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Vegetable grafting has been known to improve plant production under both biotic and abiotic stresses. 

With an increase in interest among local growers towards grafting production, it is important to 

provide enough vegetable grafting information. Therefore, the objective of this study is to assess the 

impact of grafting, rootstock cultivar, and local conditions and management on the yield and quality 

of tomato across the diverse growing and environmental conditions, specifically in Nebraska. Three 

open-field and one limited growing condition study were conducted between 2018 and 2019 across 

Nebraska. In the open-field trial, two determinant fresh market tomatoes, ‘Nebraska Wedding’ and 

‘BHN-589’, were grafted onto one of two rootstocks, ‘Estamino’ and ‘Maxifort,’ with the nongrafted 

scion cultivars as controls. In 2019, a fertilizer treatment was introduced at all three locations with 

two different Nitrogen (N) rates (0 and 50 kg N ha-1). In the limited growing condition trial that took 

place in a greenhouse at the University of Nebraska, Lincoln, ‘BHN-589’ were grafted onto 

‘Estamino’ and ‘Maxifort,’ with the nongrafted scion cultivars as controls. Nitrogen (N) fertilizer 

treatments were implemented at 0.5 X, 1.0 X, and 1.5 X of 120 ppm of N, and water treatment was 

divided into high (above field capacity) and low (below field capacity). Overall, grafting did not 



 
 

provide consistent yield benefits under both trials. Under the open field condition, in 2018, nongrafted 

‘BHN-589’ increased the number of marketable fruits by 54%. Whereas, in 2019, ‘BHN-589’ grafted 

onto ‘Maxifort’ increased total yield by 24%. Under the limited growing condition trial, ‘Estamino’ 

improved % of fruits marketability by 28% compared to the nongrafted plants, especially under 1.5 

X of N fertility treatment. However, there were no significant differences in total and marketable yield 

between grafted and nongrafted plants. Moreover, there was no interaction effect between grafting 

and fertilizer treatment under both trials. Results from this study suggest the need for more assessment 

on the impact of field tomato grafting under different environmental conditions.  
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Chapter 1 – The Impact of Grafting on Hybrid and Heirloom 

Tomato Yield in Local Open Field Production 

Abstract 

Grafting has been successfully used in vegetable production for tomatoes, peppers, eggplants, 

cucumbers, and watermelon. Besides its usefulness for managing biotic and abiotic stresses, 

grafting is well known for its capability to improve yield and nutrient uptake. However, few studies 

have assessed the effects of grafting in an open field-grown tomatoes in the Midwest, especially in 

Nebraska. Therefore, the objective of this two-year research project was to better document the 

effects of grafting heirloom and hybrid tomato cultivars onto interspecific hybrid tomato rootstocks 

by measuring tomato yield and quality. The field experiments were located at the University of 

Nebraska Lincoln - East Campus in Lincoln, West Central Research and Extension Center in North 

Platte, and at Perkarek’s Produce vegetable farm near Dwight, Nebraska. Two determinant fresh 

market tomatoes, ‘Nebraska Wedding’ and ‘BHN-589’, were grafted onto one of two potentially 

valuable rootstocks, ‘Estamino’ and ‘Maxifort,’ with the nongrafted scion cultivars as controls. 

During the second year of the study, a fertilizer treatment was introduced with two N rates (0 and 50 

kg N ha-1). At the end of the growing season, ripe tomatoes were harvested weekly, and yield was 

determined by weighing all tomatoes from the five plants in each experimental unit. Overall, there 

was no consistent improvement in yield for any of the grafting treatments. In 2018, nongrafted 

‘BHN-589’ increased the number of marketable fruits by 54%. Whereas, in 2019, ‘BHN-589’ 

grafted onto ‘Maxifort’ increased total yield by 24%. Moreover, there was no interaction effect 

between grafting and fertilizer treatment within each location. Results from this study suggest the 

need for more assessment on the impact of field tomato grafting under different environmental 

conditions.  
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Introduction 

Tomato (Solanum lycopersicum) is considered one of the world's main specialty crops, 

with global production surpassing 182 million metric tons in 2017 (FAOSTAT, 2020). The 

U.S. produces more than 12.6 million tons of tomatoes each year and is, therefore, one of 

the world’s leading producers of this specialty crop (FAOSTAT, 2020).  Tomato can be 

grown in both field and protected production environments such as high tunnel. Numerous 

studies have documented the benefits of growing tomatoes in a high tunnel production 

system (Galinato and Miles, 2013; Lang, 2019). One of the primary benefits is the 

possibility of earlier planting dates due to an extended growing season (O’Connell et al., 

2012; Wells and Loy, 1993), and high tunnel production allows farmers to mitigate the 

impacts of extreme weather on their high value crops (Both et al., 2007; Carey et al., 2009; 

Djidonou et al., 2020; Lamont, 2009; Meyer, 2016; Schwarz et al., 2013). However, high 

tunnel production requires a significant investment amount, including the initial cost for 

the high tunnel structure and ongoing maintenance (Meyer, 2016). Plus, farmers are 

confined to one specific growing space within the tunnel, which results in increased 

soilborne disease in that area (Meyer, 2016).  

Despite the increasing popularity of high tunnel systems, most vegetables produced in the 

U.S. are still grown under open-field conditions (FAOSTAT, 2020) due in large part to 

inadequate technical information and the high capital cost (Meyer, 2016; Lang, 2019). 

Though less expensive, open-field production leaves crops vulnerable to exposure to biotic 

and abiotic stresses, such as unpredictable weather events, drought, soil salinity, extreme 

temperature, and pathogens. Schwarz et al. (2013) suggested that stress-resistant crops 

were needed for field production systems, but the process of breeding a new plant can be 
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lengthy and costly (Hayward et al., 2012; Schwarz et al., 2013; Venema et al., 2011). An 

alternative solution to managing abiotic and biotic stress in field production systems is 

grafting. 

Grafting is a propagation method that combines a desirable shoot cultivar (scion) with a 

root system (rootstock) that results in a hybrid plant with desirable agronomic or 

horticultural traits.  Both the scion and the rootstock are selected based on a unique trait of 

interest. For example, the scion may be selected based on distinct fruit yield and unique 

flavor profile. In contrast, the rootstock may be selected based on having higher root 

density and resistance to pathogens. The propagation method of grafting has been practiced 

on fruit trees since 2500 BC in Mesopotamia, and the method then made its way through 

the Roman Empire and survived the Dark Ages (Hartman et al., 2002; Masterson et al., 

2016; Mudge et al., 2009; Virgil, 1953). Grafting vegetable crops has recently gained 

farmer's interest as it helps produce plants that combine the beneficial traits of two plants 

into one in a matter of a few days compared to plant breeding, which will take years (Flores 

et al., 2010; Hu, 2016; Masterson et al., 2016; Meyer, 2016).  

Vegetable grafting was first practiced in an attempt to improve crop resistance against 

soilborne diseases in Japan and Korea (Lang, 2019; Lee et al., 2010). Grafting a desired 

cultivar with a resistant rootstock can be very effective and eco-friendly when it comes to 

suppressing soilborne diseases. These diseases include root-knot nematodes (Meloidogyne 

spp.), bacterial wilt (Ralstonia solanacearum), verticillium wilt (Verticillium dahliae), 

fusarium wilt (Fusarium oxysporum), southern blight (Sclerotium rolfsii), Tomato Mosaic 

Virus, and Tomato Spotted Wilt Virus (Lee et al., 2010). Multiple studies have observed a 

lower disease incidence when grafting scion cultivars with resistant rootstocks (Barrett et 
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al., 2012; Mc Avoy et al., 2012; Rivard and Louws, 2008). Under a few circumstances, 

grafting has been shown to save farmers hundreds of dollars per acre when dealing with a 

severely infested field (Barrett et al., 2012; Rysin et al., 2015). Rysin et al., 2015 had 

observed a positive net revenues in the grafted system ranging from $108 to $12,328 per 

acre given grafted plants produce higher marketable fruits compared to nongrafted plants. 

Most of these studies also noted that the severity of pest infestation in a field plays an 

important role in realizing significant yield improvements from grafting (Barrett et al., 

2012; Mc Avoy et al., 2012; Rivard and Louws, 2008; Rysin et al., 2015).  

For various ornamental and specialty crops, grafting is an essential tool that can be used 

to combat abiotic stresses (Flores et al., 2010; Savvas et al., 2010). Specifically under 

field production, tomato plants are exposed to various abiotic environmental challenges, 

including extreme soil temperature, drought, and nutrient depletion. Grafting a specific 

desirable cultivar to rootstocks with greater root mass and root length may result in 

improved nutrient uptake (Djidonou et al., 2013) and tolerance for hot and dry 

environments (Abdelmageed et al., 2009; Sánchez-Rodríguez  et al., 2011). With this 

knowledge in mind, organic farmers specializing in heirloom tomato production may 

benefit from grafting. 

‘Nebraska Wedding’ is an old Great Plains tomato heirloom that was brought to western 

Nebraska when the Homestead Acts were enacted in 1862 (Dwivedi et al., 2019). The name 

of the heirloom was given based on a Nebraska tradition where a newlywed was given 

‘Nebraska Wedding’ tomato seeds as a wedding gift. Heirloom tomatoes, such as 

‘Nebraska Wedding,’ are often more susceptible to disease and abiotic stress (Masterson 

et al. 2016; Bai et al. 2007; Rivard and Louws, 2008). Heirloom cultivars do not have the 
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disease and pest resistance traits that would typically be accumulated over generations of 

selective breeding, cross-pollination, or hybridization (O’Connell et al. 2012; Rivard and 

Louws, 2008). Therefore, grafting can be a very useful tool for local growers to improve 

agronomic performance of heirloom tomato plants while maintaining the fruit's unique 

flavor, color, and texture (Rivard and Louws, 2008; Rivard et al., 2010; Barrett et al., 2012). 

‘BHN-589’ is one of the most popular tomato hybrids produced commercially in Nebraska, 

and Loewen (2018) observed a “highly compatible” interaction between ‘BHN-589’ and 

‘Maxifort.’  

‘Maxifort’ is widely used in the grafting industry and is claimed as the “standard” tomato 

rootstock in a meta-analysis that was carried out in California (Grienesen et al., 2018). 

‘Maxifort’ improves plant performance by providing the scion with a vigorous and disease-

resistant rootstock (Buller et al., 2013; Hu, 2016; Loewen, 2018; Masterson et al., 2016; 

Meyer, 2016). Although ‘Maxifort’ is well known for its ability to suppress soilborne 

diseases (Rivard and Louws, 2008; Rivard et al., 2010), few studies have reported yield 

improvements from grafted plants in fields with little to no disease pressure (Lang, 2019; 

Meyer, 2016). ‘Estamino’ is a relatively new and improved rootstock in the market (Lang. 

