University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses, Computer Science and Engineering, Department
Dissertations, and Student Research of

Winter 10-19-2020

INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN
A CS PROFESSIONAL DEVELOPMENT PROGRAM FOR K-12
TEACHERS

Patrick Morrow
University of Nebraska-Lincoln, pmorrow@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Morrow, Patrick, "INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS PROFESSIONAL
DEVELOPMENT PROGRAM FOR K-12 TEACHERS" (2020). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 198.

https://digitalcommons.unl.edu/computerscidiss/198

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/198?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages

INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS

PROFESSIONAL DEVELOPMENT PROGRAM FOR K-12 TEACHERS

by

Patrick Morrow

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Leen-Kiat Soh

Lincoln, Nebraska

June 2020

INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS

PROFESSIONAL DEVELOPMENT PROGRAM FOR K-8 TEACHERS

Patrick Morrow, MS

University of Nebraska, 2020

Advisor: Leen-Kiat Soh

The demand for K-12 Computer Science (CS) education is growing and there is
not an adequate number of educators to match the demand. Comprehensive research was
carried out to investigate and understand the influence of a summer two-week
professional development (PD) program on teachers’ CS content and pedagogical
knowledge, their confidence in such knowledge, their interest in and perceived value of
CS, and the factors influencing such impacts. Two courses designed to train K-12
teachers to teach CS, focusing on both concepts and pedagogy skills were taught over
two separate summers to two separate cohorts of teachers. Statistical and SWOT analyses
were then performed using measures such as attitudinal surveys and knowledge
assessments. Findings showed the PD program had a significant impact on the teachers,
there was a positive correlation between teachers’ pre-program confidence and
knowledge, and additional insights on how to deliver such PD programs more effectively.

Results will help inform K-12 CS PD program design.

ACKNOWLEDGEMENTS

First, I would like to thank everyone involved in the AIR@NE project. I would
like to thank Dr. Gwen Nugent and Keting Chen for their work designing the knowledge
tests and surveys and collecting the data. I would also like to thank them, Dr. Wendy
Smith, Dr. Guy Tranin, Susan Prabulos, and Alan Holdorf as they were key contributors
to the design and facilitation of the professional development program. Their hard work

and dedication helped progress my research to the point it is at today.

Second, I would like to thank Emma Hubka for working with me on much of the
data analysis for my work. Emma was always enthusiastic to help and provided insightful

reflections throughout the data analysis project.

Third, I would like to thank Dr. Gwen Nugent, Dr. Witiwas Srisa-an, and Dr.
Leen-Kiat Soh for serving on my thesis defense committee. I would especially like to
thank my advisor, Dr. Leen-Kiat Soh, for his expert support throughout the research
process. His guidance and unwavering support helped me throughout the research
process. Dr. Soh taught me many lessons about research design, academic writing, and
many other personal and professional tips to lead a happy, successful life. I can not thank
him enough for the time and effort he has expended to helped me and my research
progress to the place it is today. Dr. Soh always made himself available for feedback and

suggestions on my work.

Lastly, I would like to thank my friends and family for supporting me over the

two years of graduate school. Much of my time has been spent working on school work

over the last two years and they have been loving and understanding throughout my

research process.

Table of Contents

Chapter 1: INtroduCtioncccccveeiccscsnnicsssnrncssssssnecssssssssssssssssssssssssesssssssssssnses 12
1.1 Problem 12
1.2 Motivation 12
1.3 Gaps in Literature 13
14 Proposed Study 14
1.5 Contributions 16
1.6 Overview 17

Chapter 2: Related WorkK.......eiiiiivvniicnisnniciissnnnicssssnnnccssssssncssssssesssssssssssnnss 19
2.1 General Review 19

2.2 Question 1: To what extent should CS content be part of CS PD

programs? 22

2.2.1 Short PD Programs (1-3 days)cccecueevrieirieriieiieieereereere e 22
2.2.2 Medium PD Programs (4-5 days)ccccceveevreevreeriierieieereerre e eve e 26
2.2.3 Long PD Programs (More than one Week)c.ccevevvveviieviievieenieeieeieennnn 28
2.2.4 CONCIUSION ...ooeiiiiiieieie ettt ettt ee e eneas 31
2.2.5 RecomMMENdAtiONSccccerieiieriieiieieieeie e ee st eete e see et ee e eee e e eneas 32
2.3 Question 2: Is programming imperative when teaching CS teachers how

to teach CS? 34

23.1
232
233
234

235

Chapter 3:

Visual Programming Language Programs............cccoeeevvievieviecnieenreereennn, 35
Text-Based Programming Language Programs............cccccceeevveiieieeveennens 42
Text-Based vs. Visual Programming Languages..........c...cceevveveeveevennnens 46
LO0) 1162 LT 103 4 TSRS 46
RecOMMENAAtIONSceiiieiieieieeieee ettt 47
Cohort 1 Summer PD Programeereccccsnneccsscnnnncssssnssecssnnns 49

3.1 Program Structure

3.1.1 Week 1 CS Content COUISEccueeruerurreeeieienieeeieieseeeeeeeneeseeeseeeeseesseeneens

3.1.2 Week 2 CS Pedagogy COUISEcc.ecvveevierieerieiieere e creeereeereeneesneeneesneens
3.2 Data Analysis

3.2.1 Description 0f Datac.cccieiiiiiiiiiie ettt

3.2.2 Participant BreakdOWn.........cccocoviiiiiiiiiiiiciiciicieeee et
33 Results

3.3.1 Impact of PD Program on Cohort 1cccccvviiiiiiiiiiiiicieciecieere e

3.3.2 Model-District vs. Non-Model-District Teachers...........cccccevcereeenienereencne

3.3.3 Factors Driving Teacher Performance..........c.ccccceevveviiiviiiciiiciiciiciecie s
34 Program Evaluation

341 SHENEENS. ettt e et b e et erbeeaae e

342 WEAKINESSESeeueeeienieietieiieteeie et et e ste st eete e ste e st este b e e ae e st esesseeneeneensesseeneans

343 OPPOTTUNILICS...ccvvieereeereeereereeereeteeteetreeteereeereesreessessseessesssessseessesssesssessnenes

344 TRICALS...ceeeeieeieie ettt ettt ettt ettt et et st et e b e seeene e e essesreeneens

Chapter 4: Cohort 2 Summer PD Programccoeeicnvvnnicsssnnrccsssnnnnccssnnns

4.1 Program Structure

4.1.1 Morning CS Content COUISE.........ccveerrierrierreerreerreereesreesseesreesseesseessesssesssees

4.1.2 Afternoon CS Pedagogy COUISEcceivvievieeriieiierieieere e e eveeveeve v
4.2 Data Analysis

4.2.1 Description 0f Data........c.ccoieviieciieiieiieieeie et re e s

4.2.2 Participant BreakdOWN..........cccoevvieiiiiiiiiiieeie e

4.3 Results

4.3.1 Impact of PD Program on Cohort 2cccceeveviieiieviienieenecie e

4.3.2 Factors Driving Teacher Performance...........cccccoeeevieviieviienieneenieeieeieenen

49

49

51

52

52

53

55

55

57

60

62

63

64

65

67

69

69

73

76

76

78

78

4.4 Program Evaluation 82
44T SIENELNS....ciiiiierieiieie ettt ere ettt e it e b e ebeebeesbeebeesbeebesbeesbeesbeesseenses 82
442 WEAKINESSESevemveniuierirtiienieiteieste ettt ettt sttt sttt et eae et e et be e aes 84
4.4.3 OPPOTTUNILIES...vecuveeerieeriereeiteeteesteereereeseesseesseesseesseesseesseessessseessessesssesssees 85
444 TRICALS.....cueeuiriititeietet ettt 86

Chapter 5: Cohort 1 vs. COROIt 2......uueiiervveriiiiinnnricssssnnnccsssnnsicssssssesssssssssssnnss 88

5.1 Cohort 1 to Cohort 2 Changes 88
S5.1.1 In-Person to ONlINe........ccccoouiiireeiiniininieienireetese et 89
5.1.2 0 SChedule......ooueiiiiiiiiiiiicce e 89
5.1.3 Lead INStIUCTOTueeuiiiiiieiieiieicetctceieect ettt 90
5.1.4 InStruction T@AMccccoviviiiiiiniriiieieirereeet ettt 91

5.1.5 Programming Language and Integrated Development Environment (IDE)91

5.2 Program Qutcomes (Cohort 1 vs. Cohort 2) 92
5.2.1 Impact of PD Programs..........cccccceeviiiiiiieiieiieseeceesee e sieesveesesesenesenenns 92
5.2.2 Model-District vs. Non-Model-DiStrictcceeeereeeieeieeeieeereeereeeenee. 100

53 Conclusion 108

5.4 Recommendations 109

Chapter 6: ConCIUSIONueeiiceiirnricsissnnncssssnrecssssssesssssssssssssssssssssssssssssssssssssss 111
6.1 Summary of Findings 111
6.2 Future Work 113

RETEIENCES c.vvrrnneniiiicssiinsssnennsiicesssssssssnsssieecssssssssssssssscssssssssssnssssessssssssssssnsssscss 115

Table of Figures

FIGURE 2.1 QUESTION 1 OF KONG AND LAO’S SUMMER PD PROGRAM TEST OF CT SKILLS.......c.cccceerueruennee. 39
FIGURE 2.2 QUESTION 4 OF KONG AND LAO’S SUMMER PD PROGRAM TEST OF CT SKILLS.......ccccoceeueruennee. 40
FIGURE 3.1 COHORT 1 SUMMER PD PROGRAM’S FIRST-WEEK CS/CT CONTENT COURSE SCHEDULE............. 51
FIGURE 3.2 COHORT 1 SUMMER PD PROGRAM SECOND-WEEK CS PEDAGOGY COURSE SCHEDULE. 52

FIGURE 4.1 COHORT 2 SUMMER PD PROGRAM’S CS/CT CONTENT MORNING COURSE SCHEDULE — WEEK 1.

.. 70
FIGURE 4.2 COHORT 2 SUMMER PD PROGRAM’S CS/CT CONTENT MORNING COURSE SCHEDULE — WEEK 2.

.. 71
FIGURE 4.3 COHORT 2 SUMMER PD PROGRAM DAY 6 BREAKOUT SESSION EXAMPLE........cccccevvvireerieeennnnnn. 73

FIGURE 4.4 SUMMER PD PROGRAM SECOND-WEEK CS PEDAGOGY AFTERNOON COURSE SCHEDULE — WEEK
L ettt ettt et e et e et e et e e ettt et e e etae et e e eate et eeente e ae e tae e beeasee et e easaeenteeesbeenbeensteeaeenreeans 75
FIGURE 4.5 SUMMER PD PROGRAM SECOND-WEEK CS PEDAGOGY AFTERNOON COURSE SCHEDULE — WEEK
2 ettt eeeteehee e te e te e te e bt ettt e —tette e teetteante e tteante e baeanteenteees b e e beeaste et eeaateenbeeasteenteennteenbeesteebeenteeans 76
FIGURE 5.1 POST-PROGRAM CS TEST SCORES IN COHORT 1 AND COHORT 2.....cceevureereeireeieeniresreenenesnveenens 94
FIGURE 5.2 COHORT 1 vS. COHORT 2 POST-PROGRAM CS TEST SCORES AND COHORT 1 VS. COHORT 2 POST-
PROGRAM CT TEST SCORES.uveetieiiiiertienireesteessteeteesseesseessseessessssesssesssesssessssesssesssseesseesssessssssssessseesns 95
FIGURE 5.3 COHORT 1 PARTICIPANTS’ POST-PROGRAM CS CONFIDENCE LEVELS VS. COHORT 2
PARTICIPANTS’ POST-PROGRAM CS CONFIDENCE LEVELS.ecvutieiteiieeieenieesreenseesseessnesssessssesssessseenns 98
FIGURE 5.4 POST-PROGRAM AVERAGE AND STANDARD DEVIATION OF COHORT 1 PARTICIPANTS’ CS
TEACHING CONFIDENCE VS. COHORT 2 PARTICIPANTS’ CS TEACHING CONFIDENCE.ccccccevuvreennen. 100
FIGURE 5.5 PRE-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-
DISTRICT TEACHERS’ CS KNOWLEDGE TEST SCORES, CT KNOWLEDGE TEST SCORES, CS CONFIDENCE
SURVEY RESPONSES, AND CS TEACHING CONFIDENCE SURVEY RESPONSES.cccvviiiiiieeeiieeceireeeeireeenns 104
FIGURE 5.6 PRE-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-

DISTRICT TEACHERS’ CS ATTITUDES. ...uuvtteiieeiiiierieeeeeitreeeeeeiiteeeeeeiesseesessesssssessesssssessessssssssesssssinees 104

FIGURE 5.7 POST-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-
DISTRICT TEACHERS’ CS KNOWLEDGE TEST SCORES, CT KNOWLEDGE TEST SCORES, AND CS
CONFIDENCE SURVEY RESPONSES.utiitiertteeteentteetesteessessseessseessessssesnsessssesnsessssesssessssssssessssesssesnses 105

FIGURE 5.8 POST-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-

DISTRICT TEACHERS’ CS ATTITUDES. ...uuvtttiieeiiiieeieeeeeiureeeeeeiireeeeeeiesssesessesssasessesssssessessssssseesssssinees 106

10

Table of Tables
TABLE 2.1 DETAILS OF THE PD PROGRAMS OF VARYING DURATION IN THE RELATED WORK SECTION. 24
TABLE 3.1 BREAKDOWN OF THE PARTICIPATING GROUPS IN COHORT 1. ..ccccvvviiiiiiiiiiiiiiiiieeec e 54

TABLE 3.2 EVALUATION OF THE IMPACT OF THE COHORT 1 CS PD PROGRAM BY COMPARING PRE-PROGRAM
AND POST-PROGRAM KNOWLEDGE, ATTITUDE, AND CONFIDENCE SCORES (MEAN, STANDARD
DEVIATION, T-VALUE, DEGREES OF FREEDOM, SIGNIFICANCE VALUE)......ccccvtirutenieeieeneenreenineasseenenenns 55

TABLE 3.3 COHORT 1 MODEL-DISTRICT (MD) vS. NON-MODEL-DISTRICT (NMD) TEACHER MEAN,

STANDARD DEVIATION, T-VALUE, DEGREES OF FREEDOM, AND SIGNIFICANCE VALUES FOR EACH TEST.

.. 59
TABLE 3.4 MEASURING THE IMPACT OF PRE-PROGRAM CS CONFIDENCE BY COMPARING COHORT 1 TEST
SCORES OF TEACHERS WITH ABOVE (ABV) AVERAGE CONFIDENCE COMING INTO THE PROGRAM VS.
TEACHERS WITH BELOW (BLW) AVERAGE CONFIDENCE.cccteitterttertieesieenreeseesressseessesssessssessseenseenns 61
TABLE 3.5 EVALUATION OF OUTCOMES FROM COHORT 1 TEACHERS PLANNING OF TEACHING (T) IN THE
NEXT AY vS. COHORT 1 TEACHERS NOT TEACHING (NT) IN THE NEXT AY ON POST-PROGRAM TEST
SCORES. ...otttititete sttt ettt ettt et e ae et b e s bttt be bt e st oot e st et e st ea e e bt ae sh e b b s a et et e e s e st e st et aeeaeeae e 61
TABLE 3.6 EVALUATION OF COHORT 1 K-5 ELEMENTARY (E) TEACHERS VS. 6-8 MIDDLE SCHOOL (M)
TEACHERS TEST SCORES. ...ceeuieuiiuiiiiitietiniestentestestetestetesteseeae et eseeseesesaeesessesae st e sesse s esaessenseneeneeneeneeseases 62

TABLE 4.1 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM BY COMPARING COHORT 2 PRE-PROGRAM
AND POST-PROGRAM KNOWLEDGE, ATTITUDE, AND CONFIDENCE SCORES (MEAN, STANDARD
DEVIATION, T-VALUE, DEGREES OF FREEDOM, SIGNIFICANCE VALUE)......ccccvttruteniierieeneenreensreasseenenenns 80

TABLE 4.2 EVALUATION OF COHORT 2 K-5 ELEMENTARY (E) TEACHERS VS. 6-8 MIDDLE SCHOOL (M)
TEACHERS CS KNOWLEDGE TEST SCORES.....cctteitteeteetiesteesieesseesseessseesseessessseesssesssessssesssessssesssesnsessns 81

TABLE 5.1 DETAILS OF COHORT 1 AND COHORT 2 CS PD DESIGNS.ceeitieiiiieiieniieeieenireeieeseneeseessneeneennns 88

TABLE 5.2 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM FROM PRE-PROGRAM TO POST-PROGRAM
FOR COHORT 1 AND COHORT 2....uvieiuiieiieniieesieesieeteesseesseessseesseesssesseesssesssessssesssesssseesssesssessssesssesnseesns 93

TABLE 5.3 TWO-SAMPLE T-TEST BETWEEN COHORT 1 POST-PROGRAM CS KNOWLEDGE TEST SCORES AND

COHORT 2 POST-PROGRAM CS KNOWLEDGE TEST SCORES.uvvtiiiiiiiterieeeieitrreeeeeenireeeeeesssnseeeeessnnenes 93

11

TABLE 5.4 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CT KNOWLEDGE OF THE COHORT
1 AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM.cccuvteruierureeieenieenieennreeseensnessseenseenns 95
TABLE 5.5 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CS ATTITUDES OF THE COHORT 1
AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM.cuveerurieiienereenieeniresieesneeseessnessseenseenns 96
TABLE 5.6 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CS CONFIDENCE OF THE COHORT
1 AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM.cccuvteiieruiieieeneeeereenireeseessnessseenseenns 97
TABLE 5.7 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CS TEACHING CONFIDENCE OF

THE COHORT 1 AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM.uuuuurureinirereeieeeeeeneeeenns 99

12

Chapter 1: Introduction

1.1 Problem

The need for K-12 computer science (CS) instruction has become of great
importance throughout the world as more and more career paths rely heavily on digital
competency. Because of this, a gap exists in the availability of quality K-12 CS in-service
K-12 teachers. We can address this gap by providing pre-service and in-service teachers
with quality CS training through CS professional development (PD) programs. This
research focuses on preparing the in-service teachers by evaluating our PD programs held
in two consecutive summers with two separate cohorts of K-12 CS teachers. Our study
aims to improve K-12 CS instruction by identifying what makes our in-service K-12
teachers learn CS effectively in our two-week CS PD program. The findings presented in
this paper will aid future PD program designers by understanding how PD program
designers should teach and how to evaluate the program to gain a useful insight into the
program’s effectiveness. PD designers will make specific adjustments to any PD program
given different participant characteristics, such as grade level of instruction, experience
level with computer science, and resources available in time and technology. This paper’s
findings will also help designers make those adjustments to cater to any PD program
around the participants’ needs. Overall, this research strives to improve the quality of

instruction and students’ access to a CS education at the K-12 level.

1.2 Motivation

In recent years there has been a push for an increase in Computer Science (CS)

education as the number of CS jobs rises. A study by the Bureau of Labor Statistics

13

shows that 58% of all new STEM jobs are in computing, and 10% of STEM graduates
are majoring in CS. This study identifies a significant disconnect between the
requirements of the workforce and the ability of the education system to prepare students
to meet those requirements. The desire to produce more CS majors is a view that is not
unique to just industry leaders. A 2016 Gallup survey showed that 90% of parents want
their child to learn CS (Google & Gallup, 2016). A more recent study by Gallup showed
that 45% of high schools teach CS across 39 states (2019 State of Computer Science
Education, 2019). The demand for CS curriculum in K-12 has exposed a substantial
deficiency in the number of trained K-12 CS teachers, and in many states, there is no
required training for teaching computing courses (Lang et al., 2013). The lack of
participation in CS and the lack of trained CS educators at the K-12 level desperately

needs to be addressed.

1.3 Gaps in Literature

Numerous projects have attempted to address the low levels of CS participation by
offering different K-12 teacher professional development (PD) institutes or workshops.
The primary focus of these workshops is to teach CS pedagogical knowledge and CS
content knowledge to teachers. Typically, PD programs are unable to specialize in both
areas due to their short duration to accommodate teachers’ busy summer schedules. The
workshops that heavily emphasized CS content knowledge left teachers lacking the
ability to integrate the new content into their classrooms (Ericson et al., 2005; Neutens
and Wyffels, 2018). The workshops that focused on CS pedagogy knowledge and

available technology excited teachers to teach CS but left them with sparse confidence to

14

teach their students and a limited content base (McGee et al., 2019). These trends were
clear in Chai et al.’s study of the factor technological, pedagogical, and content
knowledge (TPACK) plays in helping new K-12 CS teachers succeed in integrating CS
curricula in their classrooms (Chai et al., 2010). While all three components are essential
PD programs components, Chai et al.’s study noted that the focus of the PD program
needs to change based on the skills of the teachers in the program. Chai et al. identified
pedagogical knowledge as a good starting point for pre-service teachers, while content
knowledge is essential for in-service teachers (Chai et al., 2010). With more K-12 schools
teaching CS, these studies have set the stage for new and exciting research in the field of

PD for new CS teachers.

14 Proposed Study

Much of the research in the CS PD area strives to find the most effective strategy
for delivering PD workshops and how the workshops can be adapted to prepare K-8 CS
teachers better. Designing a one-size-fits-all PD workshop is difficult. However,
understanding the traits and behaviors of the teachers could benefit CS PD designers in
tailoring PD workshops. This research aims to improve understanding of in-service CS
teachers, their strengths, their weaknesses, and their aptitude for learning CS, and how

such characteristics manifest in observable behaviors in PD courses.

This research aims to measure and identify traits, behaviors, and motivations of K-
8 teachers participating in a two-week CS PD program. As a critical step towards
improving K-8 CS education, we hope to find traits, behaviors, and motivations that help

predict course success as measured by CS content understanding. Understanding these

15

predictors will allow facilitators to provide timely interventions in future CS PD

programs. For a teacher to be successful in a PD program, they need to improve their CS

and CT content knowledge to a point where they feel confident enough to teach it. To

strengthen their CS and CT knowledge, they need to be motivated and engaged

throughout the PD program. The program designers adapt the program design as

necessary to cater to the strengths and weaknesses of the group. If the facilitators

determined that a group of teachers are not likely to succeed in the program, then the

designers can make changes to address the issues hindering the teachers on a failing path,

which will lead to better prepared CS instructors.

This study focuses on the following three research questions:

1. What was the impact of the CS summer PD on the teachers?

a.

b.

C.

d.

c.

knowledge of CS concepts
knowledge of computational thinking
CS attitudes

confidence in CS knowledge

confidence in teaching CS

2. What were the differences between teachers from a model school district

(an urban school district with extensive CS curricular development and

teacher PD) and teachers from other school districts? How did the program

impacts differ?

3. Which factors lead to teacher success (e.g., knowledge test scores) in terms

of CS understanding in the summer PD program? Specifically, this study

investigates confidence in CS content, plans to teach CS in the following

16

AY, and grade level of instruction as potential predictors of teacher

performance.

1.5 Contributions

Some significant findings have come from the two CS PD programs covered in
Chapters 3 and 4. First, the analysis showed that both programs were successful in
significantly improving the participants’ CS knowledge test scores, CT knowledge test
scores, CS confidence, and CS teaching confidence. The findings from Cohort 1 also
showed that teachers with more experience in teaching CS had more confidence in CS
than teachers with less experience, even though the two groups had similar knowledge
test scores. Our assessment also showed no significant correlation between the grade
level of instruction or the participants’ plans to teach CS in the next academic year and
their knowledge test scores. Lastly, the program evaluation showed that for Cohort 1,
confidence in CS concepts had a strong correlation with the post-program knowledge test

scores, but in Cohort 2, this did not hold.

During the process of designing the two PD programs, we also developed several
course materials that will be helpful for other PD program designers to use. In this paper,
we share resources from each of our two-week PD programs including the schedules
(first cohort schedule: Figure 3.1, Figure 3.2, second cohort schedule: Figure 4.1, Figure
4.2), syllabuses, quizzes (Appendix A), homework assignments (Appendix B) and the
adjustments we made to each of those items as we needed during the program and
between programs. Our cohort participants’ CS experience guided the development of

these materials. From Cohort 1 to Cohort 2, we made several changes since the

17

participants’ background and skills were slightly different in the two cohorts. These

adjustments are essential for optimizing the effectiveness of each PD program.

1.6 Overview

First, in Chapter 2, the Related Work section discusses several CS PD programs and
their effect on the K-12 CS education community (Section 2.1). In this section, we also
investigate two key questions that will help guide future CS PD design (Sections 2.2 and
2.3). In the next chapter, Chapter 3, we discuss the details of the first cohort, two-week
summer PD program delivery. Specifically, this chapter includes information on the
Program Structure (Section 3.1), the Data Analysis (Section 3.2), the Results (Section
3.3), and the Program Evaluation (Section 3.4). The Program Structure section discusses
the logistics of the program. The Data Analysis section describes the process of collecting
the data and how it was analyzed. The Results section looks at the impacts of the CS PD
program, the outcomes of the different teacher groups, and factors driving performance.
The Program Evaluation section further complements the findings in the Results section
with details about the nuances of delivering a CS PD program and insights learned. The
next chapter is about the two-week, CS PD program for our second cohort of teachers.
Chapter 4 is set up identically to Chapter 3 -- Program Structure (Section 4.1), the Data
Analysis section (Section 4.2), the Results section (Section 4.3), and the Program
Evaluation section (Section 4.4). Chapter 5 discusses the key differences between Cohort
1 and Cohort 2, both in terms of setup (Section 5.1) and outcomes (Section 5.2). Finally,

the Conclusion includes a Summary of Findings (Section 6.1) of the two PD programs,

Recommendations (Section 6.2), and Future Work (Section 6.3) to come from these

programs

18

19

Chapter 2: Related Work

The related work section contains three parts. First, we will discuss some PD
programs in general to find some common themes. Next, we will look at two central
questions through reviews of several programs. The first question is, “7To what extent
should CS content be part of CS PD programs?”. PD programs must link CS concepts
with CS pedagogy concepts, so we want to understand how different PD programs
balance the CS concepts and the CS pedagogy in their programs. The second question is,
“Is text-based programming imperative when teaching CS teachers how to teach CS?”.
The motivation behind this question is that we saw many teachers struggle with the
programming side but expressed confidence in the concepts themselves. We weigh the
importance of using text-based programming languages in CS PD by comparing PD
programs that use text-based programming with programs that use visual programming

languages instead.

2.1 General Review

Through the CS for All (Fancsali et al., 2018; Salac et al., 2019; Vogel et al., 2017)
and CS10K (Brown & Briggs, 2015; Yadav et al., 2013) initiatives, there has been an
increased call for CS participation in K-12. Qualified CS teachers are vital to integrating
CS into K-12. There have been many efforts to develop PD programs that effectively
prepare current teachers to teach CS. Teachers are still going into their classrooms
unprepared to teach CS. Ericson et al. found such deficiencies in two of their CS PD
workshops (Ericson et al., 2005). The first workshop was for teachers with little or no CS

teaching experience, and the second was for teachers of a CS-AP high school course.

20

After the first course, 70.37% of teachers felt more capable in programming, 96.03% had
a better idea of what to teach, and 88.89% got a better idea of how to teach CS. However,
only 44.44% of the teachers felt ready to teach CS. Of the 17 teachers from the CS-AP
workshop, 94.12% reported feeling more capable in programming, 88.24% has a better
idea of what to teach, and 94.12% had a better idea of how to teach CS. 76.47% of the
teachers felt ready to teach CS in the next school year. Overall, in their summer PD
workshop for CS teachers, they found, post-workshop, that 56.82% of the teachers felt
ready to teach CS in the next semester (Ericson et al., 2005). Even with an increase in
programming and pedagogy knowledge, many teachers are still preparing to teach
students with little confidence (e.g., 44.44%) in their ability to do so. Ericson et al. also
found that 29% of all teachers wanted the workshop to go at a slower pace. Going
forward, they believe creating a program that caters to the new introductory CS teachers
who show signs of needing a slower pace before the class would improve their PD

program (Ericson et al., 2005).

Research has identified ways to increase self-efficacy and use of computers in
classrooms. Hatlevik et al. found there was a strong positive correlation between the
amount of home computer use and ICT self-efficacy, which is vital to learning CS and
learning to teach CS (Hatlevik et al., 2018). Wozney et al. also saw teachers with
personal computers and access to “play with” potential classroom tools were more likely
to integrate technology in the classroom (Wozney et al., 2006). However, most PD
programs (e.g., Ahamed et al., 2010; Morreale et al., 2012) do not explore the differences
between teachers with experience teaching CS (or experience using CS tools to teach

other subjects) and teachers without CS education backgrounds. The study detailed in this

21

paper makes such comparisons to provide insight into the relationship between teacher

CS experience and their CS knowledge, attitudes, and skills.

Another valuable PD approach is the Exploring Computer Science (ECS) PD
program used by McGee et al. The ECS curriculum was designed for teachers to teach
students CS through equity, inquiry, and CS concepts. Their curriculum aims to teach CS
through real-world examples, such as making games that encourage learning about
healthy eating (McGee et al., 2018). The PD program’s workshop had five key
components. The first two components focus on active learning (Desimone & Garet,
2015), the third focuses on equity in CS education, and the last two concentrate on
making the teachers successful in the long term. McGee et al. used an Expectancy-Value-
Cost (EVC) survey to measure the attitudes of the ECS students. They compared the
EVC survey results to the students’ course experience and to a Teaching Quality Index
(TQI) based on a combination of two teacher practice quality instruments to measure the
teachers’ ability to “foster equity, inquiry, and development of CS concepts” (McGee et
al., 2018). The students took the survey to determine the teachers’ TQI. The authors
found the TQI had a direct effect on the students’ post-EVC scores, which in turn
influences student outcomes. This finding shows that better-equipped teachers are having
a direct impact on students’ attitudes and their engagement in CS. Additionally, the more
experience the teachers had in teaching ECS, the more the students’ ECS scores
improved from the pre-test to the post-test (McGee et al., 2018). McGee et al.’s method
of measuring teacher performance and student learning outcomes could help in creating a

universal measure for K-12 CS educators.

22
2.2 Question 1: To what extent should CS content be part of CS PD
programs?

The first question addresses the design of PD programs and how computer science
(CS) content delivery can be balanced to avoid overwhelming inexperienced in-service
CS teachers while providing them with quality training of CS concepts. The goal of CS
PD programs is to prepare current and future CS teachers to teach CS concepts. Program
designers use two general approaches to achieve this goal. The first approach is through
programming language training, where the teachers learn CS concepts through
programming in high-level CS languages. The second approach is through CS unplugged
activities. These activities can include CS concepts but focus more on computational
thinking (CT) to introduce teachers to CS as CT draws on skills and professional
practices that are fundamental to computer science (Sengupta et al., 2013). The CS
unplugged approach allows teachers from all CS backgrounds to understand CS concepts
without needing to learn a programming language or use any devices (Bell et al., 2012).
Both approaches of CS PD programs vary from 1-5 days and can even be more than one
week. Each duration raises different challenges and comes with varying program
outcomes. Below is a discussion about each program’s duration. This review will detail

the design of CS PD programs of varying lengths (short, medium, long).

