on the linkage information. Finally each

subgraph is traversed to generate the transcripts. The default k-mer sizes for Trinity

and SOAPdenovo-Tran are 23 and 25, respectively.

IDBA-Tran uses a unique assembly strategy [29]. It iterates k-mers from small

to large k (k = 20 to 60 in every 10 in default) to balance the advantages and

limitations of k-mer sizes. For each k-mer, it constructs a de Bruijn graph and then

travers the graph to generate contigs. The results from different k-mer sizes are

merged by including the contigs generated with smaller k-mers as part of the input

in the next iteration with a larger k-mer. rnaSPAdes is an extension of the SPAdes

genome assembler [149, 88]. The de Bruijn graph used in SPAdes was modified for

transcriptome assembly to handle paired-end reads, uneven coverage, and multiple

insert sizes. Similar to IDBA-Tran, iterative de Bruijn graph construction was used

but with only two k-mer sizes (one small and one large) dynamically selected using

the input read data information.

6.2.3 Ensemble approach

No single assembler is considered to be the optimal for a wide range of input data

[127, 143]. While it is possible to increase the true transcript reconstruction by com-

bining the assembly results of multiple assemblers, this approach can also increase the

number of mis-assembled transcripts. The ensemble approach of transcriptome as-

84

sembly attempts to reduce the number of mis-assembled transcripts without removing

many correctly assembled transcripts. EvidentialGene [48] and the method proposed

in [26] (we call this method “Concatenation”) merge multiple de novo assemblies and

cluster contigs using either CD-HIT [80] or BLAST [4, 3] and select the representa-

tive sequences for the final assembly set. We previously reported a consensus strategy

where multiple k-mers are considered for assembly and simple voting is used to select

the contigs that are assembled by at least three out of four de novo assemblers for the

final assembly set [143]. TransBorrow [151] is an ensemble approach that combines the

results from different genome-guided assemblers. TransBorrow first extracts reliable

subpaths supported by paired-end reads from a splice graph. Transcripts assembled

by multiple genome-guided methods are merged and colored graphs representing the

merged transcripts are built. Reliable assembly subpaths are further extracted based

on the number of assemblers that detected each subpath (transcript). After combin-

ing reliable assembly subpaths and reliable subpaths on the splicing graphs, the final

transcripts are assembled.

6.3 Performance Evaluation of Transcriptome Assembly

In order to evaluate the transcriptome assembly performance, we need to quantify the

accuracy of assembled transcriptomes. Assembly performance metrics can be grouped

into two classes: reference-free and reference-based. The reference-based metrics are

further grouped into those based on real biological data and those based on simulated

benchmark data.

85

6.3.1 Performance metrics without references

When high-quality reference sequences are not available to provide the ground truth,

some assembly statistics can be used as reference-free performance. Some commonly

used assembly statistics include:

• Number of contigs

• Median contig length (bp)

• N50 (or Nx): a length-weighted median where the sum of the lengths (bp) of all

contigs longer than the N50 (or Nx) is at least 50% (or x%) of the total length

of the assembly

rnaQUAST [23], for example, can be used to obtain these metrics. Higher values

of N50 (Nx) indicate that a greater number of reads are overlapped to form longer

contigs. In contrast to genome assembly, where longer contigs (e.g., larger N50)

indicate a higher quality assembly, a transcriptome includes transcripts with varied

lengths. The longer contigs in a transcriptome assembly could also represent over-

assembly or chimeric contigs. Therefore, for a transcriptome assembly, the length-

based metrics are not always useful as accuracy measures [102].

DETONATE provides a model-based score, RSEM-EVAL [78]. It combines the

compactness of an assembly and the support of the assembly from the RNA-seq

reads into a single score based on their joint probability. Higher RSEM-EVAL scores

indicate better assembly performance.

TransRate [127] provides an assembly score based on four contig scores:

• s(Cnuc): measures the extent to which the nucleotides in the mapped reads are

the same as those in the assembled contig

86

• s(Ccov): measures the proportion of nucleotides in the contig that have zero

coverage

• s(Cord): measures the extent to which the order of the bases in contig are correct

• s(Cseg): measures the probability that the coverage depth of the transcript is

univariate, which represents a single-transcript assembly, not a hybrid/chimeric

assembly

• r (TransRate assembly score): the geometric mean of the four contig scores

multiplied by the proportion of RNA-seq reads that provide positive supports

for the assembly (those map to the assembly)

6.3.2 Performance metrics using actual biological data

When the references (either genome or transcriptome sequences) are available, reference-

based metrics can be calculated. rnaQUAST [23], for example, provides the gene-level

metrics (e.g., numbers of assembled genes/isoforms/exons and their lengths) as well

as the alignment metrics (e.g., numbers of aligned, unaligned, or misassembled tran-

scripts).

DETONATE provides a tool kit, REF-EVAL [78], which computes a number of

reference-based scores including:

• Recall, Precision, and F1: calculated at contig or nucleotide-level (see the equa-

tions [3] - [5] below)

• KC (k-mer compression) score: measures the accuracy of the assembly based

on the weighted k-mer recall and the compression ratio between the assembly

and the RNA-seq data

87

The quality of the assembly can be also evaluated based on the proportion of the

predicted gene or protein sequences matched with those in the database of known

genes or proteins. BUSCO [125], for example, provides a quantitative assessment

of the completeness of an assembly in terms of the expected content of the lineage-

specific gene dataset. The Benchmarking Universal Single-Copy Orthologs (BUSCO)

is extracted from OrthoDB [72]. Orthologous candidate genes are searched at the

protein level in the assembly and the results are summarized into five categories:

complete and single-copy, complete and duplicated, fragmented, and missing.

In the comprehensive study reported in [60], these metrics were used to compare

ten de novo assemblers using nine actual RNA-seq datasets.

6.3.3 Performance metrics using simulated benchmark data

Simulation can provide a way to generate benchmark datasets where the ground truth

is known. This is the advantage over using the actual biological data as the reference,

where the ground truth cannot be known completely. For a transcriptome analysis,

RNA-seq can be simulated to generate short reads derived from a set of transcripts

whose sequences are known. The simulated reads are used with assembly methods

and the assembled contigs are compared with the original transcripts. This is also

the only way where the information about the transcripts that are not assembled

(missing transcripts) can be fully evaluated.

A contig generated by an assembler is considered to be correctly assembled (posi-

tive) if the identical sequence is present in the reference transcriptome in the bench-

mark dataset. A contig is considered to be mis-assembled (negative) if the identical

sequence is not present in the reference transcriptome in the benchmark dataset. Note

that less stringent performance evaluation can be performed by using a lower thresh-

old (< 100%) to identify positive contigs. It is also possible to use a protein-level

88

similarity instead of a nucleotide-level similarity to identify positive contigs. The test

results are categorized as the following three outcomes:

• True positive (TP): a correctly assembled contig

• False positive (FP): a mis-assembled contig (including both partially correctly

assembled and those with no similarity with the reference)

• False negative (FN): a benchmark transcript that is missing in the assembly

Note that true negative (TN) can be counted only if the benchmark dataset includes

a negative transcript set (transcript sequences that do not belong to the reference

set) and the assembly experiments are done including reads that are derived from

negative transcripts.

The performance of each assembler is evaluated by the following metrics:

• Correct/incorrect ratio (C/I) = TP
FP

[1]

• Accuracy = (TP+TN)
(TP+FP+FN+TN)

or Accuracy* = TP
(TP+FP+FN)

[2]

• Recall (or Sensitivity) = TP
(TP+FN)

[3]

• Precision = TP
(TP+FP)

= 1 - False Discovery Rate (FDR) [4]

• F-measure (F or F1) = (2(TP))
(2(TP)+FP+FN)

[5]

In the equations above, TP , FP , TN , and FN are the numbers of instances in those

categories. As shown in the equation [2], when TN is not counted, Accuracy cannot

be calculated. In such cases, we define a modified accuracy (Accuracy*) without

using TN .

The higher C/I shows that among the assembled contigs (predicted positives)

there are more correctly assembled contigs (TP) than the mis-assembled contigs

89

(FP). This is similar to Precision where the proportion of correctly assembled con-

tigs (TP) is shown relative to all assembled contigs. Recall also shows the proportion

of correctly assembled contigs (TP) but relative to the number of transcripts in the

reference (actual positives). Accuracy (or Accuracy*) and F-measure are combined

metrics. F-measure is useful because it balances the concerns of Recall and Precision

and does not require TN to be counted.

All the above metrics can be calculated at both the nucleotide and protein se-

quence levels. Depending on the transcriptome assembly algorithms, the 5’ and 3’-

ends of contigs are defined differently. Such small differences at the 5’ and 3’- ends

could have significant effects on the TP counts. By using the protein-level accuracy,

this issue can be avoided. However, the performance metrics can also be affected

depending on how the gene-prediction algorithm used to identify the open reading

frame (ORF) from each contig works.

Although the assembly performance metrics calculated using simulated benchmark

datasets are expected to provide better evaluation of the performance of transcriptome

assemblers, challenges remain on how biologically realistic the simulation of RNA-seq

data can be. If the read distribution and sequencing errors, for example, are not

modeled properly, assemblers may perform well on simulated data but poorly on real

data or vice versa.

6.4 Simulated Benchmark Transcriptome Datasets Genera-

tion

To analyze the performance of transcriptome assemblies, each of the benchmark tran-

scriptome datasets should include the annotated genome, the transcriptome from

which simulated RNA-seq is performed, and the RNA-seq data. In this section, we

90

first briefly describe the methods that can be used to simulate RNA-seq. We then

discuss protocols to generate simulated benchmark datasets.

6.4.1 RNA-seq simulation methods

There are several tools that can simulate RNA-seq with short-read sequencing using

the Illumina platform and/or third-generation long-read sequencing using the PacBio

SMRT and ONT MinION platforms [156]. Many short-read simulators developed for

benchmarking transcript abundance and differential expression tools, such as RSEM

[77], SimSeq [18], SPsimSeq [5], and seqgendiff [47], model the error distribution and

changes in transcript expression found in real RNA-seq datasets. This modeling can

include sequence specific bias, such as producing fewer GC-rich reads [87], as in an

extension to Polyester [45]. Some short-read simulators, such as Flux Simulator [53],

attempt to reconstruct each step of the library preparation and sequencing pipeline,

mimicking the errors and biases introduced at each step. Long-read simulators, in-

cluding PBSIM [103], LongISLND [75], Badread [147], and Trans-Nanosim [56], focus

on identifying the statistical distribution of read lengths and errors within the reads,

especially the prevalence of insertions or deletions, which are common in long reads

but rare in short reads. Note that while Trans-Nanosim is the only long-read simula-

tor specifically built for RNA-seq data, all of these simulators have been applied to

introduce sequencing errors to model transcriptomic data.

6.4.2 Examples of RNA-seq simulation

To illustrate how the RNA-seq simulation is done, for this example, we used Flux

Simulator [53]. To model a range of transcriptome complexity, six genomes from

four plant species including both monocots (Oryza sativa and Zea mays) and dicots

(Glycine max and Arabidopsis thaliana) were chosen. The reference genome each

91

simulation was based is listed in Table 6.1. Using these genome sequences and gene

annotations provided in gff files, RNA-seq simulation was performed as follows:

1. The expression profile was generated by Flux Simulator using the reference

genome. Flux Simulator in default assigns random expression levels to genes

and transcripts.

2. Fragmentation of the expressed transcripts was done using a uniform random

distribution. For this example, the lengths were set to 300bp +/- 150bp. The

fragments ≥ 150bp were retained.

3. For sequencing, the Illumina Hi-Seq sequencing profile, which models sequencing

errors, insert size, and transcript coverage, was used to generate 76 bp paired-

end reads. For each transcriptome, a total of ∼495 million reads were generated

with more than 50X coverage for most transcripts.

4. For the reference set of transcripts, those that are mapped with sequenced reads

with no gap in the coverage were chosen.

5. ORFfinder [146] was used to identify the ORFs from each reference transcript,

and the longest ORFs was chosen.

6. After removing the redundant sequences, the benchmark transcriptome was

obtained at both nucleotide and protein levels.

The detailed protocol is described in [145].

Existence of isoforms in transcriptomes can impact the assembly performance. As

shown in Table 6.1, a significant variation in the number of isoforms was incorporated

among the six benchmark datasets. The Z. mays B73 dataset has the highest level

of isoform complexity. It contains more than 35% of the genes with two or more

92

isoforms and maximum number of isoforms in a gene is 20. In contrast, the majority

of the genes (93%) in the dataset based on another strain of maize, Z. mays Mo17,

have only one isoform (no alternative splicing). The A. thaliana No0 dataset has no

multiple-isoform genes as the No0 reference transcriptome does not include isoform

information, and hence each gene is represented by a single transcript. Although these

datasets may not represent the actual distribution of isoforms in these genomes, they

are useful for testing the impact of isoforms in transcriptome assembly.

In addition to incorporating isoforms, simulated benchmark datasets can be gen-

erated incorporating different levels of ploidy. Such simulation protocols can be found

in, e.g., ([144]).

6.5 Performance Comparison among Transcriptome Assem-

blers

In this section, we will demonstrate how the performance among transcriptome as-

semblers can be compared using the simulated benchmark datasets prepared in the

previous section.

Before running transcriptome assemblers, the simulated reads need to be prepro-

cessed. We used the following settings:

• Quality filtering using Erne-filter 2.0 [43] with minimum mean Phred quality

20, ’ultra-sensitive’ flag, and paired-end mode

• Read normalization using Khmer [34] with k-mer size of 32, an expected cover-

age of 50X, and paired-end mode

We compared the transcriptome assembly performance among three genome-

guided (Cufflinks, StringTie, and Scallop), four de novo (IDBA-Tran, SOAPdenovo-

93

Trans, Trinity, and rnaSPAdes), and three ensemble (EvidentialGene, Concatena-

tion, and the consensus approach) assemblers. For this analysis, performance metrics

were calculated at the level of protein sequences. The longest ORF was identified

by ORFfinder from each contig, and the translated ORF sequences were compared

against the translated benchmark transcriptome. A contig was considered correctly

assembled only if its coded protein sequence was identical to one of the translated

benchmark transcripts.

6.5.1 Genome-guided approach

We used HISAT2 for aligning simulated short reads to the reference genomes before

using the three genome-guided assemblers. To examine the effect of the reference

genome, for A. thaliana and Z. mays, in addition to aligning each read set against

the reference genome from which the simulated RNA-seq was performed, it was also

aligned against the genome of the different strain of the same species. These results

are shown as “same reference” and “different reference” in Table 6.1, respectively.

The simplest test is the one with the A. thaliana No0 dataset, which does not include

multiple isoforms for any gene, assembled using the same No0 genome as the reference.

