
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

Winter 10-19-2020

INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN

A CS PROFESSIONAL DEVELOPMENT PROGRAM FOR K-12 A CS PROFESSIONAL DEVELOPMENT PROGRAM FOR K-12

TEACHERS TEACHERS

Patrick Morrow
University of Nebraska-Lincoln, pmorrow@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Morrow, Patrick, "INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS PROFESSIONAL
DEVELOPMENT PROGRAM FOR K-12 TEACHERS" (2020). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 198.
https://digitalcommons.unl.edu/computerscidiss/198

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/198?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages

INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS

PROFESSIONAL DEVELOPMENT PROGRAM FOR K-12 TEACHERS

by

Patrick Morrow

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Leen-Kiat Soh

Lincoln, Nebraska

June 2020

INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS

PROFESSIONAL DEVELOPMENT PROGRAM FOR K-8 TEACHERS

Patrick Morrow, MS

University of Nebraska, 2020

Advisor: Leen-Kiat Soh

The demand for K-12 Computer Science (CS) education is growing and there is

not an adequate number of educators to match the demand. Comprehensive research was

carried out to investigate and understand the influence of a summer two-week

professional development (PD) program on teachers’ CS content and pedagogical

knowledge, their confidence in such knowledge, their interest in and perceived value of

CS, and the factors influencing such impacts. Two courses designed to train K-12

teachers to teach CS, focusing on both concepts and pedagogy skills were taught over

two separate summers to two separate cohorts of teachers. Statistical and SWOT analyses

were then performed using measures such as attitudinal surveys and knowledge

assessments. Findings showed the PD program had a significant impact on the teachers,

there was a positive correlation between teachers’ pre-program confidence and

knowledge, and additional insights on how to deliver such PD programs more effectively.

Results will help inform K-12 CS PD program design.

 3

ACKNOWLEDGEMENTS

First, I would like to thank everyone involved in the AIR@NE project. I would

like to thank Dr. Gwen Nugent and Keting Chen for their work designing the knowledge

tests and surveys and collecting the data. I would also like to thank them, Dr. Wendy

Smith, Dr. Guy Tranin, Susan Prabulos, and Alan Holdorf as they were key contributors

to the design and facilitation of the professional development program. Their hard work

and dedication helped progress my research to the point it is at today.

Second, I would like to thank Emma Hubka for working with me on much of the

data analysis for my work. Emma was always enthusiastic to help and provided insightful

reflections throughout the data analysis project.

Third, I would like to thank Dr. Gwen Nugent, Dr. Witiwas Srisa-an, and Dr.

Leen-Kiat Soh for serving on my thesis defense committee. I would especially like to

thank my advisor, Dr. Leen-Kiat Soh, for his expert support throughout the research

process. His guidance and unwavering support helped me throughout the research

process. Dr. Soh taught me many lessons about research design, academic writing, and

many other personal and professional tips to lead a happy, successful life. I can not thank

him enough for the time and effort he has expended to helped me and my research

progress to the place it is today. Dr. Soh always made himself available for feedback and

suggestions on my work.

Lastly, I would like to thank my friends and family for supporting me over the

two years of graduate school. Much of my time has been spent working on school work

 4

over the last two years and they have been loving and understanding throughout my

research process.

 5

Table of Contents

Chapter 1: Introduction ... 12

1.1 Problem .. 12

1.2 Motivation .. 12

1.3 Gaps in Literature ... 13

1.4 Proposed Study .. 14

1.5 Contributions ... 16

1.6 Overview ... 17

Chapter 2: Related Work ... 19

2.1 General Review .. 19

2.2 Question 1: To what extent should CS content be part of CS PD

programs? 22

 Short PD Programs (1-3 days) .. 22

 Medium PD Programs (4-5 days) ... 26

 Long PD Programs (More than one week) ... 28

 Conclusion .. 31

 Recommendations ... 32

2.3 Question 2: Is programming imperative when teaching CS teachers how

to teach CS? 34

 Visual Programming Language Programs .. 35

 Text-Based Programming Language Programs .. 42

 Text-Based vs. Visual Programming Languages .. 46

 Conclusions ... 46

 Recommendations ... 47

Chapter 3: Cohort 1 Summer PD Program ... 49

 6

3.1 Program Structure .. 49

 Week 1 CS Content Course .. 49

 Week 2 CS Pedagogy Course ... 51

3.2 Data Analysis ... 52

 Description of Data ... 52

 Participant Breakdown .. 53

3.3 Results ... 55

 Impact of PD Program on Cohort 1 .. 55

 Model-District vs. Non-Model-District Teachers 57

 Factors Driving Teacher Performance .. 60

3.4 Program Evaluation .. 62

 Strengths .. 63

 Weaknesses ... 64

 Opportunities ... 65

 Threats ... 67

Chapter 4: Cohort 2 Summer PD Program ... 69

4.1 Program Structure .. 69

 Morning CS Content Course ... 69

 Afternoon CS Pedagogy Course ... 73

4.2 Data Analysis ... 76

 Description of Data ... 76

 Participant Breakdown .. 78

4.3 Results ... 78

 Impact of PD Program on Cohort 2 .. 78

 Factors Driving Teacher Performance .. 80

 7

4.4 Program Evaluation .. 82

 Strengths .. 82

 Weaknesses ... 84

 Opportunities ... 85

 Threats ... 86

Chapter 5: Cohort 1 vs. Cohort 2 .. 88

5.1 Cohort 1 to Cohort 2 Changes .. 88

 In-Person to Online ... 89

 Schedule .. 89

 Lead Instructor .. 90

 Instruction Team ... 91

 Programming Language and Integrated Development Environment (IDE) 91

5.2 Program Outcomes (Cohort 1 vs. Cohort 2) ... 92

 Impact of PD Programs ... 92

 Model-District vs. Non-Model-District .. 100

5.3 Conclusion .. 108

5.4 Recommendations ... 109

Chapter 6: Conclusion .. 111

6.1 Summary of Findings .. 111

6.2 Future Work .. 113

References .. 115

Appendix .. 118

 8

Table of Figures
FIGURE 2.1 QUESTION 1 OF KONG AND LAO’S SUMMER PD PROGRAM TEST OF CT SKILLS. 39

FIGURE 2.2 QUESTION 4 OF KONG AND LAO’S SUMMER PD PROGRAM TEST OF CT SKILLS. 40

FIGURE 3.1 COHORT 1 SUMMER PD PROGRAM’S FIRST-WEEK CS/CT CONTENT COURSE SCHEDULE. 51

FIGURE 3.2 COHORT 1 SUMMER PD PROGRAM SECOND-WEEK CS PEDAGOGY COURSE SCHEDULE. 52

FIGURE 4.1 COHORT 2 SUMMER PD PROGRAM’S CS/CT CONTENT MORNING COURSE SCHEDULE – WEEK 1.

 .. 70

FIGURE 4.2 COHORT 2 SUMMER PD PROGRAM’S CS/CT CONTENT MORNING COURSE SCHEDULE – WEEK 2.

 .. 71

FIGURE 4.3 COHORT 2 SUMMER PD PROGRAM DAY 6 BREAKOUT SESSION EXAMPLE. 73

FIGURE 4.4 SUMMER PD PROGRAM SECOND-WEEK CS PEDAGOGY AFTERNOON COURSE SCHEDULE – WEEK

1. ... 75

FIGURE 4.5 SUMMER PD PROGRAM SECOND-WEEK CS PEDAGOGY AFTERNOON COURSE SCHEDULE – WEEK

2. ... 76

FIGURE 5.1 POST-PROGRAM CS TEST SCORES IN COHORT 1 AND COHORT 2. .. 94

FIGURE 5.2 COHORT 1 VS. COHORT 2 POST-PROGRAM CS TEST SCORES AND COHORT 1 VS. COHORT 2 POST-

PROGRAM CT TEST SCORES. .. 95

FIGURE 5.3 COHORT 1 PARTICIPANTS’ POST-PROGRAM CS CONFIDENCE LEVELS VS. COHORT 2

PARTICIPANTS’ POST-PROGRAM CS CONFIDENCE LEVELS. .. 98

FIGURE 5.4 POST-PROGRAM AVERAGE AND STANDARD DEVIATION OF COHORT 1 PARTICIPANTS’ CS

TEACHING CONFIDENCE VS. COHORT 2 PARTICIPANTS’ CS TEACHING CONFIDENCE. 100

FIGURE 5.5 PRE-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-

DISTRICT TEACHERS’ CS KNOWLEDGE TEST SCORES, CT KNOWLEDGE TEST SCORES, CS CONFIDENCE

SURVEY RESPONSES, AND CS TEACHING CONFIDENCE SURVEY RESPONSES. 104

FIGURE 5.6 PRE-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-

DISTRICT TEACHERS’ CS ATTITUDES. .. 104

 9

FIGURE 5.7 POST-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-

DISTRICT TEACHERS’ CS KNOWLEDGE TEST SCORES, CT KNOWLEDGE TEST SCORES, AND CS

CONFIDENCE SURVEY RESPONSES. ... 105

FIGURE 5.8 POST-PROGRAM AVERAGES AND STANDARD DEVIATIONS OF MODEL-DISTRICT VS. NON-MODEL-

DISTRICT TEACHERS’ CS ATTITUDES. .. 106

 10

Table of Tables

TABLE 2.1 DETAILS OF THE PD PROGRAMS OF VARYING DURATION IN THE RELATED WORK SECTION. 24

TABLE 3.1 BREAKDOWN OF THE PARTICIPATING GROUPS IN COHORT 1. ... 54

TABLE 3.2 EVALUATION OF THE IMPACT OF THE COHORT 1 CS PD PROGRAM BY COMPARING PRE-PROGRAM

AND POST-PROGRAM KNOWLEDGE, ATTITUDE, AND CONFIDENCE SCORES (MEAN, STANDARD

DEVIATION, T-VALUE, DEGREES OF FREEDOM, SIGNIFICANCE VALUE). .. 55

TABLE 3.3 COHORT 1 MODEL-DISTRICT (MD) VS. NON-MODEL-DISTRICT (NMD) TEACHER MEAN,

STANDARD DEVIATION, T-VALUE, DEGREES OF FREEDOM, AND SIGNIFICANCE VALUES FOR EACH TEST.

 .. 59

TABLE 3.4 MEASURING THE IMPACT OF PRE-PROGRAM CS CONFIDENCE BY COMPARING COHORT 1 TEST

SCORES OF TEACHERS WITH ABOVE (ABV) AVERAGE CONFIDENCE COMING INTO THE PROGRAM VS.

TEACHERS WITH BELOW (BLW) AVERAGE CONFIDENCE. .. 61

TABLE 3.5 EVALUATION OF OUTCOMES FROM COHORT 1 TEACHERS PLANNING OF TEACHING (T) IN THE

NEXT AY VS. COHORT 1 TEACHERS NOT TEACHING (NT) IN THE NEXT AY ON POST-PROGRAM TEST

SCORES. ... 61

TABLE 3.6 EVALUATION OF COHORT 1 K-5 ELEMENTARY (E) TEACHERS VS. 6-8 MIDDLE SCHOOL (M)

TEACHERS TEST SCORES. ... 62

TABLE 4.1 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM BY COMPARING COHORT 2 PRE-PROGRAM

AND POST-PROGRAM KNOWLEDGE, ATTITUDE, AND CONFIDENCE SCORES (MEAN, STANDARD

DEVIATION, T-VALUE, DEGREES OF FREEDOM, SIGNIFICANCE VALUE). .. 80

TABLE 4.2 EVALUATION OF COHORT 2 K-5 ELEMENTARY (E) TEACHERS VS. 6-8 MIDDLE SCHOOL (M)

TEACHERS CS KNOWLEDGE TEST SCORES. ... 81

TABLE 5.1 DETAILS OF COHORT 1 AND COHORT 2 CS PD DESIGNS. ... 88

TABLE 5.2 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM FROM PRE-PROGRAM TO POST-PROGRAM

FOR COHORT 1 AND COHORT 2. ... 93

TABLE 5.3 TWO-SAMPLE T-TEST BETWEEN COHORT 1 POST-PROGRAM CS KNOWLEDGE TEST SCORES AND

COHORT 2 POST-PROGRAM CS KNOWLEDGE TEST SCORES. ... 93

 11

TABLE 5.4 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CT KNOWLEDGE OF THE COHORT

1 AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM. .. 95

TABLE 5.5 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CS ATTITUDES OF THE COHORT 1

AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM. ... 96

TABLE 5.6 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CS CONFIDENCE OF THE COHORT

1 AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM. .. 97

TABLE 5.7 EVALUATION OF THE IMPACT OF THE CS PD PROGRAM ON THE CS TEACHING CONFIDENCE OF

THE COHORT 1 AND COHORT 2 PARTICIPANTS FROM PRE- TO POST-PROGRAM. 99

 12

Chapter 1: Introduction

1.1 Problem

The need for K-12 computer science (CS) instruction has become of great

importance throughout the world as more and more career paths rely heavily on digital

competency. Because of this, a gap exists in the availability of quality K-12 CS in-service

K-12 teachers. We can address this gap by providing pre-service and in-service teachers

with quality CS training through CS professional development (PD) programs. This

research focuses on preparing the in-service teachers by evaluating our PD programs held

in two consecutive summers with two separate cohorts of K-12 CS teachers. Our study

aims to improve K-12 CS instruction by identifying what makes our in-service K-12

teachers learn CS effectively in our two-week CS PD program. The findings presented in

this paper will aid future PD program designers by understanding how PD program

designers should teach and how to evaluate the program to gain a useful insight into the

program’s effectiveness. PD designers will make specific adjustments to any PD program

given different participant characteristics, such as grade level of instruction, experience

level with computer science, and resources available in time and technology. This paper’s

findings will also help designers make those adjustments to cater to any PD program

around the participants’ needs. Overall, this research strives to improve the quality of

instruction and students’ access to a CS education at the K-12 level.

1.2 Motivation

In recent years there has been a push for an increase in Computer Science (CS)

education as the number of CS jobs rises. A study by the Bureau of Labor Statistics

 13

shows that 58% of all new STEM jobs are in computing, and 10% of STEM graduates

are majoring in CS. This study identifies a significant disconnect between the

requirements of the workforce and the ability of the education system to prepare students

to meet those requirements. The desire to produce more CS majors is a view that is not

unique to just industry leaders. A 2016 Gallup survey showed that 90% of parents want

their child to learn CS (Google & Gallup, 2016). A more recent study by Gallup showed

that 45% of high schools teach CS across 39 states (2019 State of Computer Science

Education, 2019). The demand for CS curriculum in K-12 has exposed a substantial

deficiency in the number of trained K-12 CS teachers, and in many states, there is no

required training for teaching computing courses (Lang et al., 2013). The lack of

participation in CS and the lack of trained CS educators at the K-12 level desperately

needs to be addressed.

1.3 Gaps in Literature

Numerous projects have attempted to address the low levels of CS participation by

offering different K-12 teacher professional development (PD) institutes or workshops.

The primary focus of these workshops is to teach CS pedagogical knowledge and CS

content knowledge to teachers. Typically, PD programs are unable to specialize in both

areas due to their short duration to accommodate teachers’ busy summer schedules. The

workshops that heavily emphasized CS content knowledge left teachers lacking the

ability to integrate the new content into their classrooms (Ericson et al., 2005; Neutens

and Wyffels, 2018). The workshops that focused on CS pedagogy knowledge and

available technology excited teachers to teach CS but left them with sparse confidence to

 14

teach their students and a limited content base (McGee et al., 2019). These trends were

clear in Chai et al.’s study of the factor technological, pedagogical, and content

knowledge (TPACK) plays in helping new K-12 CS teachers succeed in integrating CS

curricula in their classrooms (Chai et al., 2010). While all three components are essential

PD programs components, Chai et al.’s study noted that the focus of the PD program

needs to change based on the skills of the teachers in the program. Chai et al. identified

pedagogical knowledge as a good starting point for pre-service teachers, while content

knowledge is essential for in-service teachers (Chai et al., 2010). With more K-12 schools

teaching CS, these studies have set the stage for new and exciting research in the field of

PD for new CS teachers.

1.4 Proposed Study

Much of the research in the CS PD area strives to find the most effective strategy

for delivering PD workshops and how the workshops can be adapted to prepare K-8 CS

teachers better. Designing a one-size-fits-all PD workshop is difficult. However,

understanding the traits and behaviors of the teachers could benefit CS PD designers in

tailoring PD workshops. This research aims to improve understanding of in-service CS

teachers, their strengths, their weaknesses, and their aptitude for learning CS, and how

such characteristics manifest in observable behaviors in PD courses.

This research aims to measure and identify traits, behaviors, and motivations of K-

8 teachers participating in a two-week CS PD program. As a critical step towards

improving K-8 CS education, we hope to find traits, behaviors, and motivations that help

predict course success as measured by CS content understanding. Understanding these

 15

predictors will allow facilitators to provide timely interventions in future CS PD

programs. For a teacher to be successful in a PD program, they need to improve their CS

and CT content knowledge to a point where they feel confident enough to teach it. To

strengthen their CS and CT knowledge, they need to be motivated and engaged

throughout the PD program. The program designers adapt the program design as

necessary to cater to the strengths and weaknesses of the group. If the facilitators

determined that a group of teachers are not likely to succeed in the program, then the

designers can make changes to address the issues hindering the teachers on a failing path,

which will lead to better prepared CS instructors.

This study focuses on the following three research questions:

1. What was the impact of the CS summer PD on the teachers?

a. knowledge of CS concepts

b. knowledge of computational thinking

c. CS attitudes

d. confidence in CS knowledge

e. confidence in teaching CS

2. What were the differences between teachers from a model school district

(an urban school district with extensive CS curricular development and

teacher PD) and teachers from other school districts? How did the program

impacts differ?