2.2.1 Short PD Programs (1-3 days)

Short PD programs are typically less than one week to accommodate teachers’
summer schedules. Some programs are as short as 1-3 days (Morreale et al., 2012; Bower

et al., 2017). There is not enough time to cover all CS concepts or CT concepts in-depth

23

in these programs. The 1-3-day programs have been successful by shifting their focus to
training teachers on proven classroom tools and resources to apply to their classrooms
right away. This type of program makes sense to improve the preparedness of teachers

already equipped with adequate CS backgrounds.

Morreale et al.’s two, one-day workshops helped introduce teachers to CT by
providing them sessions on curriculum materials, current university projects, internships,
post-grad opportunities, and the importance of CS locally and nationally (Morreale et al.,
2012). While Morreale et al. did not discuss why the two workshops were each one day
long, the duration makes sense given the goal of the workshop (further PD design details
in Table 2.1). Their goal was to (1) introduce new curriculum materials, (2) provide
examples of collegiate projects, internship opportunities, and to show what being a CS
major in college means, and (3) provide a broader understanding of computer science
topics and careers (Morreale et al., 2012). The attendees took a pre- and post-program
survey to evaluate their understanding of CS and CT topics. The survey results showed
that ~90% of the attendees understood CT (+15% from pre-survey), and 86% understood
why CT was necessary (+22% from pre-survey). In the survey, the researchers also asked
the teachers which of the eight sessions during the first workshop were most impactful.
Of the eight sessions provided during the first workshop, four of the sessions were
reported as “immediately useful” by the attendees. This form of PD has successfully
introduced the teachers to CT and how different teaching tools can be used (Morreale et

al., 2012).

24

Table 2.1 Details of the PD programs of varying duration in the Related Work

section.
Topics Covered
Program Designer Duration Pedagogy CS CT Text-based Visual
Content | Content | Programming Programming
Language Language
Morreale et al. (2012) | Short X X
Bower et al. (2017) Short X X
Liu et al. (2014) Medium X X X
Pollock et al. (2017) Medium X X X X
Milliken et al. (2019) | Long X X x* x*
Goode et al. (2014) Long X X X

* Participants could choose their language for the course.

Bower et al. also held four separate one-day workshops for 69 teachers of grades
K-2, 3-4, 5-6, and 7-8 (Bower et al., 2017). Table 2.1 provides an overview of the
program details. A pre- and post-workshop open-ended survey assessed the impact of the
PD program. The survey evaluated the change in the teachers’ understanding of CT
concepts, strategies used to teach CT, technologies used to teach CT, and understanding
the teachers’ confidence gain from attending the workshop. The survey was analyzed by
evaluating the open-ended responses for computation thinking practice, concepts, and
perspective keywords. These results showed that the teachers could identify the keywords
more effectively (141 keyword references pre-workshop vs. 312 keyword references
post-workshop (Bower et al., 2017)). This analysis strategy does not, however, give us a
deep understanding of the teachers’ level of understanding regarding CT concepts. To
gain more insights into the comprehension levels of the teachers, the facilitators could

have paired a knowledge test with the survey. The most used pedagogy strategy listed by

25

the teachers was a “student-centered” strategy, which was consistent from pre-workshop
to post-workshop. The teachers gained the most insights about technologies used to teach
CT. Pre-workshop, only 42% of the teachers listed specific software used in the
classroom and post-workshop, 72% of teachers listed teaching software such as Scratch,
Visual Basic, Python, Hopscotch, Tynker, and more. The teachers also listed several
robotics resources to develop CT skills in the classroom. Bower et al.’s workshop was
also successful in significantly improving the teachers’ confidence in teaching CS
(Bower et al., 2017). Pre-workshop, the teachers’ most significant obstacle to teaching
was their lack of self-efficacy, as found from the pre-workshop survey. That changed
post-workshop where most teachers listed “lack of resources™ as the most significant
obstacle over self-efficacy as well as other reasons. The program was successful in
improving the teachers’ self-efficacy in a short amount of time by introducing the
teachers to CT and some different tools they can use in the classroom. However, further
targeted professional development training workshops were desired by the teachers

following the program as well as additional time, resources, and peer mentoring.

From these two short PD programs, we can see significant self-efficacy
improvements made in a short amount of time. While this improvement is encouraging,
given the growing need for CS teachers, we argue that merely introducing teachers to the
CT concepts over a 1-3-day workshop is not enough to prepare teachers for quality CS

instruction.

26
2.2.2 Medium PD Programs (4-5 days)

The programs in the previous section were successful in preparing teachers for CS
instruction in a small amount of time by providing resources and understanding of CT
concepts. Medium length PD programs should be able to expand on the successes of the
short PD programs by going more in-depth. Here we review medium length PD programs

held by Liu et al. and Pollock et al. (Liu et al., 2014; Pollock et al., 2017).

Liu et al. used a 5-day game-centered development approach and a drag-and-drop
programming language called Stencyl to prepare their teachers (Liu et al., 2014). Table
2.1 contains details about the program. Each of the five days contained two sessions, and
each session contained one or two CS concepts. The concepts covered were classes,
variables, methods, conditionals, booleans, loops, and lists. In the mornings, the teachers
worked on existing Stencyl projects that covered the concept of the day. In the
afternoons, the teachers created their curriculum for the concept using Stencyl to take
back to their classrooms. Liu et al.’s team saw a 61% increase in concept knowledge (Liu
et al., 2014). While the increase in content knowledge was significant, we do not see any
analysis of the teachers’ preparedness to teach their classrooms using these tools. Liu et
al. were successful in building the teachers’ understanding of CS concepts, Stencyl, and
how to use Stencyl in the classroom. To see whether or not the teachers’ will be able to

extend what they learned to their classrooms, further evaluation will be needed.

Pollock et al. designed their 4.5-day PD program with a focus on CS content,
pedagogical strategies for teaching CS, and strategies for broadening participation in CS

(Pollock et al., 2017). The author gave no reasoning for the 4.5-day duration, but given

27

the focus of the program, this seems to be the minimum amount of time it would take to
cover all topics. Table 2.1 provides details of the program. 28 of the 84 program
participants also participated in the post-program interviews, 13 were CS teachers, and 19
were STEM teachers (total does not equal 28 because some teachers teach CS AND
STEM). Other participants included business teachers, administrators, and librarians. To
measure the impact of their PD program, education professionals held interviews with the
28 teachers who had completed at least one week of the PD and had a chance to integrate
what they learned into their teaching. All 28 teachers had integrated CS concepts into
their classrooms, and 11/28 teachers stated their increased self-efficacy as their greatest
success in teaching CS principles post-PD (Pollock et al., 2017). As a result of the
program, the teachers who participated in this PD program are better prepared. However,
those who had prior programming expertise desired more advanced programming
practice, while those without previous experience stated a desire to learn programming to

keep up with their students (Pollock et al., 2017).

We saw significant increases in knowledge in both programs, although the two
programs had slightly different goals. Pollock et al. focused on connecting CS and CS
pedagogy while Liu et al. focused on content knowledge and mastery of a programming
language (namely, Stencyl). Pollock et al. identified the goal of their PD program as
“improve CS teaching by providing educators with content knowledge of CS and CS
principles and helping them develop their pedagogical content knowledge related to CS”
(Pollock et al., 2017). Liu et al.’s goal was to introduce CS teachers to CS content
knowledge through Stencyl. Since Liu et al. did not evaluate the teachers’ preparedness,

it is difficult to say which was more successful in preparing teachers to teach (Liu et al.,

28

2014). One interesting thing to note in the medium-length programs is that the extended
length of the program allows for more creativity in the program design. The short
programs were similar in design, but the medium-length programs used different tools

and approaches to CS education preparation.

2.2.3 Long PD Programs (More than one week)

With more time and added program flexibility, long PD workshops allow for
added depth and breadth of knowledge. There was an increase in variety in the design of
PD programs as the programs went from short to medium, so the long PD programs are
expected to introduce even more range in goals, instructional strategies, and workshop

tools.

Milliken et al. found success with their reworked two-week PD program (details
found in Table 2.1). From 2012-2015, they held a 6-week PD program each year.
Milliken et al. reduced the program to a three-week program in 2016 and again to a two-
week program in 2017 and 2018 (Milliken et al., 2019). Although the program scaled
down from six-weeks to two-week, the program remained 50% CS content focus and
50% pedagogy focus. The program focused less on strictly CS content, and more on a
Lead Learner model where one group of teachers acts as the teachers, and the other
groups act as the learners. The Lead Learner model helps all teachers participate as both
teachers and students throughout the program. To evaluate the effectiveness of the PD
program, Milliken et al. used 14 five-point Likert-scale items as part of their post-PD
survey (Milliken et al., 2019). Despite reducing the duration of the program, they saw an

increase in scores on items that asked about how efficiently the facilitators used their time

29

and items, asking about the quality of teaching techniques and content of included in the
program. This result shows that as PD designers become more experienced about the
critical aspects of CS PD, they can transform a 6-week program into a two-week program
without damaging the quality of the program. The effectiveness of the Lead Learner
model shows that “how to teach” is equally valuable as “what to teach.” Of the 67
participants of the two-week program who took the post-program survey, 73% planned
on adopting the Beauty and Joy of Computing (BJC) curriculum introduced during the

program.

Additionally, all responses to questions about teacher preparedness ranged
between 3.64 and 4.00 on a five-point Likert scale, which is relatively high. No pre-
workshop preparedness survey was discussed in the paper since the paper was ultimately
comparing the results of the program over the last three years. The final, two-week
program design yielded the highest post-program preparedness scores (Milliken et al.,

2019).

Goode et al. found success using the ECS model for PD and curriculum design in
their two-year PD program (details found in Table 2.1). In the first year, the authors held
a one-week PD program with quarterly follow-up sessions post-program. In year two, the
authors held a second one-week program (Goode et al., 2014). Scratch, Lego
Mindstorms, and CS Unplugged activities are typically used in ECS classes to deliver
concepts of CS without having to spend much time learning a programming language,
although no programming language was documented (Goode & Margolis, 2011). The
ECS model strives to form long-term relationships with teachers. Darling-Hammond &

Richardson found that programs between 30 hours and 100 hours spread over 6-12

30

months had the most significant positive effect. Darling-Hammond & Richardson also
found that teachers who attended 80 or more hours of inquiry-based PD were more likely
to adopt inquiry-based teaching strategies in their classrooms than teachers who attend
for less than 80 hours (Darling-Hammond & Richardson, 2009). Goode et al.
administered an end-of-year survey to understand how much the teachers learned
throughout the program. Of the 23 participants who filled out the survey, 91% of
participants listed the program as “useful” or “very useful” and all but one teacher found
that the ECS PD had “some impact” or a “large impact” on their teaching of CS content,
inquiry, and equity (Goode et al., 2014). Written responses to the end-of-year survey also
showed strong connections between the curriculum, pedagogy, and equitable teaching
practices. While these findings do serve as evidence to show that the 2-year program had
a significant impact on the teachers’ understanding of CS and CS pedagogy, we could
better understand how far the teacher had come with a CS knowledge test. A knowledge
test would also allow researchers to compare the results of their PD programs with that of

Goode et al.

Frequently, feedback from PD programs shows a need for “more time” to cover
topics during the programs. The program designed by Milliken et al. shows that changes
can be made to a PD program, aside for increasing the duration, to provide ample time for
the teachers to learn the concepts efficiently (Milliken et al., 2019). A high percentage of
Goode et al.’s participants found their program to be “useful” and impactful (Goode et
al., 2014). These programs both achieved high-levels of teacher preparedness by not only
teaching about CS concepts and linking them to the classroom but also teaching the

teachers how to deliver a specific curriculum. The two programs discussed in this section

31

are different in length but provide many of the same opportunities for their participants.
With the added length of the program, the designers can follow a specific curriculum that
helps the teachers understand what they will need to teach in their classroom and how

they will need to teach it.

2.24 Conclusion

This review has shown that as the program duration changes, so do the goals and
design of the program. Shorter programs are limited to preparing teachers by providing
resources and teaching materials to their participants and do not allow enough time for
the program designers to cover all or any core CS and CT concepts. Medium length
programs could expand on the content introduced in the short programs. The medium-
length programs added some CS content knowledge and some links to CS pedagogy as
well. Medium length programs can cover CS concepts and CS pedagogy in an expedited
fashion (Pollock et al., 2017), or they can focus on mastery of either CS concepts or CS
pedagogy (Liu et al., 2014). The long-duration programs reviewed included ample
practice on CS concepts but also focused on pedagogy practice as well. The longer
durations also allowed for programs to include more information on what and how the
teachers can teach in their classrooms, including full curriculums. The programs
reviewed here show that there are many different approaches to deliver a CS PD program
with varying levels of CS content knowledge. The amount of CS content knowledge
covered in each program entirely depends on the length of the program. None of the work
reviewed explains why they chose the duration they did. That information would help

others trying to replicate their studies.

32

Additionally, in measuring the participants’ progress, each of the programs in this
literature review administered attitudinal surveys. While it is beneficial to gather the
attitudes of the teachers, the written or verbal responses fail to provide a concrete way to
compare the knowledge gained by the teachers. Attitudinal surveys, paired with a CS
knowledge test, would be a more effective way also to measure changes in CS content
knowledge. A fully validated CS knowledge test, for example, would allow researchers to

compare changes in CS content knowledge between different CS PD programs.

2.2.5 Recommendations

When designing a PD program, it is necessary first to identify the goals of the
program and identify any limitations. Examples of limitations could be program duration,
participant background knowledge before the PD program, and school system curriculum
restrictions. After reviewing the limitations, the designers can decide on the program

structure.

For programs limited to a short program duration (1-3 days), success has been
found by merely providing the teachers with materials and tools they can take to their
classrooms and use immediately. Neither of the reviewed programs of short duration got
into CS concepts in-depth. It seems the teachers would not have enough time to grasp the
CS concepts in such a short duration. For that reason, it may be best to refrain from
including CS concepts in any depth other than solely introducing the concepts. This
duration of the program is better fitted for expanding the knowledge of K-12 CS teachers

with solid backgrounds already. If the participants are new to CS and new teaching CS,

33

the short, 1-3-day workshop will not provide adequate depth of knowledge for the

teachers to be appropriately prepared to teach.

For programs of medium length (4-5 days), a focused program goal becomes
more critical. Depending on limitations aside from duration, the program can focus on
teaching materials, CS concepts, CS pedagogy, or a mix of any two or three of those. For
a program focusing on CS concepts, success was found by mixing text-based and visual
languages or by avoiding text-based programming languages all-together. Instead, these
programs can use drag-and-drop or visual programming languages. The best instructional
strategy will likely depend on the goal of the program since time is limited, and only so

much can be covered in 4-5 days.

For programs of longer durations, the most appropriate approach seems to be a
50/50 split of CS concepts and CS pedagogy coupled with a specific CS curriculum. The
longer the program is, the more opportunities the program designers will have to follow-
up the teachers participating in the program and steer them towards better CS instruction.
However, Milliken et al. proved that their 6-week program was improved by shortening it
to two-weeks, so merely making a program longer will not necessarily make the program

more impactful (Milliken et al., 2019).

Finally, for programs of all lengths, it is necessary to provide some sort of support
for the teachers throughout their journey of implementing CS in their classrooms. The in-
program preparation can only take the teachers so far, and questions will inevitably arise
as the teachers begin implementing the learned materials into their classrooms. Bower et

al. found their participants indicated the need for “peer mentoring networks,” and Pollock

34

et al.’s participants expressed a need for collaboration and communication amongst peers
(Bower et al., 2017; Pollock et al., 2017). The long-term projects by Milliken et al. and
Goode et al. have this long-term facilitator/participant relationship embedded as part of
their program (Milliken et al., 2019; Goode et al., 2014). A support-network post-
program is a theme throughout successful professional development programs. It is often
noted as a strongly recommended piece to add for any PD programs which does not have
one set up. Another recommendation would be for each researcher to identify the reason
behind the duration of their program, whether that be logistical or financial limitations, or
if the duration was set because the designers were comfortable covering all concepts in
the given time. With this information provided, other researchers can better reproduce the
findings in these papers and better extend their programs from these successful programs.
Lastly, the evaluation of each of these programs could be improved by adding a pre- and
post-workshop knowledge test. With the knowledge test, it is easier to compare the
results of the programs from year-to-year and compare with programs hosted by other
research groups, and such comparison could complement attitudinal surveys well and
provide additional insights. Each of these recommendations will help researchers to

revise their PD program and to prepare quality CS teachers in the future better.

2.3 Question 2: Is programming imperative when teaching CS teachers

how to teach CS?

The second question also addresses the design of PD programs, but this focuses on
programs that incorporate CS concepts in different ways. Several programs incorporate

programming languages such as Python, JavaScript, Java, or other high-level languages

35

to introduce CS concepts. In contrast, others use more CS-unplugged (no technology
needed) approaches paired with visual programming languages such as Blockly, Scratch,
or other visual programming languages. The programs reviewed in this section will help
us understand the strengths and weaknesses of using text-based programming languages

vs. visual programming languages to teach CS concepts to K-12 teachers.

2.3.1 Visual Programming Language Programs

This section discusses programming tools used by programs utilizing visual
programming languages, the concepts they cover, and the successes found in the

program.

The first program discussed in this section was developed at the University of
California, LA, and the University of Oregon and was held by McGee et al. (McGee et
al., 2019). The goal of the program is to increase equity in the field of computer science.
To achieve this goal, the designers use the Exploring Computer Science (ECS)
curriculum. The ECS curriculum uses activities that are designed to make the content
“relevant, engaging, and stimulating for a diverse population of students” (McGee et al.,
2019). Margolis points out, in her 2010 book, that CS taught as an abstract academic
subject privileges access to mostly Caucasian, male students (Margolis, 2010). The ECS
curriculum is designed to include a deep engagement of crucial CS concepts and uses the
visual programming language, Scratch. This deep engagement is provided through
meaningful problem-solving experiences, collaborative learning, and paired
programming. The professional development program was designed to embody the same

inquiry-based learning activities while also guiding the teachers to build inclusive

36

classroom culture. The program was a week-long and included five vital components, (1)
collaborative inquiry in small groups, (2) inquiry specifically in the teacher-learner-
observer model, (3) discussion and reflection about equitable practices, (4) ongoing PD
throughout the school year and a second weeklong workshop the following summer, and

(5) the formation of a learning community.

To evaluate the participants’ ability to teach, McGee et al. distributed pre- and
post-tests to the teachers’ students. They used The Graide Network teaching assistants' to
score the pre- and post-tests of the students. The Graide Network recruited and trained 26
undergraduate pre-service teachers to score the performance tasks, and they used the
Facts software to conduct Many-Facet Rasch Measurement (MFRM) analysis (McGee et
al., 2019). They saw more than 2 points of growth in the students’ CT knowledge (11.7
on the pre-test and 13.8 on the post-test). Their second evaluation compared the students’
course performance and its correlation with the development of CT after controlling for
student characteristics. McGee et al. considered the student characteristics as pre-test
scores, grade level, gender, race, special education, free or reduced lunch program status
(low-income status), English language learner (ELL), attendance rate, cumulative GPA
(only the year which the student completed the ECS curriculum), and the grade received
in the ECS course (McGee et al., 2019). After controlling for those characteristics, they
analyzed the correlation with these characteristics and the students’ post-test scores.
There was no statistical difference in post-test performance by gender, race/ethnicity, or

level of family income. There was a negative difference in post-test performance by ELL

! The Graide Network finds trained teaching assistants and matches them with the needs of your program to evaluate
students work.

37

and special education students. Their overall GPA, school attendance rate, and
performance in the ECS course did show a significant correlation to post-test
performance, and they saw a higher number of students achieve competency at post-test
than pre-test. While this does not tell us a lot about the preparedness or knowledge levels
of the participants in the PD program, it does tell us the success their students (non-ELL
and non-special education) found using the ECS curriculum. Evaluating the teachers’
students is a different way of analyzing the impact of a PD program that is typically
paired with teacher-centered pre- and post-tests to gain a better understanding of the PD
program impact. A valuable comparison that could then be made is teacher post-program
test vs. student post-class test to identify the value of teacher performance in the PD
program. More information on the PD program and the participants would have also been

beneficial to understand how successful the program was in preparing the CS teachers.

Kong and Lao designed the next program. Kong and Lao focused on enhancing
K-12 students’ problem-solving ability through CT education. They believed the first step
to achieving that is to prepare the K-12 teachers to teach about CT (Kong & Lao, 2019).
Their program was implemented in the 2017/2018 academic year to 80 teachers. Of the
80 teachers, 46 were male, and 34 were female. The participants’ average years teaching
was 11.7 years, and 64 of the teachers had taught computer science or information
technology courses. 20 of the 80 teachers held computer science degrees. The program
contained two courses, the Teacher Development Course 1 (TDC 1) and Teacher
Development Course 2 (TDC 2). Each TDC lasted 39 hours (13 3-hour sessions), and the
first TDC must be completed to attend the second TDC. TDC 1 focused on building the

teachers’ knowledge of CT concepts, practices, and perspectives. At the end of TDC 1,

38

the teachers developed a mobile app to solve problems like those seen in the classroom.
TDC 2 emphasized CT pedagogy and included paired programming, programming

activities, and ways to evaluate student work (Kong & Lao, 2019).

Many of the CT concepts, practices, and perspectives from the first course were
reviewed in the second course as well. The program used visual languages and
pseudocode to deliver their TDC 1 and TDC 2 courses. This decision was made at the
recommendation of Brennan and Resnick (Brennan & Resnick, 2012), which they
consider to be an effective way to teach CT to beginners. To evaluate the effectiveness of
the program, the designers constructed their own, five-question, paper-and-pencil test that
provided the teachers with real-life problems and allowed space for pseudocode answers.
They provided two test question examples. The first question focused on the teacher’s
ability to debug and can be found in Figure 2.1 (Kong & Lao, 2019). The second example
was question four on the test and evaluated the participants’ ability to abstract and

algorithmically think (Kong & Lao, 2019). This question can be found in Figure 2.2.

39

1. There are two factories (#1 and #2) in a wheat company. #1 is used to process hard wheat, while #2 is
used to process soft wheat. Both factories operate with a standard procedure, To control the quality of

wheat, the temperature in both factorics need 10 keep under 40 degree Celsius. However, the operation

is problematic afler someone has modified 2 steps of the procedure. Please help comrect the following

procedure,

If (kind of wheat = hard) Then
Move 10 #3 fuctory

Els¢
Move to #2 factory

* Factory #1 (hard wheat)

If (temperature < 40 degree Celsius) Then
Dry the wheat

Else
Switch on fans o lower the temperature

* Factory #2 (soft wheat)
If (temperature < 40 degree Celsius) Then
Switch on fans to lower the temperature
Else
Dry the wheat

Remark: “>" is larger than, and “<" is smaller than

Figure 2.1 Question 1 of Kong and Lao’s Summer PD program test of CT skills.

40

4. How 10 solve the following questions?

A lot of customers are queueing up at all checkout counters in a supermarket. The first counter is an
express counter, in which cach customer takes S minutes to checkout. The second one 1s a regular counter,
in which each customer takes 7 minutes 1o check oul.

(a) Now, there are 6 customers queued up at the [irst counter, while there are S customers at the second.
You are going to checkout. Which counter will you choose to queue up?

S minutes for each 7 minutes for each
TaYa 1 ' ‘ 7N\ : 1
’ ¥ \\/ [} ! (/ l\./ !
N\ | | I'NIC .
(. / ! \ /' , ! k A8
| ! |

OIO

(b) Assume that there are a lot of customers now., Please design a mobile application 1o help customers
choose the fastest line. (1lint: use repeat, if ... then ... ¢lse ...)

Please fill in the tollowing steps

If

Then

Else

Figure 2.2 Question 4 of Kong and Lao’s Summer PD program test of CT skills.

41

The test was administered on three separate occasions. The first test was
administered before TDC 1, the second was the last part of TDC 1, and the third was after
the TDC 2. The test inter-rater reliability was 0.98 for the first test, 0.97 for the second,
and 0.99 for the third and had a Cronbach alpha score of 0.79, showing it had acceptable
internal reliability (Kong & Lao, 2019). The teachers’ test scores improved 2.54 points
from pre-TDC 1 to post-TDC 1 and improved by another 2.62 points from post-TDC 1 to
post-TDC 2 for a total gain of 4.32 points (Kong & Lao, 2019). Notice we did not see any
CS concepts explicitly covered in this program, the testing of teachers’ understanding of
CT concepts involved pseudocode and CS concepts. Excluding CS concepts might be a
strategic design decision in this situation since Y4 of the teachers held CS degrees, and
many teachers had been teaching CS for many years. The goal of Kong and Lao’s
program was to introduce the teachers to CT concepts, and they were successful in doing
so. Still, it could have been tied together with CS concepts to give the teachers a more
well-rounded understanding of the relationship between CT and CS. Also, the evaluation
method used, although statistically sound, makes it difficult to compare the program to
other similar programs since Kong and Lao used an independently created evaluation tool

(Kong & Lao, 2019).

In the visual programming language-centered programs, we saw a heavier
emphasis on CT concepts over CS concepts. Noone and Mooney (2018) noted in their
research on visual programming languages that researchers tend to agree that visual
programming languages tend to fall short when facing complex CS. While this may be
true, visual programming languages have been a successful tool when introducing

teachers to CT concepts, as verified by Brennan and Resnick (Brennan & Resnick, 2012).

42

An opportunity for studying the success of visual programming languages on CS content
knowledge would be to compare the content knowledge scores of two samples, one using
visual programming languages and the other using text-based programming languages.
That way, we can identify if visual languages can be successful in teacher CS as well as

CT.

2.3.2 Text-Based Programming Language Programs

This section will highlight the advantages and shortcomings of text-based
programming languages. In general, text-based programming languages encourage a
deeper understanding of CS concepts to solve many problems compared to visual-based

programming languages.

Lee et al. held a year-long PD program for 66 in-service high school STEM
teachers (Lee et al., 2017). The goal of the program was to teach content and scientific
practices in the spring and pedagogy and recruitment techniques during the summer. The
PD had seven components: a kick-off conference, an online university course, fall and
spring online debriefings, a summer workshop, facilitator support, an online community,
project staff support, and a wrap-up workshop. The first weeks of the curriculum focused
on fundamental CS concepts through CS Unplugged activities. Later, teachers had the
opportunity to write programs using NetLogo, a text-based programming environment
used for agent-based modeling. Lee et al. noted that the teachers came away from the
user-based modeling exercises with “...a broader understanding of the use of CS and

computational tools in scientific research across many fields” (Lee et al., 2017). The user-

43

based modeling language allows for connections between CS and real-world phenomena,

which is why this language was chosen.

To gauge the teachers’ CS concept understanding and attitudes toward CS, Lee et
al. used a pre- and post-program survey. On the survey, 100% of the teachers from the
PD program rated the PD “Very Good” or “Excellent” (Lee et al., 2017). The CS
understanding also significantly improved from 68% pre-program to 73% post-program.
Note, the 68% pre-program score is already high, so these participants were high-
performing teachers coming into the program. The small increase was still statistically

significant.

Additionally, all but one (65/66) teachers indicated feeling at least somewhat
comfortable using computer models to conduct scientific inquiries. The outcomes from
this program show that the program did an excellent job of engaging the teachers in CS
practice and opening the teachers’ minds to new ways CS can be used. It would be
constructive for Lee et al. to share the CS questions from the survey so other researchers
can see which topics were tested and improved by using text-based programming
languages in the PD program. Another possible improvement to be made is to link the CS
concepts and the CS pedagogy much sooner rather than in different workshops.
Desmoine and Garet have found that explicitly linking CS teaching to the teachers’
classroom lessons will lead to more success in preparing teachers to teach CS (Desimone
& Garet, 2015). This link can be challenging to make when facilitating a PD program
using a text-based programming language. A text-based programming language may not
be an instructional tool used by the teachers in their classrooms; however, this link

remains essential and needs to be heavily emphasized in the program. Finally, the year-

44

long length of this program is beneficial for the teachers’ sustained learning, but this is
logistically difficult to replicate in other programs. Overall, this program design is
successful. The impact of this program could be made more transparent by providing

more details on the measurement tools used.

Another program that was heavily content-focused using text-based programming
languages was designed by Leyzberg and Moretti (Leyzberg & Moretti, 2017). Their goal
was to offer a content-focused PD opportunity for teachers that lack strong CS
backgrounds. The program was adapted from a college CS course to cover a week worth
of content each day. The program was one week long, and the days went from 9 a.m. to 9
p-m. Each day consisted of a morning video lecture followed by a content break and then
a second video lecture. The content breaks varied from day-to-day and included
pedagogical tool discussion, discussions with the facilitators, and simply breaks between
highly cognitive lectures. The participants lived on the campus during the program.
During lunches, the teachers were encouraged to eat together and discuss each other’s
classrooms and how the different approaches they might use to incorporate the content
from the program into their classrooms. The lectures provided hands-on experience with
CS concepts, practice applying the concepts, and first steps towards creating assignments.
The concepts taught during the PD were more advanced than most: input/output,
recursion, algorithm, and data structure analysis, key-value data structures, Boolean
logic, decimal/hexadecimal/binary conversions, machine learning, intractability (P vs. NP
and NP-completeness), and circuit design (Leyzberg & Moretti, 2017). The average self-
assessment on programming skills was 3.8/5, and on Java programming language was

3.5/5, where five means they are a “seasoned veteran.” It was not clear whether these

45

self-assessment scores were pre-PD or post-PD. Regardless, these scores are exceptional,
especially so if they are pre-PD scores. Daily surveys were administered to gauge the
engagement and pace of the participants. The minimum daily average for engagement
was 3.8/5, and the maximum was 4.5/5. The participants were also asked about the pace
using a Likert scale where 1 meant “too slow,” and 5 meant “too fast,” meaning 3 is an
ideal score. The maximum daily average was 3.5/5, and the minimum was 3.3/5
(Leyzberg & Moretti, 2017). This finding means the teachers felt the program was going
only slightly “too fast,” and the feedback was overwhelmingly positive. This program
was fast-paced and covered some advanced CS concepts. It is encouraging that the
participants could handle both the pace and the content presented. The teachers’ ability to
keep up with the advanced, fast-paced program suggests that the teachers did not lack
strong CS backgrounds before the program, as Leyzberg and Moretti stated (Leyzberg &
Moretti, 2017). If the purpose of this program were to offer strong CS content to teachers
who lacked that, then it would seem logical to cover the basic CS concepts in-depth.
Since the designers did not do this, it seems the participants may have had a better
understanding of the basic CS concepts than was led on when this program was
introduced. This research could be strengthened by expanding on the designer’s
definition of “strong CS background” since it seems to vary from this workshop to others.
Again, it is encouraging to see the participants were able to handle the advanced CS

concepts, but the program needs to be more explicit about the targeted participants.

Overall, in the text-based programming language programs, we see more difficult
concepts being covered during the programs. Additionally, these programs are typically

longer (one week or longer). Any shorter than one week, and the teachers likely will not

46

have time to learn the concepts and the programming language. Both programs were

found to be beneficial to the participants and well-received.

