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Abstract 

Knowledge of the dynamics of rivers and reservoirs is important to help manage the impacts 

of climate change and anthropogenic activities on water resources, which are intimately tied to 

human well-being, economic wealth and environmental health. However, ground-based 

measurements only capture a small fraction of water bodies, and in situ observed data are 

generally not publicly shared in most countries for a variety of reasons. Satellite remote sensing 

technology provides promising new opportunities to measure global water availability at different 

time and space scales. The objective of this study was to develop a global monitoring capacity to 

measure rivers, lake, and reservoir dynamics using satellite observation. In pursuit of this 

objective, I propose approaches to measure river discharge, river morphology, and lake (reservoir) 

storage based on remote sensing data. Satellite gauging reaches (SGRs) that can predict river 

discharge based on optical remote sensing are shown to be applicable to many rivers globally, 

especially in South America, Africa, and Asia. The river discharge prediction capability of SGRs 

in a certain river reach can be explained by its unique river morphology characteristics. 

Hydromorphological attributes, including spatial and temporal river width, flow regime and river 

gradient were produced for 1.4 million Australian river reaches, and can be used to improve river 

routing in models to better estimate river discharge. Finally, storage dynamics for 6,743 reservoirs 

worldwide for the period 1984-2015 were reconstructed based on satellite observations. The 

results indicate that some storages, particularly in southeastern Australia, central Chile, the USA, 

and eastern Brazil, have declined, accompanied by reduced reservoir resilience and increased 

vulnerability. Others have increased, mainly in the Nile Basin, Mediterranean basins and southern 

Africa. Multi-decadal changes in rainfall and hence streamflow were found to be the main reason 

for these changes. The techniques and data produced in this study provide components for a global 

monitoring capacity. The approaches developed can be used to process near real-time 

observations continuously. In future, the storage estimation method developed may be extended 

to lakes and wetlands. This study emphasizes the importance of increasing, or at least maintaining, 

the number of global gauging sites, which not only provide the historical context and current 

status of water resources under climate change, but also provide an indispensable basis to train 

remote sensing data in order to create a global water availability picture. Collaboration among 

different counties is urgently needed to share in situ river, lake, and reservoir data to tackle current 

and future water crisis, a challenge people worldwide face together. Considering the essential role 

of water resources for human well-being, new satellite missions are required that are specially 

designed for simultaneously measuring water extent and elevation in rivers, lakes, reservoirs, and 

wetlands at high spatial (e.g. 10 meters) and temporal (e.g. daily) resolution over the next decades.  
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Chapter 1: Introduction 

1.1 Background 

Globally, rivers, lakes and reservoirs are the major sources of potable, irrigation and 

environmental water (Vörösmarty et al., 2010). Water exchange, laterally and vertically, between 

these water bodies and the atmosphere and the oceans play an essential role in the hydrological 

and biochemical cycles (Papa et al., 2008). Many rivers, lakes or reservoirs are highly dynamic 

at seasonal and inter-annual time scales, providing important ecosystem functions (Klein et al., 

2017). Detailed measurement of inland surface water dynamics also provides basic and important 

information for policymakers, water managers, and researchers in a wide variety of disciplines 

(Sheffield et al., 2018).  

Human activities and anthropogenic climate change have posed new threats to rivers, lakes, 

and reservoirs. Changes in lake extent and wetland flooding have been observed, for example in 

the world’s saline lakes and endorheic basins (Wang et al., 2018, Wurtsbaugh et al., 2017), the 

declining number of lakes in the Arctic and on the Mongolian Plateau (Smith et al., 2005, Tao et 

al., 2015), decreases in spring and summer streamflow over California, USA (Barnett et al., 2008), 

and a shift in peak river flow to winter and early spring in snow-dominated regions (Barnett et 

al., 2005), to name a few. If of sufficient magnitude, such changes can alter global sea level rise 

and methane and carbon dioxide emissions (Chao et al., 2008), as well as threaten water 

availability and security, thereby causing economic damage and social instability (Schellekens et 

al., 2017). However, due to the lack of comprehensive river, lake and reservoir data, it is unclear 

whether such changes are part of a global trend or more local phenomena.  

1.1.1 Limitations of in situ measurement 

Since surface water is intimately linked to human well-being, economic wealth and 

environmental health, there is a need for mapping the distribution of water, quantifying storage 

and monitoring variations in river, lakes and reservoirs at local and global scales (Papa et al., 

2010b). In situ measurement networks are highly unevenly distributed and in decline globally, 

and most gauging data are neither provided in real time nor publicly available. As a result, we 

have poor knowledge of the temporal and spatial dynamics of rivers and changes in water stored 

in lakes and reservoirs (Alsdorf et al., 2007). For instance, in northern high latitudes, 66% of the 

river gauging stations have stopped operating since 1985 (Birkinshaw et al., 2010, Nijssen et al., 

2001). The density of river gauging stations in the eastern U.S. is two orders of magnitude greater 

than in the Amazon Basin, even though annual mean river discharge in the eastern U.S. is two 

orders of magnitude less in the Amazon Basin (LeFavour and Alsdorf, 2005). In situ lake data are 

rarely available, especially in areas that are inaccessible, remote or hindered by transboundary 

issues. Reservoir storage is presumably measured in most major dams, but not publicly shared in 

most countries for a variety of commercial, logistical, political and security reasons. All these 
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problems impede a better understanding of changes in rivers, lakes, and reservoirs affect our life 

and surrounding environment. 

1.1.2 Opportunities of satellite remote sensing 

Satellite remote sensing technology provides promising opportunities to measure and 

understand changes in water extent, level and volume in space and time. Recent years have seen 

vast improvements in the accessibility of remote sensing data (Tarpanelli et al., 2013). 

Establishing a global ground-based water monitoring network would require tremendous 

economic, technological and institutional support. In contrast, using remote sensing is a cost-

effective way to acquire water information both at regional and global scales (Bjerklie et al., 

2003). 

There are three major types of remote sensing systems, i.e. optical remote sensing (visible 

radiation emitted from the sun and then reflected from the Earth’s surface), passive microwave 

remote sensing (low frequency radiation emitted by the Earth’s surface directly), and active 

remote sensing (emitted by the instrument and then reflected from the Earth’s surface). Active 

remote sensing instruments, such as radar altimeters, are able to measure surface water elevation, 

but miss a large fraction of surface water bodies around the world because of the wide gaps 

between successive satellite orbits. Passive microwave remote sensing can provide imagery of 

spatial and temporal water extent variations at global scale under all weather conditions, but its 

spatial resolution is quite coarse. Optical remote sensing can not only provide high spatial 

resolution information of global surface water bodies (e.g. Landsat and SPOT), but also yield 

frequent and ongoing data (e.g. AVHRR and MODIS). Although cloud contamination limits the 

capability of optical sensors to detect surface water, optical sensors are still the most powerful 

means to produce consecutive spatio-temporal imagery over long time-spans. Therefore, my 

study is mainly based on optical remote sensing, from instruments such as MODIS and Landsat. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a mid-resolution optical 

sensor aboard the Terra (launched in 1999) and Aqua satellites (launched in 2002). Bands 1-2 in 

red and near-infrared wavelengths have a spatial resolution of 250 m and bands 3-7 in green, blue 

and the mid-infrared wavelengths have a spatial resolution of 500 m. MODIS has rich time-series 

data attributed to two observations per day for every point in the planet, which makes it useful to 

measure open water body dynamics, especially near-real time inundation, flood recurrence and 

large reservoir water extent. However, the capabilities of MODIS are limited by relatively low 

spatial resolution and cloud contamination. At a spatial resolution of 250-500 m, water bodies 

less than a pixel cannot be detected by MODIS. Moreover, floods regularly happen at the same 

time as cloud-borne rainfall events, which limits the amount of available data for peak floods.  

The Landsat series of satellites operates since 1972 and continues to provide long-term 

space-based images of natural and human-influenced changes on the landscape at global scale. 

Landsat 1, Landsat 2, and Landsat 3 had an 18-day repeat cycle. The Multispectral Scanner (MSS) 
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provides 80 m spatial resolution images in the wavelength ranging from visible blue to near-

infrared. Landsat 4 and Landsat 5 had a repeat cycle of 16 days. The improved Thematic Mapper 

(TM) provides 30 m spatial resolution images in the spectrum of the visible, near-infrared and 

shortwave infrared wavelengths. Landsat 6 failed to reach orbit. But the mission is continued by 

Landsat 7 and Landsat 8, which have the same orbit with Landsat 4 and Landsat 5. The Enhanced 

Thematic Mapper Plus (ETM+) on aboard Landsat 7 has same bands with TM while the 

Operational Land Imager (OLI) carried by Landsat 8 extend the shortwave infrared band. All 

these features enable Landsat to measure a large number of surface water bodies at different sizes 

and provide long-term dynamics information for trend analysis. The drawback of Landsat’s 

application is low temporal resolution, which could be further worsen by cloud contamination.  

1.1.3 Satellite-based river and reservoir measurement 

Combining satellite and in situ observations, we have gained much knowledge of water 

resources on Earth. According to the HydroLAKES and the Global Reservoir and Dam database 

(GRanD), there are a total of 2.67×106 km2 of natural lakes and 0.26×106 km2 of human-made 

reservoirs with a surface water area greater than 0.10 km2, and these water bodies cover about 2% 

of the global land area. The total shoreline length of reservoirs and lakes is approximately four 

times the global ocean shoreline (Lehner et al., 2011, Messager et al., 2016). According to the 

Global River Widths from Landsat (GRWL) Database, the total surface area of rivers and streams 

at mean annual discharge is roughly 7.73×105 km2, which is about 0.58% of Earth’s non-glaciated 

land surface (Allen and Pavelsky, 2018). However, we are facing challenges that employ satellite 

observations from two-dimensional applications, e.g. surface area, towards three-dimensional 

usage, e.g. to estimate river discharge and storage in lakes and reservoirs. For example, there are 

still technical and operational difficulties to produce bathymetric maps of rivers, lakes, or 

reservoirs, which currently require time- and cost-intensive survey methods (e.g. acoustic 

profiling). In addition, there is a widespread need of dynamic information, rather than static 

measurement.  

The most common approach to estimate river discharge from space has been to use in situ 

river discharge measurements to train remote sensing imagery based on hydraulic geometry 

theory or at-a-station hydraulic geometry (AHG) (Leopold and Maddock, 1953), involving 

power-law relationships between discharges observed in situ and, remotely sensed river width 

(Pavelsky, 2014, Smith et al., 1996, Smith et al., 1995, Smith and Pavelsky, 2008), or river surface 

water height (Birkinshaw et al., 2010, Coe and Birkett, 2004, Kouraev et al., 2004, Papa et al., 

2010a, Tourian et al., 2013). Recently, there has been a test of using at-many-stations hydraulic 

geometry (AMHG). Gleason and Smith (2014) found that the parameters of AHG are log-linearly 

related along a river, and were able to estimate river discharge from remote sensing (e.g. Landsat) 

derived widths at multiple river cross sections (Gleason and Wang, 2015, Shen et al., 2016). 

Alternatively, the ratio of the Advanced Microwave Scanning Radiometer (AMSR-E) passive 

microwave brightness temperature or Moderate Resolution Imaging Spectroradiometer (MODIS) 
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near-infrared reflectance between a wet measurement grid cell and its nearby dry calibration grid 

cell has become another pragmatic tool that can be trained using in situ data and used as a simple 

and computationally efficient approach to predict river discharge (Brakenridge et al., 2012, 

Brakenridge et al., 2007, Revilla-Romero et al., 2015, Tarpanelli et al., 2013, Van Dijk et al., 

2016). A simpler automated statistical method that can be readily applied globally and provide 

near real-time information even also at ungauged reaches is required. 

River width is an essential parameter associated with river morphology. It can be used to 

assess river conveyance, calculate river discharge, and improve river routing in hydrological and 

hydraulic models (Yamazaki et al., 2014). Lack of detailed data on river width is an impediment 

to improving river routing in state-of-the-art hydraulic and hydrologic models, as model 

development moves toward higher spatial resolution and larger spatial scale to better understand 

storage and flow of water across continents. River widths at mean discharge in the Mississippi 

Basin and across the globe were measured by Allen and Pavelsky (2015) and Allen and Pavelsky 

(2018), using RivWidth, a software tool (Pavelsky and Smith, 2008). Another automated analysis 

and mapping engine, RivMap, developed by Isikdogan et al. (2017), was used to estimate river 

width for North America. In line with these software tools, Yamazaki et al. (2014) developed an 

automated algorithm and used it to generate river width dataset for large rivers globally. However, 

none of these datasets provides information on temporal variability of river width or river width 

beyond overbank flow conditions. 

Lake and reservoir storage variations can be estimated based on measurements of surface 

water level and inundation area, either or both of which can be derived from satellite observation 

(Busker et al., 2019, Crétaux et al., 2011, Gao et al., 2012, Medina et al., 2010, Tong et al., 2016, 

Zhang et al., 2014). There are several altimetry databases, including the Database for 

Hydrological Time Series of Inland Waters (DAHITI), the European Space Agency’s (ESA) 

River and Lake data set, the French Space Agency Centre National d’Etudes Spatiales’ (CNES) 

Hydrology by Altimetry, and Global Reservoirs and Lakes Monitor (G-REALM) from the United 

States Department of Agriculture Foreign Agricultural Service. But this approach is only suitable 

to a limited number of lakes and reservoirs worldwide due to wide gaps between the satellite 

altimetry tracks. Messager et al. (2016) estimated the volume of lakes and reservoirs with a 

surface area greater than 0.10 km2 at global scale using a geo-statistical model based on 

surrounding topography information, but these estimates were not dynamic time series. 

1.2 Objectives 

The main objective of the research presented in this thesis was to develop elements of a 

global monitoring capacity that can provide spatial and temporal river, lake, and reservoir 

information derived from satellite observation. Such an information system should be a valuable 

platform for policymakers, researchers and society, to understand how climate change and 

anthropogenic activity affect global rivers, lakes, and reservoirs. It would allow any users to 



5 

 Global satellite-based measurement of river and reservoir dynamics  

access historical and current information on the state of water resources, either at global scale or 

in their region of interest. To pursue this objective, the research focused on measuring spatial and 

temporal river discharge, river morphology, reservoir storage based on remote sensing data, and 

aimed at answering the following research questions: 

a) Can we use remote sensing to estimate river discharge at both gauged and ungauged river 

reaches globally? 

b) What are the merits and drawbacks of using optical and passive microwave remote 

sensing, respectively, to predict river discharge? 

c) What is the influence of river morphology on the application of remote sensing to measure 

river discharge? 

d) Can we derive a satellite-based parameter to describe river reaches by the degree to which 

flow regime tends towards permanent, frequent, intermittent, or ephemeral? 

e) What are the relationships between river width and contributing catchment area, river 

discharge, and reach gradient? 

f) How do climate change and anthropogenic activities affect the flow in rivers and storage 

in reservoirs? 

1.3 Structure 

This thesis is a Thesis by Compilation, as set out in ANU’s Higher degree by research - 

thesis by compilation and thesis by creative works procedure 

(https://policies.anu.edu.au/ppl/document/ANUP_003405). The content in each of Chapter 2 to 

5 is one paper published in, or submitted to, a peer-review journal. The first three chapters have 

been published and are included in their published version whereas the paper corresponding to 

the fourth chapter is currently under review. Chapter 2 and 3 propose an approach to estimate 

global river discharge and answer research questions (a)-(c) above. Chapter 4 produces river 

morphology data and addresses research questions (d) and (e). Chapter 5 reconstructs global 

reservoir storage dynamics and discusses climate change and anthropogenic influences as per 

question (f). Chapter 6 concludes the main findings of this study and outlines suggestions for 

future investigations. Appendix 1 to 3 includes the supplementary material for Chapter 2, 3 and 

5, respectively. Based on all data and methods developed in this study, Appendix 4 propose a 

global near real-time river, lake and reservoir monitoring system. It was published as a conference 

paper. 

 

 

https://policies.anu.edu.au/ppl/document/ANUP_003405
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Chapter 2: Using modelled discharge to 
develop satellite-based river gauging: a 

case study for the Amazon Basin 

This chapter compares two methods to estimate river discharge at ungauged river reaches 

through a case study in the Amazon Basin and discusses the advantages and disadvantages of 

using optical and passive microwave remote sensing to measure river discharge. The content of 

this chapter was published in the journal Hydrology and Earth System Sciences as follows: 

Hou, J., Van Dijk, A.I.J.M., Renzullo, L.J. and Vertessy, R.A., 2018. Using modelled 

discharge to develop satellite-based river gauging: a case study for the Amazon Basin. Hydrology 

& Earth System Sciences, 22, https://doi.org/10.5194/hess-22-6435-2018. 
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Abstract. River discharge measurements have proven in-

valuable to monitor the global water cycle, assess flood risk,

and guide water resource management. However, there is a

delay, and ongoing decline, in the availability of gauging data

and stations are highly unevenly distributed globally. While

not a substitute for river discharge measurement, remote

sensing is a cost-effective technology to acquire information

on river dynamics in situations where ground-based measure-

ments are unavailable. The general approach has been to re-

late satellite observation to discharge measured in situ, which

prevents its use for ungauged rivers. Alternatively, hydrolog-

ical models are now available that can be used to estimate

river discharge globally. While subject to greater errors and

biases than measurements, model estimates of river discharge

do expand the options for applying satellite-based discharge

monitoring in ungauged rivers. Our aim was to test whether

satellite gauging reaches (SGRs), similar to virtual stations

in satellite altimetry, can be constructed based on Moderate

Resolution Imaging Spectroradiometer (MODIS) optical or

Global Flood Detection System (GFDS) passive microwave-

derived surface water extent fraction and simulated discharge

from the World-Wide Water (W3) model version 2. We de-

signed and tested two methods to develop SGRs across the

Amazon Basin and found that the optimal grid cell selec-

tion method performed best for relating MODIS and GFDS

water extent to simulated discharge. The number of poten-

tial river reaches to develop SGRs increases from upstream

to downstream reaches as rivers widen. MODIS SGRs are

feasible for more river reaches than GFDS SGRs due to its

higher spatial resolution. However, where they could be con-

structed, GFDS SGRs predicted discharge more accurately as

observations were less affected by cloud and vegetation. We

conclude that SGRs are suitable for automated large-scale

application and offer a possibility to predict river discharge

variations from satellite observations alone, for both gauged

and ungauged rivers.

1 Introduction

River discharge data are used to monitor the global water cy-

cle, assess flood risk, and guide water resource management

(Brakenridge et al., 2012). Example applications also include

the assessment of the contribution of river flow to oceans and

the distribution of river runoff on continents; the training of

models to predict how water resources will be affected un-

der climate change; the identification of where flood intensity

and frequency is likely to increase; the provision of informa-

tion for flood forecasting, monitoring, and warning systems;

and the better formulation of water allocation plans for do-

mestic, agricultural, and industrial uses (Van Dijk, 2015).

Over the past century, many ground-based gauging sta-

tions have been built to monitor river discharge across the

world (Dai et al., 2009). However, the number of accessible

gauging station records has decreased over the years due to

the reluctance of contributors to share data, or the lack of

financial and technical support to maintain gauging stations

(Vörösmarty, 2001; Biancamaria et al., 2011; Brakenridge et

al., 2012; Fekete et al., 2012). In addition, gauging station

networks are sparse and unevenly distributed. For instance,

there are few gauging stations on rivers with braided chan-

nels or wide floodplains, and on rivers located in remote areas

(Smith et al., 1996; Alsdorf et al., 2003; LeFavour and Als-

dorf, 2005; Calmant and Seyler, 2006). Finally, gauging sta-

Published by Copernicus Publications on behalf of the European Geosciences Union.



6436 J. Hou et al.: Using modelled discharge to develop satellite-based river gauging

tions are only representative for a single point along a river,

which can make it difficult to obtain insight into hydrologi-

cal conditions throughout river networks (Hunger and Döll,

2008; Stahl et al., 2012).

Remote sensing is a cost-effective way to acquire infor-

mation on river dynamics both at regional and global scales

(Alsdorf et al., 2007). Satellite observations can cover a river

in the lateral dimension where there are wide channels or

broad floodplains and in the longitudinal dimension in long

and complex river systems (Smith, 1997; Bjerklie et al.,

2003). Whereas gauging stations measure water level, re-

mote sensing typically measures river extent or width with

the exception of river altimetry (Birkett et al., 2002; Coe and

Birkett, 2004; Kouraev et al., 2004; Zakharova et al., 2006;

Papa et al., 2010). Such satellite-based measurements can be

related to measured river discharges. The general approach

has been to develop rating curves relating satellite observa-

tion where they coincide with in situ river discharge measure-

ment, and to use the fitted rating curves to estimate river dis-

charges with satellite observations only (e.g. Revilla-Romero

et al., 2014).

Optical and microwave satellite imaging can provide con-

tinuous spatial observations of surface water extent along the

entire river channel. Both inundation–discharge and width–

discharge relationships can be developed using ground mea-

surements of river discharge and satellite optical or syn-

thetic aperture radar (SAR) imagery (Smith et al., 1995,

1996; Papa et al., 2008; Smith and Pavelsky, 2008; Pavel-

sky, 2014). In addition, Brakenridge et al. (2007), Tarpanelli

et al. (2013), and Van Dijk et al. (2016) demonstrated that the

ratio of a calibration and measurement pixel remote sensing

signal for Moderate Resolution Imaging Spectroradiometer

(MODIS) near-infrared reflectance or AMSR-E passive mi-

crowave brightness temperature can be an indicator of vari-

ations of river discharge, which provides opportunities to

monitor river discharge at a global scale with medium spa-

tial resolution and high temporal resolution. However, optical

remote sensing requires a clear view of the water surface, un-

obscured by cloud or a dense vegetation canopy. While radar

and passive microwave remote sensing are not affected by

these factors to the same extent, radar is susceptible to wind-

induced waves and vegetation above surface water, whereas

the resolution of passive microwave imagery is too coarse for

many rivers. As an alternative to the rating curve approach,

open-channel hydraulic equations such as the Manning equa-

tion can be used to estimate river discharge from remotely

sensed data. However, in addition to remotely sensed data,

additional field data including river depth and roughness co-

efficient are needed to apply this method and can introduce

large uncertainties, which limits its predictive performance

(Te Chow, 1959; LeFavour and Alsdorf, 2005; Jung et al.,

2010; Woldemichael et al., 2010; Michailovsky et al., 2012).

The main disadvantage of all methods described above is

that in situ measurements are still necessary, which makes it

impossible to apply them at ungauged sites and unsuitable for

automated large-scale applications. An alternative is to use

hydrological models to estimate river discharge throughout

river networks and to relate these estimates to satellite im-

agery. In this paper we investigate whether satellite gauging

reaches (SGRs) can be established at both gauged and un-

gauged rivers and applied to provide continuous, consistent,

and up-to-date river discharge monitoring over a large area. A

SGR, analogous to an in situ gauging station, is constructed

based on an automated statistical method which relates hy-

drological model simulated river discharge to optical or pas-

sive microwave-derived surface water extent fraction for a

region that includes the river reach. The concept of a SGR is

similar to that of a “virtual station” used in satellite altimetry

(Calmant and Seyler, 2006), but acknowledges that river sur-

face water extent is measured along a river reach rather than

at a single cross section. In the first part of this paper, we de-

sign and compare two methods to construct SGRs, and then

choose the best method and evaluate its performance. In the

second part, we construct SGRs based on optical or passive

microwave observations and simulated river discharges, then

compare river discharge estimates from optical and passive

microwave observations and from the hydrological model to

in situ river discharge measurements. We hypothesize that

SGRs may perform better than the hydrological model if the

model has poor timing, or worse if the model is already quite

good. In the latter case, however, SGRs may still be useful

for monitoring river discharge in the absence of a real-time

hydrological model or gauging stations.

2 Data and methods

The fundamental assumption in our methodology is that there

exist strong, monotonic relationships between remote sens-

ing signal, surface water extent, river channel storage, and

river discharge. Surface water extent fraction (hereafter, wa-
ter extent) was previously derived from Global Flood Detec-

tion System (GFDS) passive microwave and MODIS optical

remote sensing signal by Van Dijk et al. (2016). River stor-

age and discharge were estimated by the World-Wide Water

(W3) model version 2 (Van Dijk et al., 2018). First, we de-

signed two alternative methods to develop SGRs with the aid

of hydrological model estimates and compared performance

of these methods on rivers of different sizes. We then applied

the method that performed best across the Amazon Basin.

Second, SGRs were constructed across the Amazon Basin

based on MODIS and GFDS water extent. The derived river

discharge estimates from the SGRs and from the W3 model

were evaluated against in situ river discharge measurements

at 31 stations. The overall methodology is shown in Fig. 1.

