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The thesis analyzes an existing eye-tracking dataset collected while software de-

velopers were solving bug fixing tasks in an open source system. The analysis is

performed using a representational learning approach namely, Multi-layer Perceptron

(MLP). The novel aspect of the analysis is the introduction of a new feature engineer-

ing method based on the eye-tracking data. This is then used to predict developer

expertise on the data. The dataset used in this thesis is inherently more complex

because it is collected in a very dynamic environment i.e., the Eclipse IDE using an

eye tracking plugin, iTrace. Previous work in this area only worked on short code

snippets that do not represent how developers usually program in a realistic setting.

A comparative analysis between representational learning and non-representational

learning (Support Vector Machine, Näıve Bayes, Decision Tree, and Random Forest)

is also presented. The results are obtained from an extensive set of experiments

(with a 80/20 training and testing split) which show that the representational learn-

ing (MLP) works well on our dataset reporting an average higher accuracy of 30%

more for all tasks. Furthermore, a state-of-the-art method for feature engineering is

proposed to extract features from the eye-tracking data. The average accuracy on

all the tasks is 93.4% with a recall of 78.8% and a F1 score of 81.6%. We discuss

the implications of these results on the future of automated prediction of developer

expertise.
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Chapter 1

Introduction

It is said that eyes are windows to the soul. Eye movements of a person speak the state

of their cognitive ability and skill level of the task being performed[25, 23, 28]. An

eye tracker (a combination of hardware and software) is used to collect eye movement

data while a participant works on some task. In this thesis, the participant is a

software developer and the context and task is that of fixing bugs. The eye-tracking

data gives fine granular details such as pupil diameter, gaze duration on a particular

element, which can be an identifier such as variables, conditional statements, function

or class declarations, and even the coordinates of the elements which are looked at.

Analyzing such fine details helps the researchers comprehend the developers’ behavior

while solving the task [10, 23, 32]. For instance, Busjahn et al. found that novice

developers read code more linearly as compared to the expert developers[10]. Kevic

et al. analyzed the developer’s detailed navigation behavior for realistic change tasks

using eye-tracking data and identified a distinct pattern in the eye-movement of expert

users [23].

Results attained from the previous studies propose that the pattern in the gaze

data of developers’ vary as a function of expertise level. The modern AI techniques

can learn such functions automatically. Lee et al. built an ML model to predict

developers’ expertise (expert/novice) and the difficulty of the task(easy/difficult).



2

They used eye-tracking data and also data from electroencephalography (EEG) to feed

into the ML models. They used Support Vector Machines(SVM) to classify the skill

level and task difficulty. Although such a solution is significant towards automating

the prediction-based analysis, it does not extend to real-life practical debugging tasks.

The reason behind the prior statement is that the developers’ tasks that they used

were very simple and significantly easy. Figure 1.1, 1.2 shows a sample task used in

[42]. It contains a single method with a very simple and small task to be performed.

Also, the tasks’ difficulty level were very different from each other, and all the tasks

were stored in a single file. As a consequence, the model was capable of learning the

pattern behind eye-tracking data and EEG data to predict developers’ expertise/task

difficulty. The way software is developed in the real-world is far from just viewing

10 lines of code. In reality, software developers need to work with thousands of

lines of code spanning across several hundred files. The dataset [23] we use mimics

this scenario as closely as possible with respect to how a developer would fix a bug

in a realistic setting. This also makes it harder to reuse existing feature models.

The challenge we faced was coming up with a unique feature engineering model that

works well for realistic development scenarios. In order to do this, we needed to take

advantage of semantic properties within the source code itself and map those to the

gaze recorded on those regions.

In a realistic setting, a developer has to solve complex tasks. A realistic change

task could impact several classes and methods which are spread across multiple

files[23] (see an example in Figure 1.3). Hence, the ML model would need more

distinctive features to learn the hidden data pattern. As far as we know, no ML-

based predictive model is developed, which predicts developers’ expertise

using eye-tracking data from realistic change tasks.
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Figure 1.1: Simple comprehension task with expected output ’olleH’ [42].

Figure 1.2: Syntax task with errors in Line 1, 2, and 8 [42].

Figure 1.3: Complex task spanned across multiple files and methods.
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1.1 Motivation and Challenges

Predicting developer expertise is an important problem in the software development

industry. If automated tools could be developed that predict developer expertise

based on the task, such a tool could be used to choose and recommend appropriate

developers based on the task. It could also be used during interviewing to determine

if a particular candidate is close to solving a task. This research aims to present an

ML-based approach to predict the developer’s expertise level based on eye-tracking

data generated from realistic change tasks. These bug fixing tasks differ in the number

of files per task, the number of classes, complexity, and number of code lines. This

is a specifically challenging problem due to two major components. Primarily,

it is non-trivial to create features from raw gaze data [8]. Although the data is

temporal, it contains non-linear elements in many forms. The non-linearity arises

from the reading pattern [8]. Another factor that contributes to non-linearity is that

the developer switches between the compiler messages and source code. She might

also look at the empty spaces while thinking, which could further create noise in the

data. The amount of raw gaze data varies in accordance with the complexity of the

bug fixing task. Therefore, we don’t have a constant feature dimension for all the

tasks.

The above mentioned challenge is addressed by creating a novel method for ex-

tracting features from eye tracking data. After the feature engineering process, the

processed data is used to feed into the models. In our analyses, both representational

learning and non-representational learning methods were used. The representation

learning technique involves learning representations of data by either extracting fea-

tures or transforming them, which makes the classification/prediction task easier [18].

A good representation is able to learn the hidden pattern behind the data by learning
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the cause of variability that explains the structure of the distribution. It learns the

representation of the data, and once it does that classification becomes trivial. For

predicting the expert level based on simple tasks (e.g., one line bug fixes in just one

method), non-representational techniques such as SVM have been shown to work ef-

fectively [26]. However, for complex tasks (e.g., bug fixes that span multiple methods

and files), the representational learning models give the best performance because

these models have in-built algorithms for extracting and learning features from the

dataset which non-representational models do not.

