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Original Research Article
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a b s t r a c t

This study investigated the impacts of environmental (e.g., climate and CO2 level) and
ecological (e.g., stand density) factors on the long-term growth and physiology of pon-
derosa pine (Pinus ponderosa) in a semi-arid north American grassland. We hypothesized
that ponderosa pine long-term growth patterns were positively influenced by an increase
in atmospheric CO2 concentrations and a decrease in stand density. To test this hypothesis,
comparison of long-term trends in tree-ring width and carbon and oxygen stable isotopic
composition of trees growing in dense and sparse forest stands were carried out at two
sites located in the Nebraska National Forest. Results indicated that tree-ring growth
increased over time, more at the sparse than at the dense stands. In addition, the carbon
and oxygen isotopic ratios showed long-term increases in intrinsic water use efficiency
(WUEi), with little difference between dense and sparse stands. We found a clear trend
over time in ponderosa pine tree growth and WUEi, mechanistically linked to long-term
changes in global CO2 concentration. The study also highlighted that global factors tend
to outweigh local effects of stand density in determining long-term trends in ponderosa
pine growth.
Finally, we discuss the implications of these results for woody encroachment into grass-
lands of Nebraska and we underlined how the use of long-term time series is crucial for
understanding those ecosystems and to guarantee their conservation.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Spatiotemporal changes in grassland ecosystems processes are strongly influenced by natural disturbances, climatic
variability and human activities, such as grazing management. Disentangling the role played by these factors on grassland
ecological processes represents one of the major challenges of scientific community and forest managers. Changes in
ecosystem processes are occurring at rates that are unprecedented in human history (Collins et al., 2011) and cover many
broad geographic regions (Breshears et al., 2005; Goetz et al., 2012; Vayreda et al., 2012). Uncertainties on the trajectory of
these changes under changing climatic conditions are particularly critical in a semi-arid environment where temperature,
precipitation, and disturbances have long been viewed as key factors determining vegetation type, including transitions
between grasslands, savannas and forests (Bond et al., 2005).

In Nebraska, as well as in other semi-arid regions of the Great Plains, one of the consequences of these changes is a shift in
vegetation cover, such as the transformation of savanna-like ponderosa pine (Pinus ponderosa) ecosystems into dense forests,
and its expansion into adjacent grasslands from historical grasslands-woodlands ecotones (e.g., Eggemeyer et al., 2006, 2009;
Msanne et al., 2017). Ponderosa pine (Pinus ponderosa P.& C. Lawson) is a tree species with one of the largest distribution area
in North America (Sala et al., 2005), and recently it has expanded into grasslands from its original forest sites. Factors driving
this phenomenon are still debated. Although, several factors have been indicated as drivers of those changes, such as
decreased fire frequency (Bond et al., 2005), over-grazing, climate change, land use change, and human and natural enhanced
seed dispersal (Awada et al., 2013 and references therein), it is difficult to disentangle such complex interactions between
biotic and abiotic factors. Some studies have suggested that increasing atmospheric carbon dioxide (CO2) concentrations may
influence photosynthesis rates (Ausennac, 2002) and foster woody plant encroachment into grasslands (Stevens et al., 2016).
Indeed, elevated CO2 concentrations can enhance intrinsic water-use efficiency (WUEi) of trees by reducing stomatal
conductance (Polley et al., 1997; Bond and Midgley, 2000; Saurer et al., 2004; Battipaglia et al., 2013; Guerrieri et al., 2020) or
increasing photosynthetic rates, which allow plants to increase their drought resistance (Drake et al., 2017). However, the role
of increasing CO2 concentrations, especially increasing plant WUEi and growth, in the physiological adaptation of plants to
newly established climatic conditions in semi-arid ecosystems remains poorly understood (Archer et al., 1995; Davis et al.,
1999; Dickie et al., 2007; Polley et al., 2003; Van Auken, 2009; Classen et al., 2010; Sullivan et al., 2017).