2.1 Study region

We chose the Amazon Basin as a case study in this re-

search. The Amazon Basin serves as a suitable test bed for
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Figure 1. Workflow of the overall methodology (rectangle: data;

diamond: method; parallelogram: validation).

our method in that it contains numerous inaccessible river

reaches surrounded by dense tropical rainforests, frequently

flooded areas, extremely wide river floodplains, and braided

river channels. Moreover, it has unregulated rivers of widely

varying size, which provides an opportunity to assess the sen-

sitivity of spatial resolution in remote sensing to river size. In

addition, because rainfall estimates across the Amazon Basin

are generally poor, it is meaningful to test whether modelled

discharge can be improved through remote sensing. A chal-

lenge is that MODIS observations are often affected by cloud

cover. Van Dijk et al. (2016) found strong correlations be-

tween optical and passive microwave-derived water extent

estimates and station discharge observations in the Amazon

Basin, from which we infer that there may be further oppor-

tunities to develop satellite-based river gauging using mod-

elled discharge at ungauged sites.

2.2 Data

2.2.1 Remote sensing

The Global Flood Detection System (GFDS) was developed

to monitor floods and is operated by the Joint Research Cen-

tre of the European Commission, in collaboration with the

Dartmouth Flood Observatory. De Groeve et al. (2015) pro-

posed a discharge signal, s, as the ratio of brightness temper-

atures between a targeted wet pixel (measurement pixel) and

a nearby dry pixel (calibration pixel), which allows track-

ing of relative changes in surface water extent within a river

reach. The discharge signal s was calculated from bright-

ness temperature recorded at 36.5 GHz in the H polarization

by the Japanese Space Agency’s AMSR2 and TRMM TMI

sensors and NASA’s AMSR-E and GPM instruments. The

GFDS raster data product used here, named “merged 4-day

average datasets”, provides daily s as an average value of the

signal for the current day and the signal from the last 3 days,

with a spatial resolution of 0.09◦ × 0.1◦ over the period of

2000–2014.

MODIS is an optical sensor aboard the NASA’s Terra and

Aqua satellites, which provide two images per day for almost

every point on the planet. The surface observing capability

of MODIS is limited by cloud cover, but this can be miti-

gated by using MODIS 8-day or 16-day composites which

reduce the influence of cloud contamination. The MODIS

data used here are the shortwave infrared (SWIR) spec-

tral band 7 (2105–2155 nm) data from the MCD43C4.005

product which contains 8-day nadir BRDF (bidirectional re-

flectance distribution function) adjusted reflectance (NBAR)

composites of imagery over the period of 2000–2014. The

optical data were aggregated to a spatial resolution of 0.05◦×
0.05◦. The method to calculate surface water extent fraction

from GFDS and MODIS data was described by Van Dijk et

al. (2016). We calculated both 8-day and monthly GFDS-

and MODIS-derived surface water extent fraction across the

Amazon Basin.

2.2.2 Hydrological model

The World-Wide Water (W3) model version 2 (Van Dijk

et al., 2018) is a global implementation of the Australian

AWRA-L model, a grid-based, one-dimensional water bal-

ance model with semi-distributed representation simulating

soil, groundwater, and surface water stores (Van Dijk, 2010).

AWRA-L is used operationally by the Australian Bureau of

Meteorology to estimate the daily water balance component

across Australia at a spatial resolution of 0.05◦×0.05◦ (Frost

et al., 2016). Each grid cell has three soil layers (top, shallow,

and deep soil layers) and one unconfined groundwater layer,

and hydrological processes considered in the model include

(1) net precipitation and interception losses; (2) saturation

excess overland flow, infiltration excess surface runoff, and

infiltration; (3) soil water evaporation, drainage, and inter-

flow; (4) groundwater evaporation and base flow; (5) vege-

tation transpiration and cover adjustment; (6) surface water

evaporation, inflows from runoff and discharge, and catch-

ment water yield. Details about the W3 model including in-

put data, parameterization, calibration, and validation can be

found in Van Dijk et al. (2018). The model was not calibrated

against gauging data used in this study. Daily simulated river

channel storage and discharge in 0.05◦×0.05◦ grid cells were

used in this research and averaged to 8 days to relate them to

remote sensing data. The W3 model estimates of river chan-
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nel storage, rather than discharge, are compared with optical

and passive microwave-derived water extents because con-

ceptually they are more closely related. However, river chan-

nel storage has a linear relationship with discharge within the

W3 model structure.

2.2.3 In situ river discharge measurement

Monthly in situ river discharge measurements were collected

from two datasets developed by Beck et al. (2015) and

Dai (2016) respectively. The former dataset was established

to combine global unregulated river discharge data from the

Global Runoff Data Centre (GRDC) and the USGS GAGES

II (Geospatial Attributes of Gauges for Evaluating Stream-

flow) databases. The same data were used in a precursor to

this study (Van Dijk et al., 2016). The latter dataset was de-

veloped to compile river flow data from the farthest down-

stream gauging stations of the world’s largest 925 rivers.

Among these two datasets there are 31 gauging stations lo-

cated inside the Amazon Basin with records that were fully

or partially overlapping with the remote sensing and model

simulation records.

2.3 Method

2.3.1 Satellite gauging reach designs and performance
evaluations

In developing SGRs, we tested two alternative methods to

correlate remotely sensed water extent with modelled river

channel storage. Method A finds the most strongly correlated

water extent over a search window, which we refer to here

as optimal grid cell selection. Method B calculates the spa-

tial average water extent within a search window, referred to

here as the window mean. We experimented with different

window sizes: 0.15◦ × 0.15◦, 0.35◦ × 0.35◦, 0.55◦ × 0.55◦,

0.75◦ × 0.75◦, and 0.95◦ × 0.95◦ (Table 1). These 10 exper-

iments (two methods for each of the five search windows)

were applied for each grid cell of the W3 model along a river

channel across the Amazon Basin, using 8-day MODIS- and

GFDS-derived water extent estimates, respectively. For each

grid cell, the steps are as follows: a search window centres on

a target grid cell of the W3 model, and simulated storage time

series for the target cell and all water extent time series lo-

cated within the search window are selected. Next, in method

A, the storage time series is compared with each water extent

time series, and the one with the strongest correlation is cho-

sen to develop the SGR. In method B, spatial average water

extent time series across the window is calculated and used

to develop the SGR.

To test which of the two methods best estimates storage

for different river sizes, we divided river reaches into four

categories based on their mean simulated discharge over the

period 2000–2014. The four categories of river were de-

fined as small (102–103 m3 s−1), medium (103–104 m3 s−1),

Table 1. Experiment design (window size) for two methods to de-

velop SGRs.

Experiments I II III IV V

Optimal selection 0.15◦ 0.35◦ 0.55◦ 0.75◦ 0.95◦

Window mean 0.15◦ 0.35◦ 0.55◦ 0.75◦ 0.95◦

large (104–105 m3 s−1), and very large (> 105 m3 s−1) rivers

(Fig. 2). We did not consider rivers where discharge is less

than 102 m3 s−1 as we assume that they would have chan-

nel widths that could not be resolved using our sensing and

modelling methods. The most suitable window overall and

the SGR selection method were subsequently decided upon

based on performance statistics.

The superior method was applied to construct SGRs across

the Amazon Basin, using 8-day MODIS and GFDS water ex-

tent, respectively. For method A, the time series was split into

training and validation periods to ensure independent valida-

tion. Data for the training period were used to select the best

correlating pixel for each model grid cell, while data from the

validation period were used to evaluate SGRs’ performance.

We evaluated the results from three experiments: (I) train-

ing: 2005–2014, validation: 2000–2004; (II) training: 2000–

2004 and 2010–2014, validation: 2005–2009; and (III) train-

ing: 2000–2009, validation: 2010–2014 (Table 2). The mean

result was adapted as the overall evaluation statistic. For

method B, spatial average water extent for the whole period

of 2000–2014 was compared to storage directly, as this pro-

duces the same results as using the cross-validation method.

The performance of SGRs was assessed using Spearman’s

rank correlation (ρ), since the relationship between water ex-

tent and storage is often non-linear.

2.3.2 Evaluations of satellite gauging reaches
and the W3 model

A Spearman correlation ρ > 0.6 in a grid cell (0.05◦×0.05◦)

was used to identify a potential river reach for developing a

SGR. We constructed a SGR for this river reach based on wa-

ter extent and modelled discharge. The developed SGR was

used to estimate river discharges using satellite observations

only. We used the same training and validation periods de-

scribed in Sect. 2.3.1 (Table 2). In the training period, both

model and remote sensing data were used to establish a rela-

tionship between water extent and discharge. Remote sensing

data for the validation period were used to estimate river dis-

charge from SGRs using the developed relationship. To en-

sure the relationship can be transferred from the model sim-

ulation to the SGR, it was necessary to eliminate systematic

differences between the two time series. Because the distri-

bution of discharge is non-Gaussian, a simple transform by

the first two statistical moments produced poor results. Better

results were achieved through cumulative distribution func-
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Figure 2. The W3 model simulated mean river discharges (> 100 m3 s−1) in the Amazon Basin (grey line: basin boundary; brown dot:

gauging station).

Table 2. Training and validation periods for the cross-validation method.

Periods I II III

Training period 2005–2014 2000–2004 & 2010–2014 2000–2009

Validation period 2000–2004 2005–2009 2010–2014

tion (CDF) matching. Following the approach of Van Dijk

et al. (2016), we used a rank-based look-up-table approach

to estimate river discharge from mapped water extent. Esti-

mates of water extent in the validation period are ranked rel-

ative to the estimate water extents in the training period, and

CDF matching is then used to provide corresponding river

discharge estimates over the validation period. The combi-

nation of river discharge estimates from the three validation

periods was lumped to represent performance over the whole

study period of 2000–2014. Overall, we obtained three river

discharge estimates from MODIS, GFDS, and the model.

All were then validated and evaluated against monthly in

situ river discharge measurement (daily in situ data were not

available for most stations).

3 Results

3.1 Evaluations of satellite gauging reach designs

The 10 experiments described in Sect. 2.3.1 for relating re-

motely sensed water extent to simulated river channel storage

were compared, using MODIS and GFDS water extent, re-

spectively. For MODIS, irrespective of window size or SGR

selection method, the mean ρ between water extent and stor-

age increases and the range of ρ narrows as discharge be-

comes larger (Fig. 3). For the small rivers (102–103 m3 s−1),

the optimal selection method (method A) achieved mean

ρ < 0.6, while the window mean method (method B) resulted

in mean ρ < 0.3. In contrast, in the main Amazon River

channel, method A produced mean ρ > 0.7, while method B

resulted in mean ρ > 0.5. Across all categories of discharge

(Fig. 3a–d), method A produced ρ that increases as the win-

dow size increases, and method B produced inconsistent re-

sults. In the same way, the mean ρ in GFDS cases also in-

creases as discharge rises (Fig. 4). Both methods showed

similar results as the mean ρ grows as the window size be-

comes larger (Fig. 4a–d). For small rivers, both methods

produced mean ρ < 0.5, while they achieved mean ρ > 0.4

in the main Amazon River channel. Overall, MODIS per-

formed better than GFDS, and method A performed better

than method B. Although the 0.95◦×0.95◦ window size pro-

duced better results, larger windows increased the risk of se-

lecting pixels over nearby rivers rather than the target river.

We found that using method A with a search window of

0.55◦ × 0.55◦ was the best overall approach for developing

satellite-based river gauging.
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Figure 3. Distributions of Spearman’s rank correlation between MODIS water extent and simulated storage using different window sizes

(0.15◦ × 0.15◦, 0.35◦ × 0.35◦, 0.55◦ × 0.55◦, 0.75◦ × 0.75◦, and 0.95◦ × 0.95◦) and two approaches (light grey: optimal grid cell selection

(method A); dark grey: window mean (method B)) in four categories of river flow across the Amazon Basin. Outliers are data beyond the

distance larger than 1.5 times the interquartile range from the first and third quartiles.

This approach was applied across the Amazon Basin us-

ing MODIS and GFDS water extent respectively (Fig. 5a–b).

For MODIS SGRs, there were strong relationships (ρ > 0.6)

between water extent and storage in most reaches of the

main river channel and its large tributaries, particularly in the

larger channels (ρ > 0.8), while there were weak correlations

(ρ < 0.4) in upstream tributaries. The overall performance

of the MODIS SGRs was superior to the GFDS SGRs. For

GFDS SGRs, there were more river reaches with low correla-

tions (ρ < 0.4) in upstream tributaries, and the lower reach of

the Amazon River did not show continuous high correlations

(ρ > 0.8).

3.2 Performance of satellite gauging reaches and the
W3 model

We defined river reaches where ρ between water extent and

storage is greater than 0.6 as potential locations for devel-

oping useful SGRs (Fig. 5). While there were 31 gaug-

ing stations in the Amazon Basin, only 10 gauging sta-

tions coincided with MODIS potential SGR sites and 5 with

GFDS sites. Thus, we only assessed river discharge estimates

for these 15 cases. Monthly river discharge estimates from

MODIS, GFDS, and the model for the period of 2000–2014

were compared against monthly in situ river discharge mea-

surements (Fig. 6). We focused on flow pattern comparisons

between predicted and observed discharges, so different ver-

tical axes were chosen to bring them close to each other (ob-

servations from gauging stations are shown on the right axis

and river discharge estimates derived using remote sensing
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Figure 4. Distributions of Spearman’s rank correlation between GFDS water extent and simulated storage using different window sizes

(0.15◦ × 0.15◦, 0.35◦ × 0.35◦, 0.55◦ × 0.55◦, 0.75◦ × 0.75◦, and 0.95◦ × 0.95◦) and two approaches (light grey: optimal grid cell selection

(method A); dark grey: window mean (method B)) in four categories of river flow across the Amazon Basin. Box plots are defined as in

Fig. 3.

and model on the left axis). The W3 model yielded good es-

timates, with Pearson correlation (R) generally greater than

0.8 across most sites. A total of 7 of the 10 MODIS SGRs

estimated river discharge with R above 0.7, and the SGR for

gauging stations G12 and G31 performed best, with R close

to 0.9. Overall, MODIS SGRs estimates were not as skilful

as the model, with the exception of the one for gauging sta-

tion G12. While there were fewer potential sites for GFDS

SGRs, they were similarly or more skilful than the MODIS

SGRs. For gauging stations G12 and G19, GFDS produced

better river discharge estimates than either MODIS or the W3

model. Overall, estimated river discharges from the SGRs

and the model showed similar flow fluctuations to in situ river

discharge observations. The performance of daily, 8-day, and

monthly MODIS and GFDS SGRs are compared and dis-

cussed in the Supplement (Fig. S1).

4 Discussion

The relationship between remote sensing signal, water ex-

tent, river channel storage, and discharge enabled the esti-

mation of river discharge from optical or passive microwave

remote sensing. We showed that satellite gauging reaches

(SGRs) can be developed without gauging station records,

based on MODIS or GFDS water extents and W3 model esti-

mated discharges. The optimal selection method (method A)

with a search window of 0.55◦ × 0.55◦ produced the best re-

sults. In total, we calculated Spearman correlations between

modelled river channel storage and MODIS and GFDS wa-

ter extent for 11 752 grid cells across the Amazon Basin

(Figs. 3–5). The results suggest there are 3427 potential grid

cells (ca. 17 135 km river reaches) to construct MODIS SGRs

and 1447 grid cells (ca. 7235 km river reaches) to develop

GFDS SGRs. The original MODIS data used in this research
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Figure 5. Spearman correlation (ρ) between modelled river channel storage and MODIS (a) and GFDS (b) water extent using the optimal

grid cell selection method (method A) with a search window of 0.55◦ × 0.55◦ (circle: gauging station; circle with label: potential SGR sites

where gauging data are available).

have a spatial resolution of 0.05◦ × 0.05◦, which is higher

than the GFDS data (0.09◦ × 0.1◦). As such, MODIS should

have better detection ability for river reaches with relatively

small surface water extent. The performance of the method

appears to be particularly related to the size of river reach.

From upstream to downstream reaches in the Amazon Basin,

ρ between water extent and storage increases as river width

increases, because MODIS and GFDS remote sensing are

more sensitive to river reaches with larger surface water ex-

tent. Thus, the best locations for developing SGRs at the

coarse resolution considered here are the lower reaches of

the Amazon system.

The performance of SGRs over the Amazon Basin is gen-

erally good, as most river reaches have unregulated flows,

and these river reaches normally have wider river channels

and large floodplains, as also remarked upon by Revilla-

Romero et al. (2014). However, the performance of SGRs

varies, even for rivers of similar size. The relationship be-

tween water extent and storage or discharge also depends

on local river characteristics and floodplain channel geom-

etry (Moffitt et al., 2011; Brakenridge et al., 2012; Khan

et al., 2012). Even though GFDS is suited for fewer river

reaches than MODIS, the results showed that GFDS some-

times yielded better estimates of river discharge. A likely rea-

son for this is that MODIS optical remote sensing is limited
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Figure 6.
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Figure 6. Comparisons between observations (right axis) from gauging stations (black x) and river discharge estimates (left axis) derived

using MODIS SGRs (blue line), GFDS SGRs (green line), and the W3 model (brown dash).

to clear-sky conditions, whereas GFDS passive microwave

remote sensing is much less affected by this. River flood-

plains in the Amazon Basin are often covered with dense

vegetation, and flood waters may spread below vegetation.

Such flooding may be difficult to detect with optical imagery,

but is still readily discernible with passive microwave remote

sensing (Van Dijk et al., 2016). This is consistent with the

results presented in Figs. 3 and 4. The window mean method

(method B) produced similar results to the optimal selec-

tion method (method A) for GFDS, but worse results for

MODIS. We suspect that this is because more MODIS grid

cells within the search window are influenced by cloud or

vegetation cover.

Gauging stations are usually located in single, narrow, and

stable river reaches, while SGRs can be constructed in mul-

tiple, broad, and unstable river reaches provided variations

can be detected by remote sensing. With that caveat, there

were less than one-third of gauged river reaches that were

feasible to develop MODIS SGRs and one-sixth to construct

GFDS SGRs. Limited validation reaches with gauging sta-

tions do imply an underestimate of the percentage of suc-

cessful SGRs. We focused on qualitative analysis rather than

quantitative analysis for the performance of SGRs and the

model. Qualitative metrics, such as Pearson correlation and

Spearman’s rank correlation, indicate the degree to which the

estimates and observations show the same relative patterns,

while quantitative metrics, such as RMSE, reflect the differ-

ences between estimates and observations. The SGRs were

based on the model, so we would expect that the developed

SGRs should have the ability to reflect flow patterns better

than absolute flow values due to model biases. Tolerable er-

rors and bias are contingent on the application for the data.

For instance, for near-real-time drought and flood monitor-

ing, it may be sufficient to know relative flows, whereas water

resource assessments require estimates that are bias-free as

much as possible. For the 10 gauging stations analysed here,

the model showed a bias between −53 % and 57 % compared

to the gauge records, with a median of −35 %. This model

bias propagates into the SGR estimates but could be removed

easily where in situ data are available.

Based on comparison between gauging station records and

river discharge estimates from MODIS, GFDS, and the W3

model for period of 2000–2014, we conclude that if the W3

model performs quite well in terms of river discharge estima-

tion, then SGRs can perform with a similar level of accuracy.

In certain cases, the SGRs were able to perform better than

the W3 model in reproducing the timing of peak flows. For

instance, at gauging station G19, the satellite-derived peak

flows from both MODIS and GFDS over the period 2000–

2005 were closer to gauged peak river discharges than those

estimated by the W3 model (Fig. 6). However, there are also

instances where the SGR estimates of discharge are inferior

to those produced by the W3 model, e.g. for gauging stations

G21 and G24. It is possible that in these instances MODIS

has failed to measure water extent in small rivers or was af-

fected by cloud cover. In other cases we suspect that poor

results are attributable to data errors. For instance, the dis-

charge observations at gauging station G27 were extremely

low from late 2008 to 2009, suggesting a gauge measurement

error or other artefact. Other performance problems may be

attributable to the calibration processes and period, which

were necessarily short. If SGRs were calibrated during a dry

period, they may fail to estimate river discharge well during

a wet period (and vice versa). For example, at gauging sta-

tion G27, the SGR was not able to estimate peak flows accu-

rately for the wet years from 2005–2009, and subsequently

estimated much larger river discharges than the model dur-

ing the dry years 2010–2014. This would be avoided if the

full period had been used for SGR construction, which would

be a pragmatic approach for operational implementation but

would prevent independent evaluation in the context of the

present study.

Previous research demonstrated that both gauging data

and hydrological modelling can be used to calibrate the re-
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Table 3. Performance comparisons between gauge-based SGRs, model-based SGRs, and the W3 model (Pearson correlations between

predicted and observed discharges).

G1 G5 G6 G12 G14 G19 G21 G24 G31 Mean

MODIS SGRs Gauge-based 0.75 0.77 0.74 0.86 0.77 0.88 0.48 0.6 0.92 0.75

Model-based 0.76 0.75 0.71 0.86 0.78 0.75 0.68 0.58 0.86 0.75

GFDS SGRs Gauge-based 0.88 0.85 0.96 0.95 0.85 0.9

Model-based 0.9 0.77 0.92 0.93 0.85 0.87

Model 0.98 0.93 0.84 0.85 0.83 0.86 0.92 0.94 0.94 0.9

mote sensing signal for estimating river discharge (Braken-

ridge et al., 2012; Revilla-Romero et al., 2014). Van Dijk et

al. (2016) developed gauge-based SGRs using optical and

passive microwave-derived water extent observations, which

is valuable to gap-fill and extend gauging discharge records.

In addition to that, we demonstrated that SGRs can be also

developed using hydrological modelling. We compared our

model-based SGRs to gauge-based SGRs from previous re-

search (Van Dijk et al., 2016) for all gauging reaches, except

gauging station G27 due to its seemingly unreliable record

(Table 3). Both gauge-based and model-based GFDS SGRs

at gauging station G12 and G19 have higher Pearson corre-

lations than the model, which suggests opportunities for data

assimilation to improve the model. At gauging station G1,

G5, G21, and G24, the model performs much better than both

gauge-based and model-based SGRs, which suggests that un-

certainties in SGRs at these locations mainly arise from re-

mote sensing, e.g. due to cloud and vegetation obstruction.

Errors and uncertainties in the model, such as from input

data, routing, and conceptual structure, can also affect the

performance of SGRs. For instance, for GFDS at gauging

station G6 and MODIS at gauging station G31, gauge-based

SGRs produced higher Pearson correlations than model-

based SGRs. Compared to gauge-based SGRs, the main ad-

vantage of our method is the practical applicability in both

gauged and ungauged rivers. Our results show that the model

outperforms SGRs in most cases. Nonetheless, we consider

SGRs as an alternative, simple and automated approach for

river discharge prediction using satellite observation only.

SGRs would be useful as an alternative if the model was

unable to provide real-time estimates, e.g. due to delayed

rainfall gauge observations. As we used a model to train

SGRs, poor model simulations might reduce the performance

of SGRs. If more accurate and reliable hydrological mod-

els are available, SGRs can be redeveloped to estimate river

discharge with greater accuracy. Overall, SGRs performed

well in this case study in the Amazon Basin. The W3 model,

MODIS and GFDS remote sensing all provide information

with global coverage. Therefore, there is further potential to

develop satellite-based river gauging elsewhere.

The further development of the SGR methodologies could

benefit from combining optical and passive microwave re-

mote sensing. With higher spatial resolution, optical remote

sensing is more suitable for measuring surface water extent

in reaches without dense vegetation and when clear-sky con-

ditions prevail. Passive microwave remote sensing compen-

sates for the limitations of optical remote sensing, but suffers

from having lower spatial resolution. The main constraint in

developing SGRs in this study was that the spatial resolutions

of both MODIS and GFDS data were not high enough to de-

tect changes in river dynamics in small rivers. New satellite

imagery emerging from Sentinel-1 and Sentinel-2 provides

further opportunities to develop satellite-based river gaug-

ing at a global scale. The spatial resolution of Sentinel-1

reaches 5 m with C-band synthetic aperture radar working

in all weather and both day-time and night-time conditions.

The Sentinel-2 A and B multispectral instruments have 13

spectral bands at 10–60 m spatial resolution and, combined

with Landsat observations, this means that revisit times in

the order of days are now achievable. These developments

offer great promise for the future development of SGRs.

5 Conclusions

We proposed and tested two methods for relating MODIS-

and GFDS-derived water extent to modelled river channel

storage. For the Amazon Basin, river reaches with Spear-

man’s rank correlation (ρ) between water extent and storage

exceeding 0.6 were identified as suitable sites for developing

SGRs. SGRs were then constructed across the Amazon Basin

based on MODIS and GFDS water extent and modelled dis-

charge, and river discharge estimates were evaluated using in

situ river discharge measurements at 10 stations. Our main

conclusions are as follows:

1. The optimal grid cell selection method performed bet-

ter than the window mean method to relate W3-model-

simulated river storage and discharge to MODIS- and

GFDS-derived surface water extent fraction, and a win-

dow size of 0.55◦ × 0.55◦ was considered a reasonable

window size for identifying the best remote sensing pix-

els for each model grid cell.
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2. There were strong correlations between modelled stor-

age and both MODIS and GFDS water extent across the

Amazon Basin. The optimal selection method is mainly

limited by the size of river reach, as correlation gener-

ally increased from upstream to downstream reaches as

river width increased.