The models developed in this thesis are trained from the data obtained from the

study by Kevic et al. [23]. The data consists of raw gaze data of 22 participants.

Although the model’s scope is restricted by the size of the data set, this is the first

step towards predicting developers’ expertise in software engineering for

realistic bug fixing tasks using their eye movement data.

1.2 Contributions

The main contributions of this thesis are follows:

1. A novel feature engineering method was developed based on eye movements

from developers fixing realistic bugs.

2. A representational learning approach for predicting expertise of developers using

eye-tracking data is developed.

3. A comparative analysis on the eye-tracking dataset was done between represen-

tational and non-representational learning.
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1.3 Organization

The remainder of the thesis is organized as follows. First, relevant literature is re-

viewed in Chapter 2 followed by a description of the study for generating the eye-

tracking dataset in Chapter 3. The feature engineering method and the ML frame-

work are presented in Chapter 4. Then, an extensive experimental analysis of the

framework is provided in Chapter 5. Various aspects of the approach are discussed in

Chapter 6. Finally, the paper is concluded with a summary of the observations and

discussion of future work in Chapter 7.

1.4 Publication Note

Parts of this thesis will be written up for publication to conferences and journals in

the field of software engineering and machine learning.
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Chapter 2

Related Work

We present related work in three major areas. In the first section, a selected overview

of eye tracking studies in software engineering is presented. This is followed by soft-

ware engineering studies that have worked with expertise prediction albeit with simple

tasks. This is followed by related work about eye tracking and expertise prediction in

other domains. Finally the concluding section of this chapter we provide a discussion

about how our work differs from the related work done in the field.

2.1 Program Comprehension Studies Using Eye Tracking In

Software Engineering

Since 2006, there has been a surge in the number of eye-tracking studies involving

program comprehension in the software engineering domain [32]. While the program-

mer is solving a bug, an eye tracker is used to gauge her eye movements. It gives

fine granular details about the fixation (where the developer has looked at) such as

her pupil diameter, duration, which element she looked at in the code even if she

scrolled the screen. These details provide an insight into his mental model while she

was solving the bug.

Sharafi et al. [41] made a one-stop solution for people who want to conduct
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eye-tracking studies. They presented when, how, and why eye trackers should be

used to conduct studies in software engineering. They established that eye trackers

provide rich and granular data that can be used to make useful findings in software

engineering research, such as the mental model of the participants based on the mind-

eye hypothesis. Collecting such data is not possible with the help of surveys or fMRI.

Also, eye trackers are suitable for software engineering due to the fact that they can

utilize visual attention artifacts.

Busjahn et al. [10] designed global and local measures based on gaze to charac-

terize linearity while reading source code. Their results showed that experts read the

source code more non-linearly as compared to novices. And novices read source code

more non-linearly as compared to natural language. Their results reveal the reading

patterns between experts and novices and that reading behavior does change after

gaining expertise.

Naser et al. [29] made a comparative analysis between an existing data set of

source code eye movement and natural language using the E-Z reader model [36] of

eye movement control. The results indicated that source code made fine predictions

of eye movements using the E-Z reader model. The results were further confirmed by

doing a comparative analysis between model predictions and eye movement data by

calculating correlation values for every metric. They also found that gaze duration is

affected by token frequency in natural text and source code.

In [39], Saddler et al. conducted a study with 30 participants, both students,

and professionals who read Stack Overflow posts. While reading the posts, the par-

ticipants also answered API comprehension questions by summarizing API elements

without showing them the source code. They found differences in gaze behavior be-

tween the participants familiar with Stack Overflow or API in the question versus

those who were not familiar. They found that those familiar with Stack Overflow
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spent lesser time per page fixating on code, paragraphs, and the overall page. Al-

though there was not much difference found in accuracy between students and profes-

sionals, differences did exist in the gaze behavior that depended on the page content.

In [4], Abid et al. and her team conducted a study with 18 experts and novices

where they had to read and summarize Java methods. They used varying sizes of

methods in order to gauge the impact of the length of the method on the reading

behavior of developers. They found that the signature of the method was not visited

as much by both novices and experts. Also, both groups spent considerable gaze time

and had more gaze visits while they read call terms. Also, both the groups revisited

the control flow terms rather than focusing and memorizing them by reading them for

a longer time. These results were different compared to Rodeghero’s work (that Abid

et al. replicated) that indicated that the signature of the method was the most looked

at item. Rodeghero et al. [37] did, however, use small source code snippets, whereas

Abid et al. used large open-source systems without restricting to small methods that

fit on the screen. This shows that given a realistic setting, prior results do not always

hold.

Barik et al. [6] conducted a study to find out if developers read the error messages

in Eclipse IDE. The tasks were chosen from prior work done by the team. They picked

frequently occurring costly error tasks from around 26 million builds from Google.

They picked up ten error messages from all the categories. Since they did not have

access to Google’s code, they injected the bugs into Apache Commons Collections.

The participants were asked to identify and resolve ten source code defects, which

were presented in the IDE in the form of compiler messages. Each participant had 5

minutes to solve a task and was asked to provide a reasonable solution to the bug.

After the analysis of the data collected, they found out that the developers do read

error messages, but the difficulty in comprehending them is similar to that of reading
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source code, which hinted that it was an intensive cognitive task. They analyzed

the revisit count of error messages and found that due to difficulty in reading and

comprehending error messages solving the task, all in all, can be difficult.

2.2 Expertise Prediction Using Eye Tracking on Software

Tasks

We discuss related work done in the expertise prediction area for software tasks. As

evidenced from this section, we were only able to find a few related works in this area.

In [23], Kevic et al. analyzed the eye-tracking data and found that it is more

detailed and finer granular than the interaction data(such as mouse and keyboard

clicks). Eye-tracking data is capable of providing perception about how developers

read code(linear or non-linear way). While the authors did not find any significant

differences between novices and experts, several metrics insinuated the underlying

differences in the eye-tracking data of inexperienced and experienced developers [22].

To verify and analyze this further, the dataset from this study has been used as the

basis of further analysis done in the thesis. Sophisticated ML techniques have been

used to gain further insight into the dataset, which is not done previously in [23] and

[22].

