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Abstract How mercury flows from geological
sources to society and to the environment was
modelled for this study. The industrial dynamics
of mercury was modelled and included in the inte-
grated assessment model WORLD7. The simulated
mercury losses were used as input for a simplified
global model for environmental pollution. The out-
puts were analysed and used to assess mercury
pollution amounts and supply to society. In fossil
fuels, there are a potential stock of 2 million tons in
coal and other hydrocarbons, and 450,000 tons of
that could be released to the environment if the
fossil fuels are all to be burned. Such release would
potentially cause major environmental damage and
a significant human health risk. The simulations
suggest that environmental mercury flows may
peak in 2025, and slowly decline as mercury gets
immobilized in nature. The simulations show that
the pollution from technical use is eliminated by
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putting the 2013 Minimata Convention into effect,
but that environmental pollution from fossil fuels
combustion and from environmental re-emissions
will remain a significant problem for the next
decades.
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Sustainability - Environmental pollution

1 Introduction

Mercury is very toxic, even at extremely low exposures,
and thus, its toxicity has always been an issue since
antiquity (Scoullos 2001). It is important that as little
as possible ends up in the environment (Tchounwou
et al. 2012, EEA 2018). It is a rare element of the IIb
group of the periodic system. Mercury has a silvery
colour, is a semi-precious metal. It is a liquid between
—39 and +357 °C. It has been known since antiquity
and has always been considered as very special. It was
used in medical substances, and in the past, this was a
source of substantial damage for those that got to be
treated with mercury compounds. It was the first antibi-
otic used against syphilis. One important use has been as
a liquid solvent for extracting silver and gold from ores.
It has been used in amalgam, most known for its use as a
dental material from about 1800 to about 2000. Any
dental or medical use has been outlawed in the EU by
the Heavy Metal Convention (de Vries et al. 2004; de
Vries and Bakker 1998; Bakker et al. 1998; EEA 2018).
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This has further lead to the Minamata Convention,1
signed in 2013, and globally effective of 2017.

Scientifically, the toxicity and extreme danger of
mercury exposure are well researched and documented
and have no room for any doubt
(European Environmental Aagency 2018; United
States Environment Protection Agency 2020b). But
old myths are hard to kill, and some simply deny every
risk and refuse to change as many researchers can attest
to (Berlin 1979; Bakker et al. 1998; Hansson 1986;
1989a,b, 1998; Kotter 2014; Kegan and Laskow-
Lahey 2014). One such urban myth is that metallic
mercury is chemically inert in the human body and thus
harmless to humans; all the literature states the opposite
clearly (Axelrad et al. 2007; Hansson 1986; 1989a,b;
Berlin 1979; Bernadin et al. 1981; Clarkson 1979;
Clarkson and Magos 2006; Hylander et al. 2005;
Bernhoft 2012; Ekino et al. 2007; Benford et al. 2012;
Bellinger 2005; Jensen and Ruzickova 2006; EEA
2018).

During the period 2000-2010, all mercury was
phased out in Europe from all use, because of the great
toxicity (EU Commission 2018; European Parliament
2017, 2018, ; for the Heavy Metal Convention, see de
Vries et al. 2004 and EU Comission 2018). In Europe,
mercury can only be legally used with a public authority
permit, and only in high-level controlled laboratories
(EC 2017; European Environmental Agency 2018;
UNEP 2013a,b,c, 2019; the Minamata Convention ,
see EC 2017). The efforts have resulted in a substantial
decline in emissions to the environment (Zhang et al.
2015). The rest of the world is slowly following, de-
layed, mainly because of less environmental profession-
alism in governance and lower levels of political respon-
sibility for public health. In the USA, mercury is still
used carelessly in certain vaccines and non-prescription
drugs (Danasekaran et al. 2013, Jensen and Ruzickova
2006). Mercury was banned from paint for indoor use in
the USA as late as 1991.

In antiquity, the large producers were Spain, Italy,
and Slovenia, but in these countries, all mines have been
closed during the late 1990s. Later, new mercury mines

tis, a legally binding agreement known as the Minamata Convention
on Mercury, which was agreed to by 147 countries, ratified and
implemented since 2013. The Minamata Convention will cause ratify-
ing countries to phase out—and, by 2020, to ban the use of mercury in
a range of consumer items, including batteries, light bulbs, medical
devices, dental fillings and vaccines, as well as address issues with
pollution from small-scale gold mining and coal-fired power plants.
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were opened in the Americas and in East Asia and some
are still active. The main mercury producer is at present
is China with 3000 tons per year, Mexico with 300 tons
per year, and Kyrgyzstan, Peru and Tajikistan with
30 tons per year each, all from primary mining of
cinnabar. In 2003, secondary mercury sources were
contributing about 5% of the production. The main uses
of mercury are in thermostats 47%, switches 24%, den-
tal amalgam 21%, thermometers 5% and other 2%.
There are good substitutes for all of those uses, and
society will do fine with no mercury available. Figure 1
shows the mercury production (a) and market price (b)
18502015 according to the USGS (2019a, b) as plotted
by the authors. The price crashed because of vanishing
European mercury demand, making the European mer-
cury mines in Spain, Italy and Slovenia close.