3. In total, 17 135 km of river reaches in the Amazon Basin

was assessed as suitable for constructing MODIS SGRs,

and 7235 km of river reaches was deemed suitable for

developing GFDS SGRs. The best locations for devel-

oping SGRs were mostly situated in the lower channels

of the Amazon River and its main tributaries.

4. There were more potential SGRs derived using MODIS

than GFDS, most likely because MODIS has higher

spatial resolution than GFDS. However, GFDS SGRs

predicted river discharges with more accuracy as GFDS

was much less affected by cloud and dense vegetation

than MODIS.

5. Although the W3 model performed very well in terms of

river discharge estimates in the Amazon Basin, MODIS

and GFDS SGRs can still be useful for estimating river

discharge in the absence of a real-time hydrological

model or gauging stations.

6. SGRs are suitable for automated development at a

global scale. Remote sensing with higher spatial reso-

lution can help improve river discharge estimation ca-

pabilities of SGRs. This also creates potential opportu-

nities to assimilate remote sensing observations, or de-

rived discharge estimates, into hydrological models to

improve river discharge estimation, and based on these,

streamflow forecasts.
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Chapter 3: Global satellite-based river 
gauging and the influence of river 

morphology on its application 

This chapter examines the capacity of the best method, of those proposed in Chapter 2 above, 

to predict river discharge at global scale and compares the performance of its application based 

on model and gauging data. The study also analysed how river morphology affects the 

performance of the river discharge prediction method and suggested an approach to assess 

whether the method can be applied in any given river reach based on high-resolution inundation 

regime data derived from remote sensing. The content of this chapter was published in the journal 

Remote Sensing of Environment as follows: 

Hou, J., Van Dijk, A.I.J.M. and Beck, H.E., 2020. Global satellite-based river gauging and 

the influence of river morphology on its application. Remote Sensing of Environment, 239, 

https://doi.org/10.1016/j.rse.2019.111629. 
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A B S T R A C T

In the face of a sparse global river gauging station network in decline, new approaches are needed to reconstruct

and monitor river discharge from satellite observations. Where in-situ river discharge measurements are not

available, it may be possible to use discharge estimates from a hydrological model, provided the model simu-

lations are of sufficient quality, to construct satellite-based discharge gauging. We tested this approach by de-

veloping model- and gauge-based satellite gauging reaches (SGRs) using 0.05° MODIS optical remote sensing at

~10,000 gauged and ~370,000 ungauged river reaches globally. Model-based SGRs are aimed to infer temporal

flow patterns and reflect unusually high or low river discharge behavior (i.e. flood or drought conditions), if not

necessarily absolute discharge volumes. The model-based SGRs achieved a discharge prediction skill that was

often similar to gauge-based SGRs, and sometimes better than the model itself. Our results showed promising

opportunities to develop model-based SGRs in sparsely gauged basins in South America, Africa, and Asia. We

selected river reaches, with mean widths ranging from 67 to 3105 m, representing both poor and successful SGRs

in different environments for case studies to analyze conditions for successful SGR development. River size and

morphology were the main factors determining the performance of SGRs. Wide channels with strong temporal

variations, broad floodplains and multiple braided or anastomosing channels provided the best conditions for

SGRs. The probability of constructing a successful SGR could be predicted from high-resolution inundation

summary data available globally, and can thus be predicted anywhere. Ongoing increases in the spatial and

temporal resolution of remote sensing will further increase the number of river reaches for which satellite-based

discharge gauging will become possible.

1. Introduction

River discharge measurements provide fundamental information for

water resources management and help understand the influence of

climate change and anthropogenic activities on the terrestrial water

cycle. River discharge records are also the basis for designing flood

control, irrigation and hydropower systems and transboundary water

agreements, while real-time discharge data are needed to operate water

infrastructure and manage flood and drought risk (García et al., 2016;

Sheffield et al., 2018).

Most drainage basins around the world are poorly gauged or un-

gauged (Hannah et al., 2011). Gauging station networks are unevenly

distributed and sparse, and their number has declined since the 1980s

(Biancamaria et al., 2011; Davids et al., 2019; Fay et al., 2017). Except

for some countries (e.g., United States, Australia), measurements from

many of the remaining stations are not made available in near-real

time, cover only a few years, or have records that end decades ago

(Sheffield et al., 2018). These various issues currently pose challenges

to tracking river discharge globally.

Remote sensing provides a complementary source of surface water

extent and level observations, creating opportunities to derive river

discharge information where and when in-situ data is not available

(Alsdorf et al., 2007; Bjerklie et al., 2003; Smith, 1997). Empirical re-

lationships between discharge and, respectively, remotely sensed water

level (Birkinshaw et al., 2010; Coe and Birkett, 2004; Huang et al.,

2018a; Kouraev et al., 2004; Papa et al., 2010; Paris et al., 2016;

Tourian et al., 2017; Tourian et al., 2013), river width (Pavelsky, 2014;

Smith et al., 1996; Smith et al., 1995; Smith and Pavelsky, 2008), and

inundation extent (Papa et al., 2008) have all been used with con-

siderable success (Table 1). In theory, the combination of satellite-de-

rived river width, level, and slope can be used to calculate discharge

without calibration based on Manning's equation, but in practice in-situ

https://doi.org/10.1016/j.rse.2019.111629
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river depth or flow velocity data and an estimate of roughness coeffi-

cient are still required (Bjerklie et al., 2005; Huang et al., 2018b;

Michailovsky et al., 2012; Sichangi et al., 2016). Therefore, all these

methods rely on in-situ observations and are not applicable in ungauged

rivers. River discharge estimation in ungauged rivers has been ap-

proached in several ways, including (i) the at-many-stations hydraulic

geometry (AMHG) approach (Gleason and Smith, 2014; Gleason et al.,

2014; Gleason and Wang, 2015); (ii) the GaMo algorithm (Durand

et al., 2016; Garambois and Monnier, 2015); (iii) the Metropolis-Man-

ning (MetroMan) algorithm (Durand et al., 2014; Yoon et al., 2016);

(iv) the Mean Flow and Geomorphology (MFG) algorithm (Bonnema

et al., 2016); (v) the MFCR and Ensemble Median Algorithm (Durand

et al., 2016); and (vi) the Bayesian AMHG-Manning (BAM) algorithm

(Feng et al., 2019; Hagemann et al., 2017). However, these methods are

relatively complex in their application and still require prior informa-

tion on velocity and depth or discharge. Satellite observations have also

been used to improve river discharge forecasts through model calibra-

tion or assimilation (e.g., Domeneghetti, 2016; Oubanas et al., 2018).

Our objective was to develop a simple and computationally efficient

method to estimate discharge from satellite observations in near-real

time, for both gauged and ungauged river reaches anywhere in the

world. Brakenridge et al. (2007) and Tarpanelli et al. (2013) discovered

that the ratio of the Advanced Microwave Scanning Radiometer (AMSR-

E) passive microwave brightness temperature or Moderate Resolution

Imaging Spectroradiometer (MODIS) near-infrared reflectance between

a wet measurement grid cell and its nearby dry calibration grid cell (the

calibration/measurement or C/M ratio) can represent river discharge

variations in a river reach. The passive microwave C/M ratio has

proven useful to train both empirical and model-based discharge esti-

mation approaches (Brakenridge et al., 2012; Revilla-Romero et al.,

2015). Van Dijk et al. (2016) used the same C/M approach with optical

and passive microwave observations to construct satellite gauging

reaches (SGRs) for gauged river reaches globally. Hou et al. (2018)

expanded that approach to using modelled streamflow for ungauged

reaches in the Amazon Basin with good results. Passive microwave and

optical remote sensing each have their strengths, with the former much

less affected by cloud or vegetation cover, whereas the higher spatial

resolution of optical observations is sensitive to water extent changes in

Table 1

Summary of relevant approach to estimate river discharge through satellite observation.

Method Study Spatial scale Remote sensing Ancillary data Strength & limitation

1. Discharge-height

rating curve

Coe and Birkett

(2004)

1 site Altimetry In-situ river discharge + readily automated

+ suited to monitoring

− only for broad rivers

− sparse global coverage

− affected by topography

Kouraev et al. (2004) 1 site

Tourian et al. (2013) 9 sites

Birkinshaw et al.

(2010)

6 sites Altimetry (multi-sensors)

Papa et al. (2010) 2 sites

Tourian et al. (2017) 18 sites

Paris et al. (2016) 920 sites Hydrodynamic model

2. Discharge-width rating

curve

Smith et al. (1995) 10 km river reach Active microwave In-situ river discharge + penetrates cloud and vegetation

− not readily automated

− not suited to monitoring

Smith et al. (1996) 3 river reaches

(9–16 km)

Smith and Pavelsky

(2008)

316 km river reach Visible/infrared optical + high temporal frequency

+ near-global coverage

− not readily automated

− not suited to monitoring

− affected by cloud and vegetation

Pavelsky (2014) 62 km river reach

3. Discharge-inundation

rating curve

Papa et al. (2008) 3 basins Passive microwave, active

microwave and visible/infrared

optical

In-situ river discharge + mitigates weaknesses of

individual observation types

− limited to large basins rather

than specific river reaches

− not readily automated

− not suited to monitoring

4. C/M ratio Brakenridge et al.

(2007)

2 sites Passive microwave In-situ river discharge + readily automated

+ suited to monitoring

+ high temporal frequency

+ near-global coverage

+ does not require single, stable

channel

− affected by cloud and vegetation

Tarpanelli et al.

(2013, 2017)

6 sites Visible/infrared optical

Van Dijk et al. (2016) 5134 sites Passive microwave or visible/

infrared opticalHou et al. (2018) 4874 sites Hydrological model

This study 371,953 sites Visible/infrared optical

5. Manning's equation Bjerklie et al. (2005) 3 river reaches

(9–16 km)

Active microwave Topographic maps + constrained by hydraulic theory

− highly parametrized for

individual reaches

− not readily automated

− not suited to monitoring

Michailovsky et al.

(2012)

4 sites Altimetry In-situ river depth and

velocity

Sichangi et al. (2016) 14 sites Altimetry and visible/infrared

optical

In-situ river discharge

Huang et al. (2018a,

2018b)

7 river reaches

(10 km)

6. AMHG Gleason and Smith

(2014)

3 river reaches

(10–13 km)

Visible/infrared optical Prior estimates of river

velocity, depth or discharge

+ potential to combine multi-sensor

strengths from future SWOT mission

observations

− not readily automated

− not suited to monitoring

− requires single, stable channel

7. MetroMan Durand et al. (2014) 22.4 km river reach Altimetry

Yoon et al. (2016) 2 river reaches

(40–82 km)

Active microwave (simulated

by hydrodynamic models)

8. MFG Bonnema et al.

(2016)

3 river reaches

(64–187 km)

9. MFCR Durand et al. (2016) 19 river reaches

(11–223 km)10. GaMo

11. BAM Hagemann et al.

(2017)

Feng et al. (2019) 11 river reaches

(0.7–22.4 km)

Visible/infrared optical

J. Hou, et al.



a larger number of river reaches.

Here, we extend the analysis of Hou et al. (2018) and assess the

worldwide distribution of river reaches that can act as satellite gauging

reaches (SGRs). We hypothesize (1) that model-based SGRs can achieve

similar skill as gauge-based SGRs and (2) that the dominant factor that

influences SGR performance is river morphology. To test these hy-

potheses, we constructed both model- and gauge-based SGRs globally

and evaluated their river discharge predictions against in-situ discharge

measurements. The influence of river morphology was analyzed by

using high-resolution inundation frequency mapping. We aimed to

answer the following questions:

(1) Where are river reaches (both gauged and ungauged) amenable to

constructing SGRs globally?

(2) How does the performance of model and gauge-based SGRs com-

pare?

(3) How does river morphology affect the performance of SGRs?

(4) Can the likelihood of constructing a successful SGR for a reach be

predicted from globally available river morphology data?

2. Data and method

2.1. Data

2.1.1. Surface water extent time series

The Moderate Resolution Imaging Spectroradiometer (MODIS)

sensor, aboard the NASA's Terra and Aqua satellites, has 36 spectral

bands with varying moderate spatial resolution (250–1000 m) and high

temporal resolution (1 or 2 days) for every location. Although MODIS

provides daily observations, they are regularly affected by cloud con-

tamination (Wilson and Jetz, 2016). MODIS 8-day or 16-day compos-

ited products can mitigate this issue to a considerable degree. We used

estimates of surface water extent derived by Van Dijk et al. (2016), who

used global shortwave infrared (SWIR) reflectance measurements by

the MODIS satellite instruments that had been processed, temporally-

composited and spatially-resampled to 8-day, global 0.05° × 0.05°

grids of Nadir BRDF (Bidirectional Reflectance Distribution Function)-

Adjusted Reflectance (NBAR) reflectance (product MCD43C4, Schaaf

et al., 2002; Schaaf et al., 2011). The SWIR channel 7 (2105–2155 nm)

was chosen because of the generally strong contrast between water and

dry land in this wavelength. Surface water extent fraction (hereafter,

water extent) for the period of 2000–2014 was estimated as:

=w M dry

water dry (1)

where w is surface water extent fraction for each grid cell of each

Fig. 1. Illustration of the workflow to construct gauge-based and model-based SGRs and to evaluate the performance of SGRs (Qm_cal, S_cal, Wf_cal, and Qg_cal:

simulated discharge, simulated storage, MODIS-derived water extent, and in-situ discharge time series in the training periods; Qm_val, S_val, Wf_val, and Qg_val:

simulated discharge, simulated storage, MODIS-derived water extent, and in-situ discharge time series in the validation periods; Q-W: the relationship between

discharge and water extent; MSGRs: model-based SGRs; GSGRs: gauge-based SGRs).

Table 2

Training and validation periods for three-fold cross-validation.

Periods I II III

Training period 2005–2014 2000–2004&2010–2014 2000–2009

Validation period 2000–2004 2005–2009 2010–2014

J. Hou, et al.



imagery, ρM is band 7 reflectance of the target cell M, ρdry is the fifth

percentile highest reflectance in a 7 × 7 cell window around M, and

ρwater is the reflectance of surface water (assumed equal to 0.008; refer

to Van Dijk et al., 2016 for further details).

2.1.2. Surface water occurrence

The Global Surface Water Dataset (GSWD) produced by the

European Commission Joint Research Centre provides statistics on the

extent and change of global surface water based on surface water

mapping using 3 million images from the Landsat 5, 7, and 8 satellites

during 1984–2015 (Pekel et al., 2016). Each pixel of this dataset was

classified as water, land, and non-valid observation types, which was

derived from Landsat 5–7 images using an expert system classifier that

missed< 5% of water and produced<1% of false water detections

(Pekel et al., 2016). The global data provides information on surface

water occurrence, occurrence change intensity, seasonality, recurrence,

transitions, and maximum water extent, all at 30 m spatial resolution.

The surface water occurrence data was used herein, which is expressed

as the frequency with which surface water was detected in all valid

observations. The GSWD dataset was only used as case study to analyze

the influence of river morphology on the performance of SGRs.

2.1.3. Modelled storage and discharge

The World-Wide Water (W3) model (version 2) is a 0.05° × 0.05°

grid-based, one-dimensional water balance model that has a semi-dis-

tributed representation of the surface water, soil, groundwater stores.

Full details about input climate data, vegetation, surface, soil and

groundwater parameterisation data, river routing, calibration, and re-

gionalisation can be found in Van Dijk et al. (2018). W3 is a global

implementation of AWRA-L, developed initially by Van Dijk (2010) and

currently used operationally by the Australian Bureau of Meteorology

to provide daily landscape water balance information from 1911 on-

wards (Frost et al., 2018). Each model grid cell has three soil layers

overlaying an unconfined groundwater store. The model considers the

coupled water and energy balance as well as vegetation phenology. The

input data and the performance of the W3 model are summarized in the

Supplement. Global daily river storage and discharge during the period

of 1980–2014 were simulated by the model and averaged to 8-day and

monthly intervals, in line with the temporal resolution of remote sen-

sing derived surface water extent.

Fig. 2. Illustration of the workflow to predict the

probability of constructing a successful SGR based on

water extent variations of each 0.05° grid cell in the

0.55° search window for all gauge-based SGRs (Wd:

the temporal range of water extent as the difference

between the maximum and minimum water extent

for each grid cell; m: the number of gauge-based

SGRs; R: the performance of gauge-based SGRs; Nm1
(Wd > 10%): the number (N) of grid cells in the

search window with temporal water extent

ranges > 10% (threshold values of 10–80% with

10% increments); P1 (Wd > 10%): the probability

(P) of constructing a successful SGR when there are 1

(from 1 to 121) grid cell with temporal water extent

ranges > 10% (threshold values of 10–80% with

10% increments) within the search window).

J. Hou, et al.



2.1.4. Observed discharge

Daily and monthly discharge observations were compiled from eight

different national and international sources (Supplementary Table 1).

Combined, 22,808 gauging records were available; 52% from North

America, 17% from South America, 15% from Europe, 8% from Asia,

3% from Africa, 4% from Australia, and< 1% from Oceania. Nearly

700 of the records were for rivers with an annual mean discharge>

10,000 m3/s, whereas> 12,000 were on rivers with mean dis-

charge<10 m3/s. Data for a total of 9873 stations with at least

60 months (at least 20 months in each training and validation group for

cross-validation method) of observations during 2000–2014 were se-

lected here for use in the analysis.

2.2. Method

2.2.1. Global satellite-based river gauging

The availability of MODIS-derived water extent product, the W3

model simulation, and in-situ data limited our analysis to 2000–2014.

SGRs were constructed empirically for every model grid cell globally,

where there was a sufficiently strong correlation between modelled

discharge and MODIS-derived surface water extent. Our approach was

the same as documented in Hou et al. (2018) (Fig. 1). Briefly, time

series of surface water extent are derived from MODIS (see Section

2.1.1); the best-correlated MODIS pixel corresponding to each in situ or

modelled discharge is selected; the relationship between discharge and

selected water extent time series is established in the training period;

and river discharge is then predicted based on the developed relation-

ship using MODIS-derived water extent time series in the validation

period. Therefore, the employed approach allows estimating river dis-

charge from satellite observations.

A robust correlation between modelled channel storage and MODIS-

derived water extent for a particular river reach was taken as an in-

dication that an SGR might be possible. (There is a direct linear re-

lationship between channel storage and discharge within the model

structure, and hence the results would have been identical if modelled

discharge had been used instead; but channel storage is conceptually

more closely related to water extent.) Hou et al. (2018) empirically

found that a search window of 0.55° × 0.55° (i.e. 11 × 11 = 121

MODIS grid cells) provided a good tradeoff for identifying the most

suitable SGR grid cell for each river reach. The window was centered on

the model grid cell that simulates river channel storage and discharge at

the same 0.05° resolution. Model storage time series for the target grid

Fig. 3. The approach to calculate the temporal range of water extent (Wd) of 11 × 11 grid cells within the search window for each gauge-based SGR (a: surface water

occurrence mapping of a search window; b: maximum water extent derived from a; c: minimum water extent derived from a; d: the calculated temporal range of

water extent (Wd) for each grid cell within the search window based on the differences between a and b).

J. Hou, et al.
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cell were compared with the 121 water extent time series for each cell

within the search window. The greater of Spearman's rank correlation

coefficient (ρ) and Pearson correlation (R) was interpreted as an in-

dication of the likely monthly performance of the SGR. We evaluated

SGR performance using temporal cross-validation (Table 2). The time

series were split into three periods of five years each (2000–2004,

2005–2009, and 2010–2014). Any two of them were combined as

training data and used to validate the remaining period for three rounds

without repetitions. The MODIS remote sensing grid cell with the

strongest correlation was selected using the training data while the

performance was assessed for the validation period. This resulted in

three experiments at each location. The mean result from the three

experiments was used as the overall statistic to assess SGR performance.

To independently evaluate the model-based SGRs, we used them to

predict river discharge for reaches where in-situ discharge data were

available (Fig. 1). The same split-sample approach (Table 2) was fol-

lowed, where model data was used to develop and train the SGR, and

subsequently separate predictions for the three validation periods were

combined and compared with observed discharge using Pearson cor-

relation (R). River discharge estimation was carried out by cumulative

distribution function (CDF) matching. In the training period, a rank-

based look-up table is developed to rank all in-situ or modelled dis-

charge and the selected MODIS grid water extent time series, and

connect water extent to corresponding discharge based on their

ranking. In the validation period, water extent estimates are ranked

relative to the water extent observed during the training period and

then matched to the corresponding discharge estimates. For compar-

ison, SGRs based on in-situ records rather than model simulations were

also constructed where possible (Fig. 1). In particular, the central

MODIS grid cell of the search window for gauge-based SGRs is the grid

cell that contains the gauge.

2.2.2. The influence of river morphology on satellite-based river gauging

The SGRs were constructed empirically, based on the correlation

between the MODIS remote sensing time series for image grid cells

within the search window and in-situ records or model simulations. We

hypothesized that river morphology within the selected grid cell and

more broadly within the search window are the primary determinant of

SGR performance, specifically, the change in surface water extent (i.e.

effective river width) in response to discharge changes. To test this, we

extracted 30-m resolution surface water occurrence data for the 0.55°

search window, and the selected 0.05° grid cell from the GSWD for each

gauge-based SGR. For the search window, maximum surface water

mapping was derived from the GSWD surface water occurrence data.

Maximum surface water mapping was restricted to surface water de-

tected at least once only in all cloud-free, 16-day temporal Landsat

observations. The surface water grid cells in the mapping were seg-

mented based on their connectivity and identified as river channel,

floodplains, water bodies and off-channel storage segmentations ac-

cording to their unique characteristics. The river channel segmentation

was selected and river widths at 30 m intervals along the river channel

were calculated after tracing a river vector using medial axis skeleto-

nisation (the topological skeleton; Jain et al., 1995). The maximum and

mean river widths were chosen to represent river channel character-

istics. For the selected SGR grid cell, surface water extents at different

recurrence frequencies from 0.5% to 80% were calculated based on the

GSWD surface water occurrence data. These were normalised by max-

imum water extent to provide a dimensionless index of temporal sur-

face water extent variability. Nine successful (R ≥ 0.4) and un-

successful (R < 0.4) cases of SGRs were selected to illustrate river

morphology conditions affecting the performance of SGRs, and ana-

lyzed and related to the calculated and mapped features.

To develop a methodology to predict the likely success of SGRs a

priori based on globally available river morphology data, we calculated

Fig. 5. The performance (monthly Pearson correlations between SGRs predictions and in-situ data) of (a) gauge-based and (b) model-based SGRs at gauged locations.
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descriptive statistics on surface water extent ranges for each 0.05° grid

cell within the search window for all gauge-based SGRs (Fig. 2). Surface

water occurrence mapping was again derived from the GSWD. We

calculated the temporal range of water extent as the difference between

the maximum and minimum water extent for each grid cell (Fig. 3). The

number of grid cells with temporal water extent ranges greater than a

threshold was calculated for threshold values of 0–80% with 10% in-

crements for all gauging stations. For example, for a threshold range of

30%, the number of 0.05° grid cells within the 0.55° window around a

gauging station with a water extent range of 30% or more was de-

termined. The SGR success rate was defined as the ratio of the number

of SGRs demonstrating a Pearson correlation ≥ 0.4 to the total number

(N ≥10) of SGRs constructed. The success rate was calculated for each

combination of a minimum number of grid cells exceeding the water

extent range threshold.

3. Results and discussion

3.1. Global performance of satellite gauging reaches

Monthly correlations between MODIS-derived water extent and W3

model simulated river channel storage were calculated for 372 thou-

sand grid cells containing river reaches with an annual mean dis-

charge> 10 m3/s, having a combined length of ca. 1.86 million km

(Fig. 4). A total of 62% of grid cells considered show a correlation

coefficient ≥ 0.4. A total of 2% of cells with a combined river length of

36,530 km show correlation coefficients above 0.8. The strongest cor-

relations occur along the main river reaches of South America and

Africa and in northern high latitude regions, South Asia, and the Middle

East.

The W3 model was calibrated uniformly against a large global set of

headwater catchments (Van Dijk et al., 2016) rather than to individual

gauge records, and therefore can show bias when evaluated for any

particular river gauge. This model bias propagates into model-based

SGRs, so model-based SGRs have limited capabilities to predict un-

biased discharge depending on the quality of modelled discharge. Our

objective was to develop a capability to infer temporal flow patterns in

gauged and ungauged rivers alike, where necessary based on high-re-

solution estimated of discharge from a global hydrological model. In

doing so, we expect the model to have systematic biases in regards to

Fig. 6. River discharge predictions derived from the model-based (brown line)

and gauge-based (blue line) SGRs and the model (green line) along with in-situ

river discharge measurements (black crosses). (For interpretation of the refer-

ences to colour in this figure legend, the reader is referred to the web version of

this article.)