2.3.3 Text-Based vs. Visual Programming Languages

In both text-based and visual programming language programs, we saw a
significant increase in content knowledge scores. Although both program types saw
increases in content knowledge, we suspect that the content knowledge tests focused on
many different concepts. We also suspect that high performing participants from one
program would not necessarily score highly on another program’s content knowledge test
due to the difference in the content covered. Both program types also saw similar positive
feedback about the program design. In terms of a content knowledge advantage, it is
difficult to find one between the two program types because each program uses a
different measure. There seem to be two determinants for using one design over the other.
The first is the allotted program length; any program under one weeklong will have a
harder time introducing a text-based programming language. The other determinant is the
goal of the participants and the program designers. Grades 6-8 teachers may require text-
based programming experience to effectively teach their classrooms, whereas grade K-5
teachers may only need visual programming experience. Other factors go into this

decision, but these two are the main factors influencing the program design.

2.34 Conclusions

This review has shown that there are differences between PD programs using text-
based vs. visual programming language. While both types of programs showed an

increase in the teachers’ content knowledge, they do so in different ways and result in

47

different levels of CS content understanding. The visual programming languages allow
the teachers to see the CS concepts abstractly. In contrast, the text-based programming
languages request the teacher’s attention to the intricacies of the respective programming
language and how they are used to solve problems. While the program measures were not
included in any of the four program reports, there were likely differences in the measures
between the visual programming language programs and the text-based programming
language programs. The most substantial difference between the two types of programs
were the goals of the designers and the participants. For programs where the goal is to
introduce new topics to teachers without much of a learning curve, a visual programming
language would make sense to facilitate the PD program. For programs that seek to
prepare the teachers by giving them in-depth knowledge of CS concepts, it would be
more appropriate to use a text-based programming language. The trade-off in choosing a
programming language is that visual programming languages are easy to learn but do not
allow for in-depth CS content to be learned, and text-based programming languages are
more challenging to learn. Still, they can provide a deeper understanding of CS concepts.
We believe that these programs were rated highly by the participants because the design
of the PD fit the background, experience, and goals of the participants well. This belief
seems to be the case because the programs that covered much more difficult CS concepts
had reviews similar to the programs that covered introductory CS and CT concepts and

did not go as far in-depth.

2.3.5 Recommendations

During the program design period, it is best to evaluate the background of the

teachers in the program and the learning outcomes associated with the program being

48

designed to ensure a beneficial program for the participants. An entry exam could be used
to make sure that the teachers in the program will be ready to handle and benefit from the
content covered during the program. Once the background of the teachers and the
concepts they are missing is known, the next step is to decide if the program needs to be
like a college CS 1 course or if the goal is to introduce CS and CT and not go in-depth on
any of the CS concepts. If the goal is the teach CS in-depth and ample time is available to
explore the complex CS concepts, it would be suitable to incorporate some text-based
programming language. On the other side, if the goal is to introduce CS and CT to the
teachers, then a visual programming language may be more appropriate. In general, it is
also recommended that teachers are informed of the PD’s goals and expectations
accordingly before participating in the PD program to facilitate motivation. Likewise, it is
also recommended that a PD program collects daily feedback and adjusts its design
accordingly to tailor it better to teachers’ ability and background. Another critical factor
to pay attention to is the amount of time available for holding the PD program. If the
program is less than a week in length (or 40 hours), it would be recommended not to try
and introduce a new text-programming language since the learning curve of text-based
programming languages could hinder the actual CS content learned. These are the main

recommendations that can be made based on this review.

49

Chapter 3: Cohort 1 Summer PD Program

3.1 Program Structure

The PD program was held on two consecutive weeks in June 2019 and ran daily
from 8:00 a.m. to 5:00 p.m. The PD program served 44 K-12 teachers. Of the 44 teachers,
29 teachers are elementary teachers (K-5), 17 are middle school teachers (6-8), and two
are middle school teachers who also teach some high school classes (9-12). Some
teachers belong to two groups (teach elementary and middle school students or teach
middle school and high school students). The study contained 34 female teachers and ten

male teachers.

3.1.1 Week 1 CS Content Course

The first-week course covered CS and CT topics. The schedule can be found
below in Figure 3.1. The course was taught by a professor from a midwestern university
and a team of four teaching assistants (TAs): one graduate and three undergraduates. All
activities, assignments, and announcements were available for the teachers via the online

learning tool, Canvas.

The teachers had homework assignments related to the content taught each day.
The homework was assigned at the end of each day and was due at midnight on the same
day. There was no assignment on the last day to allow time to finish the final project
before the start of the second course. The first three homework assignments included an
additional extra credit assignment, which extended the original assignment. The Cohort 1

assignments can be found in Appendix B.1. There was a cumulative exam on the last day

50

consisting of CS and CT knowledge tests. This exam was taken by 29 teachers pre-
program and by all 44 teachers on the last day of the first course. The pre- and post-test

made it possible to measure the 29 teachers’ change in CS and CT content knowledge.

There were also three group activities based on Computational Creativity
Exercises (CCE), designed to develop the teachers’ CT skills through collaboration
(Peteranetz et al., 2018). These exercises are akin to “CS Unplugged” exercises for open-
ended problem solving using computational thinking and creative thinking skills (Miller
et al., 2019). The CCEs can be found in Appendix C. Additionally, a final group project
was assigned that allowed teachers to pick one CS topic and one CT topic and create a
lesson for their respective grade levels. This group project can be found in Appendix
B.1.5. The lessons were then presented in small groups, which included at least one
member of the instruction team and one other teacher group. As part of the final project
and after the presentations were delivered, the teachers individually created assignments

to go along with their lesson plans. The final project can be found in Appendix B.1.6.

51

Monday Tuesday Wednesday Thursday Friday
. Homework 1 Homework 2 Homework 3 Homework 4
Introduction L
Discussion Discussion Discussion Discussion
Team Building
Computional
Thinking Arrays (1D, Functions Search/Sort Recap
Morning 2D)/Loops
Python
Instruction/Install
. . Teaching and
Varishies, Simpie Arrays (1D, Learning Tests (1.5
/0, Data . Search/Sort
2D)/Loops Assignment hours allowed)
Structures ’
Assigned
Lunch Lunch Lunch Lunch Lunch Lunch
Teaching and
Search Functlo.nisec Search/Sort Le'a rning
ursion Assignment
Worktime
. Everyday Storytelling Pathfinding
Afternoon Selaction Object CCE CCE CCE Teaching and
Teaching and Learning
Search Functions/Rec | Learning Assignment
ursion Assignment | Presentations
Worktime
Homework 1 Homework 2 Homework 3 Homework 4 | Final Project
Assigned Assigned Assigned Assigned Assigned

Figure 3.1 Cohort 1 Summer PD program’s first-week CS/CT content course
schedule.

3.1.2 Week 2 CS Pedagogy Course

The second-week course was held at a local school district conference center. The

course was taught by four different CS teachers -- a college professor, a high-school

teacher, a middle-school teacher, and an elementary school teacher. Presentations were

arranged, so each instructor had a chance to talk about teaching the concepts of loops,

variables, conditionals, and functions at their grade level, allowing teachers to understand

curricular progressions across the K-8 grade span.

An outline of the course schedule can be found below in Figure 3.2. Daily

reflections were completed online at the end of each day and were graded for completion.

52

Teachers were also divided into grade-level groups and were tasked with presenting a

lesson they would deliver to their respective grade-level. The final assignment was an

individual implementation plan that required the teachers to explain how they would be

integrating CS into their curriculum in the following academic year.

Extracurriculars

Monday Tuesday Wednesday Thursday Friday
Classroom | Differentiation/C

o Goals Standards Pedagogy Management SAALL

orning - -
Teaching Teaching Group

Pedagogy Robotics Robotics Lessons Group Lassons

Lunch Lunch Lunch Lunch Lunch Lunch
. Concept: Concept: Concept: Implementation

Concept: Loops Variables Conditionals Functions Planning
Afternoon

i TED Talk Assessment Lib Guides | Closing Survey

Figure 3.2 Cohort 1 Summer PD program second-week CS pedagogy course
schedule.

3.2 Data Analysis

3.2.1 Description of Data

There are three sets of data:

The first data set is from a project-developed, pre- and post-program

survey that assesses teacher self-confidence in (a) teaching CS (16 items,

e.g., “I can adapt existing CS lesson plans to meet the needs of my

students.”) and (b) their CS skills (6 items, e.g., “I can design and

iteratively develop/refine CS programs.”). The confidence items were

measured using a slider scale. The teachers indicated how confident they

53

were they could achieve each scenario by indicating a probability of

success from 0 (0% confident) to 100 (100% confident)).

2. The second data set comes from a pre-post survey that assesses teacher
attitudes towards CS. The nine attitudinal items used a Likert scale (1:
strongly disagree, 2: disagree, 3: neutral, 4: agree, 5: strongly agree) to
measure personal interest in CS (e.g., “I find the challenge of solving CS
problems motivating.”) and the perceived value of CS (e.g., “Reasoning
skills used to understand CS can be helpful to me in my everyday life.”).
This instrument was developed by adapting the Computing Attitudes
Survey (Dorn & Tew, 2015), which was validated with undergraduate CS

students.

3. The third data set comes from a pre- and post-assessment measured
teacher knowledge of CS concepts (Shell et al., 2017) and computational
thinking (Peteranetz et al., 2020). The post-assessment measured CS and
CT knowledge and was used as the final exam. The test separates the high
performers from the low performers. Instead of the C average being
around 70%-80% as a typical grade scale, the average test scores were
around 50%, which indicates average performance and is not a failing

grade (Shell et al., 2017).

3.2.2 Participant Breakdown

In this two-week summer PD program, there were three groups of teachers. The

first group was the model-district CS teacher group, which consisted of 19 teachers from

54

a local model school district. This group of teachers were recognized nationally for their
CS program. The second group was ten non-model-district CS teachers. Most of the
teachers from these first two groups completed the pre- and post-program surveys
participated in the pre-program knowledge test, and participated in the second-week
course on CS pedagogy. The third group consisted of 15 non-CS teachers from rural
districts around the state (not including the model district) who were involved in a
program focusing on the development of educational leadership of rural teachers in
STEM. These teachers were not planning to teach CS in the next academic year, did not
participate in the pre- or post-program survey, the pre-program knowledge test, nor the
second-week course on CS pedagogy. All 44 of the teachers who participated in the first-
week CS content course took the post-program knowledge test as it was part of the grade
for the course. A breakdown of the different groups and their participation can be found

in Table 3.1.

Table 3.1 Breakdown of the participating groups in Cohort 1.

Group Number of Participants in Group

Model-District CS Teachers 19

Non-Model-District CS Teachers 10

Non-CS Teachers 15

Non-Model-District Teachers 25 (Non-Model-District CS Teachers + Non-CS Teachers)
Research Cohort 29 (Model-District + Non-Model-District CS Teachers)
Pre-Survey 28 (Research Cohort - 1)

Post-Survey 25 (Research Cohort - 4)

Took Both Survevs 24 (Research Cohort - 5)

Pre-Test 29 (Research Cohort)

Post-Test 44 (Research Cohort + Non-CS Teachers)

First-week Course 44 (Research Cohort + Non-CS Teachers)

Second-week Course 27 (Research Cohort - 2 teachers who could not participate)

55

3.3 Results

3.3.1 Impact of PD Program on Cohort 1

The first research question was, “What was the impact of the CS summer PD on
teacher’s (a) knowledge of CS concepts, (b) knowledge of computational thinking, (c) CS
attitudes, (d) confidence in CS knowledge and (e) confidence in teaching CS?”. To
address these questions, the pre- and post-survey data (31 total items each) collected from
29 participants who participated in both the pre- and post-program knowledge test were
used. T-tests were used to compare each of the specified target groups. A breakdown of

the results can be found in Table 3.2.

Table 3.2 Evaluation of the impact of the Cohort 1 CS PD program by comparing
pre-program and post-program knowledge, attitude, and confidence scores (mean,
standard deviation, t-value, degrees of freedom, significance value).

Test Scale Hpre fpre Obpre HMpost fpost Opost t df 4
Knowledge of 100 28 | 30.49 | 17.58 44 495 |19.30 | 527 | 27 | <.001
CS

Knowledge of 100 28 | 54.76 | 17.68 44 65.45 | 14.73 | 3.38 | 27 | <.005
CT

CS Attitudes 5 28 [4.54 | 043 25 460 032 |122|23]0.24
Confidence in 100 28 | 61.42 | 27.41 25 71.53 | 23.17 | 2.96 | 23 | <.01
CS

Confidence in 100 28 | 73.51 | 21.70 25 83.40 | 11.26 | 4.49 | 23 | <.001
Teaching CS

56

3.3.1.1 Knowledge of CS Concepts

A paired t-test was used to find the teachers’ knowledge of CS concepts improved
significantly: #27) =5.27, p < .001. This result shows that the summer CS PD program

had a significant positive impact on the teachers’ CS concept knowledge.

3.3.1.2 Knowledge of CT Concepts

A paired t-test was also used to find the teachers’ knowledge of computational

thinking improved significantly: #27) = 3.38, p <0.01.

3.3.1.3 CS Attitudes

Only 24 of the 29 research cohort teachers completed both the pre- and post-
program survey. Although teachers’ attitudes improved from pre to post, a paired t-test
showed no significant pre-post difference in teachers’ attitudes: #(23) = 1.22, p = 0.24.
The teachers possessed great attitudes pre-program (M = 4.53 on a five-point scale). This
result indicates that the PD program had been able to recruit motivated teachers into the

program, where increases in CS attitudes would be hard to achieve.

3.3.1.4 Confidence in CS Knowledge

The teachers’ confidence in CS concepts was measured using a 6-item subset of
the CS teaching confidence survey discussed above in Section 3.2.1. Again, only 24 of 29
teachers from the research cohort completed this survey both pre- and post-program. A
paired t-test showed the teachers’ confidence in CS concepts improved significantly from
pre- to post-program: #(23) = 2.96, p < 0.01. However, of the 29 teachers that took the

post-program CS confidence survey, 56% (14/25) of the teachers reported being over

57

70% confident with the CS concepts. This result is likely attributed to the short nature of
the PD program. Some of the CS concepts were new to the teachers and could not be
covered to the necessary extent. Additionally, the concepts were taught alongside
programming in Python, and most teachers were new to programming in a high-level
language. Many teachers struggled with syntax issues while learning new concepts,

which may have kept the teachers from gaining confidence.

3.3.1.5 Confidence in Teaching CS

Only 24 teachers completed the survey, both pre- and post-program. Teachers’
confidence in teaching CS improved significantly using a paired t-test: #(23) =4.49, p <
.001. Furthermore, of the 25 teachers who filled out the post-program survey, 80%

(20/25) reported strong confidence (over 70%) in their ability to teach CS.

3.3.2 Model-District vs. Non-Model-District Teachers

The second research question addresses the difference in performance between
the model-district CS teachers and the non-model-district teachers in the summer PD.
Table 3.3 contains details about the data analysis performed in this section. Note, the
non-model-district teachers include the ten non-model-district CS teachers and the 15
non-CS teachers. Before the summer PD program, the research cohort, 28 of the 44
participating teachers (19 from the model-district CS teachers and nine non-model-
district CS teachers), completed the pre-program surveys on confidence and attitudes
discussed earlier and knowledge tests described in the Section 3.2.1. The model-district
CS teachers exhibited significantly more knowledge of CS concepts (#26) =2.95, p <

0.01), CT concepts (#26) =2.28, p < 0.05), CS concept confidence (#26) = 4.65, p <

58

0.005), and CS teaching confidence (#(26) = 4.54, p < 0.005) than participating teachers
from other districts. The model-district teachers have been involved in CS curricular
development, training, support from teachers in CS education, learning progression and
assessment, and meaningful use of resources to teach CS and CT (e.g., robots,
programmable Altera boards, and other interfaces). Indeed, the model-district won a
nation-wide award as a school district in K-12 CS education in 2018. Meanwhile, there
was no significant difference between the two groups in terms of CS attitude: #(26) =
1.55, p = 0.13. This result again testifies to the high motivation of the teachers recruited

into the PD program.

Recall, all 44 teachers, 19 model-district CS teachers, and 25 non-model-district
teachers took a post knowledge test containing CS and CT concepts covered during the
program as the week-one course’s final test. There was no significant difference between
the post-program knowledge test scores of model-district CS teachers and non-model-
district teachers for both CS, #42) =2.00, p = 0.06, and CT concepts, #42) =1.07, p =
0.29. However, post-program, a significant difference between the model-district teachers
and non-model-district teachers emerged when their CS concept confidences #23) = 3.11,
p <0.005, CS teaching confidence (#(23) = 4.54, p <0.001), and CS attitudes (#(23) =
2.13, p <0.05) were measured. Note, only 16 of the 19 model-district teachers and 9 of
the 25 non-model-district teachers completed the post-program CS concept confidences
survey. This finding indicates that the teachers from the model-district were more
confident than non-model-district teachers after the PD program, which has an insightful
implication. These findings demonstrate that teachers with CS teaching experience

(model-district teachers) have significantly more confidence post-program compared to

59

teachers with little-to-no CS teaching experience (non-model-district teachers) even
though they have the same level of CS concept knowledge after experiencing the summer
PD program. The lower confidence of non-model-district teachers could be due to their
lack of familiarity with teaching CS or the lack of peer support and available CS-related

resources.

Table 3.3 Cohort 1 Model-District (MD) vs. Non-Model-District (NMD) teacher
mean, standard deviation, t-value, degrees of freedom, and significance values for

each test.
Test Scale | nmp | Xmp oMD nNMD | XNMD | ONMD | £ daf | p
Knowledge of CS 100 19 | 36 18 9 18 8 2.95 26 | <.01
(pre-program)
Knowledge of CT 100 19 |60 15 9 44 18 2.29 26 | <.05
(pre-program)
Confidence in CS 100 19 | 7391 | 1834 | 9 35.06 | 25.05 | 4.65 26 | <.005
(pre-program)
Confidence in 100 19 |83.25 | 11.69 | 9 52.92 | 24.05 | 4.54 26 | <.001
Teaching CS (pre-
program)
CS Attitude (pre- 5 19 | 4.6l 039 |9 435 | 048 1.55 26 | 0.13
program)
Knowledge of CS 100 19 | 55.89 | 21.86 | 25 44.64 | 15.89 | 2.00 42 | 0.06
(post-program)
Knowledge of CT 100 19 | 68.26 | 13.36 | 25 63.32 | 15.62 | 1.07 42 | 0.29
(post-program)
Confidence in CS 100 16 |80.78 | 16.70 | 9 55.07 | 24.72 | 3.11 23 | <.005
(post-program)
Confidence in 100 16 | 88.66 | 723 |9 74.05 | 11.34 | 4.54 26 | <.001
Teaching CS (post-
program)
CS Attitude (post- 5 16 [470 |032 |9 443 | 023 | 213 23 | <.05
program)

60
3.3.3 Factors Driving Teacher Performance

The third research question focused on factors that predicted success in the
program. The factors evaluated were teacher confidence, plans to teach CS in the next

year, and grade level of instruction.

3.3.3.1 Confidence in CS Content

A 6-item subset of the full 22-item pre-program survey was used to measure the
teachers’ confidence in the CS content (i.e., “I can design and iteratively develop/refine
CS program.”; “I can document my programming solutions so that they are
understandable to my peers.”; and “I can decompose problems in ways that can be solved
algorithmically.”). As described in Table 3.1, 28 teachers participated in the pre-program
survey. Table 3.4 details the results of the data analysis in this section. A positive
correlation was found between the 6-item subset and the post-program teachers’
knowledge test scores (» = 0.38, p < 0.05). Based on this information, the test scores were
divided into two groups based on the teachers' confidence levels, below-average
confidence (nvelow = 11), and above-average confidence (7above = 17), as indicated by the
6-item subset of the pre-program CS concept confidence survey. The average score on
the confidence survey was 61.42 of 100, so that is the cut-off chosen for below- and
above-average. A significant difference was discovered between the test scores of the
teachers with above-average confidence and the teachers with below-average confidence,
#(26) =2.17, p <0.05. These results suggest that pre-program CS content confidence
levels can be used as an indicator of teachers’ knowledge performance levels in a CS PD

program.

61

Table 3.4 Measuring the impact of pre-program CS confidence by comparing
Cohort 1 test scores of teachers with above (abv) average confidence coming into the
program vs. teachers with below (blw) average confidence.

Test Scale Habv | Xabv Gabv Hblw | Xblw Oblw t df)4

Test scores (abv vs. | 100 17 63.76 | 17.05 | 11 51.03 | 11.52 | 217 |26 | <.05
blw)

3.3.3.2 Plan to Teach CS Following AY

29 of the 44 teachers participating in the PD had plans to teach CS at the K-12
level. There was no significant difference between the post knowledge test scores of the
teachers who would be teaching CS in the following academic year (AY) to the teachers
who would not, #42) =-0.29, p = 0.77. Table 3.5 details the results of the data analysis in
this section. A teacher’s plan to teach CS in the following AY did not have an impact on
their performance (in terms of their knowledge tests). A positive difference in
performance from the teachers who would be teaching in the next school year was
expected—with the premise that those teachers would be more motivated—but that was

not the case.

Table 3.5 Evaluation of outcomes from Cohort 1 teachers planning of teaching (T)
in the next AY vs. Cohort 1 teachers not teaching (NT) in the next AY on post-
program test scores.

Test Scale | nt | Xt or ANT | XNT ONT t daf | p

Test scores (T vs. NT) 100 30 | 58.28 | 1591 | 14 59.68 | 11.30 | -0.29 |42 | 0.77

3.3.3.3 Grade Level of Instruction

No significant difference was found between the teachers’ grade level of

instruction (i.e., elementary (K-5) vs. middle-school (6-8) on the performance of the

62

teachers on the knowledge tests (#(42) = 0.59, p = 0.55). Table 3.6 details the results of
the data analysis in this section. Better test scores were expected from the middle-school
teachers since they need higher STEM capabilities to teach their grade-level. Instead, no
significant difference was found between elementary teachers and middle school teachers
in their knowledge test scores. The higher expectations of middle school teachers were
not met, which could mean the necessary STEM capabilities of middle school teachers
compared to elementary school teachers may not be significantly impacting their learning

of CS content.

Table 3.6 Evaluation of Cohort 1 K-5 elementary (E) teachers vs. 6-8 middle school
(M) teachers test scores.

Test Scale | ne | XE OE nM | XM oM t af |p

Test scores (E vs. M) 100 26 | 59.80 | 1249 |18 |57.17 | 17.24 | 0.59 |42 | 0.56

3.4 Program Evaluation

This section includes an evaluation of the program used in this study. SWOT
(Strengths, Weaknesses, Opportunities, Threats) analysis, a proven analysis tool (Hill &
Westbrook, 1997), was used to identify what went well and what needed improvement.
The strengths section (Section 3.4.1) of SWOT focuses on the successes. The weaknesses
section (Section 3.4.2) pinpoints areas where that need to improve. The opportunities
section (Section 3.4.3) focuses on how possible improvements based on feedback,
insights, and experiences. The threats section (Section 3.4.4) highlights potential threats
to the success of the program. SWOT analysis was used to help inform decisions made

about the next PD program delivery.

63

3.4.1 Strengths

3.4.1.1 Instruction Team

There were enough members on the instruction team (one faculty instructor, one
graduate TA, and three undergraduate TAs for the first-week course, and four master
teachers as instructors for the week-2 course) to help all teachers promptly. The
instruction team was adaptive to the teachers’ needs throughout the two courses. They

created new examples and altered course content on the fly to fit the teachers’ needs.

3.4.1.2 Post-Course Knowledge of CT and CS Concepts

The 29 teachers from a local school district took the same pre- and post-program test
over CT and CS concepts to measure their knowledge gained. The teachers who took the
test had CS experience before the course. It was seen earlier that the teachers’ CS and CT
knowledge improved significantly. This improvement showed that the summer CS PD

program had a positive impact on the teachers’ CT and CS concept knowledge.

3.4.1.3 Sustained Duration

The program continues during the academic year and into the following summer,
which gives the teachers more resources and time to learn the CT and CS concepts. A
Virtual Community was set up through Listserv so the teachers can collaborate, share
ideas, and ask each other for help after the course ends. During the academic year, the
teachers will meet five times to go over the CT, and CS concepts learned over the

summer, share class materials, and connect with the other teachers. The following

64

summer, the teachers will take a second two-week course on CT and CS concepts and CS

and CT pedagogy.

3.4.1.4 Encouraged Collaboration

Through collaboration, the teachers were able to help each other better understand the
difficult concepts. K-8 teachers are experts at breaking down difficult concepts into terms

that are understood by their peers.

3.4.2 Weaknesses

3.4.2.1 Limited Active Learning in the First-Week Course

The first-week course used lecture-based learning mixed with hands-on group
activities and programming tasks, but the lecture aspect did not engage the teachers.
Teachers learned best when active learning activities followed short, brief lectures. Thus,

more active learning activities were incorporated than initially planned.

3.4.2.2 Lack of Alignment Between Instructor vs. Teacher Goals in the First-Week

Course

The goals of the instructor and the goals of the teachers did not align during the PD
program. The instructor hoped the teachers would become capable programmers while
learning CS and CT concepts while the teachers hoped to learn how to teach CS concepts
to their students. The teachers were not prepared to learn the concepts through
programming. The teachers had a difficult time with the programming language itself—
especially its syntax and abstraction aspects—and therefore was not a practical approach

for engaging teachers in learning about CS and CT concepts. We missed a significant

65

opportunity to link the concepts learned each day to their classroom instruction when we

taught the CS concepts and the CS pedagogy separately.

3.4.2.3 The Limited Virtual Community During Academic Year (AY)

Slack, a Cloud-based instant messaging software, as a virtual community after the
program, but the teachers did not make use of the site. The lack of engagement could be
due to the teachers’ unfamiliarity with Slack. Regardless, the virtual community moved
to Listserv, a more accessible service that connects groups of people through their email.
Both attempts to create a virtual learning community have fostered little to no
communication. An active virtual learning community needs to be developed for future

PD programs.

3.4.2.4 Attempted to Cover Too Many CS Concepts

It was planned for the first-week CS content course to cover basic concepts like
strings, variables, conditions, and loops before progressing to more complicated concepts
like functions, recursion, sorting, and searching. After covering the basic concepts, the
teachers still had difficulty with loops and conditionals. Therefore, the teachers were not

prepared for the transition to the more difficult concepts.

3.4.3 Opportunities

3.4.3.1 Restructure Data Collection Tools for the Next Cohort

Data collection tools need to be restructured for the next cohort for smoother data

analysis. Services such as Google Forms can be used to collect teacher responses, store

66

them all in one place, and keep a consistent format so that the data analysis process will

be efficient.

3.4.3.2 New Teacher Background Delivering a Fresh Approach

The next cohort of teachers taking the course will have no or little experience in
teaching CS. The hope is that the new teachers will adopt a different approach to learning
CS, allowing us to gain additional insights into what teachers’ motivation, self-efficacy,
perceived instrumentality, as well as approaches to learning, giving us a more

comprehensive picture of teacher attitudes and learning performance.

3.4.3.3 Multiple Feedback Opportunities

Feedback collected from the teachers, and feedback still being collected will be used
in designing upcoming PD programs. Feedback will be gathered during five meetings this
academic year, from the in-class observations of the teachers teaching their students, and

from the teacher leaders.

3.43.4 Funding for New Teaching Tools

The teachers in this study were funded to utilize new teaching tools in their
classrooms. All elementary and middle school teachers receive funding to purchase CS
instructional hardware and software as part of participating in the PD program. The first
cohort used the available funds to purchase educational robots and tablets. The multiple
feedback opportunities will show how new educational tools are utilized. The suggested
tools can then be used in future programs to better familiarize the teachers with tools they

could be using.

67

344 Threats

3.44.1 CS1 College Credit

Over the week, material covered needed to be reduced to accommodate the speed the
teachers were learning. Thus, the material may have been altered to the point that not all
the CS concepts specified in the course requirement were taught in-depth or at the
intended level of rigor, though all basic CS concepts were covered. For example, at the
beginning of the course, basic concepts (variables, Boolean logic, conditionals, loops,
functions) and some advanced concepts (recursion, file I/O) were planned to be covered,
but after altering the material only the advanced concepts, recursion, and file I/0O, were

briefly covered.

3.4.4.2 Individual Work is Challenging to Facilitate

The teachers were accustomed to collaborating on most assignments, and perhaps
also because of their prior PD experiences, they prefer to continue to work together on
their assignments. The teachers’ collaboration made it challenging to design and facilitate
individual work and comprehensive individual measures of CS and CT knowledge (e.g.,
assignments on reflection, analysis, and programming) in addition to the individual end-

of-course knowledge tests.

3.4.4.3 Range of Instructors’ Grade Levels

The teachers had varying levels of experience with CS and taught different grade

levels. Catering materials to each grade level and experience level was a challenge. The

course was designed so teachers without a CS background could be successful, but

teachers with CS background may have felt unchallenged.

68

69

Chapter 4: Cohort 2 Summer PD Program

4.1 Program Structure

The PD program was held on two consecutive weeks in June 2020 and ran daily
from 8:00 a.m. to roughly 5:00 p.m. Due to the COVID-19 virus and social distancing
guidelines, the program was taught online via Zoom video conferencing technology. The
instructor used one camera to show his face and one camera to share slides, code,
examples, document cameras, and teaching aids. Zoom breakout rooms were used

heavily to facilitate group activities.

4.1.1 Morning CS Content Course

The program structure covered CS concepts using JavaScript in the morning
session and CS pedagogy in the afternoon session. This section will focus on the
morning, CS content session. The schedule for the morning can be found below in Figure
4.1 and Figure 4.2. The morning session was taught by a local high school teacher, a team
of three teaching assistants (TAs): one graduate and two undergraduates, and two top-
performing teachers from the previous cohort. All activities, assignments, and

announcements were available for the teachers via the online learning tool, Canvas.

70

Morning

Course Topic Basic Syntax, Variables Functions Conditionals Loops Flow Charts
Hour of addressing Hour of addressing Hour of addressing
morning content - morning content - morning content -
Afternoon Elementary & Middle Elementary & Middle Elementary & Middle
"Plan" Functions Conditionals Loops CSTA Standards
6/8 6/9 6/10 6/11 6112
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
8:00 AM Introductions. Get-to- Morning welcome Morning welcome Morning welcome Morning welcome
know-you activity. activity. activity & Quiz #1. activity. activity & Quiz #2.
Intreducing JSFiddle. Condensing code with C‘}gz‘z::i:'gfégisgn:
8:30 AM| Basics of HTML, CSS, functions. Function 3 g' While Basics of flow charts
3 Form. if, else, else if
JS. inputs. SR
distinctions
9:00 AM Prlntlng_ (“HeIIoWorld‘). Generating Qutput ULl If, elseif, else Practice Practice “Formal” flow charts
Creating Variables. functions.
9:30 AM Getting mpqt and storing Variable scope. Logical Operators For Making a program from a
flow chart.
Operators. Arithmetic,
10:00 AM comparison, bvolgan, Built-in funct!ons: String Practice in groups Break Making a program from a
increment. (Printing functions flow chart.
outputs of operations)
2 Logical pathways within
Resource: w3Schools, More String functions, a function (ensurin
10:30 AM | hitps://www . w3schools g x g Continue Making a flow chart.
e explore W3Schools return). Ternary
e Operator
11:00 AM s "“.‘“‘ b Parsing Practice in groups Practice activities s c_hart s
and functions. Random. programming.
11:30 AM Practice in groups Practice in groups Practice in groups Practice in groups Practice in groups
Assignment: Math calculations Functions Tasks Leap Year/Fortune Teller Palindrome/Primes SecretMessage

Figure 4.1 Cohort 2 Summer PD program’s CS/CT content morning course
schedule — Week 1.