Surprisingly, no genome-guided methods had higher than 65% accuracy, with more

than 25% of assembled contigs to be incorrect (C/I ≤ 3). With more realistic isoform

complexity, no method achieved the accuracy better than 50%. With both of the

Z. mays datasets, more than half of assembled contigs were incorrect (C/I ≤ 1).

When these genome-guided methods were used with different references, although

they are still from the same species, assembly performance deteriorated significantly:

< 22% for the A. thaliana datasets and < 10% for the Z. mays datasets. For both

Z. mays datasets, only 1 in 6 contigs were found to be correctly assembled (C/I ≤

0.2). It is notable that both Z. mays datasets generated lower quality assemblies

94

Table 6.1: Comparison of transcriptome assembly performance among different
methods.a

 23

Table 1. Comparison of transcriptome assembly performance among different methods.a

Genome-guided
(same reference)

 Genome-guided
(different reference)

 De novob

Cufflinks StringTie Scallop Cufflinks StringTie Scallop IDBA-

Tran
SOAPdenovo

-Trans
Trinity rnaSPAdes

[A. thaliana No0 (CS6805): 18,875 (100, 1, 1)]c
 Reference: Col0

contigsd 19,288 21,027 21,397 21,178 20,264 18,817 22,768 29,773 23,476 27,664

Accuracy* 0.62 0.65 0.61 0.18 0.22 0.22 0.25 0.30 0.40 0.28
C/I 3.07 2.92 2.45 0.39 0.54 0.56 0.58 0.60 1.06 0.57

[A. thaliana Col0 (TAIR9): 15,508 (79.03, 1.29, 8)]c

 Reference: No0
contigsd 15,768 16,908 18,055 17,441 16,470 17,179 20,449 21,371 19,409 31,494

Accuracy* 0.38 0.44 0.46 0.14 0.17 0.19 0.20 0.25 0.36 0.19
C/I 1.20 1.43 1.42 0.30 0.39 0.45 0.42 0.52 0.92 0.32

[Soybean (GCF_000004515.4): 18,215 (93.75, 1.07, 7)]c

contigsd 18,823 20,887 19,355

 33,243 52,700 24,346 23,686

Accuracy* 0.48 0.46 0.48

 0.13 0.08 0.25 0.24
C/I 1.77 1.44 1.67

 0.22 0.12 0.53 0.52

[Rice (GCF_001433935): 11,294 (97.97, 1.02, 3)]c

contigsd 10,200 9,344 11,436

 13,151 18,000 10,508 13,182

Accuracy* 0.39 0.40 0.48

 0.16 0.17 0.30 0.28
C/I 1.42 1.74 1.80

 0.36 0.30 0.93 0.69

[Z. mays B73 (GCF_000005005): 17,108 (74.08, 1.5, 20)]c

 Reference: Mo17
contigsd 14,512 15,585 16,592 17,347 20,887 19,119 24,603 27,403 22,327 23,764

Accuracy* 0.26 0.32 0.26 0.08 0.09 0.10 0.11 0.08 0.17 0.11
C/I 0.79 1.04 0.71 0.18 0.18 0.21 0.20 0.13 0.35 0.20

[Z. mays Mo17 (GCA_003185045.1): 17,479 (96.91, 1.04, 6)]c

 Reference: B73
contigsd 18,163 24,388 21,572 18,543 21,944 19,257 24,916 26,257 21,537 21,469

Accuracy* 0.29 0.24 0.26 0.08 0.08 0.08 0.13 0.09 0.18 0.16
C/I 0.80 0.50 0.60 0.18 0.15 0.17 0.24 0.16 0.37 0.33

aThe best Accuracy* and C/I among all assemblers are shown in red. The scores in blue are the best

among the de novo assemblers.
bThe default kmer sizes were used for the de novo assemblers.
cAfter each species name, the accession numbers of the reference genomic sequences used are shown in

parentheses. The assembly of A. thaliana No0 (59) was downloaded from the 1001 genomes project

(60). The assembly of A. thaliana Col0 was from the version 9 of the TAIR reference genome (61) and

 24

aThe best Accuracy* and C/I among all assemblers are shown in red. The scores in blue are the best

among the de novo assemblers.
bThe default kmer sizes were used for the de novo assemblers.
cAfter each species name, the accession numbers of the reference genomic sequences used are shown in

parentheses. The assembly of A. thaliana No0 (59) was downloaded from the 1001 genomes project

(60). The assembly of A. thaliana Col0 was from the version 9 of the TAIR reference genome (61) and

version 3 of the AtRTD transcriptome data set (62). The number after the colon is the total number of

transcripts included in each benchmark dataset. The numbers in parentheses are % single-isoform gene,

the average number of isoforms/gene, and the maximum number of isoforms/gene, in this order.
dThe numbers of contigs are based on those unique at the protein sequence level.

95

compared to other datasets. A relatively lower quality of the Z. mays genomes may

have contributed to the significantly poor performance of these assemblers with these

datasets.

The overlap between correctly and incorrectly assembled contigs among the as-

semblies generated by the three genome-guided assemblers is illustrated in Figure 6.1.

While each assembler generated a unique set of correct as well as incorrect contigs,

∼70% or more of correctly assembled contigs were generated by all three assemblers.

The exception was for the Z. mays B73 (37%) dataset. In contrast, the majority of

incorrectly assembled contigs (62-87%) were uniquely generated by each assembler,

and a very small number of contigs were incorrectly assembled by all three methods.

6.5.2 De novo approach

Each of the four de novo assemblers was run with the default parameters. As shown in

Table 6.1, for all benchmark datasets, all de novo assemblers generated more contigs

compared to genome-guided methods. However, their low accuracy (< 0.31) and

C/I scores (<0.63) indicate a large number of contigs were incorrectly assembled.

Trinity, followed by rnaSPAdes, performed better than other de novo assemblers for

all datasets. Interestingly while the de novo assemblers did not perform better than

the genome-guided methods used with the same references, the performance of the de

novo assemblers was better than the genome-guided methods when they were used

with different references. Similar to the genome-guided assembly, the largest numbers

(≥ 30% except 17% for the Z. mays B73 dataset) of the correctly assembled contigs

were found in the group of contigs shared by all four de novo assemblers (Figure

6.2). Incorrectly assembled contigs were also found to be most likely assembled by

individual assemblers uniquely and not shared with other assemblies.

96

Figure 6.1: Numbers of correctly and incorrectly assembled contigs shared
among the three genome-guided assemblers. Each genome-guided assembly
was performed using the reference and the RNA-seq data from the same genome.
Venn diagrams were generated using JVenn [9].

97

 27

Figure 2. Numbers of correctly and incorrectly assembled contigs shared among the four de novo
assemblers used with the default settings. Venn diagrams were generated using JVenn (63). Figure 6.2: Numbers of correctly and incorrectly assembled contigs shared

among the four de novo assemblers used with the default settings. Venn
diagrams were generated using JVenn [9].

98

6.5.3 Combining de novo assemblies generated using different k-mers

Since the optimum k-mer size for each transcript assembly varies, different sets of

correctly assembled contigs are expected even when the same de novo method is

used with different k-mer sizes. Therefore, by combining the results from multiple

k-mers, we expect to find more contigs correctly assembled by de novo assemblers.

To illustrate this idea, for each of the four de novo assemblers, we used multiple k-

mer sizes and generated a “pooled assembly” by combining their results (the union

set). The four pooled assemblies are compared in Figure 6.3. Compared to Figure

6.2, the proportion of correctly assembled contigs shared by all four pooled assemblies

increased significantly (≥ 55% except 36% for the Z. mays B73 dataset). Furthermore,

only a very small proportion (≤ 10%) of the incorrectly assembled contigs were shared

by two or more pooled assemblies.

6.5.4 Analysis of k-mers used in assembled contigs

The k-mers of a contig that are not present in the benchmark transcriptome are

considered to be false k-mers. When false k-mers are used for the de Bruijn graph

construction in de novo assemblers, it generates incorrect contigs. To understand

why the Z. mays B73 dataset generated poor assemblies regardless of the methods,

we analyzed k-mers found in contigs assembled by the four de novo assemblers (Table

6.2). Compared to the assemblies generated from the Rice dataset, those generated

from the Z. mays B73 dataset were represented by significantly lower numbers of true

k-mers (the k-mers that are found in the benchmark transcriptome). Only for fewer

than 50% of contigs assembled for the Z. mays B73 dataset, 90% or more of k-mers

found were true k-mers. It appears that a large number of false k-mers were included

in the de Bruijn graph construction for the maize transcriptomes leading to the poor

99

 28

Figure 3. Numbers of correctly and incorrectly assembled contigs shared among the four pooled
de novo assemblies. The following kmers are used: for IDBA-Trans, k=20~60 with increment of 10;
for SOAPdenovo-Trans and rnaSPAdes, k=19~71 with increment of 4; and for Trinity, k=15~31 with
increment of 4. Venn diagrams were generated using JVenn (63).

Figure 6.3: Numbers of correctly and incorrectly assembled contigs shared
among the four pooled de novo assemblies. The following k-mers are used: for
IDBA-Trans, k=20 60 with increment of 10; for SOAPdenovo-Trans and rnaSPAdes,
k=19∼71 with increment of 4; and for Trinity, k=15∼31 with increment of 4. Venn
diagrams were generated using JVenn [9].

100

de novo assembly performance for this dataset.

Table 6.2: The k-mer analysis for the de novo assemblies using the Z. mays B73 and
Rice datasets.a

 25

Table 2. The kmer analysis for the de novo assemblies using the Z. mays B73 and Rice datasets.a

 IDBA-Tran SOAPdenovo-Trans Trinity rnaSPAdes

[Rice]

% true kmersb 96.09 97.56 98.89 55.27

% contigs with >90% true kmersc 95.96 92.86 97.68 58.91

[Z. mays B73]

% true kmersb 26.18 48.7 53.57 27.72

% contigs with >90% true kmersc 15.23 47.6 38.7 21.81

aAll results are based on pooled assembly.

bThe proportion (%) of the kmers (k=31) found in the contigs that were also found in the benchmark

transcripts (true kmers).

cThe proportion (%) of the contigs where 90% or more of the kmer found were true kmers.

6.5.5 Ensemble approach

We finally compared the assembly performance of all individual methods with the

three ensemble approaches (EvidentialGene, Concatenation, and the aforementioned

consensus approach; see ([145]) for how these ensemble methods were used). Both

EvidentialGene and Concatenation over-assembled and accumulated incorrectly as-

sembled contigs as shown in their significantly higher Recall compared to Precision

(Figure 6.4). It indicates that these methods recover many transcripts correctly at the

expense of having a disproportionally large number of incorrectly assembled contigs.

The F-measure (the combined score of Recall and Precision) scored lower for Eviden-

tialGene and Concatenation compared to individual de novo assemblies for most of

the datasets. It should be noted, however, that although many contigs retained by

101

29

Figure 6.4: Comparison of transcriptome assembly performance among dif-
ferent methods. The simulated RNA-seq data (gray boxes) and the reference
genome (for genome-guided methods; white boxes) used are shown at the top of
each bar chart. The default k-mers were used for the de novo methods. At: A.
thaliana, Zm: Z. mays.

102

these ensemble methods are identified to be incorrect, they are reported to be still

highly similar (> 98%) to the benchmark transcripts [145]. The consensus approach

consistently performed better than all of the de novo assemblers for all datasets and

achieved the performance similar to the genome-guided assemblers without requiring

good reference genomes.

6.6 Minsemble: a New Ensemble Approach

Similar to other ensemble approaches such as EvidentialGene, Concatenation, and

our recently developed consensus-based method, ConSemble [145], our new approach,

Minsemble, makes use of assembly results from multiple de novo assemblers to im-

prove accuracy of transcriptome assembly. Minsemble uses both clustering approach,

as used in EvidentialGene and Concatenation, and the voting-based contig selection

as used in ConSemble. However, the clustering process of Minsemble is isoform-based,

i.e., grouping is based on the potential isoforms originated from the same gene. While

the clustering of contigs for EvidentialGene, Concatenation, and ConSemble is used

to remove redundancy, the goal of the isoform-based contig clustering used in Min-

semble is to retain the isoforms for the final assembly. Minsemble follows three main

steps.

• Minhash signature generation for each assembly

• Clustring of potential isoforms

• Selection of contigs for the final assembly

The main steps of the entire Minsemble method is shown in Figure 6.5 and the

Minsemble pipeline for transcriptome assembly is shown in Figure 6.6.

103

Generate minhash signatures
(using containment-sensitive minhash)

Contigs from assemblies

Cluster the contigs using LSH-based
bucketing

(contigs represent potential isoforms of
genes are clustered)

For each cluster, select the contigs if it is
>=99% identical with at least two other

contigs

Final assembly

Figure 6.5: Minsemble procedure. See Figure 6.6 for the entire Minsemble transcrip-
tome assembly pipeline.

6.6.1 Minhash signature generation

Computation of sequence similarity is the key to the clustering of sequences. The

sequence similarity is usually calculated by using sequence alignment algorithms. For

a large-scale analysis, it can be approximated by comparing q-gram sets. As shown

in Figure 6.7, the sequences can be converted into sets of q-grams. The proportion

of q-grams shared by sequences provides a good estimate of their similarity. The

Jaccard similarity is often used to compute the similarity between two sets, which

104

trimming, filtering and
normalization

Trinity
(kmers: 19,23,27,31)

pooled assembly

SOAPdenovo-Trans
(kmers: 19 to 71 in

every 4)

IDBA-Tran
(kmers: 20,30,40,50,60)

rnaSPAdes
(kmers: 19 to 71 in

every 4)

pooled assembly pooled assembly

protein sequences
(duplicates removed)

protein sequences
(duplicates removed)

protein sequences
(duplicates removed)

protein sequences
(duplicates removed)

Minsemble

RNA-Seq reads

Final assembly

Pooled from multiple
kmers

ORFfinder
(Longest predicted protein

sequence is selected)

pooled assembly

Figure 6.6: The Minsemble pipeline. The details for the Minsemble step are shown
in Figure 6.5.

is calculated as the ratio of intersection over union. For sequence analysis, it can

be achieved by decomposing sequences into q-gram sets and calculating the Jaccard

similarity score between the two q-gram sets.

Minhash [22] is a technique to estimate the Jaccard similatity very efficiently for

large datasets. It estimates by converting a set into a fixed-size integer signatures

where the size of the signature is much smaller than the size of the sets. This technique

has been used in many bioinformatics applications such as genome and metagenome

distance estimation [101]. A minhash signature of a sequence is generated as follows.

Let Q = {q1, q2, · · · , qn} be the set of all possible q-grams of a sequence of S, where n

is the number of q-grams, and H = {H1, H2, · · · , HN} be the set of N hash functions.

The hash functions are used to generate hash values for each q-gram of S. Using

hash function Hi, let the set of hash values of all q-grams be {h1i, h2i, · · · , hni} and

105

1S : caagtctagtatacgact-
S2: ca-gtctagtatatgactt

Example of CNE identification

Are these two sequences considered to be CNEs?

S1 : caagtctagtagacgact-
S2 : ca-gtctagtagatgactt

CNEs: nucleotide sequences 85% identical
S1 and S2 are CNEs
CNE candidates can be e ciently found based on shared q-grams

S1 S2

q-gram distribution

32 / 68

1

A.