Table 3

The performance of model-based SGRs, gauge-based SGRs, and the model of Fig. 6.

Site Type 2000–2004 2005–2009 2010–2014 2000–2014

Amazon W3 model 0.94 0.92 0.94 0.93

Model-based SGR 0.83 0.88 0.94 0.89

Gauge-based SGR 0.91 0.93 0.94 0.92

Mississippi W3 model 0.82 0.87 0.88 0.86

Model-based SGR 0.50 0.69 0.71 0.64

Gauge-based SGR 0.51 0.73 0.71 0.65

Congo W3 model 0.6 0.57 0.8 0.58

Model-based SGR 0.73 0.85 0.65 0.74

Gauge-based SGR 0.69 0.85 0.93 0.74

Yenisey W3 model −0.11 −0.15 −0.22 −0.14

Model-based SGR 0.39 0.50 0.28 0.41

Gauge-based SGR 0.85 0.94 0.90 0.88

Fig. 7. The performance of 1705 accepted SGRs at different temporal scales

(the 8-day and seasonal performance relates to SGRs constructed using monthly

averaged data).
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true discharge, but these are fundamentally unknown in ungauged

rivers. However, as long as the temporal pattern in model-simulated

flows is sufficiently similar to true river hydrology, an SGR can still be

constructed successfully, and will enable the detection of unusually

high or low river discharge behavior (i.e. flood or drought conditions),

if not necessarily absolute discharge volumes. For this reason, we did

not use bias-influenced statistics such as Nash-Sutcliffe Efficiency, but

instead chose measures of relative and ranking agreement, such as

Pearson correlation and Spearman's rank correlation, in line with pre-

vious studies (e.g., Hou et al., 2018; Van Dijk et al., 2016).

In contrast, the gauge-based SGRs are inherently free of bias.

Clearly, the bias in the model and model-based SGRs can be addressed if

independent gauging data are available, but this is counterfactual in

ungauged rivers. Alternatively, the use of model ensembles has been

shown capable of producing less biased discharge estimates (e.g., Beck

et al., 2017). To our knowledge, 0.05°-resolution global routed dis-

charge time series are only available from the W3 model, but if such

estimates become available from other models in future, then this could

provide a promising opportunity to improve the SGR methodology

developed here.

Optical remote sensing of water extent is affected by vegetation and

by clouds and other forms of atmospheric contamination. The 8-day

compositing used for MODIS products reduces such effects but also

leads to temporal smoothing, which may affect the ability of SGRs to

detect short-lived flood events. As an alternative, the daily Global Flood

Detection System (GFDS) passive microwave remote sensing data (De

Groeve et al., 2015) can also be used to construct SGRs (Hou et al.,

2018). These observations are less affected by cloud and vegetation, but

do have other sources of error and are of coarser spatial resolution

(0.1° × 0.09°), producing a smaller number of suitable SGRs sites

globally (Van Dijk et al., 2016).

In our cross-validation framework, using data in different training

and validation periods can result in different pixels being selected. As a

result, SGRs trained during a dry period can be less successful in pre-

dicting river discharge during a wet period, and vice versa. To avoid

such issues, the full period should be used for SGR construction and

training in operational implementations.

3.2. Performance and uncertainties of satellite gauging reaches

Both model- and gauge-based SGRs performed well along many

larger river reaches in South America, parts of middle and western

North America, northern Australia, northern Russia, and the Niger

River (Fig. 5). The gauge-based SGRs in northern Russia and the Niger

River outperformed model-based SGRs. Poor results were obtained in

the remainder of North America, eastern Brazil, southeastern Australia,

Europe, South Africa, and Malaysia (Fig. 5). In total, 30% of gauge-

based SGRs predicted river discharge with a Pearson correlation ≥ 0.4,

slightly higher than that of model-based SGRs (25%). Of these, 322

gauge-based and 177 model-based SGRs produced Pearson correla-

tions ≥ 0.7, mostly located in South America and northern Russia.

Monthly river discharge derived from the SGRs and the model was

evaluated against in-situ records. Four typical examples representing the

observed range of performance are shown in Fig. 6 and Table 3. The

model accurately reproduced river discharge variations for the Amazon

(Fig. 6, Table 3) and Mississippi rivers (Fig. 6, Table 3), but not the

Fig. 8. The performance (monthly anomaly Pearson correlations between SGRs predictions and in-situ data) of (a) gauge-based and (b) model-based SGRs at gauged

locations corresponding to Fig. 5.
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Yenisey River (Fig. 6, Table 3). Accordingly, the model-based SGR

produced a relatively poor result for the Yenisey River (R = 0.41). By

comparison, the gauge-based SGR showed a high Pearson correlation of

0.88 against in-situ data for the Yenisey River. The model under-

estimated river discharges for the Congo River. Despite this, the model-

based SGR still reproduced relative discharge variations with similar

performance as the gauge-based SGR (R = 0.74 in both cases). Model-

and gauge-based SGRs showed very similar performance for the

Amazon River (R = 0.89–0.92) and the Mississippi River

(R = 0.64–0.65, Fig. 6, Table 3).

Our results showed that it is possible to construct SGRs from 0.05°

MODIS optical remote sensing data for ~3000 gauged and>200,000

ungauged river reaches. The SGRs can be used to monitor river dis-

charge from MODIS observations at the global scale, particularly along

the main rivers of South America and Africa, in northern high latitudes,

and in South Asia and the Middle East (Fig. 5). SGRs sometimes show

short discontinuities in river discharge estimation. For example, there is

a one-month gap during the early 2002 in the Amazon River (Fig. 6).

This is usually caused by cloud contamination, which is a drawback of

using optical remote sensing observations. Model-based SGRs can have

the same skill as gauge-based SGRs (Fig. 5), but this depends on the

accuracy and reliability of the hydrological model. The performance of

model-based SGRs was substantially worse than that of gauge-based

SGRs for the rivers in northern Russia (Fig. 5). This appears to be

mainly because the W3 model did not simulate river discharge dy-

namics reliably, which we attribute to a comparatively poor perfor-

mance in simulating snow hydrological processes, e.g. in the Yenisey

River (Fig. 6, Table 3) (see also Beck et al., 2017). Errors in forcing data

(e.g., precipitation, radiation, temperature), suboptimal model para-

meterisation, and/or model structural deficiencies can all affect the

quality of model discharge estimates and can potentially lead to poorly

constructed SGRs. For instance, neither the model nor the SGR based on

it reproduced measured river discharge in the Congo River (Fig. 6,

Table 3). Interestingly, the model-based SGRs did outperform the model

itself in this case, and this occurred in some other cases as well (Fig. 6,

Table 3). For example, the model-based SGRs for the Yenisey River

were able to reproduce the reduction in river discharge during winter,

where the model failed (Fig. 6, Table 3). Furthermore, the W3 model

assumed a converging river flow network constructed on the basis of

flow direction inferred from a 0.05° digital elevation model. This does

not necessarily produce realistic discharge simulations in river systems

that split into multiple distributaries over a width of> 5-km at high

flow conditions, such as those sometimes found in low-relief arid re-

gions (e.g. the Okavango delta and Australian Channel Country). The

grid cell search window used may still allow an SGR to be constructed,

but would correspond to the discharge in all distributaries combined.

Such cases suggest that it is sometimes possible to improve model es-

timates through assimilation of SGR discharge estimates, even if these

are based on the model itself.

In total, there are 1705 potential SGRs for which there are daily

gauging data with performance above 0.4 at monthly temporal scale. Of

these, 35% still have Pearson correlations above 0.4 against 8-day

gauging data (Fig. 7). The number of SGRs with performance above 0.7

decreases from 435 through 222 to 71 as time step is changed from

seasonal, through monthly, to 8-day intervals (Fig. 7). The degrading

performance at 8-day temporal scale is mainly due to the poor

Fig. 9. River discharge anomaly predictions derived from the model-based

(brown line) and gauge-based (blue line) SGRs and the model (green line) along

with in-situ river discharge measurements (black crosses) corresponding to

Fig. 6. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Fig. 10. Promising regions for SGRs: (a) northern South America and (b) southern Asia.
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representation of the real 8-day dynamics by compositing of MODIS

observations and the influence of cloud contamination on MODIS ob-

servations. These issues were reduced by using monthly or seasonal

averaging of the imagery.

The presence of a strong seasonal discharge cycle with associated

inundation enhances the chances of establishing a successful SGR.

However, where this seasonal cycle is a large part of the total variance

in water extent, the ability of the SGR to detect smaller deviations from

the seasonal cycle may be limited. To assess this, we calculated Pearson

correlations of seasonally-adjusted anomalies (i.e., deviations from the

average seasonal cycle) between gauged and SGR-estimated discharge

for all potential SGRs (Fig. 8). Compared to Fig. 5, it is evident that

most of SGRs have degraded performance for seasonally-adjusted

anomalies. However, SGRs that have robust performance (R > 0.7)

can still have reasonable capability to predict seasonal anomalies, with

Pearson correlations> 0.4. To illustrate seasonally-adjusted anomaly

prediction, we plot river discharge anomaly predictions derived from

the model and SGRs against in situ anomaly observations, corre-

sponding to Fig. 6 (Fig. 9). For successful cases, both the model and SGR

are able to predict seasonal anomalies, with R > 0.7 in the Mississippi

River, while the model outperforms SGRs in the Amazon River as SGRs

overestimate peak flow and underestimate low flows (Fig. 9). For poor

cases (despite well-performing gauge-based SGRs), the model fails to

predict seasonal anomalies, which leads to the poor performance of

model-based SGRs in the Congo River and Yenisey River (Fig. 9).

However, the gauge-based SGRs in the Yenisey River can still track

seasonal anomaly to some extent (R > 0.5). These results do not imply

that the SGRs are redundant in highly seasonal rivers; as unusually-

timed transitions between low and high flow conditions (e.g., due to

early or late spring snow melt or monsoon arrival) will still be correctly

identified by the SGR, even if they may contribute little to the explained

variance overall. In the context of a rapidly changing global climate

system, this can provide an important monitoring capability.

Where possible, gauging stations are usually constructed along a

single, narrow and stable channels without large floodplains. These

aspects are directly at odds with the requirements for river gauging

based on water extent, which is most amenable to multiple and broad

channels with large floodplains. This difference probably leads to an

underestimation of the potential of SGRs: there are no in-situ data in

many reaches apparently suitable for SGRs, and hence we cannot

evaluate their performance. For example, we found high correlations

between water extent and modelled storage along the Brahmaputra and

Orinoco Rivers (Fig. 10), but there were no in-situ data available after

2000 and hence we could not evaluate the model-based SGRs. An in-

direct validation is possible to some extent, however. There were strong

correlations between in-situ discharge measurements and modelled

discharge before 2000 (Fig. 11). This suggests that the W3 model was

able to reproduce measured river discharges. In turn, the strong cor-

relation between discharge from the model and the model-based SGRs

suggest that the latter have good discharge prediction skill (Fig. 11).

3.3. The importance of river morphology for satellite gauging reach

development

River morphology and SGR performance were compared for a large

number of SGRs. Common river morphology conditions that enable a

successful SGR are illustrated in Figs. 12 and 13. The reaches of the

lower Amazon River (R = 0.92) and Ob River (R = 0.93) have very

wide channels with maximum widths of approximately 4.5 km and

7.0 km, respectively, with broad floodplains and multiple stable chan-

nels (Fig. 12, Table 4). The automatically selected SGR grid cell was

located on the ephemerally-inundated floodplain for the Amazon River

and over braided channels for the Ob River, with water extent ranges of

70% and 30%, respectively. The Niger River reach (Fig. 12, Table 4)

had a mean width of 609 m and no obvious floodplain or stable per-

manent channel. The selected SGR grid cell included the channel with a

water extent range of nearly 80%. The river channels of the upper

Amazon River and the Daly River were quite narrow with mean widths

of 218 m and 67 m, respectively (Fig. 12, Table 4). The Daly River

shows a less tortuous channel with several large but infrequently-

flooded floodplains. The upper Amazon River shows strongly mean-

dering channels with oxbow lakes, some of which may be disconnected

(alternatively, tree cover may have prevented detection of connecting

flood events). The selected SGR grid cell for the Daly River covers a part

of the floodplain, whereas that for the upper Amazon River includes

several off-channel meander lakes, with water extent ranges of almost

100% and 70%, respectively (Fig. 12). Common for all reaches is that

the MODIS-derived water extent time series are temporally correlated

with in-situ discharge measurements, with Pearson correlations of

0.72–0.93, although there is some noise in the MODIS signal for the

Daly and upper Amazon rivers (Fig. 13).

Earlier studies have shown that river width, floodplain, flood po-

tential, land cover type, climate, hydraulic structure and local topo-

graphy can all affect the effectiveness of remote sensing-based river

discharge estimation (Kim and Sharma, 2019; Revilla-Romero et al.,

2014). However, dynamic river morphology factors such as river width

and floodplain inundation might be expected to have a more direct

influence. They also formed the basis for the hydraulic geometry theory

relating river width to discharge (Leopold and Maddock, 1953). We

analyzed the impact of river morphology measures derived from high

spatial resolution Landsat-derived surface water occurrence dataset

(GSWD) on the performance of gauge-based MODIS SGRs. We identified

Fig. 11. The river discharge predictions de-

rived from the model-based SGR (green line)

and the model (brown line) evaluated against

in-situ river discharge measurements (black

dashed line with crosses). (For interpretation

of the references to colour in this figure le-

gend, the reader is referred to the web version

of this article.)

J. Hou, et al.



typical river morphology conditions that are amenable to successful

SGRs. Wide reaches with strong temporal variations in water extent are

beneficial. These can occur if the river channel itself is wide, or if there

is an extensive floodplain or multiple braided channels that connect to

the river reaches during high flow conditions. If the river channel is

narrow, a large number of meandering channels can be beneficial. By

contrast, narrow incised river channels without a large floodplain

prevent the establishment of SGRs (Fig. 14). For narrow river channels

Fig. 12. Illustrative river morphology conditions that contribute to a successful SGR: (left) water extent occurrence from the GSWD within the search window with

the selected SGR highlighted in orange, (middle) water extent occurrence from the GSWD for the selected SGR grid cell, and (right) SGR grid cell water extent at

different temporal recurrence frequencies.
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with narrow floodplains, SGRs tend to select the grid cell that covers the

floodplains, but this often does not respond to the full range of river

discharge (Fig. 14). When there are many not or poorly connected

water bodies around the river reach, the selected grid cell will still tend

to cover these, but in those cases, the correlation between water extent

and river discharge may be poor and affected by hysteresis (Fig. 14).

Reservoir dams or other types of hydraulic infrastructures can cause a

disconnection in hydrological conditions upstream and downstream,

and also prevent a successful SGR (Fig. 14).

3.4. Predicting the potential for constructing a satellite gauging reach

The probability of constructing a successful SGR (R ≥ 0.4) was

calculated across the in-situ data set, considering a different aggregate

number of grid cells within the search window with water extent ranges

above different thresholds (Fig. 15). For a given extent range threshold,

the number of SGRs decreases as the number of cell with water extent

above the threshold increases, as more and more stations will not have

that many grid cells exceed the extent range threshold. Probabilities are

not shown where the number of stations was less than N = 10. For each

threshold, the probability of constructing a successful SGR increases as

the number of grid cells with a water extent range above the threshold

increases. Furthermore, with greater extent range thresholds, the

number of grid cells required to construct a successful SGR decreases.

The minimum conditions of developing a successful SGR in terms of

a certain probability can be inferred based on a given number of 0.05°

grid cells in the 0.55° × 0.55° search window with a water extent range

exceeding a given threshold fraction from the statistical results in

Fig. 15. For example, to achieve> 30% probability of constructing a

successful SGR, at least 3 grid cells with water extent variations of 1%

(0.25 km2) or 1 grid cell with changes of 2% (0.5 km2) should exist; if

targeting>60% probability, 1 grid cell with water area dynamics of

60% (15 km2) or 30 grid cells with variations of 8% (2 km2) should

Fig. 13. MODIS-derived water extent time series of the selected SGR grid cell (units on right axis) compared against in-situ river discharge measurements (units on left

axis).

Table 4

The river channel width and the performance of SGRs for the river reaches

shown in Figs. 6, 12 and 14.

Index River name Latitude (°) Longitude (°) R Maximum

width (m)

Mean

width

(m)

A, a lower Amazon −1.95 −55.51 0.92 4450 1782

B Ob 66.63 66.60 0.93 6957 1769

C Daly −13.83 130.73 0.87 158 67

D upper Amazon −7.06 −71.69 0.72 532 218

E Niger 12.87 −7.55 0.89 1484 609

F Malubuk 5.30 117.59 0.09 320 86

G Paraguacu −12.60 −38.98 0.03 3731 956

H Columbia 45.61 −121.17 0.17 1346 527

I Churchill 58.12 −94.62 0.21 1110 415

b Mississippi 32.31 −90.91 0.65 1664 870

c Congo −4.30 15.30 0.74 5538 1495

d Yenisey 67.43 86.48 0.88 8739 3105
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exist.

A larger number of grid cells with a large temporal water extent

range indicated a higher probability of constructing a successful SGR

(Fig. 15). This does not mean that grid cells can be selected without

needing to consider their correlation with in-situ or model-based dis-

charge estimates. For a middle reach of the Amazon River, we com-

pared the correlation with in-situ measurement for water extent time

series over the statistically-selected grid cell (i.e. the ‘best grid cell’),

with those over the grid cells with the greatest water extent range

(‘combination grid cells’), and those that cover the entire river reach

(‘reach grid cells’) (Figs. 16 and 17). The results showed that the best

grid cell does indeed perform better (R = 0.81) than the combination

grid cells (R = 0.69) and reach grid cells (R = 0.65), respectively.

Nonetheless, a combination of grid cells that have large water extent

ranges or different levels of water extent changes may still prove a

suitable approach to develop SGRs without correlation-based grid cell

selection.

3.5. Further opportunities to improve satellite-based river gauging

Constructing empirical rating curves between in-situ discharge and a

satellite-observed hydraulic variable has been the most widely used

method to derive river discharge from remote sensing (e.g., Kouraev

et al., 2004; Papa et al., 2008; Smith et al., 1995). Deriving discharge-

height rating curves is currently limited to a small fraction of rivers

globally because radar altimeters have sparse spatial coverage and are

affected by surrounding topography, although the combination of

multiple radar altimeters can help to produce long-term records and

near-real time monitoring capability (e.g. Topex/Poseidon

Fig. 14. Illustrative river morphological conditions preventing a successful SGR.

Fig. 15. Empirically calculated probability of constructing a successful SGR for

a given number of 0.05° grid cells in the 0.55° × 0.55° search window with a

water extent range exceeding a given threshold fraction.

Fig. 16. The river morphology condition in the midstream of the Amazon River

(brown square: the best-correlated grid cell; orange grids: the other grid cells

with large water extent ranges). (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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(1992–2002), ENVISAT (2002–2010), Jason-2 and 3 (2008–current)).

Optical remote sensing (e.g.,MODIS (2000–current)) enables discharge-

width rating curves to estimate discharge, but is affected by cloud and

vegetation cover (e.g., Smith and Pavelsky, 2008). This can be mitigated

using synthetic aperture radar (e.g., Smith et al., 1995) but these in turn

have conventionally be limited by a low revisit frequency. Papa et al.

(2008) employed passive and active microwave along with visible and

infrared optical remote sensing to estimate discharge based on dis-

charge-inundation rating curves, but their method is restricted to the

entirety of large basins. Satellite-derived water elevation, slope and

width can be used together to estimate discharge based on Manning's

equation (e.g., Bjerklie et al., 2005), but this approach requires ancillary

in-situ data, and is highly parametrized and specific to individual river

reaches (Biancamaria et al., 2016). Gleason and Smith (2014) proposed

the AMHG algorithm, which provides the potential to estimate river

discharge from multi-temporal Landsat-derived width observations.

However, the AMHG method requires a single river channel with

modest width variations. The Surface Water and Ocean Topography

(SWOT) satellite mission is planned to launch in 2021, and its ability to

measure river width, elevation, and slope simultaneously provide an

alternative opportunity to estimate river discharge without station data

(Pavelsky et al., 2014). Approaches have been developed to optimally

combine these observations (e.g., MetroMan, Durand et al., 2014; Yoon

et al., 2016; MFG, Bonnema et al., 2016; MFCR, Durand et al., 2016;

GaMo, Durand et al., 2016; Garambois and Monnier, 2015; BAM, Feng

et al., 2019; Hagemann et al., 2017). However, all the approaches

mentioned are designed for river discharge estimation at scale of larger

(e.g., > 1 km) river reaches.

In contrast, the empirical C/M ratio approach (Brakenridge et al.,

2007; Li et al., 2019; Tarpanelli et al., 2017; Tarpanelli et al., 2013) can

be used to estimate river discharge at local scale using either passive

microwave or optical remote sensing. The SGR methodology developed

further here based on previous studies (Hou et al., 2018; Van Dijk et al.,

2016) is readily applicable to a very large number of river reaches at

both gauged and ungauged sites through the automated procedure

developed here, and suited to near-real time application. It is suited to

monitor discharge in single, multiple, braided and shifting channels,

provided that water extent changes in response to discharge. We de-

monstrated that SGRs can be used to infer river discharge at global

scale, especially in sparsely gauged basins in South America, Africa and

Asia. We analyzed how river morphology affects the performance of

SGRs, and identified reasons why some SGRs work and others do not.

Overall, we found that wide channels and broad floodplains generally

provide the best conditions for SGRs, in direct contrast with conditions

suitable for in situ gauging. A new approach was introduced to predict

the potential for constructing a successful SGR in any river reach, based

on high-resolution inundation summary data available globally. In ad-

dition, we developed a theoretical insight into the basis for the suc-

cessful MODIS window search grid cell selection method, rather than

the selection of multiple grid cells along the entire river reach or those

with the greatest water extent range.

River morphology determines where SGRs can be established.

However, a major limitation here was the relatively coarse resolution of

MODIS. Higher spatial and temporal resolution remote sensing would

enhance opportunities for tracking more rapid changes in discharge and

detecting river reaches with small surface water extent changes. The

recent launch of ESA's Sentinel 1, 2 and 3 missions provide a promising

prospect for water extent monitoring with high spatial detail (10–60 m)

as well as higher observation frequency and hence provide excellent

new opportunities for satellite-based river gauging, particularly if they

can be combined in a single, consistent time series. In the short term,

the recently published daily 500-m resolution surface water change

database for 2001–2006 of Ji et al. (2018) offers good prospects.

Moreover, a hydromorphological dataset, including river width dy-

namics, flow regime and river gradient, produced by Hou et al. (2019)

will help better determine potential locations for satellite-based river

gauging.

4. Conclusion

We developed model- and gauge-based SGRs using 0.05° MODIS

optical remote sensing at both gauged and ungauged river reaches

globally. The model-based SGRs achieved a river discharge prediction

skill that was often similar to gauge-based SGRs. Our results showed

promising opportunities to develop SGRs in South America, Africa, and

Asia, where the network of gauging stations is generally sparse. River

size and morphology are the main factors determining the performance

of SGRs. Wide channels with strong temporal variations in inundation

provide the best conditions to construct a successful SGR. Relatively

wide channels, broad floodplains, multiple braided channels, or a large

number of meandering or anastomosing channels also contribute to-

wards successful SGRs. The probability of constructing a successful SGR

could be predicted based on readily available high-resolution inunda-

tion data and can thus be predicted for any river reach. Higher spatial

and temporal resolution remote sensing will further increase the

number of river reaches for which satellite-based discharge gauging will

become possible.
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Chapter 4: Hydromorphological attributes 
for all Australian river reaches derived 

from Landsat dynamic inundation remote 
sensing 

River width data is indispensable in hydraulic and hydrologic models, to help improve river 

routing and better estimate river discharge. This chapter develops an approach to produce 

hydromorphological attributes, including spatial and temporal river width, flow regime and river 

gradient for all of 1.4 million Australian river reaches and proposes a parameter that can be used 

to classify reaches by the degree to which flow regime tends towards permanent, frequent, 

intermittent, or ephemeral. The study also highlights river features over the Australian continent 

and discusses the relationships between river width and contributing catchment area, river 

discharge, and reach gradient. The content of this chapter was published in the journal Earth 

System Science Data as follows: 

Hou, J., Van Dijk, A.I.J.M., Renzullo, L.J., Vertessy, R.A., and Mueller, N., 2019. 

Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic 

inundation remote sensing, Earth System Science Data, 11, https://doi.org/10.5194/essd-11-

1003-2019.  
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Abstract. Hydromorphological attributes such as flow width, water extent, and gradient play an important role

in river hydrological, biogeochemical, and ecological processes and can help to predict river conveyance ca-

pacity, discharge, and flow routing. While there are some river width datasets at global or regional scales, they

do not consider temporal variation in river width and do not cover all Australian rivers. We combined detailed

mapping of 1.4 million river reaches across the Australian continent with inundation frequency mapping from

27 years of Landsat observations. From these, the average flow width at different recurrence frequencies was

calculated for all reaches, having a combined length of 3.3 million km. A parameter γ was proposed to describe

the shape of the frequency–width relationship and can be used to classify reaches by the degree to which flow

regime tends towards permanent, frequent, intermittent, or ephemeral. Conventional scaling rules relating river

width to gradient and contributing catchment area and discharge were investigated, demonstrating that such

rules capture relatively little of the real-world variability. Uncertainties mainly occur in multi-channel reaches

and reaches with unconnected water bodies. The calculated reach attributes are easily combined with the river

vector data in a GIS, which should be useful for research and practical applications such as water resource

management, aquatic habitat enhancement, and river engineering and management. The dataset is available at

https://doi.org/10.25914/5c637a7449353 (Hou et al., 2019).

1 Introduction

Temporal and spatial information on river morphology is

fundamental for understanding CO2 and nutrient exchange,

aquatic habitat distribution and migration, fishery manage-

ment, transportation, flooding hazards, and hydrologic and

hydrodynamic models (Miller et al., 2014). Combining de-

tailed data on river morphology with hydrological modelling,

our understanding of the flow and storage of water across

spatio-temporal scales can be improved further (Van Schaik

et al., 2019). River morphology is mainly controlled by eight

variables: width, gradient, depth, velocity, discharge, rough-

ness, sediment size, and sediment load (Leopold et al., 1964).

In the platform dimension, river patterns have been catego-

rized as either single or anabranching channels. Laterally,

active channels and inactive channels can be further clas-

sified as straight, sinuous, meandering, and braided forms

(Nanson and Knighton, 1996). For a deeper understanding of

river morphology, Rosgen (1994) established a river classifi-

cation inventory system using delineation criteria or ranges in

different levels including the number of channels, entrench-

ment, width–depth ratio, sinuosity, gradient, and channel ma-

terial. Importantly, the interaction between river channel and

floodplain results in different river morphology. For instance,

the width of a channel changes in response to formation and

destruction of the floodplain, which subsequently alters bar

Published by Copernicus Publications.
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patterns as bar pattern is dominated by width–depth ratio

(Kleinhans and Van den Berg, 2011).

Among the variables affecting river morphology, river

width is an essential parameter to calculate river discharge,

assess river conveyance capacity, and improve river rout-

ing in models (Yamazaki et al., 2014). River width at over-

bank flow level plays a significant role in delineating inun-

dated area, which affects water vapour fluxes and ground-

water recharge (Dadson et al., 2010; Pedinotti et al., 2012;

Doble et al., 2014). From flood inundation simulation with

one-dimensional finite difference solutions of the St. Venant

equations to two-dimensional finite element and finite dif-

ference models, the need for data on river morphology in-

creases from field survey measurements to continuous digi-

tal elevation models. Using a low-resolution digital elevation

model (DEM), details of flow channel features and connec-

tivity cannot be provided. Thus, river characteristics are not

always represented well in coarse-resolution grids used in

large-scale river routing models (Yamazaki et al., 2011). Al-

though a high-resolution DEM can mitigate this issue, there

is an associated increase in computational cost and suffi-

cient computing resources are not always available. One way

to deal with this problem is to construct a simpler model

structure (Bates and De Roo, 2000). Another way is to pa-

rameterize sub-grid-scale topography of river channels and

floodplains in modelling (Neal et al., 2012; Yamazaki et al.,

2011). For example, Coe et al. (2008) considered sub-grid-

scale floodplain morphology (i.e. fractional flooding of grid

cells), which resulted in significant improvement in the sim-

ulations of seasonal and inter-annual flooding.

The lack of detailed data on river characteristics often

means that river width is either ignored or left as a param-

eter for calibration, which may increase model uncertainty

and decrease accuracy (Andreadis et al., 2013). River width

may be set to a constant value without consideration of spa-

tial and temporal variations (Biancamaria et al., 2009). Al-

ternatively, river width may be estimated by empirical func-

tions of drainage area (Coe et al., 2008; Paiva et al., 2013) or

river discharge (Decharme et al., 2008; Getirana et al., 2012,

2013; Andreadis et al., 2013). However, river width estimates

from empirical functions cannot provide accurate represen-

tations of river reach morphology, as relationships between

river width and discharge or drainage area are known to vary

in different geomorphological and climate conditions (Ya-

mazaki et al., 2014). If river width is overestimated in hy-

drological modelling, it may result in both overestimation of

river channel storage and underestimation of water storage

on the floodplain and vice versa (O’Loughlin et al., 2013).

This will in turn cause errors in the timing and location of

flood wave and floodplain inundation predictions.

The development of a more accurate and explicit river

width dataset has been approached in several ways. Pavelsky

and Smith (2008) developed a software tool, RivWidth, to au-

tomatically extract river width along a river course, combin-

ing one channel mask distinguishing water pixels from non-

water pixels and another river mask describing areas within

the river boundary or outside it. Miller et al. (2014) and

Allen and Pavelsky (2015, 2018) successfully applied this

pioneering approach to map river width at mean discharge

for the Mississippi River basin, North American rivers, and

the whole world, respectively. However, laborious manual

inspection and corrections are needed in pre-processing of

the water masks, which prohibit its automated application

over large scales. For example, undetected channels in water

masks have to be drawn manually in order to make the river

network fully connected (Neal et al., 2012). To address this

issue, Yamazaki et al. (2014) applied an automated algorithm

to produce a global river width database for large rivers,

GWD-LR, using flow direction maps and water masks. Isik-

dogan et al. (2017) also developed an automated analysis and

mapping engine, RivMap, which is able to delineate rivers

and estimate river width, and used it to generate a river width

dataset for North America. However, none of these regional

and global datasets considers temporal variability of river

width or river width beyond overbank flow conditions.

Our aim was to develop a method for estimating tempo-

ral and spatial river width dynamics and use these to find

summary parameters to represent river morphology charac-

teristics that could support a classification of river type over

the Australian continent. River width dynamics at different

recurrence frequencies were estimated from 27-year time

series of 25 m resolution surface water extent maps from

Landsat remote sensing (Mueller et al., 2016) and a detailed

Geographic Information System (GIS) database containing

all 1 410 404 river segments and 1 474 271 sub-catchments

mapped across Australia (Bureau of Meteorology, 2012a).

The width estimates were compared with the global river

width dataset (Allen and Pavelsky, 2018) at average flow con-

ditions in 218 river regions of Australia. We analysed the re-

lationships between river width and discharge, drainage area,

and gradient, and calculated the coefficient and exponent of

a hydraulic geometry equation for Australia. The river mor-

phology parameters were intended to provide a description of

temporal river width dynamics relating to the dominant flow

regime (permanent, frequent, intermittent, or ephemeral). We

demonstrate the usefulness of our dataset by showing the

longitudinal profile of hydromorphological attributes for the

main river channel of the Murray River and other complex

river systems in a dry, low-relief environment.

2 Data and method

2.1 Data

2.1.1 River and sub-catchment segments

The Australian Hydrological Geospatial Fabric (Geofabric)

is a digital database of spatial surface and groundwater fea-

tures based on a GIS platform that relates important hydro-

logic features such as catchments, rivers, lakes, and aquifers

Earth Syst. Sci. Data, 11, 1003–1015, 2019 www.earth-syst-sci-data.net/11/1003/2019/
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Figure 1. Illustration of the data used in the investigations:

(a) true colour median-value composite of Landsat-8 data for

a 15.7 km × 15.3 km area centered on 31.62◦ S and 143.42◦ N;

(b) river segments and corresponding sub-catchment area from the

Geofabric Surface Network; (c) WOfS water summary showing the

percentage of times surface water was observed; and (d) overlay of

the Geofabric onto WOfS (i.e. b and c).

(Bureau of Meteorology, 2012a). The Geofabric Surface Net-

work provides a consistent hydrological surface stream net-

work which was derived using the 9 s ANUDEM raster

streams product (Bureau of Meteorology, 2012b). The sur-

face network has six attributes, namely network stream, up-

stream network connectivity, downstream network connec-

tivity, network node, water body, and catchment area. Any

information associated with the surface network can be eas-

ily connected to features in other Geofabric products, includ-

ing surface cartography, surface catchment, groundwater car-

tography, and hydrological reporting catchments and regions,

for further applications. The network stream is divided into

major rivers and minor rivers, and major rivers generally rep-

resent the main watercourses across Australia (Fig. 1a and b).

These rivers are further classified as flow segments (natural

rivers), water area segments (rivers passing through a water

body), and artificial segments (to keep the stream network

connected). The catchment refers to a sub-catchment cor-

responding to each river segment. The network stream and

catchment features are the main data we used to extract in-

formation from surface water extent observations (Fig. 1d).

2.1.2 Surface water extent observations

Water Observations from Space (WOfS) is a publicly acces-

sible 25 m resolution gridded dataset providing surface wa-

ter persistence and recurrence information for the Australian

continent (Mueller et al., 2016). This historical flood infor-

mation product was developed using a decision tree method

on a combination of normalized difference indices and cor-

rected spectral band values from approximately 184 500

Landsat images (Mueller et al., 2016). The Landsat im-

ages used to produce WOfS were the Australian archives of

Landsat-5 and Landsat-7 data, which were derived from raw

data using the USGS Landsat Product Generation System

with a spatial resolution of 0.00025◦ (approximately 25 m

pixel size) and cover 27 years from 1987 to 2014 (Mueller

et al., 2016). Here we used the water summary product from

WOfS, which provides the recurrence frequency of surface

water occurring as a percentage of the number of times the

surface was clearly observed for each grid cell. For example,

a frequency of 5 % means surface water extent was detected

on average once in 20 clear-sky Landsat acquisitions for that

given pixel (Fig. 1c). The WOfS product reflects inundation

extent for rivers at both in-channel and overflow levels, but

cannot relate inundated area to its associated river regime di-

rectly (Fig. 1a and c). However, this can be achieved by the

network stream and catchment features from the Geofabric

(Fig. 1d).

2.2 Method

2.2.1 River widths at different recurrence frequencies

We used Geofabric sub-catchment boundaries to divide

the WOfS water summary map into 1 474 271 segments

(Fig. 1d). Of these, there is a total of 1 379 224 sub-

catchments that have river segments. The strong agreement

between Geofabric water courses and WOfS surface wa-

ter was demonstrated by Mueller et al. (2016). The sub-

catchment polygon is used to select the area and extract in-

formation from the inundation frequency raster for its corre-

sponding river polyline. We calculated inundation extent at

different recurrence frequencies (Table 1) in each of these

sub-catchments. This step required considerable computa-

tional power, and so we used a high-performance computer.

Next, we estimated corresponding effective width for each

sub-catchment by dividing inundation extent at different re-

currence frequencies by the geodesic length of the river seg-

ment calculated from the Geofabric using Vincenty’s inverse

method (Vincenty, 1975). In addition, DEM information was

extracted from the 1 s DEM, an elevation data product devel-

oped by Geoscience Australia using the Shuttle Radar To-

pography Mission (SRTM) data (Gallant et al., 2011), for

the upstream and downstream end points of each river seg-

ment. River gradient was calculated by dividing the eleva-

tion difference between upstream and downstream points by

river length for each river segment. Finally, we obtained es-

timated spatial and temporal river widths, and river gradients

for 1 379 224 river reaches across the Australian continent.

We compared our spatial and temporal river width data

to the Global River Widths from Landsat (GRWL) dataset

(Allen and Pavelsky, 2018) over Australia. Allen and Pavel-

www.earth-syst-sci-data.net/11/1003/2019/ Earth Syst. Sci. Data, 11, 1003–1015, 2019
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Table 1. The categories of recurrence frequency for which calculations were performed.

Frequency Description Frequency Description

0 % Water not detected 5 % Water detected 5 times in 100 observations

0.1 % Water detected 1 time in 1000 observations 8 % Water detected 8 times in 100 observations

0.2 % Water detected 2 times in 1000 observations 10 % Water detected 10 times in 100 observations

0.3 % Water detected 3 times in 1000 observations 20 % Water detected 20 times in 100 observations

0.4 % Water detected 4 times in 1000 observations 50 % Water detected 50 times in 100 observations

0.5 % Water detected 5 times in 1000 observations 80 % Water detected 80 times in 100 observations

0.8 % Water detected 8 times in 1000 observations 90 % Water detected 90 times in 100 observations

1 % Water detected 1 time in 100 observations 95 % Water detected 95 times in 100 observations

2 % Water detected 2 times in 100 observations 100 % Water detected always

sky (2018) produced estimates of global river width at ap-

proximately mean discharge, which is related to the month

that rivers are most likely to be at the mean discharge value

from the nearest gauging station for each Landsat tile. How-

ever, it is less likely to represent the average conditions of un-

gauged river reaches as the distance from the nearest gauging

station increases; most river reaches around the world are un-

gauged. Additionally, mean discharge does not correspond to

any particular recurrence frequency. Thus, to facilitate com-

parison between the two sets of results, we calculated Spear-

man correlations between our river width estimates at a fre-

quency of 50 % and GRWL river widths separately for the

218 river regions in Australia. High correlations mean our

river width data reflect the same relative width variations

along the river channel from upstream to downstream for a

river region as the global river width dataset.

In addition, upstream cumulative mean runoff of each river

segment was calculated based on the Australian Water Re-

sources Assessment (AWRA) landscape hydrology model

(Van Dijk, 2010), which is used by the Australian Bureau

of Meteorology to operationally estimate daily water bal-

ance components across Australia at a spatial resolution of

0.05 ◦ × 0.05◦ (Frost et al., 2018). We analysed the relation-

ship between river width and upstream cumulative runoff or

upstream drainage area and also the correspondence between

river width and gradient for Australia. Furthermore, we es-

tablished hydraulic geometry power-law relationships that

relate river width to upstream cumulative runoff or upstream

drainage area as follows:

w = aQb, (1)

w = cAd, (2)

where w is river width (m), Q is cumulative upstream runoff

(m3 s−1), and A is upstream drainage area (km2). Coeffi-

cients a and c and exponents b and d were fitted and com-

pared to the results from published studies.

2.2.2 River morphology characteristics

The pixels in WOfS do not have equal numbers of clear ob-

servations, mainly due to overlapping Landsat scenes, with

minor influence of cloud and shadow frequency. The number

of clear observations in the overlapping scene areas could be

more than twice that in most of the rest areas. The estimated

river width is supposed to increase much more sharply in the

overlapping areas than the rest areas as recurrence changes

towards very low ranges, even for the same river reach, as a

larger number of clear observations provide more chances to

catch the extreme conditions. As a result, the surface water

extent map shows oblique strips across the Australian conti-

nent for very low recurrence frequencies. To standardize the

width and analyse width dynamics of rivers across Australia

as a whole, a more homogeneous mapping was desirable. To

avoid these artefacts, we generated river width maps by vary-

ing recurrence frequency from low to high until the majority

of artefacts disappeared. We regarded the resulting lowest-

frequency river width map without artefacts as representing

the maximum river width. Next, we standardized river widths

at different recurrence frequencies by dividing them by max-

imum river width, producing a width fraction representing

the ratio of river width at different recurrence frequencies to

maximum width.

Fi = Wi/Wmax, (3)

where Fi is width fraction at the ith frequency (Table 1),

Wi is river width (m) at the ith frequency, and Wmax is the

maximum river width (m). The relationship between width

fraction and its corresponding frequency was generally well-

described by a Weibull distribution, and therefore we used

the Weibull inverse survival function (NIST/SEMATECH e-

Handbook of Statistical Methods, 2018) to fit the relationship

for each river reach as follows:

Fi = (− ln(R))1/γ , (4)

where R is the width fraction corresponding frequency i and

γ is a parameter. We used differential evolutions (Storn and

Price, 1997) to estimate the parameter for each river reach.

The parameter γ reflects different curve shapes for relation-

ships between width fraction and frequency (Fig. 2) and was

used to characterize river morphology for 1 379 224 river

reaches across the continent. The larger γ is, the more time

Earth Syst. Sci. Data, 11, 1003–1015, 2019 www.earth-syst-sci-data.net/11/1003/2019/
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Figure 2. Different river width distributions for different values of

the gamma parameter.

the river width is close to maximum width, and the closer to

0, the more time the river width is close to minimum width.

The characteristic curves for rivers of invariable width show

a horizontal line, which leads to infinitely large estimates of

γ . We empirically limited γ between 0 and 5, which was

suitable for the large majority of rivers in Australia.

After γ was estimated for each river reach, we classi-

fied river reaches into 10 categories according to their cor-

responding γ values (Table 2). We selected median values

of width fraction at certain recurrence frequencies (Table 1),

respectively, for each category, and used Eq. (4) to fit the re-

lationship between width fraction and its corresponding fre-

quency for estimating γ values. Lastly, we used Eq. (4) and

estimated γ values to predict width fraction for each cat-

egory, and compared them with observed width fractions.

The standard differences were calculated for each category

to evaluate their biases by the equation as follows:

SD =
√∑

(O − M)2

n
, (5)

where O is the observation matrix, M is the estimate matrix,

n is the number of elements, and SD is the standard differ-

ence. This process was intended to test whether the parame-

ter γ represented recurrence–width relationships for different

river reaches well.

3 Results

3.1 Reach width–frequency distribution

Temporal observation frequency artefacts largely disap-

peared at 0.5 % frequency. Hence, we selected river width

at this frequency as the maximum river width (Fig. 3a).

We chose inundation at 80 % frequency to represent min-

imum river extent (Fig. 3b). Large differences existed be-

tween maximum and minimum widths (Fig. 3). Although

there are many river reaches across Australia, most of them

are ephemeral. Most of the (semi-)permanent rivers are lo-

cated along the northern and eastern coasts. There are many

ephemeral river reaches with very broad maximum widths in

the tributary catchments of the Murray–Darling Basin and in

the interior Lake Eyre catchment, as well as along the Gulf

of Carpentaria. River reaches flowing through a large water

body, e.g. reservoir or lake, also have very large calculated

widths. We did not exclude these river reaches, because they

keep the river network connected and because such reaches

are identified in the Geofabric mapping and hence can be se-

lected as required. Some regions showed no meaningful river

network (Fig. 3a). Most of these regions are arid catchments

with a sandy alluvial substrate. Presumably, this leads to an

infiltration capacity that is sufficient to prevent significant

surface runoff accumulation, whereas several of the catch-

ments also contain recent dune systems that have interrupted

a pre-existing drainage network (Fig. 3a).

We divided river reaches into three categories based on

their maximum width: small (< 25 m), medium (25–250 m),

and large (> 250 m). It is noted that small rivers will not be

narrower than 25 m along their entire width; a non-zero width

is calculated because some of the 25 m pixels along the reach

were mapped as inundated at 0.5 % maximum extent. There-

fore, we only list summary statistics here for medium and

large rivers (Table 3). The total length of reaches in different

maximum and minimum width classes is listed in Table 3,

showing the same distribution pattern regardless of whether

segments flowing through water bodies are included or ex-

cluded. The total length decreases as maximum and mini-

mum river width increases from 25 m up to more than 10 km.

The total reach length in different width ranges and at differ-

ent recurrence frequencies (Fig. 4) decreases by a factor of

21 as frequency increases from 0.5 % to 80 %. The majority

of river reaches are 25–250 m broad irrespective of frequency

range (Fig. 4).

We compared river width at different recurrence frequen-

cies with river gradient for all river reaches, as well as with

upstream drainage area and cumulative runoff. For compar-

ison with drainage area and runoff, we included only ma-

jor rivers because the contribution of upstream flow to mi-

nor rivers can be uncertain, for example for anabranches and

distributaries. Upstream drainage area and total runoff best

predicted maximum reach width, with Pearson correlations

of 0.52 and 0.43, respectively, while gradient showed the

expected negative relationship with maximum river width

(Fig. 5). Reflecting the most common method of river width

estimation, we fitted Eq. (1) to our data. We excluded river

widths with small upstream cumulative runoff (< 104.5 m3

or 0.37 m3 s−1) due to the influence of their sparse distri-

bution on the overall relationship. This resulted in a rela-

tionship with a coefficient a = 13.17 and exponent b = 0.49.

We found that reach gradient affects a significantly, with

decreasing width as gradient increases, but it did not ap-

pear to affect b, except perhaps for the highest gradient class

(> 0.01, Fig. 6).
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Table 2. Ten categories of river reaches based on γ values.

Flow regime Ephemeral Intermittent Frequent Permanent

γ 0–0.05 0.05–0.1 0.1–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1 1–1.5 1.5–3 3–5

Table 3. The length percentages in different width ranges of maximum (a) and minimum (b) river widths for Australia (all river segments

include flow segments and segments flowing through water bodies).

River Length (all river segments) Length (flow segments)

Width Maximum Minimum Maximum Minimum

Range (m) Width (R = 0.5 %) Width (R = 80 %) Width (R = 0.5 %) Width (R = 80 %)

25–50 22.56 % 28.59 % 25.69 % 35.46 %

50–100 20.95 % 25.67 % 22.84 % 31.69 %

100–250 24.86 % 24.16 % 25.99 % 23.91 %

250–500 14.79 % 10.11 % 14.22 % 5.95 %

500–1000 9.46 % 6.51 % 7.56 % 1.90 %

1000–2500 5.56 % 3.86 % 3.16 % 1.00 %

2500–5000 1.31 % 0.88 % 0.41 % 0.08 %

5000–10000 0.39 % 0.20 % 0.09 % 0.01 %

> 10 000 0.14 % 0.02 % 0.03 % 0.00 %

Total (m) 5.84 × 108 2.80 × 107 4.12 × 108 1.66 × 107

River width at 50 % frequency (i.e. median width) was

compared with river widths considered representative of “av-

erage” flows contained in the GRWL. Among the 218 Aus-

tralian river regions, only 111 regions had any inundated

river channel under “average” conditions in the GRWL river

width dataset, whereas all 218 river regions contained de-

tected rivers in our analysis results. The Spearman rank cor-

relation between median river width and river widths from

the global dataset exceeded 0.6 for 68 % (75) of 111 river

regions and exceeded 0.4 for 86 % (95) of them, suggesting

that the two datasets show reasonably similar relative width

variations (Fig. 7).

3.2 River hydromorphology classification

The parameter γ represents the degree to which rivers tend

towards permanent or ephemeral flow regimes. Most rivers,

particularly the larger rivers along the coast, flow through es-

tuaries or other (quasi) permanent water bodies, and hence

are classified as permanent or frequent (γ > 0.8, Fig. 8).

Calculating the combined length of medium and large river

reaches in different γ ranges (Fig. 9) shows that the major-

ity fall within γ = 0.1–0.6, indicating that the dominant flow

regime for Australian rivers is ephemeral or intermittent.

The average frequency–width data and fitted curves for

different γ classes are shown in Fig. 10. The standard dif-

ferences between observed and fitted width fractions range

from 0.0075 to 0.0725 (Table 4). Relative width was overes-

timated for frequencies between 20 % and 50 % for γ 0.6–1.5

and for frequencies between 5 % and 20 % for γ 0.2–0.8. De-

spite these biases, the curves generally capture the relation-

ship between width fraction and frequency well.

3.3 Qualitative evaluation

A longitudinal profile of river width, gradient, and flow

regime parameter γ for the main channel of the Murray River

(Fig. 11) illustrates several features in the data. Strong width

variations between 0.5 % and 80 % frequency can occur, in-

dicating that the river channel contains water for most of the

time (> 50 % frequency) but contained within a relatively

narrow channel. River width increases significantly between

5 %–8 % and 1 %–2 % frequency, which coincides with the

threshold for overbank flows. The greatest widths are in

reaches flowing through large water bodies, such as Lake

Hume (C; storage reservoir), Yarrawonga Weir (D; impound-

ment), Lake Alexandrina (K; the terminal lake system), and

other wetlands (H and I). Where river flows are confined,

widths do not change much (e.g. G; Mildura). Where flow

splits into multiple channels before converging again, mini-

mum channel width reduces (e.g. E and F), whereas maxi-

mum width increases, corresponding to a broader floodplain.

Between A and B, river reaches have water for 5 %–8 % of

the time in our data, but not in the GRWL dataset (Allen

and Pavelsky, 2018) (Fig. 11b). The GRWL widths under

“average” conditions are contained within the distribution in

our data, but for rather widely varying frequencies. A nar-

rowing relative difference between the 0.5 % and 80 % fre-

quency widths corresponds to higher γ values and vice versa

(Fig. 11b). This shows that the river morphology parame-
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Figure 3. Maximum (a) and minimum (b) river width across Aus-

tralia; 218 river regions delineated in grey in (b).

Figure 4. The length percentages in different width ranges at dif-

ferent recurrence frequencies for Australia.

ter γ can capture the river flow regime. In line with Fig. 5c,

river width increases as gradient decreases from upstream to

downstream overall (Fig. 11b and c).

Figure 12 illustrates some of the data characteristics and

challenges in complex river systems common in Australia’s

dry and low-relief environments. During floods, all river

channels are inundated and rivers are broad (Fig. 12a).