Some researchers implemented other machine learning models, such as the Näıve

Bayes ML model. Fritz et al. [16] used a Näıve Bayes classifier and compared the re-

sults derived from various psycho-physiological sensors such as eye tracker, electroen-

cephalography sensor(EEG), and electrodermal activity sensor(EDA). The authors

figured out that an electroencephalography sensor(EEG) gives the optimal precision

and an eye tracker gives the optimal recall. They also found that an electrodermal ac-

tivity sensor(EDA) combined with an eye tracker is optimal to predict task difficulty
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in real-time while the developers are coding.

Lee et al. [27], and her team designed and developed an experiment based on EEG

(electroencephalogram) in 2016. They observed developers with the sensors’ help and

recorded data while the developers performed program comprehension tasks. The

authors were able to clearly distinguish between experts and novices. The experts

clearly had higher brainwave activation than novices. The results hinted that experts

have incredible skills to solve program comprehension tasks efficiently. Later Lee et al.

[26] conducted a study with 38 participants consisting of both experts and novices to

investigate if an eye-tracker and EEG (electroencephalogram) can be used to predict

task difficulty(easy/difficult) and user expertise(expert/novice). They used Support

Vector Machines(SVM) and were able to predict task difficulty with 64.9% precision

and 68.6% recall; and programmer expertise with 97.7% precision and 96.4% recall.

Although they were able to make predictions but the tasks used were very simple and

could not be generalized to the real world.

Bednarik et al. [8] used SVM to predict the user’s performance and problem-

solving cognition states of the user while they played an 8-tiles puzzle game. The

data used was collected from a previous study done by the author. The gaze data

were mapped to human cognition states by linking them to footnotes of the think-

aloud protocol. The features were extracted from eye movement data and then fed

into the model for prediction. The system predicted the performance of the user’s

problem-solving behavior with 79% accuracy.

Liu et al. [28] analyzed eye-tracking data, which was collected from users per-

forming a collaborative task, and applied machine learning models to predict the skill

level of the participants. The data had 64 first-year students(46 male and 18 female)

and were randomly assigned into pairs. They were asked to read texts and build the

concept map of the subject in the text. The results showed that they were able to
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predict the expertise level of users with 96% accuracy by applying the Hidden Markov

Model(HMM) with only one minute of eye gaze data into the experiment.

Prior work shows that novice programmers have difficulty in learning new con-

cepts and keeping track of their progress. Beck et al. [7] tried to predict students’

metacognition levels with the help of source code comments. The data set consisted

of 98 student’s lab assignments, which were in Python. They fed the data to a multi-

nomial logistic regression classifier and achieved 88% accuracy. The results hinted

that a real-time feedback system could be developed for introductory programming

courses.

Lalle et al. [25] conducted a study with MetaTutor, an Intelligent Tutoring Sys-

tem(ITS) which provided hints, prompts to students for adaptive learning. However,

there have been prior studies done which show that such systems have a negative

impact on students, such as frustration, boredom, etc. They collected eye movement

data while students interacted with MetaTutor and tried to predict students’ achieve-

ment goals and emotional valence in students. Boosted Logistic Regression (BL)

classifier was trained with eye movement data for real-time prediction of students’

achievement goals and achieved 81% accuracy. SVM was used to predict emotional

valence(positive or negative), and the classifier achieved 64% accuracy. The results

suggested that students can learn from such systems if the system can rectify the

negative episodes which impact student’s achievement goals.

2.3 Expertise Prediction Using Eye Tracking in Other Do-

mains

Researchers in other domains have also applied the modern deep learning techniques

to eye-tracking data for classification of expertise. The authors in [11] used Convolu-



13

tional Neural Network(CNN) and applied it to eye-tracking data, which was gathered

while dentists were viewing OPT. They were able to classify the expertise of dentists

with 93% accuracy. The authors used the image patches and linked them to their

respective fixation while the dentists viewed the OPT. They fed this as an input to

the CNN model.

Ahmidi et al. performed classification based on skill level by creating 14 different

Hidden Markov Models for seven surgical tasks. The authors targeted both expert

and novice levels and used a repeated k-fold cross-validation method. Six novices

and five experts performed 14 trials, which summed up to a total of 95 data points

generated from expert surgeons and 139 tasks data points cumulated from novice

surgeons. The authors cleaned the data by removing irregular procedures. They

achieved an accuracy of 77.8% in surgical task prediction, and 82.5% in surgeon’s

skill level prediction [5].

The authors in [15] combined SVM and computational modeling techniques of

machine learning and applied it to eye-tracking data to predict problem-solving be-

havior. In the study, the think-aloud method was used while the participants were

solving an 8-tiles puzzle game. Such a method allows the researchers to understand

the participants’ mental models while they were solving the problem. Jerman et al.

used machine learning on eye-tracking data to discover expertise and coordination in a

collaborative Tetris game setting [21]. The authors found that the game players tune

their behavior if they interact with an expert player. Machine learning was also used

to develop a real-time feedback system for novice developers [7]. In [43], Steiche et al.

used classification of the visual tasks to predict the properties of performance, user’s

visualization task, and individual cognitive abilities such as visual working memory,

and perceptual speed, and verbal working memory.
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2.4 Discussion

In summary, researchers have used various machine learning techniques on eye-tracking

data to predict user expertise and gain insight into user behavior patterns and mental

models based on certain tasks in software engineering. The only catch was that the

tasks were quite simple [28, 7, 25]. In order to bridge this gap, the research presented

in this thesis has used data generated from realistic bug fixing tasks taken from an

open-source repository. These tasks were quite complex (see Figure 1.3). This fact

makes the findings of the study generalizable to the real world where developers solve

such tasks.
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Chapter 3

Dataset

This research aims to predict developer’s expertise by using AI techniques on eye-

tracking data. This data is generated while the developer solves realistic bug fixing

tasks. This research has used the data set generated from the study in [23]. The

study has eye gaze data of 22 developers who tried to solve three bug fixing tasks

labeled Task 2, Task 3, and Task 4 in one hour. Each task was given a total of 20

minutes. The details about the bug tasks taken verbatim from open source systems

are mentioned in Figure 3.1. It can be seen in the Figure 3.1 that Task 2’s scope is

spanned across multiple classes. But Task 3 and Task 4 scope is in a single method.