71

Basics in a second
Lists, Objects Recursion Sorting language Project/Test

Pair programming in Differentiation and Project based

the classroom assessment- CS4All learning
6/15 6/16 617 6/18 6/19
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
8:00 AM Morning welcome Morning welcome Morning welcome Morning welcome Morning welcome
7 activity & Quiz #3 activity. activity & Quiz #4 activity. activity & Quiz #5
. : Sorting algorithms Discuss other
Ea e introduction: overview languages
8:30 AM| Simple Arrays. Indexing. algorithms, stop AR RE R T o J—q— : Research Survey
23 hitps://www toptal.com/ | hitps://w w w tutorialspoi
condition T S
developers/sorting- nt.com/codingground.ht
Programming language
9:00 AM g Spl.rt, ey, Fibonacci, Factorials |Writing an insertion sort. SO AN P Research Survey
functions a language and learn
about it. Write a loop to
Memory load of
9:30 AM| fterative Algorithms inefficient recursive | Writing a selection sort. Work time. ettt Ul
: weeks' content.
algorithms.
10:00 AM| Enhanced for loops Tower of Hanoi Discuss bubble sort. Frasen; i the restofiine) ;Hecan alien weets
group. content.
10:30 AM| JavaScript Objects Discuss merge sort. Discuss quick sort. Finish presentations. Post-exam
Interpret a recursive
11:00 AM More enhanced for progra(m to |der!’l|fy its Algorithm efficiency. Regular E;pressmns, if Postiera
loops. function (Euclidean time.
algorithm for GCD.)
11:30 AM Practice in groups Practice in groups Practice in groups Heguiar E:i(rz;esslons, i Post-exam
Assignment: Register Palindrome2 Alphabetize Text Analysis Final Project

Figure 4.2 Cohort 2 Summer PD program’s CS/CT content morning course
schedule — Week 2.

The teachers had homework assignments related to the content taught each day.
The homework was assigned at the end of each morning and was due at midnight on the
same day. Each homework assignment contained an extension that was optional but was
put in place for the advanced teachers to challenge themselves. The Cohort 2 assingments

can be found in Appendix B.2 There was a cumulative exam on the last day consisting of

72

CS and CT knowledge tests. This exam was taken by all 24 teachers pre-program and on
the last day of the first course. The pre- and post-test made it possible to measure all 24

teachers’ change in CS and CT content knowledge.

The morning session typically consisted of 15-30-minute lectures followed by 10-
15-minute group activities. An example of one group activity (breakout session) from our
Day 6 lecture on arrays can be found in Figure 4.3. Four CS content quizzes were
administered throughout the program to help the instructors understand the teachers’
understanding of past concepts as the program progressed. The Cohort 2 quizzes can be
found in Appendix A.2. The quizzes gave the instructors an idea of which concepts to
review before moving on. All the quizzes from Cohort 2 CS content course can be found
in the Appendix. Additionally, a final group project was assigned that required teachers
to create a hangman game. The project was put in place to allow the teachers to take
something away from the class that they can show family members, friends, and their
classrooms and inspire them to explore computer science further by adding components

to their game. The project description can be found in Appendix B.2.10.

73
(-) Practice Time! June15#11

e \Write a program:

o Get all lines of input and put them into an array.

o Loop through all the items and replace every
letter in each with its first letter, saving the new
string in its place in the array.
m Apple becomes AAAAA
m Silver becomes ssssss

o It might help to create a function to manipulate
the strings, and use the function in a loop.

o (Possible flow chart for this on following slide.)

Figure 4.3 Cohort 2 Summer PD program Day 6 breakout session example.

4.1.2 Afternoon CS Pedagogy Course

This section will focus on the afternoon pedagogy session. The course was co-
taught by six different CS teachers — three high school teachers, two middle-school
teachers, and an elementary school teacher. The class met daily June 8-12 and June 15-19
from 1:00 pm to 5:00 pm, via Zoom, online. During the first week of the program, the
lecture concentrated on a single CS concept and the CS concept aligned with the content
taught during the morning CS concepts session. The purpose of the lectures was to show
the teachers how to teach the concept to their respective grade levels. Therefore, the
elementary, middle, and high school level instructors each discussed the concept and how
it can be presented in their grade levels classrooms. During the second week, the focus
shifts more towards robotics and tools the teachers will be able to use in their classrooms.

Teachers were also divided into grade-level specific groups and were tasked with creating

74

and presenting a lesson plan for their respective grade-level to the rest of the class. The
final assignment was an extension of the lesson plan they presented. The final assignment
asked the teachers to write-up an implementation plan with lesson samples, demographics

of their schools, and some reflections.

An outline of the course schedule can be found below in Figure 4.4 and Figure 4.5.
Daily reflections were completed online at the end of each day and were graded for

completion.

75

Morning
Course
Topic

Susan

1:00 PM

1:30 PM

2:00 PM

2:30 PM

3:00 PM

3:30 PM

4:00 PM

4:30 PM

Assignment:

Basic Syntax, Variables Functions Conditionals Loops Flow Charts
Alan Valerie Kyleigh Dan Patrick
6/8 6/9 6/10 6/11 6/12
MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

Computational Thinking
Activity: Overview - Digital
Breakout

Computational Thinking Computational Thinking Cohort 1 Panel - Patti, Olivia, Computational Thinking
Activity: What's The Rule? Activity: Picture This! Bethany Culminating Activity

Debrief on Digital Breakout.

3 Small group discussion - CT Small group discussion - CT Cohort 1 Panel - Valerie, Small group discussion - CT
Overview of afternoon

o Activities/Strategies Activities/Strategies Patrick, (Matt, Lisa?) Activities/Strategies
Content in the Classroom:
Variables (Elementary) Break Break Break Break

Break at the end

Content in the Classroom: Content in the Classroom: Content in the Classroom: Content in the Classroom: Content in the Classroom:
Variables (Middle & High) Functions (Elementary) Conditionals (Elementary) Loops (Elementary) Flow Charts (all levels)

Building a successful CS
program from the ground up -
Multiple examples

Grant details Content in the Classroom: Content in the Classroom: Content in the Classroom:
(Gwen/Wendy) Functions (Middle & High) Conditionals (Middle & High) Loops (Middle & High)

Independent Learning Time Independent Learning Time Independent Learning Time Independent Learning Time Independent Learning Time

Personal Learning Goal,
Talk about experience level, Reflection on Functions Reflection on Conditionals Reflection on Loops
Reflection on Variables

Reflection on Flow Charts &
the week overall

Figure 44 Summer PD program second-week CS pedagogy afternoon course

schedule — Week 1.

76

Morning

Course
Topic

Susan

1:00 PM

1:30 PM

2:00 PM

2:30 PM

3:00 PM

3:30 PM

4:00 PM

4:30 PM

Lists

Alan

6/15
MONDAY

Ozobot Introduction

Ozobot Lessons for the
Classroom

Break
Content in the Classroom:
Lists

CS Teaching Strategies
(Pair Programming, etc.)

Independent Learning Time
and Group Planning Time

Reflection on Lists & Pair

Assignment: Programming

Recursion

Valerie

6/16
TUESDAY

Dash or Cue Introduction
(split elem and middle)

Dash or Cue Lessons for
the Classroom

Break

Content in the Classroom:
Recursion

Differentiation &
Assessment

Independent Learning Time
and Group Planning Time

Reflection on Recursion &

Sorting

Kyleigh

6/17
WEDNESDAY

Other Robot Options-
Patrick and Susan and ??

CS4All & CSTA discussion

Break

Content in the Classroom:
Sorting

Project based learning

Independent Learning Time
and Group Planning Time

Reflection on Serting/Project

Differentiation/Assessment based learning

Basics in a second
language

Dan

6/18
THURSDAY

High School Robotics Class

Group 1 Lesson

Break

Group 2 Lesson

Group 3 Lesson

Group 4 Lesson

Independent Learning Time

Project/Test

Patrick

6/19
FRIDAY

What to do going forward?

Group S Lesson

Break

Group 6 Lesson

Group 7 Lesson

Group 8 Lesson

Independent Learning Time

Figure 4.5 Summer PD program second-week CS pedagogy afternoon course
schedule — Week 2.

4.2 Data Analysis

4.2.1 Description of Data

l.

There are three sets of data:

The first data set is from a project-developed, pre- and post-program survey

that assesses teacher self-confidence in (a) teaching CS (16 items, e.g., “I can

77

adapt existing CS lesson plans to meet the needs of my students.”) and (b)
their CS skills (6 items, e.g., “I can design and iteratively develop/refine CS
programs.”). The confidence items were measured using a slider scale. The
teachers indicated how confident they were they could achieve each scenario
by indicating a probability of success from 0 (0% confident) to 100 (100%
confident)). The survey was the same as that used in Cohort 1.

The second data set is from a pre-post survey that assesses teacher attitudes
towards CS. The nine attitudinal items used a Likert scale (1: strongly
disagree, 2: disagree, 3: neutral, 4: agree, 5: strongly agree) to measure
personal interest in CS (e.g., “I find the challenge of solving CS problems
motivating.”) and the perceived value of CS (e.g., “Reasoning skills used to
understand CS can be helpful to me in my everyday life.”). This instrument
was developed by adapting the Computing Attitudes Survey (Dorn & Tew,
2015), which was validated with undergraduate CS students. The survey was
also the same as that used in Cohort 1.

The first data set comes from a pre- and post-assessment measured teacher
knowledge of CS concepts (Shell et al., 2017) and computational thinking
(Peteranetz et al., 2020). The post-assessment measured CS and CT
knowledge and was used as the final exam. The test separates the high
performers from the low performers. Instead of the C average being around
70%-80% as a typical grade scale, the average test scores were around 50%,
which indicates average performance and is not a failing grade (Shell et al.,

2017). The assessment was also the same as that used in Cohort 1.

78
4.2.2 Participant Breakdown

The PD program served 24 K-12 teachers. Of the 24 teachers, 18 teachers are
elementary teachers (K—5), 6 are middle school teachers (6-8), and 2 teach high school
classes (9-12). Some teachers belong to two groups (teach elementary and middle school
students or teach middle school and high school students). The study contained 20 female

teachers and four male teachers.

4.3 Results

4.3.1 Impact of PD Program on Cohort 2

The same research questions proposed and answered in Cohort 1 (Section 3.3) are
re-evaluated for Cohort 2. The first research question was, “What was the impact of the
CS summer PD on teacher’s (a) knowledge of CS concepts, (b) knowledge of
computational thinking, (c) CS attitudes, (d) confidence in CS knowledge and (e)
confidence in teaching CS?”. To address these questions, the pre- and post-survey data
(31 total items each) collected from 24 participants who participated in both the pre- and
post-program knowledge test were used. Again, t-tests were used to compare each of the

specified target groups.

4.3.1.1 Knowledge of CS Concepts

A paired t-test was used to find the teachers’ knowledge of CS concepts improved
significantly: #23) =3.39, p <.001. The improved CS concept scores show that the
Cohort 2 summer CS PD program had a significant positive impact on the teachers’ CS

concept knowledge.

79
4.3.1.2 Knowledge of CT Concepts

A paired t-test was also used to find the teachers’ knowledge of computational

thinking improved significantly: #/23) = 7.52, p <0.0001.

4.3.1.3 CS Attitudes

All 24 teachers completed both the pre- and post-program surveys. The teachers’
attitudes showed no significant change from pre- to post-program, #23) =-0.18, p = 0.86.
The mean attitudes scores regressed slightly from pre- to post, although the post-program

attitude scores were still high (M = 4.34 out of 5).

4.3.1.4 Confidence in CS Knowledge

The teachers’ confidence in CS concepts was measured using a 6-item subset of
the CS teaching confidence survey discussed in Section 4.2.1 above. All 24 teachers from
Cohort 2 completed this survey both pre- and post-program. A paired t-test showed the
teachers’ confidence in CS concepts improved significantly from pre- to post-program:

£(23) =5.51, p < 0.0001.

4.3.1.5 Confidence in Teaching CS

Again, 24 of the 24 teachers completed both the pre- and post-confidence survey.
A paired t-test showed that the teachers’ confidence in teaching CS improved
significantly, #23) = 6.31, p < 0.0001. Table 4.1 details the results of the data analysis in

this section.

80

Table 4.1 Evaluation of the impact of the CS PD program by comparing Cohort 2
pre-program and post-program knowledge, attitude, and confidence scores (mean,

standard deviation, t-value, degrees of freedom, significance value).

Scale

Teaching CS

Test Tpre Xpre Opre Tpost Xpost Opost t daf p
Knowledge of CS {100 |24 2436 |15.66 |24 41.67 |(17.99 |3.39 |23 <.005
Knowledge of CT|100 |24 46.30 |15.86 |24 68.06 |10.52 |7.52 |23 <.001
CS Attitudes 5 24 4.36 0.31 24 434 (049 |0.18 |23 0.86
Confidence in CS 100 |24 5022 (27.13 |24 7278 |17.69 |5.51 23 <.001
Confidence in 100 |24 6435 [19.31 |24 8531 |7.86 [6.31 23 <.001

4.3.2 Factors Driving Teacher Performance

The third research question focused on factors that predicted success in the

program. The factors evaluated were teacher confidence, plans to teach CS in the next

year, and grade level of instruction.

4.3.2.1 Confidence in CS Content

A 6-item subset of the full 22-item pre-program survey was used to measure the

teachers’ confidence in the CS content (i.e., “I can design and iteratively develop/refine

CS program.”; “I can document my programming solutions so that they are

understandable to my peers.”; and “I can decompose problems in ways that can be solved

algorithmically.”). No significant correlation was found between the 6-item subset

measuring confidence in CS concepts and the post-program teachers’ knowledge test

scores (= 0.19, p = 0.85). This result suggests that pre-program CS content confidence

levels may not be a reliable indicator of teachers’ knowledge gains in a CS PD program.

81
4.3.2.2 Grade Level of Instruction

For Cohort 2, we grouped each teacher into two separate groups based on the
highest level of education they must deliver. Group 1 teachers are elementary (K-5)
teachers, and group 2 (6™ grade and above) are middle school teachers and high school
teachers. If a teacher is responsible for all grades, K-12, we grouped that teacher in group
2 since the highest level of instruction is above the sixth-grade level. We found no
significant difference between the teachers’ grade level of instruction (i.e., elementary
(K-5) vs. middle-school (6-8)) on the performance of the teachers on the CS knowledge
test (#(22) = 1.42, p =0.17) or the CT knowledge test (#(22) = 0.54, p = 0.60). Table 4.2
details the results of the data analysis in this section. Better test scores were expected
from the middle-school and above teachers since we believed they would need higher
STEM capabilities to teach their respective grade-level. We believed this boost in STEM
capabilities would aid them in learning CS. Instead, no significant difference was found
between elementary teachers and middle school teachers in their knowledge test scores.
The higher expectations of middle school teachers were not met, which could mean the
necessary STEM capabilities of middle school teachers compared to elementary school

teachers may not be significantly impacting their learning of CS content.

Table 4.2 Evaluation of Cohort 2 K-5 elementary (E) teachers vs. 6-8 middle school
(M) teachers CS knowledge test scores.

Test Scale | ne XE OE nM | XM oM t af | p

CS Test scores | 100 14 | 37.36 19.05 10 | 47.69 1530 | 142 |22 |0.17
(E vs. M)

CT Test scores | 100 14 | 67.06 0.10 10 | 69.44 0.12 054 |22 |0.60
(E vs. M)

82
4.4 Program Evaluation

This section includes an evaluation of the program used in this study. This
evaluation method is the same that was used after Cohort 1 to identify strengths,
weaknesses, opportunities, and threats. (SWOT). Again, SWOT analysis is a proven
analysis tool (Hill & Westbrook, 1997) that was used to identify what went well and what
needed improvement. The strengths section (Section 4.4.1) of SWOT focuses on the
successes of the program. The weaknesses section (Section 4.4.2) pinpoints areas where
that need to improve. The opportunities section (Section 4.4.3) focuses on how possible
improvements based on feedback, insights, and experiences. The threats section (Section
4.4.4) highlights potential threats to the success of the program. SWOT analysis was used

to help inform decisions made about the next PD program delivery.

44.1 Strengths

4.4.1.1 Easily Accessible Programming Language

JavaScript and JSFiddle.com made programming more approachable as opposed to
Python and the IDE used for the first cohort. There was minimal setup to begin coding.
Using JavaScript allowed many of the Cohort 2 participants to feel comfortable

programming in just two weeks.

4.4.1.2 Zoom Video Conferencing Breakout Rooms

The facilitators of the program used breakout rooms through Zoom to allow the
teachers to work in groups on daily activities. The breakout rooms always had at least one

facilitator and no more than five teachers to a room. These breakout rooms helped

83

alleviate the awkwardness of video instruction and yielded valuable discussions and
collaboration throughout the course. These breakouts also broke up the lectures where

teachers could practice hands-on learning and reinforce each lecture topic promptly.

4.4.1.3 Zoom Video Conferencing Screen Share Technology

Another unforeseen benefit of online instruction was the ease of collaboration
through screen sharing. Problem-solving through observation of other’s code helped each
teacher to understand better where their issues. In a traditional classroom, the facilitators
would go to each teacher’s desk and look at their code with them. With the online
instructional format, all discussion participants can view the screen at the same time

without having to move seats or leave their work.

4.4.1.4 Program Duration

The program length was adequate for the facilitators to cover all CS concepts without
rushing through any of the concepts too quickly. The program duration also allowed for
the concepts to be linked with the pedagogy side in the afternoon, which allowed the
teachers to think about how they might apply the concepts they just learned into their
classrooms. The duration also allowed for more robust programming assignments to be

administered since the teachers were well-acquainted with each concept during the day.

4.4.1.5 Linking CS Content and CS Pedagogy

In cohort 2, we designed the program intentionally to couple the two courses each
day. Programming was learned in the morning and could be reinforced in the afternoon of
each day as a practice in computational thinking: algorithmic (being methodical, creating

a flowchart), problem decomposition (functions, creating a flowchart), evaluation

84

(debugging, analysis of correctness), pattern recognition (connecting the dots, leveraging
what has been learned syntax-wise, assimilating similar bugs), generalization (seeing
similar problems in syntax errors, learning useful debugging approaches), and abstraction
(the use of variables, the use of arrays to store values, the use of functions, the
representation of mathematical equations using variables). Coupling the courses together
helped motivate teachers to appreciate and recognize the need to learn how to program to
teach with more confidence and readiness, even when they are only teaching CS to

grades K-5 and especially for teachers teaching CS to grades 6-8.

442 Weaknesses

4.4.2.1 Traditional Learning Tools Were Unavailable

Explaining more intricate concepts was made increasingly difficult, with the inability
to draw on a whiteboard. Many times, a visual representation of a concept is easier to
understand, and providing that was made more difficult through online instruction. The
facilitators were forced to find new ways to explain concepts in detail. Though Zoom

provided annotations on-screen, it was not easy to draw using a touchpad.

4.42.2 Breakout Rooms Limited Facilitator-To-Facilitator Interactions

During the breakout rooms, there would be times when one of the facilitators would
be unable to answer a student’s question. In a traditional classroom, the facilitator might
call over another facilitator to try to explain the answer in a different way to assist the
student. With the breakout rooms, that facilitator-to-facilitator interaction did not occur.

Note that the facilitators, instead, used a separate platform (i.e., Slack) to interact.

85
4.42.3 The Limited Virtual Community During Academic Year (AY)

No virtual community was established for the participants to share ideas post-
program and collaborate as they start creating lesson plans for the upcoming school years.
We expect that some of the teachers exchanged emails or phone numbers, but we also
expect that some teachers did not and will, therefore, need to communicate with the

facilitators for help throughout the year.

4.4.2.4 Course Expectations Not Clear Upon Signing Up

Many of the teachers expressed confusion as to the goal of the PD program. The
initial confusion was the expectation that the teachers would learn to program in addition
to learning about CS concepts, despite that the course syllabus, shared days before the
course, was clear on the expectations. The elementary teachers especially were surprised
by this since they would not likely be teaching their students to program. The
expectations must be made clear right away, so the teachers come into the program with

the right mindset to approach the challenge of learning CS and programming concepts.

4.4.3 Opportunities

4.43.1 Monitor the Exploration of New Ways to Teach CS to K-12 Students

Many of the participants in this cohort did not have solid lesson plans before
attending this program. It will be intriguing to see how they adapt what they learned in
the program to their classrooms. Throughout the year, there will be opportunities for the
teachers to share their successes and failures in their classrooms. This opportunity will

give insight into the teachers’ process of creating curriculum material from the PD

86

program instruction and the validity of teaching CS through online tools, like Zoom and

Canvas.

444 Threats

4.44.1 No Monitoring of Teachers During Evaluations

Since the program was delivered online, there is no way to know if the teachers
used outside sources to aid them during the individual assessments at the end of the
program. Measures were taken to combat collaboration between students during the
assessments (muting all teachers and disabling chat features), but there was no way to

stop all forms of outside collaboration.

4.44.2 Significant Program Changes from Cohort 1 to Cohort 2

Due to COVID-19, the Cohort 2 summer PD program was moved to online. The
online instruction was a significant change to the format of the program and made it

difficult to compare the outcomes of the two programs since they are vastly different.

4.4.4.3 Distractions of Learning from Home

Again, due to COVID-19, the Cohort 2 summer PD program was held online. The
online format meant that many of the teachers participated in the program from their own
homes. With the ability to turn off the video, teachers may have been stepping away
during lectures. We have no way of knowing the amount of time the teachers were away
from the screen during the lecture. So, while we feel like we delivered all the content

necessary, because of the distractions from learning at home and the ability to leave the

87

lecture undetected, teachers may have missed content if they stepped away from the

computer.

4.4.4.4 Difficult to Measure Teacher Participation in Small Group Discussions

Again, due to COVID-19, the course was taught online, via Zoom. A challenge of
using Zoom is that only one person in a small group can talk at any time. Teachers who
are more willing to let others talk stay silent for long periods. The ability to mute the
camera and microphone in Zoom makes it challenging to know their level of engagement.
While the groups were sharing code, the facilitators assume that all teachers are following
along. To check each teacher's code during the small group session would have taken too
much time, so the introverted teachers may not have followed along with the code.
Therefore, it would have been easy for a teacher to skip practice sessions, which would

yield lower confidence and knowledge scores.

88

Chapter 5: Cohort 1 vs. Cohort 2

When designing the Cohort 1 PD program, many of the design decisions were
experimental. Cohort 1 taught us many things about how to teach a CS PD program. We
planned to make small changes from Cohort 1 to Cohort 2, so comparisons could be
drawn about the changes made. Due to the COVID-19 pandemic, our design was forced
to change drastically. In this chapter, we will detail the changes that were made from

Cohort 1 to Cohort 2 and compare the program outcomes of Cohort 1 and Cohort 2.

5.1 Cohort 1 to Cohort 2 Changes

In this section, we will discuss the program design changes from Cohort 1 to
Cohort 2. As mentioned above, some design decisions were forced upon the program by
the local guidelines due to the COVID-19 pandemic. Table 5.1 summarizes the

similarities and differences between the two cohorts.

Table 5.1 Details of Cohort 1 and Cohort 2 CS PD designs.

Cohort Delivery | CS Content | CT Content | Lead Instruction Team Programming
Course Course Instructor Language/IDE
Schedule Schedule
Cohort 1 In- Week 1: | Week 2: | College Lead Instructor, Python/
SAM-5PM 8AM-5PM) | CS
(Summer 2019) person ()|«) Professor 1 graduate TA, PyCharm
3 undergraduate TAs
Cohort 2 Online Week 1 & 2: | Week 1 & 2: | High Lead Instructor, JavaScript/
AM-12 1PM-5PM School .
(Summer 2020) (8 (SPM) o100 2 Cohort 1 top- JSFiddle
noon) CS
Teacher performers
1 graduate TA
2 undergraduate TA

&9
5.1.1 In-Person to Online

Arguably the most significant change from Cohort 1 to Cohort 2 was the change
from in-person instruction to online instruction. Our design team was forced to deliver
the PD program online due to COVID-19. The classroom set up in Cohort 1 was a
disadvantage because it was difficult to hear the facilitator and a challenge to see the
whiteboard. These issues were solved by switching to the online format, but other issues
arose as a result. A common challenge expressed by the teachers was balancing all the
different windows necessary to participate in the course. This challenge was an
unforeseen disadvantage that we were unable to mitigate throughout the program.
Teachers who had access to multiple monitors found it easier to manage because they
could leave the Zoom window open while coding or viewing the slides on the other
screen. The online format proved to be challenging for the instruction team as well.
Teaching over Zoom made it challenging to read the teachers’ body language and
identify where the teachers started feeling lost or remained engaged or stayed in the
room, especially if the teachers’ video was turned off. Small breakout rooms and constant

communication with all participants was crucial to overcoming this obstacle.

5.1.2 Schedule

In Cohort 1, the design team decided to hold the CS content course during the first
week from 8 am - 5 pm with an hour break for lunch. This week was overwhelming for
many teachers. Then, we facilitated the second-week CS pedagogy course. This course
was much more laid back and well-received by the teachers. While designing Cohort 2,

we saw the opportunity to improve the program by holding both courses for half-days

90

over two weeks. The CS content course was held in the morning, and the CS pedagogy
course was held in the afternoon. The schedules can be found in Figure 4.1, Figure 4.2,
Figure 4.4, and Figure 4.5. By changing the structure in this, we not only broke up the
challenging CS content course into small, digestible pieces, but we also created
opportunities for the teachers to immediately link the CS content from the morning to
their classrooms in the afternoon CS pedagogy class. This structure change helped make
the CS content course more approachable, as it gave teachers more days to absorb the

new CS topics and practice programming.

5.1.3 Lead Instructor

In Cohort 1, the lead instruction was a CS professor from UNL. The professor
was accustomed to teaching in a college lecture, whereas the teachers participating in the
program were used to elementary, middle school, and high school classrooms. These are
two drastically different learning environments, and we saw a disconnect between the
participants and the lead instruction throughout the course. In Cohort 2, we chose to
replace the lead instructor with a local high school who was on the instruction team in
Cohort 1 but taught only the CS pedagogy course for the first cohort. The high school
instructor was able to draw on his experience with first-time CS learners to help connect
with the teachers. We may be able to go a step further and choose a lead instructor from
an elementary or middle school classroom. The relationship between the lead instructor
and the teachers is vital for building an environment where the teachers are comfortable

asking questions and interjecting during the fast-paced lecture to ask for clarification.

91
5.1.4 Instruction Team

In Cohort 1, the CS content course instruction team was made up of the lead
instructor who was, a college CS professor, and four teaching assistants (one graduate
teaching assistant and three undergraduate teaching assistants). The instruction team size
was adequate for the large cohort size (44 teachers). However, no one on the instruction
team had experience linking the CS concepts to a K-12 classroom. In Cohort 2, we filled
this void by recruiting two top-performing teachers from Cohort 1 to join the instruction
team along with the lead instructor who was, a high school CS teacher, and three teaching
assistants (one graduate teaching assistant and two undergraduate teaching assistants).
The Cohort 1 teachers with recent experience in learning and integrating the CS content

into their classrooms was an invaluable addition to our instruction team.

5.1.5 Programming Language and Integrated Development Environment

(IDE)

In Cohort 1, we chose to teach Python using the PyCharm IDE. We chose Python
because the syntax is simple and is widely discussed as a first programming language for
beginners to learn. However, teachers had issues with PyCharm, and Python versions
throughout the course, and the instruction team was fixing issues related to Python and
PyCharm throughout the course. In Cohort 2, the new lead instruction chose to change
the language to JavaScript and use the internet tool, JSFiddle, as an IDE. The new
language and IDE worked great for several reasons. First, JSFiddle is widely available,
and once a free account is created, all the work done during the course will be saved on

the site. JSFiddle did not require any set-up instructions, which made the introduction to

92

code near-seamless. The teachers need to get comfortable with the IDE and programming
language quickly in a two-week PD program. Quickly onboarding the teachers with
JSFiddle was a crucial step to delivering a successful PD program. Lastly, JavaScript,
like Python, is regarded as another excellent programming language for beginners. The
simple syntax and ease of execution made learning a new programming language, a

difficult task for beginners, much more straightforward.

5.2 Program Outcomes (Cohort 1 vs. Cohort 2)

In this section, we will discuss the program outcome similarities and differences
between Cohort 1 and Cohort 2 and some further evaluation we can do while comparing
the two cohorts. First, we will compare the impacts of each program. Then, we will
compare the participants’ outcomes based on their backgrounds. Finally, we will look at

the factors that drove teachers to perform better in each program.

5.2.1 Impact of PD Programs

5.2.1.1 Knowledge of CS Concepts

The change in teachers’ knowledge of CS concepts was found using paired t-tests
in both Cohort 1 and Cohort 2. In both Cohorts, the teachers’ knowledge of CS concepts
improved significantly from pre- to post-program, as seen in Table 5.2. The
improvements from pre-program to post-program were more impressive in Cohort 1 than
in Cohort 2, although the difference in post-program scores was not significant, as
indicated by Table 5.3 and Figure 5.1. Since our Cohort 1 and Cohort 2 programs were

vastly different, it is difficult to say precisely why the Cohort 1 teachers performed better.

93

It could be attributed to the Cohort 1 participants’ CS background or the in-person

instruction style over the online instruction style used in Cohort 2.

Table 5.2 Evaluation of the impact of the CS PD program from pre-program to
post-program for Cohort 1 and Cohort 2.

Test Cohort Scale Hpre fpre Opre Hpost fpost Opost t df P
Knowledge | 1 100 29 |29 19.67 | 44 | 49.5 19.30 | 5.27 27 | <.001
of CS

Knowledge | 2 100 24 12436 | 15.66 |24 |41.67 | 17.99 | 3.39 23 <.005
of CS

Table 5.3 Two-sample t-test between Cohort 1 post-program CS knowledge test
scores and Cohort 2 post-program CS knowledge test scores.

Test Scale | ner | Xe Ocl ne2 Xe2 o2 t daf P

Knowledge of CS 100 44 | 495 19.30 | 24 41.67 | 17.99 | 1.64 | 66 0.11

94

Test Scores of Cohort 1 and Cohort 2.

100 -

75-

I conort1
B conort2

Average and Standard Deviation of Test Percentages
[5)]
o

Post-TestCS

Figure 5.1 Post-program CS test scores in Cohort 1 and Cohort 2.

5.2.1.2 Knowledge of CT Concepts

We used paired t-tests to evaluate the change in the teachers’ knowledge of
computational thinking from pre- to post-program in Cohort 1 and Cohort 2. In both
programs, the teachers’ CT scores significantly improved, as shown in Table 5.4. There
was no significant difference in the post-program CT exam scores between the two
cohorts. We evaluated this using a two-sample t-test: #(66) = 0.78, p = 0.44. In both
cohorts, the teachers performed much better on the CT exam compared to the CS exam,

as seen in Figure 5.2.