B.

ca ga
gt ac
tc ta
ct ag
 at

aa
cg

tt
tg

Figure 6.7: Sequence similarity estimation using q-grams. (A) The sequence
alignment of sequences S1 and S2. There are one mismatch (shown in blue) and two
gaps (shown in red). These two sequences are 84% identical. (B) A Venn diagram of
the two q-gram sets. In this example, the sequences are converted into a set of 2-grams.
The Jaccard similarity score can be calculated as J(S1, S2) = |S1∩S2|

|S1∪S2| = 9
13
≈ 0.7.

the minimum value in this set be vi. For each hash function in the set H, a set of

hash values is generated and the minimum value among them is chosen. For N hash

functions, {v1, v2, · · · , vN} becomes the set of minimum values. The set of minimum

values generated with N hash functions is the minhash signature of the sequence S,

Sig(S). The main idea of minhash signature is to randomly pick a fixed number of

q-grams from a set. Given two seqeuences S1 and S2, the intersection-over-union score

of the minhash signature sets of the q-gram sets of these two sequences provides a good

estimate of the Jaccard similarity score, J(S1, S2). The probability of two minhash

106

signatures being the same is a good approximation for the Jaccard similarity score

between two sequences, i.e., J(S1, S2) ≈ Pr[Sig(S1) = Sig(S2)]. The approximation

becomes better when more hash functions are used for signature generation.

Isoform clustering and minhash

8

S4

 S1

S2 S3

S1

x
S3

S1

S2
x

S1

S4x

B.

C.
S1

S4S2 S3

A.

Figure 6.8: Isoform and q-gram distribution. (A) Isoform structures from a gene.
Exon structures of four isoforms (S1-S4) are shown. The same colors indicate the
shared exons. For example, the gray exon is shared between isoforms S1 and S3. (B)
Distribution of q-grams among isoforms. q-grams from S2 are completely contained
in the q-gram set from S1. All exons of S3 are also shared with S1. However, some
q-grams derived from the junction region between the gray and yellow exons may not
exist in S1 because these two exons are not adjacent to each other in S1. S4 has
the brown exon that does not exist in S1. Therefore, S4 has more unique q-grams
compared to S1. (C) Fixed-size subsequences generated from each isoform for the
containment-sensitive minhash. Subsequence regions shared between S1 and other
isoforms are indicated with colored rounded rectangles. q-grams are generated from
each subsequence.

The minhash approach works well for the sequences of similar lengths. However,

it does not work very well when the lengths of sequences differ significantly. For

example, a shorter sequence can be completely contained in a longer sequence. In

such cases, there is a high possibility that the q-grams of the longer sequence can be

107

picked from the segment that is not shared with the shorter sequence. As shown in

Figure 6.8, isoforms share some but not all exons. However, some q-grams of a longer

isoform, i.e., S1 in Figure 6.8A, could come from the region that are not shared by

other isoforms as shown in Figure 6.8B.

To address this problem, a containment-sensitive minhash approach [157, 70] can

be used. This allows the clustering of potential isoform sequences from the same gene.

In Minsemble, the containment-sensitive minhash approach is done as follows. Let

lmin be the length of the shortest sequence in the set of input sequences. Each sequence

si with length li is divided into subsequences of length lmin at r random positions

where r = 3× li
lmin

and li > lmin (6.8C). The choice of r ensures that there are at least

three overlapping subsequences for each position. While a higher r value increases

the number of overlapping regions and is expected to make better approximation, our

experiments on test data showed that r = 3 gives a satisfactory approximation and

very few false negatives. For each subsequence, q-grams are extracted, the minhash

signature is generated, and the final signature of a sequence is represented as a set of

minhash signatures.

6.6.2 Clustering of potential isoforms

Estimating the Jaccard similarity using minhash signatures for each pair of sequences

is not computationally efficient. The LSH-based bucketing method [22, 31] can be

used to cluster the sequences efficiently by avoiding performing too many pairwise

operations. LSH is a hashing technique to map two similar items into the same hash

value. The probability of two sequences being similar depends on the number of

shared elements in their minhash signatures. The LSH-based method makes use of

information about shared elements in minhash signatures to create buckets and put

similar sequences into the same bucket as follows. The minhash signatures are divided

108

into b bands with each band containing N
b

elements. A hash value that is generated

for each band becomes the signature of the bucket. If two signatures share the same

band, then they should share the same bucket. Bucket IDs are created for each band

and the sequence is assigned to the bucket corresponding to the band it contains. If

two sequences are similar or two segments of two sequences are similar, then there is a

high possibility that their corresponding minhash signature shares a band. Thus the

two sequences will be put into the same bucket. As a sequence can have b bands, at

most b buckets can contain that sequence. For two similar sequences, it may happen

that all b buckets contain the two sequences. Therefore, the LSH-bucketing step could

produe many redundant buckets, i.e., buckets sharing the same set of sequences. It

is also possible that one bucket may contain a sequence that is not similar to others

but share a band with them by chance. Therefore, finding and removing potential

false positives needs to be done by checking pairwise similairty within each bucket.

For isoforms that share some exons but are different in the middle exons are included

in the same bucket by using a bloom filter based q-gram membership test [15]. If two

isoforms from same gene do not share any exons, then it is possible that those two

isoforms are included in two different buckets.

6.6.3 Selection of contigs for final assembly

As described in section 6.5 ([145, 17]), using simulated benchmark datasets, we showed

that the chances of a contig being correctly assembled increases with the increase of

the number of assemblers that share that contig. As described in section 6.5.5 (Fig-

ure 6.4), our previously developed consensus-based approach, ConSemble, where the

contigs that are identical in coded protein sequences among at least three assemblers

are retained, showed significant improvement over other ensemble approaches such as

EvidentialGene and Concatenation. However, this approach still missed more than

109

IDBA_contig1 MVGYNNKKCWPRDARMRLMKHDVNLGRSVFWDMKNRLPRSITTLEWENGFVSVYSKDNPN
SOAP_contig1 MVGYNNKKCWPRDARMRLMKHDVNLGRSVFWDMKNRLPRSITTLEWENGFVSVYSKDNPN
SPAdes_contig1 MVGYNNKKCWPRDARMRLMKHDVNLGRSVFWDMKNRLPRSITTLEWENGFVSVYSKDNPN
Trinity_contig1 MVGYNNKKCWPRDARMRLMKHDVNLGRSVFWDMKNRLPRSITTLEWENGFVSVYSKDNPN

IDBA_contig1 LLFSMCGFEVRILPKIRMTQEAFSNTKDGVWNQMLLSDRFLGFYMVPESGLQNEQTKERT
SOAP_contig1 LLFSMCGFEVRILPKIRMTQEAFSNTKDGVWNQMLLSDRFLGFYMVPESGLQNEQTKE--
SPAdes_contig1 LLFSMCGFEVRILPKIRMTQEAFSNTKDGVWNQMLLSDRFLGFYMVPESGLQNEQ-----
Trinity_contig1 LLFSMCGFEVRILPKIRMTQEAFSNTKDGVWNQMLLSDRFLGFYMVPESG----------

A.

IDBA_contig2 MMMPWEQVRDVKVLYHITGAITFVNEIPWVVEPIYMAQWGTMWIMMRREKRDRRHFKRMR
SOAP_contig2 MPMPWEQVRDVKVLYHITGAITFVNEIPWVVEPIYMAQWGTMWIMMRREKRDRRHFKRMR
SPAdes_contig2 QPMPWEQVRDVKVLYHITGAITFVNEIPWVVEPIYMAQWGTMWIMMRREKRDRRHFKRMR
Trinity_contig2 MFMPWEQVRDVKVLYHITGAITFVNEIPWVVEPIYMAQWGTMWIMMRREKRDRRHFKRMR

IDBA_contig2 FPPFDDEEPPLDYADNLLDVDPLEPIQLELDEEEDSAVHTWFYDHKPLVKTKLINGPSYR
SOAP_contig2 FPPFDDEEPPLDYADNLLDVDPLEPIQLELDEEEDSAVHTWFYDHKPLVKTKLINGPSYG
SPAdes_contig2 FPPFDDEEPPLDYADNLLDVDPLEPIQLELDEEEDSAVHTWFYDHKPLVKTKLINGPSTR
Trinity_contig2 FPPFDDEEPPLDYADNLLDVDPLEPIQLELDEEEDSAVHTWFYDHKPLVKTKLINGPSPD

B.

IDBA_contig3 PQLSPQDVTSHSRILENNKQWDGEKCIILTCSFTPGSCSLTSYKLTQTGYEWGRLNKDNP
SOAP_contig3 -----------SRILENNKQWDGEKCIILTCSFTPGSCSLTSYKLTQTGYEWGRLNKDNP
SPAdes_contig3 ----PQDVTSHSRILENNKQWDGEKCIILTCSFTPGSCSLTSYKLTQTGYEWGRLNKDNP
Trinity_contig3 -------------------------PIILTCSFTPG-CSLTSYKEWETGFVWGRLNDNPN

IDBA_contig3 SNPHGYLPTHYEKVQM-LSDRFLGFYMVPESGPWNYSFTGVKHTLSMKYSVKLGSPKEFF
SOAP_contig3 SNPHGYLPTHYEKVQM-LSDRFLGFYMVPESGPWNYSFTGVKHTLSMKYSVKLGSPKEGF
SPAdes_contig3 SNPHGYLPTHYEKVQM-LSDRFLGFYMVPESGPWNYSFTGVKHTLSMKYSVKLGSPKEWP
Trinity_contig3 LLFSMCGPEVRILPKIRMTQEAFSNTKDGVWNQMLLSDRFLGFYMVPESG----------

C.

Figure 6.9: Retention of highly similar contigs and potential isoforms. Con-
tigs (in coded protein sequences) in the same cluster are aligned. Positions with
mismatches or gaps are shown in red color. (A) All contigs will be retained for the
final assembly as pairwise similarity is all 100% excluding the gaps at the end regions.
(B) All contigs will be retained for the final assembly as pairwise similarity is all >
99%. (C) Only first three contigs are retained as their pairwise similairty is ≥ 99%.
The last contig is ∼83% identical to the first three, and hence will not be retained.

40% of true contigs for the datasets that included isoforms and more than 30% for the

datasets that did not contain isoform (Figure 6.4). Furthermore, for genes that have

multiple isoforms, the majority of genes were represented by only one isoform and

other isofrom sequences were omitted from the final assembly [145]. Our performance

analysis based on the benchmark datasets showed that different assemblers correctly

assembled different sets of transcripts (Figure 6.2). Therefore, it is possible that the

entire sequences of these contigs are not shared by three or more assemblers. Fur-

thermore, we observed that many assembled contigs generated by some assemblers

were not 100% identical to the benchmark transcript but include a small number of

110

mismatches.

Our method, Minsemble, addresses these challenges by reducing the sequence

identity threshold from 100% as used in ConSemble. In Minsemble, contig sequences

in each clusters generated in the previous step are examined, and the contigs that

are at least 99% identical at the protein level to at least two contigs generated by

two other assemblers. In each cluster, pairwise edit distances are calculated for each

contig against all other contigs using edlib [159] with the semi-global alignment (HW

or infix) mode where the start- and end-gaps are not penalized. In Figure 6.9, some

of the examples are shown to illustrate how the contig retention is done. In Figure

6.9A and B, all four contigs are retained as all contigs are 99% or more identical to

other contigs. The last contig in Figure 6.9C has many mismatches when compared

with other three (similarity score ∼83%). Therefore, it is not retained.

6.6.4 Minsemble transcriptome assembly pipeline

Following our previous ensemble transcritpome assembler, ConSemble, Minsemble

makes use of contigs generated from multiple assemblers with multiple k-mer val-

ues. The entire Minsemble pipeline is illustrated in Figure 6.6. After quality filtering

and normalization (see Section 6.5), four de novo assemblers (Trinity, IDBA-Tran,

SOAPdenovo-Trans, and rnaSPAdes) are run with multiple k-mer values (see Figure

6.6 and [145] for the selection of k-mer values for each assembler). The assembled con-

tigs from multiple k-mer values are pooled together to generate the “pooled assembly”

for each assembler. ORFfinder [1] is used to predict the longest protein-coding region

from each contig sequence. The Minsemble clustering as described before and sum-

marized in Figure 6.5 is performed at the protein sequence level. The final assembly

includes all retained protein and corresponding contig sequences with isoform-cluster

information.

111

6.6.5 Assembly performance evaluation

The performance of each assembler was evaluated at both the transcript level and the

gene level using six simulated benchmarked datasets as described in 6.4 and [17] as

well as the Human dataset described in [145]. A contig generated by an assembler is

considered to be correctly assembled if it matches 100% with one of the benchmark

transcripts at the protein level. A contig is considered to be incorrectly assembled

if no benchmark transcript is 100% identical to the contig sequence at the protein

level. At the transcript level, true positives (TPs) and false positives (FPs) are simply

correctly and incorrectly assembled contigs, respectively. False negatives (FNs) are

the transcripts that are found in the benchmark transcriptome but are not correctly

assembled.

At the gene level, the performance of assemblers were evaluated for the following

three different groups: (1) for all genes, (2) for single-isoform genes, and (3) for

multiple-isoform genes. For each gene included in the benchmark dataset, the isoform

information is included based on the original genomic annotation. For each gene

group, the number of genes whose transcripts are correctly identified was counted. For

both of the “all gene” and “single-isoform gene” groups, a gene is defined as correctly

identified if at least one transcript is assembled correctly. For the ”multiple-isoform

gene” group, a gene is defined as correctly identified if all transcripts (isoforms) are

correctly assembled.

The contigs that are generated by the assemblers except Minsemble are not

grouped based on the gene or isoform groups. To calculate detailed performance

metrics at the gene level, assembled contigs also need to be clustered at the level

equivalent to genes. We, therefore, used MinIsoClust [15] to cluster the contigs gen-

erated by other assemblers for potential isoforms for each gene where the number

112

of clusters is equivalent to the number of genes (Ng). By comparing the isoform

groups in benchmark datasets and the isoform clusters generated by Minsemble or

MinIsoClust (for other assemblers), TP, FP, and FN can be identified as follows.

For the “all gene” group, TPs are defined to be the genes in the benchmark

dataset for which at least one isoform is correctly assembled by a given assembler.

FNs are defined as the genes in the benchmark dataset for which no isoform is correctly

assembled by a given assembler. FPs are the isoform clusters generated by Minsemble

or MinIsoClust where none of the contigs match any of the benchmark transcripts.

Therefore, FP = Ng - TP , where FP and TP are the numbers of FPs and TPs,

respectively.

For the “single-isoform gene” group, only the genes in the benchmark dataset

that have only one transcript are compared against the singleton clusters generated

by Minsemble or MinIsoClust. TPs are the single-isoform genes in the benchmark

dataset that are correctly assembled by a given assembler and present in singleton

clusters. FNs are single-isoform genes in the benchmark dataset that are either not

assembled by a given assembler correctly or not found in singleton clusters. FPs

are singleton contigs in clusters generated by Minsemble or MinIsoClust that are not

correctly assembled.

For the “multiple-isoform gene” group, the genes that contain multiple isoforms

are compared against the contig clusters that also contain multiple isoform candidates.

TPs are defined to be the genes in the benchmark dataset for which all isoforms are

correctly assembled by a given assembler. FNs are the genes in the benchmark dataset

for which not all isofrms are correctly assembled by a given assembler. FPs are defined

to be the isoform clusters for which any of the followings are true: (a) no contigs are

correctly assembled, (b) the cluster contains only some isoforms of a gene correctly

assembled, or (c) the cluster contains correctly assembled isoforms of more than one

113

genes.

