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 One of the primary factors in the response to selection is the accuracy of 

selection. This study focused on methodologies to predict breeding values (BV) 

accurately within multi- and single-step genomic evaluations. Factors including cross-

validation methods, dependent variables, and genotyping strategies were assessed on the 

accuracy of genomic BV while using multi-step prediction in real and simulated data. In 

both cases, random clustering led to largest estimated accuracies compared to clusters 

based on k-means, k-medoids, and principle component analysis, but differences in bias 

were not detected. Using deregressed estimated BV (EBV) to estimate SNP effects led to 

larger accuracies and smaller standard errors than adjusted phenotypes. Randomly 

genotyping animals instead of selectively genotyping the top 25% was associated with 

highest accuracies and least amount of bias. 

 Genetic improvement of economically relevant traits (ERT) should be the goal of 

breeding programs. Although generally absent in seedstock herds, ERT are routinely 

collected within commercial sectors; therefore, pooling data was proposed to include 

commercial information in a cost-effective manner. Pooling involves collecting tissue 



 

samples from a group of animals and then combining the DNA to be genotyped as one. 

The accuracy of EBV when pooled data were used within single-step analysis was 

investigated through simulation. For a single trait, pool sizes of 2, 10, 20 or 50 did not 

generally lead to differences in EBV accuracy compared to using individual data when 

pools were constructed to minimize phenotypic variation. Low accuracy sires benefited 

the most from pooling, while EBV for the pools could be used for management purposes. 

For a bivariate analysis, pool sizes of at least 20 were recommended in combination with 

minimizing phenotypic variation. Additionally, if pools were constructed to minimize 

phenotypic variation, pooling could be used across a range of genetic correlations (0.1, 

0.4, and 0.7) and ways in which missing values arise (randomly missing records or 

sequential culling). Collectively, these results suggest pooling can be used to include 

commercial data within genetic evaluations. 
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Chapter 1 

LITERATURE REVIEW 

1.1 Introduction 

Animal populations have changed over time due to artificial selection, and the 

tools used to help aid in the selection of animals have continued to evolve. Animals were 

first appraised by phenotypic selection, in which animals were judged based on their own 

performance for traits of interest. Later, using Henderson’s mixed model equations 

(Henderson, 1975), an animal’s own performance records were combined with pedigree 

information and the performance of the animal’s relatives using best linear unbiased 

prediction (BLUP). With the inclusion of DNA information in the prediction of estimated 

breeding values (EBV), more accurate selection decisions could be taken before an 

individual even produced progeny, therefore, increasing overall accuracy of selection and 

shortening the generation interval, both of which in turn increase the rate of genetic 

change per year. 

Traits for which EBV are calculated can include economically relevant traits 

(ERT) that directly affect the profitability of a commercial system because they relate to 

either a cost or source of income (Golden et al., 2000). It is important to note that ERT 

are only measured within the commercial sectors of livestock industries. Thus, it is 

important to include data from the commercial segments in genetic evaluations. The lack 

of integration in the beef industry makes including commercial animal data into genetic 

evaluations challenging.  

 

1.2 Brief history of genetic evaluations 
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1.2.1. Estimation of Breeding Values 

 A breeding value (BV) is a measure of an animals’ additive genetic merit deviated 

from a population mean for a given trait. A true BV is never known but can be 

approximated using EBV. It is expected that half of an animal’s genetic merit will be 

passed to its progeny, which in the US beef industry is known as an expected progeny 

difference (EPD). An EPD is one-half of an EBV. In a simplistic case, an EPD of an 

individual can be thought of as the average of the genetic merit of its parents: 

!"#!"#$%$#&'( =
)

*
!"#+$,- +

)

*
!"#.'/. However, because genes are randomly sampled 

during the formation of gametes, the offspring do not inherit exactly one-half of the 

cumulative genetic merit of each of the parents – it could be more, or it could be less. 

This random sampling of genes is known as Mendelian sampling and is used to describe 

the deviation from the parental average. The genetic merit can now be described as: 

!"#!"#$%$#&'( =
)

*
!"#+$,- +

)

*
!"#.'/ + φ  where ( is the Mendelian sampling term. 

Genomic data can be used to help capture and quantify the Mendelian sampling term, 

leading to more accurate EPD of individuals. 

 

1.2.2 Introduction of genomic data 

A quantitative trait locus (QTL) is a region within a DNA sequence that 

influences the phenotype of a particular trait of interest. However, the exact causative 

mutation within the QTL is often unknown. Spread across the genome are additional 

genetic markers that can be identified and genotyped. Sometimes these genetic markers 

and a QTL allele are inherited together more often than expected, leading to linkage 

disequilibrium (LD). The incorporation of a few direct (known QTL) and indirect 
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markers (those in LD with QTL but not necessarily a causative marker) into the 

traditional selection decisions is known as marker assisted selection (MAS). 

One of the first instances of identifying the genotype of animals was documented 

by Bouw et al. (1974) in which the blood groups were used as markers. This early work 

in blood serums and other protein work seemed impractical because of the lack of 

polymorphisms and genome coverage associated with these structures (Drinkwater and 

Hetzel, 1991). Microsatellites, repetitive sequences of DNA in which the unit consists of 

one to six base pairs, were recognized as a useful tool, especially compared to protein 

markers, as a means for studying genetic relationships in cattle (Arranz et al., 1996). 

Microsatellites were also used for association studies for quantitative traits (Georges et 

al., 1993; Napolitan et al., 1996) to be used for MAS. Another goal of microsatellite 

usage was within family linkage tracking (e.g. Bowling et al., 1997; Glowatzki-Mullis et 

al., 1995; Heyen et al., 1997)  

The downfall of using microsatellites in the 1990s was that very few markers 

were initially identified and used with MAS. These markers generally explained only a 

small proportion of the additive variation of traits of interest as only a few markers were 

statistically significant during testing. With qualitative traits, in which one or very few 

genes determine the outcome of the phenotype, this was not a problem (e.g., double 

muscling in cattle (Grobet et. al., 1997; McPherron and Lee, 1997) and DGAT1 that 

affects milk-fat content (Grisart et al., 2001)). However, most traits of interest are 

complex in nature, meaning that the few QTL and markers used in MAS were inadequate 

to explain a large proportion of variation in the traits. To combat this problem, a method 

called fine mapping was employed in order to increase marker density around the 
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previously documented QTL to better enhance QTL mapping and provide for better 

effect estimates to be used in MAS (Pollak et al., 2015).    

As technology improved, the genotyping of single nucleotide polymorphisms 

(SNP), single base changes in the DNA sequence, became available. Single nucleotide 

polymorphisms are easy to evaluate because they are bi-allelic in nature and are spread 

across the genome (Fan et al., 2010). Meuwissen et al. (2001), proposed genomic 

selection (GS), an extension of MAS, where the effects of thousands of markers spread 

across the genome are estimated and then summed up to predict an animal’s genetic 

merit. Because the true QTL are not likely to be genotyped, the premise behind GS is the 

LD between SNP and QTL. As the density of SNP genotyped increases, the probability 

that the marker and QTL will be in close proximity to each other and even be in LD rises. 

With high density SNP panels, it is expected that at least one SNP is in LD with a QTL 

(Hayes and Goddard, 2010). Therefore, if the genotype of an animal at the SNP marker is 

known and is in LD with a QTL, it may be possible to predict the breeding value at that 

locus, and cumulatively across all loci. 

 

1.3 Methods for genomic prediction 

Since the discovery of so many SNP, the relative cost effectiveness of genotyping 

animals, and the introduction of GS, genomic information has seen widespread use in 

livestock evaluations (Meuwissen et al., 2013).  

 

1.3.1 Best Linear Unbiased Predictions 
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Relationships between individuals can be quantified using pedigrees, which are 

then summarized by a numerator relationship matrix (A). These are the expected 

relationships between two individuals. For example, a pair of full-sibs are expected to 

share one-half of their genome while the relationship between an individual and their 

grandparent is expected to be one-quarter. This relationship matrix would then be used in 

BLUP evaluations, leading to estimates deemed as “traditional EBV”, commonly called 

PBLUP.  Assume observations are modeled by y = *b + ,u + e where y is a vector of 

observations, b is a vector of fixed effects, u is a vector of random genetic effects, * and 

, are incidence matrices, and e is a vector of random residuals. The solutions for the 

fixed and random effects can be obtained by solving 

/*
0012* *0012,
,0012* ,0012, + 112

2 3b
u
4 = 5

*0012y
,0012y

6. 

It is also assumed that V(u) = 1 = :σ3* and V(e) = 0 = <σ4*. Substituting in these 

variances and multiplying by σ4* throughout leads to  

3*
0* *0,
,0* ,0, + λ:12

4 3b
u
4 = /

*0y
,0y

2 

where λ is equal to 5!
"

5#"
. It is important to note that this lambda simplification only applies 

to single trait case while the original mixed model equations above are generalizable. 

However, it is known that realized relationships can deviate from these 

expectations. Genomic relationships can be calculated as the covariance of the genetic 

effects of two individuals, where the genetic effects are measured as the genotypes of the 

individuals. The resulting genomic relationship matrix (G) can be easily substituted into 

BLUP evaluations, resulting in genomic best linear unbiased prediction (GBLUP) in 

which the random genetic effects are now genomic EBV (GEBV). With the inclusion of 
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G instead of A, V(u) = 1 = 1σ6*, and λ is equal to 5!
"

5$"
. The assumptions of GBLUP are 

an infinitesimal model, meaning that there a very large number of loci each with small 

effects that influence a quantitative trait. Because the G matrix can partially account for 

Mendelian sampling and pedigrees are oftentimes missing or incorrect, genomic 

relationships provide more accurate estimates of relationship and thus increased accuracy 

of EBV (Hayes et al., 2009). 

 

1.3.2 Regression 

In some cases, it is appropriate to assume the not all SNP have the same effect, 

thus it is useful to estimate the effect of each locus. Ordinary least squares (OLS), or the 

regression of phenotype on genotype, have been used in order to estimate the effects of 

each SNP. The model can be described as y = *β + e where y is the vector of 

observations, ? is the vector of effect sizes of the SNP, * is a nxk matrix denoting the 

genotype of nth individual at the kth SNP, and e is the random residual. The SNP effects 

are estimated by β@ = (*′*)1)*′y.  

More than two million SNP have been found in the beef genome (Zimin et al., 

2009) through the discovery methods such as whole genome sequencing, HapMap 

projects, and completing reduced representation library (RRL) sequencing (Fan et al., 

2010). With the identification of millions of SNP, it has been possible to develop a 

variety of commercially available high-density panels that range from 3k to 777k. 

As the number of available SNP become much larger than the number of individuals 

available to train the model (estimate SNP effects), problems arise with unique solutions 

and poor prediction (Zhang & Smith, 1992). To overcome this, subsets of SNP data could 
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be used in which some of the SNP are excluded from the analysis. There have been many 

ways of choosing the subsets of SNP including best subset method or a 

forward/backward stepwise method (Breiman, 1995), or more recently machine learning 

methods (Li et al., 2018).  

Another alternative to using a subset of SNP is to use a technique called ridge 

regression (Whittaker et al., 2000). All SNP are included in the model, but the effects are 

estimated by β@ = (*0* + <λ)1)*′y where the B parameter shrinks the estimates towards 

zero. Effects attained by ridge regression were associated with smaller standard errors 

than those from a subset of markers, thus leading to more reliable response to selection 

(Whittaker et al., 2000). Ridge regression is equivalent to GBLUP when the markers are 

assumed to be independent draws from a normal distribution. Then, λ is equal to 5!
"

5$"
 

(Piepho, 2009). 

 

1.3.3 Bayesian  

Another technique commonly used to obtain estimates of breeding values and 

parameter estimates is Bayesian analysis. Bayesian methods are attractive to animal 

breeders in many ways. First, these types of models have the ability to overcome the 

“small n, large p” problem where the number of markers can exceed the number of 

observations available (Gianola et al., 2009). It may be unreasonable to assume that all 

markers have an effect. Mixture models are easily implemented within a Bayesian 

framework in which one can assume some distribution is actually a mixture of two or 

more distributions. This may be warranted when it is reasonable to assume some markers 

have a null effect while others are non-zero. These types of models are also called 
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variable selection models because the markers with a non-zero effect are “selected” to be 

in the model. Additionally, those effects don’t have to be distributed Normally.   

The Bayes Theorem states that the probability of two events, θ and X, occurring 

together is: P(θ, X) = P(θ)P(X|θ) = P(X)P(θ|X), where P(X|θ) and P(θ|X) are 

conditional probabilities. From this relationship, it can be stated that P(θ|X) = 7(9)7(;|9)

7(;)
 

which is proportional to P(θ)P(X|θ) since P(X) does not depend on θ. Commonly, P(θ) 

is known as the prior distribution of θ, P(X|θ) is the likelihood of θ, and P(θ|X) is the 

posterior distribution of θ given X. For example, let X represent a set of phenotypic and 

genotypic observations and θ represent the set of parameters to estimate. In animal 

breeding, these parameters include all variance components, “fixed effects” including 

regression coefficients, and marker effects. Thus, all of the unknown parameters, H, are 

treated as random and have their own distribution phenotypic and genotypic observations 

are a function of the prior. The posterior distribution is the conditional distribution of the 

parameters given the phenotypes and genotypes. Unfortunately, to make inferences of the 

parameters from this posterior distribution usually requires high-dimensional integrals 

that often-times are not expressed in a closed form (Garrick et al., 2014). Instead, the 

Markov Chain Monte Carlo (MCMC) sampling technique can be used to draw samples 

from the posterior distribution to estimate posterior means and variances. The Gibbs 

sampler is one of the most widely used MCMC techniques in animal breeding (Garrick et 

al., 2014).  

Many variations of the Bayesian methods are available, often referred to as the 

“Bayesian alphabet”. Meuwissen et al. (2001) proposed a model, called BayesA, that 

assumes all of the markers have an effect. It also assumes that the prior distribution of 
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these effects is Normal, with each marker having its own variance modeled with a scaled 

inverse chi-square distribution. BayesB, also proposed by Meuwissen et al. (2001), is a 

mixture model. This model allows for a proportion of the markers (I) to have a null-

effect while another proportion of the markers (1 − π) to have a non-zero effect. The 

proportion of markers that do have an effect is assumed to have a distribution equal to 

those of BayesA. The proportion of makers that have a null-effect (I) is chosen a priori. 

Habier et al. (2011) developed a model, BayesC, which is very similar to BayesB except 

that there is a common marker variance instead of marker-specific variances. BayesC can 

be extended to a model known as BayesCI. This model assumes I is also unknown and 

is also estimated from the data (Habier et al., 2011). Another extension to BayesC is 

BayesC0 in which I is set to zero, and thus all markers have a non-zero effect. Bayesian 

ridge regression assumes the same genetic variance for all markers, which is the same 

model as BayesC0, and equivalent to GBLUP. While each of these methods are similar, 

the most important aspect about the differences is how they assume the variances of the 

marker affects are distributed, the presence or absence of the mixture model, and the 

degree of the mixture. 

 

1.4 Methods for combining pedigree and genomic data 

 Two methods, multi-step and single-step, have been used to combine all 

information into one estimate. 

1.4.1 Multi-step methods 

In multi-step methods, the SNP effects are estimated using all available animals 

with genotypes and a phenotype. The resulting marker effects are multiplied by the SNP 
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genotypes of the animals and summed across all markers, resulting in the estimate of 

molecular breeding values (MBV). The estimated marker effects can also be applied to 

animals with genotypes but no phenotypes - usually young selection candidates.  The 

MBV are then combined with traditional EBV to attain a final genome enhanced EBV 

(GE-EBV). 

The variance/covariance estimates and the genetic correlation between the MBV 

and phenotypes are very important for the combination of the MBV with EBV. To 

estimate this correlation, a method called cross-validation is used. This technique is often 

used to assess the predictive ability of a model on data that was not used to estimate the 

model. In other words, it tests how well a model works in practice. A population of 

animals that have known genotypes and phenotypes are divided into k independent 

groups, where k is specified a priori. Then, one of the k groups is deemed as a validation 

set and the remaining k-1 groups are specified as a training set. The training set is used to 

estimate SNP marker effects. The resulting marker effects are applied to the validation set 

to estimate the MBV of the animals. Using a bivariate animal model, genetic variance 

and covariances are estimated to calculate the genetic correlation between the predicted 

MBV and the phenotype of the animals within the validation set (Kachman et al., 2013). 

This whole sequence of specifying training and validation sets to estimating the genetic 

correlation is repeated k times, such that each group is used once and only once for 

validation. The genetic correlation is then averaged over the k cross-validations for the 

final genetic correlation. This genetic correlation is also known as accuracy. An 

alternative to estimating the genetic correlation for each fold separately and then 

averaging over the folds would be to estimate the genetic correlation across all folds 
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using a bivariate model and fit a random effect of fold. The square of the genetic 

correlations (r6*) estimate the proportion of genetic variance explained by the MBV 

(Thallman et al., 2009).  

In order to combine the MBV and EBV, two approaches have typically been used. 

The first method is called “blending”, in which MBV and EBV are weighted proportional 

to their reliabilities. These weightings will be different for each trait depending on r6*, and 

for each animal depending on its EBV reliability (Garrick and Saatchi, 2013). 

Traditionally, blending was done post-evaluation, and so only genotyped animals were 

affected (Spangler, 2013). The American Hereford Association released its first GE-

EPDs, using the blending approach, in the fall of 2012 (Ward, 2013). The “correlated trait 

approach”, introduced by Kachman (2008), incorporated MBV as a correlated indicator 

trait within a multi-trait model. This approach is particularly attractive because the 

predictions of animals that were in the pedigree but not genotyped were still influenced 

by the genomic information (Spangler, 2013). MacNeil et al. (2010) utilized the 

correlated trait approach to incorporate ultrasound intramuscular fat (IMF) and MBV 

indicator traits for the prediction of a marbling EBV for the American Angus 

Association. 

 

1.4.2 Single-step methods 

Two methods qualify as single-step methods for combing genomic and pedigree 

data. The first is single-step genomic best linear unbiased prediction (ss-GBLUP) method 

(Legarra et al., 2009). As described previously, relationships between animals can be 

derived in two ways. Pedigree-based relationships are included in the numerator 
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relationship matrix (A), which estimates the expected relationship between two 

individuals. Genomic relationships are included in the genomic relationship matrix (G), 

which are derived using the SNP markers individuals share in common. Previously, 

genotyped and non-genotyped animals were not included in the same model because 

methods did not exist to combine all the information into one relationship matrix for use 

in BLUP. Use of the ss-GBLUP combines phenotypic information as well as genotypic 

and pedigree-based relationships into one step in order to estimate GEBV. As with other 

BLUP methods, it is assumed the marker effects have a Normal distribution. During this 

process, the A and G matrices are combined in order to estimate the matrix H such that 

N = 5
1= 1=:**

1):)*
:>:**

1)1= :)) + :)*
> :**

1)(1= − :**):**
1):)*

6 

where :)), :)*, and :** are submatrices of A containing the relationships of among the 

non-genotyped animals, genotyped and non-genotyped animals, and genotyped animals, 

respectively, and 1= is a weighted genomic relationship matrix such that 

1= = (1 − w)1 + w:** 

where G is computed as ??%

*@A&()1A&)
, M is the centered genotype incidence matrix for 

individuals, P$ is the allelic frequency of the second allele of the ith SNP is the genomic 

relationship matrix (VanRaden, 2008), and w is the relative weight on the polygenic 

effect, or some small value (Christensen and Lund, 2010). The purpose of weighting G is 

to obtain a non-singular matrix and the weight has been suggested to be equal to 0.05 

(VanRaden, 2008). Christensen et al. (2012) suggested G and :** be compatible prior to 

weighting such that 

13 = ?1 + Q 
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Where ? and Q can be found by solving the system of linear equations: 

dıag(1)VVVVVVVVVVβ + α = dıag(:**)VVVVVVVVVVVVV 

1Xβ + α = :**VVVVV 

where the bars denote average values. The matrix 13 would then be weighted with :**to 

form 1=. The final matrix H can be easily substituted into the BLUP evaluations, and the 

random genetic effects are again GEBV. However, solving the MME require the inverse 

of the relationship matrix. Aguilar et al. (2010) reduced the complexity of computing 

N1) by giving 

N12 = :1) + /
0 0
0 112 − :**

1)2. 

Matrix G is usually singular, and so the genomic matrix should again be compatible with 

:** and weighted. The inverse of G is needed for the computation of N1), but as the 

number of genotyped animals increases, the ability to compute 112 becomes more 

expensive computationally.  

To combat this problem, a few solutions have been proposed including an 

approximating G so that its inverse could be found efficiently (Faux et al., 2012) or 

obtaining the solutions of the MME without inverting G explicitly (Legarra and Ducrocq, 

2012).  Misztal et al. (2014) proposed the algorithm for proven and young (APY) that 

splits genotyped animals into core (proven) and non-core (young) groups and uses 

recursion to approximate 112. For this method, the only direct inversion needed is for 

core animals, whereas all other coefficients are estimated by recursion (Lourenco et al., 

2015). The resulting 112 is a sparce matrix with non-zero coefficients in an “L” shape 

and diagonal elements. The core animals and core size can be determined in a variety of 

ways. Largest accuracies of GEBV, assessed as the correlation of GEBV and true 
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breeding value, in a simulation were attained by a core size determined by the largest 

eigenvalues explaining 98% of the variation in 112 and when animals were randomly 

selected from all genotyped animals (Bradford et al., 2017). Other scenarios explored by 

Bradford et al. (2017) were core sizes equal to the largest number of eigenvalues 

explaining 90% and 95% of the variation in 112 and core animals being sampled from 

distinct generations of parents and from the youngest animals without progeny. Overall, it 

was found that the core size and definition was robust, but became more important as 

pedigrees became more incomplete (Bradford et al., 2017). In an analysis using Holstein 

cows, Fragomeni et al. (2015) found the definition of animals as core or non-core does 

not necessarily matter (definitions of core animals were only sires, sire and cows, only 

cows, and only sires with 5 or more progeny), but the core size does matter when 

comparing the correlation of GEBV from ss-GBLUP direct inversion to GEBV from ss-

GBLUP using the APY algorithm on almost 49,611 young animals (neither a bull or a 

cow that had records). Optimal core size was between 10,000 and 20,000 animals while 

the number of genotyped animals was 100,000 for this analysis. 

 Similarly, single-step Bayesian Regression (SSBR) also combines phenotype, 

genotype and pedigree information in one step (Fernando et al., 2014). One of the major 

disadvantages of ss-GBLUP is the inversion of relationship matrices, particularly G, even 

though work has been done to reduce this computational burden. However, SSBR does 

not need to invert the dense genomic relationship matrix. The model for SSBR is: 

3
yB
y64 = /

*B
*6
2 β + /

,B 0
0 ,6

2 /
ZBα + ϵ
Z6α

2 + e 

where yB and y6 are vectors of phenotypes for non-genotyped and genotyped animals, *B 

and *6 are incidence matrices for fixed effects for non-genotyped and genotyped animals, 
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β is a vector of fixed effects, ,B and ,6 are incidence matrices that related the breeding 

values of non-genotyped and genotyped animals to the phenotypic values, ZBα + ϵ and 

Z6α are the breeding values of non-genotyped and genotyped animals, Z6 is the centered 

marker matrix for genotyped animals, ZB is the imputed marker matrix for non-

genotyped animals, α is the vector of random marker effects, ϵ is a vector of imputation 

residuals, and e is a vector of residuals. In summary, the model is written in terms of two 

random factors – one for marker effects and one for the residual breeding values of non-

genotyped animals. This algorithm involves predicting genotypes for the non-genotyped 

animals from their genotyped relatives using regression and then the residual breeding 

value accounts for the EBV information that is not explained by these predicted 

genotypes (Garrick et al., 2014). One of the advantages of this model is that only the :1) 

is needed, which is computationally easy. Fernando et al. (2014) further explains 

centering the genotype matrix is not needed as long as an additional covariate is added to 

model the mean of the breeding values. During the computation of G, the allelic 

frequencies are needed. If selection has taken place, these frequencies should be 

estimated using founder animals, however, founder animal genotypes are usually not 

available. If the frequencies are estimated using the genotyped animals, the evaluation 

could be biased, especially in multi-breed evaluations (Fernando et al., 2014). 

 Using the assumptions of BayesC0 and assuming no APY, ssGBLUP and SSBR 

are equivalent models. Unlike ss-GBLUP, SSBR is not limited to normally distributed 

marker effects, it can be extended to other models such as t-distributed marker effects and 

with mixture models, depending on the prior used for the random marker effects. In beef 

cattle evaluations, ss-GBLUP has been utilized by the Angus Genetics Inc. while SSBR 
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has been utilized by International Genetic Solutions and the American Hereford 

Association (e.g. Misztal and Lourenco, 2018; Golden et al., 2018). 

 

1.5 Commercial data in genetic evaluations 

Genetic evaluations produce EBV for traits using data largely generated by the 

nucleus/seedstock sector of livestock industries. Some of these traits target economically 

relevant traits (ERT). By definition, true ERT are measured within the commercial 

sectors. Thus, the EBV produced using nucleus data are either for “presumed” ERT or 

indicator traits. Millions of records that represent the true ERT are recorded within the 

commercial industry every year. However, these records rarely make it into genetic 

evaluations because relationships that tie the commercial animals to the nucleus selection 

candidates are missing. Relationships between these groups exist, but pedigree 

information is often missing or incomplete. Nonetheless, inclusion of commercial data 

has enormous potential to increase the response to selection for traits that are 

economically important to the livestock industries. An optimal solution would be to 

collect the true ERT from commercial herds and estimate relationships between 

commercial animals and seedstock animals in an economical manner for use in genetic 

evaluations. 