There was an additional task used as a tutorial to familiarize the participants to the

system and environment before they began the study. That practice task is not used

for training the model. Please refer to Kevic et al. [23] for more details on the study.

Figure 3.1: JabRef Bug Details taken from [23]. The Task IDs are kept the same and
referred to as Task 2, Task 3, and Task 4.

The study has 22 developers, out of which there were 12 students (labeled as
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novices), and 10 were industry professionals (labeled as experts). The bugs were

taken from JabRef. It is an open-source project available on SourceForge[1] related

to reference management. It contains 38 KLOC approximately spread across 311 files.

The study used version 1.8.1 of JabRef - release date was 9/16/2005. The authors in

the study chose bugs that were already fixed in the system. That way, they ensured

that they knew exactly how these bugs were fixed by the original developers. An

older version (1.8.1) of the JabRef was used by the authors in the study so that the

bugs could be reproduced.

As mentioned earlier, there was a total of three tasks that needed to be completed

in an hour by the participants. Each task was 20 minutes long. While the participants

were solving these tasks, their eye movements were recorded with a screen based eye

tracker [2] and the iTrace community infrastructure [40, 19]. When the study was

conducted, iTrace was only available as an Eclipse plugin used to capture the gaze data

on source code elements. The gazes were captured in the presence of scrolling the page

or switching between files. Since the study was conducted, iTrace has evolved into a

community infrastructure supporting Eclipse, Visual Studio, Atom, and Chrome (see

www.i-trace.org for more details). It provides very fine granular gaze details of the

data. For instance, it gives information on which line the developer is looking at and

the element she fixes her gaze upon.

Fixation is a widely used term in any eye-tracking research [14]. It is defined as the

action of looking at something for some amount of time. It is the most sought after

feature that researchers look for while analyzing any eye-tracking dataset. Fixation

is that point in time when the user holds her gaze at a certain element while reading

a stimulus (text or images). The user stops there to process information in the brain

and that is what the researchers are interested in. The researchers are interested in

the mental model of the user while she was solving the task. Practically, the fixation

www.i-trace.org
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is built from raw gaze points with the help of an event detection algorithm. There

are many different versions of fixation filters available.

The data set generated from the study was in an XML format that had raw gaze

information about the participants. To remove any invalid gazes and cluster gazes

into a single fixation, these files were run through a fixation filter [34] available in

iTrace. The fixation filter which forms clusters of raw gaze data with the help of line

and column information in the source code files. If the line and column information is

same for consequent rows, iTrace clusters it and forms a fixation row in the resultant

fixation file. The filter also removes gazes below threshold value. The threshold value

in the filter is 60ms and all the gazes below this value are removed. The reason

behind removing such gazes is that any gaze lower than this value cannot contribute

to any realistic cognitive process. After running the filter, the files generated are in

CSV format. Each row in the CSV represents one fixation and the data is recorded

in time as fixations occur during the task. The CSV file contains several columns

related to various eye tracking data such as gaze validity and pupil diameter. The

most important attributes of the CSV file are explained below.

1. Coordinates x and y: This metric tells the x and y coordinates of the gaze on

the screen.

2. Fixation Duration: It is defined as the time period in which one maintains gaze

on some element and is measured in milliseconds (ms).

3. Line and Column number: iTrace records the line and column number in the

source code file at which the participant looked at during the fixation. The line

and column is derived from the x and y coordinates on the screen.

4. Pupil Diameter: iTrace records both left and right pupil diameter. Pupil diam-



18

eter is a good metric to gauge if the participant was focused on the fixation or

not. A dilated pupil means that the person is trying to focus on something and

a relaxed pupil means that he is not as focused. The catch is that it varies from

person to person. Hence, it becomes difficult to come up with a threshold value

that defines focus on the fixation. We do not use this feature in our analysis at

this time.

5. Fully Qualified Names: iTrace gives the fully qualified names of the elements

looked at. For instance, there is a for loop that a person looked at and it

is present in a class − > method − > for. iTrace will record the <name of

the class> . <name of the method>.for in the specified format. For in-

stance, let’s consider net.sf.jabref.Util.sortWordsAndRemoveDuplicates

as an example. Here, the words separated by dots represent hierarchy looked at

in descending order. In this case net is the outermost package and sortWordsAnd

RemoveDuplicates is the method looked at which is present in Util class which

is in turn present in jabref package.

Out of all these features, line number and fixation duration were used to engineer

and extract the features. Then the final input file was fed into the model to perform

predictions on developer expertise.
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Chapter 4

Methodology

The thesis aims to predict a developer’s level of expertise for realistic bug fixing

tasks. Thus, the research problem is formulated as a binary classification problem.

The Machine Learning pipeline used to predict the expertise is shown in 4.1. In this

pipeline, Data pre-processing and Feature Engineering tasks are done manually. Each

of the steps on the pipeline are explained in detail in this chapter.

Figure 4.1: Machine Learning Pipeline for Predicting Developer’s Expertise Level

4.1 Data Pre-processing

The data labels (target features) of the 22 participants were determined first. Then

feature extraction is done.

Determining Data Labels: Data labeling was required to train the classifi-
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cation models of the framework. Nonetheless, it is non-trivial to find an appropriate

label for the debugging tasks. In [23], students were classified as novices, and pro-

fessionals were classified as experts. However, just having a certain number of years

of experience does not make one an expert in solving a task. An expert could be

good at debugging one task but might not be able to solve some other task. It is not

possible that a developer who claims himself to be an expert could solve all the tasks.

The same hold for the novice developer. There have been instances where the novice

developers have performed better and are able to solve the task better than expert

developers. To verify this fact, a comparison was made with the developers’ level of

expertise to whether he could correctly solve the debugging task.