95

Table 5.4 Evaluation of the impact of the CS PD program on the CT knowledge of

the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test Cohort Scale Hpre J?pre Opre Hpost J?post Opost t df P
Knowledge | 1 100 28 | 5476 | 17.68 |44 | 6545 | 14.73 | 3.38 27 | <.005
of CT

Knowledge | 2 100 24 14630 | 1586 |24 | 68.06 | 10.52 | 7.52. |23 | <.005
of CT

Test Scores of Cohort 1 and Cohort 2.

100-

Average and Standard Deviation of Test Percentages
o
o

0

|
Post-TestCS

75-
25- ii

B conort 1
B conort2

|
Post-TestCT

Figure 5.2 Cohort 1 vs. Cohort 2 post-program CS test scores and Cohort 1 vs.
Cohort 2 post-program CT test scores.

5.2.1.3 CS Attitudes

In both Cohort 1 and Cohort 2, we saw no significant change in the teachers’

attitudes towards CS from pre-program to post-program, as shown in Table 5.5.

96

However, we do see a significant difference in the post-program CS attitude scores from
Cohort 1 to Cohort 2. Cohort 1°s participants had significantly better attitudes towards CS
than the Cohort 2 participants post-program, (#47) = 2.22, p < 0.05) . This finding is
surprising because the instructors felt that Cohort 2 went smoother than Cohort 1. Also,
Cohort 1 and Cohort 2 did not have significantly different attitudes pre-program, (#50) =
1.59, p <0.11), and neither changed significantly from pre-program to post-program as
seen in Table 5.5. Again, with so many changes from program to program, it is hard to
identify contributing factors towards the difference in CS attitudes. One speculation is
that our CS attitude survey is not accurately measuring the teachers’ CS attitudes. We
were also surprised to see the Cohort 2 teachers’ attitudes regress from pre-program to
post-program, and we were also surprised to see such small change from pre- to post-
program in both Cohorts. This finding also hints potentially inadequancy of the survey

used to measure of the teachers’ CS attitudes.

Table 5.5 Evaluation of the impact of the CS PD program on the CS attitudes of
the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test Cohort | Scale Hpre fpre Opre Hpost fpost Opost t df P
CS Attitude | 1 5 28 452 1043 25 4.60 032 12223 |0.24
CS Attitude | 2 5 24 436 | 031 24 4.34 0.49 |0.18 | 23 | 0.86

5.2.1.4 Confidence in CS Knowledge

As discussed earlier, the teachers’ confidence in CS concepts was measured using
a 6-item subset of the CS teaching confidence survey. Both Cohort 1 and Cohort 2

showed the teachers’ confidence in CS concepts improved significantly from pre- to post-

97

program. Coming into the program, both Cohort 1 and Cohort 2 teachers had a wide
range of confidence levels, as noted in Table 5.6 and Figure 5.3. Post-program, the CS
confidence levels became even between the two cohorts. This finding means the Cohort 2
teachers' confidence levels increased much more than the Cohort 1 teachers. It is
encouraging to see high confidence scores from both cohorts, given the challenging
nature of the CS PD program. It would be beneficial to identify precisely which parts of
the PD program helped boost the teachers’ confidence in CS. A strong case could be
made that merely providing the teachers with the CS pedagogy course would be enough
to boost their confidence in CS. The pedagogy course does an excellent job of
familiarizing the teachers with difficult concepts in enjoyable and approachable ways.
Further investigation could be done to find the exact pieces of the program that

contributed most to the teachers’ boost in CS confidence.

Table 5.6 Evaluation of the impact of the CS PD program on the CS confidence of
the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test Cohort Scale Hpre fpre Opre Hpost fpost Opost t df P

CS Confidence | 1 100 28 | 61.42 | 2741 | 25 71.53 | 23.17 | 296 | 23 | <.01

CS Confidence | 2 100 24 5022 | 27.13 | 24 7278 | 17.69 | 5.51 | 23 | <.001

98

Test Results of Cohort 1 and Cohort 2.

100 -

75-
50-
25- l

I conort1
B conort2

Average and Standard Deviation of Confidence Survey Responses

0-

Pre-Program CS Confidence Post-Program CS Confidence

Figure 5.3 Cohort 1 participants’ post-program CS confidence levels vs. Cohort 2
participants’ post-program CS confidence levels.

5.2.1.5 Confidence in Teaching CS

In this section, our evaluation is similar to the last section, but instead, we
evaluated the full pre- and post-confidence survey to measure the teachers’ confidence in
teaching CS. The confidence measure asks the teachers how comfortable they would be
in handling several different scenarios. Again, a paired t-test showed that in both Cohorts,
the teachers’ confidence in teaching CS improved significantly. Table 5.7 and Figure 5.4

detail the change in CS teaching confidence from Cohort 1 to Cohort 2. There was no

99

significant difference between the CS teaching confidence between Cohort 1 and Cohort

2 teachers. Instead, both Cohorts improved and post-program, their confidences were

much alike. As we discussed in the last section, it would be helpful to identify precisely

where the confidence in CS teaching came from in the program. The CS teaching

specifically is more likely to have come from the CS pedagogy course since the goal of

that course is to provide information about how CS is currently being taught in other

schools and how the teachers can integrate the same ideas in their classrooms.

Table 5.7 Evaluation of the impact of the CS PD program on the CS teaching
confidence of the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test

Cohort

Scale

Confidence

Hpre fpre Opre Hpost fpost Opost t df P
CS Teaching 1 100 28 73.51 | 21.70 | 25 8340 | 11.26 | 449 | 23 | <.001
Confidence
CS Teaching 2 100 24 64.35 | 19.31 | 24 85.31 | 7.86 6.31 | 23 | <001

100

Test Results of Cohort 1 and Cohort 2.

100 -

75-
50-
25-

0-

I conort1
B conort2

Average and Standard Deviation of Teaching Confidence Survey Responses

Pre-Program CS Teaching Confidence Post-Program CS Teaching Confidence

Figure 54 Post-program average and standard deviation of Cohort 1 participants’
CS teaching confidence vs. Cohort 2 participants’ CS teaching confidence.

5.2.2 Model-District vs. Non-Model-District

Our second research question focused on the learning outcomes of two different
groups, model-district teachers, and non-model-district teachers. As noted in Section
3.3.2, the model-district teachers are teachers who are part of an award-winning school
district in K-12 CS education. These teachers have had access to CS tools and resources
for years, so their experience and knowledge of CS should have been higher than the non-

model-district teachers coming into the program. More information about the model-

101

district teachers can be found in Section 3.3.2. Of the 44 teachers who participated in
Cohort 1, 28 teachers completed the pre- and post-program surveys on confidence and
attitudes and the pre- and post-program knowledge tests. Of those 28, 19 were model
district teachers, and 9 were non-model district teachers. As we saw in Section 3.3.2, the
model-district CS teachers, pre-program, exhibited significantly more knowledge of CS
concepts, CT concepts, and CS concept confidence than participating teachers from other
districts. Of our 24 Cohort 2 teachers, none of them were from the model district. In this
section, we want to, again, compare the learning outcomes of model-district teachers (19
from Cohort 1) and the non-model-district teachers (9 from Cohort 1 and 24 from Cohort
2). We also want to compare the learning outcomes of the Cohort 1 non-model-district
teachers to the Cohort 2 non-model district teachers to see if the model-district teachers

helped enhance the learning ability of the Cohort 1, non-model district teachers.

5.2.2.1 Model-District vs. All Non-Model-District

As stated before, there were 19 model-district teachers, all from Cohort 1 and 33
non-model-district teachers, 9 from Cohort 1 and 24 from Cohort 2. When comparing
these two groups of teachers’ pre-program results, again we see that the model-district-
teachers performed significantly better, in all five categories: knowledge of CS concepts
(#(50) = 3.08, p < 0.005), knowledge of CT concepts (#50) = 3.00, p <0.005), CS
concept confidence (#(50) = 3.98, p < 0.005), CS teaching confidence (#(50) =4.21, p <
0.005), and CS attitudes (#50) = 2.41, p < 0.05). The difference in each category is

illustrated in Figure 5.5 and Figure 5.6.

102

The differences between the two groups were less significant post-program than
they were pre-program. Recall, all 44 teachers from Cohort 1, 19 model-district CS
teachers, and 25 non-model-district teachers took a post knowledge test containing CS
and CT concept and only 16 of the 19 model-district teachers and 9 of the 25 non-model-
district teachers completed the post-program CS concept confidences survey. All 24 of
the Cohort 2 non-model-district teachers completed all three measures. Therefore, in
total, we have 19 model-district teachers and 49 non-model district teachers who
completed the post-program knowledge tests. For the confidence survey, 16 model
district teachers, and 33 non-model district teachers. One difference from pre-program to
post-program is that there was no significant difference between the post-program CT
knowledge test scores of model-district teachers and non-model-district teachers, #(66) =
0.68, p = 0.50. However, post-program, there was still a significant difference between
the model-district teachers and non-model-district teachers when evaluating their CS
concept knowledge (1(66) = 2.58, p < 0.05), CS concept confidences, (t(47)=2.13, p <
0.05), CS teaching confidences ((47) = 2.27, p <0.05), and CS attitudes (t(47) = 2.70, p

<0.01). Again, these differences are illustrated in Figure 5.7 and Figure 5.8.

It is not surprising that the model-district teachers who had strong backgrounds in
CS education were more prepared and performed better in the CS PD program. /¢ is
encouraging that the CS PD program boosted the non-model-district teachers' CT
knowledge to be similar to the model-district teachers and nearly closed the gap between
the non-model-district and model-district teachers’ CS knowledge, CS confidence, CS
teaching confidence, and CS attitudes. The fact that both groups saw significant gains in

four of the five categories (CS attitudes saw no significant improvements) encourages us

103
that the program will work for teachers of varying backgrounds.

Pre-Program: Model-District Teachers vs. Non-Model-District Teachers.
100-

I Model-District
B non-togel-District
25- Ii
0..

CS Knowledge CT Knowledge CS Confidence CS Teaching
Test Test Survey Confidence Survey

~
m
'

Average and Standard Deviation of Test Results and Survey Responses
[8)]
o

104

Figure 5.5 Pre-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS knowledge test scores, CT knowledge test scores,
CS confidence survey responses, and CS teaching confidence survey responses.

Pre-Program: Model-District Teachers vs. Non-Model-District Teachers.

5-

-
1

w
1

P Moder-District
B Non-model-Distict

]
1

Average and Standard Deviation of Survey Responses

CS Attitudes

Figure 5.6 Pre-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS attitudes.

105

Post-Program: Model-District Teachers vs. Non-Model-District Teachers.

100 -

75-
50- I wogel-District

B non-togel-District
25-

0

Average and Standard Deviation of Test Results and Survey Responses

CS Knowledge CT Knowledge CS Confidence CS Teaching
Test Test Survey Confidence Survey

Figure 5.7 Post-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS knowledge test scores, CT knowledge test scores,
and CS confidence survey responses.

106

Post-Program: Model-District Teachers vs. Non-Model-District Teachers.

6-

B
1

I moder-District
B non-moder-District

Average and Standard Deviation of Survey Responses
N

CS Attitudes

Figure 5.8 Post-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS attitudes.

5.2.2.2 Cohort 1 Non-Model-District vs. Cohort 2 Non-Model-District

We want to evaluate the difference in knowledge and confidence from pre-
program to post-program for these two groups to find out if the Cohort 1 non-model-

district teachers had an advantage by working closely with the model-district teachers.

In Cohort 1, 9 non-model district teachers completed the pre-program tests and
survey. Cohort 2 had 24 teachers who completed both the pre-program tests and the

survey. We can see that coming into the program, there was no significant different

107

between the two groups CS knowledge (#31) =1.17, p = 0.25), CT knowledge (#31) =
0.29, p =0.78), CS confidence (#(31) = 1.46, p = 0.15), CS teaching confidence (#31) =
1.42, p=0.17), or CS attitudes (#(31) = 0.08, p = 0.94). This finding is to be expected
since neither group had strong CS backgrounds. Our interest lies in the post-program
results. Remember, all 25 Cohort 1 non-model-district teachers took the post-program
knowledge tests, but only 9 of the 25 completed the post-program confidence survey. All
24 of Cohort 2 teachers took both the post-program knowledge test and the confidence
survey. From conducting two-sample #-tests, we see that the Cohort I teachers had
significantly more CS concept confidence and CS teaching confidence post-program
compared to the Cohort 2 teachers (¢(31) =2.29, p <0.05 and #31) = 3.24, p <0.005,
respectively) but there was no significant difference in the two groups CS knowledge
(#(47)=0.61, p =0.54), CT knowledge (#(47) = 1.24, p = 0.22), or CS attitudes (#31) =
0.53, p = 0.60) post-program. Meanwhile, recall that the model-district teachers' pre- and
post-program knowledge of CS, while significantly higher than the non-model teachers,
was still relatively low (M=55.89/100). Whereas, the model-district teachers’ confidence
was relatively high (M=80.78/100). We speculated that if the model- district teachers
were going to be able to assist the non-model district teachers in any ways, it likely would
have been in boosting their confidence in CS. We discussed earlier how we believe most
of the confidence gain is coming from the CS pedagogy course since this is where they
learn to apply the CS concepts in their classrooms. For the Cohort 1 non-model district
teachers, they had an advantage because not only did they have the instructors telling
them how CS can be taught in the classroom, but their peers in the PD program could

give advice and recommendations on how CS can be taught in the classroom. In the CS

108

concepts course, all the model-district and non-model district teachers are at a similar
level of understanding, and so the model-district teachers cannot provide as much
assistance to the non-model teachers. Further testing will be needed to validate this

hypothesis and to identify the amount of confidence gained from each class.

5.3 Conclusion

We found success in Cohort 2 like that of Cohort 1 despite (or perhaps because
of) changes to the program’s method of instruction (in-person to online), schedule design
(week 1 CS content course, week 2 CS pedagogy course to morning CS course, afternoon
CS pedagogy course), lead instructor (university professor to high school teacher), and
programming language and IDE (Python and PyCharm to JavaScript and JSFiddle).
Several smaller items, such as homework assignments, office hours, group structure, and
more, changed because of these more significant changes. Both Cohort 1 and Cohort 2
teachers saw significant improvements to their CS and CT knowledge, confidence in CS
concepts, and confidence in teaching CS. Our findings encourage us to believe that,
although our program design changes significantly, the program remained effective in
preparing teachers to teach CS. We did see that some results were significantly higher in
Cohort 1 than Cohort 2, but because of the vast number of differences between the two

cohorts, it is difficult to determine what factors led to the variance in outcomes.

Additionally, we saw that the Cohort 2 non-model-district teachers performed
similarly to the non-model-district teachers of Cohort 1 on the knowledge tests. The main
difference between the Cohort 1 non-model-district teachers and the Cohort 2 non-model-

district teachers was that the Cohort 1 teachers gained significantly more confidence in

109

their CS capabilities on the confidence survey. Again, it is difficult to determine the exact
reason for the difference in outcomes between cohorts. However, we believe the
collaboration between the Cohort 1 model-district teachers and the Cohort 1 non-model-
district teachers during the CS pedagogy course was beneficial for the non-model-district
teachers to understand how CS is being taught in the classroom. This advantage could be
a crucial confidence amplifier which led to the non-model-district teachers’ superior

confidence.

5.4 Recommendations

As mentioned before, we had to change our program to be online due to COVID-
19. At first, we considered canceling the course because we did not know the logistics
behind facilitating an online CS PD program. What we found is that a CS PD program
can be effective through online facilitation. Therefore, we encourage those who are in
similar situations to carry out the PD program even if the logistic challenges of online

facilitation are uncertain.

We also found that the change in lead instructor for the CS professor to the high
school teachers was beneficial to increase the participants’ comfort level. The high school
teacher was able to use more familiar terms and connect with the participant much easier.
We believe the closer the lead instructor is to the average grade level of the participants,
the better the lead instructor will be in connecting the CS content with the participant's
target grade-level. However, keep in mind that it is also essential that the lead instructor
has a strong understanding of all the concepts taught during the program and has

significant experience in teaching CS topics.

110

Another recommendation is to use a programming language that is widely
available and simple to install and use. We found many issues using Python and
PyCharm in our first cohort due to package versions being different among students and
installation setting getting change that should not have been changed. In Cohort 2, we
used JavaScript and JSFiddle. JavaScript and JSFiddle were much more comfortable for
the participants to use because all they needed was a link to the JSFiddle site, and they
could begin programming. It is also nice that all the teachers’ work is saved on JSFiddle

and can be easily shared and accessed at any time.

Lastly, we found our schedule design in Cohort 2 to be much lower stress for the
participants. In Cohort 1, we held the CS content course for the first week and the CS
pedagogy course during the second week. Many of the Cohort 1 participants were feeling
overwhelmed and mentally fatigued in the middle of the first-week CS content course.
The second week CS pedagogy course was light on CS concepts and focused more on
how the teachers will teach in their classrooms. This arrangement made the second-week
course a much more comfortable course for the teachers and resulted in a low-stress
environment. In Cohort 2, we decided to break the high-stress, CS content course up and
teach CS content in the mornings, and CS pedagogy in the afternoons. The observed
attitudes of the Cohort 2 teachers were significantly better than that of the Cohort 1
teachers during the CS content course. By having the CS pedagogy course in the
afternoon, the teachers were given a mental break and were also able to immediately
connect the content taught in the morning with materials they can use in their classrooms.
We found this to be an essential design change that should facilitate better CS

understanding and instruction.

111

Chapter 6: Conclusion

6.1 Summary of Findings

This Thesis discussed the work we have done over the past two years to develop,
facilitate, and analyze two separate two-week, CS PD programs for K-8 teachers. In this

study, we sought to answer three distinct research questions:

1. What was the impact of the CS summer PD on the teachers?
a. knowledge of CS concepts
b. knowledge of computational thinking
c. CS attitudes
d. confidence in CS knowledge
e. confidence in teaching CS

2. What were the differences between teachers from a model school district
(an urban school district with extensive CS curricular development and
teacher PD) and teachers from other school districts? How did the program
impacts differ?

3. Which factors lead to teacher success (e.g., knowledge test scores) in terms
of CS understanding in the summer PD program? Specifically, this study
investigates confidence in CS content, plans to teach CS in the following
AY, and grade level of instruction as potential predictors of teacher

performance.

To answer the first two questions, pre- and post-program surveys and pre- and

post-knowledge tests were used to measure each of the summer PD program’s impacts on

112

the teachers. In both programs, we saw significant improvements in CS knowledge and
CT knowledge test scores, and in the teachers’ confidence in CS and in teaching CS. We
saw no significant effect on the teachers’ attitudes towards CS, which was a surprising
result. We further investigated these impacts by comparing the model-district teachers’
outcomes against the outcomes of non-model district teachers in both Cohort 1 and
Cohort 2. Overall, the model-district teachers performed better on the post-program, CS
knowledge test and showed higher levels of CS confidence. However, the Cohort 2, non-
model-district teachers did outperform the Cohort 1 model-district teachers on the post-
program, CT knowledge test. Overall, our finding shows that teachers gain additional
confidence and knowledge from experiences from within their districts, their K-8

instruction, and other factors external to the PD program.

In Cohort 1, we made an insightful observation. The experienced, model-school
district teachers showed higher confidence levels while having similar test scores. We
saw this as interesting because we felt the model-school district teachers were confident
enough to teach CS without needing to have a deep CS background. We speculated that
this was because the teachers knew they could teach, and had been teaching, successfully
without being able to perform well on the CS and CT knowledge tests. Furthermore, this
shows us that during the PD, we need to focus on providing hands-on pedagogical
experiences to help boost the teachers' CS confidence rather than only focusing on the CS
concepts. This support for this speculation was strengthened in Cohort 2, where we made
it a focus to link the CS content with the pedagogy by holding the CS content course and
the pedagogy course on the same day. As a result, the Cohort 2 teachers gained more

confidence than Cohort 1 teachers despite having less CS background. Since there were

113

many changes to the design of the PD in Cohort 2, it will take further investigation to

confirm this finding, but it is encouraging, nonetheless.

In Cohort 1, we found that pre-program CS confidence was a reliable predictor of
success in the program. In Cohort 2, we found that pre-program confidence was not
mandatory to have success in the program. We wanted to investigate many more factors
that could be indicators of success in Cohort 2, but due to the variety of different program
changes, it was challenging to control and identify any variables as predictors of teacher
success. Future work will need to be done on this third research question to find an
answer. In addition to our original variables of interest, confidence in CS content, plans to
teach CS in the following AY, and grade level of instruction, we would like to investigate
the teachers’ comfortability with technology, the number of years teaching CS, and the

teachers problem solving ability and mathematical thinking skills.

6.2 Future Work

Based on these findings, the next step is to plan, implement, and facilitate more
PD programs. Facilitating more PD programs would allow us to understand the
implications of our design changes and tease out the nuances behind each of our findings
from the first two cohorts. Additionally, we need to set up a structured PD program with
little-to-no changes from year-to-year so we can begin testing and identifying our
variables of interest to find valid predictors of success in our CS PD program. Lastly, a
line of future work that would benefit the entire CS PD community would be to create a
validated CS and CT knowledge test so PD programs can be all be compared. This sort of

measure would help guide PD program designers, so they know which concepts need to

114

be covered in their CS PD program to best prepare the teachers’ for CS instruction.
Another direction would be to compare and contrast the similarities and differences in
teaching CS1 (i.e., introductory CS) to K-12 teachers and post-secondary students, to
obtain insghts that could inform CS educators on how to more effectively teach K-12

teachers.

115

References

Ahamed, Sheikh Igbal, Dennis Brylow, Rong Ge, Praveen Madiraju, Stephen J. Merrill,
Craig A. Struble, and James P. Early. 2010. “Computational Thinking for the Sciences:
A Three-Day Workshop for High School Science Teachers.” Pp. 42-46 in. ACM.

Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related projects in
math and computer science popularization. In: Bodlaender, H.L.., Downey, R., Fomin,
F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond: Essays
Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday. LNCS, vol.
7370, pp. 398-456. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30891-8 18

Bower, M., Wood, L. N, Lai, J. W. M., Howe, C., Lister, R., Mason, R., Highfield, K., &
Veal, J. (2017). Improving the Computational Thinking Pedagogical Capabilities of
School Teachers. Australian Journal of Teacher Education, 42(3), 53-72.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the 2012 Annual Meeting of
the American Educational Research Association, Vancouver, Canada, 1, 25.

Brown, Quincy, and Amy Briggs. 2015. “The CS10K Initiative: Progress in K-12 through
‘Exploring Computer Science’ Part 1.” Inroads 6:52-53.

Chai, Ching Sing, Joyce Hwee Ling Koh, and Chin-Chung Tsai. 2010. “Facilitating
Preservice Teachers’ Development of Technological, Pedagogical, and Content
Knowledge (TPACK).” Journal of Educational Technology & Society 13(4):63-73.

Darling-Hammond, L., & Richardson, N. (2009). Research review/teacher learning: What
matters. Educational leadership, 66(5), 46-53.

Desimone, Laura M., and Michael S. Garet. 2015. “Best Practices in Teachers’
Professional Development in the United States.” Psychology, Society, & Education
7(3):252.

Dorn, Brian, and Allison Elliott Tew. 2015. “Empirical Validation and Application of the
Computing Attitudes Survey.” Computer Science Education 25(1):1-36.

Ericson, Barbara, Mark Guzdial, and Maureen Biggers. 2005. “A Model for Improving
Secondary CS Education.” Pp. 332-336 in ACM SIGCSE Bulletin. Vol. 37. ACM.
Fancsali, Cheri, Linda Tigani, Paulina Toro Isaza, and Rachel Cole. 2018. “A Landscape
Study of Computer Science Education in NYC: Early Findings and Implications for
Policy and Practice.” Pp. 44-49 in Proceedings of the 49th ACM Technical Symposium

on Computer Science Education, SIGCSE *18. New York, NY, USA: ACM.

Goode, J., & Margolis, J. (2011). Exploring computer science: A case study of school
reform. ACM Transactions on Computing Education (TOCE), 11(2), 1-16.

Goode, J., Margolis, J., & Chapman, G. (2014). Curriculum is not enough: The educational
theory and research foundation of the exploring computer science professional
development model. Proceedings of the 45th ACM Technical Symposium on Computer
Science Education - SIGCSE 14, 493-498. https://doi.org/10.1145/2538862.2538948

Google and Gallup. 2016. “Trends-in-the-State-of-Computer-Science-Report.pdf.”
Retrieved January 8, 2020 (http://services.google.com/fh/files/misc/trends-in-the-state-
of-computer-science-report.pdf).

116

Hatlevik, Ove Edvard, Inger Throndsen, Massimo Loi, and Greta B. Gudmundsdottir.
2018. “Students’ ICT Self-Efficacy and Computer and Information Literacy:
Determinants and Relationships.” Computers & Education 118:107-19.

Hill, Terry and Roy Westbrook. 1997. “SWOT Analysis: It’s Time for a Product Recall.”
Long Range Planning 30(1):46-52.

Kong, S.-C., & Lao, A. C.-C. (2019). Assessing In-service Teachers’ Development of
Computational Thinking Practices in Teacher Development Courses. 976-982.
https://doi.org/10.1145/3287324.3287470

Lang, Karen, Ria Galanos, Joanna Goode, Deborah Seehorn, & Fran Trees. 2013. Bugs in
the system: Computer science teacher certification in the US. New York, NY: ACM.

Lee,I. A., Psaila Dombrowski, M., & Angel, E. (2017). Preparing STEM Teachers to Offer
New Mexico Computer Science for All. Proceedings of the 2017 ACM SIGCSE
Technical ~ Symposium on Computer Science Education, 363-368.
https://doi.org/10.1145/3017680.3017719

Leyzberg, D., & Moretti, C. (2017). Teaching CS to CS Teachers: Addressing the Need for
Advanced Content in K-12 Professional Development. Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, 369-374.
https://doi.org/10.1145/3017680.3017798

Liu, J., Lin, C.-H., Wilson, J., Hemmenway, D., Hasson, E., Barnett, Z., & Xu, Y. (2014).
Making games a “snap” with Stencyl: A summer computing workshop for K-12
teachers. Proceedings of the 45th ACM Technical Symposium on Computer Science
Education - SIGCSE 14, 169—174. https://doi.org/10.1145/2538862.2538978

Margolis, J. (2010). Stuck in the shallow end: Education, race, and computing. MIT press.

McGee, Steven, Randi McGee-Tekula, Jennifer Duck, Catherine McGee, Lucia Dettori,
Ronald Greenberg, Eric Snow, Daisy Rutstein, Dale Reed, Brenda Wilkerson, Don
Yanek, Andrew Rasmussen, and Dennis Brylow. 2018. “Equal Outcomes 4 All: A
Study of Student Learning in ECS.” SIGCSE ’18 Proceedings of the 49th ACM
Technical Symposium on Computer Science Education.

McGee, Steven, Ronald I. Greenberg, Randi McGee-Tekula, Jennifer Duck, Andrew M.
Rasmussen, Lucia Dettori, and Dale F. Reed. 2019. “An Examination of the Correlation
of Exploring Computer Science Course Performance and the Development of
Programming Expertise.” Pp. 1067-1073 in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19. New York, NY, USA:
ACM.

Miller, L. D., Leen-Kiat Soh, and Markeya Peteranetz. 2019. “Investigating the Impact of
Group Size on Non-Programming Exercises in CS Education Courses.” Pp. 22-28 in.

Milliken, A., Cody, C., Catete, V., & Barnes, T. (2019). Effective Computer Science
Teacher Professional Development: Beauty and Joy of Computing 2018. Proceedings
of the 2019 ACM Conference on Innovation and Technology in Computer Science
Education, 271-277. https://doi.org/10.1145/3304221.3319779

Morreale, Patricia, Goski, Catherine, Jimenez, Luis, and Stewart-Gardiner, Carolee. 2012.
“Measuring the Impact of Computational Thinking Workshops on High School
Teachers.” Journal of Computing Sciences in Colleges.

Neutens, Tom and Francis Wyffels. 2018. “Bringing Computer Science Education to
Secondary School: A Teacher First Approach.” Pp. 840—45 in.

117

Peteranetz, Markeya, Shiyuan Wang, Duane Shell, Abraham E. Flanigan, and Leen-Kiat
Soh. 2018. “Examining the Impact of Computational Creativity Exercises on College
Computer Science Students’ Learning, Achievement, Self-Efficacy, and Creativity |
Request PDF from the Authors.” Retrieved January 8, 2020
(https://www researchgate.net/publication/323328484_Examining_the_Impact_of_Co
mputational_Creativity_Exercises_on_College_Computer_Science_Students'_Learnin
g_Achievement_Self-Efficacy_and_Creativity).

Peteranetz, Markeya, Patrick M. Morrow, and Leen-Kiat Soh. 2020. Development and
validation of the computational thinking concepts and skills test. In Proceedings of
ACM SIGCSE conference (SIGCSE’20), March 11-14, 2020, Portland, OR, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366813.

Pollock, L., Mouza, C., Czik, A., Little, A., Coffey, D., & Buttram, J. (2017). From
Professional Development to the Classroom: Findings from CS K-12 Teachers.
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, 477-482. https://doi.org/10.1145/3017680.3017739

Salac, Jean, Max White, Ashley Wang, and Diana Franklin. 2019. “An Analysis Through
an Equity Lens of the Implementation of Computer Science in K-8 Classrooms in a
Large, Urban School District.” Pp. 1150-1156 in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, SIGCSE ’19. New York, NY,
USA: ACM.

Sengupta, P., Kinnebrew, J., Basu, S., Biswas, G., Clark, D., Sengupta, P., Kinnebrew, J.,
Basu, S., & Biswas, G. (2013). Integrating computational thinking with K-12 science
education using agent-based computation: A theoretical framework. Education and
Information Technologies, 18, 351-380. https://doi.org/10.1007/s10639-012-9240-x

Shell, D.F., Soh, LK., Flanigan, A.E., Peteranetz, M.S. and Ingraham, E., (2017),
Improving Students' Learning and Achievement in CS Classrooms through
Computational Creativity Exercises that Integrate Computational and Creative
Thinking. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (pp. 543-548). ACM.

Vogel, Sara, Rafi Santo, and Dixie Ching. 2017. “Visions of Computer Science Education:
Unpacking Arguments for and Projected Impacts of CS4all Initiatives.” Pp. 609-614 in
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’17. New York, NY, USA: ACM.

Wozney, Lori, Vivek Venkatesh, and Philip Abrami. 2006. “Implementing Computer
Technologies: Teachers’ Perceptions and Practices.” Journal of Technology and
Teacher Education 14(1):173-207.

Yadav, Aman, Susanne Hambrusch, Tim Korb, and Sarah Gretter. 2013. “Professional
Development for CS Teachers: A Framework and Its Implementation.” Future
Directions in Computing Education Summit.

2019 State of Computer Science Education. (2019). Retrieved from
https://advocacy .code.org/

118
Appendix
Appendix A Quizzes
A.1 Cohort 1 Quizzes

A.1.1 Cohort 1 — Quiz 1: Conditionals

Question 1 1pts

What is the expected output of the following code block when the user inputs 10.67?

119

Question 2 1pts

What is the expected output of the following code block?

C]
)9

n

120

A.1.2 Cohort 1 — Quiz 2: Arrays & Loops

Question 1 1pts

What is the expected output of the following code block?