2019). Rivard et al. (2011) had reported ‘Estamino’ to be resistant towards diseases such 

as root-knot nematodes, verticillium wilt, fusarium wilt race 1, 2, and 3, Tomato Mosaic 

Virus, and Tomato Spotted Wilt Virus. It is unknown whether the ‘Estamino’ rootstock 

can improve tomato productivity in field environments, particularly in the absence of 

common soil-borne pathogens.  

Several recent studies and surveys have reported an increase in interest among local 

farmers and small growers in grafted vegetable production, specifically in the Midwest 
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(Hu, 2016; Meyer, 2016). The knowledge of grafting tomatoes is well understood in major 

vegetable producing states such as California and Florida. However, there is a research gap 

of grafting tomatoes adapted to the farming system in Nebraska. Local growers have 

limited knowledge about whether grafting can improve their tomato production and what 

rootstock selections may be most compatible with the local hybrid ‘BHN-589’ and the local 

heirloom ‘Nebraska Wedding.’ While many studies have assessed grafted tomato 

performance in the Midwest, most were conducted in a protected growing system such as 

a high tunnel (Lang, 2019; Loewen, 2018; Masterson et al., 2016; Meyer, 2016). Therefore, 

this research aims to assess the impact of grafting, rootstock cultivar, and local conditions 

and management on the yield and quality of tomato across diverse field environments in 

Nebraska. This research also hypothesized that grafting will provide tomato plants with 

improved yield and nutrient uptake under different field environment. 

Materials and Methods 

Experimental Design 

In 2018, a 2 × 3 factorial treatment structure was used in a randomized complete block 

design across three locations (Lincoln, North Platte, and Perkarek’s Produce, NE). The 

treatment factors were scion cultivar (‘Nebraska Wedding’ and BHN 589’), rootstock 

cultivar (‘Maxifort,’ ‘Estamino,’ and a nongrafted control), and location (Lincoln, North 

Platte, and Perkarek’s Produce, NE). In 2019, a 2 × 3 × 2 factorial treatment structure was 

used in a randomized complete block design across the same three locations. The treatment 

factors were scion cultivar (‘Nebraska Wedding’ and BHN 589’), rootstock cultivar 

(‘Maxifort,’ ‘Estamino,’ and a nongrafted control), and fertilizer (0 or 50 kg ha-1 N).  
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Site Descriptions        

Field experimental sites were located at the University of Nebraska Lincoln - East Campus, 

in Lincoln, Nebraska (Lat. 40.82 ° N, Long. 96.70 °W), the University of Nebraska West 

Central Research and Extension Center in North Platte, Nebraska (Lat. 41.14° N, Long. 

100.76° W), and at Perkarek’s Produce (a local diversified vegetable farm) near Dwight, 

Nebraska (Lat. 41.08° N, Long. 97.02° W). The dominant soil at the University of 

Nebraska Lincoln - East Campus (LNK) is a Zook silty clay loam (Fine, smectitic, mesic 

Cumulic Vertic Endoaquolls) with 0 to 2% slope; soil at the West Central Research and 

Extension Center in North Platte (NP) is a Cozad silt loam (Coarse-silty, mixed, 

superactive, mesic Typic Haplustolls) with 0 to 1% slope; and soil at Pekarek’s Produce in 

Dwight (PP) is a Hastings silt loam (Fine, smectitic, mesic Udic Argiustolls) with 1 to 3% 

slope. Locations were chosen to include a diversity of climate and soil characteristics in 

the experiment (Figure 1.1, Table 1.1). 

Grafting Treatment 

Scion cultivars included the local heirloom tomato, ‘Nebraska Wedding,’ and a local 

grower-favorite commercial hybrid, ‘BHN-589’. Scions from these cultivars were grafted 

onto ‘Maxifort’ (BHN-MAX; NW-MAX), a popular vegetative rootstock hybrid, and 

‘Estamino’ (BHN-EST; NW-EST), an organic, generative rootstock hybrid that puts 

greater energy into fruit production (Johnny’s Selected Seeds, Winslow, ME). Nongrafted 

‘BHN-589’ (BHN-NON) and nongrafted ‘Nebraska Wedding’ (NW-NON) were included 

as controls that helped in evaluating differences in yield between grafted and nongrafted 

tomatoes. Previous experiments with Nebraska Wedding suggested there is no yield 
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penalty associated with grafting itself, as determined from a self-grafted control 

(unpublished data); thus, no self-grafted controls were included in these experiments.   

Fertility Treatment 

In 2019, tomatoes received one of two in-season fertilizer treatments, including zero and 

full nitrogen via fertigation. The full nitrogen application rate was determined based on a 

recommendation of 50 kg ha-1 N for field tomato production and was applied via hand 

fertigation as calcium nitrate [Ca(NO3)2]
 (15.5N-0P-0K+26.5 CaO; Hummert 

International, Topeka, KS). To prepare the fertigation solution, 1.7 kg calcium nitrate was 

mixed with 120 liters of water. One liter of the fertigation solution was applied by hand 

adjacent to individual plants beneath the plastic mulch film.  Fertilizer treatment began one 

week after seedlings were transplanted: 7 June for LNK, 13 June for PP, and 18 June for 

NP. Both NP and PP received a total of five fertigation treatments and ended on 31 July 

and 8 Aug. when the plants started to fruit. Lincoln received a total of six fertigation 

treatments that ended on 8 August. 

Grafting Procedure 

The germination and emergence of rootstock seeds took longer than the scion seeds; 

therefore, rootstock seeds were sown on 5 Mar. 2018 and 26 Mar. 2019 – three days earlier 

than the scion seeds, which were sown on 8 Mar. 2018 and 29 Mar. 2019. This was done 

to increase the likelihood that the diameter of scion and rootstock seedling stems would be 

similar, to increase the grafting success rate. The seedlings were grown in an 

environmentally controlled greenhouse with the temperature set between 26.7 to 32.2 °C 
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during the daytime and 15.6 to 21.1 °C during the night. HID sodium halide lamps were 

provided in this greenhouse that would activate at night and on cloudy days. Seedlings 

were sown in 72-cell plug trays with the cells measured at 38 mm × 38 mm × 57 mm deep, 

filled with a soilless potting mixture including coarse grade peat moss, coarse grade perlite, 

coarse grade vermiculite, dolomitic limestone, non-ionic wetting agent and standard 

fertilizer starter charge (BM1; JR Johnson, St. Paul, Minnesota). Approximately three 

weeks after seeding, on 10 Apr. 2018 and 23 Apr. 2019, scions from both ‘Nebraska 

Wedding’ and ‘BHN-589’ were grafted onto the rootstocks ‘Maxifort’ and ‘Estamino.’ The 

grafting work area was disinfested with isopropyl alcohol before and during the grafting 

session. 

To begin the grafting procedure, shoots of the rootstocks were first removed below the 

cotyledons at a 45° angle using a miter-cut grafting knife (Johnny’s Selected Seeds, 

Winslow, ME). Next, an identical 45° angle cut was made of the scions using the same 

knife. The scion and rootstock stems were carefully joined together and secured with a 1.5 

mm diameter silicon tube (Johnny’s Selected Seeds, Winslow, ME). After grafting, plants 

were immediately transferred into a closed healing chamber built of polyvinyl chloride 

pipe and clear polyethylene plastic. Chambers were equipped with a thermometer, two 

humidifiers, and a relative humidity sensor. Light transmission was filtered from the 

chamber using white linens for the first seven days after the grafted tomatoes were 

transferred into the chamber. Additional layers of linen were removed daily after seven 

days to allow the grafted tomatoes to acclimate to ambient greenhouse conditions. 

Temperature and average relative humidity of the healing chamber were maintained 

between 21 to 27 °C and >90% humidity in the first three days. On 13 Apr. 2018 and 26 
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Apr. 2019, the humidity level was reduced to 70%. Ten days later, relative humidity was 

reduced by opening up the chamber and increasing light exposure. Grafted plants were 

watered gently at the base of the plants as needed, and adventitious roots were removed as 

needed. Two weeks after grafting, plants were moved from the healing chamber and into 

the greenhouse alongside the nongrafted seedlings. After that, all plants were fertigated 

with a 20N-10P-20K fertilizer solution every week until transplanting in the field. 

Crop Management 

In both years, field plots were cultivated with a disc implement on all three locations before 

transplanting took place on 21 May 2018 and 31 May 2019 at LNK, 24 May 2018 and 11 

June 2019 at NP, and 22 May 2018 and 5 June 2019 at PP. Soil samples (0-15 cm depth) 

were collected annually at each location and analyzed to determine fertilizer application 

needs. Based on these analyses, nitrogen (applied as Ca(NO3)2), inorganic phosphorus 

(P2O5), and inorganic potassium (K2O) fertilizers were applied preplant as needed based 

on the soil test results. Granular inorganic phosphorus (P2O5) was broadcast-applied pre-

plant at PP in 2018 and 2019. At NP, P2O5 and K2O were applied in both years – via 

fertigation in the crop planting hole in 2018 and as a granular pre-plant in 2019. At LNK, 

P2O5 and K2O were applied in 2018 via fertigation in the crop planting hole. In 2018, 

nitrogen was applied three times at all locations as urea via fertigation to achieve an in-

season total of 50 kg N ha-1. In 2019, N was applied according to the fertility treatments 

described previously.   

Tomatoes in experimental plots were established on raised beds 12.7 cm (tall) × 121.9 cm 

(wide). A water wheel transplanter was used for transplanting, which delivers water as the 

hole is made in the plastic; this was crucial as the transplanting process required an 
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adequate amount of moisture around the root ball of the tomato plant. The plants were 

spaced 152.4 cm apart between rows and 61 cm within the row. The “Florida stake and 

weave” system were used for trellising the tomato seedlings soon after transplanting into 

the field. A wooden stake was placed between every other plant in the row (121.9 cm apart), 

and metal posts were placed every three stakes in the row to provide extra support. Twine 

was used for training the plants using a figure-eight weave technique, and trellising was 

done multiple times during the growing season to hold the tomato plants upright and to 

protect the grafted union from wind injury (Kelley and Boyhan, 2017). At all three 

locations, the plots were irrigated to field capacity via the drip-irrigation line established 

underneath the polyethylene mulch. To achieve efficiency for tomato production during 

the growing season, the on-farm trial at PP applied typical pest control treatments as 

needed, mainly spraying fungicide and insecticide to control pests like stink bugs 

(Halyomorpha halys), tomato hornworm (Manduca quinquemaculata), and anthracnose 

fruit rot (Colletotrichum phomoides). Whereas, organic pesticides such as Bt Worm and 

Caterpillar killer (Garden Safe®), Copper Fungicide, and Captain Jacks Dead Bug Brew® 

(Bonide; Oriskany, NY) were applied as needed throughout the growing season at NP and 

LNK in both years. 