2 Objectives

The main objectives of this study are the following:
establish a basic global model for mercury and to in-
clude it in the WORLD?7 integrated assessment model,
and make assessment of the mercury supply dynamics
to society, before and after the introduction of the 1999
Arhus Heavy Metal Protocol and the 2013 Minimata
Convention and to make impacts assessments for mer-
cury environmental pollution as a result of the different
pathways of mercury from geological sources to the
environment. Associated with this was to find data for
the global stocks of mercury in geological deposits of
metals ore and as contamination in fossil fuels stocks.

3 Methods
3.1 Systems Analysis and System Dynamics

The methodology used here uses system analysis for
conceptualization, as the preparation for building a sim-
ulation model using the STELLA software. The main
standard methods of system analysis and system dynam-
ics modelling are used (Albin 1997; Forrester 1961,
1969, 1971; Meadows et al. 1972; 1992, 2005;
Roberts et al. 1982; Senge 1990; Haraldsson and
Sverdrup 2005; Haraldsson et al. 2006; Sverdrup et al.
2018). We analyse the system using stock-and-flow
charts and causal loop diagrams. The learning loop is
the adaptive learning procedure followed in our studies
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Fig. 1 The mercury production (a) and market price (b) 18502015 according to data adopted from the USGS (2019a, b) by the authors

(Senge 1990; Senge et al. 2008). The entering of the
code follows from the causal loop diagrams and flow
charts developed in the conceptualization stage. The
differential equations resulting from the flow charts
and the causal loop diagrams will be numerically solved
using the STELLA® modelling environment (Sterman
2000; Haraldsson and Sverdrup 2005; Sverdrup et al.
2018). To the largest degree, all constants and settings
have been based on observed system parameters, in
order to eliminate the need for calibration. The
WORLD7 model is not using state data or time series
for calibrating (Hirschnitz-Garbers et al. 2015; 2017,
2018, Koca et al. 2017; Lorenz et al. 2017; Sverdrup
and Koca 2017, 2018; Sverdrup and Olafsdottir 2019a,
b; Sverdrup et al. 2019). The WORLD7 model is oper-
ated as one concerted whole, where everything runs
simultaneously.

3.2 Sustainability Versus Unsustainability

In industrial use of metals and materials, we look at
stocks-in-use per capita as a measure of utility gained
from the resource. Supply per capita per year can be
used to evaluate if the supply is sufficient to maintain the
stock per capita in order to compensate for losses, and if
there is something left for growth. For mercury use, the
stock per capita should go down as fast as possible. In
environmental context, the stocks-in-use-for pollution
per capita should be as low as possible. When the supply
rate per capita per year to the environment is lower than
the immobilization and capture, then the environmental

burden per capita goes down. On the global scale,
mercury is sequestered from the environment by sedi-
mentation into anoxic sediments in deep lakes and the
oceans. There it is long term bound as sulphide.

3.3 Resource Estimation

The method has several steps: (1) establish how much
metal is present, (2) sort up the totalmercury resource in
quality classes, based on extraction costs and process
yields, (3) establish the fraction of the present mercury
that will be ultimately recovered, based on mercury ore
grade cut-off limit and extraction yield estimates.

3.4 Basic Principles Applied in Modelling

Supply is composed of both primary production, sec-
ondary extraction as a by-product of the production of
other metals and recycling of used material. From mass
balance, we have that the supply is equal to the produc-
tion plus recycling (AMAP/UNEP 2013, 2015, Bergan
et al. 1999; Sverdrup et al. 2019):

production + recycling = accumulation
+ recycling
+ permanent losses

(1)

This is the same accumulation in the system plus
recycling plus losses. Note carefully that recycling ap-
pears on both sides. It can mathematically be cancelled
out of the equation. It expands the total flux going
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through the system, without demanding new primary
material to be added. Recycling rates could be consid-
erably increased for many metals based on governmen-
tal policies, but those policies need to be set in place
(Sverdrup et al. 2017a).

4 The WORLD7 Model

The WORLD7 model has been quite useful and suc-
cessful for studying the nexus of resource use, energy
use, populations dynamics, international resource trade,
production of prosperity in society and climate change.
In an ongoing development process, more societal fac-
tors are being included in the model.

4.1 The WORLD7 Model Framework

The WORLD7 model is an integrated assessment mod-
el, designed to describe major parts of society including
mass flows, economy, natural environment, resources
and people (Hirschnitz-Garbers et al. 2015, 2017, 2018;
Koca et al. 2017; Sverdrup und Koca 2017, 2018;
Sverdrup and Olafsdottir 2019a, b; Sverdrup et al.
2018, 2019). The purpose of the WORLD7 model is
to link resource use, the global economy, human devel-
opment, industrial dynamics, public health and environ-
mental impacts into one large structure, in order to
assess global sustainability development. It includes
several interlinked sub-modules including population
dynamics, the economy, industrial and agricultural dy-
namics, natural resource use and the stability of societies
(Sverdrup et al. 2019). The WORLD7 model was built
using system analysis and system dynamics modelling
(Forrester 1961, 1969, 1971; Meadows et al. 1972,
1974, 1992, 2005; Roberts et al. 1982; Senge 1990;
Bossel 1998; Haraldsson 2004; Haraldsson and
Sverdrup 2005; Haraldsson et al. 2006; Sverdrup et al.
2018).