Only the main Darling River channel contains water fre-

quently (Fig. 12b), but is still very narrow during low flows

(Fig. 12c). All reaches have an ephemeral or intermittent flow

regime (Fig. 12f) with γ < 0.8, with the southern Talyawalka

Creek showing a more ephemeral regime than the Dar-

ling River.

4 Discussion

The Geofabric contains nearly 1.4 million river segments

across the Australian continent and provides valuable infor-

mation on river path, length, and contributing sub-catchment

area. We were able to assign summary metrics derived from

spatial and temporal surface water extent information con-

tained in the satellite-derived WOfS to the river reaches

and calculate river widths at different recurrence frequen-

cies. The Geofabric Surface Network had a total length of

3.3 million km. Compared to HydroSHEDS (Lehner et al.,

2008), probably the most commonly used global hydrologi-

cal dataset, the Geofabric delineates a finer-resolution stream

network and describes the natural variation in drainage den-

sity and complex distributary and anabranching drainage pat-

terns better (Stein et al., 2014). Nonetheless, the 9 s DEM

resolution is still insufficient to delineate all floodplains and

river flow paths accurately. A new version of the Geofabric

at 1 s resolution has been produced for part of Australia, and

once available nationally could be used to improve derived

river characteristics. Similarly, the WOfS data will continue

to receive updates.

Errors in the calculated river characteristics also derive

from uncertainties in WOfS inundation mapping. Narrow

rivers, small water bodies, and wetlands with vegetation

cover may be missed in mapping, and conversely topograph-

ical shadows in steep terrain or in high-rise cityscapes can be

misclassified as water. Noise in very clear water can also re-

sult in misclassification (Mueller et al., 2016). There are also

data gaps in WOfS and occasional linear artefacts caused by

the Scan-Line-Corrector-Off (SLC-Off) problem in Landsat-

7 (Mueller et al., 2016). Nevertheless, the overall accuracy

of the water classifier used in WOfS was 97 %, which gives

confidence in our derived metrics.

Our dataset has some advantages over existing datasets

such as GRWL. Firstly, it provides spatial and temporal in-

formation on river dynamics at both in-channel and overbank

flows. Secondly, if one river reach has multiple channels, we

calculated river width for each channel rather than consid-

ering them a single channel. Thirdly, our data provide more
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Figure 5. The relationships between maximum river width and cumulative upstream runoff (a), upstream drainage area (b), and river gradient

(c) (the colour coding is related to data counts with the highest in dark blue and lowest in light blue, which corresponds to the histogram on

the axes; red dash line: the threshold (data below this threshold are excluded due to the influence of their sparse distribution on the overall

relationship when we fitted Eq. 1 to our data)).

Table 4. Validation of curves fitting for different river morphology categories.

γ interval 0–0.05 0.05–0.1 0.1–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1 1–1.5 1.5–3 3–5

Percentage 6.18 % 11.68 % 18.64 % 28.93 % 13.39 % 5.82 % 3.49 % 5.12 % 4.35 % 0.98 %

Coefficient γ 0.04 0.07 0.15 0.30 0.51 0.73 0.94 1.32 2.31 4.07

Standard difference 0.0075 0.0104 0.0202 0.0446 0.0725 0.0489 0.0344 0.0337 0.0407 0.0206

Figure 6. The coefficients a and exponents b of the power scaling

relationship predicting maximum river width from upstream cumu-

lative runoff (Eq. 1) calculated for different reach gradients.

detailed information due to the finer river network contained

in the Geofabric. Finally, our product can readily be related

to any hydrological feature in the Geofabric for further ap-

plication.

The relationship between river width and contributing

catchment area, cumulative runoff, and reach gradient can

be compared to literature values. The positive relationships

of discharge–width and catchment area–width, and negative

relationship of width–gradient have also been demonstrated

by Frasson et al. (2019). Empirically relating drainage area

Figure 7. The Spearman rank correlations between our dataset and

the GRWL dataset in 111 river regions across Australia.

to river width (i.e. Eq. 2), Coe et al. (2008) obtained a co-

efficient c = 0.42 and exponent d = 0.59, whereas Paiva et

al. (2013) found c of 0.35–3.75 and d of 0.36–0.63 for dif-

ferent river basins (Table 5). We found intermediate values

of c = 0.91 and d = 0.43. A more common way to esti-

mate river width is from mean annual discharge (i.e. Eq. 1).

Decharme et al. (2008), Getirana et al. (2012, 2013), and

Andreadis et al. (2013) all assumed an exponent b = 0.5, as

suggested by Leopold and Maddock (1953) and Leopold et
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Figure 8. River morphology classification γ parameter values for

medium (a) and large (b) rivers for Australia.

Figure 9. The length percentages of medium and large rivers for

different γ value ranges across Australia.

Figure 10. Curve characteristics for different river morphology cat-

egories (line: prediction; dot: observation).

al. (1964) (Table 5). We found very similar values for the

exponent. By contrast, the value of the coefficient a varies

widely between studies (Table 5). Getirana et al. (2012,

2013) used a high value of a = 18 for the Amazon basin,

whereas Andreadis et al. (2013) used a = 7.2 for their global

application. We estimated a = 13.1 for all Australian reaches

combined, but also found evidence that a correlates with the

river reach gradient (Fig. 6), which may help explain differ-

ences between previous studies.

Although the empirical scaling functions discussed here

can be used to estimate river width based on drainage area or

modelled runoff with modest skill, there are also clear lim-

itations. Firstly, they are not able to estimate river widths at

different recurrence frequencies. Secondly, individual river

reach with the same upstream drainage area or cumulative

runoff can have widely different river widths. For example,

as mentioned, we found evidence that a reach with a more

gentle gradient can be expected to be wider in compari-

son (Fig. 6), consistent with the Manning equation. Thirdly,

scaling equations cannot be applied to multi-channel rivers.

Therefore, rather than empirical functions, the river width–

frequency relationships derived here should help to improve

the description of river morphology in hydrological mod-

elling.

Some uncertainties are inherent to the approach followed

here and would benefit from further research. Firstly, we cal-

culated river width based on inundation extent within the en-

tire designated sub-catchment boundary for each river reach.

Although this excluded most unrelated water bodies and

other river channels, the water mapping may still include un-

connected water bodies, such as off-channel storages. This

would cause overestimation of river width. However, for

analysing width dynamics, normally unconnected water bod-

ies remaining in the sub-catchment can be assumed to be

part of the river channel conceptually, because they generally

merge with channels at low recurrence frequencies (i.e. high

flows) and separate at high recurrence frequencies (i.e. low

flows). If these nearby water bodies are removed, it could

fail to detect the maximum river width; if they are retained at

high flows and removed at low flows, there would be abrupt
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Table 5. Comparison of coefficients and exponents for Eqs. (1) and (2) between different studies.

Research Equation a b c d Scale

Coe et al. (2008) w = cAd – – 0.42 0.59 Amazon

Paiva et al. (2013) w = cAd – – 0.35–3.75 0.36–0.63 Amazon

Decharme et al. (2008) w = max(25,aQb) a = (10−4Qm,mouth + 6)∗1 0.5 – – South America

Getirana et al. (2012, 2013) w = max(10,aQb) 18 0.5 – – Amazon

Andreadis et al. (2013)∗2 w = aQb 7.2 0.5 ± 0.02 – – Globe

This study w = aQb;w = cAd 13.17 0.49 0.91 0.43 Australia

1 Suggested by Arora and Boer (1999) (Qm,mouth is the mean annual discharge at the mouth of the river). 2 Based on the regression relation developed by Moody and Troutman (2002).

Figure 11. Longitudinal profile of the Murray River showing (a) lo-

cation of river and selected locations; (b) profile of width at dif-

ferent frequencies and river morphology parameter γ ; and (c) pro-

file of river gradient. Values are averaged for 30 km sections along

the river channel. Letters indicate (A) source according to our data;

(B) source according to GRWL data (Allen and Pavelsky, 2018);

(C) Lake Hume; (D) Yarrawonga Weir; (E–F) anabranching loca-

tions; (G) Mildura; (H–I) Lower Murray wetlands; and (J–K) Lake

Alexandrina.

changes in river width. Secondly, although the data provide

detailed information on the width of individual channels in

anabranching river systems, the multiple channels will often

merge into a single channel during overbank flow events. Our

data do not reflect this merging and separating of channels at

different flow levels, and it is challenging to find a way to

conceptually address this in the Geofabric framework.

Besides, there are some uncertainties from input variables,

including DEM, runoff, and length. The SRTM-derived 1 s

(approximately 30 m) DEM has a root mean square (rms) er-

ror of 3.868 m, and its uncertainties include residual stripes,

broad-scale stripes, steps in elevation, large offsets along the

edge of the valley floor, noise due to the nature of the radar

acquisition and processing, incomplete removal of vegeta-

tion offsets and urban and built infrastructure, and vegeta-

tion height overestimated (Gallant et al., 2011). However,

the majority of rivers flow on flat plains without vegetation

cover, and urban and built infrastructure and river gradients

were only produced for the main river reaches, presumably

with wider channels, which reduce the influence from un-

certainties and limitations of DEM. Uncertainties from in-

put data, parameterization, and conceptual structure in the

model could affect runoff estimates, although the AWRA-L

model has a strong documented pedigree in runoff estima-

tion in comparisons with gauge data (e.g. Van Dijk and War-

ren, 2010; Frost et al., 2018). The raster–vector conversion

anomalies to produce the Geofabric lead to overestimation

of the segment length, which to some extent may counterbal-

ance the overestimation of river width.

Looking beyond Australia, the method proposed here is

applicable in any region of the world where high-resolution

inundation time series mapping is feasible, and where good-

quality DEM-derived river path, length, and sub-catchment

area data are available. Thus, it would seem feasible to use

a similar methodology to that employed here to develop a

global river hydromorphology dataset using global inunda-

tion time series Landsat mapping produced by Donchyts et

al. (2016), Pekel et al. (2016), or Jones (2019), for example.

5 Data availability

The river hydromorphology data are available at

https://doi.org/10.25914/5c637a7449353 (Hou et al.,
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Figure 12. Illustration of data characteristics for an area including the Darling River and adjoining Talyawalka Creek near Wilcannia

(NSW) (15.7 by 15.3 km centred on 31.62◦ S, 143.42◦ E). Shown are (a) maximum river width (0.5 % frequency); (b) median width (50 %);

(c) minimum river width (80 %); (d) least detected river width and (e) corresponding frequency; and (f) hydromorphology parameter γ .

2019) and also can be downloaded directly from

http://wald.anu.edu.au/data/ (last access: 20 May 2019;

ANU Centre for Water and Landscape Dynamics, 2019).

The data are in ASCII format, which can be directly joined

to the Geofabric products, including surface cartography,

surface catchments, surface network, groundwater cartog-

raphy, and hydrological reporting catchments and regions.

The Geofabric Surface Network can be accessed from

http://www.bom.gov.au/water/geofabric/ (last access: 20

May 2019; Bureau of Meteorology, 2012b). The instruction

for using these data can be found in the “readme” file. The

data may be converted to any format (e.g. shapefile or raster)

and combined with other Geofabric data, such as river name,

length, feature type (nature, artificial, or water area flow

segment), hierarchy (major or minor rivers), flow direction,

and upstream drainage area.

6 Conclusions

We developed a river hydromorphology dataset for Australia

by combining surface water recurrence information from the

WOfS Landsat-derived dynamic water mapping product and

GIS-based hydrological features from the Australian Geo-

fabric. Our data provide river widths at different recurrence

frequencies for 5.84 × 108 m river reaches across the Aus-

tralian continent. A river morphology parameter γ is pro-

posed to describe the shape of the width–frequency curve

and can be interpreted as the degree to which rivers tend to-

wards permanent, frequent, intermittent, or ephemeral. The

majority of medium and large rivers in Australia have widths

between 25 and 250 m and show an ephemeral or intermit-

tent flow regime. The data show correlation between maxi-

mum river width and cumulative upstream runoff, upstream

drainage area, and gradient, in line with previously published

results. The hydromorphological dataset developed contains

river width dynamics, flow regime, and river gradient infor-

mation for all Australian river reaches. The data provide new

opportunities to analyse floodplain–river interactions at dif-

ferent scales and analyse the influence of climate, hydrol-

ogy, vegetation, and terrain on river morphology. Such an un-

derstanding can help to predict future changes in landscape

evolution in response to e.g. climate change. The dataset de-

veloped here may also be useful in providing fundamental

information for understanding hydrological, biogeochemi-

cal, and ecological processes in floodplain–river systems; de-

scribing river width features in hydrological modelling; esti-

mating river depth and discharge; assessing river conveyance

capacity; identifying flooding-prone areas, and determining

potential locations for satellite-based river gauging (Hou et

al., 2018).
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Chapter 5: Changes in precipitation a 
greater threat to global water reservoir 

security than increased water use 

Around two thirds of the world’s rivers longer than 1,000 km2 are no longer free-flowing 

over their entire length due to the construction of reservoir dams. This chapter documents research 

to reconstruct global reservoir storage and examines storage trends, changes in reservoir resilience 

and vulnerability over the past three decades. It also analyses how multi-decadal changes in 

precipitation, streamflow, evaporation, and human activity affected global reservoir water 

security. The content of this chapter was under review as follows: 

Hou, J., Van Dijk, A.I.J.M., Beck, H.E., Renzullo, L.J., and Wada, Y., 2020. Changes in 

precipitation a greater threat to global water reservoir security than increased water use, under 

review. 
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Abstract: Recent water crises have raised concerns about the impact of population growth 

and climate change on reservoir water storage security worldwide. So far, a global assessment 

has not been undertaken, because reservoir measurements are generally not publicly available. 

Here, we use satellite observations to reconstruct monthly storage for the majority of large 

reservoirs worldwide between 1984 and 2015. We relate reservoir storage to water security and 

resilience and analyze their response to precipitation, streamflow and evaporation. We find 

reservoir security has diminished substantially for 23% of reservoirs over the three decades but 

increased for 21%. The greatest declines were in dry basins in southeastern Australia (-29%), 

central Chile (-13%), southwestern USA (-10%) and eastern Brazil (-9%). The greatest gains 

occurred in the Nile Basin (+67%), Mediterranean basins (+31%) and southern Africa (+22%). 

The observed reservoir changes were explained by changes in precipitation and river inflows, 

emphasizing the importance of multi-decadal precipitation changes for reservoir water security, 

rather than changes in net evaporation or dam water releases. 

Main Text: Globally the number of large reservoirs – dams impounding more than 3 million 

m3 1 – reached 57,985 in 2020 with a combined capacity of more than 10,000 km3 2. Reservoirs 

now provide 30–40% of global irrigation water requirements, 17% of electricity generated, and 

various other services, including domestic and industrial water supply, recreation, fisheries, and 

flood and pollution control 3,4. With projected population increases, demand for water and 

electricity are also expected to increase substantially 5,6. Meeting this demand by constructing 

new reservoirs has become challenging due to a shortage of suitable construction sites and 
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remaining ‘underdeveloped’ water resources, as well as increased recognition of the profound 

impacts that impoundments have on the local population and riverine ecosystem 7-9.  

Adding to the challenge, evidence is emerging that existing reservoirs in some regions are 

becoming less secure. Recent water supply failures or near-failures have occurred in the US 

Colorado River Basin since 2000 10, southeast Australia between 2002–2009 11, Barcelona, Spain, 

in 2007–2008 12, Sao Paolo, Brazil, in 2014–2015 13 and Cape Town, South Africa, in 2015–2017 

14. However, it is unclear if these events are part of a global climate trend or due to local supply 

or demand changes. The underlying causes are also not necessarily the same in each case: 

reservoir storage dynamics are the net result of river inflows, net evaporation (i.e., evaporation 

minus direct precipitation onto the reservoir) and dam water releases downstream. A change in 

the balance between these three terms leads to a change in storage level. There are also 

interactions. The physical connection between precipitation, streamflow generation and 

atmospheric moisture demand creates positive feedbacks in storage volume changes: e.g., 

assuming the entire water supply system experiences comparable dry conditions, inflows will 

decrease while net evaporation and downstream demand for water releases for consumptive use 

will increase. To mitigate this feedback, reservoir operation rules will typically aim to reduce dam 

releases in response to lowering storage levels. Only a detailed analysis of the water balance of 

an individual reservoir can conclusively separate the contributions of these three processes to a 

change in water security. However, in practice, a loss of reservoir water security in the presence 

of a decrease in upstream or downstream river flows within the river system indicates that reduced 

precipitation conditions are the most likely cause, whereas the absence of such a precipitation and 

streamflow decrease, or even an increase, points towards less prudent reservoir operation, 

possibly in response to increased demand. Therefore, knowledge of temporal trends in reservoir 

storage and river flow can be combined to interpret whether trends in reservoir water security are 

widespread globally, and if so, whether they are likely to be due to changing climate conditions 

or due to other factors. For the majority of large reservoirs, operators keep records of releases and 

estimated storage volume, inflows and net evaporation. Unfortunately, these data are typically not 

publicly available, for a variety of commercial, logistical, political and security reasons. Probably 

mainly because of this, so far there has been no attempt at a global assessment and attribution of 

trends in water reservoir security. 

We used satellite observations between 1984 and 2015 to reconstruct storage dynamics for 

6,743 reservoirs representing the majority of combined reservoir storage capacity worldwide, and 

calculated trends in reservoir storage, resilience, and vulnerability (See Materials and Methods). 

The three measures were correlated (Fig. S6 and S7) and therefore we only report on trends in 

mean storage. Overall, there was a positive trend in combined global reservoir storage of +3.1 

km3 y-1, but this was almost entirely explained by positive trends for the two largest reservoirs in 
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the world, Lake Kariba (+0.8 km3 y-1) on the Zambezi River and Lake Aswan (+1.9 km3 y-1) on 

the Nile River (Fig. S8). 

Globally, 1,034 reservoirs showed decreasing trends at p<0.05 and 948 reservoirs increasing 

trends (Fig. 1). Basins losing or gaining more than 5% of their combined storage over the three 

decades could be found on every continent (Fig. 2c). There was no apparent relationship between 

primary reservoir purpose (i.e., irrigation, hydroelectric power generation, domestic water supply) 

and overall trend, arguably a first tentative indication that climatological influences dominate 

changes in release management. 

 

Fig. 1. Storage trends (1984-2015) for individual reservoirs globally (p<0.05; increasing: 

blue; no change: grey; decreasing: red). 

Trends in human-made reservoirs found here are consistent with trends reported in a 

previous study for 200 natural lakes across North America, Europe, Asia and Africa during 1992–

2019 15. Additionally, total terrestrial water storage (i.e., the sum of groundwater, soil water and 

surface water) derived from GRACE satellite gravimetry for the shorter period 2002-2016 showed 

decreases in endorheic basins in Central Eurasia and the southwestern USA and increases in 

Southern Africa consistent with our storage changes 16.  

We summed storage for individual reservoirs to calculate combined storage in 134 river 

basins worldwide. Among these, 26 (19%) showed a significant decreasing and 39 (29%) a 

significant increasing trend in reservoir storage (Fig. 2c). For the majority of these 65 basins, 

trends were of the same sign for storage, runoff and precipitation, suggesting that precipitation 

changes are ultimately the most likely explanation for observed trends (Fig. 2a and b, Fig. S9 and 

Fig. S10). We also found that changes in net evaporation account for well below 10% of the 

overall trends in storage for each of those 65 basins (Fig. S11). Opposite precipitation (or runoff) 

and storage trends were found for 12 out of 134 basins, with six decreasing and six increasing 

storage trends. Most of these could be explained by spatial variation within the respective basins 
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(Fig. S13). In summary, we did not find evidence for widespread reductions in reservoir water 

security due to increased releases. 

 

Fig. 2. Linear trends in annual, basin-average (a) precipitation, (b) simulated streamflow and 

(c) reservoir storage between 1984–2015 (grey shade: no reservoir data; black outlines: trend 

significant at p<0.05). 
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The greatest storage gains occurred in the Nile Basin (+67%), western Mediterranean 

(+31%) and southern Africa (+22%), and were attributed to very high inflows during 1996-2008, 

2008-2010 and 1996-2000, respectively (Fig. S14). Substantial decreases were found for arid to 

sub-humid basins in southeastern Australia (-29%), southwestern USA (-10%), Brazil (-9%) and 

central Chile (-13%) (Fig. 3). Both simulated and observed river discharge data show similar 

trends and explain the observed storage declines (Fig. 2b and Fig. S12). During Australia’s 

Millennium Drought (2001-2009) 11, river flows in the Murray-Darling Basin fell to about half 

that for 1984–1999 (Fig. 3a), causing a halving of combined storage, but recovering due to high 

inflows during 2009-2011. In the southwestern USA, three distinct dry periods occurred (Fig. 3b). 

Sharp decreases in river flow after 2011 in eastern Brazil and after 2006 in central Chile led to 

the lowest reservoir storage levels, with combined losses of almost 18% in 2015 in Brazil and 

24% in 2013 in Chile (Fig. 3c and d). Reservoirs in basins with reduced storage also 

predominantly showed reduced resilience (i.e., they fell to low capacity more often) and increased 

vulnerability (i.e., they endured larger deficits; Figs S6 and S7).  

 

Fig. 3. Time series (left column) of annual combined storage (blue shaded) along with 

simulated (solid) and observed (dashed line) streamflow, indexed to the reference period 1984–

1999, and trends in storage (middle column) and observed streamflow (right column) during 

1984–2015 (p<0.05; increasing: blue; no change: grey; declining: red). Shown are (top row) 

southeastern Australia, (second row) southwestern USA, (third row) Brazil, and (bottom row) 

central Chile. 
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Overall, we found that reservoir storage changed significantly in nearly half of all basins 

worldwide between 1984–2015, with increases and decreases similarly common and mostly 

explained by corresponding precipitation and runoff changes. Increases appeared slightly more 

common in cooler regions and decreases more common in drier regions (Fig. 1). We did not find 

evidence that changes in water releases or net evaporation contributed meaningfully to global 

trends. Changes in reservoir water security appear to be predominantly determined by periods of 

low inflow in response to low precipitation. Future changes in precipitation variability are among 

the most uncertain predictions by climate models 17. Therefore, a prudent approach to reservoir 

water management appears the only available means to avoid water supply failure for individual 

river systems.  

Methods Summary 

Monthly reservoir storage for 1984-2015 for individual reservoirs was estimated using 

satellite-derived surface water height and extent. The ‘Global Reservoirs and Lakes Monitor’ (G-

REALM) water surface height product was produced by the US Department of Agriculture’s 

Foreign Agricultural Service based on altimetry observations from the Topex/Poseidon (1992-

2002), Jason-1 (2002-2008), Jason-2 (2008-2016), and the Jason-3 (2016-present) mission. The 

surface water extent product 18 was derived by post-processing of the Landsat satellite-derived 

Global Surface Water Dataset 19. For reservoirs with water extent data only, storage was estimated 

from surrounding topography 20. The accuracy of the storage estimates was quantified using 

publicly available observed storage volume estimates for several reservoirs in the US, Australia 

and Egypt. Trends in annual mean storage volume, reservoir vulnerability and resilience were all 

calculated and found to be correlated (Figs S6 and S7). To assess factors driving storage trends 

we used precipitation and net evaporation from merged station, satellite and forecast data 21 and 

streamflow from a multi-model ensemble 22 as well as observed at ca. 8,000 gauging stations (see 

Material and Methods). Combined reservoir storage, precipitation, streamflow and net 

evaporation were also calculated for each river basin 23. The Mann-Kendall test (p<0.05) was used 

to test the significance of linear trends. 
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Chapter 6: Summary and outlook 

6.1 Conclusions 

Traditionally, methods to estimate river discharge from remote sensing-derived river width, 

elevation, or inundation need to be trained using discharge observed in-situ first. This approach 

can be only applied where there are gauging stations. To address this issue, this research proposed 

that, for ungauged river reaches, sufficiently reliable hydrological models such as the W3 model 

(Van Dijk et al., 2016) can be used to train remote sensing based river discharge methods instead. 

A simple automated statistical method, based on so-called satellite gauging reaches (SGRs) was 

developed to link remote sensing measurements efficiently and effectively to in situ discharge at 

gauged sites, as well as modelled discharge at ungauged sites. The method was able to retrieve 

historical time series, fill the gap of observed data, and provide near real-time information at 

global scale. The approach was shown suitable to both optical (MODIS) and passive microwave 

remote sensing (GFDS). The advantage of GFDS was that passive microwave is less affected by 

dense vegetation and cloud than optical remote sensing. However, the overall performance of 

MODIS-derived SGRs was better than that of GFDS-derived SGRs probably mainly because 

MODIS has a higher spatial resolution. 

The MODIS 8-day composite (MCD43C4) alleviates cloud contamination issues to a 

considerable degree and was used globally following the developed approach. Suitable SGRs 

could be constructed over river reaches with a combined length of ca. 1.15 million km at global 

scale, especially in South America, Africa, South Asia, the Middle East, and northern high latitude 

regions. Model-based SGRs performed with similar skill as gauged-based SGRs. The 

performance of SGRs can be explained by river morphology. Wide channels with strong temporal 

inundation variations, broad floodplains, relatively wide channels, multiple braided channels, or 

a large number of meandering or anastomosing channels provide the best conditions to construct 

an SGR. A method was proposed to assess whether SGRs can be constructed in a selected river 

reach based on high-resolution inundation summary data.  