3. Which factors lead to teacher success (e.g., knowledge test scores) in terms

of CS understanding in the summer PD program? Specifically, this study

investigates confidence in CS content, plans to teach CS in the following

 16

AY, and grade level of instruction as potential predictors of teacher

performance.

1.5 Contributions

Some significant findings have come from the two CS PD programs covered in

Chapters 3 and 4. First, the analysis showed that both programs were successful in

significantly improving the participants’ CS knowledge test scores, CT knowledge test

scores, CS confidence, and CS teaching confidence. The findings from Cohort 1 also

showed that teachers with more experience in teaching CS had more confidence in CS

than teachers with less experience, even though the two groups had similar knowledge

test scores. Our assessment also showed no significant correlation between the grade

level of instruction or the participants’ plans to teach CS in the next academic year and

their knowledge test scores. Lastly, the program evaluation showed that for Cohort 1,

confidence in CS concepts had a strong correlation with the post-program knowledge test

scores, but in Cohort 2, this did not hold.

During the process of designing the two PD programs, we also developed several

course materials that will be helpful for other PD program designers to use. In this paper,

we share resources from each of our two-week PD programs including the schedules

(first cohort schedule: Figure 3.1, Figure 3.2, second cohort schedule: Figure 4.1, Figure

4.2), syllabuses, quizzes (Appendix A), homework assignments (Appendix B) and the

adjustments we made to each of those items as we needed during the program and

between programs. Our cohort participants’ CS experience guided the development of

these materials. From Cohort 1 to Cohort 2, we made several changes since the

 17

participants’ background and skills were slightly different in the two cohorts. These

adjustments are essential for optimizing the effectiveness of each PD program.

1.6 Overview

First, in Chapter 2, the Related Work section discusses several CS PD programs and

their effect on the K-12 CS education community (Section 2.1). In this section, we also

investigate two key questions that will help guide future CS PD design (Sections 2.2 and

2.3). In the next chapter, Chapter 3, we discuss the details of the first cohort, two-week

summer PD program delivery. Specifically, this chapter includes information on the

Program Structure (Section 3.1), the Data Analysis (Section 3.2), the Results (Section

3.3), and the Program Evaluation (Section 3.4). The Program Structure section discusses

the logistics of the program. The Data Analysis section describes the process of collecting

the data and how it was analyzed. The Results section looks at the impacts of the CS PD

program, the outcomes of the different teacher groups, and factors driving performance.

The Program Evaluation section further complements the findings in the Results section

with details about the nuances of delivering a CS PD program and insights learned. The

next chapter is about the two-week, CS PD program for our second cohort of teachers.

Chapter 4 is set up identically to Chapter 3 -- Program Structure (Section 4.1), the Data

Analysis section (Section 4.2), the Results section (Section 4.3), and the Program

Evaluation section (Section 4.4). Chapter 5 discusses the key differences between Cohort

1 and Cohort 2, both in terms of setup (Section 5.1) and outcomes (Section 5.2). Finally,

the Conclusion includes a Summary of Findings (Section 6.1) of the two PD programs,

 18

Recommendations (Section 6.2), and Future Work (Section 6.3) to come from these

programs

 19

Chapter 2: Related Work

The related work section contains three parts. First, we will discuss some PD

programs in general to find some common themes. Next, we will look at two central

questions through reviews of several programs. The first question is, “To what extent

should CS content be part of CS PD programs?”. PD programs must link CS concepts

with CS pedagogy concepts, so we want to understand how different PD programs

balance the CS concepts and the CS pedagogy in their programs. The second question is,

“Is text-based programming imperative when teaching CS teachers how to teach CS?”.

The motivation behind this question is that we saw many teachers struggle with the

programming side but expressed confidence in the concepts themselves. We weigh the

importance of using text-based programming languages in CS PD by comparing PD

programs that use text-based programming with programs that use visual programming

languages instead.

2.1 General Review

Through the CS for All (Fancsali et al., 2018; Salac et al., 2019; Vogel et al., 2017)

and CS10K (Brown & Briggs, 2015; Yadav et al., 2013) initiatives, there has been an

increased call for CS participation in K-12. Qualified CS teachers are vital to integrating

CS into K-12. There have been many efforts to develop PD programs that effectively

prepare current teachers to teach CS. Teachers are still going into their classrooms

unprepared to teach CS. Ericson et al. found such deficiencies in two of their CS PD

workshops (Ericson et al., 2005). The first workshop was for teachers with little or no CS

teaching experience, and the second was for teachers of a CS-AP high school course.

 20

After the first course, 70.37% of teachers felt more capable in programming, 96.03% had

a better idea of what to teach, and 88.89% got a better idea of how to teach CS. However,

only 44.44% of the teachers felt ready to teach CS. Of the 17 teachers from the CS-AP

workshop, 94.12% reported feeling more capable in programming, 88.24% has a better

idea of what to teach, and 94.12% had a better idea of how to teach CS. 76.47% of the

teachers felt ready to teach CS in the next school year. Overall, in their summer PD

workshop for CS teachers, they found, post-workshop, that 56.82% of the teachers felt

ready to teach CS in the next semester (Ericson et al., 2005). Even with an increase in

programming and pedagogy knowledge, many teachers are still preparing to teach

students with little confidence (e.g., 44.44%) in their ability to do so. Ericson et al. also

found that 29% of all teachers wanted the workshop to go at a slower pace. Going

forward, they believe creating a program that caters to the new introductory CS teachers

who show signs of needing a slower pace before the class would improve their PD

program (Ericson et al., 2005).

Research has identified ways to increase self-efficacy and use of computers in

classrooms. Hatlevik et al. found there was a strong positive correlation between the

amount of home computer use and ICT self-efficacy, which is vital to learning CS and

learning to teach CS (Hatlevik et al., 2018). Wozney et al. also saw teachers with

personal computers and access to “play with” potential classroom tools were more likely

to integrate technology in the classroom (Wozney et al., 2006). However, most PD

programs (e.g., Ahamed et al., 2010; Morreale et al., 2012) do not explore the differences

between teachers with experience teaching CS (or experience using CS tools to teach

other subjects) and teachers without CS education backgrounds. The study detailed in this

 21

paper makes such comparisons to provide insight into the relationship between teacher

CS experience and their CS knowledge, attitudes, and skills.

Another valuable PD approach is the Exploring Computer Science (ECS) PD

program used by McGee et al. The ECS curriculum was designed for teachers to teach

students CS through equity, inquiry, and CS concepts. Their curriculum aims to teach CS

through real-world examples, such as making games that encourage learning about

healthy eating (McGee et al., 2018). The PD program’s workshop had five key

components. The first two components focus on active learning (Desimone & Garet,

2015), the third focuses on equity in CS education, and the last two concentrate on

making the teachers successful in the long term. McGee et al. used an Expectancy-Value-

Cost (EVC) survey to measure the attitudes of the ECS students. They compared the

EVC survey results to the students’ course experience and to a Teaching Quality Index

(TQI) based on a combination of two teacher practice quality instruments to measure the

teachers’ ability to “foster equity, inquiry, and development of CS concepts” (McGee et

al., 2018). The students took the survey to determine the teachers’ TQI. The authors

found the TQI had a direct effect on the students’ post-EVC scores, which in turn

influences student outcomes. This finding shows that better-equipped teachers are having

a direct impact on students’ attitudes and their engagement in CS. Additionally, the more

experience the teachers had in teaching ECS, the more the students’ ECS scores

improved from the pre-test to the post-test (McGee et al., 2018). McGee et al.’s method

of measuring teacher performance and student learning outcomes could help in creating a

universal measure for K-12 CS educators.

 22

2.2 Question 1: To what extent should CS content be part of CS PD

programs?

The first question addresses the design of PD programs and how computer science

(CS) content delivery can be balanced to avoid overwhelming inexperienced in-service

CS teachers while providing them with quality training of CS concepts. The goal of CS

PD programs is to prepare current and future CS teachers to teach CS concepts. Program

designers use two general approaches to achieve this goal. The first approach is through

programming language training, where the teachers learn CS concepts through

programming in high-level CS languages. The second approach is through CS unplugged

activities. These activities can include CS concepts but focus more on computational

thinking (CT) to introduce teachers to CS as CT draws on skills and professional

practices that are fundamental to computer science (Sengupta et al., 2013). The CS

unplugged approach allows teachers from all CS backgrounds to understand CS concepts

without needing to learn a programming language or use any devices (Bell et al., 2012).

Both approaches of CS PD programs vary from 1-5 days and can even be more than one

week. Each duration raises different challenges and comes with varying program

outcomes. Below is a discussion about each program’s duration. This review will detail

the design of CS PD programs of varying lengths (short, medium, long).

 Short PD Programs (1-3 days)

Short PD programs are typically less than one week to accommodate teachers’

summer schedules. Some programs are as short as 1-3 days (Morreale et al., 2012; Bower

et al., 2017). There is not enough time to cover all CS concepts or CT concepts in-depth

 23

in these programs. The 1-3-day programs have been successful by shifting their focus to

training teachers on proven classroom tools and resources to apply to their classrooms

right away. This type of program makes sense to improve the preparedness of teachers

already equipped with adequate CS backgrounds.

Morreale et al.’s two, one-day workshops helped introduce teachers to CT by

providing them sessions on curriculum materials, current university projects, internships,

post-grad opportunities, and the importance of CS locally and nationally (Morreale et al.,

2012). While Morreale et al. did not discuss why the two workshops were each one day

long, the duration makes sense given the goal of the workshop (further PD design details

in Table 2.1). Their goal was to (1) introduce new curriculum materials, (2) provide

examples of collegiate projects, internship opportunities, and to show what being a CS

major in college means, and (3) provide a broader understanding of computer science

topics and careers (Morreale et al., 2012). The attendees took a pre- and post-program

survey to evaluate their understanding of CS and CT topics. The survey results showed

that ~90% of the attendees understood CT (+15% from pre-survey), and 86% understood

why CT was necessary (+22% from pre-survey). In the survey, the researchers also asked

the teachers which of the eight sessions during the first workshop were most impactful.

Of the eight sessions provided during the first workshop, four of the sessions were

reported as “immediately useful” by the attendees. This form of PD has successfully

introduced the teachers to CT and how different teaching tools can be used (Morreale et

al., 2012).

 24

Table 2.1 Details of the PD programs of varying duration in the Related Work
section.

 Topics Covered

Program Designer Duration Pedagogy CS
Content

CT
Content

Text-based
Programming
Language

Visual
Programming
Language

Morreale et al. (2012) Short x x

Bower et al. (2017) Short x x

Liu et al. (2014) Medium x x x

Pollock et al. (2017) Medium x x x x

Milliken et al. (2019) Long x x x* x*

Goode et al. (2014) Long x x x

* Participants could choose their language for the course.

Bower et al. also held four separate one-day workshops for 69 teachers of grades

K-2, 3-4, 5-6, and 7-8 (Bower et al., 2017). Table 2.1 provides an overview of the

program details. A pre- and post-workshop open-ended survey assessed the impact of the

PD program. The survey evaluated the change in the teachers’ understanding of CT

concepts, strategies used to teach CT, technologies used to teach CT, and understanding

the teachers’ confidence gain from attending the workshop. The survey was analyzed by

evaluating the open-ended responses for computation thinking practice, concepts, and

perspective keywords. These results showed that the teachers could identify the keywords

more effectively (141 keyword references pre-workshop vs. 312 keyword references

post-workshop (Bower et al., 2017)). This analysis strategy does not, however, give us a

deep understanding of the teachers’ level of understanding regarding CT concepts. To

gain more insights into the comprehension levels of the teachers, the facilitators could

have paired a knowledge test with the survey. The most used pedagogy strategy listed by

 25

the teachers was a “student-centered” strategy, which was consistent from pre-workshop

to post-workshop. The teachers gained the most insights about technologies used to teach

CT. Pre-workshop, only 42% of the teachers listed specific software used in the

classroom and post-workshop, 72% of teachers listed teaching software such as Scratch,

Visual Basic, Python, Hopscotch, Tynker, and more. The teachers also listed several

robotics resources to develop CT skills in the classroom. Bower et al.’s workshop was

also successful in significantly improving the teachers’ confidence in teaching CS

(Bower et al., 2017). Pre-workshop, the teachers’ most significant obstacle to teaching

was their lack of self-efficacy, as found from the pre-workshop survey. That changed

post-workshop where most teachers listed “lack of resources” as the most significant

obstacle over self-efficacy as well as other reasons. The program was successful in

improving the teachers’ self-efficacy in a short amount of time by introducing the

teachers to CT and some different tools they can use in the classroom. However, further

targeted professional development training workshops were desired by the teachers

following the program as well as additional time, resources, and peer mentoring.

From these two short PD programs, we can see significant self-efficacy

improvements made in a short amount of time. While this improvement is encouraging,

given the growing need for CS teachers, we argue that merely introducing teachers to the

CT concepts over a 1-3-day workshop is not enough to prepare teachers for quality CS

instruction.

 26

 Medium PD Programs (4-5 days)

The programs in the previous section were successful in preparing teachers for CS

instruction in a small amount of time by providing resources and understanding of CT

concepts. Medium length PD programs should be able to expand on the successes of the

short PD programs by going more in-depth. Here we review medium length PD programs

held by Liu et al. and Pollock et al. (Liu et al., 2014; Pollock et al., 2017).

Liu et al. used a 5-day game-centered development approach and a drag-and-drop

programming language called Stencyl to prepare their teachers (Liu et al., 2014). Table

2.1 contains details about the program. Each of the five days contained two sessions, and

each session contained one or two CS concepts. The concepts covered were classes,

variables, methods, conditionals, booleans, loops, and lists. In the mornings, the teachers

worked on existing Stencyl projects that covered the concept of the day. In the

afternoons, the teachers created their curriculum for the concept using Stencyl to take

back to their classrooms. Liu et al.’s team saw a 61% increase in concept knowledge (Liu

et al., 2014). While the increase in content knowledge was significant, we do not see any

analysis of the teachers’ preparedness to teach their classrooms using these tools. Liu et

al. were successful in building the teachers’ understanding of CS concepts, Stencyl, and

how to use Stencyl in the classroom. To see whether or not the teachers’ will be able to

extend what they learned to their classrooms, further evaluation will be needed.

Pollock et al. designed their 4.5-day PD program with a focus on CS content,

pedagogical strategies for teaching CS, and strategies for broadening participation in CS

(Pollock et al., 2017). The author gave no reasoning for the 4.5-day duration, but given

 27

the focus of the program, this seems to be the minimum amount of time it would take to

cover all topics. Table 2.1 provides details of the program. 28 of the 84 program

participants also participated in the post-program interviews, 13 were CS teachers, and 19

were STEM teachers (total does not equal 28 because some teachers teach CS AND

STEM). Other participants included business teachers, administrators, and librarians. To

measure the impact of their PD program, education professionals held interviews with the

28 teachers who had completed at least one week of the PD and had a chance to integrate

what they learned into their teaching. All 28 teachers had integrated CS concepts into

their classrooms, and 11/28 teachers stated their increased self-efficacy as their greatest

success in teaching CS principles post-PD (Pollock et al., 2017). As a result of the

program, the teachers who participated in this PD program are better prepared. However,

those who had prior programming expertise desired more advanced programming

practice, while those without previous experience stated a desire to learn programming to

keep up with their students (Pollock et al., 2017).

We saw significant increases in knowledge in both programs, although the two

programs had slightly different goals. Pollock et al. focused on connecting CS and CS

pedagogy while Liu et al. focused on content knowledge and mastery of a programming

language (namely, Stencyl). Pollock et al. identified the goal of their PD program as

“improve CS teaching by providing educators with content knowledge of CS and CS

principles and helping them develop their pedagogical content knowledge related to CS”

(Pollock et al., 2017). Liu et al.’s goal was to introduce CS teachers to CS content

knowledge through Stencyl. Since Liu et al. did not evaluate the teachers’ preparedness,

it is difficult to say which was more successful in preparing teachers to teach (Liu et al.,

 28

2014). One interesting thing to note in the medium-length programs is that the extended

length of the program allows for more creativity in the program design. The short

programs were similar in design, but the medium-length programs used different tools

and approaches to CS education preparation.

 Long PD Programs (More than one week)

With more time and added program flexibility, long PD workshops allow for

added depth and breadth of knowledge. There was an increase in variety in the design of

PD programs as the programs went from short to medium, so the long PD programs are

expected to introduce even more range in goals, instructional strategies, and workshop

tools.

Milliken et al. found success with their reworked two-week PD program (details

found in Table 2.1). From 2012-2015, they held a 6-week PD program each year.

Milliken et al. reduced the program to a three-week program in 2016 and again to a two-

week program in 2017 and 2018 (Milliken et al., 2019). Although the program scaled

down from six-weeks to two-week, the program remained 50% CS content focus and

50% pedagogy focus. The program focused less on strictly CS content, and more on a

Lead Learner model where one group of teachers acts as the teachers, and the other

groups act as the learners. The Lead Learner model helps all teachers participate as both

teachers and students throughout the program. To evaluate the effectiveness of the PD

program, Milliken et al. used 14 five-point Likert-scale items as part of their post-PD

survey (Milliken et al., 2019). Despite reducing the duration of the program, they saw an

increase in scores on items that asked about how efficiently the facilitators used their time

 29

and items, asking about the quality of teaching techniques and content of included in the

program. This result shows that as PD designers become more experienced about the

critical aspects of CS PD, they can transform a 6-week program into a two-week program

without damaging the quality of the program. The effectiveness of the Lead Learner

model shows that “how to teach” is equally valuable as “what to teach.” Of the 67

participants of the two-week program who took the post-program survey, 73% planned

on adopting the Beauty and Joy of Computing (BJC) curriculum introduced during the

program.