The metrices used in the performance analysis are described in 6.3.

6.6.6 Results and discussion

The transcriptome assembly perfomance by Minsemble was compared to other en-

semble approaches (EvidentialGene, Concatenation, and ConSemble) as well as four

individual de novo assemblers (IDBA-trans, Trinity, SOAPdenovo-Tran, and rnaS-

PAdes) using the seven simulated benchmark datasets. As described in 6.4.2, these

datasets represent ranges of isoform complexity (see Table A.1 for isoform distribu-

tion in each dataset). The performance of all assemblers were evaluated at both the

transcript level as well as the gene level.

6.6.6.1 Performance of transcriptome assembly at the transcript level

As Minsemble uses voting approach similar to ConSemble, it is expected that Min-

semble will retain all TPs that are generated by ConSemble. With the slightly relaxed

threshold (retaining threshold ≥99%), for the final assembly, Minsemble can retain

more correctly assembled contigs, although it can also increase FP . The perfor-

mance of Minsemble is compared with the four de novo and three ensemble methods

in Figure 6.10 (also see Supplemental Tables A.2 - A.8). For all benchmark datasets,

Minsemble showed the highest Recall values (0.74 for A. thaliana No0 and 0.66 for

A. thaliana Col0, for example), followed usually by ConSemble and Trinity. The

high Recall values indicate that Minsemble assembled more contigs correctly. How-

ever, ConSemble as well as Trinity and sometimes rnaSPAdes often showed higher

Precision than Minsemble. This is expected because Minsemble retains many sim-

ilar contigs (≥ 99% identity) including potential isoforms. Although these highly

similar contigs are clustered together, these extra contigs are considered to be FPs

114

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

SO
AP
de
no
vo

Tr
ini
ty

rna
SP
Ad
es

Ev
ide
nti
alG
en
e

Co
nc
ate
na
tio
n

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(a) No0

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

SO
AP
de
no
vo

Tr
ini
ty

rna
SP
Ad
es

Ev
ide
nti
alG
en
e

Co
nc
ate
na
tio
n

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(b) Col0

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

SO
AP
de
no
vo

Tr
ini
ty

rna
SP
Ad
es

Ev
ide
nti
alG
en
e

Co
nc
ate
na
tio
n

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(c) Rice

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

SO
AP
de
no
vo

Tr
ini
ty

rna
SP
Ad
es

Ev
ide
nti
alG
en
e

Co
nc
ate
na
tio
n

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(d) Soybean

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

SO
AP
de
no
vo

Tr
ini
ty

rna
SP
Ad
es

Ev
ide
nti
alG
en
e

Co
nc
ate
na
tio
n

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(e) B73

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

SO
AP
de
no
vo

Tr
ini
ty

rna
SP
Ad
es

Ev
ide
nti
alG
en
e

Co
nc
ate
na
tio
n

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(f) Mo17

Figure 6.10: Transcriptome assembler performance at the transcript level.
Performance was compared among four de novo and four ensemble assembly methods.
The detailed performance metrics are given in Supplementary Tables A.2 - A.8.

115

at the strict threshold we used (100% identity). Note, however, that both Precision

and F-measure values were much higher with Minsemble compared to the other two

ensemble methods (EvidentialGene and Concatenation).

The A. thaliana No0 dataset contains only single-isoform genes (no alternatively

spliced transcripts) and this is the simplest benchmark dataset. Therefore, as ex-

pected, all transcriptome assembers performed the best for this dataset. The Z.

mays B73 dataset, on the other hand, has the most complex isoform distribution

(see Supplementary Table A.1). The assembler performance was, therefore, signif-

icantly worse for the Z. mays B73 dataset but it is also the case for the Z. mays

Mo17 dataset where the isoform complexity is much less. The quality of the reference

genome affects the performance of transcriptome assemblers as simulated benchmark

sequences are generated using the reference genome. It is , therefore, possible that the

erroneous annotation of Z. mays reference sequences affected the weak performance

of all transcriptome assemblers.

Correctly and incorrectly assembled contigs were compared among the assemblies

generated by four ensemble assemblers and their overlaps are illustrated in Figures

6.11 and 6.12 (see also Supplementary Figure A.1 for the Human dataset). As noted

before, while the Minsemble assembly contains all contigs generated by ConSemble,

Minsemble assembled more contigs correctly. The majority of correctly assembled

contigs are shared among all four ensemble approaches except for the Rice and the

Z. mays B73 datasets. Furthermore, for all datasets, the contigs shared among all

four methods are more likely to be correct than incorrect (C/I = 1.9 ∼ 9.6). In

contrast, the contigs assembled uniquely by each ensemble method are highly likely

to be incorrect (C/I < 0.025) regardless of the method.

116

0

136 784

149

1753

0

0

102

103

363

3009

22930

205

6331

CConSemble

Minsemble EvidentialGene

Concatenation

(a) No0

0

256 111

257

1327

0

0

75

199

358

1252

16160

322

5156

CConSemble

Minsemble EvidentialGene

Concatenation

(b) Col0

0

121 117

128

1262

0

0

25

62

63

351

23790

34

1613

CConSemble

Minsemble EvidentialGene

Concatenation

(c) Rice

0

379 185

393

1620

0

0

198

229

166

1737

15120

220

4312

CConSemble

Minsemble EvidentialGene

Concatenation

(d) Soybean

0

493 177

813

1384

0

0

104

578

335

376

22370

212

1214

CConSemble

Minsemble EvidentialGene

Concatenation

(e) B73

0

84 226

217

1054

0

0

34

63

232

1077

12160

67

3295

CConSemble

Minsemble EvidentialGene

Concatenation

(f) Mo17

Figure 6.11: Numbers of correctly assembled contigs shared among the four ensemble
assembly approaches.

117

0

15497 44379

57861

4784

0

0

950

1936

28969

558

10550

1238

658

CConSemble

Minsemble EvidentialGene

Concatenation

(a) No0

0

10471 17372

36380

4217

0

0

847

1280

14290

1145

12560

1237

1656

CConSemble

Minsemble EvidentialGene

Concatenation

(b) Col0

0

8901 50183

22805

6499

0

0

361

1021

3596

721

17420

122

355

CConSemble

Minsemble EvidentialGene

Concatenation

(c) Rice

0

15497 44379

57861

4784

0

0

950

1936

28969

558

10550

1238

658

CConSemble

Minsemble EvidentialGene

Concatenation

(d) Soybean

0

22752 100127

57418

9610

0

0

882

1830

8181

1576

14880

245

260

CConSemble

Minsemble EvidentialGene

Concatenation

(e) B73

0

13637 50244

53902

4777

0

0

909

1044

13217

2104

11090

365

1769

CConSemble

Minsemble EvidentialGene

Concatenation

(f) Mo17

Figure 6.12: Numbers of incorrectly assembled contigs shared among the four ensem-
ble assembly approaches.

118

6.6.6.2 Performance of transcriptome assembly at the gene level

In order to understand the advantage of Minsemble more clearly, we further exam-

ined the performance of the four de novo and four ensemble assemblers at the gene

level. The gene identification performance of the four de novo assemblers and the

four ensemble approaches was compared in Table 6.3. For all benchmark datasets,

Minsemble showed the best performance in terms of gene identification.

In Tables 6.4 and 6.5, the gene identification performance was examined in two

gene groups, “single-isoform genes” and “multiple-isoform genes”. Minsemble per-

formed the best for identifying the single-isoform genes, closely followed by ConSem-

ble. For identification of the “multiple-isoform genes”, Minsemble clearly performed

better than all other methods. Note also that for the Z. mays B73 dataset, all as-

semblers identified only < 10% of the isoforms correctly. This indicates that, the

performance of assemblers was affected by the complex isoform distribution. As com-

pared to all assemblers, Minsemble identified more genes correctly especially for those

with multiple isoforms, indicating the advantage of using Minsemble.

Table 6.3: Gene identification performance of transcriptome assemblersa

Dataset IDBA-Tran Trinity SOAPdenovo rnaSPAdes Concatenation EvidentialGene ConSemble Minsemble
No0 56.42 61.56 44.84 58.38 51.39 53.29 65.22 66.94
Col0 50.24 58.28 49.80 61.13 56.78 56.51 69.99 71.89
Rice 10.93 11.85 28.67 24.59 38.43 19.86 46.70 49.12

Soybean 25.46 22.90 37.21 35.74 38.80 30.56 52.93 57.56
B73 16.67 12.17 7.81 20.39 40.16 20.00 44.10 51.92

Mo17 28.92 33.89 21.22 31.54 29.67 28.93 38.54 46.34
Human 64.59 64.59 48.82 58.31 45.90 47.74 67.49 70.45

a
% gene identification is based on “all genes” included in each benchmark dataset. A gene is defined as correctly

identified if at least one transcript is assembled correctly. The highest values are shown in bold face.

With Minsemble, contigs are clustered based on possible isoform groups, which

is equivalent to assigning contigs to each gene. However, for other de novo tran-

scriptome assemblers, such is not possible. Without the potential genes identified

in each assembly, it is not possible to calculate detailed performance metrics at the

gene level as we did for the transcript level analysis. Therefore, for all assemblies

119

Table 6.4: Gene identification performance of transcriptome assemblers for the single-
isoform genesa

Dataset IDBA-Tran Trinity SOAPdenovo rnaSPAdes Concatenation EvidentialGene ConSemble Minsemble
No0 56.42 61.56 44.84 58.38 51.39 53.29 65.22 66.94
Col0 56.84 63.41 45.35 59.23 51.48 53.34 65.27 66.96
Rice 10.41 12.07 28.48 24.69 37.78 19.54 46.15 48.72

Soybean 19.18 14.09 33.73 29.94 36.38 28.99 50.27 54.48
B73 11.67 10.61 8.05 15.09 31.45 16.75 41.30 45.78

Mo17 28.76 33.01 20.90 30.85 28.80 28.12 37.44 44.92
Human 48.80 54.19 48.59 51.02 38.82 42.96 54.76 64.51

a
% gene identification is based on only single-isoform genes included in each benchmark dataset. A gene is defined

as correctly identified if the single transcript is assembled correctly. The highest values are shown in bold face.

Table 6.5: Gene identification performance of transcriptome assemblers for multiple-
isoform genesa

Dataset IDBA-Tran Trinity SOAPdenovo rnaSPAdes Concatenation EvidentialGene ConSemble Minsemble
Col0 5.83 23.05 13.53 19.75 26.85 11.54 23.76 39.87
Rice 3.13 1.34 0.89 2.68 4.02 3.57 8.48 21.88

Soybean 16.56 14.26 18.40 15.49 18.10 11.35 25.00 55.06
B73 1.59 1.42 1.12 2.67 2.87 2.23 2.77 9.47

Mo17 2.50 22.65 4.03 10.36 13.05 11.13 23.99 48.56
Human 5.27 11.47 4.41 9.24 7.12 6.95 14.88 18.98

a
% gene identification is based on only the multiple-isoform genes included in each benchmark dataset. A gene is

defined as correctly identified if all of the isoforms are assembled correctly. The highest values are shown in bold face.

other than those generated by Minsemble, we used MinIsoClust to identify potential

isoform clusters from each assembly result. An isoform cluster was considered to be

a gene and a gene was determined to be correctly identified if at least one isoform

was correctly assembled at the protein level. Assembly performance was compared

among the four de novo and the four ensemble methods in Figure 6.13 (also see Sup-

plementary Tables A.9 - A.14). Minsemble and ConSemble both clearly performed

better than other assemblers. Similar to the transcript-level performance, Minsemble

always had higher Recall values compared to ConSemble. Furthermore, for the Rice,

Soybean, and Z. mays Mo17 datasets, Minsemble performed better than ConSemble

in terms of F-measure.

120

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(a) Col0

0.0

0.2

0.4

0.6

0.8

ID
BA-T

ran
Trin

ity

SOAPde
no

vo
-

rna
SPAde

s

Con
ca

ten
ati

on

Evid
en

tia
lG

en
e

Con
Sem

ble

Mins
em

ble

Recall Precision F-measure

(b) Human

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(c) Rice

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(d) Soybean

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(e) B73

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(f) Mo17

Figure 6.13: Transcriptome assembler performance at the gene level. Per-
formance was compared among four de novo and four ensemble assembly methods.
A gene is said to be correctly assembled if at least one of its isoform sequences is
correctly assembled. The detailed performance metrices are given in Supplementary
Tables A.9 - A.14.

121

6.6.6.3 Performance of transcriptome assembly for the single-isoform

genes

More than 90% of the genes for the Rice, Soybean, and Z. mays Mo17 datasets,

more than 70% of the genes for the A. thaliana Col0 and Z. mays B73 datasets,

and more than 50% of the genes for the Human dataset are single isoform genes (see

Supplementary Table A.1). Therefore, we examined the assembler performance when

only single-isoform genes are considered. The Recall, Precision, and F-measure scores

of all assemblers are shown in Figure 6.14 and Supplementary Tables A.15 - A.20.

Minsemble had higher Recall values compared to all other assemblers, indicating

that it identified single-isoform genes more correctly than other assemblers. Only for

the A. thaliana Col0 and Soybean datasets, Precision scores of ConSemble were higher

than those of Minsemble. However, Minsemble showed F-measure scores higher than

all other assemblers for all the datasets except for the A. thaliana Col0 dataset.

6.6.6.4 Performance of transcriptome assembly for the multiple-isoform

genes

We next compared the performance of all transcriptome assemblers to evaluate their

ability to reconstruct the isoforms. The A. thaliana Col0, Z. mays B73, and Human

datasets have more than 20% of the genes that contain multiple isoforms (see Supple-

mentary Table A.1). The Z. mays B73 dataset is the most complex with ∼40 genes

having ≥ 10 isoforms and two genes having more than 20 isoforms. For multiple-

isoform genes, a gene is considered to be correctly assembled if all of its isoforms

are correctly assembled. The Recall, Precision, and F-measure scores were compared

among the four de novo and four ensemble assemblers (Figure 6.15 and Supplemen-

tary Tables A.21-A.26). Except for the Human dataset, Minsemble outperformed all

122

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(a) Col0

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(b) Human

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(c) Rice

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(d) Soybean

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(e) B73

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(f) Mo17

Figure 6.14: Transcriptome assembler performance for the single-isoform
genes. Performance was compared among four de novo and four ensemble assembly
methods. The detailed performance metrics are given in Supplementary Tables A.15
- A.20.

123

other assemblers by reconstructing all isofroms.

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(a) Col0

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(b) Human

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(c) Rice

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(d) Soybean

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(e) B73

0.0

0.2

0.4

0.6

0.8

ID
BA
-T
ran

Tr
ini
ty

SO
AP
de
no
vo
-

rna
SP
Ad
es

Co
nc
ate
na
tio
n

Ev
ide
nti
alG
en
e

Co
nS
em
ble

Mi
ns
em
ble

Recall Precision F-measure

(f) Mo17

Figure 6.15: Transcriptome assembler performance for the multiple-isoform
genes. Performance was compared among four de novo and four ensemble assem-
bly methods. A gene is considered to be correctly assembled if all of its isoform
sequences are correctly assembled. The detailed performance metrics are given in
Supplementary Tables A.21 - A.26.