Harvesting Procedure 

Tomatoes were harvested at a mature pink stage when more than 30% and less than 60% 

of the fruit surface is showing pink color on both scions (USDA, 1976). Fruits were picked 

on a weekly basis and started from 67 to 149 days after transplanting (DAT) in 2018 and 

from 83 to 129 DAT in 2019 at LNK. Fruits were picked every 10 to 14 days from 68 to 

132 DAT in 2018 and from 76 to 121 DAT in 2019 at NP. Fruits were picked on a weekly 
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basis from 70 to 135 DAT in 2018 and 79 to 129 DAT in 2019 at PP. Harvested tomatoes 

were then graded using USDA standards as marketable (62.5mm to 69mm) or cull (USDA, 

1976). In this experiment, cull tomatoes were misshapen, overripe, and seriously damaged 

by physiological factor such as zippering and bursting, and by bug feeding injury. Fruits in 

each grade were then counted and weighed fresh. In sync with each harvest interval in 

2019, leaf chlorophyll content was estimated for a subsample of plants in each plot using 

a SPAD-502 Plus Chlorophyll meter (Spectrum Technology Inc., Aurora, IL) (Ling et al., 

2011). The readings were taken twice at each location during the growing season, and the 

early dates were 1 July at LNK, 2 July at NP, and 3 July at PP, whereas the later dates were 

15 July at LNK, 17 July at NP, and 23 July at PP.  

Statistical Analysis 

The experiment was conducted over two years (2018 and 2019), but years were analyzed separately 

due to differing treatment designs (addition of fertility in 2019). Data within each year were 

analyzed with ANOVA (proc glimmix; SAS Version 9.4; SAS Institue Inc., Cary, NC) to 

determine the impact of grafting, location, and nitrogen fertilizer (2019) on tomato yield and leaf 

greenness (2019). Fixed effects included scion cultivar, rootstock cultivar, location, nitrogen fertility 

(2019 only), and all possible interactions. The random effect was replicate block. Treatment means 

were estimated using the LSMEANS statement, and differences among means were determined 

using the Tukey multiple comparisons test and a significance threshold of α = 0.05.   
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Results and Discussion  

Fruit yield in 2018 

Results from 2018 indicate that grafting ‘BHN-589’ and ‘Nebraska Wedding’ scions with 

‘Maxifort’ and ‘Estamino’ rootstocks did not provide a consistent yield benefit when 

measured at three locations across Nebraska. Marketable yields were influenced by scion 

(P < 0.0001), rootstock (P = 0.0042), and location (P < 0.0001; Table 1.3). However, the 

total yield was not affected by rootstock but significantly influenced by scion (P < 0.0001) 

and location (P = 0.0098; Table 1.3). There was no three-way interaction among treatments 

in either marketable (P = 0.2070) or total yield (P = 0.1557); however, there was a 2-way 

interaction between rootstock and location on both marketable (P = 0.0166) and total (P = 

0.0103) yield (Table 1.3).  

Despite a significant two-way interaction between rootstock and location (P = 0.0103), 

when averaged over scions, there were no differences in total yield between grafted and 

nongrafted plants in any of the three locations. Similarly, there were no differences in 

marketable yield between grafted and nongrafted plants at NP and PP; however, the 

marketable yield was increased by an average of 48% by nongrafted rootstock when data 

were pooled across scions at LNK (Figure 1.2). These results supported our findings on 

percentage marketability, where nongrafted rootstocks produced a higher percentage of 

marketable fruit compared to other rootstocks when grafted with ‘BHN-589’ (P = 0.0305; 

Table 1.3). Although grafting did not drive differences in yield between the rootstocks, 

‘BHN-589’ out-yielded the local heirloom ‘Nebraska Wedding’ by 248% at LNK, 115% 

at PP, and 94% at NP.  
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The local favorite hybrid, ‘BHN-589’ is popular among growers for a reason. Not only can 

it provide a large fruit size and quantity, but it is also notable for conferring resistance to 

multiple soilborne diseases such as root-knot nematodes, fusarium wilt race 1 and 2, and 

verticillium wilt (Loewen, 2018; Rivard and Louws, 2011). Multiple studies have reported 

‘BHN-589’ to be highly productive on its own, especially under high tunnel production 

(Maynard and Bluhm, 2018; Oxley and Rivard, 2015, 2016; Rivard et al., 2014). Although 

it is not clear to why non-grafted ‘BHN 589’ produced greater marketable yield than 

‘Maxifort’ and ‘Estamino’ rootstocks at LNK, we hypothesize that the variability in yield 

is due to the combination of different growing conditions and management at each location. 

The growing conditions at all three locations were free from extreme biotic and abiotic 

stresses, which may explain the lack of yield improvement from grafted rootstocks for both 

scions. Both Djidonou et al. (2020) and Dia et al. (2016) attributed yield differences among 

grafted plants to variation in local growing conditions. Djidonou et al. (2020) observed a 

significant interaction between grafting treatment and the environment in both field and 

high tunnel trials. They stated that most of their environmental variation was from different 

production systems at each location. We do not expect that soil nutrient levels greatly 

influenced our results because we did not see large differences in soil nutrients between 

years at each location (Table 1.1). 

All three treatment factors significantly influenced the number of marketable fruits. Total 

fruits were significantly influenced by scion and location treatments and not the rootstock 

treatment (Table 1.3). Nonetheless, there were no differences in the number of marketable 

and total fruits between grafted and nongrafted plants in any of the three locations, except 

for the number of marketable fruits at LNK. Consistent with fruit weight results at LNK, 
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BHN-NON produced 54% more fruits compared to BHN-MAX and BHN-EST. As 

expected, when data were pooled over rootstocks, ‘BHN-589’ outnumbered ‘Nebraska 

Wedding’ on the total number of fruit by an average of  155% at LNK, 28% at NP, and 

91% at PP. It is important to note that the fruit size was not influenced by rootstock; 

however, it differed among scions (P < 0.0001) and between locations (P = 0.0015; Table 

1.3). The fruit size was greatest in LNK (267.32 ± 9.9112 g/fruit), followed by NP (221.84 

± 9.9112 g/fruit) and PP (172.69 ± 9.9112 g/fruit, Table 1.2). Similarly, when data were 

pooled over rootstocks, ‘BHN-589’ produced tomatoes that were 38% (LNK) and 37% 

(NP) larger than ‘Nebraska Wedding.’ There was no difference in fruit size between scions 

at PP. 

Buller et al. (2013) and Masterson et al. (2016) reported similar results, where grafting did 

not improve the yield and number of fruits. Both studies were looking at the impact of 

grafting on heirloom ‘Cherokee Purple’ with ‘Maxifort’ under field production. Buller et 

al. (2013) concluded that the lack of Verticillium wilt incident on the field had limited the 

benefits of grafting ‘Maxifort’ with ‘Cherokee Purple’ in the Pacific Northwest. Whereas 

‘Masterson et al. (2016) concluded that the heirloom interaction with the rootstock cultivar, 

plant density, and environment might cause the differences in yield at Reno County in 

Kansas. Our study is the first published report on yield performance of an old Great Plains 

heirloom, ‘Nebraska Wedding.’ When ‘Nebraska Wedding’ was grafted to ‘Maxifort’ and 

‘Estamino’ rootstock, the grafted plants performed similarly to nongrafted plants at all 

three locations.’ Perhaps future research should explore additional rootstock combinations 

when ‘Nebraska Wedding’ is used as a scion. In contrast to our results, Rivard and Louws 

(2008) observed an increase in tomato yield when an heirloom ‘German Johnson’ was 
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grafted onto ‘Maxifort.’ The study was evaluating the impact of grafting to manage 

soilborne diseases in heirloom tomato production in North Carolina. Rivard and Louws 

(2008) emphasized the need for grafting desired scion cultivar with resistant rootstocks, 

especially in an infested field. ‘Nebraska Wedding’ is a semi determinate cultivar and has 

a longer growing season with the first harvest date >90 days after transplant (Ozores-

Hampton et al. 2003). Perhaps grafting benefits could be realized if ‘Nebraska Wedding’ 

were grown under a high tunnel system where frost kill can be delayed, and a longer 

growing season can be obtained.  

Fruit yield in 2019 

Similar to the results from 2018, grafting both ‘BHN-589’ and ‘Nebraska Wedding’ scions 

with ‘Maxifort’ and ‘Estamino’ rootstocks in 2019 did not provide a consistent yield 

benefit when measured at three locations across Nebraska. Marketable and total yields were 

influenced by scions, fertilizers, and locations (P < 0.05), with the effect of rootstocks on 

total yield approaching significance (P = 0.0693; Table 1.5). There was a significant two-

way interaction between rootstock and scion on total yield (P = 0.0045) and a significant 

two-way interaction between rootstocks and locations on the marketable yield that was 

approaching significance (P = 0.0931, Table 1.5).  

 When averaged over scion and fertility treatment, there were no differences in marketable 

yields between rootstocks within each location (Figure 1.3). However, when averaged over 

location and fertility treatments, ‘BHN-589’ grafted to ‘Maxifort’ increased total yield by 

24% compared to BHN-NON (Figure 1.4). Nonetheless, there were no differences in total 

yield between rootstocks when grafted to the heirloom ‘Nebraska Wedding’ (Figure 1.4). 
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Although grafting did not provide a consistent yield benefit between the rootstocks, ‘BHN-

589’ out yielded ‘Nebraska Wedding’ by 137% in LNK, 71% in PP, and 83% in NP.  

There were no differences in the number of marketable and total fruits between grafted and 

nongrafted plants among the three locations. As expected, when data were averaged over 

rootstock and fertilizer treatment, ‘BHN 589’ outnumbered ‘Nebraska Wedding’ on the 

total number of fruit by 112% in LNK, 72% in NP, and 60% in PP. It is important to note 

that the average total fruit weight was not influenced by rootstock (P = 0.5546) nor fertilizer 

(P=0.9204); however, the average total fruit weight differed among scion (P = 0.0023) and 

between location (P = 0.0030; Table 1.5). Surprisingly, in 2019 the average fruit weight in 

North Platte was 13% higher than the other two locations, and as expected, ‘BHN-589' 

average fruit weight was 8% higher than 'Nebraska Wedding.' 

The rootstock ‘Maxifort’ is well known for its ability to improve plant performance by 

providing scion with the vigorous and resistant rootstock. Although data were not recorded 

for plant growth purposes, ‘Maxifort’ provided vigorous aboveground growth compared to 

nongrafted plants (Buller et al., 2013; Hu, 2016; Loewen, 2018; Masterson et al., 2016; 

Meyer, 2016). Additionally, Loewen (2018) reported that the BHN-MAX interaction was 

‘highly compatible’ and consistently provided 40% more yield than the nongrafted ‘BHN-

589’. Numerous studies have reported increases in tomato yield and plant growth when 

‘Maxifort’ was used as a rootstock (Kunwar et al. 2015; Lang, 2019; Loewen, 2018; 

Masterson et al. 2016; Meyer, 2016; Rivard and Louws, 2008).  