Additionally, all responses to questions about teacher preparedness ranged

between 3.64 and 4.00 on a five-point Likert scale, which is relatively high. No pre-

workshop preparedness survey was discussed in the paper since the paper was ultimately

comparing the results of the program over the last three years. The final, two-week

program design yielded the highest post-program preparedness scores (Milliken et al.,

2019).

Goode et al. found success using the ECS model for PD and curriculum design in

their two-year PD program (details found in Table 2.1). In the first year, the authors held

a one-week PD program with quarterly follow-up sessions post-program. In year two, the

authors held a second one-week program (Goode et al., 2014). Scratch, Lego

Mindstorms, and CS Unplugged activities are typically used in ECS classes to deliver

concepts of CS without having to spend much time learning a programming language,

although no programming language was documented (Goode & Margolis, 2011). The

ECS model strives to form long-term relationships with teachers. Darling-Hammond &

Richardson found that programs between 30 hours and 100 hours spread over 6-12

 30

months had the most significant positive effect. Darling-Hammond & Richardson also

found that teachers who attended 80 or more hours of inquiry-based PD were more likely

to adopt inquiry-based teaching strategies in their classrooms than teachers who attend

for less than 80 hours (Darling-Hammond & Richardson, 2009). Goode et al.

administered an end-of-year survey to understand how much the teachers learned

throughout the program. Of the 23 participants who filled out the survey, 91% of

participants listed the program as “useful” or “very useful” and all but one teacher found

that the ECS PD had “some impact” or a “large impact” on their teaching of CS content,

inquiry, and equity (Goode et al., 2014). Written responses to the end-of-year survey also

showed strong connections between the curriculum, pedagogy, and equitable teaching

practices. While these findings do serve as evidence to show that the 2-year program had

a significant impact on the teachers’ understanding of CS and CS pedagogy, we could

better understand how far the teacher had come with a CS knowledge test. A knowledge

test would also allow researchers to compare the results of their PD programs with that of

Goode et al.

Frequently, feedback from PD programs shows a need for “more time” to cover

topics during the programs. The program designed by Milliken et al. shows that changes

can be made to a PD program, aside for increasing the duration, to provide ample time for

the teachers to learn the concepts efficiently (Milliken et al., 2019). A high percentage of

Goode et al.’s participants found their program to be “useful” and impactful (Goode et

al., 2014). These programs both achieved high-levels of teacher preparedness by not only

teaching about CS concepts and linking them to the classroom but also teaching the

teachers how to deliver a specific curriculum. The two programs discussed in this section

 31

are different in length but provide many of the same opportunities for their participants.

With the added length of the program, the designers can follow a specific curriculum that

helps the teachers understand what they will need to teach in their classroom and how

they will need to teach it.

 Conclusion

This review has shown that as the program duration changes, so do the goals and

design of the program. Shorter programs are limited to preparing teachers by providing

resources and teaching materials to their participants and do not allow enough time for

the program designers to cover all or any core CS and CT concepts. Medium length

programs could expand on the content introduced in the short programs. The medium-

length programs added some CS content knowledge and some links to CS pedagogy as

well. Medium length programs can cover CS concepts and CS pedagogy in an expedited

fashion (Pollock et al., 2017), or they can focus on mastery of either CS concepts or CS

pedagogy (Liu et al., 2014). The long-duration programs reviewed included ample

practice on CS concepts but also focused on pedagogy practice as well. The longer

durations also allowed for programs to include more information on what and how the

teachers can teach in their classrooms, including full curriculums. The programs

reviewed here show that there are many different approaches to deliver a CS PD program

with varying levels of CS content knowledge. The amount of CS content knowledge

covered in each program entirely depends on the length of the program. None of the work

reviewed explains why they chose the duration they did. That information would help

others trying to replicate their studies.

 32

Additionally, in measuring the participants’ progress, each of the programs in this

literature review administered attitudinal surveys. While it is beneficial to gather the

attitudes of the teachers, the written or verbal responses fail to provide a concrete way to

compare the knowledge gained by the teachers. Attitudinal surveys, paired with a CS

knowledge test, would be a more effective way also to measure changes in CS content

knowledge. A fully validated CS knowledge test, for example, would allow researchers to

compare changes in CS content knowledge between different CS PD programs.

 Recommendations

When designing a PD program, it is necessary first to identify the goals of the

program and identify any limitations. Examples of limitations could be program duration,

participant background knowledge before the PD program, and school system curriculum

restrictions. After reviewing the limitations, the designers can decide on the program

structure.

For programs limited to a short program duration (1-3 days), success has been

found by merely providing the teachers with materials and tools they can take to their

classrooms and use immediately. Neither of the reviewed programs of short duration got

into CS concepts in-depth. It seems the teachers would not have enough time to grasp the

CS concepts in such a short duration. For that reason, it may be best to refrain from

including CS concepts in any depth other than solely introducing the concepts. This

duration of the program is better fitted for expanding the knowledge of K-12 CS teachers

with solid backgrounds already. If the participants are new to CS and new teaching CS,

 33

the short, 1-3-day workshop will not provide adequate depth of knowledge for the

teachers to be appropriately prepared to teach.

For programs of medium length (4-5 days), a focused program goal becomes

more critical. Depending on limitations aside from duration, the program can focus on

teaching materials, CS concepts, CS pedagogy, or a mix of any two or three of those. For

a program focusing on CS concepts, success was found by mixing text-based and visual

languages or by avoiding text-based programming languages all-together. Instead, these

programs can use drag-and-drop or visual programming languages. The best instructional

strategy will likely depend on the goal of the program since time is limited, and only so

much can be covered in 4-5 days.

For programs of longer durations, the most appropriate approach seems to be a

50/50 split of CS concepts and CS pedagogy coupled with a specific CS curriculum. The

longer the program is, the more opportunities the program designers will have to follow-

up the teachers participating in the program and steer them towards better CS instruction.

However, Milliken et al. proved that their 6-week program was improved by shortening it

to two-weeks, so merely making a program longer will not necessarily make the program

more impactful (Milliken et al., 2019).

Finally, for programs of all lengths, it is necessary to provide some sort of support

for the teachers throughout their journey of implementing CS in their classrooms. The in-

program preparation can only take the teachers so far, and questions will inevitably arise

as the teachers begin implementing the learned materials into their classrooms. Bower et

al. found their participants indicated the need for “peer mentoring networks,” and Pollock

 34

et al.’s participants expressed a need for collaboration and communication amongst peers

(Bower et al., 2017; Pollock et al., 2017). The long-term projects by Milliken et al. and

Goode et al. have this long-term facilitator/participant relationship embedded as part of

their program (Milliken et al., 2019; Goode et al., 2014). A support-network post-

program is a theme throughout successful professional development programs. It is often

noted as a strongly recommended piece to add for any PD programs which does not have

one set up. Another recommendation would be for each researcher to identify the reason

behind the duration of their program, whether that be logistical or financial limitations, or

if the duration was set because the designers were comfortable covering all concepts in

the given time. With this information provided, other researchers can better reproduce the

findings in these papers and better extend their programs from these successful programs.

Lastly, the evaluation of each of these programs could be improved by adding a pre- and

post-workshop knowledge test. With the knowledge test, it is easier to compare the

results of the programs from year-to-year and compare with programs hosted by other

research groups, and such comparison could complement attitudinal surveys well and

provide additional insights. Each of these recommendations will help researchers to

revise their PD program and to prepare quality CS teachers in the future better.

2.3 Question 2: Is programming imperative when teaching CS teachers

how to teach CS?

The second question also addresses the design of PD programs, but this focuses on

programs that incorporate CS concepts in different ways. Several programs incorporate

programming languages such as Python, JavaScript, Java, or other high-level languages

 35

to introduce CS concepts. In contrast, others use more CS-unplugged (no technology

needed) approaches paired with visual programming languages such as Blockly, Scratch,

or other visual programming languages. The programs reviewed in this section will help

us understand the strengths and weaknesses of using text-based programming languages

vs. visual programming languages to teach CS concepts to K-12 teachers.

 Visual Programming Language Programs

This section discusses programming tools used by programs utilizing visual

programming languages, the concepts they cover, and the successes found in the

program.

The first program discussed in this section was developed at the University of

California, LA, and the University of Oregon and was held by McGee et al. (McGee et

al., 2019). The goal of the program is to increase equity in the field of computer science.

To achieve this goal, the designers use the Exploring Computer Science (ECS)

curriculum. The ECS curriculum uses activities that are designed to make the content

“relevant, engaging, and stimulating for a diverse population of students” (McGee et al.,

2019). Margolis points out, in her 2010 book, that CS taught as an abstract academic

subject privileges access to mostly Caucasian, male students (Margolis, 2010). The ECS

curriculum is designed to include a deep engagement of crucial CS concepts and uses the

visual programming language, Scratch. This deep engagement is provided through

meaningful problem-solving experiences, collaborative learning, and paired

programming. The professional development program was designed to embody the same

inquiry-based learning activities while also guiding the teachers to build inclusive

 36

classroom culture. The program was a week-long and included five vital components, (1)

collaborative inquiry in small groups, (2) inquiry specifically in the teacher-learner-

observer model, (3) discussion and reflection about equitable practices, (4) ongoing PD

throughout the school year and a second weeklong workshop the following summer, and

(5) the formation of a learning community.

To evaluate the participants’ ability to teach, McGee et al. distributed pre- and

post-tests to the teachers’ students. They used The Graide Network teaching assistants1 to

score the pre- and post-tests of the students. The Graide Network recruited and trained 26

undergraduate pre-service teachers to score the performance tasks, and they used the

Facts software to conduct Many-Facet Rasch Measurement (MFRM) analysis (McGee et

al., 2019). They saw more than 2 points of growth in the students’ CT knowledge (11.7

on the pre-test and 13.8 on the post-test). Their second evaluation compared the students’

course performance and its correlation with the development of CT after controlling for

student characteristics. McGee et al. considered the student characteristics as pre-test

scores, grade level, gender, race, special education, free or reduced lunch program status

(low-income status), English language learner (ELL), attendance rate, cumulative GPA

(only the year which the student completed the ECS curriculum), and the grade received

in the ECS course (McGee et al., 2019). After controlling for those characteristics, they

analyzed the correlation with these characteristics and the students’ post-test scores.

There was no statistical difference in post-test performance by gender, race/ethnicity, or

level of family income. There was a negative difference in post-test performance by ELL

1 The Graide Network finds trained teaching assistants and matches them with the needs of your program to evaluate

students work.

 37

and special education students. Their overall GPA, school attendance rate, and

performance in the ECS course did show a significant correlation to post-test

performance, and they saw a higher number of students achieve competency at post-test

than pre-test. While this does not tell us a lot about the preparedness or knowledge levels

of the participants in the PD program, it does tell us the success their students (non-ELL

and non-special education) found using the ECS curriculum. Evaluating the teachers’

students is a different way of analyzing the impact of a PD program that is typically

paired with teacher-centered pre- and post-tests to gain a better understanding of the PD

program impact. A valuable comparison that could then be made is teacher post-program

test vs. student post-class test to identify the value of teacher performance in the PD

program. More information on the PD program and the participants would have also been

beneficial to understand how successful the program was in preparing the CS teachers.

Kong and Lao designed the next program. Kong and Lao focused on enhancing

K-12 students’ problem-solving ability through CT education. They believed the first step

to achieving that is to prepare the K-12 teachers to teach about CT (Kong & Lao, 2019).

Their program was implemented in the 2017/2018 academic year to 80 teachers. Of the

80 teachers, 46 were male, and 34 were female. The participants’ average years teaching

was 11.7 years, and 64 of the teachers had taught computer science or information

technology courses. 20 of the 80 teachers held computer science degrees. The program

contained two courses, the Teacher Development Course 1 (TDC 1) and Teacher

Development Course 2 (TDC 2). Each TDC lasted 39 hours (13 3-hour sessions), and the

first TDC must be completed to attend the second TDC. TDC 1 focused on building the

teachers’ knowledge of CT concepts, practices, and perspectives. At the end of TDC 1,

 38

the teachers developed a mobile app to solve problems like those seen in the classroom.

TDC 2 emphasized CT pedagogy and included paired programming, programming

activities, and ways to evaluate student work (Kong & Lao, 2019).

Many of the CT concepts, practices, and perspectives from the first course were

reviewed in the second course as well. The program used visual languages and

pseudocode to deliver their TDC 1 and TDC 2 courses. This decision was made at the

recommendation of Brennan and Resnick (Brennan & Resnick, 2012), which they

consider to be an effective way to teach CT to beginners. To evaluate the effectiveness of

the program, the designers constructed their own, five-question, paper-and-pencil test that

provided the teachers with real-life problems and allowed space for pseudocode answers.

They provided two test question examples. The first question focused on the teacher’s

ability to debug and can be found in Figure 2.1 (Kong & Lao, 2019). The second example

was question four on the test and evaluated the participants’ ability to abstract and

algorithmically think (Kong & Lao, 2019). This question can be found in Figure 2.2.

 39

Figure 2.1 Question 1 of Kong and Lao’s Summer PD program test of CT skills.

 40

Figure 2.2 Question 4 of Kong and Lao’s Summer PD program test of CT skills.

 41

The test was administered on three separate occasions. The first test was

administered before TDC 1, the second was the last part of TDC 1, and the third was after

the TDC 2. The test inter-rater reliability was 0.98 for the first test, 0.97 for the second,

and 0.99 for the third and had a Cronbach alpha score of 0.79, showing it had acceptable

internal reliability (Kong & Lao, 2019). The teachers’ test scores improved 2.54 points

from pre-TDC 1 to post-TDC 1 and improved by another 2.62 points from post-TDC 1 to

post-TDC 2 for a total gain of 4.32 points (Kong & Lao, 2019). Notice we did not see any

CS concepts explicitly covered in this program, the testing of teachers’ understanding of

CT concepts involved pseudocode and CS concepts. Excluding CS concepts might be a

strategic design decision in this situation since ¼ of the teachers held CS degrees, and

many teachers had been teaching CS for many years. The goal of Kong and Lao’s

program was to introduce the teachers to CT concepts, and they were successful in doing

so. Still, it could have been tied together with CS concepts to give the teachers a more

well-rounded understanding of the relationship between CT and CS. Also, the evaluation

method used, although statistically sound, makes it difficult to compare the program to

other similar programs since Kong and Lao used an independently created evaluation tool

(Kong & Lao, 2019).

 In the visual programming language-centered programs, we saw a heavier

emphasis on CT concepts over CS concepts. Noone and Mooney (2018) noted in their

research on visual programming languages that researchers tend to agree that visual

programming languages tend to fall short when facing complex CS. While this may be

true, visual programming languages have been a successful tool when introducing

teachers to CT concepts, as verified by Brennan and Resnick (Brennan & Resnick, 2012).

 42

An opportunity for studying the success of visual programming languages on CS content

knowledge would be to compare the content knowledge scores of two samples, one using

visual programming languages and the other using text-based programming languages.

That way, we can identify if visual languages can be successful in teacher CS as well as

CT.

 Text-Based Programming Language Programs

This section will highlight the advantages and shortcomings of text-based

programming languages. In general, text-based programming languages encourage a

deeper understanding of CS concepts to solve many problems compared to visual-based

programming languages.

Lee et al. held a year-long PD program for 66 in-service high school STEM

teachers (Lee et al., 2017). The goal of the program was to teach content and scientific

practices in the spring and pedagogy and recruitment techniques during the summer. The

PD had seven components: a kick-off conference, an online university course, fall and

spring online debriefings, a summer workshop, facilitator support, an online community,

project staff support, and a wrap-up workshop. The first weeks of the curriculum focused

on fundamental CS concepts through CS Unplugged activities. Later, teachers had the

opportunity to write programs using NetLogo, a text-based programming environment

used for agent-based modeling. Lee et al. noted that the teachers came away from the

user-based modeling exercises with “…a broader understanding of the use of CS and

computational tools in scientific research across many fields” (Lee et al., 2017). The user-

 43

based modeling language allows for connections between CS and real-world phenomena,

which is why this language was chosen.

To gauge the teachers’ CS concept understanding and attitudes toward CS, Lee et

al. used a pre- and post-program survey. On the survey, 100% of the teachers from the

PD program rated the PD “Very Good” or “Excellent” (Lee et al., 2017). The CS

understanding also significantly improved from 68% pre-program to 73% post-program.

Note, the 68% pre-program score is already high, so these participants were high-

performing teachers coming into the program. The small increase was still statistically

significant.

Additionally, all but one (65/66) teachers indicated feeling at least somewhat

comfortable using computer models to conduct scientific inquiries. The outcomes from

this program show that the program did an excellent job of engaging the teachers in CS

practice and opening the teachers’ minds to new ways CS can be used. It would be

constructive for Lee et al. to share the CS questions from the survey so other researchers

can see which topics were tested and improved by using text-based programming

languages in the PD program. Another possible improvement to be made is to link the CS

concepts and the CS pedagogy much sooner rather than in different workshops.

Desmoine and Garet have found that explicitly linking CS teaching to the teachers’

classroom lessons will lead to more success in preparing teachers to teach CS (Desimone

& Garet, 2015). This link can be challenging to make when facilitating a PD program

using a text-based programming language. A text-based programming language may not

be an instructional tool used by the teachers in their classrooms; however, this link

remains essential and needs to be heavily emphasized in the program. Finally, the year-

 44

long length of this program is beneficial for the teachers’ sustained learning, but this is

logistically difficult to replicate in other programs. Overall, this program design is

successful. The impact of this program could be made more transparent by providing

more details on the measurement tools used.