124

6.7 Conclusion

In this chapter, we performed comparative analysis among various transcriptome

assembly methods using simluated benchmark datasets. We showed that how the

availability of the high-quality reference genomes affects the transcriptome assembly

performance by the genome-guided approach. When such reference genomes are not

available, as in the case for non-model organisms, de novo assemblers can achieve

good performance. However, challenges due to the isoform complexity, polyploidy,

as well as optimal parameter selection remain. The most significant parameter in de

Bruijn graph-based de novo assembly methods is the k-mer size. Ensemble approaches

take advantage of pooling the de novo assemblies based on different methods as well

as multiple k-mer to increase the number of correct contigs without accumulating

incorrect contigs. Among the four ensemble methods compared in this study, our

two methods (ConSemble and Minsemble), both based on the consensus approach,

performed the best for all benchmark datasets tested. We also note the importance

of the simulated benchmark datasets for assessment and improvement of the per-

formance of transcriptome assembly. Our new approach, Minsemble, uses a novel

clustering technique to cluster the potential isoforms and then selects contigs from

clusters for the final assembly. A contig is selected from a cluster if it is 99% similar

with at least two other contigs generated by two different assemblers. The current

version of Minsemble recovers the highest number of true positives when compared

with other de novo and ensemble approaches. At the same time, the clustering of

contigs produced by Minsemble is the advantage that is not available in any other

assemblers. The clustering algorithm (MinIsoClust) that is used in Minsemble can

also be independently used for clustering the potential isoforms in any assembly. As

we demonstrated, it can be used to perform better analysis at the gene level. The

125

future work remains how to reduce the false positives further and bring especially the

Precision and F-measure scores to the ConSemble level.

126

Chapter 7

Conclusion and future works

In this dissertation, we developed several novel and efficient algorithms for some

bioinformatics problems. The k-mer counting and its frequency estimation is useful

in many bioinformatics applications such as metagenome analysis, and genome and

transcriptome assembly. We used a streaming algrothm to estimate the frequency

counts of k-mers efficiently. The streaming model used in our problem not only

guarantees the upper and lower bounds of approximation, but also time and space

efficiency. Conserved non-coding sequences (or elements) play an important role in

regulating gene expression. Therefore, identification of these elements are important

in functional genomics. These regions are conserved across different genomes and

can be considered as variable-length k-mers. We proposed two different algorithms

for identifying CNSs in plants and animals using suffix tree and minwise hashing,

respectively. The suffix-tree based algorithm performs well when identification of only

exact matched CNSs are required. However, minhash and LSH based approached

performed better for identifying longer CNSs that are both exactly matched and

with mismatches. The minhash approach was also used for two other problems in our

dissertation study: isoform clustering and improved ensemble transcriptome assembly.

The implementaion of these algorithms using parallel programming and threading

remains as our future works.

127

Bibliography

[1] Open reading frame finder. https://www.ncbi.nlm.nih.gov/orffinder/.

[2] I. Akogwu, N. Wang, C. Zhang, and P. Gong. A comparative study of k-

spectrum-based error correction methods for next-generation sequencing data

analysis. Human Genomics, 10(2):20, 2016.

[3] S. Altschul, T. L. Madden, A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and

D. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic acids research, 25(17):3389–3402, 1997.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[5] A. Assefa, J. Vandesompele, and O. Thas. SPsimseq: semi-parametric simula-

tion of bulk and single-cell rna-sequencing data. Bioinformatics, 36:3276–3278,

2020.

[6] P. Audano and F. Vannberg. KAnalyze: a fast versatile pipelined k-mer toolkit.

Bioinformatics, 30(14):2070–2072, 2014.

[7] L. A. K. Ayad, S. P. Pissis, and D. Polychronopoulos. CNEFinder: finding

conserved non-coding elements in genomes. Bioinformatics, 34(17):i743–i747,

2018.

https://www.ncbi.nlm.nih.gov/orffinder/

128

[8] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Count-

ing distinct elements in a data stream. In Randomization and Approximation

Techniques, 6th International Workshop, RANDOM 2002, Proceedings, pages

1–10, 2002.

[9] P. Bardou, J. Mariette, F. Escudié, C. Djemiel, and C. Klopp. jvenn: an

interactive Venn diagram viewer. BMC Bioinformatics, 15(1):293, 2014.

[10] L. Baxter et al. Conserved noncoding sequences highlight shared components

of regulatory networks in dicotyledonous plants. The Plant Cell, 24(10):3949–

3965, 2012.

[11] S. Behera, X. Lai, J. C. Schnable, and J. S. Deogun. DiCE: Discovery of con-

served noncoding sequences efficiently. In 2017 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM), pages 79–82, 2017.

[12] S. Behera, A. Voshall, J. S. Deogun, and E. N. Moriyama. Performance com-

parison and an ensemble approach of transcriptome assembly. In 2017 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), pages

2226–2228, 2017.

[13] S. Behera, S. Gayen, J. S. Deogun, and N. V. Vinodchandran. KmerEstimate: A

Streaming Algorithm for Estimating k-mer Counts with Optimal Space Usage.

In Proceedings of the 2018 ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, BCB ’18, pages 438–447. ACM,

2018.

[14] S. Behera, J. S. Deogun, and E. N. Moriyama. MinCNE: identifying conserved

non-codingelements using min-wise hashing. In Advances in Computer Vision

and Computational-Biology. Springr, 2020.

129

[15] S. Behera, J. S. Deogun, and E. N. Moriyama. MinIsoClust: Isoform Clustering

Using Minhash and Locality Sensitive Hashing. In Proceedings of the 11th ACM

International Conference on Bioinformatics, Computational Biology and Health

Informatics, BCB ’20, pages 1–7. ACM, 2020.

[16] S. Behera, A. Voshall, K. Kapil, J. S. Deogun, and E. N. Moriyama. Minsemble:

Isoform-clustering based ensemble approach. (Manuscript under preparation),

2020.

[17] S. Behera, A. Voshall, and E. N. Moriyama. Plant transcriptome assembly:

review and benchmarking. In Bioinformatics. Exon, Brisbane, 2020 (In Press).

[18] S. Benidt and D. Nettleton. SimSeq: a nonparametric approach to simulation

of RNA-sequence datasets. Bioinformatics, 31(13):2131–40, 2015.

[19] P. Bieganski, J. Riedl, J. V. Cartis, and E. F. Retzel. Generalized suffix trees

for biological sequence data: applications and implementation. In Proceedings

of the Twenty-Seventh Hawaii International Conference on System Sciences,

volume 5, pages 35–44, 1994.

[20] M. Blanchette et al. Aligning Multiple Genomic Sequences With the Threaded

Blockset Aligner. Genome research, 14:708–722, 2004.

[21] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.

Commun. ACM, 13(7):422–426, 1970.

[22] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise

independent permutations. J. Computer System Sciences, 60(3):630–659, 2000.

130

[23] E. Bushmanova, D. Antipov, A. Lapidus, V. Suvorov, and A. Prjibelski.

rnaQUAST: a quality assessment tool for de novo transcriptome assemblies.

Bioinformatics, 32(14):2210–2212, 2016.

[24] E. Bushmanova, D. Antipov, A. Lapidus, and A. Prjibelski. rnaSPAdes: a

de novo transcriptome assembler and its application to RNA-Seq data. Giga-

Science, 8(9), 2019.

[25] A. B. Carvalho, E. G. Dupim, and G. Goldstein. Improved assembly of noisy

long reads by k-mer validation. Genome research, 26(12):1710–1720, 2016.

[26] N. Cerveau and D. Jackson. Combining independent de novo assemblies op-

timizes the coding transcriptome for nonconventional model eukaryotic organ-

isms. BMC Bioinformatics, 17(1):525, 2016.

[27] S. Cha and D. Bird. Optimizing k-mer size using a variant grid search to

enhance de novo genome assembly. Bioinformation, 12(2):36–40, 2016.

[28] R. Chikhi and P. Medvedev. Informed and automated k-mer size selection for

genome assembly. Bioinformatics, 30(1):31–37, 2014.

[29] F. Y. L. Chin, H. C. M. Leung, M.-J. Lv, S.-M. Yiu, X.-G. Zhu, and Y. Peng.

IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes

with uneven expression levels. Bioinformatics, 29(13):i326–i334, 2013.

[30] B. Chor, D. Horn, N. Goldman, Y. Levy, and T. Massingham. Genomic DNA

k-mer spectra: models and modalities. Genome Biology, 10:R108–R108, 2009.

[31] T. Christiani and R. Pagh. Set similarity search beyond minhash. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2017, page 1094–1107. ACM, 2017.

131

[32] P. Compeau, P. A Pevzner, and G. Tesler. How to apply de Bruijn graphs to

genome assembly. Nature biotechnology, 29:987–991, 2011.

[33] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and mining

inverse distributions on data streams via dynamic inverse sampling. In Proceed-

ings of the 31st international conference on Very large data bases, pages 25–36.

VLDB Endowment, 2005.

[34] M. R. Crusoe et al. The khmer software package: enabling efficient nucleotide

sequence analysis. F1000Research, 4:900, 2015.

[35] N. M. Davidson and A. Oshlack. Corset: enabling differential gene expression

analysis for de novo assembled transcriptomes. Genome Biology, 15(7):410,

2014.

[36] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz. KMC 2: fast

and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

[37] S. Dimitrieva and P. Bucher. UCNEbase – a database of ultraconserved non-

coding elements and genomic regulatory blocks. Nucleic Acids Research, 41

(D1):D101–D109, 2012.

[38] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut,

M. Chaisson, and T. Gingeras. STAR: ultrafast universal RNA-seq aligner.

Bioinformatics, 29(1):15–21, 2013.

[39] A. Dousse, T. Junier, and E. M. Zdobnov. CEGA – a catalog of conserved

elements from genomic alignments. Nucleic Acids Research, 44(D1):D96–D100,

2015.

132

[40] D. A. Durai and M. H. Schulz. Informed k-mer selection for de novo transcrip-

tome assembly. Bioinformatics, 32(11):1670–1677, 2016.

[41] P. G. Engström, D. Fredman, and B. Lenhard. Ancora: a web resource for

exploring highly conserved noncoding elements and their association with de-

velopmental regulatory genes. Genome Biology, 9:R34, 2007.

[42] M. Erbert, S. Rechner, and M. Müller-Hannemann. Gerbil: a fast and memory-

efficientk-mer counter with gpu-support. Algorithms for Molecular Biology, 12

(1):9, 2017.

[43] C. D. Fabbro, S. Scalabrin, M. Morgante, and F. M. Giorgi. An Extensive

Evaluation of Read Trimming Effects on Illumina NGS Data Analysis. PLoS

ONE, 8(12), 2013.

[44] L. Florea and S. Salzberg. Genome-Guided Transcriptome Assembly in the Age

of Next-Generation Sequencing. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 10(5):1234–1240, 2013.

[45] A. C. Frazee, A. Jaffe, B. Langmead, and J. Leek. Polyester: simulating RNA-

seq datasets with differential transcript expression. Bioinformatics, 31(17):

2778–2784, 2015.

[46] M. Freeling and S. Subramaniam. Conserved noncoding sequences (CNSs) in

higher plants. Current Opinion in Plant Biology, 12(2):126–132, 2009.

[47] D. Gerard. Data-based RNA-seq simulations by binomial thinning. BMC Bioin-

formatics, 21:206, 2020.

[48] D. Gilbert. Genes of the pig, Sus scrofa, reconstructed with EvidentialGene.

PeerJ, 7:e6374, 2019.

133

[49] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In VLDB, pages 518–529, 1999.

[50] S. Gnerre et al. High-quality draft assemblies of mammalian genomes from mas-

sively parallel sequence data. Proceedings of the National Academy of Sciences

of the United States of America, 108(4):1513–1518, 2011.

[51] E. Góngora-Castillo and C. Buell. Bioinformatics challenges in de novo tran-

scriptome assembly using short read sequences in the absence of a reference

genome sequence. Natural product reports, 30(4):490–500, 2013.

[52] M. Grabherr et al. Full-length transcriptome assembly from RNA-Seq data

without a reference genome. Nature biotechnology, 29(7):644–52, 2011.

[53] T. Griebel, B. Zacher, P. Ribeca, E. Raineri, V. Lacroix, R. Guigó, and M. Sam-

meth. Modelling and simulating generic RNA-Seq experiments with the flux

simulator. Nucleic Acids Research, 40:10073–10083, 2012.

[54] D. Gusfield. Algorithms On Strings, Trees, and Sequences : Computer Science

and Computational Biology. ; Cambridge University Press, 1997.

[55] J. J. Gutierrez-Gonzalez and D. F. Garvin. de novo Transcriptome Assembly

in Polyploid Species. Methods in molecular biology, 1536:209–221, 2017.

[56] S. Hafezqorani, C. Yang, T. Lo, K. M. Nip, R. L. Warren, and I. Birol. Trans-

NanoSim characterizes and simulates nanopore RNA-sequencing data. Giga-

Science, 9(6), 06 2020.

[57] R. S. Harris. Improved pairwise alignment of genomic DNA. Ph.D. Thesis, The

Pennsylvania State University, 2007.

134

[58] B. Hass et al. de novo transcript sequence reconstruction from RNA-seq using

the Trinity platform for reference generation and analysis. Nature Protocols, 8:

1494–1512, 2013.

[59] A. Haudry, A. E. Platts, E. Vello, D. R. Hoen, M. Leclercq, R. J. Williamson,

E. Forczek, Z. Joly-Lopez, J. G. Steffen, K. M. Hazzouri, et al. An atlas of over

90,000 conserved noncoding sequences provides insight into crucifer regulatory

regions. Nature genetics, 45(8):891–898, 2013.

[60] M. Hölzer and M. Marz. de novo transcriptome assembly: A comprehensive

cross-species comparison of short-read RNA-Seq assemblers. GigaScience, 8,

2019.

[61] M. Hozza, T. Vinař, and B. Brejová. How big is that genome? estimating

genome size and coverage from k-mer abundance spectra. In Proceedings of the

22Nd International Symposium on String Processing and Information Retrieval

- Volume 9309, SPIRE 2015, 2015.

[62] P. H. Hsieh, Y. Oyang, and C. Y. Chen. Effect of de novo transcriptome

assembly on transcript quantification. Scientific Reports, 9, 2019.

[63] X. Huang, X. Chen, and P. Armbruster. Comparative performance of tran-

scriptome assembly methods for non-model organisms. BMC Genomics, 17,

2016.

[64] A. P. Hubert L. Comparing partitions. Journal of Classification, 2:193–218,

1985.

135

[65] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards remov-

ing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM

Symposium on Theory of Computing, STOC ’98, 1998.

[66] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the

distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010,

2010, pages 41–52, 2010.

[67] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg.

TopHat2: accurate alignment of transcriptomes in the presence of insertions,

deletions and gene fusions. Genome Biology, 14(4):R36, 2013.

[68] D. Kim, J. M. Paggi, C. Park, C. Bennett, and S. Salzberg. Graph-based

genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature

Biotechnology, 37:907–915, 2019.