The study in [23] stored the metadata of the study results where the authors have

reported the task correctness of the developers after the study was completed. In the

study, the students were labeled as novices and industry professionals as experts. A

developer’s task correctness was stored as 0 and 1. 0 means that he was not able to

solve the task and 1 means that he was able to solve the task correctly. There was

a detailed investigation done that whether the experts were able to solve the tasks

correctly and we found that not all the experts were able to do it. In fact there

was a mismatch and some novices were able to solve the task correctly. Hence, task

correctness was used as a label to determine the expertise level of developers which

meant that if a participant is able to solve the task, he is an expert in it. Depending

on the task’s complexity, a developer’s level of expertise(task correctness) could vary.

Hence, as shown in Table 4.1, the number of labels vary across three tasks. The

beacons and features are explained in the sections that follow.
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Table 4.1: Information about the Three Bug Fixing Tasks in JabRef

Attribute Task 2 Task 3 Task 4
No. of Experts 8 7 11
No. of Novices 14 14 10

No. of Files Impacted Multiple Single Single
No. of Methods Impacted Multiple Single Single

No. of Lines of Code 3321 771 1268
No. of Beacons 73 60 97
No. of Features 219 180 291

4.2 Feature Engineering

The major challenge faced during this research was defining features for the ML

model. Previous work [23, 10] indicates that experts differ from novices based on

where they focus their attention at, the variation of the fixation, how they navigate

the code, and for how much time they looked at the code. This key observation was

used during feature engineering.

The eye-tracking data was recorded in an increasing sequence of time while the

developers solved the bug fixing tasks. Then, the fixation files were generated by

running the data through the fixation filter available in iTrace to detect fixations.

The iTrace filter also removes any invalid data. Invalid data could be present due

to many reasons. For instance, while a developer solves a task, the iTrace records

whether the fixation was looked at with both eyes or one eye in the raw gaze data.

Data with one eye is still considered valid. However there might be cases where a

gaze is not recorded correctly and this is classified as invalid data. These are marked

in the raw gaze files and are discarded as part of the fixation filtering process.

Later, when we pass the raw gaze data through the fixation filter, it removes any

invalid data which was looked at with just one eye. iTrace also removes fixations whose
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duration is less than the threshold (60 ms). The fixation filter also makes clusters of

data which are consecutively at the same gaze point or at the same element. It adds

the fixation duration for each fixation after the clustering raw gazes together.

Even after the filtration is performed, the fixation files can have noisy data, which

is not useful. Useful information from the fixation files was extracted by identifying

the most looked at regions. We use the most looked at regions because these were

considered to be most relevant to the task for a majority of the developers. This

process was done using a sorting script. After identifying the regions, further, these

regions were divided into logical segments of code. Logical segments can be defined

as a block of code of related comments, declaration, and statements. We also refer to

these logical segments as beacons [45]. After this process, fixation related values are

calculated from these logical segments. The detailed steps of the feature engineering

process are described below as shown in Figure 4.2.

Figure 4.2: Feature Engineering Pipeline

Step 1: Find gaze overlapping regions in the code: The first step towards

finding the most viewed regions in the code is to analyze the fixations files and mark

all the regions in the actual code looked by all the participants. These regions can

be identified with the help of line numbers in the fixation files. All the tasks had a

different set of files. The next step was to identify the frequency of the regions. For
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instance, there may be a region in the code that is looked at by 10 participants versus

a region that is just looked at by one participant. A threshold limit was decided

and agreed upon based on the complexity of the tasks. For some tasks, regions were

selected on the threshold limit greater than two, and for some, it was greater or equal

to 4. Once these regions were marked, then beaconization of the regions was done,

which is explained in the next step.

Figure 4.3: Partial/Sample code in BibtexParser.java used to illustrate beaconization

Step 2: Beaconize the overlapping region in the code: Beaconization

is performed manually after identifying the most looked at overlapping region in the

code. The smallest piece of a logical segment in the code is called a beacon. Beacons

render the most logical and granular information of the program. A beacon may

contain a block of variable declarations, logic, comments, or method names. In [13],

the author has shown that the beacons for expert developers are different from the

novice developers. A more detailed description on beacons can be found in [45].

The method for beaconization is illustrated in Figure 4.3 using the sample code.
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This code is from the JabRef project. Every beacon is associated with a group of

line numbers. These line numbers need to be in sequence to qualify for a beacon.

For instance, the lines from 58-60 have a multi-line comment and are considered as a

beacon (first row in Table 4.2). Please refer to Table 4.1 for the number of beacons

per task.

Table 4.2: Identifying Beacons from Figure 4.3

File Line Beacon ID Rationale
BibtexParser.java 58-60 b1 Multi-line comment
BibtexParser.java 61-62 b2 Method declaration
BibtexParser.java 64-65 b3 Variable declaration
BibtexParser.java 67-68 b4 Variable declaration
BibtexParser.java 70 b5 Variable declaration
BibtexParser.java 72 b6 While loop
BibtexParser.java 74-76 b7 If statement
BibtexParser.java 78-79 b8 return statement

Step 3: Create features from beacons: The beacons are the logical section

of code capable of consisting of the most distinguishing information about developers’

level of expertise. Fixation is the fundamental attribute in every beacon, i.e., how

long a person has maintained his gaze at a certain point. In the prior work, it is

shown that the level of cognitive processing is indicated by the fixation duration [17].

For instance, long fixation duration indicates a deeper processing level, but shorter

fixation duration could mean superficial information processing. It has also been

shown that the order of changing fixations, frequency of the fixation, and the fixation

duration of the beacons, are meaningful metrics to gauge the developer’s behavior

[23]. These foundational metrics, which are already established in the prior studies,

are used to create three features per beacon: visit frequency, number of fixations, and

the total duration of fixation.

Let us understand the method of creating the features as mentioned above with
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the help of an example code in Figure 4.3 and use the fixation file in Table 4.3. The

description below illustrates the extraction of features for beacon id 7.

Table 4.3: Fixations on lines in BibtexParser.java looked at in time.