 

1.5.1. Economically relevant traits 

 Economically relevant traits are traits that directly affect the profitability of a 

commercial system because they relate to either a cost or source of income (Golden et al., 

2000). Examples of ERT include, but are not limited to, weight at time of sale (e.g. 
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weaning weight direct, weaning weight maternal, carcass weight, salvage cow weight), 

calving ease, maintenance feed requirement, stayability, heifer pregnancy rate, 

tenderness, and days to finish (e.g. Golden et al., 2000). Enterprises may only identify a 

subset of these traits as ERT, which is specific to the production system. Take for 

example a producer who sells calves at weaning, and the price is determined by weight. 

An obvious ERT in this system would be weaning weight. However, if another producer 

determines profit based on carcass weight, weaning weight is no longer an ERT, but 

could be indicative of carcass weight. Thus, not all traits that are recorded directly affect 

profitability, but are instead considered indicator traits of the ERT. These indicator traits 

are genetically correlated with the ERT. In the latter example, the ERT would be carcass 

weight whereas weaning weight would be considered an indicator trait.  

Even though indicator traits do not directly affect the overall profitability of an 

enterprise, they are measured because the associated ERT are hard to measure or are 

expressed later in life. Furthermore, most data collection and selection decisions usually 

take place in the seedstock sector of the beef industry (Garrick, 2018). This has resulted 

in the collection of phenotypes that are convenient and easy to validate in resulting 

progeny (Garrick, 2018). Because true ERT are only expressed in commercial animals, 

the data collected from seedstock animals represent presumed ERT. Additionally, many 

ERT such as disease susceptibility and survival cannot be collected within seedstock 

herds, due to increased health conditions and more rapid replacements rates, or there is a 

genetic by environmental interaction between these traits within the commercial and 

seedstock herds.    
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When breeding objectives are defined and selection decisions are taken based on 

those objectives, only ERT should be included in the decision-making process. In fact, 

when ERT and indicator traits are used in combination to attain the same selection 

decision for one trait, the accuracy of that decision is decreased (Golden et al., 2009; 

Enns, 2013). Oftentimes, merit of an animal is not defined by just one trait, rather a 

combination of multiple traits. To combine multiple traits into one succinct value to 

inform the overall genetic merit of an animal, selection indices can be used in order to 

correctly weight the information (Hazel, 1943). When creating a selection index, 

typically two sets of traits are needed: objective traits – the ERT defined in the breeding 

objective, and selection criteria – the traits that are actually measured. Ideally, selection 

criteria would consist entirely of ERT. Sometimes these ERT are not measured or readily 

available, and so indicator traits are used as selection criteria (Ochsner et al., 2017).  

 

1.6 Examples from other species 

Crossbred animals play an important role in the commercial sectors of some 

livestock industries (e.g. poultry and swine), but it is known that the same traits in 

commercial and purebred animals can be genetically different. Therefore, it is important 

to include commercial data into genomic evaluations, especially when the goal of 

purebred selection is to increase crossbred performance. Many methods have been 

evaluated; however, most of this research and implementation has been conducted within 

the swine and poultry industries where crossbreeding schemes are much more structured 

than with beef.  
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1.6.1 Crossbreeding 

Crossbreeding has been used in commercial livestock production systems to 

exploit heterosis and breed complementarity. The goal of many selection programs is to 

maximize crossbred performance through purebred selection; however, traits that are 

recorded in purebred animals can be genetically different than those recorded in 

crossbred animals.  Núñez-Dominguez et al. (1993) found the correlation of genetic 

expression between crossbred and purebred performance (r7C) for growth traits averaged 

across progeny sired by three breeds of cattle (Angus, Hereford, and Polled Hereford) to 

be 0.93, 0.77, and 0.76 for weights at birth, 200 days, and 365 days, respectively. 

Newman et al. (2002) also found r7C less than 1 for post-weaning growth and carcass 

traits using progeny from five sire breeds (Angus, Hereford, Shorthorn, Belmont Red, 

and Santa Gertrudis) mated to Brahman dams. These deviations of r7C from 1 are likely 

to be caused by non-additive effects and genotype by environment interactions (Wei and 

van der Steen, 1991). 

 Historically most selection decisions have been taken in the purebred lines/breeds 

using primarily purebred data. Additionally, many economically relevant traits, such as 

disease susceptibility and survival, cannot be collected in purebred herds. This is 

especially true in the swine and poultry industries where nucleus herds are under strict 

bio-security measures (Ibañez-Escriche and Gonzalez-Recio, 2011). Therefore, methods 

are needed in order to reflect crossbred performance within purebred selection.  

 

1.6.2 Combining crossbred and purebred selection  
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One such method involves combining crossbred and purebred selection (CCPS) 

proposed by Wei and van der Steen (1991) and Lo et al. (1993). This entails collection of 

phenotypic data on both crossbred and purebred performance and combining the 

information with a selection index (Wei and van der Werf, 1994). Animals evaluated 

with this methodology receive breeding values for both purebred and crossbred 

performance, where they are considered different but correlated traits. Crossbred 

performance has been shown to increase with CCPS in contrast with purebred line 

selection in pigs (Bijma and van Arendonk, 1998). However, CCPS leads to an increase 

in inbreeding because of the increased probability of selecting family members (Bijma et 

al., 2001; Dekkers, 2007). This strategy requires not only collection of phenotypic data at 

the commercial level, but also the pedigree information to connect the crossbred animals 

to their purebred ancestors which has hindered the adoption of CCPS in the industry 

(Dekkers, 2007). Genomic selection, proposed by Meuwissen et al. (2001), helps to 

alleviate these downfalls of CCPS. 

 

1.6.3 Genomic selection for crossbred performance 

Purebred selection has seen promising results from genomic selection and has 

been well documented (Meuwissen et al., 2001; Muir, 2007; Hayes et al., 2009). In 

simulation of a swine production system, Dekkers (2007), demonstrated the use of 

genomic selection to increase crossbred performance in purebred selection. Crossbred 

animals were used in the training set in order to estimate marker effects. This led to a 

higher response in crossbred performance than purebred selection or CCPS. Dekkers 

(2007) also demonstrated this concept led to lower rates of inbreeding compared to 
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CCPS. The collection of pedigree data connecting crossbred animals to their purebred 

ancestors is also no longer needed. Once marker effects have been estimated, they do not 

need to be re-estimated for several generations (Meuwissen et al., 2001). Taken together, 

genomic selection was superior to CCPS.  

In a simulation by Toosi et al. (2010), training sets included admixed and 

crossbred populations while the validation set was made entirely of purebred animals of 

one breed. Results suggested the accuracy of prediction using admixed or crossbred 

animals for training was similar or slightly less compared to the accuracy when purebred 

animals of the same breed were used for training and validation. When this methodology 

was applied to a beef population, average accuracy of MBV from progeny phenotypes of 

Angus bulls mated to commercial cows were 0.26 and 0.24 when prediction equations 

were trained on the 2,000 Bull Project (approximately 2,000 influential bulls representing 

16 different breeds) and a subset of the 2,000 Bull Project including only Angus 

individuals, respectively (Weber et al., 2012a). 

As the number of breeds included in the crossbred or admixed populations 

increased, the accuracy decreased, and if the breed used for validation was not included 

in the admixed or crossbred population, accuracy declined drastically (Toosi et al., 2010). 

Even if the breed was in the training set, breed composition of the crossbred training set 

can also have an impact of the accuracy of prediction. Weber et al. (2012b) used the U.S. 

Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) for 

training while individual breeds from the 2,000 Bull Project were used for validation, 

both of which are multi-breed populations. Accuracies were higher for breeds that were 

more represented in USMARC_GPE, namely Angus and Hereford which contributed 
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almost 28 and 23 percent breed composition respectively, while breeds that were in lower 

proportions in USMARC_GPE had lower accuracies, particularly Charolais which 

contributed 6.6 percent.  

 

1.6.4 Modeling breed specific effects 

Given that crossbred animals result from parents of different breeds, a model 

fitting a common additive effect may not be the most suitable approach. Because 

persistence of LD across breeds may be small, especially for greater divergence between 

breeds (de Roos et al., 2008), SNP effects may be breed specific. Therefore, alternative 

models have been proposed to fit breed specific SNP effects (BSAM). Dekkers (2007) 

proposed a method for a cross of two breeds, but could be extended to more breed 

crosses, increasing in complexity with the addition of every breed. High-density 

genotypes were collected on a sample of crossbred animals in commercial herds and their 

ancestors in the nucleus herds. Marker haplotypes in the crossbred animals were traced 

back to their purebred parental populations. Haplotype effects were estimated with the 

high-density genotypes in combination with phenotypes of the crossbred animals, and 

finally, the estimated haplotype effects were used to help with the selection of purebred 

animals. With the addition of more breeds, the breed specific haplotypes may be harder to 

identify and effects to be estimated, therefore accuracy may suffer (Dekkers, 2007).  

Ibanez-Escriche et al. (2009) and explored the use of BSAM in simulation in 

which breed-specific marker effects were explicitly fit in the model and compared to an 

across-breed SNP genotype model (ASGM) in which a common allele substitution effect 

was fit. It was hypothesized BSAM would outperform ASGM, however the accuracy of 
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ASGM was equal to or greater than the accuracy of BSAM for a variety of scenarios 

including 2-, 3-, and 4-way crosses when only additive gene action was considered 

(Ibanez-Escriche et al., 2009). As the marker density increased, the need for BSAM 

decreased because the probability of SNP markers in the model being closer to the QTL 

increased (Ibanez-Escriche et al., 2009). Additionally, BSAM models included many 

more parameters in the model that needed to be estimated, and this grew as the number of 

breeds increased. However, BSAM was advantageous over ASGM when the number of 

animals in the training set increased; therefore, with more animals, small differences in 

effect sizes could be estimated especially if parental breeds were distantly related 

(Ibanez-Escriche et al., 2009).  Within simulation, Kinghorn et al. (2010) also modeled 

the genotypes of the gametes contributing to the crossbred animal, a method they called 

reciprocal recurrent genomic selection (RRGS), and showed that RRGS led to higher 

responses in crossbred populations over when common additive allelic substitutions were 

modeled. Kinghorn et al. (2010) warned the application of this methodology was more 

suited for swine or poultry rather than sheep or beef industries because the swine and 

poultry industries have lower generation intervals and crossbreeding systems are already 

well defined. Kinghorn et al. (2010) also warned the use of RRGS would ultimately push 

the beef and sheep industries into having more specialized maternal and paternal lines 

and more structured crossbreeding systems like those found in the swine and poultry 

industries. 

 

1.6.5 Modeling Dominance 
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Heterosis is likely due to dominant gene action (Falconer and Mackay, 1996), 

thus including dominance in a model has the potential to increase the accuracy of 

crossbred performance in purebred selection. Despite this fact, most published work has 

only considered models with additive effects (Calus, 2010). This lack of dominance 

modeling could be due to three reasons. First, many animals with both genotypes and 

phenotypes are needed in order to estimate dominance effects. This problem has been 

overcome recently with genotyping becoming more affordable. Secondly, deregressed 

EBV (DEBV) have been widely used as phenotypes for many traits within genomic 

evaluations (Garrick et al., 2009). With DEBV, the difference between additive and 

dominance effects are indistinguishable (Sun et al., 2014). However, with the collection 

of raw phenotypes, this limitation may also be alleviated. In addition, complex 

calculations are needed in order to estimate dominance effects (e.g. Misztal et al., 1998). 

This problem has been combatted by the increased computational power. 

Within purebred populations, dominance variance has been shown to account for 

a small proportion of total variation of yield traits in dairy (Sun et al., 2014), and within 

phenotypes in swine (Su et al., 2012; Nishio and Satoh, 2014). Prediction accuracy was 

shown to increase with models that explicitly modeled dominance. However, this was not 

seen across all traits, especially those that have small dominance variation (Nishio and 

Satoh, 2014). Because crossbred animals show considerable heterosis, the product of 

dominance, Nishio and Satoh (2014) predict the inclusion of dominance effects in models 

would benefit crossbred performance, but this was not proven in their research as they 

used populations of purebred pigs.  
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Accuracy in crossbred performance in pigs was shown to increase when 

dominance was included in the model; however, only genomic information from the 

purebred parental lines was included (Esfandyari et al., 2016). The collection of 

information only in parental lines was performed in order to display the usefulness of 

including dominance in a model when collection of genotypes and phenotypes in the 

crossbred animals was difficult or infeasible. In contrast, Hidalgo (2015) included 

genotypes from the crossbred information for training, and was still able to show an 

increase in accuracy when dominance was included as compared to models with additive 

effects only.   

  

1.6.6 ssGBLUP for crossbred performance 

 In multi-step evaluations and its extensions which have been described 

previously, it was imperative that crossbred animals be genotyped. This was especially 

true when models depended on crossbred animals for training in order to estimate SNP 

marker effects. This may not be a realistic approach since economically it may not make 

sense to genotype a large number of commercial animals.  

Based on the work of Wei and van der Werf (1994) with CCPS, Christensen et al. 

(2014) extended ssGBLUP for the specific use of improving crossbred performance for a 

two-breed crossbreeding system. This methodology takes advantage of partial 

relationship matrices that describe relationships based on genetic origin since crossbred 

animals are derived from more than one breed. This assumes that the SNP markers can be 

phased - alleles inherited from the sire and dam can be identified. Three traits were 

modeled, one for the phenotype of the first purebred, one for the phenotype of the second 
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purebred, and one for the crossbred. This differs from the original ssGBLUP in which a 

single model is used in which these three traits are assumed to be the same, thus one 

relationship matrix is used instead of partial relationship matrices. This new ssGBLUP 

model was implemented in a real two breed swine crossbreeding system for total number 

of piglet born (Xiang et al., 2016). It was concluded that the new model improved 

reliabilities of crossbred performance in purebred animals in comparison to a single trait 

ssGBLUP. The model was later updated by Christensen et al. (2015) to include a three-

way crossbreeding system that is commonly used for terminal crossbreeding in swine. 

 

1.7 Current U.S. beef cattle genetic evaluations 

Even though the difference between seedstock and commercial herds does not 

necessarily reduce to purebred and crossbred animals within the beef industry as it does 

with swine and poultry, it does begin to demonstrate the need for the utilization of 

commercial phenotypes within genetic evaluations. By the year 2000, more than fifteen 

different EPD were produced within the national cattle evaluations. At that time, many of 

those EPD were for traits that addressed the same breeding goal, such as separate EPD 

for ultrasonically measured carcass traits and actual carcass traits, but often could have 

led to selection decisions that were in contradiction of each other (Golden et al., 2009). 

Golden et al. (2000) realized the need to incorporate indicator traits into the analysis of 

EPD for ERT during genetic evaluations and that the EPD for indicator traits should not 

be published. This strategy would have eliminated the problem of which EPD to use for 

selection decisions. Unfortunately, today not all traits published are ERT (e.g. birth 

weight). Also, the number of published traits has increased, not decreased. 
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During the estimation of EPD, multivariate models are used to combine 

information from both the ERT and indicator traits. Because most phenotypes collected 

are from the seedstock industry, some indicator traits are more convenient, cheaper, or 

simply more practical to collect than the ERT. For example, ultrasound measurements 

from seedstock are collected more often than carcass data from progeny tests. The 

ultrasound measurements generally include intramuscular fat percentage, back fat 

thickness, and ribeye area which are indicator traits of carcass marbling, back fat, and 

ribeye area, respectively. The industry has taken a general consensus that ultrasound 

measurements of carcass traits are reliable indicators of actual carcass data. Literature 

generally reports moderate to relatively high genetic correlations between the ultrasound 

and carcass traits (e.g. Moser et al., 1998; Reverter et al., 2000; Devitt and Wilton, 2001; 

Kemp et al., 2002). This literature justifies the use of ultrasound measurements in 

seedstock animals to inform selection criteria instead of collecting only actual carcass 

measurements from progeny test individuals, in which progeny tests are expensive and 

time consuming to develop. However, Reverter et al. (2000) cautions that genetic 

correlations are not always consistent across breeds or even between sexes within breeds. 

The genetic correlation between ultrasound and carcass rib fat thickness was estimated as 

0.79, 0.99, 0.87, and 0.02 for Angus bulls, Angus heifers, Hereford bulls, and Hereford 

heifers (Reverter et al., 2000). Although generally high, genetic correlations between 

ultrasound and carcass data can differ, thus varying in the validity as adequate indicators.  

Additional indicator traits include scrotal circumference as an indicator for age at 

puberty of a sire’s daughter, which is an indicator trait for heifer pregnancy (Golden et 

al., 2009). Vargas et al. (1998) estimated the genetic correlations between scrotal 
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circumference and age at puberty to be -0.31, which in this case is favorable; bulls with a 

larger scrotal circumference tend to have daughters that reach puberty earlier. However, 

Evans et al. (1999) and McAllister et al. (2011) both found the genetic correlation 

between scrotal circumference and heifer pregnancy to be near zero. This suggests scrotal 

circumference is not a reliable indicator of the ERT heifer pregnancy. Therefore, heifer 

pregnancy phenotypes should be reported for genetic evaluations.  

Many traits have a large economic impact within the cattle industry but do not 

have a breed-wide EPD associated with them. One of these traits is bovine respiratory 

disease (BRD), which has a large economic impact in the feedlot sector (Snowder et al., 

2006). Griffin (1997) estimated BRD accounts for approximately 7% of the total 

production cost from weaning until the animal is received at the packer. When included 

in a terminal index, BRD morbidity had an economic value 10.65 times greater than days 

to finish (Buchanan et al., 2016). Hot carcass weight was the only other trait in the index 

to have a greater economic value than BRD morbidity; hot carcass weight was 11.47 

times more important than days to finish (Buchanan et al., 2016). Other traits included in 

the index were yield grade, marbling, dry matter intake, and weaning weight. In regards 

to the lack of collection of disease susceptibility in seedstock or nucleus herds, this is 

especially true in the swine and poultry industries where nucleus herds are under strict 

bio-security measures (Ibañez-Escriche and Gonzalez-Recio, 2011). Although beef 

seedstock herds are not under such strict bio-security measures, true collection of disease 

phenotypes would mean introducing the pathogen of interest into seedstock herds, which 

is undesirable for breeding stock (Garrick, 2018). 
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Given the genetic correlations between indicator traits and the associated ERT are 

not one, data from the indicator traits do not explain all variation of the ERT. Thus, 

collection and utilization of ERT phenotypes in genetic evaluations would aid in faster 

genetic response. Millions of true ERT records (disease incidence, female fertility, 

growth traits, and carcass traits) are collected within the commercial sectors - cow/calf 

herds, feedlots, and packing plants - every year. However, most of this data does not 

make it into the genetic evaluations. This is simply because relationships are needed in 

order to connect information from family members’ performance. There are pedigree ties 

between seedstock and commercial individuals, but they are often not known for a variety 

of reasons. Sometimes pedigrees are not recorded, group mating leads to unknown 

parentage, or pedigree information does not follow the animals as they move along into 

different segments of the industry. Relationships could be estimated using genomics, but 

that would require every animal with a record to be genotyped. This is not an economical 

option even as genotyping costs have decreased. Therefore, most of the phenotypes we 

are truly interested in are not included in the genetic evaluations.  

 

 

1.8 Pooling genotypes and phenotypes 

1.8.1 Use in GWAS 

Genome wide association studies (GWAS) are used in order to discover genetic 

variations that are associated with traits. These studies typically require a large number of 

individuals to be genotyped, which can often be in the hundreds or thousands (Huang et 

al., 2010). Genotyping these large sample sizes can be one of the major limitations of this 
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research even as the cost of genotyping has decreased over the years. However, pooling 

DNA for GWAS has been shown to reduce the cost associated with genotyping (Sham et 

al., 2002). This is done by selectively grouping animals based on a phenotype and then 

genotyping a combined pool of DNA (Darvasi and Soller, 1994).  

Many studies have identified candidate quantitative trait loci through pooling 

DNA in humans and livestock alike. Huang et al. (2010) used pools of Holstein cattle that 

exhibited high and low blastocyst rate or fertilization rate. A total of 589 and 571 samples 

were available for fertilization and blastocyst rate, respectively. Two pools each of high 

and low rate were constructed for each phenotype, where pool sizes ranged in size from 

42 to 49 animals.  When testing the association between allelic frequencies and blastocyst 

rate or fertilization rate, 22 and 5 SNP were found significant, respectively. Results were 

validated with individual genotypes and found only six of the previously significant SNP 

were insignificant (P-value > 0.10). Importantly, the signs of the allelic effects were the 

same between the pooled and individual samples. Many other studies have also shown 

the use of pooled DNA for GWAS including low reproductive cattle with the presence of 

SNP mapped to the Y chromosome (McDaneld et al., 2012) and somatic cell score in 

Valdostana Red Pied cattle (Strillacci et al., 2014). These studies clearly demonstrate the 

power of pooled DNA testing and their ability to genotype a fraction of samples that 

would otherwise be needed for individual testing. 

 

1.8.2 Use in prediction 

Pooled data for prediction has also been used in a variety of ways. Olson et al. 

(2006) investigated the use of pooled phenotypes and their effects on prediction accuracy 
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using simulated data. Work such as this is practical when the phenotype of interest is 

inherently measured on a group or pen level or when group phenotypes are more cost 

effective than individual phenotypes. Several other studies have also investigated the use 

of pooled phenotypes for prediction in simulation and with real data sets. For example, 

Biscarini et al. (2008) used total body weight and total egg production in laying hens in 

cages of four, Biscarini et al. (2010) looked at total early egg production in laying hens in 

cages of four, Cooper et al. (2010) explored total pen intake with steers in pens of six to 

nine, and Su et al. (2018) used simulation with varying group sizes from three to thirty. 

One of the major drawbacks of these studies was that all animals within the group or pen 

must be identified and connected to other animals with a pedigree. Additionally, results 

showed that pooled observations led to lower accuracies than when individual data were 

available and utilized (Biscarini et al., 2008; Cooper et al., 2010; Olson et al., 2006; Su et 

al., 2018). Nonetheless, pooled phenotypes could be effectively utilized in evaluations. 

Moving from pooled phenotypes and known pedigrees, research has also been 

conducted in the use of pooled DNA and a categorical or mean phenotype to predict 

EBV. Within a simulation mimicking an aquaculture scheme, Sonesson et al. (2010) 

pooled test individuals two groups based on phenotype, high or low, and marker effects 

were estimated based on the pooled genotypes of the groups. The marker effects were 

then used to estimate EBV of individual selection candidates. The accuracy of selection, 

estimated by the correlation of TBV and EBV, was high when large numbers of test 

individuals were used in order to estimate the marker effects. Henshall et al. (2012) used 

the logistic regression of estimated pooled allelic frequencies on mean phenotype to 

inform marker effects, which were then compared to the effects estimated from 
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individual genotypes and phenotypes within a simulated data set in beef cattle where the 

trait was hip height. 

As seen previously, when pedigree information is not known, relationships can be 

derived through the use of genomics. Just as with GWAS, even as genotyping has 

become cheaper over the years, it still not economical to genotype every commercial 

animal we would like to include into the genetic evaluations. Recently, the innovative 

approach of using pooled phenotypic and genotypic data has been used for genetic 

prediction.  Reverter et al. (2016) performed DNA testing on a group of animals based on 

results of a pregnancy test, and created a “hybrid” genomic relationship matrix (h-GRM) 

consisting of pooled and non-pooled animals. Genotypes of the pooled animals were 

given as the B-allele frequencies rather than traditional 0, 1, or 2 for AA, AB, or BB 

genotypes, respectively. It was concluded that the pooled genomic data can provide 

estimates of relationships with individual bulls currently in the herd or previously used, 

and the resulting h-GRM can be used to calculate GEBVs incorporating data from 

pooled, commercial level herds. Sheep were pooled based on dag scores and sex, and 

pooled DNA was used in order to estimate an h-GRM (Bell et al., 2017). Contributions of 

sires to each pool were estimated using simple linear regression and were shown to be 

equivalent to the GEBV that were estimated using GBLUP (Bell et al., 2017). Alexandre 

et al. (2019) simulated two traits and pooled animals based on trait one, trait two, a 

combination of both traits, or randomly and estimated the prediction accuracies of both 

traits. The highest prediction accuracy of a trait resulted from pooling based on the trait 

itself and lowest when the pools were constructed randomly. Using Angus data 

(phenotypes and genotypes), Alexandre et al. (2020) constructed pools in silico with 
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yearling weight, coat score, and marbling score. Again, prediction was highest when 

pools were based on the traits themselves, and lowest when the pools were constructed 

randomly. 

A concern with pooled DNA is the addition of pool construction and genotyping 

errors. Kuehn et al. (2018) investigated the efficiency of estimated genomic relationship 

of pools to the animals contained in the pools and other potentially related individuals. It 

was found that the technical error, the error associated with genotyping the intensity of 

the florescent dye used to estimate the B-allele frequencies, provided a minimal 

contribution to the total pooled error. Additionally, it was suggested that large pools be 

utilized because they are less prone to pool construction error – the planned 

representation of individual DNA to the pool. Thus, if large pools are used, minor errors 

in pooling allelic frequency can be assumed small. Kuehn et al. (2018) suggested pool 

sizes of at least 20. On the other hand, Alexandre et al. (2019) suggested pool sizes of 10 

in order to retain prediction accuracy and save on the cost of genotyping. Alexandre et al. 