[69] M. Kokot, M. Dlugosz, and S. Deorowicz. KMC 3: counting and manipulating

k-mer statistics. Bioinformatics, 33(17):2759–2761, 2017.

[70] D. Koslicki and H. Zabeti. Improving minhash via the containment index with

applications to metagenomic analysis. Appl. Math. Comput., 354:206–215, 2019.

[71] S. Kovaka, A. V. Zimin, G. Pertea, R. Razaghi, S. L. Salzberg, and M. Pertea.

Transcriptome assembly from long-read rna-seq alignments with stringtie2.

Genome Biology, 20, 2019.

[72] E. Kriventseva, D. Kuznetsov, F. Tegenfeldt, M. Manni, R. Dias, F. R. Simão,

and E. Zdobnov. Orthodb v10: sampling the diversity of animal, plant, fungal,

136

protist, bacterial and viral genomes for evolutionary and functional annotations

of orthologs. Nucleic Acids Research, 47:D807–D811, 2019.

[73] S. Kurtz, A. Narechania, J. Stein, and D. Ware. A new method to compute k-

mer frequencies and its application to annotate large repetitive plant genomes.

BMC Genomics, 9:517–517, 2008.

[74] X. Lai, S. Behera, Z. Liang, Y. Lu, J. S. Deogun, and J. C. Schnable. STAG-

CNS: An Order-Aware Conserved Noncoding Sequences Discovery Tool for Ar-

bitrary Numbers of Species. Molecular Plant, 10(7):990–999, 2017.

[75] B. Lau, M. Mohiyuddin, J. C. Mu, L. Fang, N. Asadi, C. Dallett, and H. Y. K.

Lam. LongISLND: in silico sequencing of lengthy and noisy datatypes. Bioin-

formatics, 32:3829–3832, 2016.

[76] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

2014.

[77] B. Li and C. N. Dewey. RSEM: accurate transcript quantification from RNA-

Seq data with or without a reference genome. BMC Bioinformatics, 12:323–323,

2011.

[78] B. Li, N. Fillmore, Y. Bai, M. Collins, J. Thomson, R. Stewart, and C. N.

Dewey. Evaluation of de novo transcriptome assemblies from RNA-Seq data.

Genome Biology, 15, 2014.

[79] R. Li et al. de novo assembly of human genomes with massively parallel short

read sequencing. Genome research, 20(2):265–272, 2010.

137

[80] W. Li and A. Godzik. Cd-hit: a fast program for clustering and comparing

large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659,

2006.

[81] Y. Li and X. Yan. MSPKmerCounter: A Fast and Memory Efficient Approach

for k-mer Counting. CoRR, abs/1505.06550, 2014.

[82] M. Lipovsky, T. Vinar, and B. Brejova. Approximate Abundance Histograms

and Their Use for Genome Size Estimation. In Proceedings of the 17th Confer-

ence on Information Technologies - Applications and Theory, ITAT 2017, pages

27–34, 2017.

[83] B. Liu, Y. Shi, J. Yuan, X. Hu, H. Zhang, N. Li, Z. Li, Y. Chen, D. Mu, and

W. Fan. Estimation of genomic characteristics by analyzing k-mer frequency in

de novo genome projects. arXiv: Genomics, 2013.

[84] S. Liu et al. Unbiased k-mer Analysis Reveals Changes in Copy Number of

Highly Repetitive Sequences During Maize Domestication and Improvement.

Scientific Reports, 7:42444, 2017.

[85] V. Lomonaco, R. Martoglia, F. Mandreoli, L. Anderlucci, W. Emmett, S. Bic-

ciato, and C. Taccioli. UCbase 2.0: ultraconserved sequences database (2014

update). Database, 2014.

[86] N. López-Bigas, B. Audit, C. A. Ouzounis, G. L. Parra, and R. Guigó. Are

splicing mutations the most frequent cause of hereditary disease? FEBS letters,

579(9):1900–1903, 2005.

138

[87] M. Love, J. Hogenesch, and R. Irizarry. Modeling of RNA-seq fragment se-

quence bias reduces systematic errors in transcript abundance estimation. Na-

ture biotechnology, 34:1287–1291, 2016.

[88] R. Luo et al. SOAPdenovo2: an empirically improved memory-efficient short-

read de novo assembler. GigaScience, 1:18, 2012.

[89] K. Mahmood, J. Orabi, P. S. Kristensen, P. Sarup, L. N. Jørgensen, and A. Ja-

hoor. de novo transcriptome assembly, functional annotation, and expression

profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps

purpurea). Scientific Reports, 10, 2020.

[90] A. A. Mamun, S. Pal, and S. Rajasekaran. KCMBT: a k-mer Counter based

on Multiple Burst Trees. Bioinformatics, 32(18):2783–2790, 2016.

[91] S. Marcus, H. Lee, and M. C. Schatz. SplitMEM: A Graphical Algorithm

for Pan-Genome Analysis with Suffix Skips. Bioinformatics, 30(24):3476–3483,

2014.

[92] L. Maretty, J. A. Sibbesen, and A. Krogh. Bayesian transcriptome assembly.

Genome Biology, 15(10):501, 2014.

[93] J. Martin and Z. Wang. Next-generation transcriptome assembly. Nature Re-

views Genetics, 12:671–682, 2011.

[94] G. Marçais and C. Kingsford. A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

[95] P. Melsted and B. V. Halldorsson. KmerStream: streaming algorithms for k

-mer abundance estimation . Bioinformatics, 30(24):3541–3547, 2014.

139

[96] P. Melsted and J. K. Pritchard. Efficient counting of k-mers in dna sequences

using a bloom filter. BMC Bioinformatics, 12(1):1–7, 2011.

[97] H. Mohamadi, J. Chu, B. P. Vandervalk, and I. Birol. ntHash: recursive nu-

cleotide hashing. Bioinformatics, 32(22):3492–3494, 2016.

[98] H. Mohamadi, H. Khan, and I. Birol. ntCard: a streaming algorithm for cardi-

nality estimation in genomics data. Bioinformatics, 33(9):1324–1330, 2017.

[99] S. Muthukrishnan. Data Streams: Algorithms and Applications. Found. Trends

Theor. Comput. Sci., 1(2), Aug. 2005.

[100] D. Y. Nishimura et al. Comparative genomics and gene expression analysis

identifies bbs9, a new bardet-biedl syndrome gene. American Journal of Human

Genetics, 77(6):1021–1033, 2005.

[101] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,

S. Koren, and A. M. Phillippy. Mash: fast genome and metagenome distance

estimation using MinHash. Genome Biology, 17, 2016.

[102] S. T. O’Neil and S. Emrich. Assessing de novo transcriptome assembly metrics

for consistency and utility. BMC Genomics, 14:465–465, 2012.

[103] Y. Ono, K. Asai, and M. Hamada. PBSIM: PacBio reads simulator - toward

accurate genome assembly. Bioinformatics, 29(1):119–121, 2013.

[104] A. Oshlack, M. Robinson, and M. Young. From RNA-seq reads to differential

expression results. Genome Biology, 11:220–220, 2010.

[105] F. Ozsolak and P. Milos. RNA sequencing: advances, challenges and opportu-

nities. Nature Reviews Genetics, 12:87–98, 2011.

140

[106] G. P. sparsepp. https://github.com/greg7mdp/sparsepp, 2016.

[107] Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe. Deep surveying of

alternative splicing complexity in the human transcriptome by high-throughput

sequencing. Nature Genetics, 40:1413–1415, 2008.

[108] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. Squeakr: an exact and

approximate k-mer counting system. Bioinformatics, 34(4):568–575, 2018.

[109] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine

learning in python. Journal of machine learning research, 12:2825–2830, 2011.

[110] J. Pell et al. Scaling metagenome sequence assembly with probabilistic de Bruijn

graphs. Proceedings of the National Academy of Sciences of the United States

of America, 109(33):13272–13277, 2012.

[111] J. Persampieri, D. I. Ritter, D. Lees, J. Lehoczky, Q. Li, S. Guo, and J. H.

Chuang. cneViewer: a database of conserved non-coding elements for studies

of tissue-specific gene regulation. Bioinformatics, 24(20):2418–2419, 2008.

[112] M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell, and

S. L. Salzberg. StringTie enables improved reconstruction of a transcriptome

from RNA-seq reads. Nat Biotech, 33(3):290–295, 2015.

[113] D. Polychronopoulos, J. W. King, A. J. Nash, G. Tan, and B. Lenhard. Con-

served non-coding elements: developmental gene regulation meets genome or-

ganization. Nucleic Acids Research, 45(22):12611–12624, 2017.

https://github.com/greg7mdp/sparsepp

141

[114] S. Rangavittal et al. RecoverY: k-mer based read classification for Y-

chromosome specific sequencing and assembly. Bioinformatics, 34(7):

1125–1131, 2017.

[115] G. Rizk, D. Lavenier, and R. Chikhi. Dsk: k-mer counting with very low

memory usage. Bioinformatics, 29(5):652–653, 2013.

[116] E. Rodgers-Melnick et al. Open chromatin reveals the functional maize genome.

Proceedings of the National Academy of Sciences of the United States of Amer-

ica, 113(22):E3177–E3184, 2016.

[117] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based ex-

ternal cluster evaluation measure. In EMNLP-CoNLL, 2007.

[118] R. S. Roy, D. Bhattacharya, and A. Schliep. Turtle: Identifying frequent k-mers

with cache-efficient algorithms. Bioinformatics, 30(14):1950–1957, 2014.

[119] K. Sahlin and P. Medvedev. de novo clustering of long-read transcriptome data

using a greedy, quality-value based algorithm. In RECOMB, 2019.

[120] S. Salzberg et al. GAGE: A critical evaluation of genome assemblies and as-

sembly algorithms. Genome research, 22(3):557–567, 2012.

[121] J. Schnable, Y. Zang, and D. W.C. Ngu. Pan-grass syntenic gene set

(sorghum referenced). Figshare, 2016. URL https://dx.doi.org/10.6084/

m9.figshare.3113488.v1.

[122] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison, D. Haus-

sler, and W. Miller. Human-mouse alignments with BLASTZ. Genome research,

13:103–110, 2003.

https://dx.doi.org/10.6084/m9.figshare.3113488.v1
https://dx.doi.org/10.6084/m9.figshare.3113488.v1

142

[123] M. Shao and C. Kingsford. Accurate assembly of transcripts through phase-

preserving graph decomposition. Nature Biotechnology, 35, 2017.

[124] A. Shrivastava and P. Li. Asymmetric minwise hashing for indexing binary

inner products and set containment. In WWW ’15, 2015.

[125] F. R. Simão, R. Waterhouse, P. Ioannidis, E. Kriventseva, and E. Zdobnov.

BUSCO: assessing genome assembly and annotation completeness with single-

copy orthologs. Bioinformatics, 31(19):3210–2, 2015.

[126] N. Sivadasan, R. Srinivasan, and K. Goyal. Kmerlight: fast and accurate k-mer

abundance estimation. CoRR, abs/1609.05626, 2016.

[127] R. D. Smith-Unna, C. Boursnell, R. Patro, J. Hibberd, and S. Kelly. TransRate:

reference-free quality assessment of de novo transcriptome assemblies. Genome

research, 26(8):1134–1144, 2016.

[128] R. Stark, M. Grzelak, and J. Hadfield. RNA sequencing: the teenage years.

Nature Reviews Genetics, 20:1–26, 2019.

[129] M. Steinegger and J. Söding. MMseqs2 enables sensitive protein sequence

searching for the analysis of massive data sets. Nature Biotechnology, 35:1026–

1028, 2017.

[130] S. Stephen, M. Pheasant, I. V. Makunin, and J. S. Mattick. Large-scale ap-

pearance of ultraconserved elements in tetrapod genomes and slowdown of the

molecular clock. Molecular biology and evolution, 25(2):402–408, 2008.

[131] H. Tang, E. Lyons, B. Pedersen, J. C. Schnable, A. Paterson, and M. Freeling.

Screening Synteny Blocks in Pairwise Genome Comparisons through Integer

Programming. BMC bioinformatics, 12:102, 2011.

143

[132] The 1000 Genomes Project Consortium. A map of human genome variation

from population-scale sequencing. Nature, 467(7319):1061–1073, 2010.

[133] B. C. Thomas, L. Rapaka, E. Lyons, B. Pedersen, and M. Freeling. Arabidopsis

intragenomic conserved noncoding sequence. PNAS, 104(9):3348–3353, 2007.

[134] A. Tiskin. Semi-local string comparison : algorithmic techniques and applica-

tions. Mathematics in Computer Science, 1(4):571–603, 2008.

[135] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. V. van

Baren, S. Salzberg, B. Wold, and L. Pachter. Transcript assembly and quan-

tification by RNA-Seq reveals unannotated transcripts and isoform switching

during cell differentiation. Nature biotechnology, 28(5):511–515, 2010.

[136] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. Kelley, H. Pimentel,

S. Salzberg, J. Rinn, and L. Pachter. Differential gene and transcript expression

analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols,

7(3):562–578, 2012.

[137] M. Tsompana and M. J. Buck. Chromatin accessibility: a window into the

genome. Epigenetics & chromatin, 7(1):33, 2014.

[138] G. Turco, J. C. Schnable, B. Pedersen, and M. Freeling. Automated conserved

non-coding sequence (CNS) discovery reveals differences in gene content and

promoter evolution among grasses. Frontiers in plant science, 4:170, 2013.

[139] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,

1995.

[140] J. Van de Velde et al. A collection of conserved noncoding sequences to study

gene regulation in flowering plants. Plant Physiology, 171(4):2586–2598, 2016.

144

[141] N. Vijay, J. W. Poelstra, A. Künstner, and J. Wolf. Challenges and strategies

in transcriptome assembly and differential gene expression quantification. A

comprehensive in silico assessment of RNA-seq experiments. Molecular Ecology,

22, 2013.

[142] A. Visel, S. Minovitsky, I. Dubchak, and L. A. Pennacchio. VISTA Enhancer

Browser—a database of tissue-specific human enhancers. Nucleic Acids Re-

search, 35(suppl 1):D88–D92, 2006.

[143] A. Voshall and E. N. Moriyama. Next-generation transcriptome assembly:

Strategies and performance analysis. In I. Y. Abdurakhmonov, editor, Bioin-

formatics in the Era of Post Genomics and Big Data, chapter 2. IntechOpen,

Rijeka, 2018.

[144] A. Voshall and E. N. Moriyama. Next-generation transcriptome assembly and

analysis: impact of ploidy. Methods, 176:14–24, 2019.

[145] A. Voshall, S. Behera, X. Li, X. Yu, K. Kapil, J. S. Deogun, J. Shanklin,

E. Cahoon, and E. N. Moriyama. A consensus-based ensemble approach to

improve de novo transcriptome assembly. bioRxiv, 2020. doi: 10.1101/2020.06.

08.139964.

[146] D. L. Wheeler, D. Church, S. Federhen, A. Lash, T. L. Madden, J. Pontius,

G. Schuler, L. Schriml, E. Sequeira, T. Tatusova, and L. Wagner. Database

resources of the National Center for Biotechnology. Nucleic acids research,

31(1):28–33, 2003.

[147] R. Wick. Badread: simulation of error-prone long reads. J. Open Source Softw.,

4:1316, 2019.

