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ARTICLE INFO ABSTRACT

Dry bean breeding programs are crucial to improve the productivity and resistance to biotic and abiotic stress.
Phenotyping is a key process in breeding that refers to crop trait evaluation. In recent years, high-throughput
plant phenotyping methods are being developed to increase the accuracy and efficiency for crop trait evalua-
tions. In this study, aerial imagery at different resolutions were evaluated to phenotype crop performance and
phenological traits using genotypes from two breeding panels, Durango Diversity Panel (DDP) and Andean
Diversity Panel (ADP). The unmanned aerial system (UAS) based multispectral and thermal data were collected
for two seasons at multiple time points (about 50, 60 and 75 days after planting/DAP in 2015; about 60 and 75
DAP in 2017). Four image-based features were extracted from multispectral images. Among different features,
normalized difference vegetation index (NDVI) data were found to be consistently highly correlated with per-
formance traits (above ground biomass, seed yield), especially during imaging at about 60-75 DAP (early pod
development). Overall, correlations were higher using NDVI in ADP than DDP with biomass (r = —0.67 to
—0.91in ADP;r = —0.55 to —0.72 in DDP) and seed yield (r = 0.51 to 0.73 in ADP; r = 0.42 to 0.58 in DDP) at
about 60 and 75 DAP. For thermal data, a temperature data normalization (utilizing common breeding plots in
multiple thermal images) was implemented and the MEAN plot temperatures generally correlated significantly
with biomass (r = 0.28-0.88). Finally, lower resolution satellite images (0.05-5 m/pixel) using UAS data was
simulated and image resolution beyond 50 cm was found to reduce the relationship between image features
(NDVI) and performance variables (biomass, seed yield). Four different high resolution satellite images:
Pleiades-1A (0.5 m), SPOT 6 (1.5 m), Planet Scope (3.0 m), and Rapid Eye (5.0 m) were acquired to validate the
findings from the UAS data. The results indicated sub-meter resolution satellite multispectral imagery showed
promising application in field phenotyping, especially when the genotypic responses to stress is prominent. The
correlation between NDVI extracted from Pleiades-1A images with seed yield (r = 0.52) and biomass
(r = —0.55) were stronger in ADP; where the strength in relationship reduced with decreasing satellite image
resolution. In future, we anticipate higher spatial and temporal resolution data achieved with low-orbiting sa-
tellites will increase applications for high-throughput crop phenotyping.
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1. Introduction

United States is one of the top ten dry bean (Phaseolus vulgaris L.)
producing countries in the world. Dry bean is important in human
nutrition because it is high in nutrients (folate, manganese, potassium,
vitamin B6), dietary fiber, and protein (Petry et al., 2015; Miklas et al.,
2006). This nutritional impact is important for both developed and
developing countries; but especially the latter, where dry bean provides
basic nutrition for the populace. Dry bean breeding programs are
consistently directed towards improving yield potential and developing
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varieties tolerant to stressful conditions caused by diseases, edaphic
factors, and drought (Miklas et al., 2006; Beebe et al., 2013). Among
different stressors, drought (second to diseases) is known to reduce
yields from 10% to 100% (Rao, 2014; Polania, et al., 2016).

In plant breeding, field phenotyping refers to systematic plot-level
qualitative or quantitative evaluation of crop traits. Phenotyping is
commonly performed manually and can be time-consuming with ac-
quisition of low spatial and temporal information (Sankaran et al.,
2015a). To maximize breeding efficiency, new plant phenotyping tools
must be adopted to match the advancements in quality high-throughput
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genotyping tools. Recently, field-based high-throughput plant pheno-
typing (HTPP) techniques have advanced through the use of proximal
and remote sensing platforms (Andrade-Sanchez et al., 2014; Zaman-
Allah et al., 2015; Holman et al., 2016).

Several efforts using remote sensing for HTPP of bean plants have
been reported. In field conditions, strong correlations between sensor
features and yield potential were detected during both flowering and
pod filling stages (Rajah et al., 2017). Using a hyperspectral system,
Gutierrez et al. (2006) studied the relation between green normalized
difference vegetation index (GNDVI) and yield based on phosphorus
application rates, and found that GNDVI decreased near physiological
maturity. Other reports involving remote sensing methods for disease
monitoring (Boechat et al., 2014), evaluation of drought and low ni-
trogen responses (Sankaran et al., 2018), and determination of ni-
trogen/chlorophyll levels (Abrahao et al., 2013) in bean plants have
been reported.

The use of unmanned aerial system (UAS) to capture low altitude
high resolution imagery allows the acquisition of homogeneous in-
formation at a given time point with quick capture of data from mul-
tiple plots. RGB cameras have been widely used for field plant pheno-
typing in multiple crops (e.g. Sugiura et al., 2016; Hu et al., 2018; Reza
et al.,, 2018), aimed towards assessing multiple crop traits. Thermal
data has also been explored to analyze water use efficiency and water
stress in plants (Jones et al., 2009; Gomez-Candon et al., 2016; Ludovisi
et al., 2017). The applications of UAS-based sensor data for HTPP is
rising with the development of user-friendly platforms and sensors,
alongside software packages with image processing capabilities.