Tree-ring stable isotope ratios give insight into the ecophysiological processes triggering the trees response to past
environmental conditions, including increase in CO2 concentration in the atmosphere (Scheidegger et al., 2000; Barbour,
2007; Battipaglia et al., 2010; Sullivan et al., 2017). Once allocation patterns of carbon in trees are identified (Gessler et al.,
2014), carbon stable isotope ratio (d13C) can then be used to estimate annual variability of WUEi, since d13C values in
organic matter reflect the ratio between the partial pressure of CO2 in leaf intracellular space (ci) and the partial pressure of
CO2 in the atmosphere (ca) (Farquhar et al., 1982). Factors like limited water availability and increase in CO2 concentrations in
the atmosphere reduce stomatal conductance, triggering changes in WUEi and in ci that are recorded by variations in d13C in
assimilated CO2 and plant tissues (Seibt et al., 2008; Maseyk et al., 2011). The d18O of plant tissue depends primarily on source
water signature and the ratio of ambient to leaf internal spaces, on evaporative enrichment at the leaf level and the following
post-photosynthetic exchange rates during synthesis of carbohydrates (Roden and Ehleringer, 2000; Treydte et al., 2014).
Changes in stomatal conductance (gs) affect the evaporative enrichment of leaf water (Barbour, 2007) leaving a strong signal
in the oxygen isotope ratio (d18O) values of tree rings. The combination of d13C and d18O provides complementary information,
as d18O is linked to gs but it is not affected by net photosynthesis (A), and can thus allow the separation of the independent
effects of A and gs on d13C and WUEi (Scheidegger et al., 2000; Roden and Farquhar, 2012; Battipaglia et al., 2013). Even if the
interpretation of the double model d13C - d18O is not straightforward and may be sometimes hampered by source water
isotope changes (Gessler et al., 2014), it can still provide important information when applied in water-limited ecosystems
(Moreno-Guti�errez et al., 2012; Gessler et al., 2014; Altieri et al., 2015; Battipaglia et al., 2016).

In this study, we investigated the impact of stand density, climate variability, and increasing atmospheric CO2 concen-
tration on long-term growth and physiological processes of ponderosa pine trees in the semi-arid Nebraska grasslands, using
tree-ring stable isotopes. We selected two types of stands with sharply contrasting structure and density: a dense ponderosa
pine plantation, and a neighboring open woodland with scattered pines. We hypothesized that ponderosa pine growth at
both sites is influenced by stand density and that an increase in atmospheric CO2 concentrations would enhance tree water
use efficiency, contributing to the ability of this species to cope with drought stress. Further, we discuss how elevated CO2
could influence woody encroachment in such environment.

2. Materials and methods

2.1. Study area

The study sites were located in the Nebraska National Forest (NNF), Halsey, Nebraska (825 m elevation, lat. 41�5104500N,
long. 100�2200600W). The NNF is a 25,000 ha experimental forest, established in 1938 in the semi-arid C4 dominated grass-
lands of the Nebraska Sandhills (McEntee, 1941). Tree planting started in 1920s and continued in subsequent decades. A total
of ~10,000 ha was hand planted with monocultures of coniferous species including Pinus ponderosa. Trees in sparse site
consists mostly of volunteer trees that established over time in adjacent open grasslands. The selected dense site has not
undergone thinning treatments, but some tree mortality and self-thinning have occurred over time. Temperature and
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precipitation data for the study period (1938e2014) for the two sites were obtained from the HPRCC (High Plains Regional
Climate Center, HPRCC, University of Nebraska e Lincoln, http://www.hprcc.unl.edu, from local weather stations). The sta-
tions Halsey 2 W and Bessey Nebraska are in NNF, between 2 and 10 km North of the NNF sites, the station Dunning 6 NW
15 kme18 km Northeast of NNF sites. NNF climate stations Halsey 2 W and Bessey Nebraska are within 0.6 km of each other,
whereas the Dunning 6 NW station is 13.5 km to the East (http://hprcc.unl.edu/).