O 10

0

Question 2 1pts

What is the expected output of the following code block?

O [9.8,7,6,5.4,3,2,1,0]
O [8.7.6,5,4,3,2,1,0]
- [9.8,7,6,5.4,3,2,1]

=)
=
(]
w
-~
wn
o

~J
0
Lo,

121

Question 3 1pts

What is the expected output of the following code block?

O [9.8,7,6,6,7,8,9

A.1.3 Cohort 1 — Quiz 3: Functions

Question 1

What is the expected output?

O Hedkno, | ain'tyzkin'!

O Get the keys, we're going yakin'!

Question 2

What is the expected output?

O Get the keys, we're going yakin'!

O Hedkno, | ain'tyzkin'!

1pts

1pts

122

123

Question 3 1pts

What would you rename this function instead of "my_func" to make it more descriptive based on what

the function does?

O nultiple_by 2

O Edd_z
O di"/[de_j‘r'_z

O subtract 2

124

Question 4 1pts

What is the expected output of the following code block?

O7

o]

n

125

A.1.4 Cohort 1 — Quiz 4: Sort & Search

Question 1 1pts

After two passes of the Exchange Sort, what should the following list be? (in an ascending order sort)

[3.9.8.6.4,1,10]

O [3.6,4,1,8,9,10]
O [3.8.6,4,1,9,10]
O [3,8,9,6,4,1,10]

O [3.1,8,6,4,9,10]

Question 2 e

After two insertion operations of the Insertion Sort, what should the following list be? (in an
ascending order sort)

[3.9.8.6.4.1,10]

O [3.8.9,6,4.1,10]
O [3.6,4,1,8,9,10]
O [3.1.8,6.4,9,10]

O [3.8.6,4.1,9,10]

126

Question 3 1pts

After two passes of the Selection Sort, what should the following list be? (in an ascending order sort)

[3,9,8,6,4,1,10]

0 [3.1.8,6,4,9,10]
O [3.8.9.6,4,1,10]
0 [3.6,4,1,8,9,10]

O [3.8.6,4,1,9,10]

127

A.2 Cohort 2 Quizzes

A.2.1 Cohort 2 — Quiz 1: Functions

Question 1 1pts

What is the expected output of this program?
function main(){
wearCoat();
goOutside();
}
function goOutside()
print("I'm outside now");
}
function wearCoat(){

print("Putting on my coat");

(O I'm outside now!
(O Putting on my coat!

(O Putting on my coat!

I'm outside now!

O I'moutside now!

Putting on my coat!

128

Question 2

1 pts

What is the expected output of this program?
function main(){
print(myFunction("hello"));
}
function myFunction(input){
var output = input + input;

return output;

O hellohello

O hello

hello
(O inputinput

(O output

129

Question 3 1pts

What would you rename this function instead of "my_func" to make it more descriptive based on what
the function does?

function my_func(x) {
X=x/2;

return x;

() add_2
(O subtract_2
(O multiple_by_2

(O divide_by_2

130

Question 4

1pts

What is the expected output of this program?

function main() {
var result = mystery(4, 2);
print(result);

}

function mystery(a, b) {
a =mystery2(a);
b = mystery2(b);
returna+""+b;

}

function mystery2(x){
X=x/2:

return x;

O 42
O 21
O 22
O 12

A.2.2 Cohort 2 — Quiz 2: Loops & If-Statements

131

Question 1

1pts

function main() {

print(counter);

Which column in Table A contains the correct output of this program?

for(var counter = 1; counter <=7 ; counter++){

Table A

counter

counter

counter

counter

counter

counter

counter

OA
oe
Oc
oD

132

Question 2 1pts

What values of a, b, and ¢, will give you an output of "C™?
function main() {
vara=?
varb=7
varc=7
ifla=b)f
ifla<clf
print("A");
Jelsef
print("B");
}
Jelse{
if(b > c)f
print("C");
Jelsef

print("D");

133

Question 3 1pts

Which condition could fill in the blank to make this program print “YAY!"?

function main{) {

var text = "This sentence.”;

if(i

print("YAY!");

Jelsef
print("Aww");
}
}
O text=="This"

O text.includes("word")
O textlength >3

O text !="This sentence”

134

Question 4 1pts

Which code snippet could replace the questions marks (72?) to make this program print "ABABABAB"?

function main() {

vartext="";

while(text.length < 7){

}
print(text):

O text=text="A";
O text=text-"AB";
O text=text+"ABA"

O text.includes("ABABABAB")

135

Question 5

1pts

Which column in Table B contains the output of the following code:

function main{}{

for(vari=0;i<10;i++){

if(i%2==0)
print(i);
1
}
}
Table B
A B C D
0
1
0 2
1 0
2 3
3 2
4 4
5 <
6 5
7 6
8 6
9 8
10 7
8
9
OA
OB
ocC

oD

136

137

A.2.3 Cohort 2 — Quiz 3: Loops & Lists

Question 1 1pts

What is the expected output of this program?

function main() {
var array =[0,1,2,3,4.5,6.7,3.9];

print(array.length);

08
o9
O 10

on

Question 2 1pts

What is the expected output of this program?

function main() {
var array = [uau' nbn' ucn, udn.. neu'. llfn' ||c='nv Ilhll];

print(array[3]);

Oc
Ood
O3

O 4

138

Question 3 1pts

Which code can be placed in the blank such that array is filled with each word separately in their own
array element?

function main() {

var text = "the quick brown fox jumps over the lazy dog";

var array =

O split(text)
O textsplit)
O textsplit("*)

O textslice("")

139

Question 4

1pts

Which of the following loop declarations is correct to loop through all of the index values for an array

and print them each on their own line?

O forfvari=0;i<length; i++){
print(array{i]);
}
O for{vari=0;i<array; i++){
print{array{i]);

O forlvari=0;i<arraylength; i++){

print(array);

O for{vari=0;i<arraylength;i=i+2){
print(array(i]);

O for{vari=0; i<arraylength; i++){
print(array{i]);

140

Question 5 SiE

What is the expected output from this code:
function main{) {
vararray =[];
for{vari=0;i< 7; i++){
array.push(i);
}
for{vari=0;i< 7; i++){
array[i] = array{i] " 3;
}

print{array[4]);

O "arrayl4]*
o4
0 12

o 15

141

Question 6

1pts

What is the value of the variable count at the end of running this code:

function main() {
vararray=[3,1,2,5,4.3];
var count =0;

for({vari=0;i < arraylength; i++){

if(i == array{i]){
count = count + 1;
}
}
}
02
03
06

[oR:]

142

A.2.4 Cohort 2 — Quiz 4: Functions, Loops, & Recursion

Question 1 1pts

What is the expected output of this program?

function main(){

print{func(machine("hella")));

function func(text){

return 007 + text;

function machine(text){

return text.substring(1);

O Ohello
O 00hell
O 00ello

O 0Oello

143

Question 2 1pts

What is the expected output of this program?

function main{){

print(recur("strawberry", 3));

function recur(text, num){
if(text.length <= num){
return text;
lelse{
var newText = text.substring(1) +"a";

return recur(newText, num+1);

O rryazaazaa
O straazaaza
O str
O 223

O erryzaazaa

144

Question 3

1pts

What is the expected output of this program?

function main{){
var tracker =0;
for({var outer =0 ; outer < 4 ; outer++){

for(varinner=0;inner < outer ; inner++ J{

tracker++;
}
}
print(tracker);
o0
O3
06

O 10

145

Question 4 1pts

Which two function calls should go in the blanks so that the program prints output of 20?

function main{){

print(__2 (2 (funcA(4))));
}
function funcA{numj){

return num®2

}
function funcB(num){

return num+2;

}
function funcC(num)f{

return num/2;

O funcAlfuncB(
O funcB(funcA(
O funcC{funcA

O funcB(funcC(

146

Appendix B Assignments

B.1 Cohort 1 Assignments

B.1.1 Cohort 1 — Assignment 1

CSCE805T Beginning Computer Science for Teachers
Summer 2019

Programming Assignment 1: Hello World
Points: 100 points. Assignment Date: June 3, 2019 Due Date: Midnight June 3, 2019

Objectives

il ol SR

To familiarize with writing and running Python programs and the Python environment
To familiarize with the use of conditionals and branching

To familiarize with data structures

To familiarize with standard input/output in Python

To be exposed to the use of built-in functions

| Part 1: csce805thomework01part01.py I

| Problem I

Write a program that will prompt the user for a choice between 1 and 5, with each choice being a
different language. When the user enters a choice, the program displays “Hello, World” in the chosen
language to the screen. After that, the program exits.

Here are some additional requirements:

The program is required to display an explanation of the choices in the beginning before
prompting the user for a choice.
The program is required to display the user’s choice — this is known as “echoing user input”.
If the user enters a choice that is invalid, the program is required to display an error message
(such as “Sorry, your input is invalid.”) and then exit the program.
The program should always display a message (“Thank you for using the Multilingual HelloWorld
program. Bye!”) before exiting.
You are required to use five languages (English, Spanish, Italian, Malay, and Dutch) and the
correct translations for “Hello, World” (Hint: Try using Google Translate).
o Make sure you include the comma between “Hello” and “World” for each of your
translations
o Make sure both “Hello” and “World” begin with capital letters
You must document your program (see https://devguide.python.org/documenting/).
o Name, Date, Affiliation, a description of the program, what inputs does it need, what
outputs does it generate
o Inline comments in the program
IMPORTANT TIP: For the webgrader to work, your prompts must be the same, word for word
and line for line, as the example input/output.
o Some of the prompts from the example below have been provided for you.

Part 1: Example Input/Output

Welcome to the Multilingual HelloWorld program!
The language choices are:

1. English

2. Spanish

3. Italian

4. Malay

9= Duteh

Please enter your choice of language:

4

You have chosen language #4: Malay.
Here is “Hello, World” in Malay: “Hai, Dunia”
Thank you for using the Multilingual HelloWorld program. Bye!

| Part 2 (BONUS}): csce805thomework01part02.py

| Problem

Modify your code from part 1 to make a program that will prompt the user for a choice between 1 and
5, with each choice being a different language. After the language is chosen, the program must display
the user’s choice of language.

After the program displays the chosen language, the program should then ask for ‘H’ or ‘G’, with ‘H’
being the translation for “Hello, World” and ‘G’ being the translation for “Goodbye, World”. Once the
salutation is selected, the program should display the translation for the salutation. After that, the
program exits.

Here are some additional requirements:
o If the user enters a choice that is invalid on either part 1 or part 2, the program is required to
display an error message (such as “Sorry, your input is invalid.”) and then exit the program.
e The program should always display a new message (“Thank you for using the Multilingual
HelloWorld/GoodbyeWorld program. Bye!”) before exiting.
® You are required to use five languages (1. English, 2. Spanish, 3. Italian, 4. Malay, and 5. Dutch)
and the correct translations for “Hello, World” and “Goodbye, World” (Hint: Try using Google
Translate).
e You must document your program (see https://devguide.python.org/documenting/).
o Name, Date, Affiliation, a description of the program, what inputs does it need, what
outputs does it generate
o Inline comments in the program
e IMPORTANT TIP: For the webgrader to work, your prompts must be the same, word for word
and line for line, as the example input/output.
o Some of the prompts from the example below have been provided for you.

147

Part 2: Example Input/Output

Welcome to the Multilingual HelloWorld/GoodbyeWorld program!
The language choices are:

1. English

2. Spanish

3. Italian

4. Malay

5. Dutch

Please enter your choice of language:
2

You have chosen language #2: Spanish

The salutation choices are:

H. Hello

G. Goodbye

Please enter your choice of salutation:

H

Here is "Hello, World" in Spanish: "Hola, Mundo"

Thank you for using the Multilingual HelloWorld/GoodbyeWorld program.

Bye!

Handin

1. The submission deadline for all handins is June 3rd, 2019, 11:59:59 pm.

2. You are required to handin all program files.

3. You are required to handin online the above using http://cse.unl.edu/handin/
4. You can check your submissions at https:/cse.unl.edu/~cse805t/grade/

Grading

e Part 1 (100 points)

o Full points will be rewarded for completing part 1 of the assignment with zero diffs on

the webgrader
® Part1has 8 test cases

= Solving 7/8 cases with zero diffs will get you 87.5% of the 100 possible points

(100 * .875 = 87.5 points)

= Solving 6/8 cases with zero diffs will get you 75.0% of the 100 possible points

(100 * .75 = 75.0 points) and so on.
e Part 2 (10 bonus points)

o Completion of part 2 will be rewarded with bonus points. The max amount of bonus

points possible is 10 points.
® Part 2 has 24 test cases.

* Solving 23/24 cases with zero diffs will get you 95.8% of the bonus points (10 *

.958 = 9.58 points).

e [f you are not pleased with the grade you receive for this assignment, we will reopen the

assignment submission after the last day of class, Friday, June 7™, for resubmissions.

e All resubmissions are due the same day as the final project, July 7", 2019, 11:59:59 pm

Think About

Now, think about what if we want to build a system that automatically translates an English word,

phrase, or sentence into any of the five chosen languages or any language? How should we break down
this problem? First, do we break the problem down into translating a word, translating a phrase, and

translating a sentence? Why? Or why not? And then what? Language by language? Could we somehow

make use of Google Translate API? (What is an API?)

148

B.1.2 Cohort 1 — Assignment 2

CSCE805T Beginning Computer Science for Teachers
Summer 2019

Programming Assignment 2: Hello Data

Points: 100 points. Assignrment Date: Juned, 2018 Due Date: Midnight June 4, 2019

Objectives

ot S LI ket U B o

To familiarize with writing and running Python programs and the Python environment
To farniliarize with the use of loops {e.g., the for and while |oops)

To farniliarize with data structures, particularly arrays/lists/2-D arrays

To familiarize with file input/output in Python

To be exposed to the use of built-in functions

To be exposed to the use of built-in modules or packages (e.g., import rath)

To familiarize with the use of online documentations on Python

| Part 1: csceB805thomeworkO2part0l.py

| Problem

Write a program that will prompt the user to enter a series of numbers between -999 and 999
{inclusive). When the user enters a number outside the specified range, the program will stop
prompting. After that, the program will display several statistics: {1) the number of numbers entered,
{2) the average value of the series of numbers, {32) the minimum value of the numbers, (4) the maximum
value of the numbers. Here are some additional requirements:

The program is required to display an explanation of the program (e.g., its expected range of
input values) in the beginning before prompting the user for a number.
The program is required to use at |east one loop structure,
Your program is not allowed to use Python's built-in functions that compute the minimum,
maximum, and average values of a series of numbers.
Ifthe user input is something other than an integer, print the error message: “Invalid Input”,
then stop prompting and print the statistics.
Ifthere are no numbers to perform statistics on, print “No statistics since no numbers entered.”
and exit the program.
You must document your program {see https://devguide.python.org/documenting/).

o Name, Date, Affiliation, a description of the program, what inputs does it need, what

outputs does it generate

o Inline comments in the program
IMPORTANT TIP: For the webgrader to work, your prompts must be the same, word for word
and line for line, as the example input/output.

o Some ofthe prompts from the example below have been provided for you.

| Part 1: Example Input/Output

Welcocae te the Leecpy Statistical Analyaia pregram!
This program generatea Eive statistics based on the series cf oumbers you enter,

149

150

Valid numbera are between -999 and 993, When yocu are dene entering your numbera,
please aimply =anter a number cutzide the above apecified range.
1. Please enter a number:

10

2, Please enter a number:

20

3. Please enter a number:

20

4, Please enter a number:

40

S. Please enter a number:

0

6, Please enter a number:

8983999

8xiting entries...

Here are the atatistica:
Number cf numbera: S
Minimum wvalus: 10
Maximum value: 50
Average value: 30.0

| Part 2: csce805thomework02part02.py (BONUS) |

| Problem |

This part is bonus and is not required. Write a program that works similarly to part 1. The program will
prompt the user to enter a series of humbers between -999 and 999 (inclusive]. Ih this part of the
assignment, you must use a 2D array. All even numbers from the series of numbers must be stored in
the 1™ dimension of the array. All odd numbers from the series of numbers must be stored in the 2™
dimension of the array. When the user enters a number outside the specified range, the program will
not add that number to the array and the program will stop prompting. After that, the program will
display several statistics for each of the two dimensions of the array. First for the even numbers {(or the
T** dimension). Then print the same statistics for the odd numbers (the 2" dimension). Here are the
statistics to print out: (1) the number of numbers entered, (2] the average value of the series of
numbers, (3) the minimum value of the numbers, and (4] the maximum value of the numbers. Here are
some additional requirements:

® The program is required to display an explanation of the program {e.g., its expected range of
input values) in the beginning before prompting the user for a number.
® The program is required to use at least one loop structure.
® Yourprogram is not allowed to use Python’s built-in functions that compute the minimum,
maximum, and average.
® Ifthe userinput is something other than an integer, print the error message: “Invalid input...”,
then stop prompting and print the statistics:
@ |fthere are no numbers to perform statistics on, print “No statistics since no numbers entered.”
and exit the program.
® Youmust document your program (see https://devguide.python.org/documenting/].
o Name, Date, Affiliation, a description of the program, what inputs does it need, what
outputs does it generate
o Inline comments in the program

® |MPORTANT TIP: For the webgrader to work, your prompts must be the same, word for word
and line for line, as the example input/output.
o Some ofthe prompts from the example below have been provided for you.

Part 2: Example Input/Output

Welcome to the Loopy Statistical Analysis program!

This program generates five statistics based on the series of numbers you
entexr.

Valid nuwmbers are between -999 and 999. When youw are done entering youxr

numnbers, please simply enter a number outside the above specified range.

Please enter a numbexr:

Please enter a numbex:
Please enter a numbexr:
Please enter a numbex:

Please enter a numbexr:

L S ST T S S PO P N T

. Please enter a number:
899859
Exiting entries.

Here are the statistics:

Number of numbers: 3
Minimum value: 2
Maximum value: &
Average value: 4.00

Number of numbers: 3
Minimum value: 1
Maximum value: §
Average value: 3.00

Handin

1. The submission deadline for all handinsis Midnight June 4, 2013. Late handins will not be
accepted or graded.

2. Youare required to handin a screen capture of your “testing session” using your program.

3. Youare required to handin a python file narmed: ¢csce805thomework02.py.

4. Youare required to handin online the above using hitp://ese.unl.edu/handin/

151

152

5. You can check your submissions at https://cse.unl.edu/~cse805t/grade/

Grading

® Part1{100 points)
o Full points will be rewarded for completing part 1 of the assignment with zero diffs on
the webgrader
+ Part 1 has 50 test cases
Solving 45/50 cases with zero diffs will get you 90.0% of the 100 possible points
{100 * .900 = 90.0 points)
Solving 40/50 cases with zero diffs will get you 80.0% of the 100 possible points
{100 * .00 = 80.0 points] and so on.
® Part 2 {10 bonus points)
o Completion of part 2 will be rewarded with bonus points. The max amount of bonus
points possible is 10 points.
Part 2 has 39 test cases.
Solving 45/50 cases with zero diffs will get you 90.0% of the 10 possible points
{10 *.900 =9.0 points)
Solving 40/50 cases with zero diffs will get you 80.0% of the 10 possible points
{10 * .00 =B.0 points) and so on.
® Ifyouare not pleased with the grade you receive for this assignment, we will reopen the
assignment submission after the last day of class, Friday, lune 7%, for resubmissions.
® All resubmissions are due the same day as the final project, July 7*, 2019, 11:59:59 pm

Think About

Now, think about what if we want to build a systern that cornputes statistics for thousands of
numbsers, or even, millions of numbers. Do we want to input the numbers one by one
rmanually? What would be some cornmon challenges or issues with that approach? Are there
other ways to input the data? By the same token, whatif we want to generate different types
of statistics, for different subsets of numbers, and thus will produce many different tables?
How should we store the tables of numbers? Do we want to copy the numbers down one by
one and re-enter thern, say, into an Excel spreadsheet? (Hint: Think about file 1/0.) {Hint: Think
about Big Data, Scalability, and Reliability, and how they relate to Informatics.)

153

B.1.3 Cohort 1 — Assignment 3

CSCE805T Beginning Computer Science for Teachers
Summer 2018

Programming Assignment 3: Hello Data Files
Points: 100 points. Assignment Date: June 5, 2019 Due Date: Midnight June 5, 2019

Objectives
1. To familiarize with writing and running Python programs and the Python environment
2. To familiarize with the use of loops {e.g., the for and while loops})
3. To familiarize with data structures, particularly arrays/lists
4. To familiarize with using functions in Python
5. To be exposed to the use of built-in functions
6. To familiarize with the use of online documentations on Python

Problem Part 1: csce805thomework03part01.py

Take the code you wrote for assignment 2 and modify it to use a function to calculate the

statistics. Just like in assignment 2, you will need to calculate several statistics; {1) the number
of numbers entered, (2) the average value of the series of numbers, {3) the minimum value of
the numbers, {4) the maximum value of the numbers. Here are some additional requirements:

« Your program is required to use a custom-built function to calculate and report the
statistics.
a The function must take the list of numbersto analyze as an input argument.
e The program is required to display an explanation of the program {e.g., its expected
range of input values) in the beginning before prompting the user for a number.
e The program is required to use at |east one loop structure.
« Your program is not allowed to use Python's built-in functions that compute the
minimum, maximum, and average values of a series of numbers.
e [f the user input is something other than an integer, print the error message: “Invalid
Input”, then stop prompting and print the statistics.
« [there are no nurmbers to perform statistics on, print “No statistics since no numbers
entered. “and exit the program.
¢ In the end, you output should |ook the same or similar to that of your assignment 2.
« You must document your program (see https//devouide.ovthon.org/documenting/).
a Name, Date, Affiliation, a description of the program, what inputs does it need,
what outputs does it generate
a Inline comments in the program

154

Example Input/Output: Part 1:

Welcome to the Loopy Statistical Analysis program!

This program generates five statistics based on the series of numbers you enter.
Valid numbers are between -995 and 533. When you are done entering your numbers, please
simply enter a number outside the above specified range.

1. Please enter a humber:10

2. Please entera humber:20

3. Please enter a number:20

4. Please enter a number:40

5. Please enter a number:50

6. Please enter a humber:335555

Exiting entries ...

Here are the statistics:
Number of humbers: 5
Minimum value: 10
Maximum value: 50
Average value: 30.00

Problem Part 2: csce805thomework03part02.py |

This part is bonus and is not required. Write a program that works similarly to part 1. The
program will prompt the user to enter a series of numbers between -999 and 999 (inclusive).
Then, in the function you will calculate the same statistics as part 1. The difference in part 2 is,
after the user enters a number outside of the range, then you will prompt the user to input
whether they would like stats for the positive numbers in the list or the negative numbers in
the list. You will add another parameter to the function to take in the new input the user gives.
The users input will determine if you calculate the statistics for the positive numbers or the
negative numbers. Here are some additional requirements:
* You must add a second parameter to the function that calculates the statistics
o The first parameter will still hold the list of numbers that the user inputted.
a The second parameter should be a string value of either ‘positive or ‘negative’.
= |f you pass ‘positive’ to the statistics function, then the program will
calculate the statistics for only the positive values.
= [fyou pass negative’ to the statistics function, then the program will
calculate the statistics for only the negative values.
= [f sornething other than ‘positive’ or ‘negative’ is passed into the
function, then the program should print out “Invalid Input” and quit
without printing any statistics

155

e The program is required to display an explanation of the program (e.g., its expected
range of input values) in the beginning before prompting the user for a number.
e The program is required to use at least one loop structure.
« Your program is not allowed to use Python's built-in functions that compute the
minimum, maximum, and average.
e If the user inputis something other than an integer, print the error message: “Invalid
input”, then stop prompting and print the statistics.
e [f there are no numbers to perform statistics on, print “No statistics since no rnumbers
entered. “and exit the program.
& You must document your program {see https://devguide.oython.org/documenting/).
o Name, Date, Affiliation, a description of the program, what inputs does it need,
what outputs does it generate
o Inline comments in the program

Example Input/Output: Part 2 (BONUS):

Welcome to the Loopy Statistical Analysis program!

This program generates five statistics based on the series of numbers you enter.
Valid numbers are between -995 and 555. When you are done entering your numbers, please
simply enter a number outside the above specified range.

1. Please enter a number:10

2. Please entera number:-10

3. Please enter a number:20

4. Please enter a number:-20

5. Please enter a humber: 5935595

Exiting entries ...

Would you like stats for positive or negative numbers?positive

Here are the statistics for the positive numbers:

Number of numbers: 2

Minimum value: 10

Maximum value: 20

Average value: 7.50

156

Handin

1. The submission deadline for all handins is Midnight June 5, 2019. Late handins will not be
accepted or graded.

2. Youare required to handin all program files.

3. Youare required to handin online the above using http://cse.unl.edu/handin/

Grading

s Part1 ({100 points}
o Full points will be rewarded for completing part 1 of the assignment for accurate
solutions
= Wewill be testing each solution by hand. We will be looking for
» Accurate calculations
s Good use of a custom function
» Correct parameters used
» Part2 {10bonus points}
o Full points will be rewarded for completing part 1 of the assignment for accurate
solutions
= Wewill be testing each solution by hand. We will be looking for
» Accurate calculations
» Good use of a custom function
» Correct parameters used
» Ifyou are not pleased with the grade you receive for this assignment, we will reopen the
assignment submission after the last day of class, Friday, June 7*, for resubmissions.
» All resubmissions are due the same day as the final project, July 7*", 2019, 11:59:59 pm

Think About

Nowy, think about what if we want to modify how the columns are arranged (e.g., adding new
attributes, removing some attributes) or how the rows are to be filtered so that only certain
subsets are being considered for analyses. Do we need then to create many versions of the csv
input file? What are some potential pitfalls with maintaining many versions of the csv input
file? Furthermore, think about the output file format. What if our users or customers want
something different, e.g., in a different format, or to derive or visualize different types of results
from your analyses? How would you then create an output file that is more universally useful ?
{(Hint: Think about databases.)

157

B.1.4 Cohort 1 — Assignment 4

CSCE805T Beginning Computer Science for Teachers
Summer 2019

Programming Assighment 4: Hello Sort

Points: 100 points. Assignment Date: June 6, 2019 Due Date: Midnight June 6, 2019

Objectives

bkt S LI et U B o

To farniliarize with writing and rurning Python programs and the Python environment
To farniliarize with the use of loops (e.g., the for and while |oops)

To farniliarize with data structures, particularly arrays/lists

To farniliarize with sorting algorithms

To be exposed to the use of built-in functions

To be exposed to the use of built-in modules or packages (e.g., import matplotlib)

To familiarize with the use of online documentations on Python

| Part 1: exchangeSortPart01.py, selectionSortPart01.py, insertionSortPart0l1.py - Problem |

Modify the provided programs to sort the lists in descending order rather than ascending order.
Here are some additional requirements:

Each function will take in an array of integers {(unsorted) and return an array of integers
{sorted in descending order)
You must print out what kind of sort you used and the sorted array.
You must document your prograrm {see https://devguide.python.org/documenting/).
® Name, Date, Affiliation, a description of the prograrm, what inputs does it need,
what outputs does it generate
e Inline comments in the program

158

Example Input/Output: Part 1: exchangeSortPart01.py, selectionSortPart01.py, insertionSortPart0l.py |

Pick One
® |nsertion Sort
csc2B0SthomeworkQdpart01
/usr/local/Cellar/python/3.7.2_1/bin/python3 /Users/patrickm
Input: [6, 4, 4, 9, 1, 4, 6, 1]

Insertion Sort Result: [1, 1, 4, 4, 4, 6, 6, 9]

=i ul

Process finished with exit code @
ARl @by SETO00 B Teminal @ Pythen Canscle

® Selection Sort
csceB05thomeworkOdpan0l

/usr/local/Cellar/python/3.7.2_1/bin/python3 /Users/|
Input: [6, 4, 4, 9, 1, 4, 6, 1]

ul

i Selection Sort Result: [1, 1, 4, 4, 4, 6, 6, 9]
i Process finished with exit code @
R @ 5Debug ESTOD0 [Terminal @ Python Comole

® Exchange Sort
Run axchangeSortPartl
» /usr/local/Cellar/python/3.7.2_1/bin/python3 /Use
Initial List: [6, 4, 4, 9, 1, 4, 6, 1]

i (I ||

Bubble Sort Results: [1, 1, 4, 4, 4, 6, 6, 9]

Process finished with exit code @

» &Rn =5 TODC B Terminad & Pythen Console

159

Handin

1. The submission deadline for all handinsis Midnight June 6, 2019. Late handins will not be
accepted or graded,

2. Youare required to handin all prograrm files.

You are required to handin online the above using http://¢se.unl.edu/handin/

4. Youcan check your subrnissions at https://cse.unl.edu/~cse805t/grade/

o

Grading

® Part1{100 points)
o Full points will be rewarded for completing part 1 of the assignment with an accurate
sorted print out and a written sorting function.

® Ifyou are not pleased with the grade you receive for this assignment, we will reopen the
assignment submission after the |ast day of class, Friday, lune 7%, for resubmissions.
® Al resubmissions are due the same day as the final project, July 7*, 2019, 11:59:59 pm

Think About

Think about why some sorting algorithms rmay be better for large data sets but worse for
srmaller datasets. Why does Python use quick sort as the default sorting algorithirm for the
language?

160

B.1.5 Cohort 1 — Teaching and Learning Assignment

CSCE805T Beginning Computer Science for Teachers
Summer 2019

Teaching and Learning Assignment: Lecture Design
Points: 100 points. Assignment Date: June 3, 2019 Due Date: Midnight June 7, 2019

Objectives

1. To farniliarize with creating |lectures to deliver Computational Thinking and Computer
Science content
2. To familiarize with developing activities for such alecture

| Description

In this assignment, you will be paired with 4-5 tearn mermbers teaching the same grade as
yourself. Together, you will design a lecture plan for a single day in your CS class. On Friday,
June 7", all groups will be paired with another group to share their lecture plan. Your lectures
rmay be activities, srmall programming projects, PowerPoint slides, etc.. It's your classroom, so
be creative!

Presentation: You will share your lecture with another group. Each group will describe their
lecture plan for about 15-20 minutes. Each one of your group members needs to take partin
the presentation. In your presentations, you will need to include:
8 The grade level your content is geared towards
® Atleast one Cornputational Thinking skill:
o Problern decornposition, Pattern recognition, Abstraction, Generalization, Algorithric
design, Evaluation
® Atleast one CS topic:
6 Variables, Arrays, Conditionals, Loops, Funictions, Algorithms, Sorting, Searching,
Recursion, Debugging, Complexity

If your |ecture includes some online resource or activity, give a demo of the activity and explain
how you will use it.

Lecture Materials: Lecture materials include anything you plan to use during the class (slides,
handouts, online resources, etc..). You need to hand in everything you plan to use in the
lecture. Along with the materials, you will need to include an itinerary detailing how the lecture
will be delivered. This should contain enough detail for someone torecreate your lecture with
this document. The itinerary will need to include:
8 The |ength of the lecture
@ Step by step detailed guide

o Include length of each activity

o Whatis done during each activity
® Links to online materials used

161

162

Handin

1. The submission deadline for handin is Midnight June 7, 2019. Late handins will not be
accepted or graded,
2. Youare required to handin all lecture files {including pdfs, slides, and handouts) and the

itinerary.
3. Youare required to handin online the above using http://cse.unl.edu/handin/
| Grading |

® Presentation (20 points)
@ Lecture Materials (80 points)

[Think About |

How does your lecture engage your students? Since you have had the chance to switch roles and be the
student rather than the teacher during this course, what tactics have you noticed that make |earning CS
more approachable? Can you implement some of these tactics to make the |ecture more appealing to
students? How can you improve this lecture going forward?