In recent years, emergence of low orbiting satellites (LOS) with high
spatial and temporal resolution (Onojeghuo et al., 2018) have broa-
dened the application of remote sensing in agriculture. Some of the
available high-resolution satellite imagery is summarized in
Supplementary Materials, Table S1. The availability of sub-meter spa-
tial resolution multispectral data from LOS, with a desired re-visit time,
could enhance field-based HTPP capabilities, where the breeding plots
are in the range of a few square meters in size. Moreover, LOS data can
easily capture data from multiple locations as often breeding trials in-
volves multiple sites to evaluate genotype-environment interactions.

LOS images are being used for multiple agricultural applications,
such as to predict crop yield (Zhao et al., 2015), evaluate heterogeneity
in field crops (Schwalbert et al., 2018), and to detect water logging in
winter wheat production during booting stage (Liu et al., 2018). Sub-
meter multispectral imagery from LOS offers a variety of remote sensing
applications similar to UAS images. However, uncertainty on the re-
liability and utilization of such data in various agricultural applications
remains. To the best of our knowledge, applications of LOS imagery for
phenotyping applications in plant breeding trials are absent. Thus, with
an overall goal to evaluate and establish remote sensing methods for
high-throughput plant phenotyping in dry bean breeding nurseries, our
specific objectives were to: (1) evaluate the sensitivity of genotypes to
stress using UAS-based multispectral imaging with crop performance
and other phenological traits in breeding trials as a reference; (2) in-
troduce novel approaches to calibrate thermal images to compensate
for inter-imagery dynamic temperature differences for phenotyping
applications, and (3) evaluate the application of LOS data for dry bean
HTPP.

2. Materials and methods
2.1. Study area, genotypes, and ground reference data

The field site was at the Washington State University’s Roza
Research Farm in Prosser, WA (46°29'N, 119°73’W), which has a
Warden (coarse-silty, mixed, superactive, mesic, Xeric Haplocambid)
soil type. During two seasons, 2015 and 2016 (Supplementary
Materials, Fig. S1), multiple stress (low fertility with low N and P, in-
termittent drought, soil compaction, and high root rot incidence) was
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imposed on genotypes representing the Durango Diversity Panel (DDP)
and Andean Diversity Panel (ADP). The research site referred to as the
‘purgatory plot’ is used to develop dry bean germplasm with broad
adaptation by identifying breeding lines with tolerance to multiple
stresses. Multiple stress is induced by never fertilizing to generate low N
and low P conditions; deficit irrigation at 30% evapotranspiration ap-
plied by overhead sprinklers once a week to simulate intermittent
drought; reduced tillage to promote soil compaction; and a short crop
rotation alternating wheat and dry bean to promote buildup of soil root
rotting pathogens, namely Fusarium solani (Mart.) Sacc. species com-
plex. An average rainfall of 50 mm during the growing season helps to
realize drought stress. Pre-plant and post emergence herbicides, in
addition to hand hoeing later in the season, were used to control weeds.
In general, N and P fertility in 2015 season was higher than 2016 season
(dry bean crop preceded wheat crop). The soil data is summarized in
Supplementary Materials, Table S2. In regard to the growing season
stress levels, crops grown in 2015 experienced less stress (more avail-
able nutrients, early planting dates, less heat incidents) than those
grown in 2016. The goal was to evaluate crop responses to multiple
stressors and individual effects were not assessed.

The DDP consists of dry bean genotypes (primarily cultivars but also
landraces and germplasm releases) representing market classes (pinto,
pink, small red, great northern) originating from Race Durango within
the Middle American gene pool (Singh et al., 1991). The DDP genotypes
are well adapted to the Pacific Northwest (PNW). The ADP genotypes
representing kidney, yellow, red mottled, and cranberry market classes
used in this study were selected based on adaptation to the PNW from a
broader collection of 397 Andean genotypes from across the world
(Cichy et al., 2015). The DDP and ADP were purposely comprised of
stress tolerant and susceptible genotypes to promote evaluation of stress
response.

An individual plot representing a single genotype was comprised of
4 rows of 3m length and 0.55 m row spacing. Target seeding rate was
285,000 plants ha~'. The experiments were planted in a randomized
complete block design (RCBD). In 2015, 192 genotypes of DDP were
evaluated with two replications (15-01 and 15-02). For ADP, three
replications (15-03, 15-04 and 15-05) of 64 genotypes were assessed.
In 2016, two replications of 74 genotypes of DDP (16-01 and 16-02)
and 45 genotypes of ADP (16-03 and 16-04) were evaluated (Table 1).
In 2016, seven other distinct smaller breeding nurseries with fewer
genotypes were planted, but are not included in this study. The total
number of plots analyzed in 2015 and 2016 was 576 and 480, respec-
tively.