The yield performance of ‘Maxifort’ in this study was not consistent across time or 

locations. We only observed a single significant yield improvement in both years at all 
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three locations. Again, we suspected the variability in yield performance is due to the 

combination of different growing conditions and management at each location. The 

majority of the studies in the Midwest that observed increases in yield with scion grafted 

onto ‘Maxifort’ were grown under high tunnel production (Lang, 2019; Loewen, 2018; 

Masterson et al. 2016; Meyer, 2016). Perhaps this study will encourage future research to 

explore the impact of grafting vastly under different growing systems and environments, 

especially in Nebraska. 

Hu (2016) reported similar results, where grafting did not provide consistent yield benefits 

in two consecutive years. Hu (2016) studied the impact of grafting and fertilization on 

tomato growth, yield, and fruit quality. They observed larger total and marketable fruits 

number when ‘BHN-589’ were grafted onto ‘Maxifort’ in 2013 but not in 2014 under field 

production in Wooster, Ohio. Hu (2016) concluded that the difference in yield between 

those two years was due to unstandardized relative ages of plants.  

In regards to ‘Estamino’ rootstock, there was no significant improvement in fruit yield and 

fruit numbers at all three locations in both years. It is important to note that ‘Estamino’ 

rootstock has not been extensively studied, but a couple of studies had observed an increase 

in yield under both  high tunnel (Buajaila, 2018; Djidonou et al. 2020; Lang, 2019) and 

field production systems (Djidonou et al. 2020). Lang (2019) observed an 86% increase in 

total marketable fruits when ‘BHN-589’ were grafted to ‘Estamino’ and believed the 

rootstock has a high potential at improving yield under high tunnel production. Meanwhile, 

Miles et al. (2015) did not observe any significant benefits of grafting ‘Stupice’ onto 

‘Estamino’ rootstock on a field infested with Verticillium wilt in Washington.  
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There was no interaction between rootstock and fertility treatment in any of the three 

locations (Table 1.5). However, when data were pooled across scion and rootstock, the 

effects of fertility treatment on the total fruit weight were generally significant at LNK and 

NP, but not the PP location. Plants that received in season N fertilizer (50 kg ha-1 N) 

produced 7.4 ± 2.5 kg/plot (LNK) and 16.0 ± 2.6 kg/plot (NP) more tomatoes than the 

control (0 N). Furthermore, the SPAD reading at the earlier date was significantly 

influenced by scion, location, and fertility treatment, but not the rootstock treatment. In 

contrast, SPAD reading on a later date was significantly influenced by all four treatment 

factors (Table 1.7). The estimated leaf chlorophyll content taken on the earlier date ranged 

between 49.23 ± 2.67 (NW-NON, Zero N) and 60.35 ± 2.67 (BHN-NON, Full N) in LNK, 

28.20 ± 2.67 (NW-NON, Zero N) and 51.78 ± 2.67 (BHN-EST, Full N) in NP, and 46.63 

± 2.67 (NW-MAX, Full N) and 58.18 ± 2.67 (BHN-EST, Zero N) in PP (Table 1.6). 

Comparatively, the estimated leaf chlorophyll content taken on the later date ranged 

between 45.40 ± 1.70 (NW-MAX, Zero N) and 59.53 ± 1.70 (BHN-NON, Full N) in LNK, 

51.61 ± 1.70 (NW-NON, Zero N) and 66.93 ± 1.70 (BHN-NON, Full N) in NP, and 46.45 

± 1.70 (NW-NON, Zero N) and 60.53 ± 1.70 (BHN-NON, Full N) in PP (Table 1.6). 

Similarly, when data were pooled across scion and rootstock, the effects of fertility 

treatment on estimated leaf chlorophyll content taken on the later date were generally 

significant at LNK, and NP, except the PP location. Again, plants that received extra input 

of N fertilizer (Full N) generated 2.8 ± 0.9 units (LNK) and 3.4 ± 1.0 units (NP) higher 

than the control (0 N). 

Hu (2016) also reported no interaction between rootstock and fertility treatment and had 

observed increases in yield under high fertility treatment with little to no difference 
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between the grafted and nongrafted plants. Comparably, Djidonou et al. (2013) also 

reported an insignificant interaction between rootstock and fertility treatment. However, 

Djidonou et al. (2013) observed a yield trend that suggested grafted plants produced more 

yield than nongrafted plants when nitrogen fertilizer rate increased. Leonardi and Giuffrida 

(2006) studied the impact of grafting on macronutrient uptake and observed the variability 

of nutrient uptake between different grafting treatments. They concluded that the rootstock 

phenotype played an important role in macronutrient absorption capacity. In this study, the 

effect of fertility treatment was only studied by evaluating estimated leaf chlorophyll 

content and tomato yield performance, which may not have captured exact benefits of 

grafted plants.  
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Conclusion 

Grafting is known for its potential at suppressing biotic and abiotic stresses in tomato 

production. With the grafting technique gaining interest among local growers in the 

Midwest, it is important to provide local growers with the information needed to produce 

grafted tomatoes under field production here in Nebraska. Given the information that we 

had gathered in this study, grafting ‘BHN-589’ and ‘Nebraska Wedding’ with ‘Estamino’ 

and ‘Maxifort’ did not provide a consistent yield improvement under three different field 

productions across Nebraska. Furthermore, there is no interaction between rootstock and 

fertility treatment in any of the three locations. We believed grafting had the potential to 

improve tomato yield under a few circumstances. When a local heirloom ‘Nebraska 

Wedding’ was grafted onto ‘Estamino’ and ‘Maxifort,’ we had observed similar yield 

performance with non-grafted plants. We hope future study will perform  a different scion-

rootstock interaction with ‘Nebraska Wedding’ in an effort to find a great rootstock that 

will potentially improve the heirloom performance.  

Furthermore, grafted plant performance under field study often has three-way interaction 

between scion, rootstock, and environment. Djidonou et al., (2020) had reported that 

environmental components contributed up to 86% variation in yield when grafted tomatoes 

were grown under field conditions. Perhaps, a future study on grafted tomatoes in Nebraska 

can take place in a growing tunnel, as most of the research that took place across the 

Midwest had observed the benefits of grafting tomatoes under high tunnel production (Hu, 

2016; Lang, 2019; and Loewen, 2018; Meyer et al., 2016). We suggested that our local 

growers perform thorough planning before diving into grafted vegetable production based 
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on our findings. Grafted plants have a higher cost of production than non-grafted plants in 

a traditional growing system. Therefore, we suggested that growers carry out a test run on 

any desired scion-rootstock combination before investing in grafted vegetable production.  
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Table 1.4 

Yield No. of Avg fruit wt Yield No. of Avg fruit wt Yield No. of

Scion Rootstock Fertilizer (kg/plot) fruit (g/fruit) (kg/plot) fruit (g/fruit) fruit

BHN 589 Estamino Full 43.60 218.75 201.33 61.58 332.25 187.93 70.69 65.92

Zero 31.35 149.00 211.37 50.15 248.75 202.66 62.15 59.60

Maxifort Full 41.13 202.75 202.77 62.38 334.25 186.76 65.72 60.50

Zero 34.20 172.50 199.00 56.70 272.50 215.22 60.51 63.81

Nongrafted Full 45.10 239.25 188.38 60.00 330.25 181.59 75.16 72.42

Zero 30.98 156.00 198.24 43.23 227.25 190.19 71.46 68.55

Nebraska Estamino Full 12.63 73.25 172.32 20.85 128.00 162.85 60.77 57.31

Wedding Zero 10.48 56.25 190.16 19.65 110.50 178.73 52.58 49.84

Maxifort Full 14.38 54.50 264.77 23.15 116.50 205.55 55.37 45.62

Zero 11.18 63.00 181.61 20.15 124.00 168.66 55.19 51.04

Nongrafted Full 18.68 105.25 181.15 31.83 202.00 160.44 58.39 51.73

Zero 15.95 85.75 186.95 25.55 141.00 181.38 62.68 60.80

BHN 589 Estamino Full 28.02 128.50 221.16 36.67 166.25 223.59 75.85 76.65

Zero 11.46 56.00 211.67 18.53 87.75 221.17 57.13 59.18

Maxifort Full 28.39 122.00 235.34 38.03 166.75 231.35 74.31 72.99

Zero 18.91 84.25 223.81 24.91 115.50 214.11 76.71 73.05

Nongrafted Full 26.36 115.50 236.58 33.69 149.75 230.15 75.25 73.51

Zero 9.29 44.50 217.69 14.63 71.50 212.02 60.70 59.03

Nebraska Estamino Full 16.69 80.00 207.86 22.64 107.25 210.93 73.71 74.79

Wedding Zero 5.96 32.00 185.27 8.73 45.75 191.25 67.70 69.80

Maxifort Full 18.28 87.50 210.48 25.16 118.25 214.58 71.94 73.38

Zero 7.16 36.40 194.68 9.90 49.11 198.52 70.33 71.13

Nongrafted Full 12.78 58.00 222.14 20.63 98.25 212.94 62.76 60.83

Zero 1.78 10.00 188.16 3.92 20.97 201.25 35.80 38.26

BHN 589 Estamino Full 51.33 238.00 215.50 66.55 327.75 202.88 77.76 73.17

Zero 58.53 277.00 211.25 70.73 345.50 205.06 81.68 79.26

Maxifort Full 63.68 290.25 218.65 77.48 367.00 210.55 82.30 79.30

Zero 49.58 238.25 206.32 63.43 322.25 194.53 78.28 73.88

Nongrafted Full 45.40 239.00 190.15 57.45 319.75 180.23 78.94 74.84

Zero 43.73 223.50 194.40 53.35 279.25 190.36 82.02 80.37

Nebraska Estamino Full 26.23 138.25 189.20 37.68 211.75 178.76 69.43 65.66

Wedding Zero 24.48 139.75 176.54 42.90 208.25 203.61 63.75 67.12

Maxifort Full 25.20 138.50 182.83 33.85 191.25 177.40 74.59 72.30

Zero 22.38 122.25 183.34 35.73 201.25 179.00 63.80 62.14

Nongrafted Full 29.48 149.50 198.66 42.13 227.00 187.73 70.39 66.77

Zero 23.83 116.25 204.43 35.08 185.25 189.63 67.86 63.17

3.47 16.04 19.79 4.36 21.27 14.61 4.75 4.06

North Platte

Marketable Fruit Total Fruit Marketability (%)