163

B.1.6 Cohort 1 — Final Project

CSCE805T Beginning Computer Science for Teachers
Summer 2018

Final Project: Assignment Design
Poirts: 100 points. Assignment Date: Jurie 7'", 2019 Due Date: Midnight July 7™, 2019

Objectives

1. To familiarize with creating assignments based on your lectures to reinforce Computer
Science concepts and Computational Thinking skills

2. To familiarize with anticipating the significance and expected difficulty of a particular
Computer Science concept or a Computational Thinking skill in understanding a problem
and developing a solution

| Description

This assignment extends the Teaching and Learning Assignment. This time, you will work alone
{not in groups) to design an assignment to follow your lesson plan. Based on the Computer
Science concepts and Computational Thinking skills delivered in your Teaching and Learning
Assignment, you will desigh a homework assignment that you can use in your classrooms. You
are required to complete the following:

Assignment Specification This document should be similar to all the ones you have received for
assignments in this course {including the one you are reading now). It should include your
assignment’s objectives and clear descriptions of each problem you would like the students to
complete. In your assignment, you are also required to provide a bonus or extra credit section.

Solution For each problem in the assignment, you should complete a correct, working solution.
If your assignment includes a programming problem, you need to write a correct solution
program. if your assignment includes some other activities, you will need to detail what success
looks like for each of the activities. This solution requirement also applies to the bonus or extra
credit section of the assignment.

Sample Input/Output You will need to detail some sample inputs and what the expected
output should be. This way, the students can check their work. Thatis, if they give the same
input, they should get the same output. If possible, complete a few sample inputsfoutputs
more is better, but you are only required to complete at |east one input/output. You will need
to also provide the actual test inputs and outputs that will allow you to test your students’
solutions and grade them accordingly.

Rubric You will need to provide a document describing how students’ solutions will be
evaluated. You need to detail which areas of the assignment will be graded and what you will
be taking points off for.

164

Reflection You are required to write a report responding to the following prompts:

1. Describe how you think this assignment will improve the student’s understanding of the
Computer Science (CS) concepts and Computational Thinking (CT) skills you have
chosen.

2. Discuss which CS concepts that you are most confident in in terms of knowledge content
and the reasons behind your response.

3. Discuss which CT skills that you are most confident in in terms of knowledge content
and the reasons behind your response.

4. Discuss which CS concepts that you are feast confident inin terms of knowledge content
and the reasons behind your response.

5. Discuss which CT skills that you are feast confident in in terms of knowledge content and
the reasons behind your response.

6. Discuss which CS concepts and/or CT skills that you feel the |east confident in teaching,
and the reasons behind your response.

Handin

1. The submission deadline for handin is Midnight July 7t", 2019. Late handins will not be
accepted or graded.

2. Youare required to handin all assighment files {Handouts, Rubric, Solution(s), Sample
Input/Output, etc.).

3. Youare required to handin online the above using http://cse.unl.edu/handin/

| Grading |

We will be looking to make sure that you have submitted the Assignment Specification,
Solution, Sample Input/Output, and the Reflection. Ifit doesn’t make sense for your assignment
to have one or more of the documents, please include a text file describing why it doesn’t need
the document. If all documents are present, we will then grade each of the document based on
quality. Your documents should be clear, thorough, and effectively cover one of the Computer
Science and Computational Thinking topics.

Think About

Think about how you would approach the assignment you created. What skills are needed for
you to complete the assignment? After completing the assignment, it might be best to go back
to your |ecture and modify it to make sure the students have the skills needed to complete the
assignment.

B.2

B.2.1

165

Cohort 2 Assignments

Cohort 2 — Assignment 1

CSCE805T — Assignment 1: Formulas

Project Summary
In this project you will write a program to evaluate some math calculations.

Background Information
Area of a rectangle = bh

Perimeter of arectangle = 2& + 2h
Area ofa circle = 71?2
Circumference of a circle = 2ar

Project Details
Your program should get a list of numbers from the user as input, each on a different line.

e« Arectangle's base |ength.

« Arectangle's height.

e« Acircle's radius.

« A number of seconds.
Once you have gotten the input, calculate the rectangle's area and perimeter, and the circle's area and
circumference. Then convert the number of seconds into the correct number of hours, minutes, and
remaining seconds. Each of your calculations should be printed with complete information about it.

Sample Input
4

7

3

8000

Sample Output (For the sample input given)

A 4 by 7 rectangle has area 28 and perimeter 22.

Acircle with radius 3 has area 28.274333882308138 and circumference 18.84955592153876.
8000 secondsis 2 hours, 13 minutes, and 20 seconds.

Project Extensions
Once you get the basics done, work on this challenge if you have time. {It is not a required component,
but is good for additional practice!)
« Add 4 more input spots to represent two coordinate points (X, ¥) Then calculate the distance
between the two points and print it out.
The distance between points (¢, ¥,) and (x5, ¥,) is 4/ (2, — x)2 + (¥5 — ¥1)%

166

B.2.2 Cohort 2 — Assignment 2

CSCE805T — Assignment 2: Functions

Project Summary
In this project you will write several functions that each achieve a specific goal.

Project Details
Your program will need to contain each of the following functions:
« time(s) - Given a single input representing a number of seconds, return the same text from your
first program indicating the number of hours, minutes, and seconds.
e switcheroo(t) - Given a single input string, return a string with the first half switched with the
second half. For example, “hellol” would return “lolhel”
e inject{a,b) - Given two input strings, return a string with the second string put in the middle of
the first. For exarnple, inject{"hellol”,"bye”) would return “helbyelol”

« fourthRoot({n) — given a single input number, return its fourth root {which is also the square root
of the square root).

Sample Input/Output

Your prograrn won't need to have any specific input given in the input box, just having the functions in
the code will be sufficient. Though, you can use the input to test your functions.

Project Extensions
Once you get the basics done, work on this challenge if you have time. (It is not a required component,
but is good for additional practice!)
e« mask(t,n)— given an input string and an input number representing a percentage (a decimal from
0 to 1) return just that percentage of the string. For example, mask{“tenletters”,0.7) would
return “tenlett”. And mask(“four”,0.75) would return “fou”. You can round up or down as you
wish if the percentage doesn't work evenly for the number of |etters.

167

B.2.3 Cohort 2 — Assignment 3

CSCE805T — Assignment 3: Conditionals

Project Summary
In this project you will write a function to determine whether or not a given year is a leap year, along
with a couple other specific tasks involving conditional checks.

Background Information
Aleap year is any year that is a multiple of 4, excluding multiples of 100 except for multiples of 400
{which ARE, in fact, leap years).

Project Details
Your program will need to contain each of the following functions:
e« Givena single input representing a year, return whether or not the year is a leap year.
e A “fortune teller” with at least 4 different outcornes frorm at least 2 different decisions. {They
don't have to be sensical...have some fun with it!) You can use numerical choices or words.
The program should determine which task to demonstrate based on the first line of the input box.

Sample Input/Output
Input Output

leap year The year 2400 s a leap year.
2400
leap year The year 2100 is not a leap year.
2100
fortune teller There are good things in your future.
1
2
fortune teller Be careful around pools of magma.
1
1
fortune teller You will find happiness in what you already have.
2
1

Project Extensions
Once you get the basics done, work on these challenges if you have time. (They are not required
components, but are good for additional practice!)

« isFactor(a,b) - Write a function with two inputs and determine if the first number is a factor of
the second number. {A numberis a factor of another number if it divides it with a remainder of
0.)

« breakUp(t,n) - Write a function with two inputs: the first a string and the second a number, and
determine if the string can be broken evenly into that number of groups. For example,
breakUp{“hello”,3") would return false because 5 letters cannot be broken up evenly into 3
groups. breakUp{“tenLetters”,2) returns true but breakUp{“tenLetters”,3) returns false.

168

B.2.4 Cohort 2 — Assignment 4

CSCEB05T — Assignment 4: Loops

Project Summary
In this project you will create functions to practice loops involving strings.

Background Information
A palindrome isa string or number that is the same backwards as it is forwards.

Project Details
Your program will need to contain each of the following functions, solving them with loops (the first one
works well with a for loop, the second works well with a while loop):

« isPalindrome(t) — Given a single input string, return true if itis a palindrome and false if it is not.

e« trimZeroes(t) — Given a single input string, return a string that has all of its beginning zeroes

removed.
o Hint; substring{1) is a quick way to remove the first character of a string

Additionally, your program should use each function based on the input provided {similar to how it did
with the leap years and fortune teller yesterday). This time, however, your input can have several
different commands with each line being both the command AND the string. You should use the
starts\With command to determine the first word and the substring cornmand to get the string you're
working on.

Sample Input

trim 0002356

trim Gag02

palindrome hello
palindrome step on no pets

Sample Output (For the sample input given)
2356

ag02

“hello” is not a palindrome

“step on no pets” is a palindrome

Project Extensions
Once you get the basics done, work on this challenge if you have time. (It is not a required component,
but is good for additional practice!)
« Create a function to determine if a number is prime or not.
a A numberis prime if it is only divisible by 1 and itself. You will need a loop to go through a
bunch of number to see if the input number is divisible by each of them.

169

B.2.5 Cohort 2 — Assignment 5

CSCE805T — Assignment 5: Secret Viessage

Project Summary
In this project you will write functions to encode and decode a secret message.

Background Information
A Caesar Cipher is an encoding in which each letter is shifted by a constant amount. For example, by
shifting each letter one to the right, “hello” becomes “ifrmmp”. Shifting by two to the right instead we

get “jgrng”.

Project Details
You will come up with an encoding algorithm {you can use a Caesar Cipher, or one of your own
choosing). You can assume the input string isin all lowercase letters. Punctuation should be ignored and
|eft where it is.
Your program will need to contain each of the following functions:

« encode(n) - Given a single input string, return an encoded string.

« decode(t) — Given a single input string, return a decoded string. (Just reverse of the encode.)
Additionally, your program should use each function based on the input provided.

Sample Input (Using a right 4 Caesar shift)
encode the quick brown fox jumps over the lazy dog
decode xli uymgo fvsar jsb nygtw sziv xli pede hsk
decode lipps!

Sample Output (For the sample input given)
®i uymgo fvsar jsb nyqgtw sziv xli pedc hsk

the quick brown fox jumps over the lazy dog
hello!

Project Extensions
Once you get the basics done, work on this challenge if you have time. (It is not a required component,
but is good for additional practice!)

« Try to preserve capitalization, so under the right 4 shift “Hello” would be “Lipps” instead.

170

B.2.6 Cohort 2 — Assignment 6

CSCE805T — Assignment 6: Register

Project Summary
In this project you will write a program to represent a store’s rmenu and ordering system.

Project Details

You will need to have at least 3 different items to be purchased at your store. Each item will have a
name and a price. By interpreting the input provided in the input box, you should add and remove items
from the “cart” and when the input shows “pay” you will print the cornplete order and total cost.

Your cart should be an array with the items init. You mightwant a function to determine the
appropriate price given the item as input.

The input you're checking for should be “add <iterm>", “remove <itern>", and “pay”.

The output should start by printing out the menu, then a blank ling, then the customer's order and total
cost. (What that looks like, exactly, is up to you!)

A selection of flow charts are included on the next page to get you thinking about the steps you need to
accomplish. Creating functions for “add”, “remove”, and “pay” might be helpful for decomposing the
problem into those smaller parts. Decomposition is your friend!

The toFixed(2) function can print a number with 2 decimals quite nicely.

Sample Input
add pineapple
add banana

add banana

add banana
remove banana

pay.

Sample Output (For the sample input given)
pineapple - $2.30

banana - $0.49

apple - $0.79

Your order is: pineapple,banana,banana
Your total is $3.28

Project Extensions
Once you get the basics done, work on these challenges if you have time. {They are not required
components, but are good for additional practice!)
« Rather than just printing out each item in the end, print each item with a count of how many of it
there are. For example, the output above would be “Your order is: pineapple —1, banana — 2"
e Let the input add a specific number of an item instead of just one ata time. For example, a
possible input could be “add 3 banana”.

The charts below might help you to organize your thoughts for this project

CSCE805T — Assignment 6: Register

processinput(line)

remove(item)

(loop to get
all input lines):

processinput

split by spaces

check if the item is
aven on the list

Y

check what the first
word is

find where in the list
the item is

Y

do the appropriate
action

remove it from the list

|

update the order total

171

172

B.2.7 Cohort 2 — Assignment 7

CSCEB05T — Assignment 7: Recursion

Project Summary

In this project you will interpret some recursive algorithms to describe what they do. Problem 3 {and the
extension) requires a coded function, but it will not be that lengthy. You can putall your responses
directly in the submission box for the assignment on canvas. (Just copy and paste the code for the

function(s).)

1. Identify what this recursive function calculates for a and b. Hint: start with some small values for a and
b like 2 and 6. This is equivalent to a common simple mathematical formula.

function recursiveFunction(a, b){
if(a == b){
return a,

Yelse if(a == b-1){

return a+0.5;
}else if(b < a){
return recursiveFunction(hb, a);
e{

return recursivefFunction(ao+1,b-1);

2. Describe the pattern of numbers created by this recursive function when you use successive input
values of nstarting at 1. (Start by plugging in 1. Then 2. Then 3. Etc.)

function recursionTime(n){
if(n = 1){

return

=

telse{

return recursionTime(n-1)

CSCEB05T — Assignment 7: Recursion

3. The function shown below produces the same result as the code we made last week to add dashes (-}
to the end of a string until itis 10 characters long. Write a similar recursive function that mimics the
“trirn” function from last week that gets rid of the |eading zeroes at the beginning of a string.

function recursiveParty(text){
1f(.length < 10){
‘eturn recursiveParty(H) + "=-";

recurn

Project Extension
{As per usual, this portion is not required but it can be a good challenge!)

Create another recursive function to mimic the palindrome function which takes in an input and checks
if it's a palindrome or not.

173

174

B.2.8 Cohort 2 — Assignment 8

CSCE805T — Assignment 8: Sorting

Project Summary
In this project you will write a program that will sort a list of words.

Project Details

Your program will read all of the words from the input, store them in an array, sort them by length {with
alphabetical order as the “tiebreaker”), and print out the sorted list {each word on a new line). For
example, all of the 3-letter words would come before all the 4-letter words, etc. And all of the 3-letter
words should be sorted alphabetically with each other, etc. You can either come up with a creative
approach, or utilize the stability of some of the sorting algorithms {meaning once you sort it
alphabetically, if you then sort by length they will maintain their alphabetical order within each length).
You can assume that each word is all lowercase, and you may use whichever algorithms you would like.

Sample Input
snorkel

apple

pie

peach

ape

chocolate

Sample Output (For the sample input given)
ape

pie

apple

peach

snorkel

chocolate

Helpful Hints
The functions you should create/use are:
« Sort alphabetically (remember arrays already have an algorithm for this!)
« Sort by length —remember to make a copy of the array with slice{0) first!
e Apply your alphabetical sortfirst, THEN your length sort.
« Think about breaking your program up step-by-step rather than thinking about the programas a
whole all at once!
« Draw a flowchart or write out steps.

Project Extensions
Once you get the basics done, work on these challenges if you have time. {They are not required
components, but are good for additional practice!)
« Create a new sorting function that sorts the words based on their fast letters instead. (So if there
is a “tie” in the last |etter, their second-to-last letters would be compared, etc.)

175

B.2.9 Cohort 2 — Assignment 9

CSCE805T — Assignment 9: Text Analysis

Project Summary
In this project you will write a program that will analyze a block of text for various characteristics.

Project Details
Your program will read all of the text from the input and determine each of these characteristics. Create
a different function (hints of how to define them shown) for each characteristic.

& The number of words. {Each word being space-separated.)

function countWords(te

a
e« The number of words that contain a particular |etter. (That |etter should be one input to the
function.)

function countWordsWith(text,letter){
a

e Theletter frequency of each letter. The output of this function should be an array with the
values.

n lett

ar count

letterFrequency(text){

output 1;

' alphabet = "abcdefghi jklmnopgqrstuvwxyz";

This program will not make you choose between one function or another, but rather apply all three
functions to the same text and print output showing the results. (Pick any|etter you want in your code
for the countWordsWith{} function.)

Sample Input
This is a sentence.
And thisis another one!

Sample Output (For the sample input given)
There are 9 words in the text.

There are 5 words with s.

a3

b: 0

CSCE805T — Assignment 9: Text Analysis

T AT T Tm chp oo
CoPPr o @up

v IToT O3
PUR oo NnU G

Mg 2S£
OO 500

Project Extensions
Once you get the basics done, work on this challenge if you have time. (It is not a required component,
but is good for additional practice!)
e Tryto add another function to count the number of sentences. This is more challenging since
sentences can end in different ways!

176

B.2.10 Cohort 2 — Final Assignment

CSCE80S5T — Assignment 10: Final Project

Project Summary

For this project you will workwith a group to plan out and code a Hangman game. To get you organized
here are several specific steps to complete. Each step will need to be submitted for your project. You can
submit just one assignment for your entire group {make sure each group member’s narmes are on it
though!)

1. Play a game of Hangman with your group and as you go through the steps, try to determine what
coding concepts you can identify within the game. Write down your thoughts to be submitted
with the assignment.

a. Variables

b. Functions

c. Conditionals
d. Loops

e. Lists

2. Make a flow chart of the gameplay logic. You do not have to have all the right shapes, but it
might help you if you do try to use the correct ones. The more detailed you get with your
diagram, the more helpful itwill be for your coding. The functions below might be helpful to
think about. {Keep the functions in part 3 below in mind for your charts!)

3. Write your program!

a. Startwith this Fiddle — https://jsfiddle.net/aholdorf/1xbyvlaaz/latest
b. You will want to create several functions to address the individual components of the
game.

i. Pick word — Create an array of possible words to pick from and then pick one of
them randomly. (If you generate a random integer between 0 and the list length,
you can use it to get a value from your array.)

i. Guess letter {already defined for you in the base) — The letter parameter will have
the typed letter in it, and this function will run automatically when the Guess
button is clicked. This function should:

1. Determine if the guessed |etter is correct or not
2. Then use the appropriate “wrong” or “correct” function you create. (See jii
and iv below.)

iii. Mark wrong guess — Use the already-created array for wrong guesses and add any
wrong letters to the array (making sure that you only count them if they aren't
already in the array). Additionally this should increase the count variable for
wrong guesses.

iv. Mark correct guess — Update your word to keep track of which letters have been
guessed.

v. Format display word — Determine how to display the appropriate blanks for your
word {a common algorithm is to have your word variable store hidden letters as
uppercase and visible |letters as |lowercase, or vice-versa, then loop through it to
add either blanks or |etters to the display word).

vi. Check win— Determine if the game is over from awin! {How do you know you
have won Hangman?)

vii. Check loss — Determine if the game is over from a loss. | have it set up so that the
7'M wrong guess shows the game is over in the image. {What else should happen to
the display word when the game is over?)

177

178

CSCE805T — Assignment 10: Final Project

Reminders of where to find information for the things we've covered:

Monday June 8 — Variables
Tuesday June 9 — Functions
Wednesday June 10 — Conditionals
Thursday June 11 — Loops

Friday June 12 — Flow charts

Monday June 15 — Arrays

{The rest—recursion and sorting—aren't necessary for this project.)

179

Appendix C Computational Creativity Exercises (CCEs)

C.1 CCE 1 -Everday Object

CSCE 805T: Introduction to Computer Science for Teachers

CSCE 805T Exercise 1: EveryDAY OBIECT

| OBIECTIVES

The objectives of this exercise:

e Cormnputational:

o Decomposition: Breaking down a comprehensive description of an object into detailed
descriptions of (1) its function(s), (2) the need(s) it fulfills and (3) its physical attributes.

o Abstraction: Describing a generic example of an everyday object by focusing oniits
essential or typical functions and physical attributes without regard to trivial variations
(such as color other variations).

o Evaluation: Logically, methodically and completely describing an everyday object in
sufficient detail and in clear; non-technical language such even ifthe name of the object
is omitted that any reader could recognize the object and understand how it works.

o Learning about the description and design process for modular programming by
describing an everyday object in detail including why the object is needed and how the
object functions

o Learning about abstraction and function characterization by identifying properties of an
everyday object
Learning about specifying input, output, and function of a module or object clearly

o Learning about hiding details of the inner workings of an object without sacrificing the
functionality of the object

e Creative:

o Surrounding: Looking at an everyday object in new ways, using all of your senses to
understand how it’s made and how it functions.

o Capturing: Using written language to describe all the different details and characteristics
of this everyday object so you can work with it in new ways.

o Challenging: Describing the operations of an everyday object with words and also as a
computer program.

o Broadening: Imagining that this everyday object doesn’t exist and acting like its inventor

and trying to fulfill a need by creating something new and useful.

® Collaborative:

[=]

=]

Being open to all points of view and resolving group conflicts in a constructive way.
Giving and receiving thoughtful and constructive feedback in order to develop your
group project.

Meeting group deadlines, including completing your individual work in a timely manner.
Contributing substantially to the group process, using your skills, knowledge and
experience.

Working together as a team to achieve a common goal; being able to both compete
against and cooperate with other teams.

180

ProsLEm DescripTION

You will be using language to try to clearly and thoroughly describe the functions of an ordinary
object that you might use every day. You will be acting like the inventor of that object,
imagining that it does not yet exist and trying to describe what need would be fulfilled by your
{rew) object and how (specifically) it will function.

Each group will have a Group on Canvas. Have one member of your tearn create afile and add it
is the “Files” tab on your group page. The file should be named “Everyday Object by CSCE 805T
Group <Narme>" where <Narne> js your group name (e.g., Everyday Object by CSCE 805T Group
Awesorne).

Any member may create the group file. Note that there should be only one file created per
group. Before you create a new file, make sure that one doesn’t alveady exist.

Your group will choose a comrmon, furctional, everyday object from the list in Appendix A. Your
challenge is to imagine that this object does ot exist and to describe in written language (1)
the rmechanical function of your object, {2} what need is fulfilled by this object, and (3) the
physical attributes of your object.

You rmust describe the object’s function, the need it will fulfill and its physical attributes in clear,
non-technical language that any user could understand. Your description must be specific
enough so that sorneone who had never seen the object could recognize it and understand how
it works and understand what benefits it provides.

This description process is very important for developing algorithms in computer science.
An algorithm consists of the series of steps necessary to solve a given problem. By using
algorithms, we can solve problems without having to constantly “reinvent the wheel” and
spend the time, money, etc. to figure out each step ourselves. However, if any of these
steps are unclear, we can have difficulty following the algorithm, which can lead to serious
repercussions. For example, if the formulation algorithm used to mix the concrete for a
road or bridge is unclear, workers may make a mistake during pouring leading to reduced
service life. Or, if the business plan algorithm for a new company is confusing, venture
capitalists may be reluctant to invest leading to failure of the business. To avoid these
repercussions, the developer should make every effort to make the algorithm’s description
as clear as possible for all steps. In other words, characterization of processes is key; it
allows us to abstract a process and then convert it into a formal problem or solution.

For exarnple, if your object isa “colander” you might begin to describe it as “o circulor ot ject,
opproximately 127 in diometer ond 97 in height, mode cf metal or heat-resistant plastic, which
is used in cooking to droin posto cfter cooking or to hofd food for woshing or steaming. Its holes
ore forge enough for woter ond other liquids to droin but smolfl enough so that food will not feok
through. A buse or foot enobles it to sit on o counter or in o sink ond hondfes olfow easy carrying
ond g means to suspend it over o cooking pot for steoming ...”

1. ParT ONE
1.1. Whrimen DescripTioN
Generate your written description of your object. Your description must include the following:

1. The rnechanical function(s)/use(s) of the object (E.g., “This object, which I call a
“hammer” is used to drive nails into wood or other materials. . .)
2. What need(s) the object fulfills (E.g., Instead of using a brick to drive nails, the hammer .

L)
3. The physical attributes of the object. These include:

@ components or parts (E.g., “The harnmer has a handle and a head. The head may have
a curved claw like end so that nails can be removed . .. ")

o shape or materials (E.g., “The headis rmetal. The handle may be wood or metal and
may have rubber padding . ..")

@ peneral dimensions (E.g., “The hamrmer mayrange in length from. .."”)

& connections between parts (E.g., Positions of parts such as inside, outside, top,
bottorn or relationships between parts, such as fixed, fitted, detaches, swivels, ete.)

Your description shoufd start with the nome cf the ofject and must have a minimum of 150
words. You must have at |east one function, atleast one reed, and a rminimum of 6 physical
attributes for your object to receive full credit. Keep in mind that physical attributes may
involve all of your senses. Rernernber, to receive any credit you must have contributed to the
description of the object by writing or editing the description in the body of on the docurment.

This written description is very important for writing functions in computer science.
Functions are blocks of code written to perform a discrete task. With functions we do not
need to repeat the same blocks of code multiple times in the same program. This makes the
source code more organized and also makes future changes to the code easier (and less
error prone) since we only have to change a function once rather than updating each block
separately. When you first start programming, you can get away with writing functions in an
ad hoc manner while coding. However, for larger programs, and when working with a group,
a written description is critical to making sure all the functions are written correctly. For
example, imagine writing all the functions necessary for the F-22 Raptor jet fighter which
consists of about 1.7 million lines without starting from a detailed description.

181

2. Part Two

2.1. Anatysis anp RerLecTion

Post your Analysis and Reflection responses in the “Discussion” tab of your Canvas page, NOT
in the file that has the written description.

You are expected to discuss these analysis and reflection questions among your group. One
rmermber rmust starta new topic for EACH Analysis or Reflection by clicking on the “+ Discussion”
button In the Topic Title area, type “Analysis” or “Reflection,” in the Comment area, paste in
the Analysis or Reflection questions, and under “Option” make sure “Allow threaded replies” is
checked. Using the Analysis or Reflection questions as prompts, each mermber will post his or
her responses as a reply to the original comment. This process will keep the group's Analysis

and Reflection in separate threads and make it easier to follow the developrment of your

answers.

You will be graded individually based upon your contributions to the group Analysis or

Reflection. In order to receive individual credit for Part 2, each group mernber must contribute

to the answers to these questions. Group members who do not contribute to the Analysis or

Reflection Discussion will not receive credit.

2.2. AwnaLysis

Respond to these questions: (1) Considering your object asa computer program, draw a

diagrarn that shows all its functions as boxes {name them), and for each function, its inputs and

outputs. Are there shared inputs and outputs arong the functions? {2) Looking at the list of

physical attributes, organize these such that each is declared as a variable with its proper type.

Can some of these attributes/characteristics be
arranged into a hierarchy of related
attributes/characteristics?

2.3. ReFLecTION

Respond to these questions: (1) Considering
your response to Analysis 1, are there
functions that can be comnbined so that the
object can be represented with a rmore concise
program? Are there new functions that should
be introduced to better describe your ohject
such that the functions are more modular? (2)
Have you heard of abstraction? How does
abstraction in computer scierce relate to the
process of identifying the furictions and

This diagraming process is important for
problem analysis in computer science
particularly and in all problem solving in
general. Just as we have organized similar
blocks of code using functions, we can
organize functions with similar inputs and
outputs together. This process provides a
“big picture” view of the program which is
vitally important for initial development of
the code and future changes. For example,
software for large insurance companies
may contain many similar functions used
for different insurance plans all of which
need to be updated after a law is changed.

182

183

characteristics as you have done in this exercise?

This abstraction process is used in many programming languages to allow similar functions
to be written more concisely, and to be more easily understood in a conceptual way. The
basic idea is to write the source code completely for only one function in such a group. The
rest of the functions use this function as a baseline adding only the source code necessary for
their specific tasks. In this way, source code common to multiple functions needs to be
written only once. Again, the main advantage is in terms of organization—including defining
the relationships between functions—and making updates to the functions. For example, in a
simulation game, you could have hundreds of functions for customizing character
appearance. By using abstraction, you can avoid having to update all hundreds of functions
when you change the common source code on character appearance.

DenpLines AND HanD-IN

Part 1 Deadline — [6/4/13, 3:00 p.m.]: You should have completed the description of the object
by the Part 1 deadline above. This description should be posted to the “Files” tab of your
group's Canvas page.

Part 2 Deadline — [6/4/19, 3:00 p.m.]: Your analysis and reflection responses are due by the
Part 2 deadline above. Your individual Analysis and Reflection comments must be posted in the
“Discussion” tab of your group's Canvas page.

GRADING

Part 1. Object description posted in the body of the group Canvas page. Each group member
must contribute to the description by writing or editing to receive credit. The description must
include at |east one function, one need and six physical attributes for full credit.

Part 2. Analysis and Reflection: graded individually. Each mernber must post in the Discussion
with a minirmurm of 3-5 coherent, relevant sentences for full credit.

Late work will not be graded.

Arpenpix A. List oF OBiecTs

List of objects:

zipper

rmechanical pencil
binder clip

ziploe bag
$Cissors

tape measure
stapler

rail clippers
urnbrella
flashlight

can opener
clothespin

sticky notes (Post-Its)
toilet paper holder
revolving door
computer mouse
pliers

ballpoint pen
rmousetrap
screwdriver
pocket calculator
sundial

belt

solid air freshener

ArpenDix B. ExanpLE oF PATENT D ESCRIPTION FOR ScoTcH TAPE
The US Patent Database, uspto.gov, has examples of how cornmon objects were described for
patent purposes.

You can view the original patent application for masking tape and its extension, Scotch tape
{Patent 1,760,820; May 27, 1930} at
http: //patimgl.uspto.gov/.piw?Docid=17608208idkey=NONE

Your described object should be able to meet the requirements of a “utility patent.” That is it is
rew, useful, functions as described, is non-obvious, and is not simply a cornbination of other
existing inventions or a reraking of an existing object.

END OF EXERCISE

184

C2 CCE2-

185

Path Finding

CSCE 805T: Introduction to Computer Science for Teachers

CSCE 805T Exercise 3: PATHFINDING |

|DBIECTIVE5

The objectives of this exercise:

e Computational:

o

Algorithmic thinking: (1) As a designer, developing a set of step by step instructions
to generate a visual pattern on a base grid from straightline segments, and (2) As a
responder to another group's instructions, carry out their instructions methodically
Abstraction: Using relative rather than absolute coordinates to generate the pattern
instructions

Decomposition: Breaking down a 9x9 grid into simpler 3x3 components

Pattern recognition: Pattern Recognition: As a designer, identifying similar {perhaps
repeated) steps that create sirnilar visual patterns on the grid and then using loops
to sirmplify those steps, and {2) As a responder to another group's instructions,
identifying similar {perhaps repeated) steps that create similar visual patterns on the
grid, and using shortcuts to carry out those steps faster

Evaluation: Testing your instructions to make sure that another user can accurately
recreate your pattern on a new base grid

Learning about the benefits of looping by using |looping to simplify the instructions
and allow patterns to be repeated

Learning how to design rodular functions by modifying the instructions to use
refotive coordinates

Further developing testing skills by using the modular function to generate a more
complex pattern

e Creative:

=3

Surrounding: using your senses of touch and sight to follow a set of instructions and
perceive that they produce the intended geometric pattern

Capturing: creating new outputs and using rew ways to represent and save data by
writing a description of a path which will generate a drawing of a geometric pattern
Challenging: looking at written descriptions in new ways as you both generate and
follow thern to recreate a drawing of a geometric design

Broadening: acquiring new information and skills by understanding how simple rules
can generate complex patterns

® Collaborative:

o

=]

Beirg open to all points of view and resolving conflicts ina constructive way.
Giving and receiving thoughtful and constructive feedback in order to develop your
group project.