River morphology is not only an essential factor that affects the performance of SGRs to 

predict river discharge, but itself also can be used to improve river routing in models to estimate 

river discharge. Hydromorphological attributes, including spatial and temporal river width, flow 

regime and river gradient were derived from Landsat imagery for 1.4 million Australian river 

reaches. A parameter, gamma, was proposed to describe river reaches by the degree to which flow 

regime tends towards permanent, frequent, intermittent, or ephemeral. The dataset indicates the 

majority of rivers over the Australian continent ranges between 25 (noting that the spatial 

resolution of Landsat-derived observations was limited to 25 m) to 250 m width, irrespective of 

dynamic characteristics, and the dominant flow regime is ephemeral or intermittent. The 

relationships between river width and contributing catchment area, river discharge, and reach 

gradient were investigated. The coefficients for conventional scaling rules were found to be 
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related to river reach gradient. This helps to explain why previous studies do not report identical 

coefficients for the empirical scaling functions. With a high-resolution inundation time series 

mapping, such as the Landsat-derived global surface water dataset (GSWD) (Pekel et al. 2016), 

the method proposed here can be readily applicable in any region worldwide where good-quality 

DEM-derived river sub-catchment area, length, and path data are available. 

Monthly reservoir storage dynamics were estimated using Landsat-derived surface water 

extents and surface water heights derived from various altimetry missions including 

Topex/Poseidon (1992-2002), Jason-1 (2002-2008), Jason-2 (2008-2016) and Jason-3 (2016-

present). A large number of reservoirs have no altimetry data, and for these storages dynamics 

were estimated using a geo-statistical approach based on surface water area and the surrounding 

average slope. Storage dynamics for 6,743 reservoirs worldwide between 1984-2015 were 

reconstructed. The results indicated that storages in some regions, particularly in southeastern 

Australia, central Chile, the USA, and eastern Brazil, have declined, accompanied by reduced 

reservoir resilience and increased vulnerability. Storage gains mainly occurred in the Nile Basin, 

Mediterranean basins and southern Africa. Based on a comprehensive analysis of streamflow 

from a multi-model ensemble and as observed at ca. 8,000 gauging stations, precipitation from a 

combination of station, satellite and forecast data, and open water evaporation estimates, we 

concluded that the change in global water reservoir security is induced by multi-decadal 

precipitation changes affecting river flow into storages, rather than by changes in net evaporation 

or dam release patterns. This suggests that prudent reservoir water management should be 

considered to avoid future functional failure, particularly during periods of low inflow and 

precipitation. 

6.2 Future perspectives 

This research presents new approaches for measuring spatial and temporal river discharge, 

river morphology, and reservoir storage from space. The main limitation in the methods is the 

insufficient spatial and temporal resolution of remote sensing. MODIS has a relatively coarse 

spatial resolution (250-500 m), and fails to detect many small rivers and reservoirs. Although 

Landsat has a higher spatial resolution of c. 30 m, its temporal resolution is as long as 16 days, 

which renders it unable to track rapid changes. The main benefits of using these two types of 

optical remote sensing are that Landsat can retrieve inland water bodies measurements going back 

decades while MODIS can provide near real-time information. On the other hand, these optical 

sensors are subjected to cloud contamination. Although synthetic aperture radar (SAR) instrument 

can complement this drawback of optical sensors, it needs complex image processing, which 

prevents its implementation in an operational framework or its automated application at large 

scale. 

The more recent launch of ESA's Sentinel missions, especially Sentinel 2, provide promising 

opportunities for water extent monitoring with higher spatial and temporal resolution. The 
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Sentinel 2 mission is composed of two satellites, Sentinel 2A launched in 2015 and Sentinel 2B 

launched in 2017, continuing the missions of the Landsat and the SPOT series of satellites. The 

Sentinel 2 multispectral Instrument (MSI) has 13 spectral bands: four bands (Band 2/3/4/8, visible 

and near-infrared bands) at 10 meters spatial resolution, six bands (Band 5/6/7/8a/11/12, red-edge 

and shortwave-infrared bands) at 20 meters spatial resolution, and three bands (Band 1/9/10, 

atmospheric correction bands) at 60 meters spatial resolution. Sentinel 2 covers all continental 

land surface areas between latitudes 56° south and 84° north with 10 days per cycle by one 

satellite, or 5 days per cycle by two satellites, at the equator. At present, Sentinel 2 has limited 

application to river discharge estimation as there is little gauging data available after 2015 that 

can be used to train Sentinel-based method. As a new satellite mission, Sentinel 2 is also not able 

to provide long-term dynamics in surface water bodies. However, it is likely to provide such 

pragmatic applications after one or two decades of measurement. 

The NASA Surface Water and Ocean Topography (SWOT) is another promising satellite 

mission that offers opportunities to observe surface water extent and height at the same time. It is 

scheduled for launch in 2021 and should serve a nominal 3 years for science data collection with 

an orbit repeat period of 21 days. It should also provide 1-day repeat observations of the Earth for 

6 months. The Ka‐band radar interferometer onboard SWOT will distinguish water from land 

surfaces based on the differences in the magnitude of the returned microwave power to the 

ground. The accuracy of SWOT reservoir height measurements is expected to within 10 cm for 

water bodies greater than 1 km2 and within 25 cm for those with a surface area of 0.0625 - 1 km2 

(Biancamaria et al., 2016). The projected error of SWOT reservoir surface extent observations is 

expected to be within 15 % of the total area (Solander et al., 2016). Solander et al. (2016) suggest 

that temporal errors could be <5% for reservoir with a water surface area less than 10 km2 and 

<0.1% for those with a surface area greater than 100 km2. In addition, the orbit of SWOT may 

cover more than half of global floods (Frasson et al., 2019). Unfortunately, the lifespan of SWOT 

is too short to observe long-term changes in global water availability. In terms of hydrology and 

climate science, a decades-long satellite mission would be needed to observe water level and 

extent simultaneously at global scale with a daily repeat orbit and high spatial resolution (e.g. 10 

m). 

This research produced river discharge data for the period 2000-2014 and reservoir storage 

data for 1984-2015 at global scale. The methods developed here can be further applied to produce 

near real-time information. This could enable a global near real-time river, lakes, and reservoirs 

monitoring system to regularly provide information on the historical and current status of water 

availability globally. The prototype operating framework of such system (prototyped as the ANU 

Water Monitor: http://anuwald.science/water) is described in Appendix 5. Briefly, historical river 

discharge and lake and reservoir water storage are estimated by following approaches proposed 

in this thesis. The discharge-extent and storage-elevation relationships are stored on the National 

Computational Infrastructure (NCI) and new imagery from MODIS (MCD43C4 version 6) is 

http://anuwald.science/water
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automatically acquired from the NASA Land Processes Distributed Active Archive Center (LP 

DAAC) Distribution Server at the USGS Earth Resources Observation and Science (EROS) 

Center. Updated surface water elevations are parsed from United States Department of 

Agriculture Foreign Agricultural Service web server.  Near real-time discharge and storage can 

then be calculated based on the corresponding relationships with the new surface water extent 

derived from the updated MODIS image and the new altimetry data, respectively. These dynamics 

information is displayed online through a web application using NCI web services. 

Development of this system is planned to continue. The current version includes historical 

and near real-time data for global rivers, lakes, and reservoirs. The lake storage data were 

developed based on the same method as for reservoirs. A difference is that it uses other water 

extent data sources, i.e. the MODIS 500-m resolution daily global surface water change database 

produced by Ji et al. (2018) and BLUEDOT Water Observatory data (https://www.blue-dot-

observatory.com/aboutwaterobservatory) derived from Sentinel-2. However, cloud 

contamination in the first product has not been solved to an acceptable level for practical 

applications and there is no available data after 2016. Although the second product can provide 

updated water extent data, it has not been validated and for individual water bodies the boundaries 

are not consistent. Thus, it would be necessary to design a new, automated approach to retrieve 

historical data and produce near real-time information with cloud contamination mitigated to a 

greater degree and with high temporal resolution (e.g. daily). Based on the enhanced water extent 

dataset, lake and reservoir storage estimates could then be further improved and even global 

wetland storage be produced. 

As this research found, multi-decadal precipitation change has posed a threat to global 

reservoir water security. Whether these precipitation and streamflow changes also alter lake and 

wetland storage remains to be addressed in future research. Combining global river morphology 

and reservoir storage data, we can address how man-made reservoirs have influenced downstream 

ecosystems (e.g. through changes in inundation and vegetation coverage) and the degree to which 

flood-control dams have been able to mitigate flooding events downstream (e.g. the changes in 

frequency and magnitude of flooding inundation in urban and rural areas). River width dynamics 

and gradients for all Australian rivers can be applied in Australian hydrological models (e.g. 

AWRA-L) (Frost et al., 2018, Van Dijk, 2010) to improve river routing for better predication of 

river discharge. Based on our approach, a global river morphology dynamics dataset could be 

produced in future, and could find a wide range of applications in hydrology, biogeochemistry, 

and ecology. River morphology time series data can provide more useful insights than the 

statistical recurrence frequency measurement developed in this study. A challenge is to produce 

monthly or annual hydromorphological data, as a large fraction of Landsat imagery are 

contaminated by clouds and the low (16-day) temporal resolution further amplifies this issue. 

Water extent-derived SGRs are applicable to river reaches with variable width or broad 

floodplains. Altimetry derived SGRs could complement the river discharge prediction abilities of 

https://www.blue-dot-observatory.com/aboutwaterobservatory
https://www.blue-dot-observatory.com/aboutwaterobservatory
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water extent-derived SGRs as the relationship between discharge and elevation should be robust 

in stable river channels. 

Although SGRs were proven to be a useful approach to predict river discharge, gauging 

stations remain ideal to provide precise measurements for calibrating hydrological models and 

training remote sensing based methods. In practical applications, gauge-based SGRs can be used 

to fit in situ measurement gaps, for example, when gauging stations were damaged, out of order, 

or upgraded, and retrieve historical data before gauging stations were constructed. Meanwhile, 

model-based SGRs can extend information from gauged sites. Satellite observations are practical 

for lake and reservoir storage estimation considering their large size in terms of water extent, but 

in situ water level and depth data are a prerequisite for calibrating altimetry data to estimate water 

depth in order to reconstruct absolute storage. All these considerations emphasize the importance 

of in situ measurements. This research strongly advocates for collaborations between countries to 

share in situ river, lake and reservoir data, as well as corresponding socioeconomic data (e.g. 

water use by sector), and the need to increase investment in constructing more gauging stations 

globally. 

Conversely, with only gauging stations we cannot measure millions of lakes and countless 

floodplains and wetlands around the world. The most environmentally, socially, and financially 

effective way to understand the global water system is to establish a comprehensive, continuous, 

spatially consistent, and long-term hydrological monitoring system based on satellite remote 

sensing. A web-based application to visualize these global water data should be a pragmatic 

information source for many communities and individuals to easily understand changes in water 

resources availability in their environment, learning them better and preparing for future water 

challenges in a changing climate. 
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Appendix 1: Supplementary Materials to 
Chapter 2 

This appendix is the supplementary materials to Chapter 2, which was published in the 

journal Hydrology and Earth System Sciences as: 

Hou, J., Van Dijk, A.I.J.M., Renzullo, L.J. and Vertessy, R.A., 2018. Using modelled 

discharge to develop satellite-based river gauging: a case study for the Amazon Basin. Hydrology 

& Earth System Sciences, 22, https://doi.org/10.5194/hess-22-6435-2018. 
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S1 Daily, 8-day and Monthly Performance of the MODIS and GFDS SGRs, and the Model 

We compared daily, 8-day and monthly performance of the MODIS and GFDS SGRs and the model in two river reaches in 

the lower channel of the Amazon River to evaluate the effect of temporal aggregation on prediction accuracy. The daily 

streamflow records were derived from Brazil’s National Water Agency database by H.E. Beck (Princeton University, pers. 

comm.). To highlight temporal details, below we compared the different estimates for an arbitrary 13-month period (August, 

2006 - August, 2007 for G32; June, 2006 - June, 2007 for G33). The daily and 8-day SGR predictions are noisy (Figure S1a, 

b, d and e) as the GFDS signal is influenced by many factors such as the weak magnitude of the radiance received at the 

passive sensor, the changing scanning geometry, footprint size of each swath, and the path of the radiation through the 

atmosphere (Kugler and De Groeve, 2007), whereas the MODIS signal sometimes appears to be affected by cloud or 

aerosols. However, both MODIS and GFDS SGRs can reflect monthly and seasonal discharge dynamics reliably (Figure S1c 

and f). 

 

Figure S1 Comparisons between observations (right axis) from gauging stations (black dash) and river discharge estimates (left axis) 

derived using MODIS SGRs (blue line), GFDS SGRs (green line) and the W3 model (brown line) (top row: daily results; middle row: 8-

day results; bottom row: monthly results; left column: gauge station G32 (3.06°S, 59.65°W); right column: gauge station G33 (1.92°S, 

55.51°W). 
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Appendix 2: Supplementary Materials to 
Chapter 3 

This appendix is the supplementary materials to Chapter 3, which was published in the 

journal Remote Sensing of Environment as: 

Hou, J., Van Dijk, A.I.J.M. and Beck, H.E., 2020. Global satellite-based river gauging and 

the influence of river morphology on its application. Remote Sensing of Environment, 239, 

https://doi.org/10.1016/j.rse.2019.111629. 

 

  



Supplementary Data and Method 

The MSWEP v 1.1 (Beck et al. 2017) precipitation estimates, monthly precipitation and air temperature data 

from the WorldClim dataset (Hijmans et al. 2005), and other meteorological data from the WFDEI v1 dataset 

(Weedon et al. 2014) were input as global gridded climate time series in the W3 model. Global land surface 

types (Bicheron et al. 2008), vegetation (Simard et al. 2011), soil (Shangguan et al. 2014), and aquifers (Beck et 

al. 2015; Gleeson et al. 2014) datasets were used to parameterize surface, vegetation, soil and groundwater. The 

Penman-Monteith model was used to simulate the surface energy and water balance. A flow direction based on 

HydroSheds and HYDRO 1k was used as grid-based rive routing. The estimates of evaporation, total water 

storage, streamflow, soil moisture, and deep drainage of the AWRA-L and its global implementation model, the 

W3 model, have been evaluated in several studies (e.g., Beck et al. 2016; Holgate et al. 2016; Tian et al. 2017).  

Supplementary Table 1 The list of original sources of gauging data (listed in ascending order of number of 

stations; collated by co-author Hylke Beck) 

National and international sources 
The number of 
gauging data 

The United States Geological Survey (USGS) National Water Information System 
(NWIS: https://waterdata.usgs.gov/nwis) and GAGES-II database (Falcone (2011)) 9180 

The Global Runoff Data Centre (GRDC: http://grdc.bafg.de; Lehner (2012)) 
4628 

The HidroWeb portal of the Brazilian Agência Nacional de Águas 
(http://www.snirh.gov.br/hidroweb) 3029 

The  European  Water  Archive  (EWA)  of  EURO-FRIEND-Water  (http://ne-
friend.bafg.de) 2260 

Water Survey of Canada (WSC) National Water Data Archive (HYDAT; 
https://www.canada.ca/en/environment-climate-change) 1479 

The National Center for Atmospheric Research (Dai 2016) 
925 

The Australian Bureau of Meteorology (BoM: http://www.bom.gov.au/waterdata; 
Zhang et al. (2013)) 776 

The Chilean Center for Climate and Resilience Research (CR2: 
http://www.cr2.cl/recursos-y-publicaciones/bases-de-datos/datos-de-caudales) 531 

 

 

 

 

 



References 

Beck, H.E., de Roo, A., & van Dijk, A.I.J.M. (2015). Global Maps of Streamflow Characteristics Based on 
Observations from Several Thousand Catchments. Journal of Hydrometeorology, 16, 1478-1501 
Beck, H.E., van Dijk, A.I.J.M., De Roo, A., Miralles, D.G., McVicar, T.R., Schellekens, J., & Bruijnzeel, L.A. 
(2016). Global‐scale regionalization of hydrologic model parameters. Water Resources Research, 52, 3599-3622 
Beck, H.E., van Dijk, A.I.J.M., Levizzani, V., Schellekens, J., Miralles, D.G., Martens, B., & de Roo, A. (2017). 
MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis 
data. Hydrology and Earth System Sciences, 21, 589 
Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., Bontemps, S., Leroy, M., 
Achard, F., & Herold, M. (2008). Globcover: products description and validation report. In. ME, Medias France 
Dai, A. (2016). Historical and future changes in streamflow and continental runoff: a review. In: Tang Q, Oki T 
(eds),  Chapter 2 of Terrestrial water cycle and climate change: natural and human-induced impacts. American 
Geophysical Union 
Falcone, J.A. (2011). GAGES-II: Geospatial attributes of gages for evaluating streamflow. In: US Geological 
Survey 
Gleeson, T., Moosdorf, N., Hartmann, J., & Van Beek, L.P.H. (2014). A glimpse beneath earth's surface: 
GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophysical Research Letters, 41, 
3891-3898 
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis, A. (2005). Very high resolution interpolated 
climate surfaces for global land areas. International journal of climatology, 25, 1965-1978 
Holgate, C., De Jeu, R., van Dijk, A.I.J.M., Liu, Y., Renzullo, L.J., Dharssi, I., Parinussa, R.M., Van Der 
Schalie, R., Gevaert, A., Walker, J., McJannet, D., Cleverly, J., Haverd, V., Trudinger, C.M., & Briggs, P.R. 
(2016). Comparison of remotely sensed and modelled soil moisture data sets across Australia. Remote Sensing 
of Environment, 186, 479-500 
Lehner, B. (2012). Derivation of watershed boundaries for GRDC gauging stations based on the HydroSHEDS 
drainage network. Report 41 in the GRDC Report Series. 
https://www.bafg.de/GRDC/EN/02_srvcs/24_rprtsrs/report_41.pdf?__blob=publicationFile.  
Shangguan, W., Dai, Y., Duan, Q., Liu, B., & Yuan, H. (2014). A global soil data set for earth system modeling. 
Journal of Advances in Modeling Earth Systems, 6, 249-263 
Simard, M., Pinto, N., Fisher, J.B., & Baccini, A. (2011). Mapping forest canopy height globally with 
spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116 
Tian, S., Tregoning, P., Renzullo, L.J., van Dijk, A.I.J.M., Walker, J.P., Pauwels, V.R.N., & Allgeyer, S. (2017). 
Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS 
soil moisture retrievals. Water Resources Research, 53, 1820-1840 
Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J., & Viterbo, P. (2014). The WFDEI 
meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data. 
Water Resources Research, 50, 7505-7514 
Zhang, Y., Viney, N., Frost, A., Oke, A., Brooks, M., Chen, Y., & Campbell, N. (2013). Collation of Australian 
modeller’s streamflow dataset for 780 unregulated Australian catchments. Water for a Healthy Country 
National Research Flagship. https://publications.csiro.au/rpr/download?pid=csiro:EP113194&dsid=DS4 

 



73 

 Global satellite-based measurement of river and reservoir dynamics  

Appendix 3: Supplementary Materials to 
Chapter 5 

This appendix is the supplementary materials to Chapter 5, which is under review as follows: 

Hou, J., Van Dijk, A.I.J.M., Beck, H.E., Renzullo, L.J., and Wada, Y., 2020. Changes in 

precipitation a greater threat to global water reservoir security than increased water use, under 

review. 
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Materials and Methods 

1. Data 

Surface water extent 

The Landsat-derived Global Surface Water Dataset (GSWD) 25 provides statistics on the 

extent and change of surface water at the global scale over the past three decades at a spatial 

resolution of 30 m. Clouds, cloud shadows and terrain shadows cause errors or missing data for 

individual months, but Zhao and Gao 26 developed an automated method to reduce these issues 

and enhance the accuracy of reservoir surface water extent estimates. They applied this method 

to produce a monthly time series of surface water extent dataset for 6,817 reservoirs worldwide, 

based on mapping of the location and high-water mark as contained in the Global Reservoir and 

Dam database (GRanD) 24. The resulting data are available from 1984 to 2015 and were used in 

this study.  

Surface water height 

The US Department of Agriculture’s Foreign Agricultural Service (USDA-FAS) provides 

near-real-time surface water height anomaly estimates every ten days for around 280 lakes and 

reservoirs worldwide. The water surface height product (G-REALM) was produced by a semi-

automated process using data from a series of altimetry missions including Topex/Poseidon 

(1992-2002), Jason-1 (2002-2008), Jason-2 (2008-2016) and Jason-3 (2016-present). The root-

mean-square error is expected better than 10 cm for the largest water bodies (e.g., Lake Victoria; 

67,166 km2) and better than 20 cm for smaller ones (e.g., Lake Chad; 18,751 km2). The G-

REALM is currently only available for lakes and reservoirs with an extent greater than 100 km2.  

Auxiliary Data 

Daily and monthly in situ river discharge observations were collated as part of previous 

research 27 from different national and international sources including the (i) United States 

Geological Survey (USGS) National Water Information System (NWIS: 

https://waterdata.usgs.gov/nwis) and GAGES-II database 28); (ii) Global Runoff Data Centre 

(GRDC: http://grdc.bafg.de) 29; (iii) HidroWeb portal of the Brazilian Agência Nacional de Águas 

(http://www.snirh.gov.br/hidroweb); (iv) European  Water  Archive  (EWA)  of  EURO-FRIEND-

Water  (http://ne-friend.bafg.de); (v) Water Survey of Canada (WSC) National Water Data 

Archive (HYDAT; https://www.canada.ca/en/environment-climate-change); (vi) Australian 

Bureau of Meteorology (BoM: http://www.bom.gov.au/waterdata) 30; (vii) Chilean Centre for 

Climate and Resilience Research (CR2: http://www.cr2.cl/recursos-y-publicaciones/bases-de-

datos/datos-de-caudales); and (viii) National Center for Atmospheric Research 31. In total, we 

archived 22,710 river gauging records.  

Global monthly surface runoff estimates for 1984–2014 were derived from the 

eartH2Observe water resources reanalysis version 2 32, calculated as the mean of an ensemble of 

eight state-of-the-art global models, including HTESSEL, SURFEX-TRIP, ORCHIDEE, 

https://waterdata.usgs.gov/nwis
http://grdc.bafg.de/
http://www.snirh.gov.br/hidroweb
http://ne-friend.bafg.de/
https://www.canada.ca/en/environment-climate-change
http://www.bom.gov.au/waterdata
http://www.cr2.cl/recursos-y-publicaciones/bases-de-datos/datos-de-caudales
http://www.cr2.cl/recursos-y-publicaciones/bases-de-datos/datos-de-caudales
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WaterGAP3, JULES, W3RA, and LISFLOOD. Precipitation data derived from a combination of 

station, satellite, and reanalysis data (MSWEP v1.1) 33 were used here. The representative 

maximum storage capacity reported in the GRanD database 24 was used as a reference value to 

calculate absolute storage changes. The HydroBASINS 34 dataset was used to define basin 

boundaries. 

2. Global reservoir storage estimation 

In total, 132 large reservoirs (Group A; Fig. S1) had records of both surface water extent 

and height for the overlapping period 1993–2015. We estimated the height and area at capacity 

as the maximum observed surface water height and extent, respectively, and estimated reservoir 

storage volume storage (Vo in GL or 106 m3) as:  

𝑉𝑜 = 𝑉𝑐 − (ℎ𝑚𝑎𝑥 − ℎ𝑜)(𝐴𝑚𝑎𝑥 + 𝐴𝑜)/2       (1) 

where Ao (km2) is the satellite-observed water extent, Amax the maximum value of Ao, ho (m) 

observed water height, hmax the maximum value of ho, and Vc (GL) the storage volume at capacity. 

For those reservoirs with a meaningful relationship between Ao and Vo for this overlapping period 

(i.e., Pearson’s R≥0.4, N=78), V0 was estimated going back to 1984 using a linear regression 

equation based on A0. 

For 6,611 reservoirs with water extent observations only (Group B; Fig. S1), we used the 

HydroLAKES method 35 to estimate storage. The empirical equations 35 used (Table S1) were 

applied to observed A and the average slope 35 within a 100 m buffer around the reservoir (S100 in 

degrees).  