Index File Line Fixation Duration (ms) Beacon ID
1 BibtexParser.java 58 63 b1
2 BibtexParser.java 61 120 b2
3 BibtexParser.java 62 90 b2
4 BibtexParser.java 74 85 b7
5 BibtexParser.java 75 65 b7
6 BibtexParser.java 78 60 b8
7 BibtexParser.java 74 100 b7
8 BibtexParser.java 74 70 b7

1. Visit Frequency: This metric tells us the number of times a participant looked

at (visited) a beacon. The visit frequency is 2 for b7 in this example. The

developer was on index 4 and 5, and then on index 7 and 8, he revisited the

same beacon (see Table 4.3). The value of the visit frequency evaluates to 2. As

you can witness that if the developer stays on the same beacon for n number

of lines, then the value of frequency will be considered as 1 and not n. For

instance, since the developer was successively on index 2 and 3, the value of

visit frequency for beacon b2 is 1. b2 was never visited again.

2. No. of Fixations: It is defined as the total number of fixations any developer

spends in a beacon. The total number of times the developer fixates on b7 is 4,

which is at index 4, 5, 7, and 8.

3. Total Duration of Fixations: It is defined as the sum total of the fixation dura-

tion in a beacon. The sum of the duration of fixation at index 4, 5, 7, and 8 is

320ms; hence it becomes the value for this feature metric.



26

The value for all the beacon features will be 0 if the participant does not visit

that beacon. After performing all the calculations mentioned above, a feature vector

is formed by collating all the beacons and its associated features sequentially. To sum

up the feature engineering process, the raw gaze data is processed as a fixation file

after passing it through iTrace filter. Then beacons are extracted out of it. After that,

the three features are created from the beacons. Each bug fixing task has a different

set of features. Refer to Table 4.1 for the number of beacons per task. In this way,

a separate data matrix is created for every task. The columns are represented as

features in the input matrix, and rows are represented by users/participants.

4.3 Model Selection

The experiments were performed with two types of learning models namely repre-

sentational and non-representational. While picking the models, the initial choice

was SVM. It is one of the most common model used and hence it was one of the

most obvious picks. Looking at the high non-linearity in the dataset, Decision Trees,

Random Forest, and ANN were also looked at . The features created in the feature

engineering step are directly used by the models after scaling.

4.3.1 Non-representational Learning

First, it is shown that non-representational learning models don’t produce optimal re-

sults on complex tasks. The following non-representational learning models are used:

Näıve Bayes Classifier, SVM Linear Classifier, Kernelized SVM (Gaussian Radial

Basis Function) [12], Decision Tree [35], and Random Forest (RF) [9].
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4.3.2 Representational Learning

The Feed-Forward ANN model is used to perform optimal classification. More specif-

ically, a Multi-Layer Perceptron (MLP) is used due to its inherent capability to

learn representations using layers of hidden neurons [38, 31]. The following hyper-

parameters of the MLP are tuned: number of hidden layers and neurons, activation

function, solver, learning rate, and regularization. The hyper-parameters were tuned

manually by plugging in values one by one to select the optimal model.
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Chapter 5

Results and Analyses

The experiments are conducted to evaluate the performance of the ML models. At

first, the dataset is preprocessed, features are manually engineered, and the data

matrices are obtained for each task. Then, suitable learning ML techniques are used

for training using the task-based data matrices.

5.1 Non-Representational Learning

5.1.1 Experiment Setup and Overview

The experiments were conducted with the following non-representational models:

Support Vector Machine(Linear and Gaussian), Näıve Bayes(Gaussian), Decision

Tree, and Random Forest. The models were chosen based on the fact that there was

a combination of linear and non-linear data. All the models are non-linear except

SVM-linear. The selection of the variety of models provided an insight that which

tasks perform well on which models. Apart from it, the corresponding hyperparam-

eters to the models were tuned by performing a grid search on the hyperparameters.

F1 score was selected to pick the best model since it works well for imbalanced class

distributions. It can be seen in Table 4.1 that the number of experts are way less

than the number of novices. To balance this, class weight was also tuned during grid
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search. Class weight becomes an important parameter when the data set is imbal-

anced. Also, it was required in this case, as the number of sample points are very

low. The dataset was divided into 80-20 split of training and test set respectively.

This was done randomly in every run while recording the average of performance

metrics. The split was done by the method provided by SciKit Learn library. Since

the dataset was small we had around 18 points in the training set and 4 points in

the test set. The models were trained on the training set to provide the performance

metric. After finding out the best model, the performance metrics were reported by

running the model for 100 iterations for every trial. Finally, the grand total of the

performance metrics was reported for 100 trials.

5.1.2 Performance Analysis

In this section, we present results of the non-representational learning approaches.

Tables 5.1, 5.2 and 5.3 show results for accuracy, precision, recall, and F-measure

for the SVM-RBF, SVM-Linear, Näıve Bayes-Gaussian, Decision Tree, and Random

Forest.

5.1.2.1 Task 2

Based on the model’s test accuracy in Table 5.1, the best model for Task 2 is Gaussian

Näıve Bayes, with 63.3% accuracy. Although the test accuracy is the highest of all

models, it is not as good. The other performance metrics are relatively low, which

does not make it a suitable choice. Random Forest also reports the performance

metric, which is comparable to Näıve Bayes.
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5.1.2.2 Task 3

For Task 3, it can be seen in Table 5.2 that SVM-Linear has the highest performance

metrics in all aspects. It has 75.6% test accuracy and 48.4% as its F1 score. The test

accuracy is not bad, but the other metrics are quite low performing.

5.1.2.3 Task 4

For task 4, the best model based on test accuracy in Table 5.3 is Decision Trees with

50.9% accuracy. But, SVM-Gaussian has better recall and F1 scores than Decision

Trees. Even with 50% accuracy, these models cannot be deemed acceptable to perform

the classification.