(2020) confirmed their recommendations of pool sizes of at least 10, and observed 

consistent accuracies when pool sizes of 15, 20, and 25 were used with in silico beef data.   
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Chapter 2 

THE IMPACT OF CLUSTERING METHODS FOR CROSS-VALIDATION, CHOICE 

OF PHENOTYPES, AND GENOTYPING STRATEGIES ON THE ACCURACY OF 

GENOMIC PREDICTIONS 

 

2.1 Abstract 

 For genomic predictors to be of use in genetic evaluation, their predicted accuracy 

must be a reliable indicator of their utility, and thus unbiased. The objective of this paper 

was to evaluate the accuracy of prediction of genomic breeding values (GBV) using 

different clustering strategies and response variables. Red Angus genotypes (n=9,763) 

were imputed to a reference 50K panel. The influence of clustering method (k-means, k-

medoids, principle component (PC) analysis on the numerator relationship matrix (A) and 

the identical-by-state genomic relationship matrix (G) as both data and covariance 

matrices, and random) and response variables (deregressed Estimated Breeding Values 

(DEBV) and adjusted phenotypes) were evaluated for cross-validation. The GBV were 

estimated using a BayesC model for all traits. Traits for DEBV included birth weight 

(BWT), marbling (MARB), rib-eye area (REA), and yearling weight (YWT). Adjusted 

phenotypes included BWT, YWT, and ultrasonically measured intramuscular fat 

percentage and rib eye area. Prediction accuracies were estimated using the genetic 

correlation between GBV and associated response variable using a bivariate animal 

model. A simulation mimicking a cattle population, replicated five times, was conducted 

to quantify differences between true and estimated accuracies. The simulation used the 

same clustering methods and response variables, with the addition of two genotyping 
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strategies (random and top 25% of individuals), and forward validation. The prediction 

accuracies were estimated similarly, and true accuracies were estimated as the correlation 

between the residuals of a bivariate model including true breeding value (TBV) and 

GBV. Using the adjusted Rand index, random clusters were clearly different from 

relationship-based clustering methods. In both real and simulated data, random clustering 

consistently led to the largest estimates of accuracy, while no method was consistently 

associated with more or less bias than other methods.  In simulation, random genotyping 

led to higher estimated accuracies than selection of the top 25% of individuals. 

Interestingly, random genotyping seemed to over-predict true accuracy while selective 

genotyping tended to under-predict accuracy. When forward in time validation was used, 

DEBV led to less biased estimates of GBV accuracy. Results suggest the highest, least 

biased GBV accuracies are associated with random genotyping and DEBV. 

 

2.2 Introduction 

Many clustering methods have been proposed for cross-validation to assess the 

accuracy of genomic breeding values (GBV). Legarra et al. (2014) used birth year within 

dairy sheep, Luan et al. (2009) used random assignment and year of progeny testing in 

Norwegian Red Cattle, and Liu et al. (2014) used random assignment and sets of half-sib 

families within Chinese triple-yellow chickens to determine training and validation sets. 

K-means clustering has been used to assess the accuracy of GBV in a variety of beef 

cattle breeds (Saatchi et al., 2011; Saatchi et al., 2012; Saatchi et al., 2013; Boddhireddy 

et al., 2014). However, Boddhireddy et al. (2014) showed that principle component (PC) 

clustering based on an identical-by-state (IBS) genomic relationship matrix (G) led to 
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higher estimated accuracies than k-means clustering within an Angus population. The 

response variables used to estimate markers effects have also differed. Adjusted 

phenotypes led to higher estimated accuracies than non-adjusted phenotypes in sheep 

(Daetweler et al., 2012). Deregressed Expected Progeny Differences (DEPD) have been 

used in the past to develop genomic predictors in US beef breeds given genotyped 

animals were limited and DEPD have greater information content than phenotypes alone. 

Moreover, genotyping strategy has also been shown to have an impact on estimated GBV 

accuracies as demonstrated by Ehsani et al. (2010). 

 While partial solutions exist relative to clustering method and choice of dependent 

variables, a direct comparison of multiple clustering methods with the use of adjusted 

phenotypes or deregressed Estimated Breeding Values (DEBV) does not currently exist 

in the literature. Consequently, the current study aims to evaluate the effect of k-means, 

k-medoids, PC clustering based on the numerator relationship matrix and IBS genomic 

relationship matrix when these relationship matrices were treated as both a data matrix 

and covariance matrix, and random clustering on the estimates of accuracy of GBV using 

adjusted phenotypes or DEBV.  

 

2.3 Materials and Methods 

Animal care and use committee approval was not required for this study as all data were 

either obtained from existing databases or simulated. 

 

2.3.1 Red Angus 
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Red Angus animals (n=11,972) were genotyped with multiple SNP panels ranging 

from 25,259 to 139,376 SNP. Phenotypic data could be matched to 9,763 of these 

animals. Unmapped SNP as well as SNP from different panels with the same name but 

different positions were discarded. Animals with a call rate less than 80% were removed 

from the analysis. Using FImpute v2.2 (Sargolzaei et al., 2014), the SNP panels were 

imputed to a 50K reference panel. After SNP located on the sex chromosomes were 

removed, 48,677 SNP were left for analysis. 

Expected progeny differences (EPD) and their associated Beef Improvement 

Federation (BIF) accuracies (Beef Improvement Federation, 2010) were obtained from 

the Red Angus Association of America (RAAA) for the animals with genotypes as well 

as for their sires and dams. The EPD used for this analysis were birth weight (BWT), 

marbling (MARB), rib-eye area (REA), and yearling weight (YWT). The EPD were 

multiplied by 2 to form Estimated Breeding Values (EBV) for consistency of scale with 

phenotypes and simulated data. BIF accuracies were transformed into reliabilities and 

deregressed estimated breeding values (DEBV) that removed information from parental 

average contributions were computed following Garrick et al. (2009). The assumptions 

underlying the DEBV were that the proportion of genetic variance not accounted for by 

markers, c, was 0.4 (Saatchi et al., 2012), and heritability, ℎ*, was also assumed to be 0.4. 

Animals with a reliability less than 0.1 were excluded from further analysis.  

Phenotypes including BWT, ultrasonically measured intramuscular fat 

percentage, ultrasonically measured rib eye area, and YWT were also obtained from 

RAAA. These phenotypes were pre-adjusted for sex, age, and breed composition. The 

final response variable used for analysis was the contemporary group deviation from 



 48 

these pre-adjusted phenotypes. Contemporary group included herd-year-season for birth 

and yearling weight, and the addition of date of measurement for ultrasound traits. 

Animals from a contemporary group less than five were excluded from further analysis. 

The number of contemporary groups (mean number of animals per group) were:  982 for 

BWT (105), 594 for YWT (53), and 487 for ultrasonic measurements (54). Of the 

animals used for analysis, 5,938 were male and 3,825 were female. 

 

2.3.2 Simulation 

A simulation was carried out using Geno-Diver (Howard et al., 2017) to mimic a 

purebred beef cattle population. Five replicates, each with a different founder genome, 

were simulated. The replicates contained 29 chromosomes of length 87 Mb, the average 

chromosome length as determined with the NCBI Bos taurus 2009 assembly. Markers 

representing a 50K SNP panel were randomly distributed across the genome, locations 

were randomly drawn from a uniform distribution, with 1,724 markers per chromosome. 

Quantitative trait loci (QTL) were assumed to occur once per three Mb, resulting in 29 

QTL per chromosome. Locations of the QTL, placed randomly across the whole 

chromosomal range, were drawn from a uniform distribution. The phenotypic variance 

was set to one and the additive and dominance variances were set to 0.4 and 0.0, 

respectively, resulting in a phenotype with heritability of 0.4. The founder genome, 

generated by Markovian Coalescence Simulator (MaCS) program (Chen et al., 2009), 

employed a scenario in which a large amount of short range linkage disequilibrium (LD) 

was generated. To generate the sequence data for the founder population, the “Ne70” 

option was specified within Geno-Diver, which sets the effective population size of the 
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founder population to 70. de Roos et al. (2008) found that cattle have a small effective 

population size, approximately 100 or less, and large amounts of LD at short distances. 

To establish a pedigree, founder animals consisting of 100 sires and 2,000 dams were 

randomly selected and mated for 5 generations. Selection continued for an additional 10 

generations, where animals were mated randomly with the caveat that animals with 

additive relationships greater than 0.125 were not mated together in order to reduce 

inbreeding. Replacement animals were chosen based on the highest EBV determined by 

pedigree based BLUP with a replacement rate of 0.4 for sires and 0.2 for dams. Animals 

were culled based on EBV or when they were in the population as a parent for 12 

generations. Figure 2.1 provides a schematic of the simulation process.  

All individuals (n=32,100) from the 15 generations had a genotype retained. 

However, in current beef cattle populations, not all individuals are genotyped. Thus, 

approximately 25% of the animals from generation 6 to 15 were chosen as animals to 

have genotypes available. The genotyped animals were chosen using two scenarios: 25% 

of the animals born in generation 6-15 were chosen at random, or the top 25% of animals 

born in generations 6-15 were chosen based on EBV. The EBV were calculated using all 

information through generation 15 meaning that candidates for genotyping were selected 

based on all available information. These top animals were distributed across the 10 

generations where selection occurred to account for genetic trend, so as not to include 

animals from only the last generations. Approximately the same number of animals came 

from generations 6-15 for the randomly chosen scenario. Phenotypes as well as EBV and 

associated accuracies were obtained for each replicate. Estimated breeding values were 

transformed into DEBV using the same assumptions as for the Red Angus data.  
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To assess the accuracy of GBV using available animals to predict the genetic 

merit of young selection candidates, forward selection was also performed with the 

simulated data. Breeding values using information through a specified generation were 

estimated using ASReml v3.0 software (Gilmour et al., 2008). All pedigree, genotype, 

and phenotype information were truncated at generations 11, 12, 13, and 14 in order to 

assess the impact of the addition of animals generationally closer to the youngest 

selection candidates. Data were truncated at the specified generations so that data in 

subsequent generations was not used in the estimation of the EBV for an animal in the 

training set. The model to estimate breeding values included phenotype as the response 

variable, intercept as the fixed effect, and animal as the random effect. Animals chosen to 

have available genotypes were again picked randomly, or based on highest EBV 

distributed equally across the available generations. Animals genotyped in one scenario 

or truncation point were not guaranteed to be genotyped in other scenarios or truncation 

points. The new EBV were then transformed into DEBV using the same assumptions as 

the Red Angus data. 

 

2.3.3 Cross-validation methods 

Seven different clustering methods were employed for cross-validation: k-means, 

k-medoids, principal component (PC) analysis of the numerator relationship matrix (A) 

and the identical-by-state (IBS) genomic matrix (G) assuming the matrices were either a 

data matrix or a covariance matrix, and random clustering.  Each method used five 

folds/clusters for the Red Angus data. Lee et al. (2017) found that differences in the 

number of folds led to negligible differences in terms of prediction accuracies. 
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Consequently, three folds were used for the simulated data given the reduced number of 

animals in the simulated data compared to the real cattle dataset. For both data sets, 

training and evaluation sets were arranged using the evaluation set as one fold and the 

remaining folds as the training set. This was repeated so that each fold was used once as 

the evaluation set.  

The A matrix was used to create the folds based on k-means and k-medoids. A 

distance matrix, D, was calculated as described by Saatchi et al. (2011). The elements of 

D were	^$D = 1 −
'&'

E'&&×'''	
 where ^$D is the measure of pedigree distance between animals 

i and  j, _$D is the additive genetic relationship between animals i and  j, and _$$ and _DD 

are the diagonal elements of the A matrix. A pedigree matrix was computed using the 

pedigree package (Coster, 2012) in R (R Core Team, 2017) for the genotyped animals. 

The Red Angus data made use of a 6-generation pedigree that consisted of 45,738 

animals. The simulated data made use of the full pedigree of all 15 generations. K-means 

clusters were determined using the D matrix within the kmeans() function and specifying 

the Hartigan and Wong algorithm in the stats package (R Core Team, 2017) of R. K-

medoids used the D matrix as a dissimilarity matrix in the pam() function within the 

cluster package (Maechler et al., 2018) of R.  

The G matrix was computed as	 ??%

*HA&()1A&)
, where M is the centered genotype 

incidence matrix and pI is the allelic frequency of the second allele of the ith SNP 

(VanRaden, 2008). The correlation matrix of A or G was used in the princomp() function 

in the stats package (R Core Team, 2017) of R in order to create the folds for the PC 

analysis using the A matrix (PCN) and the G matrix (PCG). The A or G matrix was 

considered as a data matrix to form the folds of the PCN (Data) or PCG (Data) methods, 
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respectively, and considered as a covariance matrix to form the folds of the PCN (Cov) 

and PCG (Cov) methods, respectively. When the A or G matrix was considered as a data 

matrix, a covariance matrix was first formed from A or G and this resulting covariance 

matrix was used for PC analysis. If A or G was considered as a covariance matrix, the A 

or G matrix itself was subjected directly to PC analysis. The coefficients of the first PC 

were ordered and then divided evenly into fifths for the Red Angus data or thirds for the 

simulated data. This led to animals with the highest coefficients being in one fold and 

animals with the lowest coefficients being in another.  

Random clusters were determined by randomly assigning animals to one of five 

clusters for the Red Angus cattle or to one of three clusters for the simulated individuals.  

The adjusted Rand index (Hubert and Arabie, 1985) measures the degree of 

agreeance between different partitions of a data set. The adjusted Rand index is corrected 

for chance using a generalized hypergeometric distribution to model randomness. Thus, 

the index has an expectation of 0 when partitions are random and has an upper bound of 1 

in the case of complete agreeance between partitions. The higher the adjusted Rand 

index, the more agreement between the clustering methods. The adjusted Rand index was 

calculated between the seven clustering methods for the Red Angus and simulated data to 

test the agreement between the clustering methods using the adjustedRandIndex() 

function within the mclust package (Fraley et al., 2012) of R.  

For forward validation, training and evaluation sets were assigned based on 

generations. Training sets consisted of 5,000 animals included in generations 6-11, 6-12, 

6-13, or 6-14. The evaluation set consisted of all 2,000 selection candidates in generation 

15. 
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2.3.4 SNP effect estimation 

SNP effects were estimated using a Bayes C model (Kizilkaya et al., 2010) 

implemented in GenSel4R (Garrick and Fernando, 2013). The model used for both the 

Red Angus and simulated data was: 

a$ = b + ΣDJ)
K d$DeDfD + g$ 

where a$ is the DEBV or the adjusted phenotype for animal i for each of the four traits, b 

is the overall mean, d$D is the covariate matrix for SNP j for animal i and k is the number 

of SNP, eD is the random effect of SNP j, fD is a Bernoulli indicator variable indicating 

whether SNP j is included in the model, and g$ is the random residual of animal i. The 

random SNP effects and random residuals were both assumed to be identically and 

independently distributed with Gaussian distributions of h(0, i&*), and h(0, i-*), 

respectively. Independent inverse scaled chi-square priors were placed on the variance 

estimates for the random SNP effects and random residuals, i&* and i-*. The probability 

of a SNP not having an effect, I, was set to 0.99, as indicated by the Bernoulli indicator 

variable. Each model was run with 42,000 iterations, discarding the first 2,000 as the 

burn-in period.  

 

2.3.5 Genetic correlation and regression coefficients 

Estimates of the genetic correlations (r6L,N) between the GBV and the DEBV or 

adjusted phenotypes were used as an estimate of the GBV accuracy. The square of the 

genetic correlations estimate the proportion of genetic variance explained by the GBV 

(Thallman et al., 2009). A bivariate animal model for each fold within each clustering 
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method was fit using ASReml v3.0 software (Gilmour et al., 2008) in order to estimate 

genetic variances and covariances. Similar studies have also used a bivariate model 

approach to estimate GBV accuracy (e.g., Saatchi et al., 2012; Weber et al., 2012; 

Kachman et al., 2013; Lee et. al., 2017).  The model for the GBV and DEBV for the Red 

Angus data consisted of a fixed effect for the intercept and an unweighted residual for 

GBV and r-inverse for DEBV, where r-inverse is the weight according to the reliability 

of the DEBV. The model for the simulated data was the same except for the addition of 

the fixed effect of generation to account for the rapid genetic improvement across 

generations. For Red Angus animals, the model for GBV and adjusted phenotype 

consisted of a fixed effect for the intercept. Again, the model for the simulated data was 

similar except the response variable was phenotype and the model contained a fixed 

effect for generation. Regression coefficients of the response variable on GBV for Red 

Angus and simulation were calculated as the genetic covariance between the GBV and 

the associated response variable divided by the genetic variance of the GBV. An ideal 

regression coefficient would be 1, as the DEBV or adjusted phenotype would not over- or 

under-predict the GBV. The Red Angus estimated genetic correlations and regression 

coefficients are presented as the average across the 5 folds for each trait. Estimated 

genetic correlations and regression coefficients from the simulated data are presented as 

the average of 3 folds averaged over the 5 replicates for cross-validation methods. For 

forward validation, estimated genetic correlations and regression coefficients were 

averaged over the five replicates. 

The advantage of simulated data is that true breeding values (TBV) are known. A 

bivariate model including GBV and TBV as response variables and fixed effects of 
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overall mean, generation, fold, and interaction of generation and fold was used to obtain 

residuals. The correlation between the residuals was used as the true accuracy of the 

genomic predictor. The regression coefficient of TBV on GBV was computed as the 

covariance between residuals of GBV and TBV divided by the variance of the residuals 

of GBV and considered as the true regression coefficient. 

 

2.4 Results and Discussion 

2.4.1 Simulation 

After the first round of selective replacement, generation 6, the 5 replicates had a 

mean (variance) of 0.267 (0.003), 0.256 (0.003), and 0.254 (0.003) for the phenotype, 

TBV, and EBV, respectively. Across the five replicates the mean (variance) were 2.94 

(0.003), 2.94 (0.003), and 2.937 (0.003) for the phenotype, TBV, and EBV of animals at 

generation 15, which occurred after a total of 10 generations of selective replacement.  

The average correlation (r*) between two SNP across a range of distances at generation 

15 were consistent with having generated a large amount of short-range LD (results not 

shown). 

 

2.4.2 Clustering method 

The purpose of clustering is to partition animals into training and evaluation sets 

to assess the ability to generalize estimates of SNP effects and predictions of genetic 

merit on animals that were not used to estimate the SNP effects. For Red Angus, the first 

PC of the A matrix when considered as a data or covariance matrix explained 26.85% and 

4.56% of the variation in the additive relationships, respectively, while the first PC of the 
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G matrix when considered as a data or covariance matrix explained 19.97% and 1.86% of 

the variation in the additive genetic relationships, respectively. The percentage of 

variation for the simulated data was averaged across 5 replicates. The first PC of the A 

matrix when considered as a data (covariance) matrix explained 12.60±1.89% 

(2.56±0.02%) and 9.33±1.56% (2.66±0.27%) of the variation in the additive relationships 

using random selection for genotyping and using animals with the top 25% of EBV, 

respectively. The first PC of the G matrix when considered as a data (covariance) matrix 

explained 5.80±0.80% (1.09±0.08%) and 6.20±0.73% (1.29±0.10%) of variation in the 

additive genetic relationships using random selection and selection of the top 25% 

animals for genotyping, respectively. It appears that a larger fraction of additive 

relationships was captured by the first PC using the A matrix compared to using the G 

matrix as generationally, more data is contained in the A matrix than the G matrix. Also, 

a data matrix explained a greater fraction of variation compared to a covariance matrix 

due to the covariance matrix as used herein being largely bounded by 0 and 1. 

Average maximum relationships of animals within and between folds were 

calculated for each clustering method and shown in Table 2.1 for Red Angus animals and 

Table 2.2 for simulated animals. For Red Angus, the within cluster average maximum 

relationships were similar for the different clustering methods, ranging on average 

between 0.34 and 0.35 with the exception of random clustering which was lower (0.31) 

and k-means which was higher (0.37).  The between cluster average maximum 

relationships were similar for the different clustering methods with averages ranging 

from 0.19 to 0.24 with the exception of random clustering (0.31). A similar pattern was 

observed when evaluating the simulated data. With the exception of random clustering, 
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the within and between average maximum relationships were very similar across 

clustering methods with random clustering having a lower within cluster and higher 

between cluster average maximum relationship. The average maximum relationships 

overall were higher when the animals with the top EBV were chosen to be genotyped. 

This was expected given the trait was simulated to be moderately heritable and thus 

selective genotyping based on genetic merit is likely to choose more closely related 

individuals.  The average number of progeny per sire within the animals that were 

genotyped increased from 10.87 to 11.71 between random genotyping and genotyping the 

top 25% of individuals. The maximum number of progeny included in the analysis for an 

individual sire also doubled when genotyping the top 25% of animals compared to 

random genotyping. 

Using registered Angus animals, Boddhireddy et al. (2014) compared k-means 

clustering, PC clustering based on an IBS G matrix, and random clustering for cross-

validation. Their results showed that relationships were maximized within clusters and 

minimized across clusters with the exception of random clustering. Taken together, the 

results contained herein and previous work shows the ability of k-means, k-medoids, and 

PC analysis to partition animals with higher or lower degrees of relationship into 

different clusters. 

Tables 2.3 and 2.4 contain the adjusted Rand index values for the Red Angus and 

simulated data, respectively. For the Red Angus data, random clustering was clearly 

different as compared to any other clustering method, as expected. There was high 

agreement between PC using a data matrix or covariance matrix for G (0.67). 

Interestingly, high agreement was also found between k-means and PCN (Cov) clustering 
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(0.45). Similarly, in the simulated data, random clustering compared to any other 

clustering method led to an index of approximately zero. Principal component methods 

across respective relationship matrices led to the highest indices. K-means also had high 

agreeance with PC clustering on the A matrix, whether the data or covariance matrix was 

considered. These patterns were observed over both genotyping strategies. Overall, 

simulation tended to lead to slightly higher adjusted Rand indexes than Red Angus. 

Estimated accuracies of GBV for each clustering method using the Red Angus 

animals and simulated data are shown in Tables 2.5 and 2.6, respectively. In Red Angus, 

the average estimated accuracies across traits using DEBV were 0.58, 0.55, 0.61, 0.60, 

0.60, 0.60, and 0.66 for the k-means, k-medoids, PCN (Data), PCN (Cov), PCG (Data), 

PCG (Cov) and random clustering methods, respectively.  The average estimated 

accuracies across traits using adjusted phenotypes were 0.42, 0.45, 0.51, 0.50, 0.50, 0.52, 

and 0.59 for the k-means, k-medoids, PCN (Data), PCN (Cov), PCG (Data), PCG (Cov) 

and random clustering methods, respectively. Overall, random clustering led to the 

highest estimated accuracy while k-means and k-medoids consistently led to the lowest. 

Differences in estimated accuracies were negligible when comparing PC clustering on 

either the A or G matrix.  

Using simulated data, random clustering led to the highest estimated accuracy. 

However, all other estimated accuracies were similar when comparing the other 

clustering methods. This was observed across both genotyping methods. However, no 

clustering method was consistently associated with more or less bias than the other 

clustering methods when comparing the difference between the estimated and true 

accuracy. Many studies have shown the relationships between the training and validation 
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sets can impact the prediction accuracy. Habier et al. (2007) stated that the accuracies of 

genome-assisted breeding values (GEBV) are a result of the genetic relationships 

captured by markers.  In a study of German Holstein cattle, Habier et al. (2010) 

demonstrated the accuracy of GEBV decreased with decreasing additive-genetic 

relationship values across training and validation sets with cross-validation. That is, the 

accuracies decreased as the training and validation sets became less related. Similar 

results were found by Clark et al. (2012) in both a simulated data set and data set 

containing Merino sheep. Moreover, similar results were reported by Pszczola et al. 

(2012) using simulated data as well as Chen et al. (2013) using purebred Angus and 

Charolais cattle. Interestingly, maximum relationships within and between folds for 

random clustering in the simulation were more comparable to those obtained for other 

clustering methods while there was a larger difference between relationships within and 

between folds between random clustering and other clustering methods in the Red Angus 

data. Consequently, any estimate of bias is more likely related to the ability of clustering 

methods to minimize relationships between folds and maximize them within folds.  

Based on the comparison of maximum relationship values, random clustering was more 

comparable to other methods in simulation than it was in the Red Angus data at 

partitioning animals based on additive relationships.  

The pattern of estimated accuracies using different clustering methods for cross 

validation using Red Angus was also seen in previous studies. Saatchi et al. (2011) 

demonstrated the use of k-means clustering based on the additive genetic relationships 

between animals as a means for clustering animals for cross-validation. They used 

registered Angus bulls and found that k-means clustering yielded lower estimated 
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accuracies than random clustering for 16 traits. Similar results were seen using American 

Hereford animals (Saatchi et al., 2013). Additionally, Boddhireddy et al. (2014) 

compared random, k-means, and clustering on the first PC of the IBS genomic 

relationship matrix (data matrix) using registered Angus animals. Their results showed 

that PC clustering resulted in accuracy estimates that were intermediate to k-means and 

random clustering for birth weight. The estimated accuracies across 15 additional traits 

showed that k-means clustering resulted in lower estimated accuracies compared to PC 

clustering.  