Another program that was heavily content-focused using text-based programming

languages was designed by Leyzberg and Moretti (Leyzberg & Moretti, 2017). Their goal

was to offer a content-focused PD opportunity for teachers that lack strong CS

backgrounds. The program was adapted from a college CS course to cover a week worth

of content each day. The program was one week long, and the days went from 9 a.m. to 9

p.m. Each day consisted of a morning video lecture followed by a content break and then

a second video lecture. The content breaks varied from day-to-day and included

pedagogical tool discussion, discussions with the facilitators, and simply breaks between

highly cognitive lectures. The participants lived on the campus during the program.

During lunches, the teachers were encouraged to eat together and discuss each other’s

classrooms and how the different approaches they might use to incorporate the content

from the program into their classrooms. The lectures provided hands-on experience with

CS concepts, practice applying the concepts, and first steps towards creating assignments.

The concepts taught during the PD were more advanced than most: input/output,

recursion, algorithm, and data structure analysis, key-value data structures, Boolean

logic, decimal/hexadecimal/binary conversions, machine learning, intractability (P vs. NP

and NP-completeness), and circuit design (Leyzberg & Moretti, 2017). The average self-

assessment on programming skills was 3.8/5, and on Java programming language was

3.5/5, where five means they are a “seasoned veteran.” It was not clear whether these

 45

self-assessment scores were pre-PD or post-PD. Regardless, these scores are exceptional,

especially so if they are pre-PD scores. Daily surveys were administered to gauge the

engagement and pace of the participants. The minimum daily average for engagement

was 3.8/5, and the maximum was 4.5/5. The participants were also asked about the pace

using a Likert scale where 1 meant “too slow,” and 5 meant “too fast,” meaning 3 is an

ideal score. The maximum daily average was 3.5/5, and the minimum was 3.3/5

(Leyzberg & Moretti, 2017). This finding means the teachers felt the program was going

only slightly “too fast,” and the feedback was overwhelmingly positive. This program

was fast-paced and covered some advanced CS concepts. It is encouraging that the

participants could handle both the pace and the content presented. The teachers’ ability to

keep up with the advanced, fast-paced program suggests that the teachers did not lack

strong CS backgrounds before the program, as Leyzberg and Moretti stated (Leyzberg &

Moretti, 2017). If the purpose of this program were to offer strong CS content to teachers

who lacked that, then it would seem logical to cover the basic CS concepts in-depth.

Since the designers did not do this, it seems the participants may have had a better

understanding of the basic CS concepts than was led on when this program was

introduced. This research could be strengthened by expanding on the designer’s

definition of “strong CS background” since it seems to vary from this workshop to others.

Again, it is encouraging to see the participants were able to handle the advanced CS

concepts, but the program needs to be more explicit about the targeted participants.

Overall, in the text-based programming language programs, we see more difficult

concepts being covered during the programs. Additionally, these programs are typically

longer (one week or longer). Any shorter than one week, and the teachers likely will not

 46

have time to learn the concepts and the programming language. Both programs were

found to be beneficial to the participants and well-received.

 Text-Based vs. Visual Programming Languages

In both text-based and visual programming language programs, we saw a

significant increase in content knowledge scores. Although both program types saw

increases in content knowledge, we suspect that the content knowledge tests focused on

many different concepts. We also suspect that high performing participants from one

program would not necessarily score highly on another program’s content knowledge test

due to the difference in the content covered. Both program types also saw similar positive

feedback about the program design. In terms of a content knowledge advantage, it is

difficult to find one between the two program types because each program uses a

different measure. There seem to be two determinants for using one design over the other.

The first is the allotted program length; any program under one weeklong will have a

harder time introducing a text-based programming language. The other determinant is the

goal of the participants and the program designers. Grades 6-8 teachers may require text-

based programming experience to effectively teach their classrooms, whereas grade K-5

teachers may only need visual programming experience. Other factors go into this

decision, but these two are the main factors influencing the program design.

 Conclusions

This review has shown that there are differences between PD programs using text-

based vs. visual programming language. While both types of programs showed an

increase in the teachers’ content knowledge, they do so in different ways and result in

 47

different levels of CS content understanding. The visual programming languages allow

the teachers to see the CS concepts abstractly. In contrast, the text-based programming

languages request the teacher’s attention to the intricacies of the respective programming

language and how they are used to solve problems. While the program measures were not

included in any of the four program reports, there were likely differences in the measures

between the visual programming language programs and the text-based programming

language programs. The most substantial difference between the two types of programs

were the goals of the designers and the participants. For programs where the goal is to

introduce new topics to teachers without much of a learning curve, a visual programming

language would make sense to facilitate the PD program. For programs that seek to

prepare the teachers by giving them in-depth knowledge of CS concepts, it would be

more appropriate to use a text-based programming language. The trade-off in choosing a

programming language is that visual programming languages are easy to learn but do not

allow for in-depth CS content to be learned, and text-based programming languages are

more challenging to learn. Still, they can provide a deeper understanding of CS concepts.

We believe that these programs were rated highly by the participants because the design

of the PD fit the background, experience, and goals of the participants well. This belief

seems to be the case because the programs that covered much more difficult CS concepts

had reviews similar to the programs that covered introductory CS and CT concepts and

did not go as far in-depth.

 Recommendations

During the program design period, it is best to evaluate the background of the

teachers in the program and the learning outcomes associated with the program being

 48

designed to ensure a beneficial program for the participants. An entry exam could be used

to make sure that the teachers in the program will be ready to handle and benefit from the

content covered during the program. Once the background of the teachers and the

concepts they are missing is known, the next step is to decide if the program needs to be

like a college CS 1 course or if the goal is to introduce CS and CT and not go in-depth on

any of the CS concepts. If the goal is the teach CS in-depth and ample time is available to

explore the complex CS concepts, it would be suitable to incorporate some text-based

programming language. On the other side, if the goal is to introduce CS and CT to the

teachers, then a visual programming language may be more appropriate. In general, it is

also recommended that teachers are informed of the PD’s goals and expectations

accordingly before participating in the PD program to facilitate motivation. Likewise, it is

also recommended that a PD program collects daily feedback and adjusts its design

accordingly to tailor it better to teachers’ ability and background. Another critical factor

to pay attention to is the amount of time available for holding the PD program. If the

program is less than a week in length (or 40 hours), it would be recommended not to try

and introduce a new text-programming language since the learning curve of text-based

programming languages could hinder the actual CS content learned. These are the main

recommendations that can be made based on this review.

 49

Chapter 3: Cohort 1 Summer PD Program

3.1 Program Structure

The PD program was held on two consecutive weeks in June 2019 and ran daily

from 8:00 a.m. to 5:00 p.m. The PD program served 44 K-12 teachers. Of the 44 teachers,

29 teachers are elementary teachers (K–5), 17 are middle school teachers (6-8), and two

are middle school teachers who also teach some high school classes (9-12). Some

teachers belong to two groups (teach elementary and middle school students or teach

middle school and high school students). The study contained 34 female teachers and ten

male teachers.

 Week 1 CS Content Course

The first-week course covered CS and CT topics. The schedule can be found

below in Figure 3.1. The course was taught by a professor from a midwestern university

and a team of four teaching assistants (TAs): one graduate and three undergraduates. All

activities, assignments, and announcements were available for the teachers via the online

learning tool, Canvas.

The teachers had homework assignments related to the content taught each day.

The homework was assigned at the end of each day and was due at midnight on the same

day. There was no assignment on the last day to allow time to finish the final project

before the start of the second course. The first three homework assignments included an

additional extra credit assignment, which extended the original assignment. The Cohort 1

assignments can be found in Appendix B.1. There was a cumulative exam on the last day

 50

consisting of CS and CT knowledge tests. This exam was taken by 29 teachers pre-

program and by all 44 teachers on the last day of the first course. The pre- and post-test

made it possible to measure the 29 teachers’ change in CS and CT content knowledge.

There were also three group activities based on Computational Creativity

Exercises (CCE), designed to develop the teachers’ CT skills through collaboration

(Peteranetz et al., 2018). These exercises are akin to “CS Unplugged” exercises for open-

ended problem solving using computational thinking and creative thinking skills (Miller

et al., 2019). The CCEs can be found in Appendix C. Additionally, a final group project

was assigned that allowed teachers to pick one CS topic and one CT topic and create a

lesson for their respective grade levels. This group project can be found in Appendix

B.1.5. The lessons were then presented in small groups, which included at least one

member of the instruction team and one other teacher group. As part of the final project

and after the presentations were delivered, the teachers individually created assignments

to go along with their lesson plans. The final project can be found in Appendix B.1.6.

 51

Figure 3.1 Cohort 1 Summer PD program’s first-week CS/CT content course
schedule.

 Week 2 CS Pedagogy Course

The second-week course was held at a local school district conference center. The

course was taught by four different CS teachers -- a college professor, a high-school

teacher, a middle-school teacher, and an elementary school teacher. Presentations were

arranged, so each instructor had a chance to talk about teaching the concepts of loops,

variables, conditionals, and functions at their grade level, allowing teachers to understand

curricular progressions across the K-8 grade span.

An outline of the course schedule can be found below in Figure 3.2. Daily

reflections were completed online at the end of each day and were graded for completion.

 52

Teachers were also divided into grade-level groups and were tasked with presenting a

lesson they would deliver to their respective grade-level. The final assignment was an

individual implementation plan that required the teachers to explain how they would be

integrating CS into their curriculum in the following academic year.

Figure 3.2 Cohort 1 Summer PD program second-week CS pedagogy course
schedule.

3.2 Data Analysis

 Description of Data

There are three sets of data:

1. The first data set is from a project-developed, pre- and post-program

survey that assesses teacher self-confidence in (a) teaching CS (16 items,

e.g., “I can adapt existing CS lesson plans to meet the needs of my

students.”) and (b) their CS skills (6 items, e.g., “I can design and

iteratively develop/refine CS programs.”). The confidence items were

measured using a slider scale. The teachers indicated how confident they

 53

were they could achieve each scenario by indicating a probability of

success from 0 (0% confident) to 100 (100% confident)).

2. The second data set comes from a pre-post survey that assesses teacher

attitudes towards CS. The nine attitudinal items used a Likert scale (1:

strongly disagree, 2: disagree, 3: neutral, 4: agree, 5: strongly agree) to

measure personal interest in CS (e.g., “I find the challenge of solving CS

problems motivating.”) and the perceived value of CS (e.g., “Reasoning

skills used to understand CS can be helpful to me in my everyday life.”).

This instrument was developed by adapting the Computing Attitudes

Survey (Dorn & Tew, 2015), which was validated with undergraduate CS

students.

3. The third data set comes from a pre- and post-assessment measured

teacher knowledge of CS concepts (Shell et al., 2017) and computational

thinking (Peteranetz et al., 2020). The post-assessment measured CS and

CT knowledge and was used as the final exam. The test separates the high

performers from the low performers. Instead of the C average being

around 70%-80% as a typical grade scale, the average test scores were

around 50%, which indicates average performance and is not a failing

grade (Shell et al., 2017).

 Participant Breakdown

In this two-week summer PD program, there were three groups of teachers. The

first group was the model-district CS teacher group, which consisted of 19 teachers from

 54

a local model school district. This group of teachers were recognized nationally for their

CS program. The second group was ten non-model-district CS teachers. Most of the

teachers from these first two groups completed the pre- and post-program surveys

participated in the pre-program knowledge test, and participated in the second-week

course on CS pedagogy. The third group consisted of 15 non-CS teachers from rural

districts around the state (not including the model district) who were involved in a

program focusing on the development of educational leadership of rural teachers in

STEM. These teachers were not planning to teach CS in the next academic year, did not

participate in the pre- or post-program survey, the pre-program knowledge test, nor the

second-week course on CS pedagogy. All 44 of the teachers who participated in the first-

week CS content course took the post-program knowledge test as it was part of the grade

for the course. A breakdown of the different groups and their participation can be found

in Table 3.1.

Table 3.1 Breakdown of the participating groups in Cohort 1.

Group Number of Participants in Group
Model-District CS Teachers 19
Non-Model-District CS Teachers 10
Non-CS Teachers 15
Non-Model-District Teachers 25 (Non-Model-District CS Teachers + Non-CS Teachers)
Research Cohort 29 (Model-District + Non-Model-District CS Teachers)
Pre-Survey 28 (Research Cohort - 1)
Post-Survey 25 (Research Cohort - 4)
Took Both Surveys 24 (Research Cohort - 5)
Pre-Test 29 (Research Cohort)
Post-Test 44 (Research Cohort + Non-CS Teachers)
First-week Course 44 (Research Cohort + Non-CS Teachers)
Second-week Course 27 (Research Cohort - 2 teachers who could not participate)

 55

3.3 Results

 Impact of PD Program on Cohort 1

The first research question was, “What was the impact of the CS summer PD on

teacher’s (a) knowledge of CS concepts, (b) knowledge of computational thinking, (c) CS

attitudes, (d) confidence in CS knowledge and (e) confidence in teaching CS?”. To

address these questions, the pre- and post-survey data (31 total items each) collected from

29 participants who participated in both the pre- and post-program knowledge test were

used. T-tests were used to compare each of the specified target groups. A breakdown of

the results can be found in Table 3.2.

Table 3.2 Evaluation of the impact of the Cohort 1 CS PD program by comparing
pre-program and post-program knowledge, attitude, and confidence scores (mean,

standard deviation, t-value, degrees of freedom, significance value).

Test Scale npre x̅pre σpre npost x̅post σpost t df p

Knowledge of
CS

100 28 30.49 17.58 44 49.5 19.30 5.27 27 <.001

Knowledge of
CT

100 28 54.76 17.68 44 65.45 14.73 3.38 27 <.005

CS Attitudes 5 28 4.54 0.43 25 4.60 0.32 1.22 23 0.24

Confidence in
CS

100 28 61.42 27.41 25 71.53 23.17 2.96 23 <.01

Confidence in
Teaching CS

100 28 73.51 21.70 25 83.40 11.26 4.49 23 <.001

 56

 Knowledge of CS Concepts

A paired t-test was used to find the teachers’ knowledge of CS concepts improved

significantly: t(27) = 5.27, p < .001. This result shows that the summer CS PD program

had a significant positive impact on the teachers’ CS concept knowledge.

 Knowledge of CT Concepts

A paired t-test was also used to find the teachers’ knowledge of computational

thinking improved significantly: t(27) = 3.38, p < 0.01.

 CS Attitudes

Only 24 of the 29 research cohort teachers completed both the pre- and post-

program survey. Although teachers’ attitudes improved from pre to post, a paired t-test

showed no significant pre-post difference in teachers’ attitudes: t(23) = 1.22, p = 0.24.

The teachers possessed great attitudes pre-program (M = 4.53 on a five-point scale). This

result indicates that the PD program had been able to recruit motivated teachers into the

program, where increases in CS attitudes would be hard to achieve.

 Confidence in CS Knowledge

The teachers’ confidence in CS concepts was measured using a 6-item subset of

the CS teaching confidence survey discussed above in Section 3.2.1. Again, only 24 of 29

teachers from the research cohort completed this survey both pre- and post-program. A

paired t-test showed the teachers’ confidence in CS concepts improved significantly from

pre- to post-program: t(23) = 2.96, p < 0.01. However, of the 29 teachers that took the

post-program CS confidence survey, 56% (14/25) of the teachers reported being over

 57

70% confident with the CS concepts. This result is likely attributed to the short nature of

the PD program. Some of the CS concepts were new to the teachers and could not be

covered to the necessary extent. Additionally, the concepts were taught alongside

programming in Python, and most teachers were new to programming in a high-level

language. Many teachers struggled with syntax issues while learning new concepts,

which may have kept the teachers from gaining confidence.

 Confidence in Teaching CS

Only 24 teachers completed the survey, both pre- and post-program. Teachers’

confidence in teaching CS improved significantly using a paired t-test: t(23) = 4.49, p <

.001. Furthermore, of the 25 teachers who filled out the post-program survey, 80%

(20/25) reported strong confidence (over 70%) in their ability to teach CS.

 Model-District vs. Non-Model-District Teachers

The second research question addresses the difference in performance between

the model-district CS teachers and the non-model-district teachers in the summer PD.

Table 3.3 contains details about the data analysis performed in this section. Note, the

non-model-district teachers include the ten non-model-district CS teachers and the 15

non-CS teachers. Before the summer PD program, the research cohort, 28 of the 44

participating teachers (19 from the model-district CS teachers and nine non-model-

district CS teachers), completed the pre-program surveys on confidence and attitudes

discussed earlier and knowledge tests described in the Section 3.2.1. The model-district

CS teachers exhibited significantly more knowledge of CS concepts (t(26) = 2.95, p <

0.01), CT concepts (t(26) = 2.28, p < 0.05), CS concept confidence (t(26) = 4.65, p <

 58

0.005), and CS teaching confidence (t(26) = 4.54, p < 0.005) than participating teachers

from other districts. The model-district teachers have been involved in CS curricular

development, training, support from teachers in CS education, learning progression and

assessment, and meaningful use of resources to teach CS and CT (e.g., robots,

programmable Altera boards, and other interfaces). Indeed, the model-district won a

nation-wide award as a school district in K-12 CS education in 2018. Meanwhile, there

was no significant difference between the two groups in terms of CS attitude: t(26) =

1.55, p = 0.13. This result again testifies to the high motivation of the teachers recruited

into the PD program.