The world system was analysed using stock-and-
flow charts and causal loop diagram, and a learning loop
was used as the adaptive learning procedure (Senge
1990; Kim 1992; Senge et al. 2008). This approach in
model development is best suited to mechanistic models
that are based on cause and effect. The WORLD7 model
is not calibrated by adjusting key parameters fitting it to
systems output data (Lorenz et al. 2017; Sverdrup et al.
2018, 2019; Sverdrup and Olafsdottir 2019a, b;
Sverdrup 2019). The underlying system causal linkages
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and the mass balances lead to equations that are param-
eterized on independent system properties, initial states
and boundary conditions (Sverdrup et al. 2019). The
details on how the model is constructed can be found
in the background publications (Sverdrup et al. 2014,
2015, 2017a,b, 2018, 2019; Sverdrup and Ragnarsdottir
2014; Sverdrup and Olafsdottir 2018; Olafsdottir and
Sverdrup 2018, 2019; Sverdrup 2017).

The WORLD7 model operates on an aggregated
global scale. The WORLD7 model operates in normal
mode with a daily time-step (1/365), but uses yearly
printouts of results. Each iteration of the WORLD7
model and its sub-models was programmed in STELLA
Architect software (Sverdrup et al. 2014, 2015, 2017a,b,
2018, 2019; Sverdrup and Ragnarsdottir 2014; Sverdrup
and Olafsdottir 2018; Olafsdottir and Sverdrup 2018,
2019; Sverdrup 2017, 2019).

4.2 The Mercury Module in WORLD7

The mercury model was included as a submodule in the
WORLD7 model (Sverdrup 2019, Sverdrup et al.
2019). For more information on the WORLD7 model,
please check the earlier works published (Koca et al.
2017; Sverdrup etal. 2018, 2019). The following sectors
describe some of the underlying assumptions for the
mercury submodule and the basic structure.

4.2.1 Basic Layout for the Mercury Module

Figure 2 shows the flowchart for mercury that describes
the basic layout of the model as laid out in Fig. 3 inside
WORLD?7. The model has two parts. The industrial
dynamics in the upper part with extraction from geolog-
ical reserves and resources, mining and refining and
sales to the metal market. The path to mercury stock-
in-use is via the market. They are undifferentiated in the
model. The stock-in-use are either lost during use to
diffuse losses or to waste stocks. Any human being with
mercury can be directly exposed and contaminated dur-
ing use. For a period, mercury was used in pesticides
and seed conservation, and as a preservative in paint,
including paint for indoor use. Those practices have
again stopped, but not without resistance and delays.
The use of mercury in thermometers and barometers has
largely stopped in Europe. There are some phosphorus
deposits that have traces of mercury, and this all con-
tribute to the general global background exposure. More
important, sewage sludge can be used as fertilizer, and if
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Fig. 2 The flowchart shows the basic layout of the model as laid
out in Fig. 3. The mercury model sits inside the WORLD?7 Inte-
grated Assessment Model. The mercury sub-model has two parts.
The industrial dynamics in the upper part with extraction from

it is not screened properly, mercury pollution may find
its way into the food production.

4.2.2 Volcanic Emissions

The volcanic emissions are set at a basic constant rate
(Nriagu 1994; Nriagu and Becker 2003; Driscoll et al.
2013); but with some random variations overlaid on the
trend. The Hg emissions from fossil fuels are dependent

Pesticides

Mercury in
environment

Fertilizers

Human
exposure

Mercury in
human food

geological reserves and resources, and the environmental part
below. A main route for mercury into agricultural fertilizer is with
urban sewage sludge. Historically, mercury was earlier used in
pesticides and fungicides

on coal combustion, and the mercury mining emissions
proportional with copper and zinc mining (Telmer and
Veiga 2009). re-deposition of volatilised mercury ac-
counts for 32% of the ecosystem input in the USA
(Bergan et al. 1999; Kerfoot et al. 2000, 2004). The re-
volatilisation is assumed to be similar on a global level.
The volatilisation takes place from the atmosphere and
global bioavailable stock. It is caused by evaporisation
of metallic mercury in the environment and re-emissions
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of methylmercury (Krabbenhoft and Schuster 2002;
Krabbenhoft and Sunderland 2013). Methylisation oc-
curs through microorganisms in the soil (Meili et al.
2001, 2003) as well as in ocean sediments. Methyl
mercury is neurotoxic, human immune-depressive, vol-
atile and mobile in the environment (Sverdrup 2001;
Sverdrup and Ashmore 2001; Hong et al. 2012;
Bernhoft 2012, Swearengin 2008).