The climate is semiarid, the mean annual temperature, recorded in the period 1950e2015, is 8.4 �C, mean minimum
temperature in January is �13 �C and mean maximum temperature in July is 32 �C. Mean annual precipitation is 570 mm.
Vegetation season occurs from April to September, when around 75 percent of precipitation falls as rain. Soils are sandy
(mixed, mesic, Typic Ustipsamments) (Lewis and Kuzila, 1998; Sherfey et al., 1965). The CO2 records used for this study were
derived from the ice cores obtained at Law Dome, East Antarctica, see Battipaglia et al. (2015) for details. The data are global
but it has been demonstrated that CO2 mixes well throughout the atmosphere, consequently, local CO2 trend is statistically
indistinguishable from the trend in global CO2 levels (Thoning et al., 2015).

Samples were taken at two sites characterized by sparse (<5 trees per 100 m2; mean tree height 10 ± 2 m and mean
diameter 45 ± 7m) and dense (>10 trees per 100m2; mean tree height 8 ± 2m andmean diameter 40 ± 5m) forest stands. In
sparse stands, the understory consists of a perennial grasslands community and is dominated by sand bluestem (Andropogon
hallii Hack.), switchgrass (Panicum virgatum L.), little bluestem (Schizachyrium scoparium (Michx.) Nash), sand dropseed
(Sporobolus cryptandrus (Torr.) A. Grey), white sagebrush (Artemesia ludoviciana Nutt.) and Kentucky bluegrass (Poa pratensis
L.). In dense stands, only few individulas of Kentucky bluegrass (Poa pratensis L.), little barley (Hordeum pusillum Nutt.) and
annual blue grass (Poa annua L.) can be found.

2.2. Sampling and tree-ring analyses

Three cores, from each of 20 ponderosa pine trees selected at each site, were takenwith a 0.5 cm increment borer (Hagl€ofs,
Sweden) and with an angle of 90� between them. Two cores were used for ring-width measurements and a third one for
isotopic analysis.

Tree-ring width (TRW) wasmeasured at a resolution of 0.01mm, using LINTAB equipment coupled with a stereoscope and
with TSAP software (Frank Rinn, Heidelberg, Germany). After visual cross-dating (Schweingruber, 1996), samples from each
site were cross-dated using the Gleichl€aufigkeit, a statistical measure of the year-to-year agreement between the interval
trends of the chronologies (Kaennel and Schweingruber, 1995). Student t-test was used to determine if the means of two
curves are significantly different from each other.

The quality of the cross-dating and potential errors were estimated with the program COFECHA (Holmes, 1993). Corrected
series were detrended with a cubic smoothing spline with a 50% frequency response cut-off of 10 years to remove long-term
growth trends embedded in the raw ring-width series, which are induced by non-climatic influences, such as aging and
competition between trees (Fritts, 1976). Ring-width indices were calculated as residuals from the estimated age trend. For
each site chronology, the following parameters were calculated, using 30-year common interval with an overlap of 15 years:
the signal-to-noise ratio (SNR), indicating the proportion of explainable variation divided by the unexplainable variation; the
expressed population signal (EPS), indicating how the constructed chronology represented the hypothetical perfect popu-
lation chronology, and themean inter-series correlation (RBAR), measuring the common variance between the single series in
a chronology (Table 1). Further, the mean sensitivity (MS), indicating the co-variation of the time-series and the series
intercorrelation (S.I.), indicating the stand level signal, were reported (Table 1). We calculated the annual basal area increment
(BAI) for each chronology, since it is less dependent on age (Biondi and Qeadan, 2008) and can be used to calculate cumulative
basal area increment of each stand along the whole chronologies (Klein et al., 2014; Battipaglia et al., 2015).

2.3. Carbon and oxygen isotopes and water use efficiency

The 20 years prior to the date of sampling were investigated with annual resolution. Each annual ring was split and ground
with a centrifugal mill (ZM 1000, Retsch, Germany) using a mesh size of 0.5 mm to assure homogeneity. Cellulose was
extracted following the procedure described in Boettger et al. (2007) and Battipaglia et al. (2008). The carbon (C) and oxygen
(O) stable isotopic composition was measured by continuous-flow isotope ratio mass spectrometry (Delta V Advantage,
Thermo Scientific), the carbon by combustion in a EURO EA elemental analyzer (EuroVector, Milan, Italy), the oxygen by
pyrolysis in a high-temperature oxygen analyzer (HEKAtech, Wegberg, Germany). The d13C raw data were corrected for the
changing d13C of atmospheric CO2 since the beginning of industrialization (Francey et al., 1999; McCarroll and Loader, 2004).
The corrected series were used in statistical analyses.