The ground reference data collected during this study that were
compared to remote sensing data included: emergence, days to flow-
ering (DF), days to harvest maturity (DHM), canopy height (CH), bio-
mass rating, and seed yield. Emergence was scored from 1 (complete) to
9 (no plants) at early seedling stage (V1 to V2) and estimates stand
establishment within a plot. DF represents the number of days after
planting (DAP, also stated as days after sowing) to when 50% of the
plants within a plot had at least one open blossom. DHM represented

Table 1

Year, number of genotypes, and diversity panel used in this study.
Experiment-replication Year Number of genotypes Panel
15-01 2015 192 DDP
15-02 192
15-03 2015 64 ADP
15-04 64
15-05 64
16-01 2016 74 DDP
16-02 74
16-03 2016 45 ADP
16-04 45
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the number of days after planting to when 90% of the plants within a
plot were ready to be harvested. CH was measured in cm at mid-pod fill
stage (R4) as an average of CH across the plot. Above ground canopy
biomass was visually rated from 1 (complete row closure and densest
canopy with minimal porosity) to 9 (no plants) at pod fill (R4) to es-
timate the relative amount of above ground plant biomass (e.g. 3 for
plants that were 40-45 cm tall, 75% closed rows, dense canopy; 5 for
plants that were 30-40 cm tall, 50% closed rows, 50% light penetration;
and 7 for plants that were 20-30 cm tall, 25% closed rows, 75% light
penetration) in a given plot. Further details with pictures are available
in Trapp (2015) and Trapp et al. (2016). The dry bean vegetative
growth stages were defined based on Schwartz and Langham (2010)
and Manitoba Pulse and Soybean Growers (2019). Harvested seed from
the central two rows was used to estimate plot yield (kg ha™?).

2.2. UAS data acquisition

A three-band modified multispectral camera of 16 megapixel (8-bit)
was used (Canon Powershot ELPH 340 HS, LDC LLC, Carlstadt, New
Jersey, United States) to capture multispectral images. The camera
captures red (R, 550-710nm), green (G, 500-620 nm), and near in-
frared (NIR, 800-900 nm) bands. For thermal data collection, a FLIR
Tau 2 640 (Mtech Imaging USA LLC, Dallas, Texas, United States) was
used; which captures emission in spectral range from 7.5 to 13.5 um.
The sensors were placed on the gimbal of an octocopter model OktoXL
6S12 (HiSystems GmbH, Moormerland, Germany). The UAS was pow-
ered by a 6500 mAh Lithium-ion polymer battery. All data collection
dates were under sunny conditions (between 10 am and 2 pm).

Images were captured at 120 m above ground level. A reference
white panel of 25 X 25 cm (Spectralon Reflectance Target, CSTM-SRT-
99-100, Spectra Vista Cooperation, New York, USA) was imaged for
subsequent radiometric correction. The firmware of the multispectral
camera was configured to automatically trigger every 5s, and the
thermal camera was configured to capture frames every 2 s. The ground
sample distance (GSD) was about 3.9 cm and 12.2 cm for multispectral
and thermal sensors, respectively. Multispectral images are single
frame, while for thermal data collection the area of study was captured
in sets of two or more images, due to limited field of view of the FLIR
Tau 2 camera. In 2015, the genotypes were planted on 20 May; while
the genotypes were planted on 8 June in 2016. In 2015, the data was
collected at about 50, 60, and 75days after planting (DAP), corre-
sponding to the dates 8 July (49 DAP), 20 July (61 DAP), and 31 July
(72 DAP). In 2016, data was collected at around 60 and 75 DAP on 9
(62 DAP) and 26 August (79 DAP). In 2015, the growth stages during
data collection were at R1 (bloom beginning), R3 (50% bloom), and R5
(beginning of seed development); while in 2016, the growth stages
were at R5 and R8 (beginning of maturity). The growth stages were
defined based on dry bean growth staging guide provided by Manitoba
Pulse and Soybean Growers (2019). For simplicity, the data collection
dates are referred as 50, 60, and 75 DAP. Thermal data was collected
only at about 60 and 75 DAP in both years. In addition, from the ori-
ginal features extracted with UAS multispectral images (3.9 cm), lower
resolution images (GSD = 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0 and 5.0 m)
were generated to simulate satellite imagery and evaluate their po-
tential in crop performance assessing for breeding programs.

2.3. Satellite data acquisition

Four high spatial resolution satellite images were used from dif-
ferent sources (resolution in parenthesis): Pleiades-1A (0.5 m), SPOT 6
(1.5 m), Planet Scope (3.0 m), and Rapid Eye (level 3A, 5.0 m). Except
Planet Scope data, images from the other sources have four bands in
common: R, G, blue (B), and NIR. Additionally, Rapid Eye images have
a red edge band, while Pleiades-1A and SPOT 6 contain a high spatial
resolution panchromatic band. Although the Planet Scope images
generally contains NIR information, the scene used in this research
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contain only blue, green and red bands (Supplementary Materials,
Table S3).

The panchromatic image is a single band raster file with a wide
width band of approximately 350 nm. For Pleiades-1A and SPOT 6 data,
the panchromatic band is used to increase the spatial resolution of
multispectral data through a process known as panchromatic shar-
pening, or pan-sharpening. The R, G, B and NIR channels of Pleiades-1A
have an original resolution of 2.0 m, which after pan-sharpening in-
creases up to the panchromatic band spatial resolution of 0.5m.
Employing this process to SPOT 6 imagery, the original data resolution
increased from 6.0 m up to 1.5 m. Pan-sharpening was not required for
Planet Scope and Rapid Eye imagery.

The selection of the satellite images used for evaluation and vali-
dation was based on availability and temporal proximity to UAS data
collection dates. Such data was only available for year 2016. Pleiades-
1A and SPOT 6 images were at 22 and 13 days before UAS data col-
lection at about 60 DAP, respectively; whereas, the Planet Scope and
Rapid Eye images were 5 and 9 days before UAS data collection at about
75 DAP, respectively (Supplementary Materials, Fig. S2).