Perkarek's Produce

Lincoln

Standard error
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Table 1.6 

Earlier date Later date

Scion Rootstock Fertilizer

BHN 589 Estamino Full 58.33 56.30

Zero 59.35 54.83

Maxifort Full 57.23 58.08

Zero 57.55 52.33

Nongrafted Full 60.35 59.53

Zero 58.13 56.00

Nebraska Estamino Full 49.98 49.40

Wedding Zero 50.15 48.35

Maxifort Full 49.25 46.23

Zero 49.30 45.40

Nongrafted Full 53.00 53.55

Zero 49.23 49.35

BHN 589 Estamino Full 51.78 59.80

Zero 37.93 55.78

Maxifort Full 50.35 62.60

Zero 51.60 61.28

Nongrafted Full 50.20 66.93

Zero 35.85 60.70

Nebraska Estamino Full 50.68 55.43

Wedding Zero 35.65 52.98

Maxifort Full 50.33 53.70

Zero 36.46 51.90

Nongrafted Full 51.00 56.30

Zero 28.20 51.61

BHN 589 Estamino Full 56.70 56.35

Zero 58.18 56.20

Maxifort Full 56.05 52.58

Zero 53.10 55.28

Nongrafted Full 61.45 59.73

Zero 57.75 60.53

Nebraska Estamino Full 48.70 49.38

Wedding Zero 49.45 49.85

Maxifort Full 46.63 49.88

Zero 47.33 49.20

Nongrafted Full 49.53 50.38

Zero 50.98 46.45

2.67 1.70

Perkarek's Produce

Standard error

SPAD reading

Lincoln

North Platte
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Early date Later date

<.0001 <.0001

0.9905 0.0002

<.0001 0.0002

0.0001 0.0017

0.7764 0.0274

0.0881 0.9955

0.0051 0.2643

<.0001 0.0341

0.2189 0.9858

0.0568 0.156

0.7567 0.7039

0.6339 0.0086

0.0381 0.2615

0.1382 0.7832

0.4264 0.6179

SPAD reading

Locati*Rootst*Fertil

Loca*Scio*Root*Ferti

Pr > F

Scion*Fertilizer

Rootstock*Fertilizer

Scion*Rootst*Fertili

Locati*Scion*Rootsto

Locati*Scion*Fertili

Location

Scion*Rootstock

Location*Scion

Location*Rootstock

Location*Fertilizer

Type III Tests of Fixed Effects

Scion

Rootstock

Fertilizer

Table 1.7 
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Chapter 2 – The Impact of Water and Nitrogen Treatment on  

Grafted Tomato  

Abstract  

Growers all around the world have been struggling to improve water and nutrient 

efficiency in vegetable production. For a variety of ornamental and specialty crops, 

grafting the desired cultivar with a higher root density rootstock is known to improve 

water and nutrient uptake efficiency. Such innovative tools can be very beneficial for 

vegetable production, such as tomatoes. A grafting experiment was conducted under 

limited water and Nitrogen (N) condition. The greenhouse experiment took place at the 

University of Nebraska Lincoln - East Campus in Lincoln, Nebraska, from fall 2018 to 

early summer 2019. Determinant fresh market tomato, ‘BHN-589’ were grafted onto one 

of two potentially valuable rootstocks, ‘Estamino’ and ‘Maxifort,’ with the nongrafted 

scion cultivars as controls. Nitrogen fertilizer treatments were implemented at 0.5 X, 1.0 

X, and 1.5 X of 120 ppm of N, and water treatment was divided into high (above field 

capacity) and low (below field capacity). Overall, grafting did not have any consistent 

impact on fruit yield. ‘Estamino’ improved % of fruits marketability by 28% compared to 

the nongrafted plants especially under 1.5 X of N fertility treatment. However, there were 

no significant difference in total and marketable yield between grafted and nongrafted 

plants. Moreover, 1.5X N reduced % marketability of the tomatoes under both high and 

low water treatment.  
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Introduction  

Nitrogen is an essential plant macronutrient and is the main necessary for the formation of 

proteins responsible for biochemicals, including enzymes, chlorophyll, and nucleic acids 

in plants (Brady and Weil, 2010; Haruna et al., 2017). It has always been a challenge for 

farmers and small-scale growers to find the “happy medium” of nitrogen (N) needed for 

crops each growing season without hurting the plants and the environment (Dinnes et al., 

2002). Lack of knowledge about nutrient management results in poor agronomic practices 

that can lead to nitrate (NO3
-) leaching, often from over application and ill-timed N 

fertilizer application (Hallberg, 1989; Hatfield and Cambardella, 2001; Linville and Smith, 

1971). It has been reported that between 50% and 70% of N can be leached from intense 

agronomic production systems (Asgari and Cavagnaro, 2011; Raun and Johnson, 1999). 

Leaching of NO3
- into the groundwater represents a loss of available N to plants, degrades 

groundwater quality, and represents a significant risk to drinking water supplies (Haruna 

et al., 2017). Because N is such a vital element for plant growth and productivity, but can 

also contribute to negative environmental impact, growers should strive for improved 

nitrogen use efficiency (NUE).  

Nitrogen fertilizer is essential for tomato (Solanum lycopersicum) production as it 

promotes crop growth and development and is related to uptake of other nutrients (Aczel, 

2019). Lowrance and Smittle (1988) suggest that vegetable crop production results in lower 

NUE than production of agronomic crops such as corn and soybean. Thus, new approaches 

are needed to improve NUE in vegetable crops like tomato, including better planning and 

management with mindful consideration for the environment (Angus, 1995; Power and 

Schepers, 1989). 
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Another yield-limiting factor in tomato production is water. Limited water resources have 

always been a great challenge for growers in arid and semi-arid areas. Irrigation water is 

extensively pumped from groundwater resources, and if continued, will begin to jeopardize 

long-term water security (Kang et al., 2004). Innovative approaches are needed to improve 

water use efficiency in all crops, including tomato, that balance crop water needs and long-

term sustainability. Irrigation is essential in many vegetable crops, and tomato is 

particularly sensitive to water-limiting conditions. Yield reduction can be expected if 

tomato plants are exposed to water deficit even intermittently, especially during the fruit-

bearing stage, due to a common physiological disorder in tomato called blossom end rot 

(BER). BER is a commonly occurring calcium deficiency of tomatoes and early symptoms 

include small, water soaked spots. As the fruit continues to develop, the spots enlarge and 

become flattened, black, and leathery. Since calcium is a relatively immobile essential plant 

nutrient, tomato plants rely on mass flow and transpiration to move calcium to the fruit and 

leaves. The transpiration rate of the tomato fruit is reduced as the fruit matures and 

produces a waxy cuticle; therefore, the fruit serves as a poor calcium sink compared to the 

leaves. Thus, blossom end rot occurs when mass flow and transpiration are low due to 

reduced soil moisture. Taylor and Locascio (2014) reported that BER may reduce global 

tomato yield by up to 50%.  

Plants grown under undesirable or stressful growing conditions are often more susceptible 

to disease and infection (Flores et al. 2010; Savvas et al., 2011). Many researchers have 

recommended grafted plants to combat these stressful growing conditions by improving 

nitrogen and water use efficiency (Lee and Oda, 2003; Schwarz et al., 2013). Grafting is a 

vegetative propagation method where the shoot (scion) of one cultivar is combined with 
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the roots (rootstock) of a second cultivar to create a new hybrid plant. Grafting is an 

essential non-chemical crop production tool that has been used to combat abiotic stresses 

among many ornamental and vegetable products (Flores et al. 2010; Savvas et al., 2011).  

Grafted plants are also popular for combatting soil borne diseases, especially when crop 

rotation and diversity is limited (Rivard, 2006). Given these benefits, many studies have 

reported increased plant productivity and fruit yield when grafting a desirable scion cultivar 

onto a rootstock selected for disease tolerance, vigor, or resource use efficiency (Barrett et 

al., 2012; Flores et al., 2010; Mc Avoy et al., 2012; Rivard and Louws, 2008; Savvas et al., 

2011); and these same yield benefits of grafting in tomato have been observed in multiple 

greenhouse studies (Khah et al., 2006; Passam et al., 2005; Pogonyi et al., 2005; Soare et 

al., 2018). Ruiz and Romero (1999) and Lee (1994) both attributed increased yield of 

grafted plants to enhanced nutrient and water uptake.  

Tomato is the most common vegetable crop grown in Nebraska and throughout the 

Midwest, especially on small-scale diversified farms (USDA NASS, 2020). Given the 

interest in this crop and the scale of production, it is important to explore the possibility of 

using grafted tomato plants to improve nitrogen and water management in Nebraska. The 

objective of this study was to assess the potential for two popular tomato rootstocks 

(‘Estamino’ and ‘Maxifort’) to maintain or increase yield of the popular hybrid ‘BHN-589’ 

tomato under water and nitrogen limiting conditions. The study was conducted in a 

controlled environment greenhouse to enable precise management of nitrogen and water 

inputs. Given results of similar studies and knowledge of rootstock root properties, we 

hypothesized that grafted plant yield would be greater than nongrafted yield when managed 

with reduced or deficit irrigation water and nitrogen levels.  
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Materials and Methods 

Experimental Design 

A greenhouse experiment was conducted at the University of Nebraska - Lincoln from fall 

2018 to early summer 2019 to explore the potential benefits of grafted tomatoes on water 

and nitrogen use efficiency and yield. Greenhouse temperature was set between 26.7 to 

32.2 °C during the daytime and 15.6 to 21.1 °C during the night. LEDs provided 

supplemental light for 16 hours per day. The experiment was arranged in a randomized 

complete block design. It included a 3 × 2 × 3 factorial combination of three rootstock 

cultivars, two irrigation regimes, and three N fertilizer levels, with six replicate blocks and 

a total of 18 experimental units (i.e., potted plants) per block (Figure 2.1). 

Grafting Treatment 

Rootstock cultivars included ‘Maxifort,’ a popular vegetative rootstock hybrid, and 

‘Estamino,’ a generative rootstock hybrid (Johnny’s Selected Seeds, Winslow, ME). A 

local grower-favorite, commercial hybrid, ‘BHN-589,’ was grafted onto the rootstock 

cultivars, and a nongrafted plant served as a control. The germination and emergence of 

rootstock seeds took longer than the scion seeds. Therefore, rootstock seeds were sown on 

29 Nov. – four days earlier than the scion seeds, which were sown on 3 Dec. This was done 

to increase the likelihood that the diameter of scion and rootstock seedling stems would be 

similar to increase the grafting success rate. All seedlings were sown in 72-cell plug trays 

(each cell was 3.8 cm × 3.8 cm × 5.7 cm deep) filled with a soilless potting mix that 

included coarse grade peat moss, coarse grade perlite, coarse grade vermiculite, dolomitic 
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limestone, non-ionic wetting agent, and standard fertilizer starter charge (Berger Mix BM1; 

JR Johnson, St. Paul, Minnesota). Approximately one month after seeding, on 8 January, 

‘BHN-589” scions were splice-grafted onto ‘Maxifort’ and ‘Estamino’ rootstocks. The 

grafting work area was sterilized with isopropyl alcohol prior to and during the grafting 

session.  