4.2.3 Mercury Toxicity

Toxic metals seem to have their own cycles in nature
and society, but may to some degree associate with
airborne particles. Figure 4 a shows the dose-response
curves for mercury. Figure 4 b presents an example of a
simulation of how mercury deposition can be transferred
to content in freshwater fish (Sverdrup and Ashmore
2001; Meili et al. 2001, 2003; Tchounwou et al. 2012).
Selenium is antagonistic to mercury by immobilizing it.
Sulphide forms a trap for mercury in anoxic environ-
ments. Inputs to the toxicology model comes from dif-
ferent parts of the WORLD7 system. The toxic metals
are derived in the model from the production and use of
cadmium, mercury, copper, zinc and lead (Sverdrup
2001; Sverdrup and Ashmore 2001, Meili et al. 2001,
2003, Schloss 2019, State Council of the People's
Republic of China 2013, Tian et al., 2010, 2015). Air
pollution is derived from combustion of fossil fuels, in
particular for mercury. Organic chemicals are derived

100 —
b A
= 10 -
O
< A
Nl
2
o, A
£ 1
o
[=9
E Mercury
2 0.1 4 Lead
& Cadmium
0.01
10 100 1,000

Metal exposure, microgram/day
a) Human toxicity of Mercury

Fig. 4 a The dose-response curves for mercury, lead, and cadmi-
um exposure in humans. b An example of a simulation of how
mercury deposition can be transferred to content in freshwater fish.
The diagrams were developed from simulations and assessments

10,000

from coke production, production of fossil fuels and
natural gas through leakages. Mercury is both an endo-
crine disruptor, has effect on the central nerve system
and the immune system. This is not seen as a significant
problem at the present, but this may be a result of lack of
understanding of the great toxicity of mercury. As much
domestic use of mercury has declined, the content of
mercury in public sewage may be expected to decrease
in the long-term perspective. At present, the global
background is elevated because of human activities.
The waste is either lost, immobilized or recycled. From
recycling some material is either resold to the market or
after 2010, more probably put into safe storage. The
United States Environmental Protection Agency (US
EPA) and the California Department of Public Health
(CDPH) regulate mercury levels in drinking
water (Toxicological Profile for Mercury 1999) . The
current State and Federal Maximum Contaminant Level
(MCL) for inorganic mercury is 2 pg/l (GAMA 2009).

Losses into the world from the industrial cycles in
society are added to emissions from the global volca-
nism, from degassing from natural gas production, in
natural gas emissions from geothermal venting and from
re-emissions from contaminated ecosystems and soils.
The lower part in the drawing is the environmental part.
Mercury alternates between being volatile in the atmo-
sphere and sits as adsorbed in the ecosystems (Driscoll
et al. 2013; Smith-Dowey et al. 2010). Mercury in
society originates from several sources and this is

25

%]
4

Mercury content in one kilo pike, mg/kg wwt

30 40 50
Mercury deposition in g km™

b) Mercury to fish in fresh water lakes

made in earlier work by the authors (Sverdrup et al. 1990, 1998;
Sverdrup 2001; Sverdrup and Ashmore 2001; Bakker et al. 1998;
de Vries and Bakker 1998, de Vries et al. 2004 )
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reflected in the model. Human exposure can come from
contaminated foods (fish that live for a long time, veg-
etables from polluted and contaminated soils), antibac-
terial additives, polluted air and from dental use of
mercury (Amorim et al. 2000, Bakir et al. 1973, Braid
2007, Buchet et al. 1980, Cherian et al. 1978, Clewell
and Clewell 2008, Camner et al. 1979; Clifton
2007, Cox 1981; Ehrlich 1910a,b, Enestrom, 1989,
Friberg 1951, Friberg 1969, Gerson et al. 2019, Gore
et al. 2015, Gregor et al. 1999, Hansson 1989a,b,c, Hu
et al. 2018, Ibrahim et al. 2006, Janishankar et al.
2014, Lanfor and Ferner 1999, Lauwerys ans Buchet
1973, Lee etal. 2017, Lelieweld et al. 2015, Stock 1926;
1934a, b, 1935, Levy 1995a,b; Mayer 1975; Ngim et al.
1992; Pelletier et al. 1986, Perry and Erlanger 1974,
Pinheiro et al. 2008, Popescu et al. 1979, Rehman et al.
2018, Schwenk et al. 2009, Seifert and Neidert
1954, Streets et al. 2017, Sundseth et al. 2017, Svare
etal. 1981, Vimercati etal. 2001, Vimy and Lorscheider
1985a, b; Vimy et al. 1986; Waldron 1983, Yokooet al.
2003, Zhao et al. 2006, Windham 2010) as well as
domestic Mercury spills (Hansson 1986; GBD 2016;
Hunter et al. 1940; Doherty 2003).

Limits for mercury in nature are available for a num-
ber of ecosystem components consistent with the UN/
ECE LRTAP Protocols, and the Minamata Convention.
The substitute, the older WHO limits, based on older
health and occupational standards, set for limits to hu-
man exposure. They all have in common that they have
been significantly adjusted down as compared to older
limits (EC 2017; European Environmental Agency
2018; UNEP 2013a,b,c, 2019).