2.4. Image processing and analysis

2.4.1. UAS-based multispectral image analysis

The multispectral images were radiometrically corrected, and then
georeferenced. For radiometric correction of multispectral data, the
images were normalized by setting the reference panel image pixels to
the maximum gray level of 255 (individual bands), as it reflects 99% of
the visible (R-G-B) and NIR radiation. The georeferencing was done in
QGIS (QGIS Development Team, 2018) with the “Georeferencer” tool.
Using this tool, the original image was placed on its correct geo-
graphical location based on coordinate identification of common ob-
jects (corners of the study area) between the UAS image and a reference
map (Google Hybrid map). No stitching process was required as the
images captured all the plots in the field. From the pre-processed
multispectral images, three vegetation index (VI) images were gener-
ated; namely, Normalized Difference Vegetation Index (NDVI, Eq. (1)),
Green Normalized Difference Vegetation Index (GNDVI, Eq. (2)), and
Soil Adjusted Vegetation Index (SAVIL, Eq. (3)). In addition, an image
was generated by thresholding the SAVI map to estimate Canopy Cover.
The canopy cover for individual plots was estimated using Eq. (4), by
computing the total number of pixels above the set threshold.

NDVI = NR-R
NIR + R (@]
GNDVI = NR -G
NIR + G 2
SAVI = M*(l + L)
(NIR+R+1L) 3

NDVI < threshold = DNg,, = 0
NDVTI > threshold = DN¢,, = 1

@
where R, G and NIR indicate the reflectance (pixel value or digital
number/DN) of the red, green and infrared bands. SAVI was calculated
to minimize the influence of soil brightness (Huete, 1988) for com-
parison with NDVI and GNDVI. For 2015 at about 50 DAP and 60 DAP,
and 2016 at about 75 DAP, the threshold (L) was set as 0; while, at
about 75 DAP in 2015 and 60 DAP in 2016, L was set as 0.1. DN data
with equal or higher values than the thresholds were considered as
vegetation cover (DN, = 1), and pixels below that level were identi-
fied as non-vegetation cover (DN, = 0). The canopy cover was esti-
mated as the sum (SUM) of all the pixels considered as vegetation cover
inside one plot. To avoid interferences from soil pixels, the NDVI,
GNDVI and SAVI features were extracted inside the vegetation canopy
cover areas.

Canopy cover = Z:L_l DNcov;, If = {
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In a GIS environment, the boundary of all plots was digitalized in a
polygon layer. To avoid border effects, the polygon surrounds each plot
at 30 cm inwards from the boundary. Utilizing the “Zonal Statistic” tool
of QGIS, the average (MEAN) values of the image features were re-
corded as an attribute in the polygon layer. This attribute table was
exported in a text (*.txt) file, where it was linked with the ground truth
of each polygon through a specific plot ID. This ID coded for year, DAP,
experiment and plot number, and facilitated subsequent statistical
analyses.

2.4.2. UAS-based thermal image analysis

The MEAN canopy temperature was extracted from images in two
ways: (a) with raw data (non-normalized), and (b) through normal-
ization. During normalization, the thermal image pixel data (tempera-
ture) were adjusted based on five common plots captured in all the
images within a data collection period. One image was set as reference,
to extract the average temperature of these plots. The data was also
extracted from other images (that need to be corrected) and a correc-
tion factor was computed based on the average differences between
MEAN temperature with respect to the reference. Finally, the MEAN
temperature from both normalized and non-normalized images was
extracted per plot to the polygon layer. The MEAN temperature values
were associated to each plot based on the specific ID described above.
Finally, the MEAN temperature data was estimated using thermal
images (non-normalized/normalized) were correlated with seed yield
and biomass.

2.4.3. Satellite imagery analysis

Satellite images must be first corrected to attenuate the atmospheric
distortion due to the presence of particles like aerosols, gases, and
moisture (Jensen, 2005; Rotta et al., 2016). Rapid Eye, SPOT 6, and
Pleiades-1A images were provided by the supplier with the atmospheric
correction. To perform the atmospheric correction (at the top of the
atmosphere) of Planet Scope images, each band is multiplied by a
specific factor of correction that is recorded in a metadata (*.xml) file.
As this information was not present in the metadata file of the image
used in this study, the raw image data was used. The pan-sharpening is
a resolution merging method in image processing. In this technique, a
high resolution panchromatic (single band) image is merged with a
lower resolution multispectral (multi-band) dataset. The result is a
multispectral image conserving its spectral information, but with the
high spatial resolution of the panchromatic band (Grochala and
Kedzierski., 2017). This processing was done with Pleiades-1A and
SPOT 6 images, increasing the original spatial resolution of the multi-
spectral images from 2.0 m and 6.0 m up to 0.5 and 1.5 m, respectively.
Although the satellite images are orthorectified and georeferenced, they
have position errors in the order of several meters (Cuartero et al.,

Table 2
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2014). In the present study, the geo-location was corrected to avoid
position errors in plots from the satellite images. This correction was
performed in the QGIS with the “Georeferencer” tool. Finally, the mean
NDVI values of Pleiades-1A, SPOT 6 and Rapid Eye were recorded in the
polygon layer (previously created) and linked with the respective
ground truth data based on the same specific ID. Since the Planet Scope
image did not have the NIR band, the feature extracted was the Green
Red Vegetation Index (GRVI, Bendig et al., 2015) (Eq. (5)).