Grafting Procedure 

To begin the grafting procedure, shoots of the rootstocks were first removed below the 

cotyledons at a 45° angle using a miter-cut grafting knife (Johnny’s Selected Seeds, 

Winslow, ME). Next, an identical 45° angle cut was made of the scions using the same 

knife. The scion and rootstock stems were carefully joined together and secured with a 1.5 

mm diameter silicon tube (Johnny’s Selected Seeds, Winslow, ME). After grafting, plants 

were immediately transferred into a closed healing chamber built of polyvinyl chloride 

pipe and clear polyethylene plastic. Chambers were equipped with a thermometer, two 

humidifiers, and a relative humidity sensor. Light transmission was filtered from the 

chamber using white linens for the first seven days after the grafted tomatoes were 

transferred into the chamber. Additional layers of linen were removed on a daily basis after 

seven days to allow the grafted tomatoes to acclimate to ambient greenhouse conditions. 

Temperature and the average relative humidity of the healing chamber were maintained 

between 21 to 27 °C and >90% humidity for the first three days. On 11 Jan., the humidity 

level was reduced to 70%. Ten days later, relative humidity was reduced by opening up the 

chamber and increasing light exposure. Grafted plants were watered gently at the base of 

the plants as needed, and adventitious roots were removed with pruning shears or razor 
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blade as needed. On 24 Jan., plants were moved from the healing chamber and into the 

greenhouse alongside the nongrafted seedlings. Thereafter, all plants were fertigated with 

a 20N-10P-20K fertilizer solution on a weekly basis until transplanted into larger pots on 

8 Feb.  

Greenhouse Setup 

Black polyethylene pots (30.2 cm in top diameter, 28 cm in-depth, and a volume of 18.9 

L) were filled with a soilless potting mix (Berger Mix BM1; JR Johnson, St. Paul, 

Minnesota). Pots were watered prior to the transplanting process and beneath each pot was 

a leach tray (28 cm × 53.3 cm × 5.7 cm) intended to prevent loss of nutrients leached from 

the bottom of pots during irrigation. The plants were 53.3 cm apart in each row and 28 cm 

apart between the rows (Figure 2.1). Each pot was transplanted with one tomato seedling, 

and the “Florida stake and weave system” – typically used in field fresh market tomato 

production systems – was adapted to trellis the tomato plants on 1 Mar., which was 20 days 

after plants were transplanted into the pots. A bamboo stake was placed in every pot, and 

wooden posts (secured in a 19.4 L bucket of concrete) were placed every seven to eight 

pots within each row to provide extra support. Twine was used to train the plants using a 

figure-eight weave technique, and trellising was done multiple times during the growing 

season to hold the tomato plants upright and to protect the grafted union from mechanical 

injury.  

Water Treatment 

 Water treatments were imposed on 22 Feb., and prior to that, all plants were hand-watered 

to meet visually approximated evapotranspiration (ET) demand. An automated irrigation 
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system was constructed to deliver prescribed water treatments (high and low) at a 

scheduled time in all 108 pots. Pots in the ‘high’ water treatment received enough water to 

achieve field capacity (determined as water dripping from the bottom of the pot) and pots 

in the ‘low’ water treatment were managed with a deficit irrigation approach with a target 

of between 43% and 67% of the volume applied in the ‘high’ treatment (Table 2.1). The 

exact irrigation volume on each day was determined based on visual assessment of soilless 

media moisture and plant health to avoid extreme moisture stress. A 2-outlet digital timer 

(Orbit, North Salt Lake, UT) was attached to the faucet, and the water pressure was set at 

10 - 13 psi. A black polyvinyl chloride tube was used to connect the outlet with individual 

“dribble rings” (Dramm Corp., Manitowoc, WI, USA). Each dribble ring was placed in 

each pot to try and achieve uniform irrigation across the surface of the pot (Nemali and van 

Iersel, 2006; Figure 2.2 and 2.3). Pots were watered on a daily basis after 20 Mar. when 

plants had started the flowering stage. Consequently, as the tomato entered the fruit 

development stage, the volume of water received in each treatment was increased. 

Irrigation frequency increased to twice per day when tomato fruit began showing blossom 

end rot symptoms on 4 Apr. (Table 2.1).  

Fertilizer Treatment 

 Tomatoes received one of the three fertilizer treatments, including 0.5X, 1.0X, and 1.5X 

N. The 1.0X N treatment application rate was determined based on a Continuous Liquid 

Feed (CLF) recommendation of supplying 120 ppm of N and 220 ppm of calcium per plant. 

Thus, the 0.5X N treatment received 60 ppm of N, and the 1.5X N treatment received 180 

ppm of N. Fertigation solution was prepared with Peter’s Professional (5N-11P-26K; ICL 
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Fertilizers, Dublin, OH), calcium nitrate (15.5N-0P-0K+26.5 CaO; Hummert International, 

Topeka, KS), and urea (46N-0P-0K; Howard Johnson’s Enterprises, Inc., Franklin, WI). 

On 2 Apr., liquid limestone (0N-0P-0K+25.1 Ca; Burnett Lime Company, Inc., 

Campobello, SC) was added to the fertigation solution to alleviate symptoms of blossom 

end rot. Each pot received one liter of the fertigation solution via hand fertigation. Fertilizer 

treatment began on 19 Feb. and ended on 2 July (Table 2.1). Tomato plants received a total 

of 36 fertigation treatments throughout the growing period (Table 2.1).  

Harvesting Procedure 

 Tomato harvesting began on 9 Apr. and ended on 9 July. Tomatoes were harvested on a 

weekly basis and at a mature pink stage, when more than 30% but not more than 60% of 

the fruit surface (across all treatments), in the aggregate, showed pink color (USDA, 1997). 

Harvested tomatoes were then graded as marketable or cull (cracked, damaged, and 

diseased). All marketable fruits met a minimum criteria of the “U.S. No. 2” grade for fresh 

tomato production (USDA, 1997). Fruits in each category were then counted and weighed 

fresh. 

Statistical Analysis 

Yield data was analyzed with ANOVA (proc glimmix; SAS Version 9.4; SAS Institute 

Inc., Cary, NC) to determine the impact of grafting, irrigation regime, and N fertilizer on 

tomato yield. Fixed effects in the generalized linear mixed effects model included 

rootstock, irrigation regime, N fertilizer, and all possible interactions of these factors. The 

random effect was replicate block. Treatment means were estimated using the LSMEANS 
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statement, and differences among means were determined using the Tukey multiple 

comparisons test and a significance threshold of α = 0.05.  

 Results and Discussion 

Total fruit yield  

There were no differences in total yield or total number of fruit among grafted rootstocks 

and the nongrafted plants. However, total yield was influenced by irrigation regime (P < 

0.0001), and the effect of N treatment was approaching significance (P = 0.0806; Table 

2.3). The total number of fruit was not affected by rootstock or irrigation regime, but was 

influenced by N treatment (P = 0.0211; Table 2.3). Total yield ranged between 6.7 ± 0.5 

kg/plant (nongrafted - high water - 1.0X N) and 4.1 ± 0.5 kg/plant (‘Estamino’ rootstock - 

low water - 1.5X N, Table 2.2).  

Previous studies on grafted tomato plants in controlled environments often reported 

improved plant performance in grafted compared to nongrafted plants. These results 

include higher average fruit weight (Pogonyi et al., 2005), a higher number of fruits per 

truss (Ibrahim et al., 2001), and greater total fruit yield (Khah et al., 2006; Marsic and 

Osvald, 2004; Soare et al., 2018; Turhan et al., 2011) as compared to nongrafted plants. 

However, grafting ‘BHN 589’ to ‘Maxifort’ and ‘Estamino’ rootstocks conferred no 

benefits in our study. It is hypothesized that the primary mechanism for improved resource 

use efficiency in grafted plants is increased root surface area of the rootstocks (Lee and 

Oda, 2003). However, the 18.9 L plastic pots used in this study and limited root volume 

may have mitigated any potential benefit of a vigorous rootstock with greater root surface 

area. Oztekin et al. (2009) assessed the root characteristics of vigor rootstocks such as 
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‘Heman’ and ‘Beaufort’ as compared to the cultivar ‘Durinta.’ In one of the assessments, 

grafted plants grown in a 10 L pot had a similar root length compared to nongrafted plants. 

Moreover, the ‘BHN-589’ cultivar used in this study is known for its resistance to multiple 

soil-borne diseases (Loewen, 2018; Rivard and Louws, 2011) and its high productivity 

(even in the absence of grafting) (Maynard and Bluhm, 2018; Oxley and Rivard, 2015, 

2016; Rivard et al., 2014).  

Soylemez and Pakyurek (2017) and Borgognone et al., (2012) reported similar results, 

where total yield and total number of fruits were not affected by rootstock-scion 

combination. Borgogne et al., (2012) studied the impact of nitrogen form (ammonium 

versus nitrate) on grafted tomato growth in a greenhouse hydroponic system and failed to 

observe any differences in yield when ‘Moneymaker’ was grafted onto ‘Maxifort,’ and 

concluded that yield was highly influenced by the nitrogen form rather than the grafting 

treatment. Soylemez and Pakyurek (2017) studied the impact of different electrical 

conductivity (EC) levels and grafting on tomato plant performance in a greenhouse 

environment. Soylemez and Pakyurek (2017) observed little to no difference in yield when 

‘Newton’ was grafted onto ‘Maxifort’ and ten other commercial rootstocks. They found 

that increasing the EC level reduced the total and marketable yield in both years and that 

tomato yield was influenced by different nutrient solution EC levels, but not rootstocks.  

The average individual fruit weight was significantly affected by irrigation and N treatment 

(P < 0.0001; Table 2.3) and ranged from 150.5 ± 7.4 g/fruit (‘Estamino’ - high water - 0.5X 

N) and 85.6 ± 7.4 g/fruit (‘Maxifort’ – low water - 1.5X N; Table 2.2). The interaction 

between N and water was approaching significance (P = 0.0697; Table 2.3). When data 

were pooled across rootstocks, average fruit weight decreased by >34% as the N input 
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increased, especially under water-limiting conditions. Du et al (2017) observed similar 

results as applications of > 250 kg ha-1 N paired with limited water availability reduced 

average fruit weight in a greenhouse environment.  