Table 1
Dendrochronological characteristics of the ring-width chronologies of P. ponderosa at sparse and dense sites.

mean TRW (1/100 mm ± SD) EPS SNR RBAR S.I. MS

Sparse site 327 ± 142 0.97 15 0.83 0.56 0.3
Dense site 160 ± 98 0.96 17 0.89 0.6 0.36

EPS ¼ expressed population signal; SNR ¼ signal-to-noise ratio; RBAR ¼ mean interseries correlation, S.I. ¼ series intercorrelation; MS ¼ mean sensitivity.
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The values of d13C in tree rings were used to calculate the intrinsic water use efficiency (WUEi), defined as the ratio be-
tween net photosynthesis (A) and stomatal conductance (gs) following the approach presented in Battipaglia et al., (2016).

2.4. Relationship between environmental conditions and tree growth

Differences of tree-ring width as well as of isotope composition in trees growing at sparse and dense sites were tested
using a Student’s t-test. All data were checked for normality before applying inferential statistics. For the whole period, in
order to understand the effects of climate and increasing CO2, onto tree growth and physiology, we used a multivariate
statistic known as Two-Block Partial Least Squares (2 B-PLS). This statistical approach can be successfully applied to matrixes
with a low sample size and with highly correlated variables (Barker and Rayens, 2003; Carrascal et al., 2009), and, although
originally designed for morphometric analyses, it was recently applied in several ecological contexts (Innangi et al., 2017,
2018, 2019). In contrast to other well-established multivariate statistics (e.g. Canonical Correlation Analysis), 2 B-PLS aims at
finding latent variables that can explain the covariance between two multivariate matrixes, returning variables that account
as much as possible for the covariation between two sets of variables (Rohlf and Corti, 2000).

The patterns of covariance between the two matrixes can be represented by a scatterplot for the first axis of the 2 B-PLS
where the x-axis and the y-axis represent the two multivariate matrixes, respectively. These patterns of covariance can be
interpreted by examining the correlations of the two multivariate matrixes (blocks) with first axis of the 2 B-PLS. Thus,
patterns of positive or inverse correlation can be asserted both within and between matrixes, as variables that are positively
correlated within one matrix and have the same sign on the other matrix highlight a pattern of covariance. Thus, the higher
the correlation coefficient (regardless of its sign), the stronger the variable drives the scatterplot for the multivariate dataset
within and between the considered blocks. All analyses were done in R 3.6.1 (R Core Team, 2019), using packages ‘plsdepot’
(Sanchez and Sanchez, 2012) and ‘ggplot2’ (Wickham, 2016).

Fig. 1. Mean tree ring width index with Standard Deviation (SD) for ponderosa pine in sparse site (black line) and dense site (grey line).
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3. Results

3.1. Tree growth

Trees at the sparse and dense sites belonged to the same age class, with a mean of 80 ± 16 years. Site chronologies
presented a high EPS values (>0.85) indicating that they can be considered representative of the radial growth of the studied
stands (Wigley et al., 1984). Statistics (Table 1) revealed a strong common growth signal between the two sites and similar
trends in terms of inter-annual changes linked to climatic fluctuations.

The tree ring-width (TRW) chronologies of sparse and dense sites presented similar trends despite the different stand
densities. Further, significant correlation was found between stands (r ¼ 0.67, P < 0.01) during the whole growing period
(Fig. 1) and in particular during 2000e2014 years (r ¼ 0.83, P < 0.001) when an increase of growth was recorded. Cumulative
basal area increment (Fig. 2) for ponderosa pine showed a significant difference between dense and sparse site, and at both
sites a statistically and highly significant increase over the years, especially at the sparse site (P < 0.001).