4.2.4 Sources of Mercury for Extraction and Pollution

Mercury has been mined since antiquity, possibly as much
as 250,000 tons may have been extracted until 1850
(Pacyna et al. 2010; Pirrone et al. 2010). Significant
amounts of mercury originate from volcanic activities,
such as venting and eruptions (Nriagu and Becker 2003,
Amos et al. 2013). Degassing of natural gas also contrib-
utes mercury to the atmosphere. Much of the mercury can
be re-volatilised from terrestrial ecosystems and from the
ocean (Bergan et al. 1999). Data on the biogeochemical
cycle of mercury was derived from the state-of-the-art
literature (Brooks et al. 2007, Clewell and Clewell
2008, Cooke et al. 2009, Diaz 2013, Driscoll et al. 2013;
Lamborg et al. 2002, Lindberg et al. 1998, Mann
et al. 1996a,b, Meinert et al. 2016, Ninomiya

@ Springer

et al. 1995, Pacyna et al. 2006, 2010; Pirrone et al. 2010;
Rooney 2014, Selin 2009; Smith-Dowey et al. 2010;
Sverdrup and Olafsdottir 2018, Sverdrup 2018, Sverdrup
et al. 2014, 2015, 2017b, Sverdrup and
Ragnarsdottir 2016, Streets et al. 2011; Zhang et al.
2015). The extractable part of the remaining global mer-
cury resource was estimated to be ca 1.2 million tons
(Table 2). Total URR of all times is probably about
1.5 million tons according to our assessment of the avail-
able data (USGS 2019). Mercury is rarer than silver. The
price is lower, as the demand is smaller and declining
because of legislation against its use. Mercury ore has
contents ranging from 2.5 to 0.1% per weight in the ores
used for extraction so far. The chlor-alkali process is used
in the manufacture of chlorine, hydrogen and sodium
hydroxide (caustic) solution (Castner-Kellner Process, Du
etal. 2018) which used a lot of mercury in the past, but that
has been substituted by other processes. During the last
40 years, smoke gas cleaning equipment has been installed
in the chemical industry and on coal-fired powerplants in
the industrialized world. A side effect of smoke gas
cleaning is that it partially removes mercury in the flue
gas. Likewise, in the last 20 years, smoke cleaning from
crematories in the industrialized world has reduced mer-
cury emissions from these.

Table 1 shows an overview of estimated amounts of
mercury in geological deposits in 1000 BC as estimated
from the literature. Table 2 shows an overview of amounts
of mercury in geological deposits in 1850 BC compiled by
the authors. Amounts are in ton mercury metal. The better
mercury ore grades were all exhausted before 1850 and do
no longer exist. Mercury extraction started probably around
1000 BC. In the deposits, mercury frequently occurs as
native metal. Most common is natural mineral containing
mercury is cinnabar, the mercury sulphide (HgS).

Table 2 shows an overview of amounts of mercury in
geological deposits (see Pirrone et al. 2010 and Zhang
et al. 2015 for a review of the literature on geological
emissions). We suggest that about 200,000 tons of mer-
cury had been extracted prior to 1850 by comparing
Tables 1 and 2. The listed amounts in the tables are in
ton mercury metal. Note that the amounts remaining in
fossil fuel deposits are large and comparable in amounts
to silver (Sverdrup et al. 2014). The total primary de-
posit is estimated to contain about 4.6 million tons of
mercury and the total deposits about 4.9 million tons,
but note that much of that is not extractable for technical
use. The fraction of that resource which would be avail-
able for extraction is much smaller.
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Table 1 Overview of estimated amounts of mercury in deposits in 1000 BC. Metric ton mercury metal

Grade class Mineral form Contents, % weight Sum Comment

metric ton

Average Range

Rich Metallic 35 5020 1000 Now exhausted
High Metallic, Cinnabar 12 20-5 100,000 Now exhausted
Low Metallic, Cinnabar 2.5 52 500,000 Mined now
Ultralow Metallic, Zn, Cu, Cinnabar 0.5 2-0.5 800,000 Mined now
Trace Polymetallic, Cinnabar 0.15 0.5-0.1 1,440,000 Secondary
Rare Polymetallic deposits 0.03 <0.1 2,005,000 Contamination
Sum All deposits 4,846,000

Table 3 shows the initial values used at the beginning
of the WORLD?7 simulation in 1850 compiled by the
authors. Table 4 shows occurrences of secondary mer-
cury in some metal ores as compiled by the authors. The
extractability of these resources depends on the mercury
price and availability for extracting the mercury from
ore residuals and smelting waste. The amounts listed are
in ton of mercury. What cannot be extracted, will (to 80—
90%) be ending up as environmentally available pollu-
tion. Coal and hydrocarbon deposits contain as a whole,
significant amounts of mercury. Table 5 shows an esti-
mate of the mercury contained in fossil fuels and poten-
tial amounts available for release if it was all released by
fuel combustion. The mercury removal yield relates to
cleaning systems applied to exhaust and to fuel produc-
tion. Not all of these hydrocarbons will be extracted; we
estimate the amount in the hydrocarbons likely to be

extracted to amounts have been listed in Table 5. Note
that the amounts contained in fossil fuel deposits are
larger than those identified in ore deposits. All the
known deposits that are evaluated as not interesting for
extraction have been omitted. All of this mercury will
become potential pollution if all the fossil fuels they are
contained in are burned (Rytuba 2002, 2003). This stock
of mercury is at present to not feasible for extraction to
mercury metal because of the low concentration in the
substrate (Fig. 5).