Marketable fruit yield 

There were no differences in marketable yield among grafted rootstocks and nongrafted 

plants. Marketable yield was not affected by rootstock, but was significantly influenced by 

water and N treatment (P < 0.0001; Table 2.3). In addition to the results of Borgognone et 

al. (2012) and Soylemez and Pakyurek (2017) discussed previously, Lang (2019) also 

found no effect of rootstock on marketable yield when ‘Mountain Fresh Plus’ and 

‘Cherokee Purple’ were grafted onto ‘RST-04-106-T’ in a high tunnel greenhouse 

environment. Lang (2019) concluded that the lack of soil-borne pathogens in the high 

tunnel was cause for the lack of yield differences. This, combined with our results, suggests 

that the use of grafted tomato plants should be limited to cases where soilborne disease has 

been documented because changes in resource use efficiency are less consistent.  

Regardless of the rootstock treatment, marketable yield in the 1.5X N treatment was 

reduced by an average of 31% when combined with low water treatment. Numerous studies 

have emphasized the importance of the synergistic effect of water and nutrient input on 

yield performance (Akemo et al., 2000; Djidonou et al., 2013; Du et al., 2017; Topçu et al., 

2007; Wang and Xing, 2017). Nitrogen is an essential plant nutrient, but excessive input 

of N in tomato can reduce yield due to overly vigorous vegetative growth and reduced 

flower formation and fruit set (Kaniszewki and Elkner, 1990; Abu-Alrub et al. 2019). 

All treatment factors influenced % marketability of tomato fruit (Table 2.3). There were 

significant interactions between water and N treatment (P = 0.0045), and the interaction 
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between N fertilizer and rootstock was approaching significance (P = 0.0559; Table 2.3). 

When pooled across water treatments, grafting ‘BHN-589’ to ‘Estamino’ at the 1.5X N 

fertilizer level helped to improve fruit marketability by 28% compared to the nongrafted 

control (Figure 2.4). Several studies on ‘Estamino’ have reported an increase in yield under 

both protected environment (Buajaila, 2018; Djidonou et al. 2020; Lang, 2019) and field 

production systems (Djidonou et al. 2020). Lang (2019) observed an 86% increase in total 

marketable fruits when ‘BHN-589’ was grafted to ‘Estamino’ in a high tunnel production 

system. Meanwhile, Miles et al. (2015) did not observe any significant benefits of grafting 

‘Stupice’ onto an ‘Estamino’ rootstock in a field infested with Verticillium wilt in 

Washington.  

Across all rootstocks, tomatoes that received the highest fertilizer rate reduced fruit 

marketability by 32% under the low water treatment, and by 22% under the high water 

treatment when compared with the other fertilizer treatments (Figure 2.5). In order to 

achieve a better yield and save costs on fertilizer input, an optimum supply of N and water 

is needed (Gebremariam and Tesfay, 2019). Du et al. (2017) found that high nitrogen inputs 

resulted in low nitrogen use efficiency. When the N fertilizer rate is beyond optimum, 

nitrogen is accumulated in storage organs or lost to the environment and does not contribute 

to increased yield or production efficiency (Song et al., 2009; Min et al., 2011; Du et al., 

2017). 

Cull fruit yield  

Both rootstock treatment and N treatment affected cull yield (P < 0.05; Table 2.3). There 

were significant interactions between N and rootstock treatment (P = 0.02), as well as N 

and water treatment (P = 0.028; Table 2.3). When averaging over water treatment, grafting 
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‘BHN-589’ scion with ‘Estamino’ significantly reduced cull fruits by 25% under 1.0X N 

and by 32% under 1.5X N, as compared to the other two rootstocks (Figure 2.6). Similar 

to observations of % marketability, grafting ‘BHN-589’ with `Estamino’ may result in 

improved quality and marketability of fruit produced.  

When averaged across rootstocks, the 1.5X N fertilizer treatment produced almost five 

times more cull tomatoes as compared with 0.5X fertilizer treatment under water-limiting 

conditions. The vast majority of these tomato fruit were culled due to the presence of BER, 

which is a physiological disorder related to calcium deficiency and drought stress. We 

observed BER symptoms beginning 4 Apr. and started fertigation with liquid limestone at 

that time. However, we continued to observe greater cull yield due to BER, especially in 

the low water treatment and the 1.5X N input. Both Gebremariam and Tesfay (2019) and 

Warner et al. (2004) reported increases in BER incidents as the N fertilizer rate increased. 

Blossom end rot occurs mostly under limited water conditions due to calcium relative 

immobility in plants and soil. Therefore, tomato plants often rely on mass flow and 

transpiration to move calcium to the fruits and leaves (Taylor and Locascio, 2004). Thus, 

high N fertilizer rates could have inhibited calcium uptake by plants (Vitousek et al., 2009), 

and the negative effects were likely compounded under water-limiting conditions of the 

low water treatment.   
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Conclusion 

While grafting had proven to improve water and nutrient uptake, in this study we barely 

observed any significant impact that differentiate the total and marketable yield between 

grafted and nongrafted plants. However, ‘Estamino’ had shown a significant reduced in 

cull yield and a significant increase in % marketability compared to ‘Maxifort’ and 

nongrafted ‘BHN-589.’ We believe grafting will provide beneficial trait if given the right 

condition. We suspected the 18.9 L pot used in this study had limited the potential of 

grafting on providing higher marketable and total yield. It is important to note that this 

greenhouse study only looked at one growing season and only have six replications in total. 

Perhaps, these explained part of the reason why we did not see a huge different in yield 

between grafted and nongrafted plant. Providing the information that we had gathered on 

this study, we suggested growers to do a test run on ‘Estamino’ and ‘Maxifort’ prior to 

growing the plants for production purposes. Regardless of the rootstocks, we had observed 

a decrease in yield when higher than 120 ppm of Nitrogen is used under both water 

treatments. Since vegetable grafting production itself requires a higher total investment, 

growers should save up on N fertilizer and apply to the crop if needed. 
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Table 2.1 

Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 500 1500 500 1450 600 1500 600 0 550 1600 1000 1000 600 1500 800 1500

PSI 12 13 12 12 12 13 12 0 12 13 13 13 12 13 25 35

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 500 1000 500 1000 500 950 300 500 1000 1500 550 1000 600 1000 700 1300 500 1000

PSI 12 13 12 13 12 12 12 12 12 12 10 12 11 12 13 12 10 12

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 1750 2500 750 1500 1250 2500 1750 3500 1750 3000 750 1500 750 1500 1000 1500 750 1500 1000 2000 750 1500 2100 3100 1650 3000 1750 3000

PSI 13 12 13 12 12 13 14 12.5 11 12 12 13 14 16 25 25 18 18 13 12 18 18 20 20 14 12 20 25

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 1500 3000 750 1500 2250 3500 2250 3500 1750 3250 750 1500 1750 3500 1750 3250 750 1500 1550 2900 1400 2500 1750 3250 1000 1750 1800 2700

PSI 14 16 14 16 13 13 13 13 12 14 12 12 12 12 12 12 11 12 10 10 13 13 12 12 12 12 12 12

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 1950 4150 1500 2000 2425 4200 2300 4175 1500 2000 1700 3900 850 1750 1500 3600 1500 1750 2300 3700 2000 3300 2450 3850 1450 1550 1150 2650

PSI 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 1550 2150 3000 4250 2750 3800 3100 4100 2950 3800 1250 2000 3100 3750 3100 4200 1350 2000 3000 4100 3150 4000 3200 4300 3050 4100 1500 2000

PSI 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 1550 2150 3000 4250 2750 3800 3100 4100 2950 3800 1250 2000 3100 3750 3100 4200 1350 2000 3000 4100 3150 4000 3200 4300 3050 4100 1500 2000

PSI 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 2650 3550 1500 2000 2900 4150 2900 4000 1500 2000 3100 4100 3200 4150 1400 2000 2850 3800 3100 4150 3000 4000 1400 1850 3000 3900 2900 4000

PSI 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

(ml/pot)

Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low High

 (ml/pot) 3000 4000 1450 2050 2800 3850 2900 4100 2900 4100 1500 2000 3000 4000 3150 4300 2800 3850 2900 4150 3150 4350 3050 4000 3100 4000

PSI 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

(ml/pot)

April, 5 April, 6 April, 7 April, 8

Fert trt

1500

March, 28

Fert trt

1500

March, 11

Water trt

March, 14

Water trt

February, 28

Water trtWater trt

March, 3

Water trt

Water trt

March, 30 March, 31

Water trt

March, 20

Water trt

April, 4 April, 9

May, 3 May, 4

April, 1 April, 3

Water trt Water trt Water trt

Water trt Water trt Water trt Water trt Water trt Water trtWater trt Water trt Water trt Water trt

May, 13 May, 14 May, 15

May, 16 May, 17 May, 18

May, 7 May, 8 May, 9 May, 10 May, 11 May, 12

Water trt Water trt Water trt

May, 5 May, 6

May, 26 May, 27 May, 28 May, 29

Fert trt

1500

May, 19 May, 20 May, 21 May, 22 May, 23 May, 24

Water trt Water trt Water trt Water trt Water trtWater trt Water trt Water trt Water trt Water trt Water trt
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Fert trt
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Fert trt
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Fert trt
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May, 25

April, 17April, 10 April, 11 April, 12 April, 13 April, 14

Water trtWater trt Water trt

Water trt Water trt Water trt Water trt Water trt

Water trtWater trtWater trtWater trtWater trt Water trtWater trt Water trt

April, 24 April, 25 April, 26 April, 27 April, 28 April, 29April, 18 April, 19 April, 20

Water trt

1500 1500

1500

Water trt Water trt

Fert trt Fert trt

Fert trt Fert trt Fert trt Fert trt

Water trt Water trt Water trt Water trt Water trt Water trt
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March, 22

March, 18
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Fert trt
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April, 2
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1500 1500

Water trt Water trtWater trt
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Water trt
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1500

Fert trt

February, 19

Fert trt

1500

February, 22

Water trt

1500

March, 26March, 21

June, 13 June, 14 June, 15 June, 16 June, 17 June, 18

June, 7 June, 8 June, 9

Water trt

Fert trt Fert trt

June, 20 June, 21 June, 22 June, 23

Fert trt

1500

May, 30

Water trt Water trt Water trt Water trt Water trt Water trt

Water trt Water trt Water trt Water trt Water trt Water trtWater trt Water trt Water trt Water trt

Fert trt

1500 1500 1500

Water trt Water trt

Fert trt

1500

June, 25 June, 26

June, 27

Fert trt

1500

May, 31

Water trt

July,1 July, 2

Water trt Water trt

Fert trt

1500

Fert trt

1500

June, 19 June, 24

1500

Water trt

Fert trt

Water trtWater trtWater trt

Water trt

Water trt Water trt Water trt Water trt

Fert trt Fert trt

Fert trt

Water trt Water trt

June, 28 June, 29 June, 30

Water trt Water trt Water trt

Fert trt

1500

May, 1

May, 2

Water trt

Water trt

1500 1500

Water trt Water trt Water trt Water trt

Fert trt

1500

Fert trt

1500

Fert trt

1500

July, 9July, 3 July, 4 July, 5 July, 6 July, 7 July, 8

Water trt Water trt Water trt Water trt Water trt

S
E

E
D

L
IN

G
S

T
A

G
E

F
L

O
W

E
R

IN
G

S
T

A
G

E
 

F
R

U
IT

D
E

V
E

L
O

P
M

E
N

T
  
S

T
A

G
E



78 
 

  