145

[148] A. Woolfe, D. K. Goode, J. E. Cooke, H. Callaway, S. F. Smith, P. J. Snell,

G. McEwen, and G. Elgar. CONDOR: a database resource of developmentally

associated conserved non-coding elements. BMC Developmental Biology, 7:100,

2007.

[149] Y. Xie, G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, W. Huang, G. He, S. Gu,

S. Li, X. Zhou, T. W. Lam, Y. Li, X. Xu, and G. K.-S. Wong. SOAPdenovo-

Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinfor-

matics, 30(12):1660–1666, 2014.

[150] X. Yang, S. P. Chockalingam, and S. Aluru. A survey of error-correction meth-

ods for next-generation sequencing. Briefings in bioinformatics, 14(1):56–66,

2013.

[151] T. Yu, Z. Mu, Z. Fang, X. Liu, X. Gao, and J. Liu. TransBorrow: genome-

guided transcriptome assembly by borrowing assemblies from different assem-

blers. Genome research, 2020.

[152] B. Zacher, E. Raineri, P. Ribeca, R. Guigó, T. Griebel, V. Lacroix, and M. Sam-

meth. Modelling and simulating generic RNA-Seq experiments with the flux

simulator. Nucleic Acids Research, 40(20):10073–10083, 2012.

[153] D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome research, 18 5:821–9, 2008.

[154] Q. Zhang, J. Pell, R. Canino, C. Howe, and T. Brown. These Are Not the k-mers

You Are Looking For: Efficient Online k-mer Counting Using a Probabilistic

Data Structure. PLoS ONE, 9(7), 2014.

146

[155] W. Zhang et al. High-resolution mapping of open chromatin in the rice genome.

Genome Research, 22(1):151–162, 2012.

[156] M. Zhao, D. Liu, and H. Qu. Systematic review of next-generation sequenc-

ing simulators: computational tools, features and perspectives. Briefings in

Functional Genomics, 16:121–128, 2017.

[157] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. LSH Ensemble: Internet-Scale

Domain Search. Proc VLDB Endowment, 9(12):1185–1196, 2016.

[158] J. Zook et al. Extensive sequencing of seven human genomes to characterize

benchmark reference materials. Scientific Data, 3:160025, 2016.

[159] M. Šošić and M. Šikić. Edlib: a C/C++ library for fast, exact sequence align-

ment using edit distance. Bioinformatics, 33(9):1394–1395, 2017.

147

Appendix A

Table A.1: Isoform distribution

isoforms per gene No0 Col0 Rice Soybean B73 Mo17 Human
1 18,875 9,502 10,836 15,925 8,455 16,335 8,575
2 1854 213 934 1,710 437 2,365
3 465 11 103 656 71 796
4 142 16 278 9 288
5 40 6 126 3 69
6 14 2 64 1 31
7 4 1 39 16
8 1 32 5
9 16 3
10 10 1
11 7 2
12 6 2
13 5 1
14 2
15 1
16 1
17 2
19 1
20 2

Total # genes 18,875 12,023 11,060 16,987 11,413 16,856 16,856
% single-isoform gene 100% 79.03% 97.97% 93.75% 74.08% 96.91% 50.87%
Total # transcripts 18,875 15,502 11,294 18,215 17,108 17,479 17,669

148

Table A.2: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the A. thaliana No0 dataset at the transcript levela

Assembler Totalb TP FP FN C/I Accuracy∗ Recall Precision F-measure
IDBA-Tran 22,768 8,353 14,415 10,522 0.579 0.251 0.443 0.367 0.401

Trinity 29,773 11,132 18,641 7,743 0.597 0.297 0.590 0.374 0.458
SOAPdenovo-trans 23,476 12,073 11,403 6,802 1.059 0.399 0.640 0.514 0.570

rnaSPAdes 27,664 10,045 17,619 8,830 0.57 0.275 0.532 0.363 0.432
Concatenation 73,539 4,931 68,608 13,944 0.072 0.056 0.261 0.067 0.107
EvidentialGene 71,161 9,444 61,717 9,431 0.153 0.117 0.500 0.133 0.210

ConSemble 20,298 13,371 6,927 5,504 1.93 0.518 0.708 0.659 0.683
Minsemble 40,528 13,932 26,596 4,943 0.524 0.306 0.738 0.344 0.469

a
Total number of the benchmark transcripts is 18,875.

b Total number of assembled contigs.

Table A.3: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the A. thaliana Col0 dataset at the transcript levela

Assembler Totalb TP FP FN C/I Accuracy∗ Recall Precision F-measure
IDBA-Tran 20,447 6,054 14,393 9,454 0.421 0.202 0.390 0.296 0.337

Trinity 21,371 7,324 14,047 8,184 0.521 0.248 0.472 0.343 0.397
SOAPdenovo-trans 19,409 9,309 10,100 6,199 0.922 0.364 0.600 0.480 0.533

rnaSPAdes 31,494 7,599 23,895 7,909 0.318 0.193 0.490 0.241 0.323
Concatenation 46,033 7,527 38,506 7,981 0.195 0.139 0.485 0.164 0.245
EvidentialGene 64,007 7,908 56,099 7,600 0.141 0.110 0.510 0.124 0.199

ConSemble 17,309 9,245 8,064 6,263 1.146 0.392 0.596 0.534 0.563
Minsemble 32,150 10,199 21,951 5,309 0.465 0.272 0.658 0.317 0.428

a
Total number of benchmark transcripts is 15,508.

b Total number of assembled contigs.

Table A.4: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Rice dataset at the transcript levela

Assembler Totalb TP FP FN C/I Accuracy* Recall Precision F-measure
IDBA-Tran 13,151 3,450 9,701 7,844 0.356 0.164 0.306 0.262 0.282

Trinity 18,000 4,157 13,843 7,137 0.3 0.165 0.368 0.231 0.284
SOAPdenovo-trans 10,508 5,066 5,442 6,228 0.931 0.303 0.449 0.482 0.465

rnaSPAdes 13,182 5,386 7,796 5,908 0.691 0.282 0.477 0.409 0.440
Concatenation 57,541 2,204 55,337 9,090 0.04 0.033 0.195 0.038 0.064
EvidentialGene 33,920 4,279 29,641 7,015 0.144 0.105 0.379 0.126 0.189

ConSemble 14,922 5,605 9,317 5,689 0.602 0.272 0.496 0.376 0.428
Minsemble 25,224 5,840 19,384 5,454 0.301 0.19 0.517 0.232 0.320

a
Total number of benchmark transcripts is 11,294.

b Total number of assembled contigs.

149

Table A.5: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Soybean dataset at the transcript levela

Assembler Totalb TP FP FN C/I Accuracy* Recall Precision F-measure
IDBA-Tran 33,243 6,043 27,200 12,172 0.222 0.133 0.332 0.182 0.235

Trinity 52,700 5,462 47,238 12,753 0.116 0.083 0.3 0.104 0.154
SOAPdenovo-trans 24,346 8,424 15,922 9,791 0.529 0.247 0.462 0.346 0.396

rnaSPAdes 23,686 8,120 15,566 10,095 0.522 0.24 0.446 0.343 0.388
Concatenation 48,442 6,819 41,623 11,396 0.164 0.114 0.374 0.141 0.205
EvidentialGene 61,136 6,832 54,304 11,383 0.126 0.094 0.375 0.112 0.172

ConSemble 18,525 9,512 9,013 8,703 1.055 0.349 0.522 0.513 0.518
Minsemble 34,642 10,200 24,442 8,015 0.417 0.239 0.56 0.294 0.386

a
Total number of benchmark transcripts is 18,215.

b Total number of assembled contigs.

Table A.6: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Z. mays B73 dataset at the transcript levela

Assembler Totalb TP FP FN C/I Accuracy* Recall Precision F-measure
IDBA-Tran 24,603 4,067 20,536 13,041 0.198 0.108 0.238 0.165 0.195

Trinity 27,403 3,127 24,276 13,981 0.129 0.076 0.183 0.114 0.141
SOAPdenovo-trans 22,327 5,736 16,591 11,372 0.346 0.170 0.335 0.257 0.291

rnaSPAdes 23,764 4,012 19,752 13,096 0.203 0.109 0.235 0.169 0.196
Concatenation 113,689 2,418 111,271 14,690 0.022 0.019 0.141 0.021 0.037
EvidentialGene 74,811 5,389 69,422 11,719 0.078 0.062 0.315 0.072 0.117

ConSemble 18,150 5,212 12,938 11,896 0.403 0.173 0.305 0.287 0.296
Minsemble 35,242 6,598 28,644 10,510 0.230 0.144 0.386 0.187 0.252

a
Total number of benchmark transcripts is 17,108.

b Total number of assembled contigs.

Table A.7: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Z. mays Mo17 dataset at the transcript levela

Assembler Totalb TP FP FN C/I Accuracy* Recall Precision F-measure
IDBA-Tran 24,916 4,881 20,035 12,598 0.244 0.13 0.279 0.196 0.23

Trinity 26,257 3,582 22,675 13,897 0.158 0.089 0.205 0.136 0.164
SOAPdenovo-trans 21,537 5,857 15,680 11,622 0.374 0.177 0.335 0.272 0.3

rnaSPAdes 21,469 5,377 16,092 12,102 0.334 0.16 0.308 0.251 0.276
Concatenation 71,471 2,863 68,608 14,616 0.042 0.033 0.164 0.040 0.064
EvidentialGene 76,496 5,090 71,406 12,389 0.071 0.057 0.291 0.067 0.108

ConSemble 16,406 6,642 9,764 10,837 0.68 0.244 0.380 0.405 0.392
Minsemble 29,561 7,092 22,469 10,387 0.316 0.178 0.406 0.240 0.302

a
Total number of benchmark transcripts is 17,479.

b Total number of assembled contigs.

150

Table A.8: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Human dataset at the transcript levela

Assembler Totalb TP FP FN C/I Accuracy∗ Recall Precision F-measure

IDBA-Tran 20,954 6,154 14,800 11,515 0.42 0.19 0.348 0.294 0.319
SOAPdenovo 22,005 5,933 16,072 11,736 0.37 0.176 0.336 0.27 0.299

Trinity 21,278 8,764 12,514 8,905 0.7 0.29 0.496 0.412 0.450
rnaSPAdes 21,244 7,637 13,607 10,032 0.56 0.244 0.432 0.359 0.393

EvidentialGene 65,587 8,680 56,907 8,989 0.15 0.116 0.491 0.132 0.209
Concatenation 45,180 7,793 37,387 9,876 0.21 0.142 0.441 0.172 0.248

ConSemble 19,509 9,200 10,309 8,469 0.89 0.329 0.521 0.472 0.495
Minsemble 32,071 9,871 22,200 7,798 0.44 0.248 0.559 0.308 0.397

a
Total number of the benchmark transcripts is 17,669.

b Total number of assembled contigs.

Table A.9: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the A. thaliana Col0 dataset at the gene levela

Assembler Totalb TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 18,234 6,040 5,983 12,194 0.502 0.331 0.249 0.399

Trinity 14,036 7,007 5,016 7,029 0.583 0.499 0.368 0.538
SOAPdenovo-trans 19,016 5,987 6,036 13,029 0.498 0.315 0.239 0.386

rnaSPAdes 24,005 7,350 4,673 16,655 0.611 0.306 0.256 0.408
Concatenation 28,195 6,827 5,196 21,368 0.568 0.242 0.204 0.339
EvidentialGene 23,826 6,794 5,229 17,032 0.565 0.285 0.234 0.379

ConSemble 13,346 8,415 3,608 4,931 0.700 0.631 0.496 0.663
Minsemble 16,458 8,643 3,380 7,815 0.719 0.525 0.436 0.607

a
Total number of benchmark genes is 12,203.

b Total number of clusters generated by MinIsoClust.

Table A.10: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Human dataset at the gene levela

Assembler Totalb TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 20,170 7,853 4,305 12,317 0.646 0.389 0.321 0.486

Trinity 17,685 7,853 4,305 9,832 0.646 0.444 0.357 0.526
SOAPdenovo-trans 30,539 5,936 6,222 24,603 0.488 0.194 0.161 0.278

rnaSPAdes 17,993 7,089 5,069 10,904 0.583 0.394 0.307 0.470
Concatenation 19,676 5,580 6,578 14,096 0.459 0.284 0.213 0.351
EvidentialGene 27,426 5,804 6,354 21,622 0.477 0.212 0.172 0.293

ConSemble 16,224 8,206 3,952 8,018 0.675 0.506 0.407 0.578
Minsemble 22,242 8,565 3,593 13,677 0.704 0.385 0.332 0.498

a
Total number of benchmark genes is 12,158.

b Total number of clusters generated by MinIsoClust.

151

Table A.11: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Rice dataset at the gene levela

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 12,665 1,209 11,456 9,851 0.109 0.095 0.054 0.102

Trinity 9,696 1,311 8,385 9,749 0.119 0.135 0.067 0.126
SOAPdenovo-trans 17,637 3,171 14,466 7,889 0.287 0.180 0.124 0.221

rnaSPAdes 10,580 2,720 7,860 8,340 0.246 0.257 0.144 0.251
Concatenation 14,527 4,250 10,277 6,810 0.384 0.293 0.199 0.332
EvidentialGene 19,169 2,197 16,972 8,863 0.199 0.115 0.078 0.145

ConSemble 11,405 5,165 6,240 5,895 0.467 0.453 0.299 0.460
Minsemble 12,364 5,433 6,931 5,627 0.491 0.439 0.302 0.464

a
Total number of benchmark genes is 11,060.

b Total number of clusters generated by MinIsoClust.

Table A.12: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Soybean dataset at the gene levela

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 15,642 4,325 11,317 12,662 0.255 0.276 0.153 0.265

Trinity 15,432 3,890 11,542 13,097 0.229 0.252 0.136 0.240
SOAPdenovo-trans 11,908 6,321 5,587 10,666 0.372 0.531 0.280 0.438

rnaSPAdes 14,789 6,071 8,718 10,916 0.357 0.411 0.236 0.382
Concatenation 19,059 6,591 12,468 10,396 0.388 0.346 0.224 0.366
EvidentialGene 19,247 5,191 14,056 11,796 0.306 0.270 0.167 0.287

ConSemble 13,737 8,991 4,746 7,996 0.529 0.655 0.414 0.585
Minsemble 15,623 9,777 5,846 7,210 0.576 0.626 0.428 0.600

a
Total number of benchmark genes is 16,987.

b Total number of clusters generated by MinIsoClust.

Table A.13: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Z. mays B73 dataset at the gene levela

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 15,642 1,903 13,739 9,510 0.167 0.122 0.076 0.141

Trinity 16,287 1,389 14,898 10,024 0.122 0.085 0.053 0.100
SOAPdenovo-trans 11,098 891 10,207 10,522 0.078 0.080 0.041 0.079

rnaSPAdes 16,995 2,327 14,668 9,086 0.204 0.137 0.089 0.164
Concatenation 28,136 4,584 23,552 6,829 0.402 0.163 0.131 0.232
EvidentialGene 36,765 2,283 34,482 9,130 0.200 0.062 0.050 0.095

ConSemble 16,003 5,033 10,970 6,380 0.441 0.315 0.225 0.367
Minsemble 22,127 5,926 16,201 5,487 0.519 0.268 0.215 0.353

a
Total number of benchmark genes is 11,413.

b Total number of clusters generated by MinIsoClust.