3.2. WUEi and d18O

The water use efficiency (WUEi) of ponderosa pine, derived from tree-ring d13C measurements (Fig. 3), showed similar
mean ± standard deviation values at the two sites (WUEi average sparse ¼ 112 ± 7 mmol mol�1; WUEi average
dense¼ 113 ± 7 mmol mol�1). A clear increase (P < 0.01) inWUEi was observed around the period 2000e2006 (WUEi average
sparse ¼ 117 ± 5 mmol mol�1; WUEi average dense ¼ 119 ± 4 mmol mol�1), followed by a non-significant decrease.

WUEi of sparse site had a positive correlation with temperature (r2 ¼ 0.45, p < 0.05), with high WUEi during years
characterized by high temperature (Fig. 3), such as 2002, 2006, 2012, while no significant correlation resulted between
temperature and WUEi of dense site.

The d18O at both sites showed similar values (d18O sparse ¼ 32 ± 0.7‰; d18O dense ¼ 31 ± 0.9‰-Fig. 4). At both sites,
ponderosa pine presented a maximum d18O in 2000 and 2012.

At both sites a significant positive correlation between d18O and WUEi was found (r ¼ 0.25 in sparse site; p < 0,05 and
r ¼ 020, p < 0.05 in dense site).

The results from the first axis of the 2 B-PLS analysis are reported in Fig. 5. The x-axis of the plot represents the den-
droecological data (Block 1, tree ringwidth, d13C, d18O) while Block 2, i.e., y-axis of the plot, represents environmental data (i.e.
total precipitation, mean annual temperature and CO2 concentration). A clear gradient from the lower left to the upper right
quadrant of the plot can be observed. In detail, an array of data (between 1994 and 1999) can be seen in the lower left
quadrant. This data demonstrates both higher TRW (in both sparse and dense stands) and an increase in total precipitation, as
both TRW and P have negative signs for their correlation with axis 1 of the 2 B-PLS, thus being positively correlated between
datasets.

Data fromyears 2000e2014, are grouped in the upper right quadrant. In general, these datawere on the opposite quadrant
from 1994 to 1999 data, implying a decrease in both TRWand total precipitation. In addition, these datawere characterized by
a simultaneous increase in CO2 and d13C and d18O, although with some important distinctions. The covariance between CO2

and d13C was sharper in the dense stands, while d18O values in the sparse stands were more prominent. Mean annual
temperature and d13C and d18O at the sparse and dense stands showed little or no impact on growth.

Fig. 2. Cumulative basal area increment for ponderosa pine in sparse site (black line) and dense site (grey line).
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4. Discussion

4.1. Effect of environmental conditions on ponderosa pine growth

In this study, we found an increase in ponderosa pine growth starting from 1960 at both sites, and in particular at the
sparse one. These results agree with previous studies suggesting that tree species’ responses to climate are site-dependent
and may be modulated by stand density (Moreno-Gutierrez et al., 2012; Camarero et al., 2013; Sanchez-Salguero et al., 2013).

Zalloni et al. (2019) found that intraspecific facilitation effects decreased with increasing stand density in a Quercus ilex
stands, while Niccoli et al. (2020) demonstrated that sparse stands, resulting from selective thinning, have higher productivity
associated with increased photosynthetic rate and decreased water loss relative to low thinned stands.

Fig. 3. Values of a) WUEi ± SD (mmol mol�1) of ponderosa pine individuals at the sparse site (black) and the dense site (grey). Black line indicates Tmax. WUEi
linear trends are reported.

Fig. 4. Cellulose d18O ± SD [‰] of ponderosa pine individuals at the sparse site (black line) and the dense site (grey line).
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Moreover, several microclimatic parameters such as soil nutrient availability were shown to change with increased stand
density (Barron-Gafford et al., 2003; Zhao et al., 2012; Liu et al., 2013; Bolat, 2014), impacting tree growth at site level (Granda
et al., 2017). In areas with poor availability of nutrients in the soil, or low N concentrations, as in the Nebraska sites (Awada
et al., 2013), a low stand density may be enhancing tree-growth rates (Fern�andez-Martínez and Fleck, 2016).