Green — Red

GRV[] = ——
Green + Red 5)

2.5. Statistical analysis

For Pearson’s correlations analysis, R Studio (version 3.6.0, R Studio
Inc., Boston, MA, USA) was used. Multispectral image features were
correlated with emergence, biomass, CH, DHM, DF and seed yield on an
individual plot basis. Thermal and satellite image-based features were
correlated with biomass and seed yield on an individual plot basis.

3. Results

3.1. Relationship between UAS-based multispectral image features with
performance and phenological traits

Table 2 summarizes the correlations between the performance traits
(emergence, biomass, seed yield) and the image features (NDVI,
GNDVI, SAVI and canopy cover). As a group, the ADP is inherently
more sensitive to stress than the DDP; therefore, exhibits wider varia-
tion in performance traits. This likely contributed to the stronger cor-
relations observed for performance traits with image features in ADP.
The increased variation in the ADP results in part from an even mix of
different growth habits, as determinate bush and indeterminate vine
types were included among the genotypes in the panel. Conversely, the
DDP is comprised of genotypes with predominately indeterminate vine
types that vary from prostrate, semi-upright, to upright growth habits.

For 50 DAP, the correlations between image features and the three
performance traits (emergence, biomass, seed yield) were low
(r = |0.18] to |0.50|) or non-significant (e.g. seed yield with GNDVI and
canopy cover in DDP, 2015). With few exceptions, negative correlations
were observed for emergence and biomass with image features because
the ratings are inversed such that as emergence and biomass increased,
the rating scores decreased, and the image feature values (VIs and ca-
nopy cover) increased. For emergence (stand establishment), overall
stronger correlations with image features (NDVI, GNDVI) were ob-
served for the ADP than the DDP. The highest correlations among traits
were observed for biomass with image features, and similarly slightly

Correlation coefficients (r) by experiment between performance traits (emergence, biomass, seed yield) and multispectral image features (NDVI, GNDVI, SAVI,

canopy cover) at about 50, 60 and 75 DAP in 2015, and about 60 and 75 DAP in 2016. * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.

DAP Panel Emergence Biomass Seed yield
NDVI GNDVI SAVI Canopy cover NDVI GNDVI SAVI Canopy cover NDVI GNDVI SAVI Canopy cover
2015
50 DDP —0.28%** .
ADP 445
60 DDP .33%*
ADP .54
75 DDP —0.10 —0.10* -0.10 —0.10* .52%*
ADP —0.25%**  —0.26%**  —0.25%**  —(0.25%** —0.78%**  —0.71%**  —0.78%** 0.51%**  0.52%**  Q.51***  (.47***
2016
60 DDP -0.11 —0.06 -0.11 <0.01 —0.72%%*  —0.36***  —0.73%** 0.42%**  —0.10 0.42%** <0.01
ADP —0.50%**  —0.51%**  —0.50***  —0.40%** —0.91%**  —0.83***  —(.91*** 0.73%**  0.63***  0.73***  0.30**
75 DDP 0.27%*** 0.23** 0.27%** 0.27%** —0.58%**  —0.57***  —(0.58%** —0.03 —0.01 -0.03 0.01
ADP —0.23* —0.24* —0.23* —0.28** —0.69%**  —0.69***  —0.69*** 0.64%**  0.64***  0.64***  0.55%**
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Fig. 1. Correlation of NDVI with biomass and seed yield at (A) 75 DAP with
DDP genotypes in 2015, and (B) 60 DAP with ADP genotypes in 2016.

weaker correlations were observed in the DDP compared to ADP
(Fig. 1). Interestingly the correlation of biomass and seed yield was
similar between NDVI and SAVI, given that SAVI is a variant of NDVI,
this could be expected. GNDVI correlations with biomass and seed yield
were marginally lower than NDVI and SAVI. In general, the correlation
between biomass and canopy coverage was highest at 75 DAP, in both
panels and in both years. Emergence and biomass scores were less
variable in DDP than ADP which likely contributed, in part, to the
slightly weaker correlations with VIs in the DDP versus the ADP.

The correlations of increasing seed yield with higher image data
values were significant in most cases, slightly stronger in the ADP than

Table 3
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DDP, more consistent across panels in 2015 than 2016 (which experi-
enced greater stress than 2015), and weaker at 50 DAP in comparison to
60 DAP or 75 DAP (Fig. 1). Given the sensitivity of ADP genotypes to
stress, the correlations with seed yield were higher in 2016 than 2015.
Non-significant correlations occurred between seed yield and VIs (ex-
cluding NDVI and SAVI at 60 DAP) in DDP at 60 and 75 DAP in 2016,
while the reverse was observed for the ADP (significant correlations
between seed yield and VIs).

Phenology traits (DF, DHM and CH) correlations with image data
were much lower or non-significant in 2015 than in 2016 (Table 3).
Most of these correlations were in the positive direction except for DDP
in 2015. In both panels, correlations between image features with
phenological traits (DF, DHM, CH) were stronger in 2016, especially at
75 DAP (e.g. Fig. 2). This may have been influenced by earlier flowering
and maturing genotypes, whereas later flowering and maturing and
taller genotypes generated more biomass as supported by the positive
correlation with image features. Compared to 2015, plant growth cycle
was also compressed in 2016, due to the later planting date. With the
expanded growth cycle in 2015, later flowering and maturing geno-
types took longer to generate canopy coverage/biomass.