Ta
b

le
 2

.2
 

Y
ie

ld
N

o
. 

o
f

A
v

g
 f

ru
it

 w
t

Y
ie

ld
N

o
. 

o
f

A
v

g
 f

ru
it

 w
t

Y
ie

ld
N

o
. 

o
f

A
v

g
 f

ru
it

 w
t

Y
ie

ld
N

o
. 

o
f

R
o

o
ts

to
c
k

N
it

ro
g

e
n

W
a

te
r

(g
/p

o
t)

fr
u
it

(g
/f

ru
it

)
(g

/p
o

t)
fr

u
it

(g
/f

ru
it

)
(g

/p
o

t)
fr

u
it

(g
/f

ru
it

)
fr

u
it

E
st

am
in

o
0
.5

X
L

o
w

3
4
8
.6

2
3
.5

0
1
1
8
.9

2
3
6
5
3
.7

0
2
5
.1

7
1
4
6
.3

3
4
3
3
7
.8

7
3
1
.8

3
1
3
9
.2

5
8
4
.7

7
8
0
.8

7

H
ig

h
6
1
9
.2

8
5
.0

0
1
1
3
.5

2
4
5
6
6
.3

7
2
8
.8

3
1
5
8
.5

3
5
3
7
5
.5

5
3
5
.6

7
1
5
0
.4

9
8
5
.3

1
8
0
.9

7

1
.0

X
L

o
w

1
2
6
3
.1

7
1
3
.6

7
8
9
.2

0
3
6
4
1
.7

0
2
6
.6

7
1
3
2
.8

6
5
1
8
3
.8

0
4
3
.1

7
1
1
8
.4

4
6
8
.0

7
6
1
.1

3

H
ig

h
8
6
9
.1

8
7
.5

0
1
0
9
.4

3
4
7
4
7
.2

6
3
3
.1

9
1
4
3
.1

9
5
8
7
7
.8

5
4
3
.4

0
1
3
5
.5

5
8
1
.5

6
7
7
.0

1

1
.5

X
L

o
w

1
4
3
4
.7

5
1
8
.8

3
8
0
.2

5
2
6
6
3
.7

7
2
4
.0

0
1
1
0
.4

3
4
1
1
6
.2

2
4
3
.1

7
9
6
.5

0
6
3
.3

1
5
5
.8

8

H
ig

h
1
7
0
7
.0

3
1
7
.6

7
9
5
.7

8
4
2
4
7
.1

0
3
1
.5

0
1
3
4
.8

5
6
0
5
6
.8

3
5
0
.8

3
1
1
7
.8

8
6
9
.6

4
6
0
.8

7

M
ax

if
o

rt
0
.5

X
L

o
w

7
7
3
.3

7
8
.1

7
9
8
.6

5
4
3
9
8
.3

7
2
9
.1

7
1
5
5
.1

1
5
5
8
8
.1

8
4
1
.8

3
1
3
4
.1

9
7
8
.7

8
6
9
.7

1

H
ig

h
7
3
8
.1

7
6
.1

7
1
0
9
.2

5
4
0
3
9
.1

5
2
7
.8

3
1
4
6
.1

1
5
1
5
2
.5

2
3
7
.6

7
1
3
7
.0

4
7
8
.5

8
7
3
.6

2

1
.0

X
L

o
w

1
3
2
7
.9

0
1
3
.6

7
1
0
0
.3

7
2
8
1
7
.2

5
2
1
.5

0
1
2
8
.6

2
4
1
5
5
.9

0
3
5
.3

3
1
1
5
.3

7
6
5
.2

9
5
9
.2

1

H
ig

h
1
2
0
6
.2

5
1
1
.1

7
1
0
9
.7

4
4
5
5
3
.8

5
3
2
.5

0
1
4
0
.5

6
5
9
1
9
.8

1
4
5
.5

0
1
3
0
.2

2
7
7
.4

1
7
2
.1

7

1
.5

X
L

o
w

1
9
4
9
.6

8
2
3
.6

7
8
6
.4

0
2
0
4
0
.3

5
1
7
.6

7
1
1
3
.3

4
4
1
3
4
.6

0
6
0
.0

0
8
5
.6

3
4
8
.2

5
3
7
.9

7

H
ig

h
2
6
0
7
.5

5
8
7
.6

7
9
4
.3

5
3
3
4
3
.4

7
2
4
.6

7
1
3
6
.0

0
5
9
7
7
.8

5
1
1
2
.6

7
1
0
2
.8

5
5
5
.9

6
4
1
.7

5

N
o

ng
ra

ft
ed

0
.5

X
L

o
w

1
6
4
.7

8
2
.1

7
8
2
.0

6
4
1
1
6
.4

3
2
8
.6

7
1
4
4
.2

7
4
4
6
0
.0

2
3
2
.8

3
1
3
6
.0

8
9
1
.9

4
8
6
.8

7

H
ig

h
6
0
5
.7

8
6
.5

0
1
0
0
.3

0
4
7
8
6
.6

2
3
4
.0

0
1
4
2
.8

3
5
7
6
3
.8

0
4
4
.6

7
1
2
8
.9

8
8
2
.3

3
7
5
.0

1

1
.0

X
L

o
w

1
8
8
9
.3

8
1
9
.0

0
9
9
.3

3
3
8
7
4
.9

8
3
2
.8

3
1
1
7
.9

7
6
1
1
3
.8

8
5
6
.1

7
1
0
8
.6

6
6
2
.7

0
5
8
.1

2

H
ig

h
1
2
6
0
.4

2
1
1
.5

0
1
1
9
.8

0
4
9
4
6
.1

7
3
4
.6

7
1
4
2
.4

4
6
6
9
2
.9

3
5
1
.6

7
1
3
0
.9

3
7
3
.5

4
6
7
.7

3

1
.5

X
L

o
w

2
5
9
8
.6

0
3
4
.8

3
7
8
.7

1
2
0
1
3
.9

5
1
8
.0

0
1
0
8
.3

9
4
6
7
5
.7

0
5
3
.6

7
8
8
.2

6
4
1
.1

6
3
3
.4

5

H
ig

h
2
1
0
2
.8

5
2
4
.5

0
8
5
.1

2
3
7
7
6
.4

0
3
0
.6

7
1
2
3
.3

3
6
0
2
6
.1

2
5
7
.1

7
1
0
5
.1

0
6
2
.2

2
5
3
.3

4

2
0
5
.5

7
1
4
.9

0
1
1
.7

0
4
6
6
.6

9
3
.4

4
5
.6

4
5
2
1
.6

8
1
5
.7

7
7
.3

8
4
.3

9
5
.3

3
S

ta
nd

ar
d

 e
rr

o
r

M
a

rk
e
ta

b
le

 F
ru

it
T

o
ta

l 
F

ru
it

 
C

u
ll
 F

ru
it

M
a

rk
e
ta

b
il
it

y
 (

%
)



79 
 

 

Ta
b

le
 2

.3
 

Y
ie

ld
N

o
. 
o
f

A
v
g
 f

ru
it

 
Y

ie
ld

N
o
. 
o
f

A
v
g
 f

ru
it

 
Y

ie
ld

N
o
. 
o
f

A
v
g
 f

ru
it

 
Y

ie
ld

N
o
. 
o
f

fr
u
it

w
e
ig

h
t

fr
u
it

w
e
ig

h
t

fr
u
it

w
e
ig

h
t

fr
u
it

0
.9

6
9
4

0
.5

2
3
7

0
.0

3
5
4

<
.0

0
0
1

0
.0

0
0
1

0
.0

0
0
1

<
.0

0
0
1

0
.2

3
1
2

0
.0

0
0
1

0
.0

0
1
4

0
.0

1

0
.0

0
6
3

0
.3

3
4
3

0
.6

4
8
5

0
.4

4
3
8

0
.3

0
3
6

0
.1

1
4
2

0
.5

1
2

0
.3

3
0
3

0
.1

9
6
2

0
.0

1
5
7

0
.0

2
1
3

<
.0

0
0
1

0
.0

0
2
7

0
.0

1
1
6

<
.0

0
0
1

0
.0

0
5
5

<
.0

0
0
1

0
.0

8
0
6

0
.0

2
1
1

<
.0

0
0
1

<
.0

0
0
1

<
.0

0
0
1

0
.2

3
9
3

0
.2

9
5
9

0
.8

9
3
8

0
.8

0
2
3

0
.9

5
7
1

0
.5

3
3
4

0
.9

4
2

0
.6

0
9
2

0
.7

2
6
6

0
.9

8
3
8

0
.9

7
9
9

0
.0

2
7
5

0
.3

9
0
7

0
.7

8
2
4

0
.0

6
5
9

0
.2

0
4
6

0
.0

0
6
0

0
.1

1
7
7

0
.5

1
0
2

0
.0

6
9
7

0
.0

0
4
5

0
.0

3
3
2

0
.0

1
9
7

0
.3

9
3
1

0
.3

0
2
9

0
.4

6
0
3

0
.2

6
2
9

0
.9

6
0
0

0
.1

4
9
8

0
.2

5
7
1

0
.9

0
5
4

0
.0

5
5
9

0
.1

3
4
2

0
.0

9
8
2

0
.2

7
8
4

0
.8

4
2
6

0
.5

7
4
2

0
.3

8
1
9

0
.2

6
4
5

0
.1

6
1
7

0
.6

5
2
3

0
.8

0
5
7

0
.2

8
3
5

0
.2

3
5
5

P
r 

>
 F

W
at

er

R
o
o
ts

to
ck

N
it

ro
ge

n

W
at

er
*R

o
o
ts

to
ck

C
u
ll
 F

ru
it

M
a
rk

e
ta

b
le

 F
ru

it
T

o
ta

l 
F

ru
it

M
a
rk

e
ta

b
il
it

y
 (

%
)

T
y
p
e
 I

II
 T

e
st

s 
o
f 

F
ix

e
d
 E

ff
e
c
ts

N
it

ro
ge

n*
W

at
er

N
it

ro
ge

n*
R

o
o
ts

to
ck

N
it

ro
ge

n*
W

at
er

*R
o
o
ts

to
ck


	Evaluating the Impact of Grafting on Local Tomato Production in Nebraska
	

	tmp.1607190294.pdf.jENI7