Table 5.1: Performance Evaluation of Task 2 (in %)

Performance Task 2 SVM-
RBF

SVM-
Linear

Näıve
Bayes-
Gaussian

Decision
Tree

Random
Forest

Avg. Train Accuracy 91.0 91.1 83.1 72.1 79.6
Avg. Test Accuracy 61.7 61.9 63.3 58.2 61.1
Avg. Precision 0.0 33.6 38.2 17.7 36.6
Avg. Recall 0.0 24.9 34.3 19.7 32.9
Avg. F1 Score 0.0 25.7 32.8 17.1 31.1

Table 5.2: Performance Evaluation of Task 3 (in %)

Performance Task 3 SVM-
RBF

SVM-
Linear

Näıve
Bayes-
Gaussian

Decision
Tree

Random
Forest

Avg. Train Accuracy 100.0 100.0 89.0 100.0 93.0
Avg. Test Accuracy 64.1 75.6 61.0 64.9 67.6
Avg. Precision 0.0 55.7 31.0 36.3 30.0
Avg. Recall 0.0 48.0 27.9 33.1 23.9
Avg. F1 Score 0.0 48.4 26.4 31.2 24.4
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Table 5.3: Performance Evaluation of Task 4 (in %)

Performance Task 4 SVM-
RBF

SVM-
Linear

Näıve
Bayes-
Gaussian

Decision
Tree

Random
Forest

Avg. Train Accuracy 90.6 87.8 77.2 85.6 68.3
Avg. Test Accuracy 47.1 31.4 35.0 50.9 43.3
Avg. Precision 44.7 36.3 30.5 47.5 41.4
Avg. Recall 70.8 44.4 26.6 41.8 39.6
Avg. F1 Score 52.0 34.8 25.4 40.1 34.8

It can be clearly seen that Task 3 has best performance metric in non- represen-

tational learning models. The reason that it performs the best of all the tasks can be

attributed to the fact that task 3 had maximum number of participants who looked

at the same region creating a well defined feature set. Also, the most looked at region

was in the same file and in a single method with fewer lines of code.

But in the case of Task 2 and Task 4, the code was distributed in multiple files.

The highest number of participants who viewed the most looked at region was 4 times

lower than Task 3. Hence, the feature set was not as well defined in this case. The

Task 2 and Task 4 were highly non-linear and complex due to the reasons mentioned

above.

Hence, an alternative approach was found to get better performance metrics. It

is possible that with more data points the results would have been different. Af-

ter consulting with the eye-tracking literature in this field, it was found that most

eye-tracking studies have between 9-25 participants so our study sample was quite

representative of past participants. There is a good reason for this low number. First,

the study needs to be done one at a time with each person. This takes a lot of time

an effort however, the end results are a much more insightful dataset.
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5.2 Representational Learning

5.2.1 Experiment Setup and Overview

The MLP models were trained via the Backpropagation algorithm and using adap-

tive moment estimation (Adam) optimization function [24]. Sigmoid is used as the

activation function for the hidden layers and output layer. All experiments were per-

formed using the Keras and Tensorflow 2.0 [3] frameworks. Table 5.4 shows the model

architectures, hyperparameters and optimal values used in the experiments.

Table 5.4: Model Architecture & Hyperparameters Settings

Hyper-Parameters Values
Hidden Layers 1
No. of Neurons 20
Optimizer Adam
Activation Function
(Hidden Layer)

Sigmoid

Activation Function
(Output Layer)

Sigmoid

Epochs 50
Alpha 0.001

The results from binary classifier to predict the level of expertise of developers

was inconsistent due to the following reasons. Primarily, there were only 22 data

points, and the number of features was between 180 to 291, depending on the task.

Looking at these metrics, it is not hard to estimate that due to data scarcity finding

the pattern would be difficult for any model. The next problem is linked to the former

problem, i.e., hyper parameter tuning is difficult because of fewer data points. The

small-scale data also restricts the efficiency of the k-fold cross-validation process as

separate validation sub-sets cannot be guaranteed.

To overcome this problem, the data set is randomly divided into 80-20% split
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of train and test subsets. To find the optimal accuracy for the model, the valida-

tion set was extracted out of the training set with 90-10 split. The model is run for

100 trials, and inside each trial, there are 100 iterations. Each iteration runs the

model and calculates its performance metrics using the test data. Test - train split

is created randomly for each iteration. The performance metrics for all the experi-

ments are recorded and saved for each iteration. After each trial (which comprises

of 100 iterations), its average is calculated and recorded. And after all the trials, its

grand average is calculated. Accuracy, precision, recall, and F1 score are used as the

performance metrics for all the experiments.

Table 5.5: Performance Evaluation of MLP (in %)

Performance Task 2 Task 3 Task 4
Avg. Train Accuracy 90.8 99.3 90.3
Avg. Test Accuracy 89.3 99.0 88.5
Avg. Precision 81.1 88.6 94.4
Avg. Recall 68.2 88.2 80.0
Avg. F1 Score 72.1 88.2 84.7

Figure 5.1: Average Precision, Recall & F1 Score of Three Tasks
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Figure 5.2: Number of Accuracy counts >60, >80 and = 100

5.2.2 Performance Analysis

The performance of ANN is quite high compared to the former non-representational

models. A graph of all the performance metrics is presented in Figure 5.1. While

calculating the average accuracies, number of times the accuracy was greater than

60, greater than 80 and equal to 100 was also recorded. This can be seen in Figure

5.2. It can be seen that number of times the accuracy was greater than 60 is almost

the same for all the tasks. The number of times the accuracy was greater than 80 is

higher for Task 3 and almost the same for Task 2 and Task 4. But the number of

times the accuracy equal to 100 is highest for Task 3. For Task 2 and Task 4 it is

the lowest of all the three. This shows that learning Task 3 was easier for the ANN

model as compared to other tasks such that it was able to give 100% accuracy highest

number of times.

Further the performance of MLP is shown in Table 5.5. A detailed analysis for

each task is discussed below.
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5.2.2.1 Task 2

The average test accuracy of Task 2 is 89.3% which is quite high compared to the

highest accuracy of 63.3% in non-representational model. The other metrics of the

model are also high. ANN’s recall and F1 score is 68.2% and 72.1% respectively. This

shows that ANN is very powerful and capable of learning the hidden patterns in the

data.