In Red Angus, the average estimated regression coefficients of DEBV on GBV 

across traits were 0.83, 0.80, 0.89, 0.87, 0.89, 0.89, and 0.93 for the k-means, k-medoids, 

PCN (Data), PCN (Cov), PCG (Data), PCG (Cov) and random clustering methods, 

respectively.  The average estimated regression coefficients of adjusted phenotypes on 

GBV across traits were 0.93, 0.91, 0.99, 0.97, 0.96, 0.97, and 1.04 for the k-means, k-

medoids, PCN (Data), PCN (Cov), PCG (Data), PCG (Cov) and random clustering 

methods, respectively. K-means and k-medoids clustering led to the lowest regression 

coefficient estimates whereas random clustering led to the largest regression coefficient 

estimates. 

 Table 2.7 contains the mean estimated regression coefficients of either phenotype 

or DEBV on GBV as well as the TBV on GBV using the simulated data.  All estimated 

regression coefficients were similar across clustering methods and across genotyping 

methods. Additionally, all clustering methods underestimate performance as the 

estimated regression coefficients were below 1 across both genotyping methods.  
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2.4.3 Choice of dependent variable 

With Red Angus, estimated accuracies were generally higher when DEBV were 

used compared to adjusted phenotypes and the associated standard errors were lower. 

Mean DEBV accuracies were significantly different (P <0.03) from mean adjusted 

phenotype accuracies for all traits except YWT (P=0.464). The differences in the 

standard errors between these two dependent variables demonstrate the additional 

information gained from the DEBV as compared to adjusted phenotypes. In contrast, 

phenotypes led to negligible numerical differences in mean estimated accuracies when 

compared to the DEBV in the simulated data for the selection of the top 25% of animals 

for genotyping (P = 0.053). However, there was a statistically significant difference 

between mean estimated accuracies of phenotypes compared to the DEBV for random 

genotyping (P = 0.006). The mean absolute differences, across replicates, between 

estimated and true accuracy were 0.05 and 0.06 for phenotypes and DEBV, respectively, 

within the random genotyping scenario.  Additionally, the mean absolute differences 

were 0.12 and 0.20 for phenotypes and DEBV, respectively, within the selective 

genotyping scenario. This illustrated that the amount of bias, measured as the difference 

between estimated and true accuracy, was dependent upon the genotyping strategy. The 

discrepancy seen between the Red Angus and simulated data may be due to the 

population structures. The Red Angus had on average 7 progeny per sire. However, 

within the simulation, there were approximately 11-12 progeny per sire when averaged 

across replicates and genotyping scenarios. In the simulated data, the minimum number 

of progeny an animal could sire was 20 and it was assumed that all of them had a 

phenotype recorded. In contrast, in the Red Angus data, the sires included in the analysis 



 62 

ranged from having 1 to 822 progeny, leading to large differences in accuracy of EBV 

and necessitating deregression. Thus, the accuracy of EBV of the simulated animals was 

greater on average, and more homogeneous, than that of animals in the Red Angus data. 

Consequently, the deregression process did not aid in delineating information content in 

simulated data in the same fashion as in the real data.  

For Red Angus, the average estimated regression coefficients of DEBV on GBV 

across clustering methods were 0.93, 0.90, 0.91, and 0.74 for BWT, MARB, REA, and 

YWT, respectively. The average estimated regression coefficients of adjusted phenotype 

on GBV across clustering method were 0.97, 0.98, 0.89, and 1.02 for BWT, MARB, 

REA, and YWT, respectively. Overall, the estimated regression coefficients of DEBV on 

GBV were lower than those of adjusted phenotypes. This pattern was also observed 

within the simulated data across both genotyping methods. However, estimated 

regression coefficients were more conservative when selective genotyping was used.  

Studies within other species have shown that choice of response variable can have 

an impact on prediction accuracy. Daetweler et al. (2012) found phenotypes adjusted for 

fixed and breed effects led to higher estimated accuracies than non-adjusted phenotypes 

in sheep. van der Werf et al. (2010), in regards to a sheep information nucleus, stated that 

if an accurate EBV is used rather than a phenotype in training, it is like using a phenotype 

with higher heritability, in which the heritability of a trait also has an effect on the 

prediction accuracy (e.g., Goddard and Hayes, 2009).  Guo et al. (2010) found that using 

EBV rather than daughter yield deviation (DYD) in simulation led to more reliable 

predictions. Additionally, deregressed EBV have led to higher reliabilities of GBV than 

when EBV were used as response variables in pigs (Ostersen et al., 2011). 
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Forward in time validation was explored using simulation by using differing 

amounts of generational information to estimate prediction accuracy. Training sets 

included animals born in generations 6-11, 6-12, 6-13, and 6-14 to predict animals born 

in generation 15. The mean estimated and true accuracies of GBV for forward validation 

are presented in Table 2.8. As animals in generations closer to the selection candidates 

were included in the training set, the estimated accuracy increased. The accuracy of GBV 

is affected by the relationships between the training and evaluation sets. An increase in 

GBV accuracy as validation sets were generationally closer, thus more related, to testing 

sets was also found in other studies including Clark et. al (2011) and Pszczola et al. 

(2012) using simulated data, and Wolc et al. (2011) in a brown-egg layer line of chickens.  

As seen previously, the differences between estimated accuracy and true accuracy were 

negligible when using DEBV or phenotypes (P = 0.318 and P = 0.178 for random 

genotyping and selection of the top 25% of animals for genotyping, respectively). The 

slight differences between estimated accuracy and true accuracy with DEBV as compared 

to phenotypes, although not statistically significant, suggest that the marker effects 

estimated from DEBV were more reliable for predicting the genetic merit of an animal.  

 Table 2.9 contains the regression coefficients of phenotype or DEBV on GBV as 

well as the regression coefficients of TBV on GBV. Smaller differences between the 

estimated and true regression coefficients were observed for DEBV than for phenotypes. 

These small differences between the estimated and true regression coefficients of DEBV 

and phenotypes further suggests that the use of DEBV as a dependent variable generates 

more reliable estimates of the cumulative SNP effects.  
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2.4.4 Genotyping strategy 

Randomly selecting individuals to genotype led to higher estimated and true 

accuracies than selection of the top 25% of individuals. The average estimated accuracies 

across clustering methods were 0.83 and 0.86 for phenotype and DEBV, respectively, 

when animals were randomly chosen for genotyping. When the top 25% of individuals 

were chosen for genotyping, the average estimated accuracies across clustering methods 

were 0.49 and 0.47 for phenotype and DEBV, respectively. The estimated accuracies 

underestimated the true accuracies when animals were chosen to be genotyped at random 

but overestimated the true accuracies when there was selective genotyping. The mean of 

the absolute differences between estimated accuracy and the true accuracy was 0.06 and 

0.16 for random genotyping and selective genotyping, respectively, illustrating more bias 

associated with the estimated accuracy when animals were selectively genotyped as 

compared to being genotyped at random.  

In a simulation study, Ehsani et al. (2010) demonstrated that random genotyping 

leads to higher reliability of estimated genomic breeding values as compared to only 

genotyping the top individuals. These conclusions were also found by Boligon et al. 

(2012) who compared five genotyping strategies in a simulation of a population 

undergoing selection. Members of the reference population were chosen to be genotyped 

at random, top individuals based on yield deviations, bottom individuals, top and bottom 

individuals, or least related individuals. The prediction accuracy was assessed in the 

selection candidates – progeny of the reference population – and it was found that 

selection of the top and bottom individuals based on yield deviation led to the highest 

accuracy and lowest predictive mean square error (PMSE). Random selection led to 
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higher accuracy and lower PMSE than selecting just the top individuals. Within a 

simulated dairy system, Jimenez-Montero et al. (2012) implemented five genotyping 

strategies of dams in a forward in time validation. The five strategies included random, 

top and bottom individuals based on yield deviation values, top and bottom individuals 

based on EBV, highest yield deviation values, and highest EBV. The selection of top and 

bottom individuals led to the highest accuracies, followed by random, and the approaches 

where only the highest individuals (based on yield deviations or EBV) were used 

produced the lowest accuracies. Additionally, the random approach and selection of top 

and bottom individuals led to the least amount of bias. The pattern of decreased accuracy 

when going from genotyping the extreme phenotypes (both top and bottom), to random 

genotyping, to genotyping top individuals was demonstrated within a Guernsey cattle 

herd when selective genotyping methods of females were compared to genotyping all 

females (Jenko et al., 2017).  Pszczola et al. (2012) concluded animals that were 

randomly selected for the reference (i.e. training) population led to higher average 

reliabilities, measured as the squared correlation between the true and estimated BV,  

than when the reference population consisted of highly, moderately, or lowly related 

animals in simulation. Calus (2010) suggested a reference population with a wide range 

of genotypes and phenotypes would be optimal for reliable predictions.   

 The structure of the population simulated differed from that of the Red Angus 

data. With the simulation used in this study, the assumptions were that of a purebred 

cattle population, all relationships were known, there were no systematic effects, and 

phenotypes were measured without error. Full pedigrees of the Red Angus animals were 

not available, which could have led to some of the discrepancies seen for the clustering 
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methods between the real and simulated data because these clustering methods are 

dependent on the relatedness of animals to other individuals. Attempts to adjust for the 

systematic effects within the Red Angus phenotypes were made through pre-adjustments 

of sex, age, and breed composition as well as contemporary group deviations. Even with 

these adjustments, there is likely additional “noise” associated with the phenotypes 

because of other systematic effects that are hard to account for and the fact that 

phenotypes are often measured with some degree of error. Also, a systematic genotyping 

strategy is not currently employed in the cattle industry. Consequently, the collection of 

genotypes for Red Angus is likely somewhere between random selection and genotyping 

only the top individuals.  

Overall, random clustering led to the highest estimated accuracy and k-means and 

k-medoids led to the lowest estimated accuracy within the Red Angus population. The 

estimated accuracies when DEBV were used to estimate SNP effects were generally 

higher, and associated with smaller standard errors, than when adjusted phenotypes were 

used. When simulation was used, random clustering led to the highest estimated accuracy 

while there was no difference in the estimated accuracy between the other clustering 

methods. Based on the forward validation, use of DEBV to estimate marker effects was 

associated with less bias than phenotypes. Randomly genotyping animals to ensure 

representation of animals across the spectrum of EBV, not just choosing the animals with 

the top EBV, appeared to also be associated with the least amount of bias in the GBV and 

also the highest estimated accuracies.    
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Table 2.1. Red Angus average maximum relationships  
Clustering 
Method1 

 
Fold 

 
N  

 
_O3P	 _R$ST$"2 

 
_O3P	 _U-SR--"3 

K-means 1 2070 0.40 0.22 
 2 615 0.41 0.21 
 3 572 0.39 0.20 
 4 3592 0.31 0.14 
 5 2914 0.34 0.19 

K-medoids 1 1661 0.36 0.21 
 2 1783 0.32 0.17 
 3 1839 0.36 0.20 
 4 3803 0.35 0.19 
 5 377 0.37 0.19 

PCN (Data) 1 1952 0.38 0.20 
 2 1952 0.36 0.23 
 3 1952 0.33 0.23 
 4 1952 0.34 0.21 
 5 1955 0.32 0.19 

PCN (Cov) 1 1952 0.42 0.21 
 2 1952 0.36 0.24 
 3 1952 0.32 0.24 
 4 1952 0.31 0.22 
 5 1955 0.29 0.17 

PCG (Data) 1 1952 0.40 0.27 
 2 1952 0.34 0.26 
 3 1952 0.33 0.25 
 4 1952 0.31 0.23 
 5 1955 0.31 0.18 

PCG (Cov) 1 1952 0.32 0.18 
 2 1952 0.31 0.22 
 3 1952 0.32 0.25 
 4 1952 0.35 0.26 
 5 1955 0.40 0.26 

Random 1 1994 0.31 0.31 
 2 1916 0.31 0.31 
 3 1893 0.31 0.31 
 4 2000 0.31 0.31 
 5 1960 0.31 0.31 

1K-means = clustering based on k-means using the numerator relationship matrix; K-
medoid = clustering based on k-medoids using the numerator relationship matrix; PCN 
(Data) = Principle component clustering using a numerator relationship matrix(A = 
Data); PCN (Cov) = Principle component clustering using a numerator relationship 
matrix(A = Covariance matrix); PCG (Data) = Principle component clustering using an 
identical by state genomic relationship matrix (G = Data); PCG (Cov) = Principle 
component clustering using an identical by state genomic relationship matrix (G = 
Covariance matrix); Random = random clustering 
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2_O3P	 _R$ST$" = Average of the maximum relationship of an animal with other animals 
within its own fold 
3_O3P	 _U-SR--" = Average of the maximum relationship of an animal with other animals 
not within its own fold  
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Table 2.2. Simulated average maximum relationships and standard errors 
 Random Selection1 Top EBV2 

Clustering 
Method3 

 
_O3P	 _R$ST$"4 

 
_O3P	 _U-SR--"5 

 
_O3P	 _R$ST$" 

 
_O3P	 _U-SR--" 

K-means 0.35 (0.002) 0.23 (0.004) 0.49 (0.002) 0.32 (0.003) 
K-medoids 0.35 (0.002) 0.26 (0.001) 0.49 (0.001) 0.34 (0.003) 
PCN (Data) 0.35 (0.003) 0.23 (0.003) 0.48 (0.003) 0.33 (0.003) 
PCN (Cov) 0.34 (0.002)  0.24 (0.003) 0.47 (0.003) 0.33 (0.003) 
PCG (Data) 0.35 (0.002) 0.25 (0.004) 0.47 (0.003) 0.35 (0.004) 
PCG (Cov) 0.35 (0.002) 0.25(0.004) 0.47 (0.002) 0.35 (0.003) 

Random 0.32 (0.002) 0.31 (0.001) 0.41 (0.002) 0.41 (0.002) 
1Random Selection= 5,000 animals randomly chosen across all 10 generations 
2Top EBV = The top 500 individuals from each of the 10 generations  
3K-means = clustering based on k-means using the numerator relationship matrix; K-
medoid = clustering based on k-medoids using the numerator relationship matrix; PCN 
(Data) = Principle component clustering using a numerator relationship matrix(A = 
Data); PCN (Cov) = Principle component clustering using a numerator relationship 
matrix(A = Covariance matrix); PCG (Data) = Principle component clustering using an 
identical by state genomic relationship matrix (G = Data); PCG (Cov) = Principle 
component clustering using an identical by state genomic relationship matrix (G = 
Covariance matrix); Random = random clustering 
4_O3P	 _R$ST$" = Average of the maximum relationship of an animal with other animals 
within its own fold 
5_O3P	 _U-SR--" = Average of the maximum relationship of an animal with other animals 
not within its own fold  
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Table 2.3. Red Angus adjusted Rand index 
Clustering 
Method1 

K-
means 

K-medoids PCN 
(Data) 

PCN 
(Cov) 

PCG 
(Data) 

PCG 
(Cov) 

Random 

K-means 1.00 0.14 0.26 0.45 0.22 0.21 0.00 
K-medoids  1.00 0.10 0.07 0.08 0.08 0.00 
PCN (Data)   1.00 0.23 0.15 0.14 0.00 
PCN (Cov)    1.00 0.19 0.19 0.00 
PCG (Data)     1.00 0.67 0.00 
PCG (Cov)      1.00 0.00 

Random       1.00 
1K-means = clustering based on k-means using the numerator relationship matrix; K-
medoid = clustering based on k-medoids using the numerator relationship matrix; PCN 
(Data) = Principle component clustering using a numerator relationship matrix(A = 
Data); PCN (Cov) = Principle component clustering using a numerator relationship 
matrix(A = Covariance matrix); PCG (Data) = Principle component clustering using an 
identical by state genomic relationship matrix (G = Data); PCG (Cov) = Principle 
component clustering using an identical by state genomic relationship matrix (G = 
Covariance matrix); Random = random clustering  
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Table 2.4. Simulated adjusted Rand index and standard errors of randomly selected genotyped animals (above diagonal) and 
selection of top animals for genotyping (below diagonal) 

Clustering 
Method1 

K-means K-medoids PCN (Data) PCN 
(Cov) 

PCG (Data) PCG 
(Cov) 

Random 

K-means 1.00 0.09(0.0259) 0.48(0.0335) 0.45(0.0180) 0.34(0.0266) 0.32(0.0278) 0.00(0.0001) 
K-medoids 0.15(0.0194) 1.00 0.05(0.0132) 0.02(0.0054) 0.05(0.0125) 0.06(0.0133) 0.00(0.0001) 
PCN (Data) 0.39(0.0052) 0.06(0.0179) 1.00 0.56(0.0298) 0.43(0.0260) 0.40(0.0323) 0.00(0.0001) 
PCN (Cov) 0.37(0.0178) 0.02(0.0075) 0.44(0.0314) 1.00 0.35(0.0283) 0.31(0.0323) 0.00(0.0001) 
PCG (Data) 0.27(0.0213) 0.09(0.0172) 0.31(0.0478) 0.19(0.0393) 1.00 0.84(0.0320) 0.00(0.0001) 
PCG (Cov) 0.26(0.0183) 0.10(0.0180) 0.28(0.0377) 0.16(0.0304) 0.85(0.0210) 1.00 0.00(0.0001) 

Random 0.00(0.0002) 0.00(0.0001) 0.00(0.0001) 0.00(0.0001) 0.00(0.0004) 0.00(0.0004) 1.00 
1 K-means = clustering based on k-means using the numerator relationship matrix; K-medoid = clustering based on k-medoids 
using the numerator relationship matrix; PCN (Data) = Principle component clustering using a numerator relationship 
matrix(A = Data); PCN (Cov) = Principle component clustering using a numerator relationship matrix(A = Covariance 
matrix); PCG (Data) = Principle component clustering using an identical by state genomic relationship matrix (G = Data); 
PCG (Cov) = Principle component clustering using an identical by state genomic relationship matrix (G = Covariance matrix); 
Random = random clustering  
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Table 2.5. Average accuracy estimates and standard errors across all 5 folds for Red 
Angus. 

  Adjusted 
Phenotypes3 

DEBV4 

Trait1 Clustering 
Method2 

N r!",$5 SE6 N r!",$ SE 

 
BWT 

 
Kmeans 

 
9,282 

 
0.49 

 
0.06 

 
7,214 

 
0.69 

 
0.05 

 Kmedoids  0.49 0.05  0.66 0.04 
 PCN (Data)  0.56 0.06  0.68 0.04 
 PCN (Cov)  0.60 0.06  0.68 0.04 
 PCG (Data)  0.55 0.06  0.67 0.04 
 PCG (Cov)  0.58 0.06  0.68 0.04 
 Random  0.77 0.10  0.74 0.03 

YWT Kmeans 6,278 0.46 0.08 6,061 0.54 0.06 
 Kmedoids  0.54 0.09  0.48 0.05 
 PCN (Data)  0.55 0.08  0.56 0.05 
 PCN (Cov)  0.53 0.07  0.55 0.05 
 PCG (Data)  0.57 0.08  0.58 0.04 
 PCG (Cov)  0.57 0.08  0.57 0.04 
 Random  0.57 0.04  0.63 0.04 

MARB Kmeans 5,582 0.40 0.09 5,275 0.52 0.08 
 Kmedoids  0.44 0.09  0.49 0.07 
 PCN (Data)  0.54 0.12  0.59 0.06 
 PCN (Cov)  0.49 0.10  0.54 0.07 
 PCG (Data)  0.48 0.10  0.52 0.06 
 PCG (Cov)  0.48 0.10  0.52 0.06 
 Random  0.46 0.08  0.60 0.06 

REA Kmeans 5,582 0.32 0.07 5,115 0.55 0.08 
 Kmedoids  0.32 0.07  0.59 0.08 
 PCN (Data)  0.38 0.06  0.62 0.07 
 PCN (Cov)  0.38 0.06  0.64 0.07 
 PCG (Data)  0.41 0.08  0.63 0.07 
 PCG (Cov)  0.43 0.08  0.64 0.07 
 Random  0.57 0.11  0.67 0.07 

1BWT = birth weight; YWT = yearling weight; MARB = marbling; REA = ribeye area 
2K-means = clustering based on k-means using the numerator relationship matrix; K-
medoid = clustering based on k-medoids using the numerator relationship matrix; PCN 
(Data) = Principle component clustering using a numerator relationship matrix(A = 
Data); PCN (Cov) = Principle component clustering using a numerator relationship 
matrix(A = Covariance matrix); PCG (Data) = Principle component clustering using an 
identical by state genomic relationship matrix (G = Data); PCG (Cov) = Principle 
component clustering using an identical by state genomic relationship matrix (G = 
Covariance matrix); Random = random clustering 
3Adjusted Phenotypes for MARB and REA were the ultrasonically measured 
intramuscular fat percentage and rib eye area, respectively 
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4DEBV = Deregressed Estimated Breeding Value 
5r!",$ = genetic correlation between GBV and either adjusted phenotype or DEBV 
6S.E. = average standard error across folds  
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Table 2.6. Average estimated and true accuracy values and standard errors across all 5 
simulations for cross validation. 

Selection 
Strategy1 

Response 
Variable2 

Clustering 
Method3 

r!",$4 S.E.5 r!",%&'6 S.E. 

Random 
Selection 

 
Phenotype 

 
Kmeans 

 
0.81 

 
0.009 

 
0.77 

 
0.007 

  Kmedoids 0.81 0.016 0.78 0.010 
  PCN (Data) 0.82 0.011 0.78 0.008 
  PCN (Cov) 0.83 0.013 0.77 0.010 
  PCG (Data) 0.84 0.016 0.78 0.009 
  PCG (Cov) 0.84 0.015 0.78 0.008 
  Random 0.85 0.015 0.80 0.008 
 DEBV Kmeans 0.84 0.009 0.78 0.006 
  Kmedoids 0.86 0.008 0.79 0.008 
  PCN (Data) 0.86 0.009 0.80 0.006 
  PCN (Cov) 0.85 0.011 0.79 0.008 
  PCG (Data) 0.85 0.013 0.79 0.008 
  PCG (Cov) 0.86 0.011 0.80 0.007 
  Random 0.90 0.010 0.82 0.007 
 

Top EBV 
 

Phenotype 
 

Kmeans 
 

0.49 
 

0.015 
 

0.60 
 

0.008 
  Kmedoids 0.47 0.012 0.61 0.005 
  PCN (Data) 0.49 0.016 0.62 0.007 
  PCN (Cov) 0.51 0.006 0.62 0.006 
  PCG (Data) 0.49 0.017 0.62 0.007 
  PCG (Cov) 0.49 0.011 0.62 0.006 
  Random 0.52 0.020 0.64 0.006 
 DEBV Kmeans 0.45 0.024 0.66 0.009 
  Kmedoids 0.47 0.019 0.66 0.006 
  PCN (Data) 0.48 0.019 0.67 0.006 
  PCN (Cov) 0.44 0.018 0.68 0.004 
  PCG (Data) 0.47 0.021 0.67 0.004 
  PCG (Cov) 0.48 0.018 0.68 0.004 
  Random 0.51 0.016 0.71 0.006 

1Random Selection = 5,000 animals randomly chosen across all 10 generations; Top EBV 
= 500 individuals from each of the 10 generations selected 
2Phenotype = raw phenotype; DEBV = Deregressed Estimated Breeding Value  
3K-means = clustering based on k-means using the numerator relationship matrix; K-
medoid = clustering based on k-medoids using the numerator relationship matrix; PCN 
(Data) = Principle component clustering using a numerator relationship matrix(A = 
Data); PCN (Cov) = Principle component clustering using a numerator relationship 
matrix(A = Covariance matrix); PCG (Data) = Principle component clustering using an 
identical by state genomic relationship matrix (G = Data); PCG (Cov) = Principle 
component clustering using an identical by state genomic relationship matrix (G = 
Covariance matrix); Random = random clustering 
4r!",$ = genetic correlation between GBV and either phenotype or DEBV 
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5S.E. = Standard deviation of correlations across replicates divided by the square root of 
the number of replicates 
6r!",%&' = Residual correlations between GBV and true breeding value including 
generation, fold, and generation*fold in the model  
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Table 2.7. Average estimated and true regression coefficients and standard errors across 
all 5 simulations for cross validation. 

Selection 
Strategy1 

Response 
Variable2 

Clustering 
Method3 

b(,!"4 S.E.5 b)*+,!" 6 S.E. 