5 Results

The research results are categorised according to the
objectives set up for this study earlier.

Table 2 Overview of amounts of mercury in geological deposits at the beginning of the WORLD7 simulation in 1850. Amounts are in ton

mercury metal

Grade Mineral form Contents, % Yield Known Hidden Sum
%
Mean Range ton of mercury

Rich Metallic 50 70-25 90-99 Exhausted Exhausted Exhausted
High Metallic, Cinnabar 15 25-5 90-99 Exhausted Exhausted Exhausted
Low Cinnabar 2.5 5-2 90-95 100,000 300,000 400,000
Ultralow Zn, Cu, Ag, Cinnabar 0.5 2-0.5 50-85 100,000 700,000 800,000
Trace Zn, Cu, Ag, Cinnabar 0.15 0.5-0.1 20-65 40,000 1,400,000 1,440,000
Rare Polymetallic ores 0.03 <0.1 0-30 5000 2,000,000 2,005,000
Primary deposit 4,645,000
Secondary 230,500
Sum 4,875,500
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Table 3 Input values for WORLD7 model. Initial stock values (for 1850), based on extractable amounts (million ton)

Stock Total stocks

Total extractable

Hidden amount Known amount

Low-grade ore
Ultralow-grade ore
Sum in ore

In use in society

In scrap

In the environment
Atmospheric content

Sum in total 2.888

0.4 0.3 0.1
0.8 0.7 0.1
12 1.0 0.2
0.1

0.06

0.1

0.028

12 1.0 0.688

5.1 Model: Establish a Basic Global Model for Mercury

The mercury module is causally linked to variables in
other modules and it provides a mercury supply and
mercury market price for the industrial dynamics section
of the WORLD7 model. The mercury module also gener-
ates reliable estimates of mercury losses to nature that are
used as inputs to the environmental module and to the
public mortality module in WORLD?7. The graph to the
left on Fig. 6 shows simulation outputs compared recorded
history. The graph to the right on Fig. 6 shows the cumu-
lative extracted amount, versus the recorded cumulative
amount from 1850 to 2015. Since the curves fit well with
the historic data, it increases likelihood that the predicted
future scenarios hold for the assumptions made.

The graph to the left in Fig. 7 shows different sources of
mercury production. Mercury originates from primary
mining in Spain, Slovenia, China and South America.
The mines in Europe were closed in 2002. The graph to
the right on Fig. 7 shows the simulation of the market price

Table 4 Occurrences of secondary mercury in some metal ores.
The extractability of these resources depends on the mercury price
and availability for extracting the mercury from ore residuals and

in the graph to the right. The dotted line represents the
observed data on price as seen by the USGS (2019). The
market has not been a free and dynamic market at all times.
The military in several countries has had their strategic
stocks of mercury and influenced the trade in the past.
Before 1850, humans had already extracted about
250,000 ton of mercury, of this 150,000 ton remained in
stocks-in-use and in waste by 1850. We have assumed that
100,000 ton of mercury would be in the environment in
1850 (see Table 3). After the banning of mercury use in
Europe through the protocol and the Convention, the
mercury market disappeared. Only a very specialized tech-
nical market will remain after 2020, and then it will only be
available at a high cost, covering all associated costs.

5.2 Supply and Recycling: Assessment of the Mercury
Supply to Society

To assess the long-term sustainability of mercury, it is
beneficial to look at stocks-in-use per capita to measure

smelting waste. Amounts are in ton. What cannot be extracted, will
(to 80-90%) be ending up as environmentally available pollution
(Sangster 1990; Schwartz 1997, 2002; Selin 2009)

Source metal Source metal, ppm Mining  Mercury, ton  Source

million ton content yield, %
Silver 35 12 0-30 42 Rytuba 2002, 2003; Schwartz 1997, 2008
Copper 4030 18 0-30 72,540 Rytuba 2002, 2003; Schwartz, 1997, 2008; Kerfoot et al. 2004
Zinc 2676 50 40-60 133,800 Rytuba 2002, 2003; Sangster 1990; Schwartz 1997, 2008;

Kerfoot et al. 2004

Lead 3015 8 0-30 24,120 Rytuba 2002, 2003; Schwartz 1997, 2008; Kerfoot et al. 2000, 2004
Polymetallic 1000 20 30-50 20,000 Kerfoot et al. 2000, 2004; Schwartz 2008
Sum 230,502
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Table 5 Mercury in fossil fuels and potential amounts available
for release of it was all released by fuel combustion. The mercury
removal yield relates to cleaning systems applied to exhaust and to

fuels production (Mojammal et al. 2019; Bingham 1990; Selin
2009; Wilhelm 2001; Wilhelm et al. 2007; Wu et al. 2017)