152

Table A.14: Comparison of transcriptome assembly performance among de novo and
ensemble methods for Z. mays Mo17 dataset at the gene levela

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 24,916 4,875 20,041 11,981 0.289 0.196 0.132 0.233

Trinity 21,537 5,713 15,824 11,143 0.339 0.265 0.175 0.298
SOAPdenovo-trans 26,257 3,577 22,680 13,279 0.212 0.136 0.090 0.166

rnaSPAdes 21,469 5,317 16,152 11,539 0.315 0.248 0.161 0.277
Concatenation 76,496 5,001 71,495 11,855 0.297 0.065 0.057 0.107
EvidentialGene 73,539 4,876 68,663 11,980 0.289 0.066 0.057 0.108

ConSemble 16,401 6,496 9,905 10,360 0.385 0.396 0.243 0.391
Minsemble 16,853 7,811 9,042 9,045 0.463 0.463 0.302 0.463

a
Total number of benchmark genes is 16,856.

b Total number of clusters generated by MinIsoClust.

Table A.15: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the A. thaliana Col0 dataset for the single-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 16,624 5,361 4,141 11,263 0.564 0.322 0.258 0.410

Trinity 10,866 5,849 3,653 5,017 0.616 0.538 0.403 0.574
SOAPdenovo-trans 17,117 4,261 5,241 12,856 0.448 0.249 0.191 0.320

rnaSPAdes 18,878 5,547 3,955 13,331 0.584 0.294 0.243 0.391
Concatenation 17,892 4,883 4,619 13,009 0.514 0.273 0.217 0.357
EvidentialGene 10,381 5,064 4,438 5,317 0.533 0.488 0.342 0.509

ConSemble 10,433 6,197 3,305 4,236 0.652 0.594 0.451 0.622
Minsemble 11,791 6,361 3,141 5,430 0.669 0.539 0.426 0.597

a
Total number of benchmark single-isoform genes is 9,502.

b Total number of clusters generated by MinIsoClust.

Table A.16: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the human dataset for the single-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 18,605 4,180 4,395 14,425 0.487 0.225 0.182 0.308

Trinity 15,474 4,637 3,938 10,837 0.541 0.300 0.239 0.386
SOAPdenovo-trans 29,211 4,159 4,416 25,052 0.485 0.142 0.124 0.220

rnaSPAdes 16,048 4,368 4,207 11,680 0.509 0.272 0.216 0.355
Concatenation 16,600 3,320 5,255 13,280 0.387 0.200 0.152 0.264
EvidentialGene 17,771 3,680 4,895 14,091 0.429 0.207 0.162 0.279

ConSemble 13,988 4,691 3,884 9,297 0.547 0.335 0.262 0.416
Minsemble 15,762 5,530 3,045 10,232 0.645 0.351 0.294 0.454

a
Total number of benchmark single-isoform genes is 8,575.

b Total number of clusters generated by MinIsoClust.

153

Table A.17: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Rice dataset for the single-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 12,268 1,123 11,145 9,713 0.104 0.092 0.051 0.097

Trinity 8,938 1,298 7,640 9,538 0.120 0.145 0.070 0.131
SOAPdenovo-trans 17,306 3,078 14,228 7,758 0.284 0.178 0.123 0.219

rnaSPAdes 8,750 2,668 6,082 8,168 0.246 0.305 0.158 0.272
Concatenation 11,740 4,085 7,655 6,751 0.377 0.348 0.221 0.362
EvidentialGene 7,997 2,113 5,884 8,723 0.195 0.264 0.126 0.224

ConSemble 7,931 4,996 2,935 5,840 0.461 0.630 0.363 0.532
Minsemble 7,459 5,277 2,182 5,559 0.487 0.707 0.405 0.577

a
Total number of benchmark single-isoform genes is 10,836.

b Total number of clusters generated by MinIsoClust.

Table A.18: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Soybean dataset for the single-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 13,782 3,128 10,654 13,207 0.191 0.227 0.116 0.208

Trinity 14,312 2,291 12,021 14,044 0.140 0.160 0.081 0.150
SOAPdenovo-trans 9,986 5,501 4,485 10,834 0.337 0.551 0.264 0.418

rnaSPAdes 12,871 4,883 7,988 11,452 0.299 0.379 0.201 0.334
Concatenation 9,778 5,934 3,844 10,401 0.363 0.607 0.294 0.454
EvidentialGene 14,561 4,731 9,830 11,604 0.290 0.325 0.181 0.306

ConSemble 11,394 8,206 3,188 8,129 0.502 0.720 0.420 0.592
Minsemble 13,763 8,898 4,865 7,437 0.545 0.647 0.420 0.591

a
Total number of benchmark single-isoform genes is 16,335.

b Total number of clusters generated by MinIsoClust.

Table A.19: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Z. mays B73 dataset for the single-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 13,826 982 12,844 7,473 0.116 0.071 0.046 0.088

Trinity 14,452 887 13,565 7,568 0.105 0.061 0.040 0.077
SOAPdenovo-trans 9,210 673 8,537 7,782 0.080 0.073 0.040 0.076

rnaSPAdes 13,981 1,269 12,712 7,186 0.150 0.091 0.060 0.113
Concatenation 17,862 2,650 15,212 5,805 0.313 0.148 0.112 0.201
EvidentialGene 23,383 1,412 21,971 7,043 0.167 0.060 0.046 0.089

ConSemble 14,274 3,487 10,787 4,968 0.412 0.244 0.181 0.307
Minsemble 13,121 3,869 9,252 4,586 0.458 0.295 0.219 0.359

a
Total number of benchmark single-isoform genes is 8,455.

b Total number of clusters generated by MinIsoClust.

154

Table A.20: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Z. mays Mo17 dataset for the single-isoform genes a

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 22,210 4,693 17,517 11,642 0.287 0.211 0.139 0.244

Trinity 18,854 5,383 13,471 10,952 0.330 0.286 0.181 0.306
SOAPdenovo-trans 25,358 3,406 21,952 12,929 0.209 0.134 0.089 0.163

rnaSPAdes 18,521 5,032 13,489 11,303 0.308 0.272 0.169 0.289
Concatenation 65,000 4,696 60,304 11,639 0.287 0.072 0.061 0.115
EvidentialGene 65,896 4,589 61,307 11,746 0.281 0.070 0.059 0.112

ConSemble 14,394 6,111 8,283 10,224 0.374 0.425 0.248 0.398
Minsemble 15,682 7,366 8,316 8,969 0.451 0.470 0.299 0.460

a
Total number of benchmark single-isoform genes is 16,335.

b Total number of clusters generated by MinIsoClust.

Table A.21: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the A. thaliana Col0 dataset for the multiple-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 1,610 9 2,512 1,601 0.004 0.006 0.002 0.004

Trinity 3,170 221 2,300 2,949 0.088 0.070 0.040 0.078
SOAPdenovo-trans 1,899 156 2,365 1,743 0.062 0.082 0.037 0.071

rnaSPAdes 5,127 155 2,366 4,972 0.061 0.030 0.021 0.041
Concatenation 10,303 677 1,844 9,626 0.269 0.066 0.056 0.106
EvidentialGene 13,445 291 2,230 13,154 0.115 0.022 0.019 0.036

ConSemble 2,913 599 1,922 2,314 0.238 0.206 0.124 0.220
Minsemble 4,667 1,005 1,516 3,662 0.399 0.215 0.163 0.280

a
Total number of benchmark multiple-isoform genes is 2,521.

b Total number of clusters generated by MinIsoClust.

Table A.22: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Human dataset for the multiple-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 1,565 156 3,427 1,409 0.044 0.100 0.031 0.061

Trinity 2,211 401 3,182 1,810 0.112 0.181 0.074 0.138
SOAPdenovo-trans 1,328 152 3,431 1,176 0.042 0.114 0.032 0.062

rnaSPAdes 1,945 315 3,268 1,630 0.088 0.162 0.060 0.114
Concatenation 3,076 254 3,329 2,822 0.071 0.083 0.040 0.076
EvidentialGene 9,655 242 3,341 9,413 0.068 0.025 0.019 0.037

ConSemble 2,236 523 3,060 1,713 0.146 0.234 0.099 0.180
Minsemble 6,480 676 2,907 5,804 0.189 0.104 0.072 0.134

a
Total number of benchmark multiple-isoform genes is 3,583.

b Total number of clusters generated by MinIsoClust.

155

Table A.23: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Rice dataset for the multiple-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 397 5 392 219 0.022 0.013 0.008 0.016

Trinity 758 1 757 223 0.004 0.001 0.001 0.002
SOAPdenovo-trans 331 1 330 223 0.004 0.003 0.002 0.004

rnaSPAdes 1,830 3 1,827 221 0.013 0.002 0.001 0.003
Concatenation 2,787 6 2,781 218 0.027 0.002 0.002 0.004
EvidentialGene 11,172 7 11,165 217 0.031 0.001 0.001 0.001

ConSemble 3,474 18 3,456 206 0.080 0.005 0.005 0.010
Minsemble 4,905 44 4,861 180 0.196 0.009 0.009 0.017

a
Total number of benchmark multiple-isoform genes is 224.

b Total number of clusters generated by MinIsoClust.

Table A.24: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Soybean dataset for the multiple-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 1,860 101 1,759 551 0.155 0.054 0.042 0.080

Trinity 1,120 87 1,033 565 0.133 0.078 0.052 0.098
SOAPdenovo-trans 1,922 119 1,803 533 0.183 0.062 0.048 0.092

rnaSPAdes 1,918 96 1,822 556 0.147 0.050 0.039 0.075
Concatenation 9,281 113 9,168 539 0.173 0.012 0.012 0.023
EvidentialGene 4,686 69 4,617 583 0.106 0.015 0.013 0.026

ConSemble 2,343 157 2,186 495 0.241 0.067 0.055 0.105
Minsemble 1,860 354 1,506 298 0.543 0.190 0.164 0.282

a
Total number of benchmark multiple-isoform genes is 652.

b Total number of clusters generated by MinIsoClust.

Table A.25: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Z. mays B73 dataset for the multiple-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 1,816 46 1,770 2,912 0.016 0.025 0.010 0.019

Trinity 1,835 39 1,796 2,919 0.013 0.021 0.008 0.016
SOAPdenovo-trans 1,888 29 1,859 2,929 0.010 0.015 0.006 0.012

rnaSPAdes 3,014 77 2,937 2,881 0.026 0.026 0.013 0.026
Concatenation 10,274 81 10,193 2,877 0.027 0.008 0.006 0.012
EvidentialGene 13,382 60 13,322 2,898 0.020 0.004 0.004 0.007

ConSemble 1,729 78 1,651 2,880 0.026 0.045 0.017 0.033
Minsemble 9,006 277 8,729 2,681 0.094 0.031 0.024 0.046

a
Total number of benchmark multiple-isoform genes is 2,958.

b Total number of clusters generated by MinIsoClust.

156

Table A.26: Comparison of transcriptome assembly performance among de novo and
ensemble methods for the Z. mays Mo17 dataset for the multiple-isoform genesa

Assembler Total b TP FN FP Recall Precision Accuracy* F-measure
IDBA-Tran 2,706 4 2,702 517 0.008 0.001 0.001 0.002

Trinity 2,683 117 2,566 404 0.225 0.044 0.038 0.073
SOAPdenovo-trans 899 2 897 519 0.004 0.002 0.001 0.003

rnaSPAdes 2,948 47 2,901 474 0.090 0.016 0.014 0.027
Concatenation 11,496 66 11,430 455 0.127 0.006 0.006 0.011
EvidentialGene 7,643 47 7,596 474 0.090 0.006 0.006 0.012

ConSemble 2,007 119 1,888 402 0.228 0.059 0.049 0.094
Minsemble 2,334 244 2,090 277 0.468 0.105 0.093 0.171

a
Total number of benchmark multiple-isoform genes is 521.

b Total number of clusters generated by MinIsoClust.

0

304 302

173

2050

0

0

116

105

130

1657

15760

153

3917

CConSemble

Minsemble EvidentialGene

Concatenation

(a) Correct

0

9472 46180

3929

5172

0

0

1651

498

742

2661

11260

362

1350

CConSemble

Minsemble EvidentialGene

Concatenation

(b) Incorrect

Figure A.1: Numbers of correctly and incorrectly assembled contigs for the Human
benchmark dataset shared among the four ensemble assembly approaches.

	SUFFIX TREE, MINWISE HASHING AND STREAMING ALGORITHMS FOR BIG DATA ANALYSIS IN BIOINFORMATICS
	

	List of Figures
	List of Tables
	Introduction
	Streaming algorithm for approximating k–mer frequency counts
	Introduction
	Problem statement
	Related works

	Methods
	Implementation

	Results
	Experimental setup
	Accuracy
	Time and space
	Sample size

	Conclusion

	Discovery of conserved non-coding sequences efficiently
	Introduction
	Background and Related Works
	Methodology
	Problem definition
	Algorithm
	CNS with mismatches

	Experimental Results
	Accuracy and sensitivity of our approach
	Comparison of results from our approach and CDP
	Association of CNSs with DNase hypersensitive sites
	Running time

	Conclusion and Future Works

	Identifying conserved non-coding elements using min-wise hashing
	Introduction
	Materials and Methods
	Minhash signatures
	LSH-based clustering
	CNE identification
	Benchmark dataset
	Performance evaluation

	Results and Discussion
	CNE identification performance
	Time and space usage

	Conclusion

	 Isoform clustering using minhash and locality-sensitive hashing
	Introduction
	Materials and Methods
	Sequence comparison using minhash signatures
	MinIsoClust isoform-clustering strategy
	LSH-based bucketing
	Identification of isoforms by clustering
	Benchmark datasets
	Performance evaluation
	Program execution

	Results and Discussion
	Isoform-clustering accuracy
	Computational time and space usage

	Conclusion

	New ensemble approach for improving transcriptome assembly
	Introduction
	Transcriptome Assembly Strategies
	Genome-guided approach
	De novo approach
	Ensemble approach

	Performance Evaluation of Transcriptome Assembly
	Performance metrics without references
	Performance metrics using actual biological data
	Performance metrics using simulated benchmark data

	Simulated Benchmark Transcriptome Datasets Generation
	RNA-seq simulation methods
	Examples of RNA-seq simulation

	Performance Comparison among Transcriptome Assemblers
	Genome-guided approach
	De novo approach
	Combining de novo assemblies generated using different k-mers
	Analysis of k-mers used in assembled contigs
	Ensemble approach

	Minsemble: a New Ensemble Approach
	Minhash signature generation
	Clustering of potential isoforms
	Selection of contigs for final assembly
	Minsemble transcriptome assembly pipeline
	Assembly performance evaluation
	Results and discussion
	Performance of transcriptome assembly at the transcript level
	Performance of transcriptome assembly at the gene level
	Performance of transcriptome assembly for the single-isoform genes
	Performance of transcriptome assembly for the multiple-isoform genes

	Conclusion

	Conclusion and future works
	Bibliography
	Appendix A