Random 
Selection 

 
Phenotype 

 
Kmeans 

 
0.91 

 
0.005 

 
0.85 

 
0.008 

  Kmedoids 0.92 0.011 0.83 0.010 
  PCN (Data) 0.92 0.004 0.86 0.005 
  PCN (Cov) 0.90 0.008 0.86 0.006 
  PCG (Data) 0.92 0.006 0.86 0.007 
  PCG (Cov) 0.92 0.005 0.85 0.005 
  Random 0.91 0.012 0.85 0.008 
 DEBV Kmeans 0.87 0.005 0.86 0.008 
  Kmedoids 0.86 0.008 0.84 0.009 
  PCN (Data) 0.88 0.008 0.87 0.004 
  PCN (Cov) 0.88 0.008 0.87 0.006 
  PCG (Data) 0.89 0.006 0.87 0.006 
  PCG (Cov) 0.89 0.007 0.87 0.005 
  Random 0.90 0.010 0.86 0.007 
 

Top EBV 
 

Phenotype 
 

Kmeans 
 

0.55 
 

0.018 
 

0.73 
 

0.013 
  Kmedoids 0.54 0.009 0.70 0.007 
  PCN (Data) 0.54 0.014 0.74 0.009 
  PCN (Cov) 0.53 0.005 0.75 0.014 
  PCG (Data) 0.55 0.025 0.73 0.013 
  PCG (Cov) 0.55 0.018 0.73 0.012 
  Random 0.57 0.014 0.75 0.009 
 DEBV Kmeans 0.42 0.022 0.78 0.007 
  Kmedoids 0.44 0.018 0.75 0.008 
  PCN (Data) 0.46 0.019 0.80 0.003 
  PCN (Cov) 0.41 0.016 0.81 0.007 
  PCG (Data) 0.44 0.024 0.78 0.005 
  PCG (Cov) 0.44 0.019 0.78 0.004 
  Random 0.46 0.016 0.83 0.006 

1Random Selection = 5,000 animals randomly chosen across all 10 generations; Top EBV 
= 500 individuals from each of the 10 generations selected 
2Phenotype = raw phenotype; DEBV = Deregressed Estimated Breeding Value  
3K-means = clustering based on k-means using the numerator relationship matrix; K-
medoid = clustering based on k-medoids using the numerator relationship matrix; PCN 
(Data) = Principle component clustering using a numerator relationship matrix(A = 
Data); PCN (Cov) = Principle component clustering using a numerator relationship 
matrix(A = Covariance matrix); PCG (Data) = Principle component clustering using an 
identical by state genomic relationship matrix (G = Data); PCG (Cov) = Principle 
component clustering using an identical by state genomic relationship matrix (G = 
Covariance matrix); Random = random clustering 
4b(,!"  = regression coefficient of either phenotype or DEBV on GBV 
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5S.E. = Standard deviation of correlations across replicates divided by the square root of 
the number of replicates 
6b)*+,!"  = regression coefficient of true breeding value on GBV and including generation, 
fold, and generation*fold in model  
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Table 2.8. Average estimated and true accuracy values and standard errors across all 5 
simulations for forward validation. 

Selection 
Strategy1 

Response 
Variable2 

Training 
Population 

(Generations)3 

r!",$4 S.E.5 r!",%&'6 S.E. 

Random 
Selection 

 
Phenotype 

 
6-11 

 
0.77 

 
0.024 

 
0.77 

 
0.008 

  6-12 0.82 0.032 0.79 0.008 
  6-13 0.82 0.019 0.80 0.007 
  6-14 0.87 0.024 0.81 0.009 
 DEBV 6-11 0.78 0.015 0.77 0.008 
  6-12 0.80 0.014 0.79 0.007 
  6-13 0.82 0.014 0.80 0.009 
  6-14 0.83 0.018 0.82 0.006 
 

Top EBV 
 

Phenotype 
 

6-11 
 

0.76 
 

0.033 
 

0.73 
 

0.009 
  6-12 0.76 0.024 0.74 0.005 
  6-13 0.76 0.017 0.75 0.011 
  6-14 0.79 0.023 0.77 0.014 
 DEBV 6-11 0.75 0.020 0.74 0.010 
  6-12 0.77 0.015 0.75 0.007 
  6-13 0.79 0.006 0.78 0.009 
  6-14 0.82 0.011 0.81 0.004 

1Random Selection = 5,000 animals randomly chosen across all 10 generations; Top EBV 
= 500 individuals from each of the 10 generations selected 
2Phenotype = raw phenotype; DEBV = Deregressed Estimated Breeding Value 
3Training Population (Generations) = Discrete generations used for the training data set. 
Evaluation set was always generation 15 
4r!",$ = genetic correlation between GBV and either phenotype or DEBV 
5S.E. = Standard error of estimated correlations across replicates divided by the square 
root of the number of replicates 
6r!",%&' = Residual correlations between GBV and true breeding value and including 
intercept in model  
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Table 2.9. Average estimated and true regression coefficients and standard errors across 
all 5 simulations for forward validation. 

Selection 
Strategy1 

Response 
Variable2 

Training 
populations 

(Generations)3 

b(,!" 4 S.E.5 b)*+,!"6 S.E. 

Random 
Selection Phenotype  

6-11 
 

0.89 
 

0.016 
 

0.90 
 

0.008 
  6-12 0.91 0.011 0.92 0.013 
  6-13 0.89 0.014 0.91 0.010 
  6-14 0.89 0.008 0.91 0.002 
 DEBV 6-11 0.86 0.011 0.90 0.007 
  6-12 0.88 0.007 0.91 0.012 
  6-13 0.88 0.007 0.92 0.005 
  6-14 0.89 0.011 0.92 0.004 
 

Top EBV 
 

Phenotype 
 

6-11 
 

1.14 
 

0.037 
 

1.18 
 

0.027 
  6-12 1.10 0.026 1.12 0.022 
  6-13 1.10 0.022 1.11 0.017 
  6-14 1.06 0.011 1.09 0.010 
 DEBV 6-11 1.10 0.020 1.15 0.014 
  6-12 1.07 0.013 1.10 0.011 
  6-13 1.07 0.019 1.11 0.015 
  6-14 1.06 0.014 1.10 0.010 

1Random Selection = 5,000 animals randomly chosen across all 10 generations; Top EBV 
= 500 individuals from each of the 10 generations selected 
2Phenotype = raw phenotype; DEBV = Deregressed Estimated Breeding Value 
3Training Population (Generations) = Discrete generations used for the training data set. 
Evaluation set was always generation 15 
4b(,!"  = regression coefficient of either phenotype or DEBV on GBV 
5S.E. = Standard deviation of correlations across replicates divided by the square root of 
the number of replicates 
6b)*+,!"  = Residual regression coefficient of true breeding value on GBV and including 
intercept in model 
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Figure 2.1: Schematic of simulation process. 1Replacement rates: 0.4 for sires; 0.2 for 
dams. 2Animals culled randomly or based on EBV or when they were in the population as 
a parent for 12 generations. 3Sires and dams mated randomly with the caveat Aij (additive 
relationship between animals i and j) was less than 0.125 
  

Generation 6:  
 Progeny selected on highest EBV 

Randomly mate 100 sires and 
2,000 dams (Aij < 0.125) 3 

Parents cull based on EBV 

Generate founder population 
N, = 100,N- = 2000 

Generation 1:  
 Progeny selected randomly1 

Randomly mate 100 sires and 
2,000 dams 

Parents culled randomly1,2 

 

Generation 5:  
 Progeny selected randomly 

Randomly mate 100 sires and 
2,000 dams 

Parents culled randomly 

Generation 15:  
 Progeny selected on highest EBV 

Randomly mate 100 sires and 
2,000 dams (Aij < 0.125) 

Parents cull based on EBV 
 

Establish pedigree 

Generations used for 
analysis 
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Chapter 3 

GENOMIC PREDICTION USING POOLED DATA IN A SINGLE-STEP GENOMIC 

BEST LINEAR UNBIASED PREDICTION FRAMEWORK 

 

3.1 Abstract 

Economically relevant traits are routinely collected within the commercial 

segments of the beef industry but are rarely included in genetic evaluations because of 

unknown pedigrees. Individual relationships could be resurrected with genomics, but this 

would be costly; therefore, pooling DNA and phenotypic data provides a cost-effective 

solution.  Pedigree, phenotypic, and genomic data were simulated for a beef cattle 

population consisting of 15 generations. Genotypes mimicked a 50k marker panel (841 

quantitative trait loci were located across the genome, approximately once per 3 Mb) and 

the phenotype was moderately heritable. Individuals from generation 15 were included in 

pools (observed genotype and phenotype were mean values of a group). Estimated 

breeding values (EBV) were generated from a single-step GBLUP model. The effects of 

pooling strategy (random and minimizing or uniformly maximizing phenotypic variation 

within pools), pool size (1, 2, 10, 20, 50, 100, or no data from generation 15), and 

generational gaps of genotyping on EBV accuracy (correlation of EBV with true breeding 

values) were quantified. Greatest EBV accuracies of sires and dams were observed when 

there was no gap between genotyped parents and pooled offspring. The EBV accuracies 

resulting from pools were usually greater than no data from generation 15 regardless of 

sire or dam genotyping. Minimizing phenotypic variation increased EBV accuracy by 8% 

and 9% over random pooling and uniformly maximizing phenotypic variation, 
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respectively. A pool size of 2 was the only scenario that did not significantly decrease 

EBV accuracy compared to individual data when pools were formed randomly or by 

uniformly maximizing phenotypic variation (P>0.05). Pool sizes of 2, 10, 20, or 50 did 

not generally lead to statistical differences in EBV accuracy than individual data when 

pools were constructed to minimize phenotypic variation (P>0.05). Largest numerical 

increases in EBV accuracy resulting from pooling compared to no data from generation 

15 were seen with sires with prior low EBV accuracy (those born in generation 14). 

Pooling of any size led to larger EBV accuracies of the pools than individual data when 

minimizing phenotypic variation. Resulting EBV for the pools could be used to inform 

management decisions of those pools. Pooled genotyping to garner commercial-level 

phenotypes for genetic evaluations seems plausible although differences exist depending 

on pool size and pool formation strategy.  

 

 
3.2 Introduction 

 Millions of phenotypic records are collected annually within commercial sectors 

of livestock industries including commercial herds, feedlots, and abattoirs. However, 

most of these records are not included in genetic evaluations because of the lack of 

available pedigree ties between the commercial and nucleus (seedstock) animals. 

Examples of traits routinely recorded in commercial settings include carcass merit, 

disease incidence, female fertility, and growth traits.  Many of these trait complexes 

represent economically relevant traits, those that have a direct source of revenue or cost 

at the commercial level.  Pedigree ties inherently exist between commercial and 

seedstock animals, but they are often unknown due to lack of recording, group mating, or 
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the pedigree simply does not follow an animal through the entire production system (Bell 

et al., 2017). Kinship ties can be resurrected through genomic relationships; but even with 

the decreasing cost of genotyping, it is still not economically feasible to genotype all 

commercial animals. 

 Pooling DNA for genome-wide association studies (GWAS) has been shown to 

reduce the cost of genotyping (Sham et al., 2002) by selectively grouping animals based 

on phenotype and then genotyping a combined pool of DNA (Darvasi and Soller, 1994). 

Many studies have identified candidate quantitative trait loci (QTL) for traits using this 

approach – e.g., general cognitive ability in children (Fisher et al., 1999), fertility in 

Holstein cattle (Huang et al, 2010), low reproductive cattle with the presence of single 

nucleotide polymorphism (SNP) mapped to the Y chromosome (McDaneld et al., 2012), 

colorectal and prostate cancer in a Polish population (Gaj et al, 2012), and somatic cell 

score in Valdostana Red Pied cattle (Strillacci et al., 2014). Recently, pooled data has 

also been used for genetic prediction within a simulated aquaculture population 

(Sonesson et al., 2010), Brahman and Tropical composite cattle (Henshall et al., 2012; 

Reverter et al., 2016), Merino sheep (Bell et al., 2017), and a simulated cattle data set 

(Alexandre et al., 2019). Pooling data, genotypes and thus phenotypes, not only reduces 

the cost of genotyping, but also allows the inclusion of phenotypes that are typically only 

observed at the commercial level in genetic evaluations.  

The aims of large-scale genetic evaluations should be to improve commercial-

level phenotypes that directly impact the profitability of commercial enterprises. 

However, the majority of, if not all, phenotypes recorded in nucleus (seedstock) settings 

are indicator traits. A comprehensive genetic evaluation would combine indicator traits 
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from nucleus animals with the target phenotypes from commercial animals, and to do so 

would require the use of individual and pooled data simultaneously.  However, in some 

species (e.g., beef cattle) not all parent animals are genotyped thus necessitating the use 

of both pedigree and genomic kinship as in single-step genomic best linear unbiased 

prediction (ssGBLUP). Moreover, the estimated breeding values (EBV) of pools could 

themselves be used to inform management-level decisions. To our knowledge, previous 

literature has not investigated the accuracy of EBV of the pools themselves. 

Consequently, the objectives of this paper were to quantify the impact of pool size, 

method of assigning animals to pools, and generational gaps between the genotyped 

nucleus (seedstock) and commercial animals on the resulting accuracy of EBV of parents 

and grand-parents and of the pools in a ssGBLUP framework utilizing simulation.  

 

3.3 Materials and Methods 

Animal care and use committee approval was not obtained for this study as all 

data were simulated. 

 

3.3.1 Simulation 

The simulated data used for the analysis was previously described by Baller et al., 

2019. Briefly, a purebred beef cattle population was simulated using Geno-Diver 

(Howard et al., 2017). Five replicates were simulated, each with a different founder 

genome. Individuals contained 29 chromosomes, with 29 QTL per chromosome. Markers 

mimicked those from a 50k SNP panel and were randomly distributed across the genome. 

Locations of the markers and QTL were randomly drawn from separate uniform 
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distributions. A phenotype with a heritability of 0.4 was simulated. The Markovian 

Coalescence Simulator (MaCS) program (Chen et al., 2009) generated a founder genome 

in which a large amount of short-range linkage disequilibrium was created. The founder 

population was assumed to have an effective population size of 70. Founder animals were 

randomly selected and mated for five generations in order to establish a pedigree. For an 

additional ten generations, individuals were randomly mated with the caveat that 

individuals with an additive relationship of 0.125 or greater were not mated together. 

These last 10 generations were selectively replaced based on the highest EBV determined 

by pedigree-based BLUP with replacement rates of 0.2 and 0.4 for dams and sires, 

respectively. Animals remained within the breeding population until they were culled for 

low EBV or until they had been a parent for 12 generations. 

  

3.3.3 Pooling 

Individuals born in generation 15 (n = 2,000) were assigned to pools, where each 

individual was included in only one pool per scenario. Pool sizes included 2, 10, 20, 50, 

or 100 individuals, resulting in 1,000, 200, 100, 40, or 20 pools, respectively. The pool 

size was consistent within each scenario. Pool assignments were determined in three 

ways: randomly, minimize phenotypic variation within a pool, and uniformly maximize 

phenotypic variation within a pool. In order to construct random pools, individuals were 

randomly assigned a pool number where the only caveat was consistent pool sizes. To 

minimize phenotypic variation within pools, individuals were ranked based on phenotype 

and then grouped together dependent on pool size such that for pool size 2, for example, 

the first two ranked animals were grouped together. This resulted in individuals with the 
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smallest phenotype in one pool while individuals with the largest phenotype were in 

another pool. To uniformly maximize phenotypic variation within pools, individuals were 

again ranked based on phenotype. Individuals with ranks i, i+r, …, i+r(q-1) were 

assigned to pool i, where r was the number of pools and q was the pool size. For example, 

when pool size was 2 and thus 1,000 pools were constructed, individuals with ranks one 

and 1,001 were assigned to pool one and individuals with ranks 1,000 and 2,000 were 

assigned to pool 1,000. Minimizing and uniformly maximizing phenotypic variation 

within pools were chosen to demonstrate extreme cases of pooling strategies. Minimizing 

variation within pools increases variation between pools. Alternatively, maximizing 

variation within pools decreases variation between pools. 

 Once the individuals were assigned to pools, the phenotypic record for a given 

pool was determined as the average of the individuals contributing to the pool. Pooling 

allele frequency (PAF) for each SNP is based on the normalized intensity of red and 

green signals from the genotyping assay and is an estimate of the proportion of alternate 

alleles at every SNP locus (McDaneld et al., 2012). These PAF can be used instead of 

traditional genotype calls of “0”, “1”, or “2” of individual animals. Pooled genotypes 

were constructed by averaging the genotype calls across the SNP for all individuals in a 

pool, resulting in quantitative PAF ranging from 0 to 2. In the current study, all genotypes 

were assumed to be known without error. Additionally, error associated with the 

formation of pooled genotypes was also ignored, for example, no over- or under-

representation of one individual’s DNA in a pool. Thus, it was assumed that no additional 

residual variation was introduced through the process of generating pooled genotypes or 

genotyping. In real populations, PAF can only range from 0 to 1. Within real data, a 
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minor adjustment can be made to genotype calls and PAF so that they are on the same 

scale (Bell et al., 2017).  

To mimic a commercial setting where pedigree ties are known to exist between 

the commercial and seedstock individuals but are not often recorded, the animals in 

generation 15 were not included in the pedigree. Therefore, the only ties between the 

pools and individuals in the rest of the population were quantified through genomic 

relationships.  

 As a means of comparison, pool sizes of 1 in generation 15 were also considered, 

which is equivalent to individuals having their own phenotypes and genotypes included 

in the analysis. In this case, PAF was not needed; genotypes entered the evaluation as the 

typical calls of “0”, “1”, or “2”.   Scenarios in which no information was included from 

generation 15 was also considered to serve as the alternate extreme comparison. This set 

of scenarios enables the illustration of the EBV accuracy gained with individual or 

pooled data compared to no data being utilized, which represents the current situation for 

many livestock industries, particularly those that are non-integrated.  

 

3.3.4 Missing generations of genotypes 

 All individuals (n=32,000) from the 15 generations had a genotype retained. 

However, in real livestock populations, genotypes of founder individuals are usually 

missing and there can be a generational gap between genotyped seedstock animals (e.g., 

natural service sires in beef cattle, an initial reference population) and commercial 

animals due to the cost of genotyping. Additionally, genotyped ancestors might be sparse 

because animals selected for genotyping may be superior or may have an associated 
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phenotype of particular interest or importance (Boligon et al., 2012). Thus, generational 

gaps of genotyping were induced. For all scenarios, genotypes were retained once 

selection began (individuals born in generation 6 or after). Four scenarios were 

considered: individuals up to and including those born in generation 11 were genotyped 

(Gen11); up to and including those born in generation 12 were genotyped (Gen12); up to 

and including those born in generation 13 were genotyped (Gen13); and up to and 

including those born in generation 14 were genotyped (Gen14). All individuals in 

generations 6 thru 14, no matter what scenario was considered, had a recorded phenotype 

as well as known pedigree relationships. Individuals born in generations 12, 13, or 14 that 

were not genotyped were included in the pedigree and were phenotyped. Individuals born 

in generations 0 thru 5 that appeared in a three-generation pedigree of the individuals 

born in generation 15 were included in the pedigree and phenotyped, whereas all others 

were excluded from the analysis. 

 

3.3.5 Analysis 

 Single-step GBLUP, which combines genomic and pedigree information in a 

kinship matrix typically known as )	(Aguilar et al., 2010; Christensen and Lund, 2010) 

was used in order to calculate EBV. The model used when only individual data were 

included in the analysis was y = ,b + .u + e where y was a vector of individual 

phenotypic observations, X was a known incidence matrix relating observations to fixed 

effects, b was a vector of fixed effects, Z was a known incidence matrix relating 

observations to random additive genetic effects, u was a vector of random additive 

genetic effects, and e was a vector of random residuals. It was assumed 123[u] = 6 =
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)σ./  and 123[e] = 8 = 9σ0/. The only fixed effect considered was the intercept because 

no other systematic effects were simulated. The inverse of H ()12) was constructed as: 

)13 = :12 + ;0 0
0 613 − ://12

= 

where :12 was the inverse of the numerator relationship matrix constructed using all 

animals in the pedigree using the principles derived by Hendersen (1976). Matrix :// 

was the pedigree-based relationship matrix of only the genotyped animals and was 

constructed according to Colleau (2002). The genomic relationship matrix, G, was 

calculated in the following way. First, a genomic relationship matrix (6456) was 

computed as 77!

/89"(219")
, where M is the centered genotype incidence matrix for 

individuals and >< is the allelic frequency of the second allele of the ith SNP (VanRaden, 

2008). Christensen et al. (2012) formulated a matrix (6=>5?0) in order to make 6456 and 

://	compatible by forcing the mean off-diagonal and diagonal elements of 6456 to equal 

the mean off-diagonal and diagonal elements of ://. This was done by setting 6=>5?0 =

β6456 + α, where β and α are found by solving the following system of linear equations: 

dıag(6456)GGGGGGGGGGGGGGβ + α = dıag(://)GGGGGGGGGGGGG 

6456GGGGGGβ + α = ://GGGGG 

Lastly, matrix 6=>5?0 was blended with :// with coefficients of 0.95 and 0.05, 

respectively, as suggested by VanRaden (2008) to produce the final genomic relationship 

matrix (6).  

 When pooled data were added to the analysis and following the notation 

established by Su et al. (2018), the underlying model was H[y = ,b + (.I)(Ju) + e] 

where vectors y, u, and e and matrices X and Z were defined the same as above. Let m 
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equal the number of individuals that were not pooled, and again q equal the number of 

individuals in a pool and r equal the number of pools. Matrix H had dimensions 

(m+r)x(m+rq) and was a design matrix that linked individual observations to the 

individuals in the pools they were contained in. Matrix S had dimensions (m+rq)x(m+r) 

and was an indicator matrix that linked individual genotypes to pooled genotypes. Matrix 

W had dimensions (m+r)x(m+rq) and was also a design matrix that linked individual 

breeding values to the breeding values of individuals in the pools they were contained in. 

Let j denote an animal and k denote a pool. Elements H@A,  J@A,  and MBC were 1 when j = k 

for individuals in generations 0 through 14, 2
D
 if the jth animal in generation 15 belonged 

to the kth pool, and 0 otherwise. The matrices T and  W average phenotypes and breeding 

values within pools.  Elements IA@ were 1 if the jth animal in generation 15 belonged to 

the kth pool and 0 otherwise.  

 Given the assumptions that individual data (genotypes and phenotypes) were 

unknown for individuals contained in pools, as could be the case in practice, the final 

prediction model was y∗ = ,∗b + .∗u∗ + e∗ where y∗ was a vector of individual 

observations of animals in generations 0 through 14 and pooled phenotypic observations 

of animals in generation 15, ,∗ was a known incidence matrix relating individual and 

pooled observations to fixed effects, b was a vector of fixed effects, .∗ was a known 

incidence matrix relating individual or pooled observations to random additive genetic 

effects, u∗ was a vector of random additive genetic effects of the individual animals in 

generations 0 through 14 and pooled animals in generation 15, and e∗ was a vector of 

random residuals. It was assumed 123[u∗] = 6∗ 	= )∗σ./ , and 123[e∗] = 8∗ =

diag(2
D
)σ0/ because the observations in y∗ are heterogeneous in information content given 
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some phenotypes are individuals and others are means of groups of individuals. The 

inverse of )∗ was constructed in the same fashion above except that the allelic 

frequencies, >< , were estimated from individuals in generations 0 through 14 as well as 

the pools. The inverse of ) and )∗	was constructed within R (R Core Team, 2017) and 

then used within ASReml v4.1 software (Gilmour et al., 2009) for the estimation of 

breeding values.  

Accuracy of EBV for sires and dams was estimated as the correlation between 

true breeding value (TBV) and predicted EBV. The EBV accuracies were estimated for 

each sex and the generation in which they were born. Accuracy of EBV for pools were 

estimated as the correlation between the average TBV of the individuals within the pool 

and the predicted EBV of the pool. To determine the significance of effects on the EBV 

accuracy, Analysis of Variance tests were performed with the following model: 

Q<BCFG = R + S< + TB + UC + ST<B + SU<C + TUBC + STU<BC + VF + W<BCFG 

where Q<BCFG was the EBV accuracy of sires/dams born in generations 11, 12, 13 or 14 or 

pools; R was the overall mean; S was the effect of generational gap; T was the effect of 

pooling strategy; U was the effect of pool size; V was the random effect of replicate; and W 

was the random residual. It was assumed V and W were distributed normally with a mean 

of zero and variance of XH/ and XI/, respectively. Significance was determined at the 0.05 

level.  

 

3.3.6 Expectations of pooled genomic relationships 

 Let 6J represent a genomic relationship matrix with no pooling. Let 6K	represent 

the expectation of the genomic relationship matrix when considering pooled and non-
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pooled individuals. The expected genomic relationship matrix is a function of 6J and can 

be partitioned into four distinct submatrices such that 6K = Y
622
K 62/

K

6/2
K 6//

K Z where 622
K  is the 

submatrix of relationships between individuals in generations 1 through 14, 62/
K  and 

6/2
K are the submatrices of relationships between individuals in generations 1 through 14 

and the pools, and  6//
K  is the submatrix of relationships between the pools. Similarly, the 

genomic relationship matrix can be partitioned into four distinct submatrices such that 

6J = Y622
J 62/J

6/2J 6//J
Z. Again, let q equal the pool size. The expectations of 6K	are as follows: 

1. 622
K = 622J .  

2. {6//
K }CC! = ^2

D
1L_ {6//J }CC! ^

2
D
1_ where {6//

K }CC! is the kk’ element of 6//
K  

corresponding to pools k and k’ and  {6//J }CC! is the kk’ submatrix of 6//J  

corresponding to individuals in pools k and k’. 

3. {62/
K }BC = {62/J }BC ^

2
M
1_ where {62/

K }BC is the jk element of 62/
K  corresponding to 

individual j and pool k and  {62/J }BC is the jk submatrix of 62/J  corresponding 

individual j and to individuals in pool k. 