Source Source, Hg content, and Estimate of Range, ton mercury Mercury Released to nature
million ton range PPM mercury removal if burned, ton
amount, ton yield, %
Oil 690,000 0.2; 0.1-1 138,000 70,000-700,000 85 21,000
Gas 530,000 0.2; 0.1-1 106,000 50,000-530,000 70 32,000
Coal 2,500,000 0.8; 0.5-5 2,000,000 1,300,000-5000,000 80 400,000
Sum 3,620,000 2,244,000 1,420,000-6,230,000 453,000

utility gained from the resource. Supply per capita per
year is a beneficial measurement to use to evaluate if the
supply is sufficient to maintain the stock per capita in
order to compensate for losses for most metals but in the
case of mercury, the goal is to use less. The graph to the
left on Fig. 8 shows the stock in use per person, and the
graph on the right shows the simulation of demand, total
extraction, primary mining, secondary mining and
recycled. Part of the recycling for mercury is taken aside
and immobilized, removed from circulation. It is evident
from the graph that a paradigm shift occurred in about
1994 when mercury supply and demand in principle
collapsed. Then mercury use in thermometers, switches
and dental amalgams stopped in Europe. Figure 9 shows
aspects of production of mercury in terms of where it
comes from, coal, oil, gas, from mining and natural
emissions. Eventually, everything ends up in the

Effect leakage

-10 Climate_cha... 10

Leaching

Fig. 5 The temperature dependence of mercury leaching from
waste and stock in use and for re-emission of environmental
mercury as a function of temperature change in C. The climate

environment. Only natural emissions are outside human
control.

5.3 Pollution: Make Impacts Assessments for Mercury
Pollution

Mercury pollution into the world from the industrial
cycles in society is added to emissions from the global
volcanism, from degassing from natural gas production,
in natural gas emissions from geothermal venting and
from re-emissions from contaminated ecosystems and
soils. On the global scale, mercury is sequestered from
the environment by sedimentation into deep anoxic
sediments in deep lakes and the oceans. There it is
bound as mercury sulphide, a nearly insoluble com-
pound in nature. Mercury will prevail long in the envi-
ronment after that due to mercury re-volatilisation and

3

Effect v...lization

-10 Climate_cha... 10

Re-emission

change is in degrees Celsius and derived from the climate model
inside WORLD7. Leaching. Re-emission

@ Springer



439 Page 12 of 22

Water Air Soil Pollut (2020) 231: 439

20,000

17,500

15,000

12,500

ton per year

10,000

7,500

Mercury flow,

5,000 | {5

2,500

0
1865 1880 1895 1910 1925 1940 1955 1970 1985 2000 2015
Years

«+.Hgindata =z=Hg supply

Fig. 6 (left) Testing the WORLD7 model simulation of mercury
extraction on the recorded history of mercury extraction. (right)
The cumulative extracted amount mercury, versus the recorded

the increased speed of mercury transformations caused
by temperature increases from climate change.

When making the environments assessment, the
stocks-in-use-for pollution per capita should be as low
as possible. When mercury stocks in the environment go
down (after 2025), we have a measure of environmental
success. The graph to the left on Fig. 10 shows the
simulated total mercury environmental input in ton per
year, and the mercury stock in the environment and the
mercury stock in the atmosphere. Mercury stays in the
environment for a long time once it has arrived there
(Bergan et al. 1999; Driscoll et al. 2013). The inputs to
the environment seem to peak in the period 2040 and
then decline from 2045 towards 2100. The graph to the
right in Fig. 10 shows the environmental stock per
person, the atmospheric stock per person and the supply
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Fig. 7 (left) Simulation of the sources of the global mercury
production. Mercury originates from primary mining in Spain,
Slovenia, China and South America. The mines in Europe were
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cumulative amount of mercury from 1850 to 2015. It appears that
the history is well recreated with no significant bias in the results

per person per year, as well as the total environmental
input, both anthropogenic and geological. This shows
how the stocks in the environment peaked in 1920, and
have steadily declined since.

The graph on the left in Fig. 11 shows geological,
primary and secondary pollution effects. Looking at the
primary and the secondary effects, it is clear that the
secondary effects peak about 60 years later, indicating that
even though primary pollution is well regulated, the effects
will be present long after. The graph on the right in Fig. 11
shows mercury pollution divided into sectors, from fossil
fuels, metal mining, geological and society. The natural
geological mercury pollution is the only one that is not
controllable, and the mercury pollution from the fossil fuels
and from metal smelting peaks around 2015. The environ-
mental pollution from technical use of mercury declined

100,000

90,000

80,000

70,000

60,000

50,000

40,000

2. 2.

30,000
20,000

10,000
0
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closed in 2002. (right) The simulation of the market price. The
dotted line represents the observed data on price as seen by the
USGS (2019), given as a dotted line
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Fig. 8 (left) The stock in use per person and supply in mg per person per year. (right) The simulated development of the simulation of
demand, total extraction, primary mining, secondary mining and recycled mercury

after 1990, and around 2000, mercury emissions from
fossil fuel combustion became the largest source of mer-
cury to the environment. After the year 1998, emissions
from fossil fuels combustion will be the largest source of
mercury to the environment. It is visible that the environ-
mental input continues from geological sources and from
re-emission of old pollution still stored in the environment.