When considering the environmental factors triggering tree growth, neither precipitation nor temperature seemed to be
strongly influencing, while the most important driver of tree growth appeared to be CO2 concentrations. There are still
contrasting evidences on the role of elevated CO2 concentrations on tree growth. Some studies report an increase in wood
biomass in forest ecosystems worldwide (Yu et al., 2019), whereas many others report no fertilization effects on tree growth
(Peneuelas et al., 2011; Battipaglia et al., 2015, van der Sleen et al., 2015; Brienen et al., 2016).

However, recently, it has been hypothesized that a global factor, such as atmospheric CO2 enrichment could be considered
an important triggering factor for tree growth overriding the local environment, especially when trees coexist with C4
grassland species, as in our study sites, the so-called encroachment process (Stevens et al., 2016 and reference therein;
Sullivan et al., 2017). Indeed, it has been proposed that elevated atmospheric concentration of CO2 favors C3 in comparison to
C4 plants through twomain processes: i) increasing of carbon allocation to roots or ii) increasing soil water availability due to
reduced plant transpiration (Devine et al., 2017), potentially favoring trees over grasses. Furthermore, young trees in open
environments, such as at the sparse sites, grow in relatively resource-rich environments relatively to trees growing in denser
sites where competition for water and light is high and may therefore be expected to benefit the most from CO2 fertilization
(Bond and Midgley, 2000; Msanne et al., 2017), especially in water-limited sites as studied sites (Aus der Au et al., 2018).

4.2. Carbon uptake and water use efficiency

Ponderosa pine trees growing in Nebraska National Forest showed an increase inWUEi that was significant between 2000
and 2006, during a period of several years of consecutive drought, (High Plains Regional Climate Center, University of
Nebraska-Lincoln, https://hprcc.unl.edu/) and among the environmental drivers of d13C and 13C- derived WUEi change. The
increase in atmospheric CO2 concentrations proved to be the most relevant in our study site. High temperature influenced
mostly the increase of WUEi in the sparse site and only in some years (such as 2002, 2006, 2012). Further, during the
investigated period in the study, no change in land use or fire regimes was reported (https://www.fs.usda.gov), or variation of
other environmental factors (Aus der Au et al., 2018).

Fig. 5. Scatterplot for the first axis of 2 B-PLS analysis. The x-axis of the plot represents Dendroecological Data (Block 1), i.e. TRW, d18O and d13C for both sparse
and dense plots, while Block 2 (i.e. y-axis of the plot) represents Environmental Data, i.e. total precipitation (P_tot), mean annual temperature (T_mean) and CO2