3.2. Relationship between UAS-based thermal data with performance traits

The relationship between UAS-based thermal data with biomass and
seed yield was examined. In general, the correlations between MEAN
temperatures extracted using two different methods (with and without
normalization) and biomass were stronger than those obtained with
seed yield (Table 4). Increasing biomass (lower scores) was correlated
(r = 0.20-0.88) with lower MEAN thermal temperatures, using thermal
data extracted from images without normalization. Lower seed yield
was consistently correlated with higher temperatures. These correlation
coefficients between the seed yield and biomass with MEAN tempera-
ture under multiple stress were comparable or higher than those found
in terminal drought stress dry bean experiments (r = 0.33 with biomass
and —0.34 with seed yield under stressed conditions) as reported in
Sankaran et al. (2018).

One of the major purposes for thermal data analysis was to develop
a reliable method to extract temperature data associated with canopy
performance. The correlation coefficients between biomass or seed
yield with MEAN temperature extracted from non-normalized and
normalized images did not differ except 75 DAP in DDP panel in 2015.
This change may have resulted from variability in the temperature
(weather) occurring on the day of data collection, as this effect was only
found in DDP at 75 DAP in 2015. The ADP was not affected as the
genotypic data were acquired from a single image. This indicates that
such normalization of thermal data using a reference thermal image

Correlation coefficients (r) by experiment between phenological traits (days to 50% flowering-DF, days to harvest maturity-DHM, and canopy height —-CH) and

multispectral image features (NDVI, GNDVI, SAVI, canopy cover) at about 50, 60 and 75 DAP in 2015, and about 60 and 75 DAP in 2016. *

represents p < 0.01, and *** represents p < 0.001.

represents p < 0.05, **

DAP  Panel DF DHM CH
NDVI GNDVI SAVI Canopy cover  NDVI GNDVI SAVI Canopy cover  NDVI GNDVI SAVI Canopy cover

2015

50 DDP —0.01 —0.09 —0.01 —0.13** —0.02 —0.02 —0.02 —0.05 —0.16** —0.06 —0.16** —0.04
ADP 0.04 —0.01 0.04 —0.01 -0.17* —0.20%* -0.17* —0.19%* 0.15* 0.12 0.15* 0.12

60 DDP 0.15* 0.14%* 0.15%* 0.01 0.05 0.09 0.05 0.04 —0.02 —0.14** —0.06
ADP 0.11 0.03 0.11 —0.04 —0.06 -0.14 —0.06 —0.16* 0.20%** 0.25%** 0.17*

75 DDP 0.16** 0.15** 0.16%* 0.08 0.20%**  .22%** 0.20%**  0.15** —0.19%** —0.26%** —0.21%**
ADP 0.20** 0.14* 0.20%* 0.11 0.14* 0.08 0.14* 0.04 0.36%** 0.40%** 0.31%**

2016

60 DDP 0.32%**  (0.33%** < 0.01 0.28***  0.22%* 0.28%*** 0.26** < 0.01
ADP 0.36%** —0.04 0.54%%* 0.54*** 0.60%*** 0.09

75 DDP 0.88%** 0.35%**
ADP 0.72%%* 0.47%**
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Fig. 2. Correlations of NDVI with days to 50% flowering (DF) and days to
harvest maturity (DHM) in DDP at 75 DAP in 2016.

Table 4

Correlations between yield and seed biomass with MEAN temperature extracted
from normalized and non-normalized thermal images at 60 and 75 DAP. * re-
presents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.

Year DAP Exp. Biomass Seed yield Biomass Seed yield
Raw image data Non-normalized Normalized
2015 60 DDP 0.54%** —0.59%** 0.52%** —0.57%**
ADP 0.66%** —0.31%* 0.66*** —0.31%*
75 DDP 0.20%** —0.23%** 0.43%** —0.42%**
ADP 0.627%%* —0.56%**
2016 60 DDP 0.28* —0.29*%
ADP
75 DDP
ADP

could be effective in eliminating the environmental effects on tem-
perature measurements. Further studies are needed to validate this
method alongside microclimate data. In general, higher correlations
between MEAN temperature with biomass and seed yield were found
with ADP at both dates, especially in 2016 (Fig. 3).

3.3. Relationship between UAS-based simulated and original satellite
images with performance traits

Satellite imagery has been widely used for agriculture applications
all around the world; nevertheless, the applicability of this technology
for plant phenotyping has not been explored. In recent years, new sa-
tellite data from multiple sources with high resolution imagery between
0.4m and 3.0m are available. The higher resolution data offers the
exploration of satellite imagery in plant phenotyping applications. In
this study, we performed a test evaluation of applicability of satellite
imaging for plant phenotyping applications by reducing the UAS data
image resolution to simulate satellite images, and then validated our
findings with actual satellite images. As a first step, the UAS image
resolution was reduced up to 5.0 m (60 DAP, 2016) and the correlations
between average NDVI with seed yield and biomass were computed
(Fig. 4).