In 2025, we have a paradigms shift. Then the sec-
ondary re-emission of mercury will become larger than
the primary emissions. Note that in the simulation, the
effect of climate change was considered. With increased
temperatures, the emission rate will increase the speed
of mercury circulations in the environment. The mercu-
ry pollution will reach higher concentrations, but decline
faster. Eventually, the mercury gets sequestered into the
sediments of the sea and lakes, by precipitation as

mercury sulphide. Without climate change, the red line
in the left graph in Fig. 11 would be much lower.

6 Validation

Even though the mercury model presented is relatively a
simple sub-model within the framework of the
WORLD7 model, the output indicates that the main
dynamics have been captured. The outputs reconstruct
the industrial ecology of mercury from 1850 to 2015,
and from that, we conclude that the model is a valid
assessment tool and useful to look at plausible future
scenarios based on “business as usual” and to compare
that with other scenarios. Figures 6 and 7 show simula-
tion output compared to observed data.

Fig. 9 Aspects of production of 4,000

mercury, quantifying the amounts
from coal, oil, gas, mining, and
geological activity
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Fig. 10 (left) The simulated mercury impact in total, on the atmosphere. (right). The environmental stock per person, the at-
environment and the atmosphere. The graph shows the total input mospheric stock per person and the supply per person per year, and
per year, the stock in the ecosystems and the stock in the the total environmental input
7 Discussion It could have consequence for all types of vertebrate life,
including humans (Bellanger et al. 2013). It would cause
Mercury is a very toxic element, and the available significant negative endocrine impacts, immune system
assessment literature allows for no illusions or denial impacts and central nerve system impacts in human,
of health effects from mercury exposure. The risk of manifesting itself as public health issues (increased hos-
mercury pollution and associated human health effect is pitalizations and infectious diseases) and cognitive ca-
areason for phasing out coal as a power source. Because pability decreases on a global level (loss of intelligence).
of the volatility of the polluting substance, mercury It is also evident that continued coal combustion without
remains long in the ecosystems and has the potential to smoke gas cleaning would release far too much mercury
reach every living human on the planet. Thus, once to the environment. Mercury pollution is particularly
pollution has been done, the next generations are stuck insidious damage as it is invisible, tasteless, odourless
with it, and in terms of sustainability, it is an issue of and technically difficult to measure at levels where it is
intergenerational accountability. Climate change with still physiologically dangerous (ng/m’ or exposure in
increasing temperatures appears to have increased the microgram per day).
re-volatilisation of mercury from old pollution, and There needs to be some reflections on the history of
environmental mercury pollution is still a problem. denial of science related to environmental issues and
Table 5 shows a very compelling reason why coal as medical effects of mercury and the occurrence of lack of
a fuel should be phased out, based on mercury pollution will to change, that was pervasive for a long time
alone. Releasing another 450,000 ton of mercury into (Hylander et al. 2005; Danasekaran et al. 2013; Kegan
nature would amount to a major environmental damage. and Laskow-Lahey 2014; Kotter 2014 for a discussion
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Fig. 11 (left) The primary, secondary and the geological mercury pollution. (right) The mercury pollution from fossil fuels combustion,
pyrotechnical metal mining, geological pollution and from society use

@ Springer



Water Air Soil Pollut (2020) 231: 439

Page 15 of 22 439

of how an issue can get stuck with some people that
loses the ability to change). Those, in positions of pow-
er, need to seriously consider their environmental atti-
tudes and policy with relation the next generation in
many aspects, some of them also concerning global
environmental aspects beyond the issue of mercury
(Kegan and Laskow-Lahey 2014 Haraldsson et al,
2008). A need for contemplation to the dependence on
future pension systems, the dependency of the future
elderly care and health services, considering that those
services will be provided, operated and paid for by the
next generation. When sufficient numbers of the next
generation (that are anticipated to provide that care,
support and pensions), feel their future has been ruined,
it may have ramifications for those that are perceived to
have the blame for that ruined environment. It will be
important to make sure the 2013 Minamata Convention
is implemented properly and followed up in a way that it
really works. This implying letting no mercury reach the
market, and stop all production in all countries.

The future perspective of this work is that the effect
of different changes in financial strategies, global eco-
nomics, resource policy and energy politics can be
assessed, even down to the level of global mercury
pollution. Mercury pollution is a participant in the glob-
al pollution exposure with long-term effects on human
public health. This can now be assessed.

8 Conclusions

It is concluded that the WORLD7 model presented
represents the current history well enough to use it to
make future policy predictions. The assessment of the
mercury supply to society and the mercury environmen-
tal pollution are aspects of the same system as seen from
different angles.

The main concern with mercury is for human health.
A challenge is getting good human mercury exposure
inputs to environmental assessments and human health
assessments, set in the right context. Most of the mer-
cury known will need to remain in the ground or to
return there as long as we keep the knowledge of its
great toxicity. Based on the outputs from the model, it is
concluded that the mercury supply (and pollution) to
society is in decline and will almost be phased out by the
year 2050. The outputs confirm Zhang’s conclusions
that the atmospheric stock has started to decline as a
result of declining industrial emissions (Zhang et al.

2015). The purpose of the present policy (2013
Minamata Convention) is to eliminate the supply to
society and from the outputs it seems like that is work-
ing (European Parliament 2017).

The limitations on mercury future use by regulations,
make sure that there will be no scarcity because of
resource exhaustion.
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