Recall, all 44 teachers, 19 model-district CS teachers, and 25 non-model-district

teachers took a post knowledge test containing CS and CT concepts covered during the

program as the week-one course’s final test. There was no significant difference between

the post-program knowledge test scores of model-district CS teachers and non-model-

district teachers for both CS, t(42) = 2.00, p = 0.06, and CT concepts, t(42) = 1.07, p =

0.29. However, post-program, a significant difference between the model-district teachers

and non-model-district teachers emerged when their CS concept confidences t(23) = 3.11,

p < 0.005, CS teaching confidence (t(23) = 4.54, p < 0.001), and CS attitudes (t(23) =

2.13, p < 0.05) were measured. Note, only 16 of the 19 model-district teachers and 9 of

the 25 non-model-district teachers completed the post-program CS concept confidences

survey. This finding indicates that the teachers from the model-district were more

confident than non-model-district teachers after the PD program, which has an insightful

implication. These findings demonstrate that teachers with CS teaching experience

(model-district teachers) have significantly more confidence post-program compared to

 59

teachers with little-to-no CS teaching experience (non-model-district teachers) even

though they have the same level of CS concept knowledge after experiencing the summer

PD program. The lower confidence of non-model-district teachers could be due to their

lack of familiarity with teaching CS or the lack of peer support and available CS-related

resources.

Table 3.3 Cohort 1 Model-District (MD) vs. Non-Model-District (NMD) teacher
mean, standard deviation, t-value, degrees of freedom, and significance values for

each test.

Test Scale nMD x̅MD σMD nNMD x̅NMD σNMD t df p

Knowledge of CS
(pre-program)

100 19 36 18 9 18 8 2.95 26 <.01

Knowledge of CT
(pre-program)

100 19 60 15 9 44 18 2.29 26 <.05

Confidence in CS
(pre-program)

100 19 73.91 18.34 9 35.06 25.05 4.65 26 <.005

Confidence in
Teaching CS (pre-
program)

100 19 83.25 11.69 9 52.92 24.05 4.54 26 <.001

CS Attitude (pre-
program)

5 19 4.61 0.39 9 4.35 0.48 1.55 26 0.13

Knowledge of CS
(post-program)

100 19 55.89 21.86 25 44.64 15.89 2.00 42 0.06

Knowledge of CT
(post-program)

100 19 68.26 13.36 25 63.32 15.62 1.07 42 0.29

Confidence in CS
(post-program)

100 16 80.78 16.70 9 55.07 24.72 3.11 23 <.005

Confidence in
Teaching CS (post-
program)

100 16 88.66 7.23 9 74.05 11.34 4.54 26 <.001

CS Attitude (post-
program)

5 16 4.70 0.32 9 4.43 0.23 2.13 23 <.05

 60

 Factors Driving Teacher Performance

The third research question focused on factors that predicted success in the

program. The factors evaluated were teacher confidence, plans to teach CS in the next

year, and grade level of instruction.

 Confidence in CS Content

A 6-item subset of the full 22-item pre-program survey was used to measure the

teachers’ confidence in the CS content (i.e., “I can design and iteratively develop/refine

CS program.”; “I can document my programming solutions so that they are

understandable to my peers.”; and “I can decompose problems in ways that can be solved

algorithmically.”). As described in Table 3.1, 28 teachers participated in the pre-program

survey. Table 3.4 details the results of the data analysis in this section. A positive

correlation was found between the 6-item subset and the post-program teachers’

knowledge test scores (r = 0.38, p < 0.05). Based on this information, the test scores were

divided into two groups based on the teachers' confidence levels, below-average

confidence (nbelow = 11), and above-average confidence (nabove¸= 17), as indicated by the

6-item subset of the pre-program CS concept confidence survey. The average score on

the confidence survey was 61.42 of 100, so that is the cut-off chosen for below- and

above-average. A significant difference was discovered between the test scores of the

teachers with above-average confidence and the teachers with below-average confidence,

t(26) = 2.17, p < 0.05. These results suggest that pre-program CS content confidence

levels can be used as an indicator of teachers’ knowledge performance levels in a CS PD

program.

 61

Table 3.4 Measuring the impact of pre-program CS confidence by comparing
Cohort 1 test scores of teachers with above (abv) average confidence coming into the

program vs. teachers with below (blw) average confidence.

Test Scale nabv x̅abv σabv nblw x̅blw σblw t df p

Test scores (abv vs.
blw)

100 17 63.76 17.05 11 51.03 11.52 2.17 26 <.05

 Plan to Teach CS Following AY

29 of the 44 teachers participating in the PD had plans to teach CS at the K-12

level. There was no significant difference between the post knowledge test scores of the

teachers who would be teaching CS in the following academic year (AY) to the teachers

who would not, t(42) = -0.29, p = 0.77. Table 3.5 details the results of the data analysis in

this section. A teacher’s plan to teach CS in the following AY did not have an impact on

their performance (in terms of their knowledge tests). A positive difference in

performance from the teachers who would be teaching in the next school year was

expected—with the premise that those teachers would be more motivated—but that was

not the case.

Table 3.5 Evaluation of outcomes from Cohort 1 teachers planning of teaching (T)
in the next AY vs. Cohort 1 teachers not teaching (NT) in the next AY on post-

program test scores.

Test Scale nT x̅T σT nNT x̅NT σNT t df p

Test scores (T vs. NT) 100 30 58.28 15.91 14 59.68 11.30 -0.29 42 0.77

 Grade Level of Instruction

No significant difference was found between the teachers’ grade level of

instruction (i.e., elementary (K-5) vs. middle-school (6-8) on the performance of the

 62

teachers on the knowledge tests (t(42) = 0.59, p = 0.55). Table 3.6 details the results of

the data analysis in this section. Better test scores were expected from the middle-school

teachers since they need higher STEM capabilities to teach their grade-level. Instead, no

significant difference was found between elementary teachers and middle school teachers

in their knowledge test scores. The higher expectations of middle school teachers were

not met, which could mean the necessary STEM capabilities of middle school teachers

compared to elementary school teachers may not be significantly impacting their learning

of CS content.

Table 3.6 Evaluation of Cohort 1 K-5 elementary (E) teachers vs. 6-8 middle school
(M) teachers test scores.

Test Scale nE x̅E σE nM x̅M σM t df p

Test scores (E vs. M) 100 26 59.80 12.49 18 57.17 17.24 0.59 42 0.56

3.4 Program Evaluation

This section includes an evaluation of the program used in this study. SWOT

(Strengths, Weaknesses, Opportunities, Threats) analysis, a proven analysis tool (Hill &

Westbrook, 1997), was used to identify what went well and what needed improvement.

The strengths section (Section 3.4.1) of SWOT focuses on the successes. The weaknesses

section (Section 3.4.2) pinpoints areas where that need to improve. The opportunities

section (Section 3.4.3) focuses on how possible improvements based on feedback,

insights, and experiences. The threats section (Section 3.4.4) highlights potential threats

to the success of the program. SWOT analysis was used to help inform decisions made

about the next PD program delivery.

 63

 Strengths

 Instruction Team

There were enough members on the instruction team (one faculty instructor, one

graduate TA, and three undergraduate TAs for the first-week course, and four master

teachers as instructors for the week-2 course) to help all teachers promptly. The

instruction team was adaptive to the teachers’ needs throughout the two courses. They

created new examples and altered course content on the fly to fit the teachers’ needs.

 Post-Course Knowledge of CT and CS Concepts

The 29 teachers from a local school district took the same pre- and post-program test

over CT and CS concepts to measure their knowledge gained. The teachers who took the

test had CS experience before the course. It was seen earlier that the teachers’ CS and CT

knowledge improved significantly. This improvement showed that the summer CS PD

program had a positive impact on the teachers’ CT and CS concept knowledge.

 Sustained Duration

The program continues during the academic year and into the following summer,

which gives the teachers more resources and time to learn the CT and CS concepts. A

Virtual Community was set up through Listserv so the teachers can collaborate, share

ideas, and ask each other for help after the course ends. During the academic year, the

teachers will meet five times to go over the CT, and CS concepts learned over the

summer, share class materials, and connect with the other teachers. The following

 64

summer, the teachers will take a second two-week course on CT and CS concepts and CS

and CT pedagogy.

 Encouraged Collaboration

Through collaboration, the teachers were able to help each other better understand the

difficult concepts. K-8 teachers are experts at breaking down difficult concepts into terms

that are understood by their peers.

 Weaknesses

 Limited Active Learning in the First-Week Course

The first-week course used lecture-based learning mixed with hands-on group

activities and programming tasks, but the lecture aspect did not engage the teachers.

Teachers learned best when active learning activities followed short, brief lectures. Thus,

more active learning activities were incorporated than initially planned.

 Lack of Alignment Between Instructor vs. Teacher Goals in the First-Week

Course

The goals of the instructor and the goals of the teachers did not align during the PD

program. The instructor hoped the teachers would become capable programmers while

learning CS and CT concepts while the teachers hoped to learn how to teach CS concepts

to their students. The teachers were not prepared to learn the concepts through

programming. The teachers had a difficult time with the programming language itself—

especially its syntax and abstraction aspects—and therefore was not a practical approach

for engaging teachers in learning about CS and CT concepts. We missed a significant

 65

opportunity to link the concepts learned each day to their classroom instruction when we

taught the CS concepts and the CS pedagogy separately.

 The Limited Virtual Community During Academic Year (AY)

Slack, a Cloud-based instant messaging software, as a virtual community after the

program, but the teachers did not make use of the site. The lack of engagement could be

due to the teachers’ unfamiliarity with Slack. Regardless, the virtual community moved

to Listserv, a more accessible service that connects groups of people through their email.

Both attempts to create a virtual learning community have fostered little to no

communication. An active virtual learning community needs to be developed for future

PD programs.

 Attempted to Cover Too Many CS Concepts

It was planned for the first-week CS content course to cover basic concepts like

strings, variables, conditions, and loops before progressing to more complicated concepts

like functions, recursion, sorting, and searching. After covering the basic concepts, the

teachers still had difficulty with loops and conditionals. Therefore, the teachers were not

prepared for the transition to the more difficult concepts.

 Opportunities

 Restructure Data Collection Tools for the Next Cohort

Data collection tools need to be restructured for the next cohort for smoother data

analysis. Services such as Google Forms can be used to collect teacher responses, store

 66

them all in one place, and keep a consistent format so that the data analysis process will

be efficient.

 New Teacher Background Delivering a Fresh Approach

The next cohort of teachers taking the course will have no or little experience in

teaching CS. The hope is that the new teachers will adopt a different approach to learning

CS, allowing us to gain additional insights into what teachers’ motivation, self-efficacy,

perceived instrumentality, as well as approaches to learning, giving us a more

comprehensive picture of teacher attitudes and learning performance.

 Multiple Feedback Opportunities

Feedback collected from the teachers, and feedback still being collected will be used

in designing upcoming PD programs. Feedback will be gathered during five meetings this

academic year, from the in-class observations of the teachers teaching their students, and

from the teacher leaders.

 Funding for New Teaching Tools

The teachers in this study were funded to utilize new teaching tools in their

classrooms. All elementary and middle school teachers receive funding to purchase CS

instructional hardware and software as part of participating in the PD program. The first

cohort used the available funds to purchase educational robots and tablets. The multiple

feedback opportunities will show how new educational tools are utilized. The suggested

tools can then be used in future programs to better familiarize the teachers with tools they

could be using.

 67

 Threats

 CS1 College Credit

Over the week, material covered needed to be reduced to accommodate the speed the

teachers were learning. Thus, the material may have been altered to the point that not all

the CS concepts specified in the course requirement were taught in-depth or at the

intended level of rigor, though all basic CS concepts were covered. For example, at the

beginning of the course, basic concepts (variables, Boolean logic, conditionals, loops,

functions) and some advanced concepts (recursion, file I/O) were planned to be covered,

but after altering the material only the advanced concepts, recursion, and file I/O, were

briefly covered.

 Individual Work is Challenging to Facilitate

The teachers were accustomed to collaborating on most assignments, and perhaps

also because of their prior PD experiences, they prefer to continue to work together on

their assignments. The teachers’ collaboration made it challenging to design and facilitate

individual work and comprehensive individual measures of CS and CT knowledge (e.g.,

assignments on reflection, analysis, and programming) in addition to the individual end-

of-course knowledge tests.

 Range of Instructors’ Grade Levels

The teachers had varying levels of experience with CS and taught different grade

levels. Catering materials to each grade level and experience level was a challenge. The

 68

course was designed so teachers without a CS background could be successful, but

teachers with CS background may have felt unchallenged.

 69

Chapter 4: Cohort 2 Summer PD Program

4.1 Program Structure

The PD program was held on two consecutive weeks in June 2020 and ran daily

from 8:00 a.m. to roughly 5:00 p.m. Due to the COVID-19 virus and social distancing

guidelines, the program was taught online via Zoom video conferencing technology. The

instructor used one camera to show his face and one camera to share slides, code,

examples, document cameras, and teaching aids. Zoom breakout rooms were used

heavily to facilitate group activities.

 Morning CS Content Course

The program structure covered CS concepts using JavaScript in the morning

session and CS pedagogy in the afternoon session. This section will focus on the

morning, CS content session. The schedule for the morning can be found below in Figure

4.1 and Figure 4.2. The morning session was taught by a local high school teacher, a team

of three teaching assistants (TAs): one graduate and two undergraduates, and two top-

performing teachers from the previous cohort. All activities, assignments, and

announcements were available for the teachers via the online learning tool, Canvas.

 70

Figure 4.1 Cohort 2 Summer PD program’s CS/CT content morning course
schedule – Week 1.

 71

Figure 4.2 Cohort 2 Summer PD program’s CS/CT content morning course
schedule – Week 2.

The teachers had homework assignments related to the content taught each day.

The homework was assigned at the end of each morning and was due at midnight on the

same day. Each homework assignment contained an extension that was optional but was

put in place for the advanced teachers to challenge themselves. The Cohort 2 assingments

can be found in Appendix B.2 There was a cumulative exam on the last day consisting of

 72

CS and CT knowledge tests. This exam was taken by all 24 teachers pre-program and on

the last day of the first course. The pre- and post-test made it possible to measure all 24

teachers’ change in CS and CT content knowledge.

The morning session typically consisted of 15-30-minute lectures followed by 10-

15-minute group activities. An example of one group activity (breakout session) from our

Day 6 lecture on arrays can be found in Figure 4.3. Four CS content quizzes were

administered throughout the program to help the instructors understand the teachers’

understanding of past concepts as the program progressed. The Cohort 2 quizzes can be

found in Appendix A.2. The quizzes gave the instructors an idea of which concepts to

review before moving on. All the quizzes from Cohort 2 CS content course can be found

in the Appendix. Additionally, a final group project was assigned that required teachers

to create a hangman game. The project was put in place to allow the teachers to take

something away from the class that they can show family members, friends, and their

classrooms and inspire them to explore computer science further by adding components

to their game. The project description can be found in Appendix B.2.10.

 73

Figure 4.3 Cohort 2 Summer PD program Day 6 breakout session example.

 Afternoon CS Pedagogy Course

This section will focus on the afternoon pedagogy session. The course was co-

taught by six different CS teachers – three high school teachers, two middle-school

teachers, and an elementary school teacher. The class met daily June 8-12 and June 15-19

from 1:00 pm to 5:00 pm, via Zoom, online. During the first week of the program, the

lecture concentrated on a single CS concept and the CS concept aligned with the content

taught during the morning CS concepts session. The purpose of the lectures was to show

the teachers how to teach the concept to their respective grade levels. Therefore, the

elementary, middle, and high school level instructors each discussed the concept and how

it can be presented in their grade levels classrooms. During the second week, the focus

shifts more towards robotics and tools the teachers will be able to use in their classrooms.

Teachers were also divided into grade-level specific groups and were tasked with creating

 74

and presenting a lesson plan for their respective grade-level to the rest of the class. The

final assignment was an extension of the lesson plan they presented. The final assignment

asked the teachers to write-up an implementation plan with lesson samples, demographics

of their schools, and some reflections.

An outline of the course schedule can be found below in Figure 4.4 and Figure 4.5.

Daily reflections were completed online at the end of each day and were graded for

completion.

 75

Figure 4.4 Summer PD program second-week CS pedagogy afternoon course
schedule – Week 1.

 76

Figure 4.5 Summer PD program second-week CS pedagogy afternoon course
schedule – Week 2.

4.2 Data Analysis

 Description of Data

There are three sets of data:

1. The first data set is from a project-developed, pre- and post-program survey

that assesses teacher self-confidence in (a) teaching CS (16 items, e.g., “I can

 77

adapt existing CS lesson plans to meet the needs of my students.”) and (b)

their CS skills (6 items, e.g., “I can design and iteratively develop/refine CS

programs.”). The confidence items were measured using a slider scale. The

teachers indicated how confident they were they could achieve each scenario

by indicating a probability of success from 0 (0% confident) to 100 (100%

confident)). The survey was the same as that used in Cohort 1.

2. The second data set is from a pre-post survey that assesses teacher attitudes

towards CS. The nine attitudinal items used a Likert scale (1: strongly

disagree, 2: disagree, 3: neutral, 4: agree, 5: strongly agree) to measure

personal interest in CS (e.g., “I find the challenge of solving CS problems

motivating.”) and the perceived value of CS (e.g., “Reasoning skills used to

understand CS can be helpful to me in my everyday life.”). This instrument

was developed by adapting the Computing Attitudes Survey (Dorn & Tew,

2015), which was validated with undergraduate CS students. The survey was

also the same as that used in Cohort 1.