The results showed that the correlation between seed yield and
biomass with NDVI begin to decrease at 1.0 m image resolution (al-
though significant). The correlation coefficients reduced from 0.66 to
0.38 with seed yield, and from —0.82 to —0.54 with biomass, with a
decrease from 0.5 m/pixel to 1/pixel resolution in ADP. At 2.0 m, si-
milar correlation coefficients were acquired, that remained significant
with biomass and seed yield in ADP. These results suggest that images
with a pixel resolution up to 1.0 m can sustain the relationship between
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Fig. 3. Correlation of MEAN temperature from normalized images with seed
yield and biomass (ADP genotypes) at 75 DAP in 2016.

remote sensing data features such as NDVI and ground reference data
(biomass, seed yield). This is especially true for phenotyping applica-
tions in breeding programs, where research plots are smaller.
Depending on crop and size of plots, the findings can vary. At 3.5m and
5.0 m image resolution, the correlation between NDVI with seed yield
and biomass was considerably reduced and non-significant. Similar to
high-resolution UAS data, the correlation between NDVI and biomass
were stronger than with seed yield.

For the satellite data, four images were acquired with resolutions of
0.5m (Pleiades-1A), 1.5m (Spot 6), 3.0 m (Planet), and 5.0 m (Rapid
Eye) at DAP close to UAS data collection in 2016 (Supplementary
Materials, Fig. S3). The average NDVI was extracted from each satellite
image and the data were correlated with seed yield and biomass
(Table 5). In general, for the ADP, higher correlations were obtained
with the Pleiades-1A image for both biomass (r = —0.55) and seed
yield (r = 0.52) traits, and comparable r values were observed with
SPOT 6 image. Conversely, for DDP, the highest correlations with
biomass (r = —0.31) and seed yield (r = 0.34) were solely obtained
with SPOT 6 image data. The effect of reducing resolution in ADP was
found to be lower, likely because the higher variability among geno-
types retained performance differences at different growth stages. The
lower correlations with satellite images than predicted with simulated
satellite images may be due to the time gap between satellite and UAS
data capture. The images with higher resolution, i.e. Pleiades-1A and
SPOT 6, were available at 23 and 14 days (respectively) before the UAS
data collection at 62 DAP in 2016. The image from Rapid Eye was
captured closer to that time point, only 8 days after. The Planet Scope
data was from 5 days before the UAS data collection at 79 DAP.

The lower correlations between image features extracted from
Planet Scope image (3.0 m) and performance traits may result from
using a different image feature (GRVI) necessitated by absence of the
NIR band in the unique image available during the time when this re-
search was performed. The wider time gap between the date of acqui-
sition of Pleiades-1A and the UAS would expect to result in lower r
values obtained with the satellite image than predicted UAS image.
Overall, these findings support the use of high resolution satellite
imagery for phenotyping application.

4. Discussion and summary

The response of bean plants to drought conditions is complex in-
volving several physiological mechanisms related to energy metabo-
lism, photosynthesis, energy conversion, protein synthesis and proteo-
lysis (Zadraznika et al., 2013, 2017). Drought can negatively affect the
dry matter production, number of pods per plant, number of seeds,
hundred seed weight and grain yield (Mathobo et al., 2017). Drought
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Fig. 4. Correlation between biomass and seed yield with NDVI in ADP and DDP at 60 DAP, for simulated decreasing resolutions of the original UAS image.

Table 5

Correlations between seed yield and biomass with NDVI from Pleiades-1A, Spot 6, and Rapid Eye images, and with SR from Planet image. *

represents p < 0.01, and *** represents p < 0.001.

represents p < 0.05, **

Trait Panel UAS Pleiades-1A (0.5m) SPOT 6 (1.5m) Rapid Eye (5.0 m) UAS Planet
(3.9cm) (3.9cm) (3.0m)
60 DAP 38 DAP 47 DAP 66 DAP 75 DAP 70 DAP
Biomass DDP —0.72%** -0.11 —0.32%** -0.12 —0.58%%* < 0.01
ADP —0.91%** —0.55%** —0.50%** —0.48*** —0.69%** —0.36%**
Seed yield DDP 0.42%** 0.17* 0.35%** 0.19% —0.03 —0.09
ADP 0.73%%* 0.52%%%* 0.45%** 0.48%** 0.64%** 0.33**

tolerant cultivars more effectively partition carbohydrates toward seed
filling under stress conditions, prioritizing seed production over leaf
development (Rosales et al., 2012). But biomass is necessary to realize
yield; thus, genotypes that generate more biomass can be more drought
tolerant. The remote sensing data indicated that the DDP accumulated
more biomass compared with ADP, leading to higher yields under
stress.

The beans of Race Durango origin have been identified as an im-
portant genetic source of drought tolerance. Rosales et al. (2012) ob-
served that Pinto Saltillo (Durango cultivar) maintained productivity
under terminal drought conditions. Compared with Durango race, An-
dean beans are more sensitive to drought stress. Herein, for the ADP,
where lower vigor plots prevailed, higher correlations between biomass

and seed yield with image features were found, as similarly observed by
Sankaran et al. (2018). Differences in vegetation index values are en-
hanced under low vigor conditions, which likely contributed to the
stronger correlations observed for the ADP. The results from this study
and those of Sankaran et al. (2018) support multispectral imaging at
60-75 DAP to capture differences in performance traits such as biomass
and seed yield.