186

o Meeting group deadlines, including completing your individual workin a timely
manner.

o Contributing substantially to the group process, using your skills, knowledge and
experiance.

o Working together asa tearn to achieve a cornmon goal; being able to both compete
against and cooperate with other tearns.

ProsLEM DEescripTION

Usirg a grid, you will be designing a geornetric visual pattern. You will then create a set of
written instructions {an algorithmy) for another group to follow which will accurately generate
your geometric pattern on another grid.

Think of your pattern as a module that can be repeated, reflected and rotated to generate
complex patterns. See Appendix A for visual exarnples of complex traditional quilt patterns
using a simple module.

Any member may create the group file. Note that there should be only one file created per
group. Before you create a new file, make sure that one doesn’t alveady exist.

1. PaRT ONE

Your group will generate a grid thatis 9x 9 with at |east % inch squares. You can generate this
grid at http:ffincompetech.com/graphpaper/lite/ and download a PDF for printing if you do not
have % inch graph paper. Label your grid axes such that the origin (0,0) is in the upper left
corner.

Design your base pattern by drawing line segrments on the grid. To sirplify the set of
instructions, please onfy use straight line segrnents {no curves) and restrict these line segrnents
to horizontal, vertical or diagonal (45° angle) lines.

Build a complex 9 x 9 pattern using three operations: (1) shift, {2) reflect, and (3) rotate. The
shift operation allows a base pattern to be replicated at a different location. The reffect
operation allows a base pattern to be reflected horizontally or vertically. The rotote operation
allows a base pattern to be rotated 90 degrees clockwise or counterclockwise. Figure 1 shows
exarnples of these operations performed on a base pattern.

0 1 2 3 a 5 6 7
Base Pattern Reflected
< O

Shiﬂe? Down Shiad Down

and Rotated and Reflected

Fgure 1: Examples of Base Pattern along with Reflect, Rotate and Shift Down.
Note that depending on your pattern, rotating or reflecting may produce the sarne visual result.

You are also allowed to use a loop structure to repeat to generate rmultiple shifts, reflections, or
rotations. For example,

Loop 3 times
Rotate-counter-clockwise()
End Loop

In the above example, a base pattern will be rotated 3 times counter-clockwise.

The use of looping to allow for repetition in functions is extremely important in computer
science. Loop structures allow similar operations (or instructions) to be repeated inside a
function using a compact representation (in the source code). Obviously, this is very
convenient for programmers who do not want to cut and paste the same source code
multiple times. This compact representation also reduces the size of the final program,
which can be useful when hardware resources are limited, for example, on an interplanetary
probe or nano machine. However, the real benefits of using loop structures come into play
when these similar operations need to be modified. Suppose the application you are
developing is a Facebook game with 999 different ways to configure character appearance.
The testers working for your company find a bug in the rendering engine for character
appearance. With a looping structure, you may only need to change the rendering engine in
a single place, potentially saving you 998 extra changes. Of course, designing the operations
to be similar enough to take advantage of looping structures, while still satisfying the design
features is not always easy. Creative thinking skills during the design process can help the
programmer leverage looping structures.

187

IMPORTANT: Note that i order to do shifting, reflection, or rotation operations, the base
pattern’s instructions cannot use absolute references for the coordinates. Instead, relative
coordinates are needed.

To illustrate the need for relative coordinates, suppose we want to move three segrments
horizontally. The instruction to move from 0,0 to 3,0 {with the first coordinate as horizontal and
the second as vertical) works fine for base pattern, but will not work after we shift and start
drawing at 4,0 because it uses absolute references {0,0 and 3,0). Instead, we need to modify
the instruction to go frorn the current coordinates x,y to x+3,y. This instruction uses relative
coordinates {x,y to x+3,y). Using these relative coordinates will give the desired end coordinates
for the base pattern when x=0, y=0 and also for the shifted pattern when x=4, y=0. Now,
suppose that in addition to shifting, we want to rotate the base pattern 30 degrees. After the
rotation, we need to move vertically rather than horizontally. Again, modifying the instruction
requires only a srall change when using relative coordinates: x,y to x,y+3.

Thus, before you start performing the above operations on the base pattern, please revise the
instruction set for the base pattern to use only relative coordinates. (RHint: Think of using
variables!)

IMPORTANT: The number of line segmentsin your complex pattern must be at least 30% of
all possible linesina 3 x 3 grid. Note that a 9 x 9 grid can have at most 90 horizontal
segrnents, 90 vertical segments, and 162 diagonal segments for a total of 342 line segrments.
After rounding up, this means that your complex pattern must have at least 103 segrments.

The use of relative coordinates, and, in extension, variables, is important for practicing
computer science. Functions using relative coordinates provide several benefits compared to
using those absolute coordinates. First, a function using relative coordinates is more flexible
than a function using absolute coordinates. The following examples show how relative
coordinate flexibility is useful for both the user and the machine: (1) the user can run a function
when he/she is at a similar, but not exactly the same, starting point (e.g., at 0,1 rather than 0,0)
and (2) the machine can assign the function to available addresses in the memory rather than
waiting until absolute addresses are available, Second, a function using relative coordinates is
much easier to modify than one using absolute coordinates. In functions using absolute
coordinates, since the exact coordinates are passed from one line to the next, a change to the
coordinates on one line must be propagated throughout the rest of the function, This can be
extremely time-consuming and error-prone on functions with hundreds (or thousands) of lines,
On the other hand, such a change to functions using relative coordinates generally only affects
a single line—making them easier to modify. The benefits of using relative rather than absolute
coordinates also extend to using variables over hard-coded values. In general, functions using
variables are more flexible and easier to modify than hard-coded values. However, these
functions can also be more difficult to design since they require a programmer who can think
creatively about how to write each line using variables rather than hard-coded values.

188

189

NOTE: Tearns submitting patterns with less than 103 segments will only be rewarded partial
credit.

NOTE: Tearns without rotating, reflecting AND shifting elernents will only be rewarded partial
credit.

IMPORTANT: Your written instructions for generating the complex 9 x 3 pattern rmust be
sufficiently clear to enable another group to accurately draw your pattern on a sirmnilar grid. You
will only be rewarded partial credit if the grader or another group cannot follow your
instructions.

Please post your set of instructions on the rmain Canvas page. Label your instructions “3 x 9 Grid
Instructions <Group narne>.” Again, do NOT upload your drawn pattern to your Canvas page.

2. Part Two

2.1. GeneraTe CompLEx PATTERNS FROM INSTRUCTIONS BY OTHER GROUPS

Each group should navigate to a different group's Canvas page and “claim” their pattern
instructions by posting in the “Discussion” area of their Canvas page. (Each group's pattern
instructions may have only ONE group atternpting to follow it.) Each group will then try to
follow the written instructions of the other group by drawing on a blank grid labeled following
the sarne {0,0) numbering. When you think you have followed the other group's instructions
correctly, post an image of the other group's base pattern (a jpg of your grid drawing) on that
group's page. If you think that the other group's instructions are invalid and you cannot
cornplete the pattern, post your reasoning on that group's page along with an image of your
incomplete pattern.

NOTE: Groups will lose credit in part two for not correctly following the base pattern
instructions of another group or identifying why another group’s instructions are incomplete
or invalid.

2.2. AnaLvsis AND ReFLECTION

Post your Analysis and Reflection responses in the “Discussion” area of your Canvas page.

You are expected to discuss these analysis and reflection questions among your group. One
rmember must starta new topic for EACH Analysis or Reflection by selecting “New Cormrnent.”
In the Topic area, type “Analysis” or “Reflection” and in the Comment area, paste in the
Analysis or Reflection questions. Using the Analysis or Reflection questions as prorpts, each
rmernber will post his or her resporises as a reply to the original comment. This process will keep
the group's Analysis and Reflection in separate threads and make it easier to follow the
development of your answers.

190

You will be graded individually based upon your contributions to the group Analysis or
Reflection. In order toreceive individual credit for part 2, each group mernber rmust contribute
to the answers to these questions. Group members who do not contribute to the Analysis or
Reflection Discussion will not receive credit.

Analysis. Respond to these questions: (1) Which operations created more interesting patterns
or complex patterns that are more different from the base patterns? Explain. (2) Compare the
numbser of lines of your instruction set for the complex pattern and the number of lines of your
instruction set for the base pattern. Is it possible to reduce the number of lines in either set by
using the three operations? If yes, please describe and show. If no, please explain.

Reflection. Respond to these questions: (1) Reflect on the impact of having a loop structure in
your instruction set. What are the benefits or advantages for you as a designer of an
instruction set, as well as for you as a “drawer” following an instruction set. (2) Reflect on the
impact of having relative references in your instruction set on replicating or duplicating
processes or solutions on different iterns. lllustrate your reflection using a recipe designed for 4
people being adapted for 8 people, for exarnple.

DeapLINEs AND HanD-IN

Part 1 Deadline — [6/6/13, 3:00 p.m.]: You should have finished modifying your base pattern to
use relative coordinates. You should also have posted the written instructions for your cormplex
pattern using shift, reflect, and rotate on your Canvas page.

Part 2 Deadline — [6/6/13, 3:00 p.m.]: You should have attempted to follow the instructions of
another group and posted your drawn solution to the other group's Canvas page. Your
individual Analysis and Reflection comments must be posted in the Discussion area of your
group’s page.

GRADING

Part 1. Group credit for generating cornplex pattern instructions. Your instructions must meet
the stated requirerments and credit is deducted for if the patterns do not use relative
coordinates, do not contain rotating, reflecting and shifting elerents or if your instructions are
incornplete or invalid.

Part 2. Pattern Generation from another group's instructions: Group credit for generating and
posting another group's pattern from their instructions OR for identifying the flaws in the other
group's instructions and posting the resulting incomplete pattern. Analysis and Reflection:
graded individually. Each mermnber must post in the Discussion with a minimum of 3-5 coherent,
relevant sentences for full credit.

Late work will not be graded.

END OF EXERCISE

191

192

C.3 CCE 1 —Modular Storytelling

CSCE 805T: Introduction to Computer Science for Teachers

CSCE 805T Exercise 2: MoDULAR STORYTELLING

‘ OBIECTIVES

The objectives of this exercise:

e Cornputational:

=]

Decomposition: Dividing a story into separate chapters and independently developing
each chapter, using fixed “story points” as chapter separators {the |ast line of each
chapter becomes the first line of the next).

Abstraction: Using the story points to get an overall idea of what the story might be and
writing an individual chapter with enough detail to advance the story without getting
too distracted by the details.

Evaluation: Identifying logical inconsistencies in the individually written chapters and
determining the most efficient way to revise the chapters in order to form a consistent
and coherent story.

Pattern Recognition: Reviewing the individual chapters, identifying consistent story
lines to keep, and identifying one or two inconsistent parts that need revisions in order
to minimize the amount of changes.

Learning about how |large programs are developed using modular programming by
separately writing chapters for a story connected by fixed Story Points at the beginning
and end of each chapter.,

Learning about the need for the debugging and testing process by revising the chapters
to make the flow of the story more logical and cohesive.

Learning about the need fora methodical and |ogical debugging process to make sure
that a program’s observed output matches the expected output.

Learning about identifying logical inconsistencies in a product or solution and using
methodical approaches to resolve them.

e Creative:

=]

Surrounding: using your senses of sight, sound, smell, touch and your imagination to
connect two seemingly unrelated things {two Story Points) in a logical and coherent
way.

Capturing: learning to take novel and spontaneous outputs (your two Story Points) and
use language to fill in the blanks by writing your way from one point to ancther.
Challenging: applying computational debugging to a story by taking independently
generated chapters and editing them so they form a consistent narrative.

Broadening: increasing your ability to problem-solve and to collaborate by taking the
inputs of others (your group’s individual chapters) and making them into an effective
and functional whole—a logical and cohesive story.

@ Collaborative:

=3

Being open to all points of view and resolving group conflicts in a constructive way.

193

o Giving and receiving thoughtful and constructive feedback in order to develop your
group project.

o Meeting group deadlines, including completing your individual work in a timely manner.

o Contributing substantially to the group process, using your skills, knowledge and
experience.

o Working together as a team to achieve a common goal; being able to both compete
against and cooperate with other teams.

ProsLem DEescrIPTION

Your group will be telling a story with several short chapters. However, you won't write the
story as alinear line from A to B. Instead, you'll be working in a non-linear way, developing
chapters independently and then working together to shape them into a coherent story.

To begin, your group will choose a series of Story Points from the five series in Appendix A . For
each series, these Story Points will be the pivotal moments in the story. They will act as inputs
and outputs to your individual chapters. Each chapter will begin and end with one of these
Story Points. For exarnple, Chapter 1 will begin with Story Point 1 and end with Story Point 2.
Chapter 2 will begin with Story Point 2 (repeating it) and end with Story Point 3 and $o on.

Each person in your group will write a chapter of the story that connects two Story Points. You
will each write your chapter independently of each other. All you know is how the story {and
each chapter) starts and how it ends: the input and the output.

Each group will have a Group on Carnvas. Have one member of your teamn create a file and add it
is the “Files” tab on your group page. The file should be named “Storytelling by CSCE 805T
Group <Name>" where <Name> is your group narne (e.g., Storytelling by CSCE 805T Group
Awesormne).

Any member may create the group file. Note that there should be only one file created per
group. Before you create a new file, make sure that one doesn’t already exist.

Q What does this exercise have to do with creativity? When you tell a story you getto
imagine. You get to ask yourself "what if," which is one of your most powerful thinking tools. And
you're only limited by the internal logic of your story, and not by external conditions or lack of
resources. Constraints force creativity. Telling a story where you are given a beginning and
ending point and are forced to work within those constraints has additional benefits as well.
First, it prepares you for real-life collaboration, where you need to enter into someone else's
vision or to incorporate their way of thinking or doing things inte your own vision. Second, it
connects you with the rich artistic tradition of "the Exquisite Corpse" where unplanned elements
and chance connections can produce rich and unexpected results. Writing this story will give
you experience with "giving chance a chance" and seeing how accidents and even mistakes can

2

suggest fruitful new directions. It will also develop your ability to take ideas (or components) that
you have generated in a non-linear way and put them together in a linearflogical way in order to
develop a finished product.

1. ParT ONE

1.1. PkinG A STORY SERIES AND ASSIGNING THE CHAPTERS

Your group should first pick a story series from one of the five possibilities in Appendix A. (It's
OK if rnore than one group picks the sarne series of Story Points.) Then create a new Discussion
in the “Discussion” tab of your groups Canvas page and post the series of Story Points you've
chosen and who is responsible for writing each chapter. Your group should list each chapter
and the author:

Chapter 1: <Author>
Chapter 2: <Author>

This list is the scaffolding for your individual chapters. Remember, a chapter is Story Point 1 to
2, Story Point 2 to 3, and so forth. You MUST start Chapter 1 with Story Point 1. You MUST end
Chapter 1 with Story Point 2. You MUST begin Chapter 2 by REPEATING Story Point 2 and so on.

Note: If your group has N students, then you are required to use the first N+1 Story Points for
these chapters. For exarnple, if N = 4, then you will have four chapters using Story Points 1-5.
This means that if your group has fewer than 7 members, you won’t use all of the Story
Points.

1.2. WRITING THE CHAPTERS

Group members will then separately write the chapters. You will not consult with your group
rmermbers and you are not affowed to share your chapter with your group members. You will
shape your chapter solely on the Story Points.

When you upload your individual chapter, do so in the list of Chapters and Authors you've
posted previously. Remember to begin and end with your assigned Story Points.

The requirements of each chapter are as follows:

1. Each chapter must advance the story by starting from the previous Story Point and
ending at the next Story Point. As an example, the first chapter should start with Story
Point 1 and end with Story Point 2. Chapter 2 should start with Story Point 2 and end

194

with Story Point 3, and so on. Effectively, you rust transforrm the input to your chapter
into the output of the next chapter through storytelling.

2. Each chapter must be between 100 and 200 words. This will allow you to effectively
illustrate the story, but without|eaving too much room to embellish.

See Appendix B for an example story with four chapters using five Story Points. Then look at
Appendix C to see how the individually written chapters were revised into a coherent story.

Writing a chapter based on Story Points is similar to how we write functions in computer
science. To make the design of large programs feasible, the inputs and outputs for a
function are generally known before that function is written, In a sense, the way the
code for the function Is written is less important than whether it produces the correct
output value for a given input value. Of course, the function must mesh seamlessly with
all the other functions in the program. Additionally, the function must work for all
possible input values not just one or two. For example, a must work for all manner of
collisions not just one at 30 mph. Meanwhile, a program solution is often made up of a
sequence of functions, where the output of the first function is fed into the second
function as input, and the second function’s output is fed into the third function, and so
forth.

1.3. UpLOADING THE CHAPTERS

The chapters should be uploaded to the group's Canvas page when instructed. This is because
we want you to work on your chapters on your own and keep thermn “secret” until you discuss
them with your group during part two.

Note: Each chapter's author is responsible for uploading his or her chapter. If the author does
not uploaded his/her chapter, then the author for that chapter will notreceive credit for part
one.

All the individual chapters should be uploaded to your group's file on your Canvas page. Each

chapter should be pasted into to the body of the page just below the list entry for that chapter.

Asan example, the content for the first chapter should be uploaded just below the entry for
Chapter 1: <Author>.

2. Part Two
2.1. DesusGIng
Review the chapters that have been uploaded to your group’s Canvas page. Most likely ot all

of your chapters will make sense in the context of each other (and this is normal and expected).

195

After you review all of your group’s chapters, you need to “debug” your story by resolving the
inconsistencies.

To debug your story, pick one chapter as the anchor and rnake minimal changes to it. Then
revise the other chapters so that they logically fit with this anchor chapter. Make sure you are

keeping your chapter structure and designated author structure intact. Each chapter author
should revise his or her chapter.

Conduct this processin a way that allows the individual nature of each chapter to remain, but
also makes the entire story more cohesive.

This debugging and testing process is important for writing programs in computer science and is
also useful in many other fields. Programmers are only human and they make mistakes when
writing programs due to fatigue and other factors. Additionally, when working for a large
company like Microsoft, programmers rarely write original and stand-alone code. Instead,
programmers modify existing code to add new “features” to the program. Mistakes are
common due to a lack of familiarity with that code particularly when dealing with code written
by someone else. Without extensive debugging and testing to fix these mistakes, a company
could lose millions of dollars when customers do not buy the program. Furthermore, testing is
also common in many other fieids. For exampie, engineers at NASA extensively test a new
probe before it travels 127 million miles to Mars and fix bugs or components that do not work
well. And, business executives test a new commercial on 3 test group of audience and revise it
before they spend millions of dollars for a Super Bowl timeslot.

Q This debugging processis also sirmilar to a group brainstorming process where the group
mernbers bring together their own individual ideas and points of view. These possible solutions
rnay be quite diverse, and each will have its own strengths and weaknesses. How can the group
cornbine the best aspects of these various approaches so that the selected solution solves the
problem in the most effective way?

196

197

Important: If you have a missing chapter {i.e., if a group mernber failed to participate), you do
rot need to write the entire missing chapter. Instead, fill in the gap with a shortened version
with the starting/ending points (if not already included) and 1-2 new sentences. For example, if
you have Chapter 1 which uses Story Points 1-2 and Chapter 3 with Story Points 3-4, you only
rieed to write the 1-2 sentences for the shortened version. Please indicate which chapters are
rissing to allow the graders to take this into consideration. Simply add (MISSING CHAPTER X}
at the start of the new sentences.

2.2. AnaLysis AND REFLECTION

Post your Analysis and Reflection responses in the “Discussion” tab of your Canvas page.

You are expected to discuss these analysis and reflection questions among your group. One
rmernber must start a new discussion for EACH Analysis or Reflection by selecting “New
Discussion.” In the Topic area, type “Analysis” or “Reflection” and in the Comment area, paste
in the Analysis or Reflection questions. Using the Analysis or Reflection questions as prompts,
each mernber will post his or her responses as a reply to the original comment. This process will
keep the group's Analysis and Reflection in separate threads and make it easier to follow the
development of your answers.

You will be graded individually based upon your contributions to the group Analysis or
Reflection. In order toreceive individual credit for part 2, each group member must contribute
to the answers to these questions. Group members who do not contribute to the Analysis or
Reflection Discussion will not receive credit.

Analysis. Respond to these questions: (1) What was the most difficult part of “debugging” your
story? Did entire chapters need to be rewritten? Or could you rmanage to reconcile between
each chapter with each other by making only minor changes? (2) What would you have
changed about your initial storytelling process to make the debugging process easier? Would
you have made your story more straightforward and logical, or rmore ridiculous and expansive?
Essentially, how would you go about writing the story so that it includes the fewest nurnber of
“bugs”?

Reflection. Respond to these gquestions: (1) Cornpare this process to working in a large team on
a software project or working in a tearn on any complex problem. In what ways are the two
processes sirilar? In what ways are they different? (2) How would you change the rules of the
assignrment to guarantee that a minirnal number of “bugs” are created? {(Assume that all
chapters must still be written simultaneously.)

198

The debugging process for writing programs often involves finding logical errors where the
program runs but the observed output value does not match the expected output. These
errors can be difficult to find and remove without providing the formal logic for what needs
to be true at each step to achieve the expected output in the program. In a way, this process
is similar to writing a script for a movie. The writer needs to make sure that every scene
flows into the next to avoid inconsistencies that will distract the viewer. Indeed, the
debugging process is prevalent in all disciplines, and particularly critical in engineering such
that results from testing are fed back into the design process to refine the product or
solution.

I DeapLINes AND HAND-IN
Part 1 Deadline — [6/5/18, 2:30 PM]: You should have all written your initial chapters. Post your
individual chapter on your group's Canvas page Do not upload your chapter before 2:30 on
6/5/18.

Part 2 Deadline — [6/5/18, 3:00 PM]: Your group's revised story and your group's Analysis and
Reflection are due. Your revised story must be posted on your group's Canvas page and your
individual Analysis and Reflection comments must be posted in the Discussion tab of that page.

GRADING

Part 1. Chapters graded individually; only partial credit rewarded if the minirmum word count
isn't met.

Part 2. Debugging: graded as a group, but each mernber must edit his/her chapter to receive
points. Analysis and Reflection: graded individually. Each mermber rust post in the Discussion
with a minimurm of 3-5 coherent, relevant sentences for full credit.

Late work will not be graded.

Appendix A. Five series of Story Points; choose one series for your group (groups may choose
the same series of Story Points)

Series 1

Story Point 1: “OPEN UP! THIS IS THE POLICE!”

Story Point 2: Panting, Kevin ran down the unfamiliar alley way, hoping there would be an exit
ahead.

Story Point 3: The pendant wasn't particularly remarkable, but something drew his eye to it...
something he couldn't quite put into words.

Story Point 4: “It doesn't respond like that for everybody,” the green-eyed girl said. “You're the
first person it kas activated for in over 25 years.”

Story Point 5: “This isillegal... and insane!” he exclaimed.

Story Point 6: Kevin was holding his breath to hide his position... but the pendant was flashing
in a rainbow of colors, and nothing he could do could hide it. Surely it would give away his
position.

Story Point 7: “You know your journey has only just started, right?”

Story Point 8: As he boarded the helicopter, he reflected on how this crazy journey began and
smiled. He knew he had a long ways to go before he was ready.

199

Series 2:

Story Point 1: “Gol And take the ring!l” exclaimed Andrew.

Story Point 2: The volcano started to erupt again.

Story Point 3: “Thereis a high chance of rain in the next few hours...” Melissa said.

Story Point 4: “We are so fortunate to have you in our tearn!”, Roger said to Mealissa.

Story Point 5: After five full days, they managed to see the sunlight again.

Story Point 6: Looking around this deserted place he saw enormous foot prints—|ike Big Foot.

Story Point 7: “He is the one that truly deserves the ring!”, Melissa told Andrew.

Story Point 8: After a very long journey, Melissa finally arrived in London and soon realized that
her bank account was empty.

Series 3:

Story Point 1: “You should park the car over in that areal!” Dylan told Kyler, pointing outa place
rear the gas station.

Story Point 2: Alice ranaged to get her armor suit and immediately called Kyler.

Story Point 3: They quickly realized how cold it is in the new realm and started to pay attention
to the enemy.

Story Point 4: Alice realized the emotional turmoil that was haunting Dylan and shouted:
“Dylan, let's get out of here! We do rot belong to this place!”

Story Point 5: Kyler ranaged to obtain the secret code from the wealthy rman.

Story Point 6: The elevator started to shake and all of them werein serious danger.

Story Point 7: When they finally woke up, the train was speeding along the Trans-Siberian
railway.

Story Point 8: Although Dylan was not sure if he did his job right, he felt he didn't let his friends
down.

Series 4:

200

Story Point 1: “Life is good,” Judy said, as she |looked at her fiancée Daniel, and her best friend
Oliver.

Story Point 2: Suddenly, everything started to tremble and Oliver started to scream.

Story Point 3: The trees started to bend heavily due to the sheer power of the northern winds.

Story Point 4: Judy grabbed Daniel and consoled him.

Story Point 5: They found a small boat in a deserted backyard.

Story Point 6: The road was quite steep and they had to carry Oliver since he was badly hurt.

Story Point 7: On the other side of the ravine, they found an old worman.

Story Point 8: “Oh no, not again ...", Judy looked at the sky, as her new hushand Daniel
clutched her arm.

Series 5:

Story Point 1: At 8 AM Mars time, the spaceship safely took off from the Martian soil.
Story Point 2: The crew was running out of ideas but Taylor realized that they could reach warp
10 if they fixed the superconducting circuits in compartment 2A.

Story Point 3: “Look, it's Gliese 642 D! Hooray!” captain Michelle exclaimed.

Story Point 4: “Get out of there now! You will get burned!” Michelle shouted to Anthony and
Laura.

Story Point 5: “This is quite significant for our scientific purposes! We should take a sarmple
from this raterial!l” Dr. Koch said.

Story Point 6: “Sir, you do not have the required rights to access the systern!”, a robotic voice
told Taylor.

Story Point 7: They took the pills and in a few minutes they entered a deep sleep state.

Story Point 8: “On behalf of the entire hurnanity, we congratulate you and your tearmn for what
you have achieved on this rission!” the President bestowed the Galactic Freedormn awards on
captain Michelle and her team.

10

201

202

Appendix B. Sample story: four chapters independently developed for a different set of Story
Points. (See Appendix C, an attachment, for how these individual chapters were revised into a
coherent story.)

Chapter 1.

Matthew is eating a peanut butter sandwich, while Kimberly is preparing this year's taxes in the living
room.

The TV is on but nobody watches it. Matthew stares at Kimberly, while Kimberly is focused on the stack
of receipts on the table.

As she goes through the receipts and enters the numbers onto her laptop computer, tired and frustrated
with the tediousness of the task, Kimberly realizes that she has been doing the taxes for the family ever
since she and Matthew married five years ago.

She stops and |looks over at Matthew. Matthew swallows a mouthful of his sandwich, and says, “What?”
Kimberly says nothing, eyeing Matthew’s sandwich, potato chips, and the glass of Pepsi in front of him.

Sensing the tension in the room, Matthew averts his eyes and glances over at the TV. Hearing yet
nothing from Kimberly, Matthew returns to Kimberly. He suddenly sees the receipts held in Kimberly’s
hands. “Oh nol” he thinks, “The receipts| The receipts|” Feeling a pang of guilt and panic, Matthew
blurts out, “l am sorryl” and immediately moves towards Kimberly.

Puzzled and taken aback by the apologetic |ook on her husband, Kimberly has her mouth open but fails
to make a sound, as Matthew sits down beside her on the couch.

Matthew sobs as he tells Kimberly of the terrible event that had just occurred.
Chapter 2.
Matthew sobs as he tells Kimberly of the terrible event that had just occurred.

Kimberly tries to calm down Matthew and offers him a cup of tea. While Matthew is starting to feel
better, she suddenly receives a call from her workplace. An emergency situation occurred and she has to
go there immediately. She explains to Matthew the issue and then goes straight to her car. After a few
minutes of driving on the highway, she observes in the mirror a black Cadillac that continues to stay
behind her. After a while, the black Cadillac approaches her more and she can see quite well the driver.
He is a black bearded man, with a patch on his left eye and a rabbit upper lip. She observes how heis
continuously looking at her and smiling in a threatening, quite evil manner: She remembers from what
Matthew told het, that the man chasing her quite resembles Matthew’s description. After about 30
minutes of chasing her along the road, she decides to do a risky maneuver so that she can escape the
chase.

In a split second, Kimberly manages to swerve around the menacing looking man, standing in the
middle of the highway, but not without throwing the car off the road.

11

203

Chapter 3.

In & split second, Kimberly manages to swerve around the menacing looking man, standing in the
middle of the highway, but not without throwing the car off the road.

Their car sailed went airborne, sailing over a ditch, and landed in a mysterious bog. The car began to sink
into a substance like quicksand. Matthew tried the door. it was locked| Kimberly tried the windows.
They wouldn’t open| Matthew dialed his cell phone. No servicel Their car sank deeper and deeper into
the muck. Kimberly and Matthew |looked at each other with tenderness and horror. “I’'m sorry,”
Kimberly said. “| love you,” Matthew replied. Surrounded by blackness and breathing their last breaths,
suddenly their car began to ascend. It rose higher and higher, back into the open air, and then was set
down slowly and gently onto the deserted highway. Kimberly and Matthew gasped for breath and then
gasped in surprise. The menacing man was standing on the hood. He turned, before their eyes, into
three twinkling lights which flew off into the distance. The car was muddy but the engine started right
away. As they drove off ...

Matthew can't help but say a silent prayer of gratitude for the great kindness he had received.

Chapter 4.

Matthew can't help but say a silent prayer of gratitude for the great kindness he had received.

Matthew struggled to his feet, still a bit disoriented, then turned to help Kimberly to her feet. The
“menacing” man was busy trying to rev the engine. “| think | have it, if youwant to pushl” he called to
them; as he pulled the car out of the ditch on to the shoulder of the highway.

Kimberly and Matthew climb up out of the ditch and the man is getting out of the car.
“Sorry for the trouble folks| I'll just be on my way.”
“Hey, it's no trouble| Thank you for how much you helped us,” Matthew said.

With that, the man smiled and turned to walk away down the highway, as Matthew and Kimberly drove
home. They reach their home, give each other a melancholy, knowing smile, and enter the house.

Matthew and Kimberly settle down at the kitchen table, grateful that they can finally finish their
meal.

End of exercise

12

	INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS PROFESSIONAL DEVELOPMENT PROGRAM FOR K-12 TEACHERS
	

	Microsoft Word - MastersThesisFinal.docx