3. The first data set comes from a pre- and post-assessment measured teacher

knowledge of CS concepts (Shell et al., 2017) and computational thinking

(Peteranetz et al., 2020). The post-assessment measured CS and CT

knowledge and was used as the final exam. The test separates the high

performers from the low performers. Instead of the C average being around

70%-80% as a typical grade scale, the average test scores were around 50%,

which indicates average performance and is not a failing grade (Shell et al.,

2017). The assessment was also the same as that used in Cohort 1.

 78

 Participant Breakdown

The PD program served 24 K-12 teachers. Of the 24 teachers, 18 teachers are

elementary teachers (K–5), 6 are middle school teachers (6-8), and 2 teach high school

classes (9-12). Some teachers belong to two groups (teach elementary and middle school

students or teach middle school and high school students). The study contained 20 female

teachers and four male teachers.

4.3 Results

 Impact of PD Program on Cohort 2

The same research questions proposed and answered in Cohort 1 (Section 3.3) are

re-evaluated for Cohort 2. The first research question was, “What was the impact of the

CS summer PD on teacher’s (a) knowledge of CS concepts, (b) knowledge of

computational thinking, (c) CS attitudes, (d) confidence in CS knowledge and (e)

confidence in teaching CS?”. To address these questions, the pre- and post-survey data

(31 total items each) collected from 24 participants who participated in both the pre- and

post-program knowledge test were used. Again, t-tests were used to compare each of the

specified target groups.

 Knowledge of CS Concepts

A paired t-test was used to find the teachers’ knowledge of CS concepts improved

significantly: t(23) = 3.39, p < .001. The improved CS concept scores show that the

Cohort 2 summer CS PD program had a significant positive impact on the teachers’ CS

concept knowledge.

 79

 Knowledge of CT Concepts

A paired t-test was also used to find the teachers’ knowledge of computational

thinking improved significantly: t(23) = 7.52, p < 0.0001.

 CS Attitudes

All 24 teachers completed both the pre- and post-program surveys. The teachers’

attitudes showed no significant change from pre- to post-program, t(23) = -0.18, p = 0.86.

The mean attitudes scores regressed slightly from pre- to post, although the post-program

attitude scores were still high (M = 4.34 out of 5).

 Confidence in CS Knowledge

The teachers’ confidence in CS concepts was measured using a 6-item subset of

the CS teaching confidence survey discussed in Section 4.2.1 above. All 24 teachers from

Cohort 2 completed this survey both pre- and post-program. A paired t-test showed the

teachers’ confidence in CS concepts improved significantly from pre- to post-program:

t(23) = 5.51, p < 0.0001.

 Confidence in Teaching CS

Again, 24 of the 24 teachers completed both the pre- and post-confidence survey.

A paired t-test showed that the teachers’ confidence in teaching CS improved

significantly, t(23) = 6.31, p < 0.0001. Table 4.1 details the results of the data analysis in

this section.

 80

Table 4.1 Evaluation of the impact of the CS PD program by comparing Cohort 2
pre-program and post-program knowledge, attitude, and confidence scores (mean,

standard deviation, t-value, degrees of freedom, significance value).

Test Scale npre x̅pre σpre npost x̅post σpost t df p

Knowledge of CS 100 24 24.36 15.66 24 41.67 17.99 3.39 23 <.005

Knowledge of CT 100 24 46.30 15.86 24 68.06 10.52 7.52 23 <.001

CS Attitudes 5 24 4.36 0.31 24 4.34 0.49 0.18 23 0.86

Confidence in CS 100 24 50.22 27.13 24 72.78 17.69 5.51 23 <.001

Confidence in
Teaching CS

100 24 64.35 19.31 24 85.31 7.86 6.31 23 <.001

 Factors Driving Teacher Performance

The third research question focused on factors that predicted success in the

program. The factors evaluated were teacher confidence, plans to teach CS in the next

year, and grade level of instruction.

 Confidence in CS Content

A 6-item subset of the full 22-item pre-program survey was used to measure the

teachers’ confidence in the CS content (i.e., “I can design and iteratively develop/refine

CS program.”; “I can document my programming solutions so that they are

understandable to my peers.”; and “I can decompose problems in ways that can be solved

algorithmically.”). No significant correlation was found between the 6-item subset

measuring confidence in CS concepts and the post-program teachers’ knowledge test

scores (r = 0.19, p = 0.85). This result suggests that pre-program CS content confidence

levels may not be a reliable indicator of teachers’ knowledge gains in a CS PD program.

 81

 Grade Level of Instruction

For Cohort 2, we grouped each teacher into two separate groups based on the

highest level of education they must deliver. Group 1 teachers are elementary (K-5)

teachers, and group 2 (6th grade and above) are middle school teachers and high school

teachers. If a teacher is responsible for all grades, K-12, we grouped that teacher in group

2 since the highest level of instruction is above the sixth-grade level. We found no

significant difference between the teachers’ grade level of instruction (i.e., elementary

(K-5) vs. middle-school (6-8)) on the performance of the teachers on the CS knowledge

test (t(22) = 1.42, p = 0.17) or the CT knowledge test (t(22) = 0.54, p = 0.60). Table 4.2

details the results of the data analysis in this section. Better test scores were expected

from the middle-school and above teachers since we believed they would need higher

STEM capabilities to teach their respective grade-level. We believed this boost in STEM

capabilities would aid them in learning CS. Instead, no significant difference was found

between elementary teachers and middle school teachers in their knowledge test scores.

The higher expectations of middle school teachers were not met, which could mean the

necessary STEM capabilities of middle school teachers compared to elementary school

teachers may not be significantly impacting their learning of CS content.

Table 4.2 Evaluation of Cohort 2 K-5 elementary (E) teachers vs. 6-8 middle school
(M) teachers CS knowledge test scores.

Test Scale nE x̅E σE nM x̅M σM t df p

CS Test scores
(E vs. M)

100 14 37.36 19.05 10 47.69 15.30 1.42 22 0.17

CT Test scores
(E vs. M)

100 14 67.06 0.10 10 69.44 0.12 0.54 22 0.60

 82

4.4 Program Evaluation

This section includes an evaluation of the program used in this study. This

evaluation method is the same that was used after Cohort 1 to identify strengths,

weaknesses, opportunities, and threats. (SWOT). Again, SWOT analysis is a proven

analysis tool (Hill & Westbrook, 1997) that was used to identify what went well and what

needed improvement. The strengths section (Section 4.4.1) of SWOT focuses on the

successes of the program. The weaknesses section (Section 4.4.2) pinpoints areas where

that need to improve. The opportunities section (Section 4.4.3) focuses on how possible

improvements based on feedback, insights, and experiences. The threats section (Section

4.4.4) highlights potential threats to the success of the program. SWOT analysis was used

to help inform decisions made about the next PD program delivery.

 Strengths

 Easily Accessible Programming Language

JavaScript and JSFiddle.com made programming more approachable as opposed to

Python and the IDE used for the first cohort. There was minimal setup to begin coding.

Using JavaScript allowed many of the Cohort 2 participants to feel comfortable

programming in just two weeks.

 Zoom Video Conferencing Breakout Rooms

The facilitators of the program used breakout rooms through Zoom to allow the

teachers to work in groups on daily activities. The breakout rooms always had at least one

facilitator and no more than five teachers to a room. These breakout rooms helped

 83

alleviate the awkwardness of video instruction and yielded valuable discussions and

collaboration throughout the course. These breakouts also broke up the lectures where

teachers could practice hands-on learning and reinforce each lecture topic promptly.

 Zoom Video Conferencing Screen Share Technology

Another unforeseen benefit of online instruction was the ease of collaboration

through screen sharing. Problem-solving through observation of other’s code helped each

teacher to understand better where their issues. In a traditional classroom, the facilitators

would go to each teacher’s desk and look at their code with them. With the online

instructional format, all discussion participants can view the screen at the same time

without having to move seats or leave their work.

 Program Duration

The program length was adequate for the facilitators to cover all CS concepts without

rushing through any of the concepts too quickly. The program duration also allowed for

the concepts to be linked with the pedagogy side in the afternoon, which allowed the

teachers to think about how they might apply the concepts they just learned into their

classrooms. The duration also allowed for more robust programming assignments to be

administered since the teachers were well-acquainted with each concept during the day.

 Linking CS Content and CS Pedagogy

In cohort 2, we designed the program intentionally to couple the two courses each

day. Programming was learned in the morning and could be reinforced in the afternoon of

each day as a practice in computational thinking: algorithmic (being methodical, creating

a flowchart), problem decomposition (functions, creating a flowchart), evaluation

 84

(debugging, analysis of correctness), pattern recognition (connecting the dots, leveraging

what has been learned syntax-wise, assimilating similar bugs), generalization (seeing

similar problems in syntax errors, learning useful debugging approaches), and abstraction

(the use of variables, the use of arrays to store values, the use of functions, the

representation of mathematical equations using variables). Coupling the courses together

helped motivate teachers to appreciate and recognize the need to learn how to program to

teach with more confidence and readiness, even when they are only teaching CS to

grades K-5 and especially for teachers teaching CS to grades 6-8.

 Weaknesses

 Traditional Learning Tools Were Unavailable

Explaining more intricate concepts was made increasingly difficult, with the inability

to draw on a whiteboard. Many times, a visual representation of a concept is easier to

understand, and providing that was made more difficult through online instruction. The

facilitators were forced to find new ways to explain concepts in detail. Though Zoom

provided annotations on-screen, it was not easy to draw using a touchpad.

 Breakout Rooms Limited Facilitator-To-Facilitator Interactions

During the breakout rooms, there would be times when one of the facilitators would

be unable to answer a student’s question. In a traditional classroom, the facilitator might

call over another facilitator to try to explain the answer in a different way to assist the

student. With the breakout rooms, that facilitator-to-facilitator interaction did not occur.

Note that the facilitators, instead, used a separate platform (i.e., Slack) to interact.

 85

 The Limited Virtual Community During Academic Year (AY)

No virtual community was established for the participants to share ideas post-

program and collaborate as they start creating lesson plans for the upcoming school years.

We expect that some of the teachers exchanged emails or phone numbers, but we also

expect that some teachers did not and will, therefore, need to communicate with the

facilitators for help throughout the year.

 Course Expectations Not Clear Upon Signing Up

Many of the teachers expressed confusion as to the goal of the PD program. The

initial confusion was the expectation that the teachers would learn to program in addition

to learning about CS concepts, despite that the course syllabus, shared days before the

course, was clear on the expectations. The elementary teachers especially were surprised

by this since they would not likely be teaching their students to program. The

expectations must be made clear right away, so the teachers come into the program with

the right mindset to approach the challenge of learning CS and programming concepts.

 Opportunities

 Monitor the Exploration of New Ways to Teach CS to K-12 Students

Many of the participants in this cohort did not have solid lesson plans before

attending this program. It will be intriguing to see how they adapt what they learned in

the program to their classrooms. Throughout the year, there will be opportunities for the

teachers to share their successes and failures in their classrooms. This opportunity will

give insight into the teachers’ process of creating curriculum material from the PD

 86

program instruction and the validity of teaching CS through online tools, like Zoom and

Canvas.

 Threats

 No Monitoring of Teachers During Evaluations

Since the program was delivered online, there is no way to know if the teachers

used outside sources to aid them during the individual assessments at the end of the

program. Measures were taken to combat collaboration between students during the

assessments (muting all teachers and disabling chat features), but there was no way to

stop all forms of outside collaboration.

 Significant Program Changes from Cohort 1 to Cohort 2

Due to COVID-19, the Cohort 2 summer PD program was moved to online. The

online instruction was a significant change to the format of the program and made it

difficult to compare the outcomes of the two programs since they are vastly different.

 Distractions of Learning from Home

Again, due to COVID-19, the Cohort 2 summer PD program was held online. The

online format meant that many of the teachers participated in the program from their own

homes. With the ability to turn off the video, teachers may have been stepping away

during lectures. We have no way of knowing the amount of time the teachers were away

from the screen during the lecture. So, while we feel like we delivered all the content

necessary, because of the distractions from learning at home and the ability to leave the

 87

lecture undetected, teachers may have missed content if they stepped away from the

computer.

 Difficult to Measure Teacher Participation in Small Group Discussions

Again, due to COVID-19, the course was taught online, via Zoom. A challenge of

using Zoom is that only one person in a small group can talk at any time. Teachers who

are more willing to let others talk stay silent for long periods. The ability to mute the

camera and microphone in Zoom makes it challenging to know their level of engagement.

While the groups were sharing code, the facilitators assume that all teachers are following

along. To check each teacher's code during the small group session would have taken too

much time, so the introverted teachers may not have followed along with the code.

Therefore, it would have been easy for a teacher to skip practice sessions, which would

yield lower confidence and knowledge scores.

 88

Chapter 5: Cohort 1 vs. Cohort 2

When designing the Cohort 1 PD program, many of the design decisions were

experimental. Cohort 1 taught us many things about how to teach a CS PD program. We

planned to make small changes from Cohort 1 to Cohort 2, so comparisons could be

drawn about the changes made. Due to the COVID-19 pandemic, our design was forced

to change drastically. In this chapter, we will detail the changes that were made from

Cohort 1 to Cohort 2 and compare the program outcomes of Cohort 1 and Cohort 2.

5.1 Cohort 1 to Cohort 2 Changes

In this section, we will discuss the program design changes from Cohort 1 to

Cohort 2. As mentioned above, some design decisions were forced upon the program by

the local guidelines due to the COVID-19 pandemic. Table 5.1 summarizes the

similarities and differences between the two cohorts.

Table 5.1 Details of Cohort 1 and Cohort 2 CS PD designs.

Cohort Delivery CS Content
Course
Schedule

CT Content
Course
Schedule

Lead
Instructor

Instruction Team Programming
Language/IDE

Cohort 1

(Summer 2019)

In-
person

Week 1:
(8AM-5PM)

Week 2:
(8AM-5PM)

College
CS
Professor

Lead Instructor,

1 graduate TA,

3 undergraduate TAs

Python/

PyCharm

Cohort 2

(Summer 2020)

Online Week 1 & 2:
(8AM-12
noon)

Week 1 & 2:
(1PM-5PM)

High
School
CS
Teacher

Lead Instructor,

2 Cohort 1 top-
performers

1 graduate TA

2 undergraduate TA

JavaScript/

JSFiddle

 89

 In-Person to Online

Arguably the most significant change from Cohort 1 to Cohort 2 was the change

from in-person instruction to online instruction. Our design team was forced to deliver

the PD program online due to COVID-19. The classroom set up in Cohort 1 was a

disadvantage because it was difficult to hear the facilitator and a challenge to see the

whiteboard. These issues were solved by switching to the online format, but other issues

arose as a result. A common challenge expressed by the teachers was balancing all the

different windows necessary to participate in the course. This challenge was an

unforeseen disadvantage that we were unable to mitigate throughout the program.

Teachers who had access to multiple monitors found it easier to manage because they

could leave the Zoom window open while coding or viewing the slides on the other

screen. The online format proved to be challenging for the instruction team as well.

Teaching over Zoom made it challenging to read the teachers’ body language and

identify where the teachers started feeling lost or remained engaged or stayed in the

room, especially if the teachers’ video was turned off. Small breakout rooms and constant

communication with all participants was crucial to overcoming this obstacle.

 Schedule

In Cohort 1, the design team decided to hold the CS content course during the first

week from 8 am - 5 pm with an hour break for lunch. This week was overwhelming for

many teachers. Then, we facilitated the second-week CS pedagogy course. This course

was much more laid back and well-received by the teachers. While designing Cohort 2,

we saw the opportunity to improve the program by holding both courses for half-days

 90

over two weeks. The CS content course was held in the morning, and the CS pedagogy

course was held in the afternoon. The schedules can be found in Figure 4.1, Figure 4.2,

Figure 4.4, and Figure 4.5. By changing the structure in this, we not only broke up the

challenging CS content course into small, digestible pieces, but we also created

opportunities for the teachers to immediately link the CS content from the morning to

their classrooms in the afternoon CS pedagogy class. This structure change helped make

the CS content course more approachable, as it gave teachers more days to absorb the

new CS topics and practice programming.

 Lead Instructor

In Cohort 1, the lead instruction was a CS professor from UNL. The professor

was accustomed to teaching in a college lecture, whereas the teachers participating in the

program were used to elementary, middle school, and high school classrooms. These are

two drastically different learning environments, and we saw a disconnect between the

participants and the lead instruction throughout the course. In Cohort 2, we chose to

replace the lead instructor with a local high school who was on the instruction team in

Cohort 1 but taught only the CS pedagogy course for the first cohort. The high school

instructor was able to draw on his experience with first-time CS learners to help connect

with the teachers. We may be able to go a step further and choose a lead instructor from

an elementary or middle school classroom. The relationship between the lead instructor

and the teachers is vital for building an environment where the teachers are comfortable

asking questions and interjecting during the fast-paced lecture to ask for clarification.

 91

 Instruction Team

In Cohort 1, the CS content course instruction team was made up of the lead

instructor who was, a college CS professor, and four teaching assistants (one graduate

teaching assistant and three undergraduate teaching assistants). The instruction team size

was adequate for the large cohort size (44 teachers). However, no one on the instruction

team had experience linking the CS concepts to a K-12 classroom. In Cohort 2, we filled

this void by recruiting two top-performing teachers from Cohort 1 to join the instruction

team along with the lead instructor who was, a high school CS teacher, and three teaching

assistants (one graduate teaching assistant and two undergraduate teaching assistants).

The Cohort 1 teachers with recent experience in learning and integrating the CS content

into their classrooms was an invaluable addition to our instruction team.