concentration. The insets represent correlations within and between blocks (see materials and methods for further details). Data points are coloured according to
sampling year.
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The dual-isotope approach (Scheidegger et al., 2000) has commonly been applied in tree-ring studies to trace the
balance between carbon uptake and water losses (e.g., Moreno-Gutierrez et al., 2015). d13C of tree rings depends on
factors affecting CO2 assimilation, mainly controlled by photosynthetic rate (A) and stomatal conductance (gs), expressed
by A/gs (intrinsic water-use efficiency; Farquhar et al., 1989). On the other hand, d18O can be considered mainly an in-
dicator of stable isotope composition of source water, and leaf water enrichment due to stomata transpiration (Labuhn
et al., 2014; Treydte et al., 2014). In fact, both isotopes are influenced by changes in stomata conductance, but because
of the fact that d18O is not directly linked to photosynthetic activity, the combination of d13C and d18O helps clarify the
role of stomatal activity and photosynthesis on tree performance, which may ultimately determine changes in produc-
tivity (Barbour et al., 2002; Barnard et al., 2012; Shestakova et al., 2017). The d13C and consequentially the 13C-derived
WUEi increase, reported in our study during the last years, may be caused by an enrichment in A, given that d18O-derived
gs was maintained rather stable for the whole study period at both sites (Scheidegger et al., 2000), as also shown by the
strong observed basal area increment-increase. Similarly, Fern�andez-Martínez and Fleck (2016) found increased photo-
synthetic rates and WUEi in Pinus uncinata Mill without changes in gs under elevated CO2. This could indicate that
ponderosa pine trees can benefit of higher CO2 concentrations in the atmosphere and warm temperatures once estab-
lished, enhancing A without suffering water shortage. It has been demonstrated that ponderosa pine possesses avoidance
strategies that allow it to physiologically tolerate soil moisture stress in semiarid grassland environments (Martinez-
Vilalta et al., 2004; Eggemeyer et al., 2006). The deep roots of ponderosa pine allow this species to access water to
12 m deep in the soil profile (Burns and Honkala, 1990) below the frozen layer during winter (Eggemeyer et al., 2009),
and to avoid drought stress during the summer (Eggemeyer et al., 2009), thus facilitating its survival in semi-arid en-
vironments (Kolb and Robberecht, 1996). The positive correlations found between WUEi and growth, unlike those found
in other studies (e.g. Penuelas et al., 2011), indicate that the increase in atmospheric CO2 concentrations led to increased
C inputs in both sites. We found that the two sites were different in terms of growth with the sparse possessing higher
growth rate relative to the dense site. However, no significant differences in WUEi or d18O were observed between the
two sites, and the dense stand did not show any signs of major stress linked to the intense inter-tree competition for soil
moisture or significantly higher canopy interception of precipitation (Chirino et al., 2006). Previous study by Eggemeyer
et al. (2009) reported the importance of root plasticity in this species, with hydrogen and oxygen isotopes showing that
the species competes with grasses for water in the top soil (0e30 cm) during spring (period of high precipitation, May
and June) and shifts its water uptake to deeper layers of the soil profile during July and August (period of drought). On the
contrary in Mediterranean environments, Linares et al. (2010) found that trees of Abies pinsapo were suffering from
intense inter-tree competition (a long-term stress), and Moreno-Gutierrez et al. (2012) found in two Aleppo pines (Pinus
halepensis) stands that tree-ring growth and d18O, but not d13C, were affected by stand structure in severely water-limited
ecosystem. Similar d13C values between dense and open sparse stands suggest that ponderosa pine maintains in the long
term a homeostatic control of the ratio ci/ca (the intercellular to atmospheric CO2 concentration, which determines d13C
and WUEi) as a constant uptake of water (Eggemeyer et al., 2006; McDowell et al., 2006; Maseyk et al., 2011). These
results are based on the “linear” carbon isotope plant fractionation model, but more accurate results might be achieved
with the detailed fractionation model including mesophyll conductance that is also influenced by environment (e.g., Seibt
et al., 2008). However, those models are difficult to estimate in hindsight and if unaccounted for, they could induce some
additional uncertainty. A further bias could be linked to carbon and oxygen signals recorded in tree rings. Indeed, more
than one carbon source is integrated in tree-ring d13C, from leaf photoassimilates to stored C pools in wood (Seibt et al.,
2008). Further, the use of different source waters along the growing season (Eggemeyer et al., 2009) could influence the
signature of d18O in tree rings (Roden and Siegwolf, 2000).

4.3. Linking growth and physiological processes to pine encroachment

As woody species invade and alter species composition, the source and amount of water uptake by plants can be altered,
affecting not only the sitewater balance but also thewater available to native trees and grasses (Awada et al., 2013, 2019). This
allows thewoody species to better survive on semi-arid sites and to uptakewater sources that usually are beyond the reach of
grass vegetation. A recent study on 115- year long selection of grasses and woody species collected in new Mexico, showed
that elevated CO2 influenced plant sensitivity to water shortage, increasing tree WUEi in arid environment and making them
less vulnerable to water stress (Drake et al., 2017).

Our findings indicated the crucial role of elevated CO2 concentrations in maintaining ponderosa pine at the semi-arid
edges of its range and helping it to save water without paying huge carbon penalty during photosynthesis, increasing its
growth and productivity. Those findings open important and timely questions on the future conservation of those ecosystems
where encroachment processes could be triggered by climate change and in particular by increasing CO2 concentrations (Van
Auken, 2000; Morgan et al., 2007; Staver et al., 2011; O’Connor et al., 2014).
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