From the expectations above it can be seen that for a pool of unrelated 

individuals, the diagonal elements of 6// are equal to 2
D
,	the off-diagonals of 6// are 

proportional to 2
D#

, and the elements of 62/	and	6/2 are proportional to 2
D
. However, as 

individuals in pools become more related, the diagonal of 6//N  is expected to be greater 

than 2
D
. 

3.4 Results and Discussion  
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3.4.1 Pooling 

 The number of dams contributing to a pool was equal to the pool size because 

dams have one progeny per generation. However, sires have 20 progeny per generation 

and so the number of contributing sires to a pool depended on pool size. The average 

number of contributing sires to a pool across pooling scenarios were 1, 1.99, 9.57, 18.22, 

39.76, and 63.96 for pools of 1, 2, 10, 20, 50, and 100, respectively. On average, random 

assignment led to the most sires contributing to a pool whereas minimizing phenotypic 

variation led to the smallest. However, these differences were small. The largest 

discrepancy was seen with a pool size of 100; random assignment led to an average of 

0.96 more contributing sires than when minimizing phenotypic variation within pools.  

  The correlations of the average phenotype and the average TBV within pools are 

depicted in Figure 3.1. Three distinct patterns emerge when considering pool formation. 

Randomly assigning individuals to pools led to approximately the same correlation 

between the average phenotype and average TBV regardless of pool size. When 

minimizing phenotypic variation within pools, the smallest correlation between average 

phenotype and average TBV was observed with a pool size of 1 and increased as pool 

size increased. A large increase was observed between pool sizes of 1 and 2, and again 

between pool sizes of 2 and 10. After pools of size 10, the gain in the correlation between 

average phenotype and average TBV plateaued with increasing pool size and approached 

1. When considering uniformly maximizing phenotypic variation within pools, the largest 

correlation was observed with a pool size of 1 and the smallest with a pool size of 100.  

 Figures 3.2 and 3.3 represent the average relationships of individuals across pools 

and within pools, respectively. Regardless of the pooling strategy or pool size, the 
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average relationship of individuals across different pools was approximately equal. 

Relative to relationships of individuals within pools, random assignment led to 

approximately equal relationships regardless of pool size with the exception of pool sizes 

of 2, due to random chance. When minimizing phenotypic variation within pools, 

relationships were the lowest for pool sizes of 2, the highest for pool sizes of 10, and 

intermediate for pools of 20, 50, and 100. Grouping individuals together with the same 

sire based on similar phenotypes was unlikely, especially with groups of two. Grouping 

some half-sibs together was more likely with pool sizes of 10, which led to the increase 

in average relationship within pools. The average relationships declined again with pools 

sizes of 20, 50, and 100 because of the large number of individuals in the pools. When 

uniformly maximizing phenotypic variation within pools, average relationships within 

pools were approximately equal with the exception with pools of 2, which led to the 

lowest relationships. This was because individuals with differing phenotypic values were 

grouped together and given a moderate heritability it was expected that they would not be 

highly related. 

 If individuals in pools were unrelated, expected values of the diagonal of 6//N  

were 2
D$

, where q@ was the size of the pool. The average realized values of the diagonal 

elements of 6//N  were 0.99, 0.50, 0.12, 0.07, 0.04, and 0.03 for pool sizes of 1, 2, 10, 20, 

50, and 100, respectively. Slight deviations of realized values are due to the fact that 

some related individuals were pooled together.  

   

3.4.2 EBV accuracies of sires and dams  
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Figures 3.4 and 3.5 depict the EBV accuracies of sires and dams, respectively, by 

generation of birth that resulted from different generational gaps in genotyping, pooling 

strategies, and pool sizes. Results of grand sires/dams are not shown as they follow the 

same patterns as sires/dams except delayed by one generation. Across all scenarios, the 

only significant effect was the generational gap in genotyping with the exception of sires 

and dams born in generation 11. The EBV accuracies of sires born in generation 11 were 

not significantly impacted by any effects while EBV accuracies of dams born in 

generation 11 were significantly impacted by both genotyping gaps and pool sizes.  

 

3.4.3 Generational gaps of genotyping 

Across all scenarios, the lowest EBV accuracies were observed when genotyping 

occurred only through generation 11 and the largest were observed when genotyping 

occurred through generation 14. Increases in EBV accuracy due to larger reference 

populations have been well documented in literature (e.g. Hayes et al. 2009; Daetwyler et 

al., 2010). Additionally, in a simulated data set, Lourenco et al. (2017) found that the 

accuracy of GEBV when using single-step GBLUP increased as more genotyped 

individuals were used. Note that when genotyping occurred through generation 14, this 

represented a situation where all information was used. Accuracies of EBV by year of 

birth for sires and dams were impacted by the generation in which genotyping stopped 

and EBV accuracies were highest when the genotyping occurred through or past the 

generation considered. Table 3.1 provides the least-squares means of EBV accuracies 

when different generational gaps in genotyping were considered. All differences of least-

squares means were significant. 
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The increase in EBV accuracy from when the sires and dams in a generation were 

genotyped versus when they were not was dependent on sex and the total number of 

progeny they had contributing to the evaluation.  The largest increase in EBV accuracy 

resulting from additional genotypes was observed with sires and dams born in generation 

14. Accuracy of EBV increased by 70% and 54% for sires and dams, respectively, from 

when genotyping stopped at generation 13 to 14. Accuracy of EBV increased by 9% and 

47% for sires and dams born in generation 13, respectively, from when genotyping 

stopped at generation 12 to 13. Sires born in generation 14 only had progeny that were 

born in generation 15, which were those that were pooled. Sires born in generation 13 

had 20 individually genotyped/pedigreed progeny in addition to the progeny that were 

pooled in generation 15. The increase in EBV accuracy from when sires were and were 

not genotyped was not as large for sires born in generation 13 as those born in generation 

14 because EBV accuracy of the sires were already relatively high due to the 20 

individual progeny born in generation 14 that were at least in the pedigree. The same 

concept applied to sires born in generations 11 and 12. Dams, on the other hand, had 

large increases in EBV accuracy from when they were and were not genotyped compared 

to sires born in the same generation because they had only one progeny per generation. 

Predictive ability of young animals for growth traits, measured as the correlation between 

corrected phenotypes and genomic EBV (GEBV), increased from when reference 

populations included only top bulls with accuracy for birth weight greater than 0.85 

(n=1,628) to when all genotyped animals were included (n=33,162) for an Angus 

population (Lourenco et al., 2015). The gaps in genotyping in the current research could 

reflect a similar situation in which the top accuracy animals (accuracy accumulated 



 

 

102 

because of more progeny) were included in the evaluation. From this result, it can be 

concluded that the quantity and quality of the information used for evaluation matters.  

Connectedness between individuals – deduced from pedigrees or genotypes – 

impacted EBV accuracies, with the latter giving rise to higher EBV accuracies. 

Additionally, the number of pedigreed progeny also impacted the EBV accuracies. With 

more pedigreed progeny already in the evaluation, EBV accuracies of sires did not 

increase as substantially from when individuals themselves were genotyped and when 

they were not genotyped. The EBV accuracies of sires and dams as a result of pooling 

were generally higher than if no data from generation 15 entered the evaluation. This was 

consistent whether the sires or dams in question were genotyped or were not.  

 

3.4.4 Pooling strategy 

Although not significant overall, significant differences were found when looking 

at pairwise differences in least-squares means of different pooling strategies. Differences 

were not significant between random assignment and uniformly maximizing phenotypic 

variation but were significant for the other pairwise comparisons. Minimizing phenotypic 

variation within pools led to larger EBV accuracies than the other two scenarios. The 

largest differences in least-squares means were found in sires born in generation 14 

where minimizing phenotypic variation resulted in an increase of EBV accuracy of 8% 

and 9% compared to random assignment and uniformly maximizing variation, 

respectively. Although other comparisons between these pooling scenarios were 

statistically significant when sires/dams were born in other generations, the difference 
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may not be practically different. The average increase across generations born and 

sires/dams was approximately 1% (results not shown).  

Henshall et al. (2012) concluded that pooling by the rank of phenotype within 

contemporary groups led to results more correlated with individual genotyping than 

pooling based on ranked, pre-adjusted phenotypes across contemporary groups. The 

current study did not include designed systematic effects, therefore contemporary groups 

were not considered when constructing pools. Within simulation, Alexandre et al. (2019) 

pooled individuals based on two traits, one with a heritability of 0.1 (trait 1) and the other 

of 0.4 (trait 2). The pools were constructed based on trait 1, trait 2, a combination of both, 

or randomly. Relationships between pools and 200 sires were estimated by genomic 

relationships alone. Construction of pools based on a single trait was similar to 

minimizing phenotypic variation within pools in the current study. Accuracies of GEBV, 

estimated as the correlation of GEBV and TBV, for a single trait were greatest when 

pools were constructed based on the trait itself and lowest when pools were constructed 

randomly. Therefore, the ways in which pools are constructed does impact the EBV 

accuracies of prediction. 

 

3.4.5 Pooling size 

Again, while the effect of pool size was not significant overall, some pairwise 

comparisons of least-squares means did show significant differences. Least-squares 

means of sire EBV accuracies are presented in Table 3.2. The EBV accuracies of sires 

resulting from pool sizes of 10, 20, 50, or 100 were not significantly different from those 

when no information from generation 15 was included in the evaluation when pools were 
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constructed randomly or by maximizing phenotypic variation. Exceptions to this were for 

pool sizes of 10 and 20 using either pooling strategy (sires born in generation 14 had 

significantly increased accuracy) and when pools of size 20 uniformly maximized 

variation (sires born in generation 13 had significantly increased accuracy). Estimated 

BV accuracies resulting from pool sizes of 2 were intermediate to situations in which 

progeny in generation 15 were individually genotyped and when no information from 

generation 15 was used. Additionally, the only differences in EBV accuracies resulting 

from pooling and individual data that were not significantly different were with pool 

sizes of 2. The gain in additional information when pooling randomly or by uniformly 

maximizing phenotypic variation within pools was not significant when progeny were 

grouped in pool sizes greater than 10 compared to when data from generation 15 was not 

used at all, often a numerical gain in accuracy was not even observed. A pooling size of 2 

was the only scenario that did not decrease the EBV accuracy significantly when pools 

were formed randomly or by uniformly maximizing phenotypic variation within pools. 

When minimizing phenotypic variation within pools, EBV accuracies of sires 

resulting from pool sizes of 50 or 100 were not significantly different than those when no 

information from generation 15 was included. Additionally, EBV accuracies from all 

pool sizes were not significantly different than individual information from generation 15 

with the exception of pool sizes of 10, 20, 50, and 100 when sires were born in generation 

12 and genotyping stopped at generation 12 or with pool sizes of 100 when genotyping 

stopped at either generations 13 or 14. These results also show that EBV accuracies from 

large pool sizes (50 or 100) show no improvement compared to when data from 

generation 15 was excluded completely.  It also shows that overall, even though there is a 
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reduction in EBV accuracy resulting from pooling compared to individual data, the 

reduction is not statistically significant. These results are consistent with Alexandre et al. 

(2019) who suggested pool sizes of 10 in order to retain EBV accuracy but also save on 

genotyping costs. However, Kuehn et al. (2018) suggested pool sizes of at least 20. In a 

study investigating the efficiency of estimated genomic relationships of pools to the 

animals that make up the pools and to other potentially related individuals, Kuehn et al. 

(2008) found that technical error (error due to the genotyping of the intensity of the 

florescent dye) was a minimal contribution to the total pooled error. It was also suggested 

the use of large pools because they are less prone to pool construction error – the planned 

representation of individual DNA to the pool. Thus, the impact of errors associated with 

PAF and pool construction decrease with large pool sizes.  

Although some statistically significant differences were found for pairwise 

comparisons of least-squares means of EBV accuracy of dams, differences in EBV 

accuracy did not exceed 0.02, and thus results are not presented.  

When comparing the decrease in EBV accuracy due to pooling compared to 

individual data, Alexandre et al. (2019) reported larger decreases compared to those 

presented herein and were dependent on the heritability of the trait. Alexandre et al. 

(2019) reported large drops in GEBV accuracy from individual data to pool sizes of 2 and 

10, but began to plateau with pool sizes of 20, 25, 50, and 100 for the trait with a 

heritability of 0.4, when pools were constructed based on the trait itself. The same 

authors reported that when pools were constructed randomly, GEBV accuracy of the trait 

with a heritability of 0.4 resulting from pool sizes of 10 was comparable to the GEBV 

accuracy of the lowly heritable trait. The more dramatic decreases in GEBV accuracy 
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observed by Alexandre et al. (2019) may be caused by the fact that only a sire’s own 

phenotype and the pools’ phenotypes were entered into the evaluation. In the current 

study other relatives’ information also entered into the evaluation, so the decrease in 

information as pool sizes became larger were not as detrimental, justifying the use of 

single-step evaluation.  

Presumably, results from when no information from generation 15 was included 

in the evaluation would serve as a lower boundary for EBV accuracy and the upper 

boundary would be defined by the case when progeny born in generation 15 were 

genotyped individually. However, when sires/dams were not genotyped and pools were 

constructed to minimize phenotypic variation within pools, EBV accuracies resulting 

from pooling were actually higher than if generation 15 had individual data. The EBV 

accuracies were maximized at pool sizes of 10. This phenomenon was likely a result of 

both the increased relationship within pools and the confidence in the average phenotype 

representing the pooled phenotype, determined by the correlation of average phenotype 

and average TBV in pools. These differences in EBV accuracy from individual data from 

generation 15 to any pool size were not significant except pools of 10, 20, 50 and 100 for 

sires born in generation 12 and genotyping stopped at generation 12, as already noted 

previously.  

 

3.4.6 EBV accuracy of pools 

 The EBV accuracy of pools are given in Figure 3.6. An Analysis of Variance 

showed the effects of pool size and the interaction between pool size and pooling strategy 

to be significant. Pools sizes of 100 had the lowest EBV accuracy and pool size of 1 had 
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the largest EBV accuracy using random assignment and uniformly maximizing 

phenotypic variation within pools. However, the effect of pooling when uniformly 

maximizing variation had larger effects on the EBV accuracy compared to random 

assignment to pools, seen by larger decreases in EBV accuracy as pool sizes increased. 

When pools were formed by minimizing phenotypic variation, pool sizes of 100 led to 

the largest EBV accuracies for the pools while individual data led to the lowest EBV 

accuracy. Accuracies of EBV resulting from pool sizes of 10 were significantly different 

compared to pool sizes of 2 and 1. However, EBV accuracies resulting from pools of 10 

compared to pool sizes of 20, 50, or 100 were not significantly different.  

Practical applications of pooling phenotypes and genotypes have been used 

before. Bell et al. (2017) used dag scores in Merino sheep to pool individuals in 

commercial flocks, resulting in categorical phenotypes and PAF for each of the pools. 

These PAF were combined with individual sire genotypes into a hybrid genomic 

relationship matrix (h-GRM) for the use in GBLUP estimations of GEBV of the sires. 

Pregnancy and lactation status, a categorical phenotype, in Brahman cows were used to 

pool cattle (Reverter et al., 2016). The resulting PAF from the pools were combined with 

individual genotypes of herd and stud bulls into an h-GRM for use in GBLUP estimations 

of GEBV for the fertility of bulls. The bulls were not the sires of the cows in the pools. 

Within both studies, pedigrees were unknown for the animals used for pooling. These 

studies showed the potential use of pooling to estimate GEBV of direct parents (Bell et 

al., 2017) or of seedstock individuals (Reverter et al. 2016). The work of Bell et al. 

(2017) and Reverter et al. (2016) represent the practical applications of the current study. 

However, because individual genotypes were not available, the loss of GEBV accuracy 
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was unknown, warranting further research in this area. Additionally, both Bell et al. 

(2017) and Reverter et al. (2016) pooled individuals based on similar categorical 

phenotypes, which would be similar to minimizing phenotypic variation within pools 

using a quantitative phenotype. The current research demonstrates the validity of work 

such as Bell et al. (2017) and Reverter et al. (2016), especially when pools are 

constructed in order to minimize phenotypic variation within the pools and pool size is 

less than 50. Results from such studies should lead to EBV accuracy that is not 

significantly different than when individual data is included. Further research with single-

step GBLUP and pooling DNA and phenotypic data are needed within real populations.    

 

3.5 Conclusions 

Accuracies of EBV from this simulation represent theoretical maximum EBV 

accuracies; realized EBV accuracies resulting from pooling could be less due to lab and 

genotyping errors. However, the results presented in this paper show the potential use of 

pooling data in order to economically make use of commercial data in genetic 

evaluations. The use of pooled phenotypes and genotypes in combination with a single-

step GBLUP evaluation can be a potential way to economically leverage the plethora of 

phenotypes from commercial sectors in combination with the individual level data 

(genotypes and phenotypes) from nucleus (seedstock) animals. When pools were 

constructed in such a way that minimized the phenotypic variation within pools, pool 

sizes of 2, 10, 20, or 50 did not generally lead to differences in EBV accuracy that are 

statistically different than when individual progeny data were used. Sires with prior low 

EBV accuracy benefited the most from pooled observations. Additionally, the resulting 
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EBV for the pools could be used to inform management decisions. Such examples would 

be using the EBV for marketing purposes or specialized feeding programs.    
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Table 3.1. Least-squares means estimates of EBV accuracies due to generational gaps of 
genotyping 

 Sires2  Dams3 

Generation 
Genotyping 

Stops1 

 
 

14 

 
 

13 

 
 

12 

 
 

11 

  
 

14 

 
 

13 

 
 

12 

 
 

11 
Gen11 0.38 0.82 0.83 0.76  0.48 0.53 0.60 0.83 
Gen12 0.41 0.83 0.87 0.72  0.50 0.54 0.83 0.85 
Gen13 0.46 0.90 0.90 0.79  0.53 0.82 0.84 0.85 
Gen14 0.79 0.91 0.90 0.83  0.82 0.83 0.84 0.86 

Std. Error 0.064 0.013 0.022 0.090  0.020 0.016 0.005 0.008 
1Gen11 = individuals up to and including those born in generation 11 were genotyped; 
Gen12 = individuals up to and including those born in generation 12 were genotyped; 
Gen13 = individuals up to and including those born in generation 13 were genotyped; 
Gen14 = individuals up to and including those born in generation 14 were genotyped  
2 Sires born in generations 14, 13, 12, or 11 
3 Dams born in generations 14, 13, 12, or 11  
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Table 3.2. Least-squares means estimates of EBV accuracies of sires due to pooling strategy, pool size, and generational gaps 
in genotyping 

  Born in Generation3 
  14  13  12  11 

Pooling 
Strategy1 

Pool 
Size2 

Gen 
114 

Gen 
125 

Gen 
136 

Gen 
147 

 Gen 
11 

Gen 
12 

Gen 
13 

Gen 
14 

 Gen 
11 

Gen 
12 

Gen 
13 

Gen 
14 

 Gen 
11 

Gen 
12 

Gen 
13 

Gen 
14 

Random 1 0.40 0.45 0.52b 0.87b  0.83 0.83 0.92b 0.93b  0.84 0.91b 0.92b 0.92b  0.82 0.80 0.85 0.88 
 2 0.38 0.42 0.48 0.82  0.82 0.83 0.91 0.91  0.83 0.89b 0.91 0.90  0.78 0.72 0.80 0.84 
 10 0.37 0.39 0.44 0.77a  0.82 0.83 0.90a 0.90a  0.83 0.86a 0.89a 0.89  0.72 0.69 0.77 0.80 
 20 0.37 0.39 0.43 0.75a  0.82 0.82 0.89a 0.90a  0.83 0.86a 0.89a 0.89a  0.73 0.68 0.76 0.79 
 50 0.36 0.38 0.42a 0.73a  0.82 0.82 0.89a 0.90a  0.83 0.85a 0.88a 0.88a  0.74 0.69 0.76 0.80 
 100 0.37 0.38 0.42a 0.73a  0.82 0.82 0.89a 0.89a  0.83 0.85a 0.88a 0.88a  0.74 0.69 0.76 0.80 
 0 0.37 0.38 0.42a 0.73a  0.82 0.82 0.89a 0.89a  0.83 0.85a 0.88a 0.88a  0.77 0.70 0.77 0.80 

Minimize 1 0.40 0.45 0.52b 0.87b  0.83 0.83 0.92b 0.93b  0.84 0.91b 0.92b 0.92b  0.82 0.80 0.85 0.88 
 2 0.40 0.46 0.54b 0.86b  0.83 0.83 0.92b 0.93b  0.84 0.90b 0.92b 0.91b  0.80 0.78 0.84 0.88 
 10 0.41 0.47 0.54b 0.85b  0.83 0.84 0.92b 0.92b  0.84 0.88a 0.91b 0.90  0.77 0.76 0.82 0.87 
 20 0.40 0.46 0.53b 0.84b  0.83 0.84 0.92b 0.92b  0.84 0.87a 0.90 0.90  0.77 0.76 0.82 0.87 
 50 0.39 0.44 0.50 0.82  0.83 0.83 0.91 0.91  0.83 0.87a 0.90 0.90  0.77 0.74 0.81 0.85 
 100 0.38 0.42 0.47 0.80  0.83 0.83 0.91 0.91  0.83 0.87a 0.90a 0.90a  0.76 0.72 0.80 0.84 
 0 0.37 0.38 0.42a 0.73a  0.82 0.82 0.89a 0.89a  0.83 0.85a 0.88a 0.88a  0.77 0.70 0.77 0.80 

Uniformly  1 0.40 0.45 0.52b 0.87b  0.83 0.83 0.92b 0.93b  0.84 0.91b 0.92b 0.92b  0.82 0.80 0.85 0.88 
Maximize 2 0.38 0.41 0.46 0.81  0.82 0.82 0.90a 0.90  0.83 0.89b 0.90 0.90  0.74 0.71 0.77 0.81 

 10 0.36 0.38 0.43 0.75a  0.82 0.82 0.89a 0.89a  0.83 0.86a 0.89a 0.89a  0.73 0.68 0.75 0.79 
 20 0.37 0.38 0.42a 0.74a  0.82 0.82 0.89a 0.89a  0.83 0.86a 0.89a 0.88a  0.74 0.69 0.76 0.79 
 50 0.36 0.38 0.42a 0.73a  0.82 0.82 0.89a 0.89a  0.83 0.85a 0.89a 0.88a  0.74 0.69 0.76 0.79 
 100 0.37 0.38 0.42a 0.73a  0.82 0.82 0.89a 0.89a  0.83 0.85a 0.88a 0.88a  0.75 0.69 0.76 0.80 
 0 0.37 0.38 0.42a 0.73a  0.82 0.82 0.89a 0.89a  0.83 0.85a 0.88a 0.88a  0.77 0.70 0.77 0.80 

Standard Error 0.073  0.015  0.023  0.100 
1Random = individuals were randomly assigned to pools; Minimize = individuals were pooled so that phenotypic variation 
within pools was minimized; Uniformly maximize = individuals were pooled so that phenotypic variation within pools was 
uniformly maximized  
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21 = individually genotyped and phenotyped; 2 = pool size of 2; 10 = pool size of 10; 20 = pool size of 20; 50 = pool size of 
50; 100 = pool size of 100; 0 = data from generation 15 did not enter the evaluation 
3Sires born in generations 14, 13, 12, or 11 
4Gen11 = individuals up to and including those born in generation 11 were genotyped 
5Gen12 = individuals up to and including those born in generation 12 were genotyped 
6Gen13 = individuals up to and including those born in generation 13 were genotyped 
7Gen14 = individuals up to and including those born in generation 14 were genotyped 
aWithin a column and pooling strategy, the least-squares means difference with a pool size of one is significant 
bWithin a column and pooling strategy, the least-squares means difference with when no information from generation 15 is 
included is significant  
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Figure 3.1. Correlation of average phenotype and average true breeding value (TBV) in 

pools. Pools resulting from different pooling strategies (Random = randomly allocated to 

pools; Minimize = minimize phenotypic variation within pools; Uniformly Maximize = 

uniformly maximize phenotypic variation within pools) and pool sizes 
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Figure 3.2. Average relationships of individuals across pools. Pools resulting from 

different pooling strategies (Random = randomly allocated to pools; Minimize = 

minimize phenotypic variation within pools; Uniformly Maximize = uniformly maximize 

phenotypic variation within pools) and pool sizes 
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Figure 3.3. Average relationships of individuals within pools. Pools resulting from 

different pooling strategies (Random = randomly allocated to pools; Minimize = 

minimize phenotypic variation within pools; Uniformly Maximize = uniformly maximize 

phenotypic variation within pools) and pool sizes 
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Figure 3.4. Estimated breeding value (EBV) accuracies of sires (estimated as the 

correlation between true breeding value (TBV) and predicted EBV). Presented by 

generation of birth resulting from different generational gaps in genotyping (Gen11 = 

individuals up to and including those born in generation 11 were genotyped; Gen12 = 

individuals up to and including those born in generation 12 were genotyped; Gen13 = 

individuals up to and including those born in generation 13 were genotyped; Gen14 = 

individuals up to and including those born in generation 14 were genotyped), pooling 

strategies (Random = randomly allocated to pools; Minimize = minimize phenotypic 

variation within pools; Uniformly Maximize = uniformly maximize phenotypic variation 

within pools), and pool sizes with error bars along x-axis 
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Figure 3.5. Estimated breeding value (EBV) accuracies of dams (estimated as the 

correlation between true breeding value (TBV) and predicted EBV). Presented by 

generation of birth resulting from different generational gaps in genotyping (Gen11 = 

individuals up to and including those born in generation 11 were genotyped; Gen12 = 

individuals up to and including those born in generation 12 were genotyped; Gen13 = 

individuals up to and including those born in generation 13 were genotyped; Gen14 = 

individuals up to and including those born in generation 14 were genotyped), pooling 

strategies (Random = randomly allocated to pools; Minimize = minimize phenotypic 

variation within pools; Uniformly Maximize = uniformly maximize phenotypic variation 

within pools), and pool sizes with error bars along x-axis
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Figure 3.6. Estimated breeding value (EBV) accuracies of pools (estimated as the 

correlation between the average true breeding value (TBV) of the individuals within the 

pool and predicted EBV of the pool). Pools resulting from different generational gaps in 

genotyping (Gen11 = individuals up to and including those born in generation 11 were 

genotyped; Gen12 = individuals up to and including those born in generation 12 were 

genotyped; Gen13 = individuals up to and including those born in generation 13 were 

genotyped; Gen14 = individuals up to and including those born in generation 14 were 

genotyped), pooling strategies (Random = randomly allocated to pools; Minimize = 

minimize phenotypic variation within pools; Uniformly Maximize = uniformly maximize 

phenotypic variation within pools), and pool sizes with error bars along x-axis 
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Chapter 4 

USING POOLED DATA FOR GENOMIC PREDICTION IN A BIVARIATE 

FRAMEWORK WITH MISSING DATA 

 

4.1 Abstract 

 Estimated breeding values (EBV) for economically relevant traits (ERT) are often 

informed with indicator traits from nucleus animals. Pooling data can enable the use of 

true ERT from commercial animals within genetic evaluations. Two moderately heritable 

traits (h2=0.4) with varying genetic correlations (0.1, 0.4, and 0.7), genotypes mimicking 

a 50K SNP chip, and pedigree data were simulated for a cattle population consisting of 

15 generations (n = 32,000) with random selection. The last generation of individuals, 

generation 15, was subjected to pooling (n=2,000). Missing records were induced in two 

ways. With sequential culling, all records for Trait 1 were recorded while only the top 

25%, 50%, 75%, or 100% of individuals with Trait 1 records had a Trait 2 record. 