 Programming Language and Integrated Development Environment

(IDE)

In Cohort 1, we chose to teach Python using the PyCharm IDE. We chose Python

because the syntax is simple and is widely discussed as a first programming language for

beginners to learn. However, teachers had issues with PyCharm, and Python versions

throughout the course, and the instruction team was fixing issues related to Python and

PyCharm throughout the course. In Cohort 2, the new lead instruction chose to change

the language to JavaScript and use the internet tool, JSFiddle, as an IDE. The new

language and IDE worked great for several reasons. First, JSFiddle is widely available,

and once a free account is created, all the work done during the course will be saved on

the site. JSFiddle did not require any set-up instructions, which made the introduction to

 92

code near-seamless. The teachers need to get comfortable with the IDE and programming

language quickly in a two-week PD program. Quickly onboarding the teachers with

JSFiddle was a crucial step to delivering a successful PD program. Lastly, JavaScript,

like Python, is regarded as another excellent programming language for beginners. The

simple syntax and ease of execution made learning a new programming language, a

difficult task for beginners, much more straightforward.

5.2 Program Outcomes (Cohort 1 vs. Cohort 2)

In this section, we will discuss the program outcome similarities and differences

between Cohort 1 and Cohort 2 and some further evaluation we can do while comparing

the two cohorts. First, we will compare the impacts of each program. Then, we will

compare the participants’ outcomes based on their backgrounds. Finally, we will look at

the factors that drove teachers to perform better in each program.

 Impact of PD Programs

 Knowledge of CS Concepts

The change in teachers’ knowledge of CS concepts was found using paired t-tests

in both Cohort 1 and Cohort 2. In both Cohorts, the teachers’ knowledge of CS concepts

improved significantly from pre- to post-program, as seen in Table 5.2. The

improvements from pre-program to post-program were more impressive in Cohort 1 than

in Cohort 2, although the difference in post-program scores was not significant, as

indicated by Table 5.3 and Figure 5.1. Since our Cohort 1 and Cohort 2 programs were

vastly different, it is difficult to say precisely why the Cohort 1 teachers performed better.

 93

It could be attributed to the Cohort 1 participants’ CS background or the in-person

instruction style over the online instruction style used in Cohort 2.

Table 5.2 Evaluation of the impact of the CS PD program from pre-program to
post-program for Cohort 1 and Cohort 2.

Test Cohort Scale npre x̅pre σpre npost x̅post σpost t df p

Knowledge
of CS

1 100 29 29 19.67 44 49.5 19.30 5.27 27 <.001

Knowledge
of CS

2 100 24 24.36 15.66 24 41.67 17.99 3.39 23 <.005

Table 5.3 Two-sample t-test between Cohort 1 post-program CS knowledge test
scores and Cohort 2 post-program CS knowledge test scores.

Test Scale nc1 x̅c1 σc1 nc2 x̅c2 σc2 t df p

Knowledge of CS 100 44 49.5 19.30 24 41.67 17.99 1.64 66 0.11

 94

Figure 5.1 Post-program CS test scores in Cohort 1 and Cohort 2.

 Knowledge of CT Concepts

We used paired t-tests to evaluate the change in the teachers’ knowledge of

computational thinking from pre- to post-program in Cohort 1 and Cohort 2. In both

programs, the teachers’ CT scores significantly improved, as shown in Table 5.4. There

was no significant difference in the post-program CT exam scores between the two

cohorts. We evaluated this using a two-sample t-test: t(66) = 0.78, p = 0.44. In both

cohorts, the teachers performed much better on the CT exam compared to the CS exam,

as seen in Figure 5.2.

 95

Table 5.4 Evaluation of the impact of the CS PD program on the CT knowledge of
the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test Cohort Scale npre x̅pre σpre npost x̅post σpost t df p

Knowledge
of CT

1 100 28 54.76 17.68 44 65.45 14.73 3.38 27 <.005

Knowledge
of CT

2 100 24 46.30 15.86 24 68.06 10.52 7.52. 23 <.005

Figure 5.2 Cohort 1 vs. Cohort 2 post-program CS test scores and Cohort 1 vs.
Cohort 2 post-program CT test scores.

 CS Attitudes

In both Cohort 1 and Cohort 2, we saw no significant change in the teachers’

attitudes towards CS from pre-program to post-program, as shown in Table 5.5.

 96

However, we do see a significant difference in the post-program CS attitude scores from

Cohort 1 to Cohort 2. Cohort 1’s participants had significantly better attitudes towards CS

than the Cohort 2 participants post-program, (t(47) = 2.22, p < 0.05) . This finding is

surprising because the instructors felt that Cohort 2 went smoother than Cohort 1. Also,

Cohort 1 and Cohort 2 did not have significantly different attitudes pre-program, (t(50) =

1.59, p < 0.11), and neither changed significantly from pre-program to post-program as

seen in Table 5.5. Again, with so many changes from program to program, it is hard to

identify contributing factors towards the difference in CS attitudes. One speculation is

that our CS attitude survey is not accurately measuring the teachers’ CS attitudes. We

were also surprised to see the Cohort 2 teachers’ attitudes regress from pre-program to

post-program, and we were also surprised to see such small change from pre- to post-

program in both Cohorts. This finding also hints potentially inadequancy of the survey

used to measure of the teachers’ CS attitudes.

Table 5.5 Evaluation of the impact of the CS PD program on the CS attitudes of
the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test Cohort Scale npre x̅pre σpre npost x̅post σpost t df p

CS Attitude 1 5 28 4.52 0.43 25 4.60 0.32 1.22 23 0.24

CS Attitude 2 5 24 4.36 0.31 24 4.34 0.49 0.18 23 0.86

 Confidence in CS Knowledge

As discussed earlier, the teachers’ confidence in CS concepts was measured using

a 6-item subset of the CS teaching confidence survey. Both Cohort 1 and Cohort 2

showed the teachers’ confidence in CS concepts improved significantly from pre- to post-

 97

program. Coming into the program, both Cohort 1 and Cohort 2 teachers had a wide

range of confidence levels, as noted in Table 5.6 and Figure 5.3. Post-program, the CS

confidence levels became even between the two cohorts. This finding means the Cohort 2

teachers' confidence levels increased much more than the Cohort 1 teachers. It is

encouraging to see high confidence scores from both cohorts, given the challenging

nature of the CS PD program. It would be beneficial to identify precisely which parts of

the PD program helped boost the teachers’ confidence in CS. A strong case could be

made that merely providing the teachers with the CS pedagogy course would be enough

to boost their confidence in CS. The pedagogy course does an excellent job of

familiarizing the teachers with difficult concepts in enjoyable and approachable ways.

Further investigation could be done to find the exact pieces of the program that

contributed most to the teachers’ boost in CS confidence.

Table 5.6 Evaluation of the impact of the CS PD program on the CS confidence of
the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test Cohort Scale npre x̅pre σpre npost x̅post σpost t df p

CS Confidence 1 100 28 61.42 27.41 25 71.53 23.17 2.96 23 <.01

CS Confidence 2 100 24 50.22 27.13 24 72.78 17.69 5.51 23 <.001

 98

Figure 5.3 Cohort 1 participants’ post-program CS confidence levels vs. Cohort 2
participants’ post-program CS confidence levels.

 Confidence in Teaching CS

In this section, our evaluation is similar to the last section, but instead, we

evaluated the full pre- and post-confidence survey to measure the teachers’ confidence in

teaching CS. The confidence measure asks the teachers how comfortable they would be

in handling several different scenarios. Again, a paired t-test showed that in both Cohorts,

the teachers’ confidence in teaching CS improved significantly. Table 5.7 and Figure 5.4

detail the change in CS teaching confidence from Cohort 1 to Cohort 2. There was no

 99

significant difference between the CS teaching confidence between Cohort 1 and Cohort

2 teachers. Instead, both Cohorts improved and post-program, their confidences were

much alike. As we discussed in the last section, it would be helpful to identify precisely

where the confidence in CS teaching came from in the program. The CS teaching

specifically is more likely to have come from the CS pedagogy course since the goal of

that course is to provide information about how CS is currently being taught in other

schools and how the teachers can integrate the same ideas in their classrooms.

Table 5.7 Evaluation of the impact of the CS PD program on the CS teaching
confidence of the Cohort 1 and Cohort 2 participants from pre- to post-program.

Test Cohort Scale npre x̅pre σpre npost x̅post σpost t df p

CS Teaching
Confidence

1 100 28 73.51 21.70 25 83.40 11.26 4.49 23 <.001

CS Teaching
Confidence

2 100 24 64.35 19.31 24 85.31 7.86 6.31 23 <.001

 100

Figure 5.4 Post-program average and standard deviation of Cohort 1 participants’
CS teaching confidence vs. Cohort 2 participants’ CS teaching confidence.

 Model-District vs. Non-Model-District

Our second research question focused on the learning outcomes of two different

groups, model-district teachers, and non-model-district teachers. As noted in Section

3.3.2, the model-district teachers are teachers who are part of an award-winning school

district in K-12 CS education. These teachers have had access to CS tools and resources

for years, so their experience and knowledge of CS should have been higher than the non-

model-district teachers coming into the program. More information about the model-

 101

district teachers can be found in Section 3.3.2. Of the 44 teachers who participated in

Cohort 1, 28 teachers completed the pre- and post-program surveys on confidence and

attitudes and the pre- and post-program knowledge tests. Of those 28, 19 were model

district teachers, and 9 were non-model district teachers. As we saw in Section 3.3.2, the

model-district CS teachers, pre-program, exhibited significantly more knowledge of CS

concepts, CT concepts, and CS concept confidence than participating teachers from other

districts. Of our 24 Cohort 2 teachers, none of them were from the model district. In this

section, we want to, again, compare the learning outcomes of model-district teachers (19

from Cohort 1) and the non-model-district teachers (9 from Cohort 1 and 24 from Cohort

2). We also want to compare the learning outcomes of the Cohort 1 non-model-district

teachers to the Cohort 2 non-model district teachers to see if the model-district teachers

helped enhance the learning ability of the Cohort 1, non-model district teachers.

 Model-District vs. All Non-Model-District

As stated before, there were 19 model-district teachers, all from Cohort 1 and 33

non-model-district teachers, 9 from Cohort 1 and 24 from Cohort 2. When comparing

these two groups of teachers’ pre-program results, again we see that the model-district-

teachers performed significantly better, in all five categories: knowledge of CS concepts

(t(50) = 3.08, p < 0.005), knowledge of CT concepts (t(50) = 3.00, p < 0.005), CS

concept confidence (t(50) = 3.98, p < 0.005), CS teaching confidence (t(50) = 4.21, p <

0.005), and CS attitudes (t(50) = 2.41, p < 0.05). The difference in each category is

illustrated in Figure 5.5 and Figure 5.6.

 102

The differences between the two groups were less significant post-program than

they were pre-program. Recall, all 44 teachers from Cohort 1, 19 model-district CS

teachers, and 25 non-model-district teachers took a post knowledge test containing CS

and CT concept and only 16 of the 19 model-district teachers and 9 of the 25 non-model-

district teachers completed the post-program CS concept confidences survey. All 24 of

the Cohort 2 non-model-district teachers completed all three measures. Therefore, in

total, we have 19 model-district teachers and 49 non-model district teachers who

completed the post-program knowledge tests. For the confidence survey, 16 model

district teachers, and 33 non-model district teachers. One difference from pre-program to

post-program is that there was no significant difference between the post-program CT

knowledge test scores of model-district teachers and non-model-district teachers, t(66) =

0.68, p = 0.50. However, post-program, there was still a significant difference between

the model-district teachers and non-model-district teachers when evaluating their CS

concept knowledge (t(66) = 2.58, p < 0.05), CS concept confidences, (t(47) = 2.13, p <

0.05), CS teaching confidences (t(47) = 2.27, p < 0.05), and CS attitudes (t(47) = 2.70, p

< 0.01). Again, these differences are illustrated in Figure 5.7 and Figure 5.8.

It is not surprising that the model-district teachers who had strong backgrounds in

CS education were more prepared and performed better in the CS PD program. It is

encouraging that the CS PD program boosted the non-model-district teachers' CT

knowledge to be similar to the model-district teachers and nearly closed the gap between

the non-model-district and model-district teachers’ CS knowledge, CS confidence, CS

teaching confidence, and CS attitudes. The fact that both groups saw significant gains in

four of the five categories (CS attitudes saw no significant improvements) encourages us

 103

that the program will work for teachers of varying backgrounds.

 104

Figure 5.5 Pre-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS knowledge test scores, CT knowledge test scores,

CS confidence survey responses, and CS teaching confidence survey responses.

Figure 5.6 Pre-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS attitudes.

 105

Figure 5.7 Post-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS knowledge test scores, CT knowledge test scores,

and CS confidence survey responses.

 106

Figure 5.8 Post-program averages and standard deviations of model-district vs.
non-model-district teachers’ CS attitudes.

 Cohort 1 Non-Model-District vs. Cohort 2 Non-Model-District

We want to evaluate the difference in knowledge and confidence from pre-

program to post-program for these two groups to find out if the Cohort 1 non-model-

district teachers had an advantage by working closely with the model-district teachers.

In Cohort 1, 9 non-model district teachers completed the pre-program tests and

survey. Cohort 2 had 24 teachers who completed both the pre-program tests and the

survey. We can see that coming into the program, there was no significant different

 107

between the two groups CS knowledge (t(31) = 1.17, p = 0.25), CT knowledge (t(31) =

0.29, p = 0.78), CS confidence (t(31) = 1.46, p = 0.15), CS teaching confidence (t(31) =

1.42, p = 0.17), or CS attitudes (t(31) = 0.08, p = 0.94). This finding is to be expected

since neither group had strong CS backgrounds. Our interest lies in the post-program

results. Remember, all 25 Cohort 1 non-model-district teachers took the post-program

knowledge tests, but only 9 of the 25 completed the post-program confidence survey. All

24 of Cohort 2 teachers took both the post-program knowledge test and the confidence

survey. From conducting two-sample t-tests, we see that the Cohort 1 teachers had

significantly more CS concept confidence and CS teaching confidence post-program

compared to the Cohort 2 teachers (t(31) = 2.29, p < 0.05 and t(31) = 3.24, p < 0.005,

respectively) but there was no significant difference in the two groups CS knowledge

(t(47) = 0.61, p = 0.54), CT knowledge (t(47) = 1.24, p = 0.22), or CS attitudes (t(31) =

0.53, p = 0.60) post-program. Meanwhile, recall that the model-district teachers' pre- and

post-program knowledge of CS, while significantly higher than the non-model teachers,

was still relatively low (M=55.89/100). Whereas, the model-district teachers’ confidence

was relatively high (M=80.78/100). We speculated that if the model- district teachers

were going to be able to assist the non-model district teachers in any way, it likely would

have been in boosting their confidence in CS. We discussed earlier how we believe most

of the confidence gain is coming from the CS pedagogy course since this is where they

learn to apply the CS concepts in their classrooms. For the Cohort 1 non-model district

teachers, they had an advantage because not only did they have the instructors telling

them how CS can be taught in the classroom, but their peers in the PD program could

give advice and recommendations on how CS can be taught in the classroom. In the CS

 108

concepts course, all the model-district and non-model district teachers are at a similar

level of understanding, and so the model-district teachers cannot provide as much

assistance to the non-model teachers. Further testing will be needed to validate this

hypothesis and to identify the amount of confidence gained from each class.

5.3 Conclusion

We found success in Cohort 2 like that of Cohort 1 despite (or perhaps because

of) changes to the program’s method of instruction (in-person to online), schedule design

(week 1 CS content course, week 2 CS pedagogy course to morning CS course, afternoon

CS pedagogy course), lead instructor (university professor to high school teacher), and

programming language and IDE (Python and PyCharm to JavaScript and JSFiddle).

Several smaller items, such as homework assignments, office hours, group structure, and

more, changed because of these more significant changes. Both Cohort 1 and Cohort 2

teachers saw significant improvements to their CS and CT knowledge, confidence in CS

concepts, and confidence in teaching CS. Our findings encourage us to believe that,

although our program design changes significantly, the program remained effective in

preparing teachers to teach CS. We did see that some results were significantly higher in

Cohort 1 than Cohort 2, but because of the vast number of differences between the two

cohorts, it is difficult to determine what factors led to the variance in outcomes.

Additionally, we saw that the Cohort 2 non-model-district teachers performed

similarly to the non-model-district teachers of Cohort 1 on the knowledge tests. The main

difference between the Cohort 1 non-model-district teachers and the Cohort 2 non-model-

district teachers was that the Cohort 1 teachers gained significantly more confidence in

 109

their CS capabilities on the confidence survey. Again, it is difficult to determine the exact

reason for the difference in outcomes between cohorts. However, we believe the

collaboration between the Cohort 1 model-district teachers and the Cohort 1 non-model-

district teachers during the CS pedagogy course was beneficial for the non-model-district

teachers to understand how CS is being taught in the classroom. This advantage could be

a crucial confidence amplifier which led to the non-model-district teachers’ superior

confidence.

5.4 Recommendations

As mentioned before, we had to change our program to be online due to COVID-

19. At first, we considered canceling the course because we did not know the logistics

behind facilitating an online CS PD program. What we found is that a CS PD program

can be effective through online facilitation. Therefore, we encourage those who are in

similar situations to carry out the PD program even if the logistic challenges of online

facilitation are uncertain.

We also found that the change in lead instructor for the CS professor to the high

school teachers was beneficial to increase the participants’ comfort level. The high school

teacher was able to use more familiar terms and connect with the participant much easier.