Modified RGB cameras are low-cost multispectral cameras that en-
able capture of NIR spectral reflectance (in addition to a couple visible
bands). These sensors are used in agricultural research (Quiros et al.,
2019; Putra and Soni, 2017; Zhang et al., 2017; Sankaran et al., 2015 a,
b; Hunt et al., 2011) with promising results. Although limited by
spectral resolution, these sensors provide high spatial resolution data
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similar to the original RGB sensors (Elarab et al., 2015). However, these
broad spectral resolution sensors may have large variability in spectral
response; thus, vegetation indices derived from them need to be care-
fully analyzed, in comparison to ‘true’ multispectral data. The sensi-
tivity of sensor-based evaluation may be enhanced using narrow-band
multispectral cameras, but this needs to be further assessed. The
narrow-band multispectral camera (with 5-12 bands) also offers ex-
traction of several vegetation indices that may enhance the pheno-
typing potential.

In agriculture, thermal data have been used for drought stress
monitoring (Gerhards et al., 2016; Garcia-Tejero et al., 2016, 2018; Biju
et al., 2018) and disease detection (Baranowski et al., 2015). Tu and
Tan (1985) studied the leaf temperature in diseased bean plants with
and without drought conditions, and found that changes in temperature
were more prevalent under drought. The correlations obtained herein
between remote sensed average canopy temperature (60-75 DAP) and
seed yield were comparable or higher than those observed by Sankaran
et al. (2018). Furthermore, similar to multispectral image features, the
correlations of temperature data from thermal images with perfor-
mance traits in ADP were stronger, which may result in part from its
greater sensitivity to drought conditions as described above. Given the
dynamic nature of canopy temperature measurement, which is affected
by environment (soil exposure, wind, cloud cover, etc.), the application
of field sensing can be challenging. A common normalization method is
to convert thermal data into crop water stress index/CWSI (Garcia-
Tejero et al., 2016; Bai et al., 2017). Many researchers have proposed
multiple ways of computing CWSIL. Gomez-Candoén et al. (2016) tested a
radiometric calibration method, for multi-temporal data comparisons,
based on the temperature of ground reference objects measured with
thermo-radiometers. However, such approaches under field conditions
are time-consuming. Therefore, we developed a new normalization
method that utilizes common plots between two images. Although the
actual canopy measure is hard to predict, the method showed potential
to delineate performance differences between genotypes. This normal-
ization method was better associated with performance traits than
CWSI-based normalization. Further validation with microclimate data
is needed to implement this method in field phenotyping.

UAS-based remote sensing for high-throughput phenotyping in the
field is becoming more plausible, and provides numerous advantages
related to high spatial and temporal resolutions. Nevertheless, the use
of UAS poses challenges such as the need for and timing of several field
visits, training to operate and acquire reliable data, etc. Our examina-
tion of simulated satellite images derived from UAS, found that image
resolutions up to 1 m per pixel may be useful in providing quality data
for reliable biomass and seed yield performance evaluation. Perhaps a
lower resolution image may be applicable in different crops with larger
plot sizes.

NDVI from Pleiades-1A (0.5 m) and SPOT 6 (1.5 m) satellite images
were associated with performance in the ADP. NDVI from Planet Scope
(3.0 m) and Rapid Eye (5.0 m) images were less related to biomass and
seed yield, and likely will require higher resolution for reliable pre-
diction of crop performance. The usefulness of sub-meter satellite
imagery relies on the size of the study objects (monitoring the varia-
bility of crop biophysical traits at parcel level as in Liu et al., 2018).
Schut et al. (2018), using the same source of satellite imagery, com-
pared the satellite VI data with the UAS data in 15m X 15m plots
(more than 40 times the size of the breeding plots analyzed in the
present study) and reported that the satellite image was able to capture
the intra-plot variability at the accuracy level of UAS. Our work shows
that higher resolution low-orbiting satellite images are promising for
high-throughput field phenotyping, and offer a reliable and practical
solution to acquire multispectral phenotypic data from breeding trials
at a desired temporal resolution.

In regard to the multiple sensor data utilized in this study (UAS-
based multispectral and thermal, LOS-based multispectral imaging
data), each data type was analyzed independently to assess potential for
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capturing the phenotypic differences based on crop responses. Among
the different traits, the differences in biomass and seed yield potential
were captured most effectively using the remote sensing data. Similarly,
remote sensing data were able to capture the differences in phenotypic
responses, especially in ADP panel, where the genotypes were more
sensitive to crop stress. Thus, remote sensing techniques may be more
applicable at early stages of breeding cycles, when there are more
genotypes sensitive to stress. Both UAS-multispectral (e.g. NDVI, SAVI)
and thermal data were able to capture the differences in phenotypic
responses, as indicated by the strong correlations between this data and
phenotypic traits such as biomass and seed yield. In general, multi-
spectral features show strong relationships with agronomic traits (e.g.
Quiros et al., 2019). However, differences in architectural status (leaf
type, canopy type) may influence the multispectral data and can mask
the differences in agronomic performance in crops, especially if the
performance (seed yield, biomass) is not associated with architectural
status. In such cases, thermal data offers robust capture of performance
traits. Breeders are interested in thermal data, based on its strong as-
sociation with physiological traits such as stomatal conductance and
transpiration rate. The higher resolution LOS multispectral data
(0.5-1.0 m/pixel) showed potential for capturing phenotypic differ-
ences, and coordinated timing of data acquisition at key phenological
stages of crop growth will likely enhance its applications. Towards the
future, data fusion from multiple sources (UAS-based multispectral and
thermal, LOS-based multispectral imaging data), although unexplored
in this study, will be integrated with machine learning tools for selec-
tion of breeding lines.
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