Random missing records were induced by randomly selecting 80%, 90%, or 100% of 

individuals to have records for each trait separately. Gaps in genotyping were also 

explored whereby genotyping occurred through generation 13 or 14. Pools of 1, 20, 50, 

and 100 animals were constructed randomly or by minimizing phenotypic variation 

within pools. Results were also compared to scenarios where data from generation 15 did 

not enter the evaluation. The EBV were estimated using a bivariate single-step genomic 

best linear unbiased prediction model and EBV accuracies (estimated as the correlation 

between EBV and true breeding value) were calculated for each trait. The effects of gaps 

in genotyping, pool size, pooling strategy, genetic correlation, missing value scenario, 
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and percentage of records available on EBV accuracy were evaluated. Pools of 20 

animals constructed by minimizing phenotypic variation generally led to accuracies that 

were not different than using individual progeny data. Gaps in genotyping led to 

significantly different EBV accuracies (p < 0.05) for sires and dams born in the 

generation nearest the commercial animals that comprised the pools. As more records 

were recorded, EBV accuracies of both Trait 1 and Trait 2 increased. Trait 2 EBV 

accuracies approached Trait 1 EBV accuracies as less animals were culled due to 

sequential culling. Pooling of any size generally led to larger accuracies than no 

information from generation 15 regardless of the way missing records arose, the 

percentage of records available, or the genetic correlation. Given the results from this 

research, pooling data to aid in the use of commercial ERT in genetic evaluations can be 

utilized in multivariate cases with varying relationships between the traits and in the 

presence of systematic and randomly missing phenotypes. 

 

4.2 Introduction 

Most of the data included in beef cattle genetic evaluations in the US is recorded 

within the nucleus (seedstock) segment; however, economically relevant traits (ERT) are, 

by definition, only observed at the commercial level. Records (phenotypes) are routinely 

collected within the commercial level but the pedigree relationships needed to connect 

these records to seedstock animals are often missing due to lack of recording, group 

mating, or the information does not follow the animals as they move through the industry 

(Bell et al., 2017). These relationships could be estimated using genomics, but that would 

require all commercial animals with a phenotype to be individually genotyped. This level 
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of genotyping would not be economical. Nevertheless, inclusion of commercial data has 

enormous potential to increase the response to selection for traits that are economically 

important to the beef industry including feedlot performance, reproductive longevity, 

disease resistance, and carcass merit. An optimal solution would be to collect the true 

ERT from commercial herds and estimate relationships between commercial animals and 

seedstock animals in an economical manner for use in routine genetic evaluations. 

Genome-wide association studies (GWAS) in conjunction with pooling has 

shown to reduce the cost of genotyping (Sham et al., 2002) by grouping together animals 

with similar observations and then genotyping a pooled DNA sample from those groups 

(Darvasi and Soller, 1994). Many studies have used pooled DNA for GWAS to identify 

quantitative trait loci (QTL) in humans (e.g. general cognitive ability in children (Fisher 

et al., 1999) and colorectal and prostate cancer in a Polish population (Gaj et al., 2012)) 

and livestock (e.g. low reproductive cattle with the presence of SNP mapped to the Y 

chromosome (McDaneld et al., 2012), fertility in Holstein cattle (Huang et al., 2010), and 

somatic cell score in Valdostana Red Pied cattle (Strillacci et al., 2014)).    

Pooling has also been investigated for its utility in genetic prediction. Work has 

been done with simulation - e.g. Sonesson et al. (2010) simulated an aquiculture 

population whereas Alexandre et al. (2019) and Baller et al. (2020) simulated cattle 

populations. Pooled data in prediction has also seen use in real data sets – e.g. Henshall et 

al. (2012) and Reverter et al. (2016) used Brahman Tropical composite cattle, Bell et al. 

(2017) used Merino sheep, and Alexandre et al. (2020) used in silico Angus data. Most 

research has focused on the usefulness of pooling on a single trait. Alexandre et al. 

(2019) extended this concept to two traits, where pools were constructed on one trait or a 
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combination of two traits using genomic best linear unbiased prediction (GBLUP), and 

genomic EBV (GEBV) were estimated with univariate models.  

 To our knowledge, previous studies have not attempted to quantify how pooling 

separately on the traits affects the EBV accuracy of each trait or combined all information 

from the two traits in a bivariate model. Additionally, this study was designed to evaluate 

how the genetic correlation between the two traits can affect EBV accuracy as well as the 

impact of missing records. The objectives of this study were to evaluate factors that could 

impact the usefulness of pooling data for genetic prediction in a bivariate context. 

Consequently, the factors of pooling size, pooling strategy, generational gaps of 

genotyping, genetic correlation between two traits, how missing values arise, and the 

percentage of available records were evaluated within a single-step GLBLUP framework 

to determine how these factors impact EBV accuracy. 

 

4.3 Materials and Methods 

 

 Animal care and use committee approval was not required for this research as all 

data were simulated. 

 

4.3.1 Simulation 

 Five replicates of a simulation mimicking a purebred beef cattle population were 

carried out using Geno-Diver (Howard et al., 2017). Following Baller et al. (2019, 2020), 

each replicate contained a different founder genome comprised of 29 chromosomes each 

with a length of 87 Mb, which was determined as the average length of chromosomes 
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using the NCBI Bos Taurus 2009 assembly. Markers that represented a 50K SNP panel 

were randomly distributed across the genome; the location of 1,724 markers per 

chromosome and the quantitative trait loci (QTL) were drawn randomly from a uniform 

distribution with the parameters of 0 and the length of the chromosome. It was assumed 

the QTL occurred once per 3 Mb, resulting in 29 QTL per chromosome. Expanding on 

the simulations of Baller et al. (2019, 2020), two traits were simulated, each with a 

heritability of 0.4 resulting from phenotypic, additive, and dominance variances set to 1, 

0.4, and 0, respectively. Three different genetic correlations between the phenotypes were 

simulated for each of the 5 replicates representing low genetic correlation (0.1), moderate 

genetic correlation (0.4), and high genetic correlation (0.7).  The founder genomes were 

generated by the Markovian Coalescence Simulator (MaCS) program (Chen et al., 2009). 

Following Baller et al. (2019, 2020) founder genomes were generated to contain a large 

amount of short-range LD and the effective population size of the founder generation was 

set to 70. Founder animals consisted of 100 sires and 2,000 dams that were randomly 

mated for five generations and were randomly replaced, which were used to establish the 

pedigree. An additional ten generations were simulated where animals were mated 

randomly with the caveat that animals with a relationship of 0.125 or greater were not 

mated together. The last 10 generations were randomly selected, with replacement rates 

of 0.4 and 0.2 for sires and dams, respectively. Animals were also culled when they had 

been in the population as a parent for 12 generations. Each mating resulted in one 

progeny; thus, each sire had 20 progeny per generation while each dam only had 1. The 

final population consisted of a total of 15 generations (n=32,000).  
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4.3.2 Missing Records 

In industry, missing records can manifest in many ways, two of which were 

simulated in this study – sequential culling and randomly missing records. Selection 

occurs at various points in an animal’s lifetime. Some animals are culled based on a 

previously recorded trait(s) and do not have the opportunity to express traits later in life. 

To simulate this, all individuals had an observable Trait 1 phenotype. The animals with 

the highest 75%, 50%, or 25% Trait 1 phenotype had an observable Trait 2 phenotype 

recorded.. 

Missing records can also occurrandomly simply due to missed observations in the 

field. To simulate this scenario, three different percentages were considered – 100%, 

90%, or 80% of records were available (0%, 10%, or 20% or records were missing, 

respectively). The randomly missing records were determined for each trait 

independently, but with the same percentage of missing records – leading to 100% of 

Trait 1 and 100% of Trait 2 available, 90% of Trait 1 and 90% of Trait 2 available, or 

80% of Trait 1 and 80% of Trait 2 available. Even though animals were randomly 

chosen, the same random animals were chosen within each replicate for consistency of 

comparison; for example, the same 80% of animals were chosen to have records retained 

within each replicate. Independently, the same 90% of animals were chosen to have 

records retained within each replicated.  

 

4.3.3 Pooling 

 The individuals born in generation 15 (n=2000) were assigned to pools. Two sets 

of pools were constructed: the first set were constructed based on Trait 1 records and the 
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second set were based on Trait 2 records. Baller et al. (2020) recommended pool sizes of 

2, 10, 20, or 50 while Kuehn et al. (2018) recommended pool sizes of 20 as a minimum. 

Consequently, pool sizes of 20, 50, and 100 were simulated to illustrate a gradient from a 

recommended minimum to larger values. Pool sizes of 20, 50, and 100 individuals 

resulted in a total of 100 pools based on Trait 1 and 100 pools based on Trait 2 (total = 

200), 40 pools based on Trait 1 and 40 pools based on Trait 2 (total = 80), or 20 pools 

based on Trait 1 and 20 pools based on Trait 2 (total = 40), respectively. Pool 

assignments were determined in two different ways: 1) randomly or 2) minimizing the 

phenotypic variation (of Trait 1 or Trait 2) within a pool. Random pools were determined 

by randomly assigning individuals to a pool for Trait 1 and then again randomly assigned 

a pool for Trait 2. For example, for pool size of 20, an animal would first be randomly 

assigned to one pool from Pool 1 to Pool 100 for inclusion of its Trait 1 record, and then 

be randomly assigned to one pool from Pool 101 to 200 for inclusion of its Trait 2 record. 

To construct pools to minimize phenotypic variation within pools, individuals were first 

ranked based on their phenotypic record for Trait 1 and then grouped together dependent 

on the pool size. This process was then repeated for Trait 2. For example, with a pool size 

of 20, the animals with the smallest 20 phenotypes for Trait 1 were included in Pool 1 

and the smallest 20 phenotypes for Trait 2 were included in Pool 201. Pools that were 

constructed based on Trait 1 were assumed to have a missing record for Trait 2 and vice 

versa unless if the individuals making up the pools for Trait 1 and Trait 2 were identical 

in which case the pool had a record for both traits. Individuals could only be included in 

one pool per trait per “scenario”, where “scenario” is defined as a combination of missing 

record strategy, pooling strategy, percentage of missing records, and generation in which 
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genotyping stopped, but could be found in two pools if both traits were recorded. Pool 

size was consistent within each scenario. 

 The phenotypic record for a given pool was determined as the average phenotype 

of the individuals contributing to that pool. Genotypes of the pools were average 

genotype calls across all SNP of the individuals that made up the pool, and ranged from 0 

to 2, as described by Baller et al. (2020). It was assumed all genotypes were known 

without error and there was also no error introduced by pool formation leading to no 

additional residual error due to the process of pooling DNA samples or genotyping.  

 Pedigree ties between the commercial and seedstock animals are known to exist 

but they are often not recorded. Thus, following Baller et al. (2020), the pedigree of the 

animals in generation 15 were assumed unknown. The only ties between the pooled 

commercial animals and the seedstock population were estimated by genomic 

relationships. Missing records for animals in generation 15 followed the same scenarios 

as with the earlier generations: sequential culling and randomly missing records. 

 To provide a comparison of extreme cases, scenarios were considered where 

animals from generation 15 entered the evaluation individually (pool size of 1) and when 

the animals from generation 15 did not enter the evaluation at all (No gen 15). For pool 

size of 1, each animal in generation 15 had an opportunity to have an individual record 

for each trait dependent on whether or not their phenotypes were used for pooling and to 

have their individual genotype enter into the evaluation. For the case of missing records, 

some animals were not pooled at all; for consistency of comparing across scenarios, only 

the individuals that did appear in a pool were considered for pool size of 1. In this case 
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the genotype calls of these individuals were entered into the evaluation as the traditional 

“0”, “1”, or “2”.  

 

4.3.4 Missing generation of genotypes 

  In some cases, parents could potentially not be phenotyped because of the way 

missing records can arise. Even if the parents did not have a recorded phenotype, they 

were assumed to be genotyped. As with Baller et al. (2020), generational gaps in 

genotyping were induced between the seedstock and commercial animals because the 

cost of genotyping in real populations can be prohibitive. Therefore, the genotypes of 

animals above the pooled individuals were masked. Two scenarios were considered: 1) 

animals up to and including those born in generation 13 were genotyped (Gen13) and 2) 

animals up to and including those born in generation 14 were genotyped (Gen14). Baller 

et al. (2020) explored additional scenarios where more generations had genotypes masked 

but they led to similar results as Gen13. All animals in generations 6-14 were included in 

the pedigree regardless of the genotyping scenario. Additionally, founder animals’ may 

be missing or were not genotyped. Therefore, only animals in generations 0-5 that 

appeared in a three-generation pedigree of the pooled animals were included in the 

pedigree and it was assumed these animals were not genotyped. All other animals in 

generations 0-5 were excluded from the analysis. 

 

4.3.5 Analysis 

 A bivariate animal model utilizing single-step GBLUP was used to estimate EBV. 

Single-step GBLUP combines genomic and pedigree information into one kinship matrix 
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called H (Aguilar et al., 2010; Christensen and Lund, 2010). The model used when only 

individual observations were available (pool sizes of 1 and when generation 15 did not 

enter the evaluation) was: !
y!
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# where y# is a 

vector of individual phenotypic observations for the ith trait; '# was a known incidence 

matrix relating the observations to the fixed effects for the ith trait; b# was a vector of 

fixed effects for the ith trait; ,# was a known incidence matrix relating observations to the 

random additive genetic effects for the ith trait; u# was a vector of random additive 

genetic effects for the ith trait; and e# was a vector of random residuals for the ith trait. 

The only fixed effect included in the model for either trait was the intercept. It was 

assumed that var!
u!
u"
# = /	⨂	1 and var!

e!
e"
# = 2	⨂	3 where G is a 2x2 matrix containing 

the variance components for the additive effects and  R is a diagonal matrix containing 

the variances for the residual effects. The details of the construction of the inverse of the 

kinship matrix H (1$%) was described previously by Baller et al. (2020).  

 The underlying model introduced by Baller et al. (2020) was extended to a 

bivariate case. However, it was assumed the individual observations, both genotypes and 

phenotypes for Traits 1 and 2, of animals in generation 15 were unknown. Thus, the final 

prediction model used was &
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∗
 is a 

vector of individual and pooled phenotypic observations for the ith trait; '# was a known 

incidence matrix relating the individual and pooled observations to the fixed effects for 

the ith trait; b# was the same vector of fixed effects for the ith trait as above (containing 

only the intercept); ,# was a known incidence matrix relating individual and pooled 

observations to the random additive genetic effects for the ith trait; u# was a vector of 
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random additive genetic effects for individuals and pools for the ith trait; and e# was a 

vector of random residuals for individuals and pools for the ith trait. It was assumed that 

var&
u!
∗

u"
∗ ) = /	⨂1∗ and var&

e!
∗

e"
∗) = 2	⨂	diag(!') where again G and R are 2x2 matrices 

containing the variance components for the additive and residual effects, respectively. 

The variance of the residuals is the Kronecker product of R and a diagonal matrix with 

elements !', where q is the pool size, because the phenotypes in y# are heterogeneous in 

information content – the phenotypes for animals in generations 0-14 are individual 

phenotypes whereas the phenotypes for pools are averages of animals from generation 

15. The inverse of 1∗
 was constructed the same as H except that the allelic frequencies 

were estimated from individuals and pools. Pool constructions as well as the computation 

of inverses of H and 1∗
 were carried out in R (R Core Team, 2017). Breeding values 

were estimated in the ASReml v4.1 software (Gilmore et al., 2009) using the 

preconditioned conjugate gradients (PCG) method.  

 The accuracy of EBV for sires and dams were estimated as the correlation 

between the true breeding values (TBV) and the EBV. The accuracies were estimated 

separately for sires and dams, generation in which they were born (11, 12, 13, or 14), and 

for each trait (Trait 1 and Trait 2). The accuracy of the pools was estimated as the 

correlation between the average TBV of the animals that made up the pool and the EBV. 

An observation (EBV accuracy of a sire or dam born within a particular generation, 

replicate, missing record strategy, pooling strategy, percentage of missing records, and 

generation in which genotyping stopped – considered a  “scenario”) was deemed an 

outlier if it was identified in both an interquartile range (IQR) test within a replicate and 

an IQR test within a pool size. All data from the “scenarios” deemed as outliers were 
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removed. A generalized linear model was used to test for the association of factors with 

being an outlier. A variable identifying an observation as an outlier or not, y, was 

distributed as a Binomial with parameters N#()*+,- and π#()*+,- and the link function, 

<./01234 where: 

<./01234 = log ?
@./01234

1 − @./01234
C = < + D. + E/ + F0 + G1 + H(G)12 + I4 

< was the overall mean; D was the effect of generational gap; E was the effect of pooling 

strategy; F was the effect of pool size; G	was the effect of the way missing values arise; 

H(G) was the effect of percentage of available records nested within the way missing 

values arise; and I was the effect of replicate. A total of 8 outliers were identified and 

removed. Outliers were only identified within accuracies for Trait 1. The only significant 

factor associated with the outliers was pooling strategy in which minimizing phenotypic 

variation had a higher effect than random assignment. 

In the presence of outliers, medians are more robust than means; thus, final 

plotted accuracies are median values across the five replicates. However, to determine the 

significance of effects on the EBV accuracy, Analysis of Variance tests were performed 

with the following model: 

J./01234 = K + D. + E/ + F0 + G1 + H(G)12 + LE./ + LF./ + EF/0 + LG.1 + LH(G).12

+ EG.1 + EH(G).12 + FG.1 + FH(G).12 + I3 + M./01234 

where J was the EBV accuracy of sires/dams born in generations 11, 12, 13 or 14 or 

pools for Trait 1 or Trait 2 with outliers removed; K was the overall mean; D	was the 

effect of generational gap; E was the effect of pooling strategy; F was the effect of pool 

size; G	was the effect of the way missing values arise; H(G) was the effect of percentage 
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of available records nested within the way missing values arise; I was the random effect 

of replicate; and M was the random residual. The model was restricted to only two-way 

interactions. It was assumed I and M were distributed normally with a mean of zero and 

variance of N5
"
 and N6", respectively. Significance was determined at L = 0.05.  

 

4.3.6 Expectations of pooled genomic relationships 

 Baller et al. (2020) assumed individuals were only included in one pool, but with 

the extensions provided in this research, individuals can now be included in more than 

one pool – a pool based on its Trait 1 phenotype and a separate pool based on its Trait 2 

phenotype. Because of this modification, a slight generalization in the expectations of the 

pooled genomic relationships between the pools presented by Baller et al. (2020) is 

needed to account for the possibility of shared individuals among pools. Let the matrix 

/""
7

 represent the relationships between individuals in generation 15. Similarly, let /""
8

 

represent the relationships between the pools. The expected genomic relationship matrix 

/""
8

is a function of /""
7

 and follows: 

1. {/""
8 }00! = Q!' I)

9 S {/""
7 }00! Q

!
' I)!S where {/""

8 }00! is the kk’ element of /""
8

 

corresponding to pools k and k’,  {/""7 }00! is the kk’ submatrix of /""
7

 

corresponding to individuals in pools k and k’, and I0
9
 and I0! are indicator vectors 

for pools k and k’ with elements 1 if the individual is in the pool and 0 if the 

individual is not in the pool.  

Assume all individuals in generation 15 are unrelated. From the expectations above it 

can be seen that for pools of individuals, the diagonal elements of /""
8

 are equal to 
!
' and 
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the off-diagonals of /""
8

 are proportional to 
+
'"		where m is the number of individuals in 

common between two pools. Thus, the off-diagonals of /""
8

 between pools that were 

based off of the same trait are expected to be zero as they share no common individuals, 

but are expected to be proportional to 
!
:" if one animal is in common between pools based 

on different traits, proportional to 
"
:" if two animals are in common, and so on. If the 

individuals in generation 15 are related, as is the case in this simulation and likely with 

real data, the diagonal elements of /""
;

 are expected to be greater than 
!
' and the off 

diagonal elements of /""
;  between pools based on different traits will be greater than 

2
:  as 

the individuals in the pools become more related.  

 

4.4 Results and Discussion 

4.4.1 Pooling 

Figure 4.1 depicts the correlation between the average phenotype and average 

TBV of the pools. Regardless of genetic correlation, the way in which missing values 

arise, the percentage of available records, or the trait considered, pool sizes of 20, 50, and 

100 led to larger correlations of average phenotype and TBV compared to pool sizes of 1; 

this agrees with Baller et al. (2020). Previously, Baller et al. (2020) observed pools 

constructed randomly led to approximately similar correlations between average 

phenotype and TBV regardless of pool size. In the current study, this was not observed. 

No identifiable pattern in regards to pool sizes were observed with random pooling. 

However, the range of correlations between average phenotype and TBV were larger for 

sequential culling than for random missing records. 
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 The average relationships within a pool and across pools were approximately 

equal regardless of pool size. The comparison across pools was only considered within 

the trait the pools were designed for. Regardless of how missing values arise, the average 

relationships within a pool and between pools were approximately the same for Traits 1 

and 2 when pools were formed to minimize phenotypic variation. However, when pools 

were formed randomly, the average relationships of Trait 2 were typically higher than 

those of Trait 1, both within and across pools. The difference between the average 

relationships of pools based on Trait 1 and 2 becomes larger as the percentage of 

available records becomes smaller. The average relationships within pools and across 

pools within the trait the pools were designed for were lower than those observed by 

Baller et al. (2020). This could be an artifact of selection – Baller et al. (2020) simulated 

a population whereby selective replacement based on EBV was practiced whereas the 

current simulation employed random selection. 

 When considering the average relationships of individuals between pools based 

on Traits 1 and 2, it is important to note again that the same individuals were used for 

pooling across all pool sizes and pooling strategies. Additionally, within the way missing 

records arise and the percentage of individuals available, the individuals were always the 

same for consistency. Regardless of genetic correlation, the average relationship of 

individuals between pools based on Traits 1 and 2 increased as the percentage of records 

available increased when missing records arose randomly. This was caused by the fact 

that it was very unlikely the same animals would randomly have missing records for both 

traits, thus the greater difference in animals as the percentage of missing records 

increased. The average relationship of individuals between pools based on Traits 1 and 2 
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also increased as the percentage of records available increased with sequential culling and 

a genetic correlation of 0.7. This increase in relationship is expected as it is more likely 

related animals were retained during sequential culling when the genetic correlation is 

high. With a genetic correlation of 0.4 and sequential culling, the relationships between 

pools based on different traits were approximately the same regardless of the percentage 

of records available, except for when 25% of Trait 2 records were available, which led to 

lower average relationships. With a genetic correlation of 0.1, sequential culling, and 

across all percentages of available records, the relationships between pools based on 

different traits were approximately equal. 

 

4.4.2 EBV accuracies of sires and dams 

 Figures 4.2 and 4.3 depict the median EBV accuracies of sires for sequential 

culling and randomly missing records, respectively, depending on genetic correlation, 

generation the sires were born in, pooling strategy, percentage of missing records, and the 

generation in which genotyping stopped. Results of dams are not shown as they follow 

the same patterns as the sires. Although the same patterns exist with the sires and dams, 

two key differences do exist. First, the median EBV accuracies of dams were numerically 

lower than those of the sires. Additionally, the difference between EBV accuracy when 

pool sizes of 1 were used and when generation 15 did not enter the evaluation at all was 

smaller for dams than sires. Both of these were due to the fact that dams only had one 

progeny per generation while sires had 20.  