We believe the closer the lead instructor is to the average grade level of the participants,

the better the lead instructor will be in connecting the CS content with the participant's

target grade-level. However, keep in mind that it is also essential that the lead instructor

has a strong understanding of all the concepts taught during the program and has

significant experience in teaching CS topics.

 110

Another recommendation is to use a programming language that is widely

available and simple to install and use. We found many issues using Python and

PyCharm in our first cohort due to package versions being different among students and

installation setting getting change that should not have been changed. In Cohort 2, we

used JavaScript and JSFiddle. JavaScript and JSFiddle were much more comfortable for

the participants to use because all they needed was a link to the JSFiddle site, and they

could begin programming. It is also nice that all the teachers’ work is saved on JSFiddle

and can be easily shared and accessed at any time.

Lastly, we found our schedule design in Cohort 2 to be much lower stress for the

participants. In Cohort 1, we held the CS content course for the first week and the CS

pedagogy course during the second week. Many of the Cohort 1 participants were feeling

overwhelmed and mentally fatigued in the middle of the first-week CS content course.

The second week CS pedagogy course was light on CS concepts and focused more on

how the teachers will teach in their classrooms. This arrangement made the second-week

course a much more comfortable course for the teachers and resulted in a low-stress

environment. In Cohort 2, we decided to break the high-stress, CS content course up and

teach CS content in the mornings, and CS pedagogy in the afternoons. The observed

attitudes of the Cohort 2 teachers were significantly better than that of the Cohort 1

teachers during the CS content course. By having the CS pedagogy course in the

afternoon, the teachers were given a mental break and were also able to immediately

connect the content taught in the morning with materials they can use in their classrooms.

We found this to be an essential design change that should facilitate better CS

understanding and instruction.

 111

Chapter 6: Conclusion

6.1 Summary of Findings

 This Thesis discussed the work we have done over the past two years to develop,

facilitate, and analyze two separate two-week, CS PD programs for K-8 teachers. In this

study, we sought to answer three distinct research questions:

1. What was the impact of the CS summer PD on the teachers?

a. knowledge of CS concepts

b. knowledge of computational thinking

c. CS attitudes

d. confidence in CS knowledge

e. confidence in teaching CS

2. What were the differences between teachers from a model school district

(an urban school district with extensive CS curricular development and

teacher PD) and teachers from other school districts? How did the program

impacts differ?

3. Which factors lead to teacher success (e.g., knowledge test scores) in terms

of CS understanding in the summer PD program? Specifically, this study

investigates confidence in CS content, plans to teach CS in the following

AY, and grade level of instruction as potential predictors of teacher

performance.

To answer the first two questions, pre- and post-program surveys and pre- and

post-knowledge tests were used to measure each of the summer PD program’s impacts on

 112

the teachers. In both programs, we saw significant improvements in CS knowledge and

CT knowledge test scores, and in the teachers’ confidence in CS and in teaching CS. We

saw no significant effect on the teachers’ attitudes towards CS, which was a surprising

result. We further investigated these impacts by comparing the model-district teachers’

outcomes against the outcomes of non-model district teachers in both Cohort 1 and

Cohort 2. Overall, the model-district teachers performed better on the post-program, CS

knowledge test and showed higher levels of CS confidence. However, the Cohort 2, non-

model-district teachers did outperform the Cohort 1 model-district teachers on the post-

program, CT knowledge test. Overall, our finding shows that teachers gain additional

confidence and knowledge from experiences from within their districts, their K-8

instruction, and other factors external to the PD program.

In Cohort 1, we made an insightful observation. The experienced, model-school

district teachers showed higher confidence levels while having similar test scores. We

saw this as interesting because we felt the model-school district teachers were confident

enough to teach CS without needing to have a deep CS background. We speculated that

this was because the teachers knew they could teach, and had been teaching, successfully

without being able to perform well on the CS and CT knowledge tests. Furthermore, this

shows us that during the PD, we need to focus on providing hands-on pedagogical

experiences to help boost the teachers' CS confidence rather than only focusing on the CS

concepts. This support for this speculation was strengthened in Cohort 2, where we made

it a focus to link the CS content with the pedagogy by holding the CS content course and

the pedagogy course on the same day. As a result, the Cohort 2 teachers gained more

confidence than Cohort 1 teachers despite having less CS background. Since there were

 113

many changes to the design of the PD in Cohort 2, it will take further investigation to

confirm this finding, but it is encouraging, nonetheless.

In Cohort 1, we found that pre-program CS confidence was a reliable predictor of

success in the program. In Cohort 2, we found that pre-program confidence was not

mandatory to have success in the program. We wanted to investigate many more factors

that could be indicators of success in Cohort 2, but due to the variety of different program

changes, it was challenging to control and identify any variables as predictors of teacher

success. Future work will need to be done on this third research question to find an

answer. In addition to our original variables of interest, confidence in CS content, plans to

teach CS in the following AY, and grade level of instruction, we would like to investigate

the teachers’ comfortability with technology, the number of years teaching CS, and the

teachers problem solving ability and mathematical thinking skills.

6.2 Future Work

Based on these findings, the next step is to plan, implement, and facilitate more

PD programs. Facilitating more PD programs would allow us to understand the

implications of our design changes and tease out the nuances behind each of our findings

from the first two cohorts. Additionally, we need to set up a structured PD program with

little-to-no changes from year-to-year so we can begin testing and identifying our

variables of interest to find valid predictors of success in our CS PD program. Lastly, a

line of future work that would benefit the entire CS PD community would be to create a

validated CS and CT knowledge test so PD programs can be all be compared. This sort of

measure would help guide PD program designers, so they know which concepts need to

 114

be covered in their CS PD program to best prepare the teachers’ for CS instruction.

Another direction would be to compare and contrast the similarities and differences in

teaching CS1 (i.e., introductory CS) to K-12 teachers and post-secondary students, to

obtain insghts that could inform CS educators on how to more effectively teach K-12

teachers.

 115

References

Ahamed, Sheikh Iqbal, Dennis Brylow, Rong Ge, Praveen Madiraju, Stephen J. Merrill,
Craig A. Struble, and James P. Early. 2010. “Computational Thinking for the Sciences:
A Three-Day Workshop for High School Science Teachers.” Pp. 42–46 in. ACM.

Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related projects in
math and computer science popularization. In: Bodlaender, H.L., Downey, R., Fomin,
F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond: Essays
Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday. LNCS, vol.
7370, pp. 398–456. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30891-8 18

Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., Lister, R., Mason, R., Highfield, K., &
Veal, J. (2017). Improving the Computational Thinking Pedagogical Capabilities of
School Teachers. Australian Journal of Teacher Education, 42(3), 53–72.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the 2012 Annual Meeting of
the American Educational Research Association, Vancouver, Canada, 1, 25.

Brown, Quincy, and Amy Briggs. 2015. “The CS10K Initiative: Progress in K-12 through
‘Exploring Computer Science’ Part 1.” Inroads 6:52–53.

Chai, Ching Sing, Joyce Hwee Ling Koh, and Chin-Chung Tsai. 2010. “Facilitating
Preservice Teachers’ Development of Technological, Pedagogical, and Content
Knowledge (TPACK).” Journal of Educational Technology & Society 13(4):63–73.

Darling-Hammond, L., & Richardson, N. (2009). Research review/teacher learning: What
matters. Educational leadership, 66(5), 46-53.

Desimone, Laura M., and Michael S. Garet. 2015. “Best Practices in Teachers’
Professional Development in the United States.” Psychology, Society, & Education
7(3):252.

Dorn, Brian, and Allison Elliott Tew. 2015. “Empirical Validation and Application of the
Computing Attitudes Survey.” Computer Science Education 25(1):1–36.

Ericson, Barbara, Mark Guzdial, and Maureen Biggers. 2005. “A Model for Improving
Secondary CS Education.” Pp. 332–336 in ACM SIGCSE Bulletin. Vol. 37. ACM.

Fancsali, Cheri, Linda Tigani, Paulina Toro Isaza, and Rachel Cole. 2018. “A Landscape
Study of Computer Science Education in NYC: Early Findings and Implications for
Policy and Practice.” Pp. 44–49 in Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, SIGCSE ’18. New York, NY, USA: ACM.

Goode, J., & Margolis, J. (2011). Exploring computer science: A case study of school
reform. ACM Transactions on Computing Education (TOCE), 11(2), 1-16.

Goode, J., Margolis, J., & Chapman, G. (2014). Curriculum is not enough: The educational
theory and research foundation of the exploring computer science professional
development model. Proceedings of the 45th ACM Technical Symposium on Computer
Science Education - SIGCSE ’14, 493–498. https://doi.org/10.1145/2538862.2538948

Google and Gallup. 2016. “Trends-in-the-State-of-Computer-Science-Report.pdf.”
Retrieved January 8, 2020 (http://services.google.com/fh/files/misc/trends-in-the-state-
of-computer-science-report.pdf).

 116

Hatlevik, Ove Edvard, Inger Throndsen, Massimo Loi, and Greta B. Gudmundsdottir.
2018. “Students’ ICT Self-Efficacy and Computer and Information Literacy:
Determinants and Relationships.” Computers & Education 118:107–19.

Hill, Terry and Roy Westbrook. 1997. “SWOT Analysis: It’s Time for a Product Recall.”
Long Range Planning 30(1):46–52.

Kong, S.-C., & Lao, A. C.-C. (2019). Assessing In-service Teachers’ Development of
Computational Thinking Practices in Teacher Development Courses. 976–982.
https://doi.org/10.1145/3287324.3287470

Lang, Karen, Ria Galanos, Joanna Goode, Deborah Seehorn, & Fran Trees. 2013. Bugs in
the system: Computer science teacher certification in the US. New York, NY: ACM.

Lee, I. A., Psaila Dombrowski, M., & Angel, E. (2017). Preparing STEM Teachers to Offer
New Mexico Computer Science for All. Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, 363–368.
https://doi.org/10.1145/3017680.3017719

Leyzberg, D., & Moretti, C. (2017). Teaching CS to CS Teachers: Addressing the Need for
Advanced Content in K-12 Professional Development. Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, 369–374.
https://doi.org/10.1145/3017680.3017798

Liu, J., Lin, C.-H., Wilson, J., Hemmenway, D., Hasson, E., Barnett, Z., & Xu, Y. (2014).
Making games a “snap” with Stencyl: A summer computing workshop for K-12
teachers. Proceedings of the 45th ACM Technical Symposium on Computer Science
Education - SIGCSE ’14, 169–174. https://doi.org/10.1145/2538862.2538978

Margolis, J. (2010). Stuck in the shallow end: Education, race, and computing. MIT press.
McGee, Steven, Randi McGee-Tekula, Jennifer Duck, Catherine McGee, Lucia Dettori,

Ronald Greenberg, Eric Snow, Daisy Rutstein, Dale Reed, Brenda Wilkerson, Don
Yanek, Andrew Rasmussen, and Dennis Brylow. 2018. “Equal Outcomes 4 All: A
Study of Student Learning in ECS.” SIGCSE ’18 Proceedings of the 49th ACM
Technical Symposium on Computer Science Education.

McGee, Steven, Ronald I. Greenberg, Randi McGee-Tekula, Jennifer Duck, Andrew M.
Rasmussen, Lucia Dettori, and Dale F. Reed. 2019. “An Examination of the Correlation
of Exploring Computer Science Course Performance and the Development of
Programming Expertise.” Pp. 1067–1073 in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19. New York, NY, USA:
ACM.

Miller, L. D., Leen-Kiat Soh, and Markeya Peteranetz. 2019. “Investigating the Impact of
Group Size on Non-Programming Exercises in CS Education Courses.” Pp. 22–28 in.

Milliken, A., Cody, C., Catete, V., & Barnes, T. (2019). Effective Computer Science
Teacher Professional Development: Beauty and Joy of Computing 2018. Proceedings
of the 2019 ACM Conference on Innovation and Technology in Computer Science
Education, 271–277. https://doi.org/10.1145/3304221.3319779

Morreale, Patricia, Goski, Catherine, Jimenez, Luis, and Stewart-Gardiner, Carolee. 2012.
“Measuring the Impact of Computational Thinking Workshops on High School
Teachers.” Journal of Computing Sciences in Colleges.

Neutens, Tom and Francis Wyffels. 2018. “Bringing Computer Science Education to
Secondary School: A Teacher First Approach.” Pp. 840–45 in.

 117

Peteranetz, Markeya, Shiyuan Wang, Duane Shell, Abraham E. Flanigan, and Leen-Kiat
Soh. 2018. “Examining the Impact of Computational Creativity Exercises on College
Computer Science Students’ Learning, Achievement, Self-Efficacy, and Creativity |
Request PDF from the Authors.” Retrieved January 8, 2020
(https://www.researchgate.net/publication/323328484_Examining_the_Impact_of_Co
mputational_Creativity_Exercises_on_College_Computer_Science_Students'_Learnin
g_Achievement_Self-Efficacy_and_Creativity).

Peteranetz, Markeya, Patrick M. Morrow, and Leen-Kiat Soh. 2020. Development and
validation of the computational thinking concepts and skills test. In Proceedings of
ACM SIGCSE conference (SIGCSE’20), March 11-14, 2020, Portland, OR, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366813.

Pollock, L., Mouza, C., Czik, A., Little, A., Coffey, D., & Buttram, J. (2017). From
Professional Development to the Classroom: Findings from CS K-12 Teachers.
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, 477–482. https://doi.org/10.1145/3017680.3017739

Salac, Jean, Max White, Ashley Wang, and Diana Franklin. 2019. “An Analysis Through
an Equity Lens of the Implementation of Computer Science in K-8 Classrooms in a
Large, Urban School District.” Pp. 1150–1156 in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, SIGCSE ’19. New York, NY,
USA: ACM.

Sengupta, P., Kinnebrew, J., Basu, S., Biswas, G., Clark, D., Sengupta, P., Kinnebrew, J.,
Basu, S., & Biswas, G. (2013). Integrating computational thinking with K-12 science
education using agent-based computation: A theoretical framework. Education and
Information Technologies, 18, 351–380. https://doi.org/10.1007/s10639-012-9240-x

Shell, D.F., Soh, L.K., Flanigan, A.E., Peteranetz, M.S. and Ingraham, E., (2017),
Improving Students' Learning and Achievement in CS Classrooms through
Computational Creativity Exercises that Integrate Computational and Creative
Thinking. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (pp. 543-548). ACM.

Vogel, Sara, Rafi Santo, and Dixie Ching. 2017. “Visions of Computer Science Education:
Unpacking Arguments for and Projected Impacts of CS4all Initiatives.” Pp. 609–614 in
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, SIGCSE ’17. New York, NY, USA: ACM.

Wozney, Lori, Vivek Venkatesh, and Philip Abrami. 2006. “Implementing Computer
Technologies: Teachers’ Perceptions and Practices.” Journal of Technology and
Teacher Education 14(1):173–207.

Yadav, Aman, Susanne Hambrusch, Tim Korb, and Sarah Gretter. 2013. “Professional
Development for CS Teachers: A Framework and Its Implementation.” Future
Directions in Computing Education Summit.

2019 State of Computer Science Education. (2019). Retrieved from
https://advocacy.code.org/

 118

Appendix

Appendix A Quizzes

A.1 Cohort 1 Quizzes

A.1.1 Cohort 1 – Quiz 1: Conditionals

 119

 120

A.1.2 Cohort 1 – Quiz 2: Arrays & Loops

 121

 122

A.1.3 Cohort 1 – Quiz 3: Functions

 123

 124

 125

A.1.4 Cohort 1 – Quiz 4: Sort & Search

 126

 127

A.2 Cohort 2 Quizzes

A.2.1 Cohort 2 – Quiz 1: Functions

 128

 129

 130

 131

A.2.2 Cohort 2 – Quiz 2: Loops & If-Statements

 132

 133

 134

 135

 136

 137

A.2.3 Cohort 2 – Quiz 3: Loops & Lists

 138

 139

 140

 141

 142

A.2.4 Cohort 2 – Quiz 4: Functions, Loops, & Recursion

 143

 144

 145

 146

Appendix B Assignments

B.1 Cohort 1 Assignments

B.1.1 Cohort 1 – Assignment 1

 147

 148

 149

B.1.2 Cohort 1 – Assignment 2

 150

 151

 152

 153

B.1.3 Cohort 1 – Assignment 3

 154

 155

 156

 157

B.1.4 Cohort 1 – Assignment 4

 158

 159

 160

B.1.5 Cohort 1 – Teaching and Learning Assignment

 161

 162

 163

B.1.6 Cohort 1 – Final Project

 164

 165

B.2 Cohort 2 Assignments

B.2.1 Cohort 2 – Assignment 1

 166

B.2.2 Cohort 2 – Assignment 2

 167

B.2.3 Cohort 2 – Assignment 3

 168

B.2.4 Cohort 2 – Assignment 4

 169

B.2.5 Cohort 2 – Assignment 5

 170

B.2.6 Cohort 2 – Assignment 6

 171

 172

B.2.7 Cohort 2 – Assignment 7

 173

 174

B.2.8 Cohort 2 – Assignment 8

 175

B.2.9 Cohort 2 – Assignment 9

 176

 177

B.2.10 Cohort 2 – Final Assignment

 178

 179

Appendix C Computational Creativity Exercises (CCEs)

C.1 CCE 1 – Everday Object

 180

 181

 182

 183

 184

 185

C.2 CCE 2 – Path Finding

 186

 187

 188

 189

 190

 191

 192

C.3 CCE 1 – Modular Storytelling

 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

	INVESTIGATING FACTORS PREDICTING EFFECTIVE LEARNING IN A CS PROFESSIONAL DEVELOPMENT PROGRAM FOR K-12 TEACHERS
	

	Microsoft Word - MastersThesisFinal.docx