5.2.2.2 Task 3

It can be seen that ANN works best on Task 3 with an exceptional test accuracy

of 99% compared to Linear SVM’s accuracy of 75.6%. It is the highest accuracy

witnessed in all the three tasks. Its recall score and F1 score is both 88.2% and

precision is 88.6%. Such high accuracy is due to the fact that it is stored in a single

files and a single method. In addition to this, the overlapping regions are visited by

the maximum number of participants. That’s why it has a relatively smaller number

of features. It’s relative simplicity makes it possible for the single hidden-layer MLP

to perform well.

5.2.2.3 Task 4

The average test accuracy is 90.3% with precision score of 94.4% compared to the

best accuracy in the non-representational model of 50.9%.

Task 2 and Task 4 performs comparatively poorly than Task 3. The poor per-

formance can be due to the high-dimensional feature space and the non-linear rela-

tionship of the features. For example, Task 2 and Task 4 have very high number of

beacons compared to Task 3. Also, these tasks are spanned across multiple files and

multiple methods. They also have very high number of lines of code. Due to these
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facts, their performance metrics is less than Task 3.
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Chapter 6

Observations and Discussion

The feature engineering presented in the thesis is a novel approach to extract the

most discriminating features from eye tracking data. This feature set was used to

predict developers’ level of expertise based on gaze data for realistic bug fixing tasks.

Furthermore, it can be seen that the representational learning models perform way

better than the non-representational learning models. This is due to the fact that the

former is capable of learning the functions with the help of extracting or transforming

the features in the hidden layers.

Developing tools that leverage eye tracking helps understand the mental model of

developers. Experts in one task cannot be considered a universal expert in solving all

kinds of tasks. The ability to predict expertise in any task can help efficient allocation

and utilization of human resources saving time to train new people by utilizing the

existing ones. Such tools would also help companies to hire right kind of people to

do a specific task. This is extremely helpful because organizations spend a lot of

time and effort to find right people but due to lack of insight into strategic thinking

while solving a task makes finding the right candidate difficult. Such tools can help

predict expertise for a specific task at hand. Further recommendation systems can

be developed and merged into IDEs which predict the expertise while a developer is

solving a bug. In case the developer behaves like a novice at certain point, the system
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can start recommending where the bug could be localized or prompt the developer

to take a rest and start afresh. All in all, predicting expertise could be extremely

beneficial where ever there is need to map expertise to any kind of software task.

While working on the thesis, three main challenges were identified and addressed

to build an effective and resilient model. All these are linked to the same issue, i.e.,

data scarcity. The primary challenge is the lack of data. To address the inconsistency

caused by this issue in the results, each model was run 10,000 times and then the

average was calculated. The second challenge is the high non-linearity in the dataset.

Many ML models work very effectively on non-linear data. But with just 22 data

points and such high non-linearity it was very challenging for any ML model to make

reliable predictions. The third challenge was the very high dimensions of the task.

With just 22 data points, the final dataset’s dimensions were between 180-291, which

is extremely high. The root of all the above problems is data scarcity. Hence, the

next step would be to collect more samples to further validate the research.

Applying the limited restriction on the dataset and the results obtained from

them, an outline is presented for the future work and expansion of the research work

done so far. It can be seen than Task 3 performs exceptionally well on all the models

as compared to other tasks. Also Task 2 and Task 4 has similar performance metrics

considering any model. This hints us to the fact that Task 3 can be classified as

simple task and Task 2 and Task 4 can be classified as complex tasks. In Figure 3.1,

it can be seen that Task 3 was in a single method, Task 2 was in multiple methods

and files and Task 4 was in single method. Upon further investigation, it was found

that Task 4 had very high number of lines of code which made it difficult to solve.

Similarly, Task 2 was difficult to solve. Also, during the process of beaconization, it

was found that Task 3 had most number of people who looked at the same region

while for other tasks that number was 4 or more times lower. Due to these factors,
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Task 3 had a very discriminative feature set but Task 2 and Task 4 did not had very

well defined feature set. This made the learning in the model challenging for Task

2 and Task 4. The complexity level can be determined from the study in [23]. This

arises the very need to explore other ANN architectures.

It cannot be ignored that the dimensions of the data set is very high especially

for Task 2 and Task 4. To curb this, Principal Component Analysis(PCA)[20] was

used but it did not perform well. More dimensionality reduction techniques need to

be explored such as t-distributed stochastic neighbor embedding (t-SNE)[44],[33] and

Uniform Manifold Approximation and Projection (UMAP)[30]. This is only possible

if there are more data samples. Therefore, depending on the complexity and number

of data samples, there are possibilities to extend the approach in different directions.
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Chapter 7

Conclusions and Future Work

The thesis provides a comparative analysis between representational and non- repre-

sentational learning techniques to predict the level of expertise of a developer based

on their gaze data. The dataset consisted of developers eye gaze while they were

solving realistic bug tasks from an open source Java application. There are two sig-

nificant components in the pipeline: feature engineering and expertise prediction. A

novel feature engineering method has been developed that extracts the distinguishing

features from the raw gaze data. Engineered features are used to train ML mod-

els. Manually engineered features are fed into the model. The results are derived

by performing many sets of experiments and show that the ML framework achieves

good performance metrics (average accuracy is 93.4% with 78.8% recall and 81.6%

F1 score) for all tasks.

The main hindrance to the design process is the scarcity of data. Based on the

limited amount of data, an effective solution was designed to automatically learn

various mapping functions for predicting the developer’s expertise level. In the future,

the plan is to automate the feature engineering process and extend the research to

incorporate different types of task complexities and different types of tasks such as

code summarization, code completion, and code refactoring along with bug fixing

tasks. Also, a more extensive controlled experiment will need to be conducted to



41

generate more data on realistic change tasks. The framework will be extended using

the large data set. Different dimensionality reduction techniques will also be used in

the future for further comparison.

Since, it is already seen that the tasks can be divided according to complexities and

types, in the future, this metric can be used to design a full fledged framework towards

automating the developer expertise based on task type and task complexity. Data

augmentation can also be performed to generate more data with similar characteristic

from existing data.
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