Pooling data has been implemented in practice. Reverter et al. (2016) used 

pooling within Brahman cattle for pregnancy and lactation status using GBLUP. 
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Estimations of GEBV for fertility were obtained for bulls that were not sires of the cattle 

that were pooled. Bell et al. (2017) used pooling within Merino sheep using dag scores 

also using GBLUP to attain estimates of GEBV. The accuracies of GEBV resulting from 

pooled data were not compared to a baseline of GEBV resulting from individual data, and 

so it is not known if the loss of accuracy in prediction due to pooling is significant or not. 

Alexandre et al. (2020) used Angus data in silico to compare the GEBV accuracies from 

pooling compared to GEBV accuracies of individual data. Nevertheless, the work of 

Reverter et al. (2016), Bell et al. (2017), and Alexandre et al. (2020) demonstrate the 

potential use of pooled data in genetic evaluations.  

 

4.4.3 Generational gap of genotyping 

For sires and dams born in generation 14, the EBV accuracies of both traits were 

lower when genotyping stopped at generation 13 than when genotyping occurred through 

generation 14 by 0.140 and 0.136 for sires and dams, respectively. This is because if 

genotyping stopped at generation 13, animals born in generation 14 were not genotyped. 

Large decreases in EBV accuracy were not found in sires or dams born in generations 13 

or earlier dependent on when genotyping stopped because the animals born in these 

generations were always genotyped. Baller et al. (2020) also noted that EBV accuracies 

of sires and dams by year of birth were highest when the genotyping occurred through or 

past the generation considered. Therefore, larger EBV accuracies are a result of 

connectedness arising from genomic relationships rather than pedigree relationships 

(Baller et al., 2020). Using single-step GBLUP in a simulated data set, the accuracy of 

GEBV increased as more genotyped individuals were used (Lourenco et al., 2017).  
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4.4.4 Pooling strategy and size 

 When pools were constructed randomly, the EBV accuracy resulting from any 

pool size or when generation 15 did not enter the evaluation was significantly lower than 

that from a pool size of 1. When pools were constructed to minimize phenotypic 

variation, more interesting comparisons were apparent. Ideally, for pooling to be an 

acceptable approach to include commercial data into evaluations, EBV accuracies of 

pools would be significantly different than those from when generation 15 did not enter 

the evaluation and not different from a pool size of 1. This occurred for pool sizes of 20, 

50, and 100 for sires born in generation 14 for Trait 1, pool size of 20 for dams born in 

generation 14 for Trait 1, and pool size of 20 for sires born in generations 13 and 14 for 

Trait 2. A less optimal situation would be where the EBV accuracies as a result from 

pooling were still significantly higher than when generation 15 did not enter the 

evaluation but also significantly lower than pool sizes of 1. This occurred with pool sizes 

of 20, 50, and 100 for sires born in generation 13 for Trait 1 and pool sizes of 50 and 100 

for sires born in generation 14 for Trait 2. These comparisons may be statistically 

significant; however, numerically, the largest pairwise difference was 0.03 as they were 

averaged over generation in which genotyping stopped, genetic correlation, the way in 

which missing records arose, and the percentage of missing records nested within how 

the missing records arose (results not shown). 

Previously, Baller et al. (2020) constructed pools to uniformly maximize 

phenotypic variation within pools, but it was determined this strategy resulted in 

comparable results to random allocation to pools and did not see improvement in EBV 
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accuracy above those from minimizing phenotypic variation within pools. Baller et al. 

(2020) concluded that when pools were constructed by minimizing phenotypic variation, 

pool sizes of 2, 10, 20, or 50 did not lead to EBV accuracies different from when 

individual progeny data were used. In a simulation of two traits, Alexandre et al. (2019) 

investigated pooling strategies based on trait 1, trait 2, a combination of both, or 

randomly to estimated GEBV. In contrast to the current study, pools were not reformed 

for individual traits, nor was a bivariate model used. Accuracies of GEBV of sires, 

estimated as the correlation of GEBV and TBV within a trait, were greatest when pools 

were constructed on the trait itself and lowest when pools were constructed randomly. 

Alexandre et al. (2020) investigated the use of pooling using Angus data in silico using 

three traits. The genomic EBV were again calculated using univariate models. Accuracy 

of GEBV were calculated as the correlation between the sire’s GEBV with pooled 

progeny data and the sire’s GEBV using individual progeny data. Pooling strategies 

employed by Alexandre et al. (2020) were 1) random pooling and 2) by phenotype – 

which is equivalent to minimizing phenotypic variation within pools in the current study. 

All three traits were not recorded across all animals which hindered the calculation of 

GEBV accuracy for one trait when the pools were constructed based on another trait. 

Regardless, they also found pooling by trait led to larger GEBV accuracies than pooling 

randomly. Alexandre et al. (2019) suggested pool sizes of 10 in order to compromise the 

loss in GEBV accuracy and cost saving of pooling; Alexandre et al. (2020) suggested this 

could be extended to pool sizes greater than 10. Pool sizes of 1, 2, 5, 10, 15, 20, and 25 

were investigated; even pool sizes of 25 did not lead to unreasonable losses of GEBV 

accuracies compared to individual data. In a study investigating the efficiency of 
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estimated genomic relationships of pools to the animals that make up the pools and to 

other potentially related individuals, Kuehn et al. (2018) suggested pools of at least 20 to 

lessen pool construction error.  

 

4.4.5 Missing records 

 Table 4.1 contains the least-squares means of the percentage of records available 

nested within how the missing records arose. For Trait 1, the EBV accuracies resulting 

from different rates of sequential culling were not significantly different for sires or dams 

born in generations 13 or 14, meaning that the EBV accuracies of Trait 1 did not increase 

or decrease as more animals were sequentially culled. This is not surprising as 100 

percent of Trait 1 records entered the evaluation for these scenarios. However, when 

looking at the EBV accuracies of Trait 2 resulting from different rates of sequential 

culling, all pairwise comparisons were significant. This means that as more animals were 

sequentially culled, the EBV accuracies of Trait 2 decreased significantly. When records 

were randomly missing, pairwise comparisons were significant, meaning that as the 

percentage of available records increased, so did the EBV accuracies. Even though these 

comparisons were statistically significant, the numerical increase in EBV accuracy were 

small, typically only by 0.1 from 80% to 90% available records or 90% to 100% 

available records. It is important to note that these least-squares means were averaged 

over pool sizes, pooling strategy, genetic correlation, and the generation in which 

genotyping stopped. Overall, as more records were available, the EBV accuracies of the 

traits increased. 
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 The effect of the population size on EBV accuracy has been well documented in 

literature. When GEBV are estimated by SNP effect estimates summed across an 

individual’s genome, the more phenotypic records that are available to estimate the SNP 

effects, the more accurate genomic selection will be (Hayes et al., 2009). Daetwyler et al. 

(2010) also found that larger numbers of individuals in the training set led to larger EBV 

accuracies when both GBLUP and BayesB were used. Abdollahi‐Arpanahi et al. (2015) 

reported that as the training population (the number of individuals with genotypes and 

phenotypes) increased, the correlation between predicted and observed values increased.  

Guo et al. (2014) studied the difference in the reliabilities of GEBV, measured as 

the squared correlation between GEBV and TBV, of two traits using all available data or 

assuming 90% of the EBV for the first trait was not used for genomic selection or 90% of 

the EBV for second trait was not used for genomic selection. The GEBV were estimated 

using GBLUP where the response variables were traditional EBV. The first trait had a 

heritability of 0.3 while the second trait had a heritability of 0.05 and the genetic 

correlation was 0.5. When there were missing records for the first trait, the reliability of 

GEBV decreased by 0.258 as compared to when both traits were recorded on all animals. 

When there were missing records for the second trait, the reliability of GEBV decreased 

by 0.171 as compared to when both traits were recorded on all animals. 

The interaction of the generation in which genotyping stopped and the percentage 

of missing records nested within how the missing records arose was significant for EBV 

accuracies of Trait 2 for sires born in generation 14 and also for the EBV accuracies of 

both traits for dams born in generation 14 (results not shown). The largest numerical 

differences resulted from comparisons made between whether genotyping stopped at 
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generation 13 or 14, which is not surprising given the significant effect of this factor on 

EBV accuracy which was previously discussed.  

 When pools were constructed in order to minimize phenotypic variation, pools of 

any size generally led to larger accuracies than when data from generation 15 did not 

enter the evaluation. This was regardless of how the missing values arose or the 

percentage of available records. These are encouraging results suggesting that missing 

values do not affect the usefulness of pooling. 

 

4.4.6 Genetic correlation 

 The interaction of the generation in which genotyping stopped and the genetic 

correlation between the two traits was significant for sires and dams born in generation 

14 for both traits. Again, the largest numerical differences arose from comparisons of 

when genotyping stopped at generation 13 and 14. The interaction between the genetic 

correlation and the way in which the missing records arose was significant for some trait, 

sire/dam, and generations in which they were born combinations. Although this 

interaction was statistically significant, numerically the differences were not large, 

usually ranging from 0.01 to 0.03 (results not shown). The largest difference (0.05) was 

observed for the EBV accuracy of Trait 2 for sires born in generation 13 when sequential 

culling was initiated and comparing across genetic correlations of 0.4 and 0.7.  Jia and 

Jannink (2012) investigated the effect genetic correlation had on the prediction accuracy 

of two traits with multi-trait genomic selection within simulation. One trait had a 

heritability of 0.1 while the other had a heritability of 0.8. As the genetic correlation 

increased, the prediction accuracy of the lowly heritable trait increased; however, the 
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highly heritable trait saw no increase in prediction accuracy even as the genetic 

correlation increased between 0.1 and 0.9. In the current study, the effect of genetic 

correlation on EBV accuracy did not lead to large numerical differences given the 

moderate heritability of the traits. 

Across all genetic correlations, the generations in which the sires and dams were 

born in, and Traits 1 and 2, the EBV accuracy consistently decreased by 0.01 when 

randomly missing records decreased from 100% to 90% and then again from 90% to 

80%. Thus, randomly missing records did not make a large impact on EBV accuracy 

across the studied genetic correlations. Additionally, when considering Trait 1 for sires 

and dams during sequential culling, the differences in EBV accuracy was generally in the 

range of 0.01 regardless of the percentage of animals culled and genetic correlation. 

Therefore, sequential culling did not have an impact on the EBV accuracies for Trait 1. 

The differences in EBV accuracies for Trait 2 considering no culling to 25% of Trait 2 

recorded was the smallest (0.06) for sires born in generation 14 and genetic correlation of 

0.7. All other differences in EBV accuracy for sires and dams across the genetic 

correlations was approximately 0.12. In general, the EBV accuracies of Trait 2 when 

considering sequential culling increased as the percentage of data increased, regardless of 

genetic correlation. Consequently, as more records were available due to less sequential 

culling, the EBV accuracies of Trait 2 approached the EBV accuracies of Trait 1. 

It would be expected that the EBV accuracies would be approximately equal 

across different genetic correlations and sires/dams, especially when considering Trait 1 

EBV accuracy during sequential culling or missing records when all records are available 

(100%). This is because regardless of genetic correlation, both Trait 1 and 2 were 
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simulated to have a heritability of 0.4. However, when considering sires born in 

generations 14 when genotyping was through generation 14 and for the genetic 

correlations of 0.1 and 0.4, the EBV accuracies of Traits 1 and 2 were not the same. This 

was likely due to a larger TBV variance for Trait 2.  

 

4.4.7 EBV accuracy of pools 

Even though pools were constructed by trait, all pools received EBV for both 

traits. Figure 4.4 depicts the median EBV accuracies of the pools that were determined by 

Trait 1 and Figure 4.5 depicts the median EBV accuracies of the pools that were 

determined by Trait 2. Significant interactions were quite varied depending on the which 

trait was observed and which trait the pools were determined by. For example, when 

considering pools for Trait 1 and the EBV accuracy of Trait 1, significant interactions 

only included pool size by pooling strategy and genetic correlation by the percentage of 

available records nested within how they the missing records arose. However, when 

considering pools for Trait 1 and the EBV accuracy of Trait 2, nearly all possible 

interactions were significant. When considering pools for Trait 2 and the EBV accuracy 

of either trait, nearly all interactions involving pool size and pooling strategy were 

significant.  

A few conclusions can be drawn about the EBV accuracies of the pools. As long 

as the pools were constructed to minimize phenotypic variation, the EBV accuracy of the 

pools was generally highest for pool sizes of 100 and lowest for pool sizes of 1 for the 

trait in which the pools were made for. This is consistent with Baller et al. (2020). When 

the genetic correlation between the traits was high (0.7), the same pattern was true for the 
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correlated trait. In fact, the EBV accuracy were almost as high for the correlated trait as 

the EBV accuracies the pools made for. As the genetic correlation decreased to 0.4, the 

EBV accuracy of the correlated trait began to decrease, especially compared to the EBV 

accuracy of the trait the pools were made for (results not shown). The EBV accuracy of 

any pool size was generally larger than pool size of 1. When considering the genetic 

correlation of 0.1, the EBV accuracies of pools for the alternate trait resulting from any 

pool size was approximately the same. When considering sequential culling and a genetic 

correlation of 0.1, the EBV accuracies of pools of 100, 50, and 20 were less than the 

accuracy from a pool size of 1. When considering pools formed randomly, the EBV 

accuracies of pools generally increased as pool size decreased; this is also consistent with 

Baller et al. (2020). This was true for both traits regardless of which trait the pools were 

made for. 

 

4.5 Conclusions 

The results presented in this paper demonstrate the usefulness of pooled data in 

genetic evaluations that employ a bivariate model using single-step GBLUP across a 

range of genetic correlations and scenarios in which missing values can arise. Similar to 

the univariate case, when pools were constructed to minimize phenotypic variation, pool 

sizes of at least 20 could be used to attain EBV accuracies not significantly different than 

those attained from individual data. Larger pool sizes (50 and 100) also led to 

improvement of EBV accuracies for sires born the generation directly before pooling was 

initiated. When 100% of the phenotypes were available, sires and dams had the highest 

EBV accuracies. As the percentage of phenotypes decreased due to randomly missing 
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records, the EBV accuracies of the sires and dams also decreased, but the numerical 

differences were not large (0.01). Thus, the percentage of randomly missing records 

investigated in this study did not practically impact the EBV accuracies, regardless of 

genetic correlation. Additionally, the accuracy of Trait 1 did not decrease with sequential 

culling because the number of phenotypes available stayed the same for Trait 1 across all 

sequential culling scenarios. The largest impact of missing records was seen with 

sequential culling and Trait 2. As the percentage of Trait 2 phenotypes decreased due to 

the sequential culling, the EBV accuracy of Trait 2 also decreased, regardless of genetic 

correlation. Consequently, as more records were available due to less sequential culling, 

the EBV accuracies of Trait 2 approached the EBV accuracies of Trait 1. When 

considering pooling by minimizing phenotypic variation and a genetic correlation of 0.7, 

the EBV accuracy of pools was almost as high for the correlated trait as the EBV 

accuracies the pools were made for. As the genetic correlation decreased, the EBV 

accuracy of the correlated trait decreased, especially compared to the EBV accuracy of 

the trait the pools were made for. The results herein provide encouraging conclusions that 

as long as pools are made to minimize phenotypic variation, pooling can be used across a 

variety of genetic correlations and ways in which missing values arise to garner the use of 

commercial ERT within genetic evaluations.  
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Table 4.1. Least-squares means estimates of EBV accuracies due to the percent of missing records nested within how the missing 
records arose 

  Trait 13  Trait 24 

  Sire  Dam  Sire  Dam 
Missing 

Records1 
Percent 

Available2 145 136 
 

14 13 
 

14 13 
 

14 13 
             

Random 
Missing 80% 0.84a 0.93a 

 
0.82a 0.90a 

 
0.84a 0.93a 

 
0.82a 0.90a 

 90% 0.85b 0.93a  0.83b 0.90b  0.84a 0.94ab  0.83b 0.91b 

 100% 0.86b 0.94b  0.84c 0.91c  0.85b 0.94b  0.84c 0.91c 
Sequential 

Culling 25% 0.85a 0.94a 
 

0.84a 0.91a 
 

0.75a 0.84a 
 

0.73a 0.81a 

 50% 0.85a 0.94a  0.84ab 0.91a  0.80b 0.90b  0.79b 0.87b 
 75% 0.85a 0.94a  0.84ab 0.91a  0.83c 0.93c  0.82c 0.90c 

 100% 0.86a 0.94a  0.84b 0.91a  0.85d 0.94d  0.84d 0.91d 
Std. Error  0.007 0.004  0.005 0.001  0.005 0.016  0.006 0.005 

1Random Missing = Missing records occur randomly; Sequential Culling = Missing records occur because of sequential culling 
280% = 80% of Trait 1 and Trait 2 records are available; 90% = 90% of Trait 1 and Trait 2 records are available; 100% = 100% of 
Trait 1 and Trait 2 records are available; 25% = 100% of Trait 1 records and 25% of Trait 2 records are available; 50% = 100% of 
Trait 1 records and 50% of Trait 2 records are available; %75 = 100% of Trait 1 records and 75% of Trait 2 records are available 
3EBV accuracy of Trait 1 
4EBV accuracy of Trait 2 
5Sires or dams born in generation 14 
6Sires or dams born in generation 13 
abcd Within a column and missing records scenario, least-squares means with the same letter are not significantly different ! = 0.05.  
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Figure 4.1. Correlation of average phenotype and average true breeding value (TBV) in 
pools. Pools resulting from different genetic correlations, how missing records occur 
(Random Missing = Missing records occur randomly; Sequential Culling = missing 
records occur because of sequential culling), pooling strategies (Random = randomly 
allocated to pools; Minimize = minimize phenotypic variation within pools), percentage 
of available records (80% = 80% of Trait 1 and Trait 2 records are available; 90% = 90% 
of Trait 1 and Trait 2 records are available; 100% = 100% of Trait 1 and Trait 2 records 
are available; 25% = 100% of Trait 1 records and 25% of Trait 2 records are available; 
50%= 100% of Trait 1 records and 50% of Trait 2 records are available; 75% = 100% of 
Trait 1 records and 75% of Trait 2 records are available), and pool sizes 

  



 

 

153 
 Figure 4.2.  Use of sequential culling leading to estimated breeding value (EBV) 

accuracies of sires (estimated as the correlation between true breeding value (TBV) and 
EBV). Presented by generation of birth resulting different genetic correlations, pooling 
strategies (Random = randomly allocated to pools; Minimize = minimize phenotypic 
variation within pools), percent of available records (25% = 100% of Trait 1 records and 
25% of Trait 2 records are available; 50%= 100% of Trait 1 records and 50% of Trait 2 
records are available; 75% = 100% of Trait 1 records and 75% of Trait 2 records are 
available; 100% = 100% of Trait 1 and Trait 2 records are available), different 
generational gaps in genotyping (Gen13 = individuals up to and including those born in 
generation 13 were genotyped; Gen14 = individuals up to and including those born in 
generation 14 were genotyped) and pool sizes with ranges along x-axis 

 

  



 

 

154 
 Figure 4.3. Use of randomly missing records leading to estimated breeding value (EBV) 

accuracies of sires (estimated as the correlation between true breeding value (TBV) and 
EBV). Presented by generation of birth resulting from different genetic correlations, 
pooling strategies (Random = randomly allocated to pools; Minimize = minimize 
phenotypic variation within pools), percent of available records (80% = 80% of Trait 1 
and Trait 2 records are available; 90% = 90% of Trait 1 and Trait 2 records are available; 
100% = 100% of Trait 1 and Trait 2 records are available), different generational gaps in 
genotyping (Gen13 = individuals up to and including those born in generation 13 were 
genotyped; Gen14 = individuals up to and including those born in generation 14 were 
genotyped) and pool sizes with ranges along x-axis 
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 Figure 4.4. Trait 1 pools’ estimated breeding value (EBV) accuracies (estimated as the 

correlation between the average true breeding value (TBV) of the individuals within the 
pool and EBV of the pool). Pools resulting from different genetic correlations, how 
missing records occur (Random Missing = Missing records occur randomly; Sequential 
Culling = missing records occur because of sequential culling), pooling strategies 
(Random = randomly allocated to pools; Minimize = minimize phenotypic variation 
within pools), percent of available records (80% = 80% of Trait 1 and Trait 2 records are 
available; 90% = 90% of Trait 1 and Trait 2 records are available; 100% = 100% of Trait 
1 and Trait 2 records are available), different generational gaps in genotyping (Gen13 = 
individuals up to and including those born in generation 13 were genotyped; Gen14 = 
individuals up to and including those born in generation 14 were genotyped) and pool 
sizes with ranges along x-axis 
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 Figure 4.5. Trait 2 pools’ estimated breeding value (EBV) accuracies (estimated as the 

correlation between the average true breeding value (TBV) of the individuals within the 
pool and predicted EBV of the pool). Pools resulting from different genetic correlations, 
how missing records occur (Random Missing = Missing records occur randomly; 

Sequential Culling = missing records occur because of sequential culling), pooling 
strategies (Random = randomly allocated to pools; Minimize = minimize phenotypic 
variation within pools), percent of available records (80% = 80% of Trait 1 and Trait 2 
records are available; 90% = 90% of Trait 1 and Trait 2 records are available; 100% = 
100% of Trait 1 and Trait 2 records are available), different generational gaps in 
genotyping (Gen13 = individuals up to and including those born in generation 13 were 
genotyped; Gen14 = individuals up to and including those born in generation 14 were 
genotyped) and pool sizes with ranges along x-axis 
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 Chapter 5 

SYNTHESIS 

 

One of the most important objectives of animal breeding is to accelerate the rate 

of genetic change within livestock populations. Accuracy of selection is a major 

contributor to this rate of change. In the second chapter, we showed deregressed expected 

progeny differences (DEPD) and random genotyping led to the largest estimated 

accuracies of molecular breeding values (MBV). Using cross-validation, random 

clustering also led to the largest estimated accuracies, while clustering by k-means and k-

medoids led to the lowest accuracies. However, within simulation, no clustering method 

was associated with more or less bias. Cross-validation is used to assess the predictive 

ability of a model with data not used to train it. The use of k-means clustering was 

deliberately aimed to maximize the relationships within clusters and minimize 

relationships across clusters (Saatchi et al., 2011). This too was the aim of all other 

clustering methods, including principal component (PC) analysis, on the numerator 

relationship matrix (Boddhireddy et al., 2014). However, the estimate of bias for 

clustering methods was likely related to the ability of the methods to minimize and 

maximize relationships within and across clusters. Moving forward, a better estimate of 

bias associated with clustering methods could be assessed in simulations representing 

admixed instead of purebred populations. This would allow the relationships to be 

minimized within clusters, but more importantly, the relationships across clusters would 

be further maximized in comparison to a single-breed simulation. 
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 Even though a majority of genetic evaluations in the beef industry now employ 

single-step methods (e.g. Misztal and Lourenco, 2018; Golden et al., 2018), the work of 

Chapter 2 was relevant at the time it was written. Cross-validation is also still used to 

validate causal variants.  

Chapters 3 and 4 explored estimated breeding value (EBV) accuracies of sires and 

dams using single-step genomic best linear unbiased prediction (GBLUP) and the use of 

pooling data to potentially integrate economically relevant traits (ERT) from the 

commercial industry. We showed in both univariate and bivariate cases that pooling to 

minimize phenotypic variation within pool sizes of at least 20 could be used to achieve 

accuracies not significantly different from those attained from individual data. 

Additionally, in the bivariate case, it was shown pooling could be used across a variety of 

scenarios in which missing values arise and a range of genetic correlations between the 

two traits of interest. Previous work by Reverter et al. (2016) and Bell et al. (2017) 

demonstrated the use of pooling in real livestock populations. However, the resulting 

genomic EBV (GEBV) could not be compared to GEBV attained from individual data; 

therefore, it is not known how large of a loss of accuracy exists in real populations due to 

pooling. Alexander et al. (2020) quantified this loss using in silico Angus data. Further 

research of pooling compared to individual data in the use of genetic evaluations should 

be conducted to fully validate this methodology.  

 The simulations within Chapters 3 and 4 mimicked a purebred cattle population 

where animals were genotyped with a single SNP chip (50k SNP) and phenotyped for 

quantitative traits. Further research could include threshold traits, such as disease or 

temperament. It may be reasonable to assume pools of commercial animals and 



 

 

159 
 sires/dams within seedstock are genotyped at different densities. In this case, pools may 

be genotyped with a low-density chip to drive genotyping costs even further down, while 

sires/dams in the seedstock herds are genotyped with high-density chips, or even 

sequenced. This type of scenario requires further research into the imputation of pooling 

allele frequencies (PAF). Lastly, genetic evaluations of cattle can include purebred 

individuals as well as crossbred individuals. Therefore, further research could include the 

simulation and validation of pooling within admixed populations. In the case of admixed 

populations, it would be possible to estimate breed fractions but not heterosis. 

Regardless, the results herein provide promising results for the use of pooling 

commercial data within genetic evaluations. Moving forward, it is reasonable to assume 

the National Cattle Evaluation (NCE) could incorporate pooled commercial data in order 

to include true ERT phenotypes to increase the accuracy of seedstock animals. 
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