A bias-corrected average water depth (D* in m) was calculated by solving D for the 

maximum estimated depth (Dmax in m) and extent Amax at storage capacity (Vc): 

𝐷∗ =
𝐷

𝐷𝑚𝑎𝑥
×

𝑉𝑐

𝐴𝑚𝑎𝑥
       (2) 

Storage volume for 1984–2015 was subsequently estimated as: 

𝑉𝑜 = 𝐷∗𝐴𝑜        (3) 

Evaluation 

Time series of in situ reservoir storage volume measurements are publicly available for a 

subset of reservoirs. They can be used to evaluate the uncertainty in the satellite-based storage 

estimates. Furthermore, data records for some storages can be found in the published literature, 

derived from grey literature or proprietary data sources. Given the emphasis in trend analysis was 

on relative changes between the pre- and post-2000 periods, the evaluation below focuses on 

Pearson’s correlation (R) values as a measure of correspondence. Monthly storage data with at 

least 20-year time series of 67 reservoirs via the US Army Corps of Engineers (http://www.nwd-

mr.usace.army.mil/rcc/projdata/projdata.html) and Australian Bureau of Meteorology 

(http://www.bom.gov.au/waterdata/) were collected. The R between published and estimated 

volumes in 67% of reservoirs was above 0.9, and 90% above 0.7. Some validation examples, 

http://www.nwd-mr.usace.army.mil/rcc/projdata/projdata.html
http://www.nwd-mr.usace.army.mil/rcc/projdata/projdata.html
http://www.bom.gov.au/waterdata/
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including robust, typical, and poor agreement are shown in Fig. S1. Annual average water levels 

for Lake Aswan, the largest reservoir in the world, were published as a graph 36; a comparison 

shows good agreement between the altimetry-derived and in situ measurements with R=0.97 (Fig. 

S2). Assuming the estimation method for Group A is more accurate than for Group B, the latter 

can be evaluated against the former. The results show that 25 of the total 39 overlapping estimated 

reservoirs show robust agreement (R≥0.9) between the two methods. Some validation examples 

representing good, typical, and poor agreement are shown in Fig. S3. 

3. Trend analysis and attribution 

We were able to estimate monthly storage dynamics for 6,743 out of the 6,862 reservoirs 

reported in the GRanD database 24, accounting for 89.3% of the total 6,197 km3 reported 

cumulative capacity (Fig. S1). There were only 132 reservoirs for which both extent and height 

observations were available (Group A), but this relatively small number already accounted for 

almost half of global combined capacity (Fig. S1). To analyze long-term changes in reservoir 

storage between 1984–2015, we removed all reservoirs that were destroyed, modified, planned, 

replaced, removed, subsumed or constructed after 1984 or for which more than five years of water 

extent observations needed to be interpolated because of lacking data 26. This left 4,589 of the 

initial 6,743 reservoirs available for analysis, i.e., 68% of reservoirs, together accounting for 

45.9% of combined global capacity (Fig. S4).   

We calculated linear trends in annual reservoir storage, observed streamflow, modelled 

streamflow, and precipitation for each basin (HydroBASINS Level 3). Trend significance was 

tested using the Mann-Kendall trend test (p<0.05). The linear trends in modelled streamflow were 

validated by observed data. We also analysed the correlations between precipitation/streamflow 

and storage in terms of both time series and linear trend. Net evaporation was calculated for each 

reservoir as follows: 

𝐸𝑛 = 𝐴(𝐸0 − 𝑃)   (4) 

where En (mm) is cumulative monthly net evaporation loss (or gain, if negative), A is 

reservoir surface area (km2) from Zhao and Gao 26, E0 (mm) open water evaporation (Priestley-

Taylor potential evaporation from the W3 model 37, and P precipitation (mm) from MSWEP v1.1 

33. The reservoir net evaporations sum up in each basin and the ratio of the respective trends in 

net evaporation and storage were calculated to determine whether the former could explain the 

later. Trends in storage and observed streamflow for individual reservoir and river were also 

analysed, which can provide additional information on clusters of trends in detail. But, different 

from analysis at basin scale above, we do not relate the trend of each reservoir to a corresponding 

river gauge, because there is limited gauging data upstream. 

Changes in annual mean storage, resilience, and vulnerability between 1984–1999 and 

2000–2015 were analyzed at the scale of river basins. The reliability, resilience and vulnerability 

(RRV) criteria can be used to evaluate the performance of a water supply reservoir system 38, 39. 
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The calculation requires that an unsatisfactory state can be defined in which the reservoir cannot 

meet all water demands, leading to a failure event. Reliability indicates the probability that the 

system is in a satisfactory state: 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −  
∑ 𝑑(𝑗)𝑀

𝑗=1

𝑇
        (5) 

where d(j) is the time length of the jth failure event, T is the total time length, and M is the 

number of failure events. Unfortunately, a single threshold for failure events is not readily 

determined: firstly, because we did not have access to water demand and release data for each 

reservoir, and, secondly, because reservoirs are typically operated in response to more than a 

single threshold. Instead, we assumed that the reliability of each reservoir is designed to be 90%, 

leaving it in an unsatisfactory state for the remaining 10% of the time. This assumption made it 

possible to calculate resilience and vulnerability for each reservoir for the assumed 90% threshold. 

Resilience is a measure of how fast a system can return to a satisfactory state after entering a 

failure state: 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 =  {
1

𝑀
∑ 𝑑(𝑗)𝑀

𝑗=1 }11−1       (6) 

Vulnerability describes the likely damage of failure events: 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
1

𝑀
∑ 𝑣(𝑗)𝑀

𝑗=1        (7) 

where v(j) is the deficit volume of the jth failure events. We analyzed changes in resilience 

and vulnerability from the pre-2000 to the post-2000 period. An example is shown for the Toledo 

Bend Reservoir (Texas, USA) (Fig. S5 and Table S2). Four failure events occurred during 1984–

2000 and three during 2000–2015. Before 2000, it took an average of three months to recover 

from failure with an average deficit volume of 357 GL. In contrast, after 2000, it took an average 

of 10.5 months with a larger average deficit volume of 498 GL (Fig. S2). It follows that resilience 

was reduced after 2000 (0.12 vs. 0.33) and vulnerability increased (498 vs. 357 GL) when 

compared to the years before 2000 (Table S2). 

The change of resilience (ΔRes) between 1984–2015 is calculated as: 

∆𝑅𝑒𝑠 =  𝑅𝑒𝑠2 − 𝑅𝑒𝑠1      (8) 

where Res1 and Res2 are the reservoir resilience values calculated for 1984–1999 and 2000–

2015, respectively. The change in vulnerability (ΔVul) was expressed relative to the maximum 

deficit volume Vf observed as follows: 

∆𝑉𝑢𝑙 =  
𝑉𝑢𝑙2−𝑉𝑢𝑙1

𝑉𝑓
 × 100%       (9) 

where Vul1 and Vul2 are the reservoir vulnerability values for the periods 1984–1999 and 

2000–2015, respectively. 

The analysis above based on storage, rather than water extent, although the uncertainties in 

surface water extent observations are likely to be less than those in storage estimates derived from 

altimetry data or geo-statistical equations. However, storage volume plays a more essential role 
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in this study, based on which we were able to not only discuss correlations between 

precipitation/streamflow/resilience/vulnerability and storage but also analyse how much of the 

change in storage caused by inflow and net evaporation (in volume), and then infer the role of 

reservoir management. 
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Fig. S1. Validation of reservoir storage reconstruction against in situ data, showing (a, b) 

robust, (c, d) typical and (e, f) poor results. 

 

 

Fig. S2. Validation of reservoir storage reconstruction for Lake Aswan. 
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Fig. S3. Validation of reservoir storage reconstruction for Group B against results obtained 

using the method used for Group A, showing (a) robust, (b and c) typical and (d) poor agreement. 

 

Fig. S4. The total storage capacity in Group A (red) and B (brown) and left unaccounted 

(blue) and the combined capacity of reservoirs for which the data were suitable (teal) or unsuitable 

(pink) for long-term analysis. 

 

Fig. S5. Example storage time series showing the definition of resilience and vulnerability 

(black shade: unsatisfactory state; grey shade: satisfactory state, black line: temporal storages; 

dash line: 10% threshold; letters: failure events). 
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Fig. S6. The change of resilience (a), and vulnerability (b) between pre-2000 and post-2000 

(grey shade: no reservoir data). 

 

 

Fig. S7. The relationship between changes from the pre-2000 to the post-2000 period in (a) 

vulnerability (ΔVulnerability) and resilience (ΔResilience) and (b) mean storage (ΔStorage) and 

resilience (ΔResilience). 
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Fig. S8. Annual time series (dash line: significant trends) in combined global reservoir 

storage (blue line; unit corresponds to left axis), and in storage for Lake Kariba (purple line; unit 

corresponds to right axis), and Lake Aswan (red line; unit corresponds to right axis). 

 

 

Fig. S9. The relationship (dash grey line: 1: 1 line) between linear change from 1984-2015 

in (a) annual precipitation (ΔRainfall) and modelled streamflow (ΔModelled Streamflow), (b) 

observed streamflow (ΔObserved Streamflow) and modelled streamflow (ΔModelled Streamflow) 

and (c) reservoir storage (ΔReservoir Storage) and modelled streamflow (ΔModelled Streamflow) 

corresponding to Figure 2. 
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Fig. S10. The correlations of annual storage change and reservoir inflow (as approximated 

by basin modelled streamflow) (a), and reservoir inflow and precipitation (b) in each basin. 

 

Fig. S11. The ratio of the linear trends in net evaporation and in storage in each basin, 

showing that net evaporation rarely explains more than a few per cent in observed storage 

changes. 
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Fig. S12. The trends of storage (a) and observed streamflow (b) for individual reservoir and 

river globally (p<0.05; increasing: blue; no change: grey; decreasing: red). 
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Fig. S13. Trends in reservoir storage (second and fourth column; p<0.05; increasing: blue; 

no change: grey; decreasing: red; dot sizes correspond to storage capacity; light blue line: main 

river network; faded yellow shade: selected basins) and grid-based modelled streamflow (first 

and third column; colour correspond to per cent of linear change overall period) during 1984–

2015.  
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Fig. S14. Trends in reservoir storage (first column; p<0.05; increasing: blue; no change: 

grey; decreasing: red; dot sizes correspond to storage capacity; faded yellow shade: selected 

regions) and time series of annual average relative total storage volume (light blue shaded), and 

modelled streamflow (solid red line) indicated with a base period of 1984–1999 (second column). 
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Table S1. Statistical models to estimate reservoir depth (D: average depth; A: observed 

extent; S100: average slope around the reservoir (HydroLAKES)). 

Reservoir size class by maximum 

extent (km2) 
Statistical models 

0.1-1 log10 (D) = 0.3826 + 0.1512 × log10 (A) + 0.4820 × log10 (S100)  

1-10 log10 (D) = 0.1801 + 0.2985 × log10(A) + 0.8473 × log10 (S100) 

10-100 log10 (D) = 0.0379 + 0.2445 × log10(A) + 1.1517 × log10 (S100) 

100-500 log10 (D) = 0.0123+ 0.2664 × log10 (A) + 1.1474 × log10 (S100) 

 

Table S2. The statistics of resilience and vulnerability for the reservoir in Fig. S2. 

Period 1984-2000 2000-2015 

Failure Event A B C D E F G 

Duration Time (month) 2 4 3 3 5 3 18 

Resilience (1/average duration) 0.33 0.12 

Deficit Volume (GL) 239 589 202 399 329 373 792 

Vulnerability (average deficit volume) 357 498 
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Appendix 4: A global, near real-time system 
measuring river, lake, and reservoir 

dynamics 

This appendix introduced a global near real-time river, lake and reservoir monitoring system, 

which is published as a conference paper in the 23rd International Congress on Modelling and 

Simulation (MODSIM2019) as follows: 

Hou, J., Van Dijk, A.I.J.M., Beck, H.E., 2019. A global, near real-time system measuring 

river, lake, and reservoir dynamics. In Elsawah, S. (ed.) MODSIM2019, 23rd International 

Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New 

Zealand. 

  



Figure 1. Global distribution of monitoring sites for rivers, lakes and reservoirs. 

A global, near real-time system measuring river, lake, 
and reservoir dynamics 

J. Houa, A. I. J. M. van Dijka and H. E. Beckb 

a Fenner School of Environment and Society, The Australian National University, Australian Capital 
Territory, b Department of Civil and Environmental Engineering, Princeton University, Princeton, New 

Jersey, USA 
Email: jiawei.hou@anu.edu.au  

Abstract: Measuring and predicting the dynamics of discharge in rivers and water storage in lakes and 
reservoirs can inform water management and policy decisions, flood management and response, and help 
understand the influence of climate change and anthropogenic activities on hydrological, biogeochemical, 
and ecological processes. However, water body dynamics are often poorly observed on the ground. Gauging 
networks are unevenly distributed and in decline globally, and much gauging data is not publicly accessible 
in near real-time, if at all. Remote sensing technologies provide a unique alternative to monitor changes in 
water extent, level and volume in space and time. Our aim was to develop a global monitoring system that 
provides near real-time river discharge and lake and reservoir storage information from satellite observations. 
To estimate river discharge, we derived global surface water extent fraction from the 8-day 0.05° resolution 
reflectance data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and used recorded 
discharge at gauged sites and hydrological model estimates at ungauged sites to train MODIS-based satellite 
gauging reaches (SGRs) that can be used to estimate river discharge globally. In total, we were able to 
construct over 2,000 gauge-based and 11,000 model-based SGRs globally (Figure 1). To estimate volume 
changes in lakes and reservoirs, surface water extent dynamics for over 280 lakes and reservoirs (Figure 1) 
were derived from a daily 500-m resolution global surface water change dataset. Storage variations were 
calculated using surface water extent and height time series from the 10-day near real-time global lake and 
reservoir elevation dataset (G-REALM). As MODIS and G-REALM provide near real-time information, 
these data similarly allow estimation of river discharge and lake and reservoir storage in near real-time. It is 
hoped that the global monitoring system provides immediate and relevant information on rivers, lakes, and 
reservoirs, to inform government, the community and individuals on the current state of water resources in a 
historical context. 
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1. INTRODUCTION 

Globally, 87% of the earth’s liquid surface freshwater is stored in reservoirs and lakes, and more than 50% of 
the potable water supply is extracted either from rivers directly or from reservoirs (Barnett et al. 2005; Gao 
2015). According to the statistics on 1.43 million natural lakes and reservoirs with a surface water area 
greater than >0.10 km2 from the HydroLAKES and the Global Reservoir and Dam database (GRanD), there 
are a total of 2.67×106 km2 of natural lakes and 0.26×106 km2 of human-made reservoirs, covering about 2% 
of the global land area. The total shoreline length of reservoirs and lakes is approximately four times the 
global ocean shoreline (Lehner et al. 2011; Messager et al. 2016). Based on the Global River Widths from 
Landsat (GRWL) database, the total surface area of rivers and streams at mean annual discharge is roughly 
7.73×105 km2, which is about 0.58% of Earth’s non-glaciated land surface (Allen and Pavelsky 2018). 

With ongoing human interventions and climate change, many rivers, lakes and reservoirs have experienced 
remarkable changes over the last few decades. Understanding the temporal and spatial dynamics of rivers, 
lakes and reservoirs at a global scale is essential for a sustainable future. However, variations in surface water 
dynamics are often poorly observed on the ground. Measurement precision, decline in the number of gauges, 
disparity in the number of gauges across monitoring networks, economic and technical challenges, 
limitations in terms of spatial coverage, flood monitoring difficulties, and data intermittency all pose 
challenges to the use of in-situ data for the analysis of river, lake and reservoir dynamics (Alsdorf et al. 2007; 
Gao 2015). For example, there are still technical and operational difficulties to produce bathymetric maps of 
rivers, lakes, or reservoirs, which currently require time- and cost-intensive survey methods (e.g. acoustic 
profiling). Remote sensing technology provides a unique alternative opportunity to observe changes in water 
extent, level and volume in space and time, as it is capable of detecting surface water in areas which are 
inaccessible, remote, or very large, and is unhindered by transboundary issues.  

To estimate river discharge from space, the general approach has been to link remote sensing measurement to 
discharge observed in-situ. Several studies have revealed that river discharge can be estimated based on at-a-
station hydraulic geometry (AHG) that relates remote sensing derived hydraulic variables to ground 
measurements of river discharge at a certain reach (e.g. Papa et al. 2010; Pavelsky 2014). In addition, 
Gleason and Smith (2014) presented a new method, at-many-stations hydraulic geometry, which can be used 
to estimate discharge solely from remote sensing derived river widths at multiple cross sections, as they 
found that the parameters of AHG are log-linearly related along a river. River discharge can be also estimated 
using open-channel hydraulic equations (e.g. the Manning equation) with remotely sensed data and ground 
measurements of river depth and roughness coefficient (e.g. LeFavour and Alsdorf 2005). Besides, The ratio 
of wet and dry pixel from Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared 
reflectance or the Advanced Microwave Scanning Radiometer (AMSR-E) passive microwave brightness 
temperature was demonstrated as a readily automated approach to estimate river discharge at large scale 
(Brakenridge et al. 2007; Hou et al. 2018; Van Dijk et al. 2016). 

Lake and reservoir storage variations can be estimated based on the measurements of surface water level and 
inundation area, either or both of which can be derived from satellite observation. For example, rating curves 
relating storage, surface water elevation, and inundation area for Lake Izabal (Guatemala) were developed by 
combining in-situ lake elevation measurements and the ENVISAT Advanced Synthetic Aperture Radar 
(ASAR) derived inundated areas, and then used to extend volume estimates using the ENVISAT Radar 
Altimeter (RA-2) data (Medina et al. 2010). Zhang et al. (2014) estimated reservoir storage variations for 21 
reservoirs in South Asia using MODIS-derived surface water areas and the ICESat/GLAS altimetry derived 
surface water elevation measurements. As there are currently several surface water extent and satellite 
altimetry databases globally, some studies estimated lake and reservoir storage variations derived directly 
from a combination of these databases (e.g. Busker et al. 2019). To tackle the absence of globally consistent 
data, Messager et al. (2016) established a geo-statistical model to estimate the volume for lakes with >0.10 
km2 surface area at global scale, based on their surrounding topography.  

The aim of this study was to develop a global monitoring system that can provide near real-time river 
discharge (2000-current) and lake and reservoir storage variations (1992-current) by combining satellite radar 
altimetry and optical remote sensing. Here, we present the workflow of our global near real-time monitoring 
system. We discuss the benefits, limitations, and practical applications of the system. 
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2. WORKFLOW 

2.1.     Global river discharge prediction 

Van Dijk et al. (2016) introduced a simple automated statistical method to construct satellite gauging reaches 
(SGRs) to use in-situ river discharge data to train MODIS optical remote sensing imagery. This is valuable to 
fill gaps in gauging discharge records and extend river discharge estimates, but the method is limited to 
gauged river reaches. Hou et al. (2018) expanded the method to both gauged and ungauged reaches using 
MODIS optical remote sensing and hydrological model simulations. We used the approach developed by 
Hou et al. (2018) to construct both gauge-based and model-based SGRs at global scale, which can be used to 
predict river discharge from satellite observation (Figure 2).  

The remote sensing data used here to derive river discharge is Moderate Resolution Imaging 
Spectroradiometer (MODIS) product MCD43C4 version 6, which produces 8-day Nadir BRDF 
(Bidirectional Reflectance Distribution Function)-Adjusted Reflectance (NBAR) data derived from NASA’s 
Terra and Aqua MODIS instruments. This product provides global 0.05°×0.05° resolution imagery from 
2000 to present in near real-time. The MCD43C4’s shortwave infrared (SWIR) band 7 (2105-2155 nm) was 
chosen due to the contrast between water and dry land in this wavelength. A surface water extent fraction (w) 
for each grid cell of each imagery was estimated as follows: 

w M dry

water dry

� �
� �

�
�

�
     (1) 

where �M is the band 7 reflectance of target cell M, �dry is the fifth percentile highest reflectance in a 7×7 cell 
window around M, and �water is the reflectance of surface water (assumed equal to 0.008; refer to Van Dijk et 
al., 2016 for further details). 

Daily and monthly in-situ river discharge observations were collated from different national and international 
sources (i.e., the United States Geological Survey, the Global Runoff Data Centre, the Brazilian Agência 
Nacional de Águas, the European Environment Agency, the Water Survey of Canada, the Australian Bureau 
of Meteorology, the Chilean Center for Climate and Resilience Research, and the National Center for 
Atmospheric Research). In total, this yielded 22,808 
gauging records. For ungauged river reaches, daily river 
discharge for the period 2000-2014 was simulated by 
the World-Wide Water model (W3) version 2, which is 
a 0.05°×0.05° grid-based, one-dimensional water 
balance model that has a semi-distributed representation 
of the surface water, soil, groundwater stores and is 
coupled to a grid-based routing scheme (Van Dijk et al. 
2018). 

We constructed over 2,000 gauge-based and 11,000 
model-based SGRs globally, which are able to predict 
river discharges with Pearson correlations above 0.6 
against in-situ or modeling data. For each site, a search 
window of 0.55º × 0.55º centers on a gauging station 
(gauge-based SGRs) or W3 model grid cell with a river 
flowing through it (model-based SGRs). Observed or 
modelled discharge time series for the target reach are 
compared with each MODIS-derived surface water 
extent fraction time series within the search window. 
The MODIS pixel that has the strongest correlation 
with discharge data is selected as the best pixel to 
reflect river discharge variations. The relationship (Q-
W) between discharge and water extent time series is 
established for the years 2000-2014 using cumulative 
distribution function (CDF) matching; river discharge is then predicted based on the developed relationship 
(Q-W) using MODIS-derived surface water extent fraction time series for the years 2000-present for filling 
the gaps in gauging data and providing near real-time data (Figure 2). 

  

 

Figure 2. Workflow of river discharge 
prediction through satellite observation. 
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2.2.     Global lake and reservoir storage measurement 

Sufficiently high-resolution remote sensing is needed to measure lake and reservoir volume variations. A 
500-m resolution global surface water change dataset (Ji et al. 2018) was used in this study. It provides daily 
surface water mapping derived from MODIS surface reflectance product, MOD09GA version 6, for the 
period of 2001 to 2016. The product achieved accuracy of over 93% compared with classification results 
derived from Landsat. In addition, the U.S. Department of Agriculture's Foreign Agricultural Service 
(USDA-FAS) 10-day near real-time global lake and reservoir elevation dataset (G-REALM) was used. This 
surface water height product for more than 290 lakes and reservoirs around the world was produced by a 
semi-automated process developed by the NASA Ocean Altimeter Pathfinder Project, using near real-time 
data from the Jason-3 mission (2016-current) and archive data from the Topex/Poseidon (1992-2008), Jason-
1 (2002-2008), and Jason-2 (2008-2016) missions. The accuracy is expected to better than 10 cm root-mean-
square (rms) error for the largest water bodies (e.g. Lake Victoria, Africa), and better than 20 cm rms for 
smaller ones (e.g. Lake Chad, Africa). 

For each lake or reservoir, we selected surface 
water images from one MODIS tile or combined 
tiles, depending on the size of water body, of the 
500-m resolution global surface water change 
dataset (Ji et al. 2018) at the dates with surface 
water height records between 2001 and 2016. 
The maximum boundary for each lake or 
reservoir was delineated based on the 
HydroLAKES database (Messager et al. 2016), 
which provides the shoreline polygons of lakes 
and reservoirs with surface extent above >0.10 
km2, and the maximum surface water product 
from the Global Surface Water Dataset (GSWD) 
of the European Commission Joint Research 
Centre (Pekel et al. 2016). The lake or reservoir 
surface water extent was derived for all selected 
surface water images within the maximum 

boundary. Lake and reservoir storage variations for 2001-2016 were calculated using surface water height 
records and surface water extents as follows: 

1 2S ( ) / 2h A A� � � � �      (2) 

where �S �������	�
����
����
�
�����
����������
����������h is the surface water height variation with respect 
to the average height, A1 is the surface water area at 
time 1, and A2 is the surface water area at time 2. The 
(S-H) relationship, between surface water height 
records and calculated storage variations, was 
established for all lakes and reservoirs using data for 
2001–2016. Next, storage variations for 1992–2000 and 
2017–current were estimated based on the developed 
(S-H) relationship and combined with estimates for 
2001-2016 (Figure 3). 

2.3.     The operation of the global near real-time 
monitoring system 

The SGRs-derived historical river discharge (Qh) and 
the (Q-W) relationship between discharge and water 
extent for each SGRs site were stored on the National 
Computational Infrastructure (NCI), in Australia. The 
NCI also provides a copy of the MODIS MCD43C4 
version 6 imagery required that is kept updated with the 
NASA Land Processes Distributed Active Archive 
Center (LP DAAC) Distribution Server at the USGS 
Earth Resources Observation and Science (EROS) 
Center 
(https://e4ftl01.cr.usgs.gov/MOTA/MCD43C4.006/). 

 

Figure 3. Workflow of lake and reservoir storage 
measurement from satellite observations. 

 

Figure 4. The overall workflow of the global 
near real-time monitoring system. 
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Therefore, we are able to derive up to date surface water extent fraction data from the updated MCD43C4 
imagery on NCI directly. Next, the near real-time river discharge is calculated from water extent based on the 
developed (Q-W) relationship. Finally, the updated river discharge time series (Qn) are stored on NCI. 
Similar to river discharge, storage variation time series (Sh) and the (S-H) relationship for each lake and 
reservoir are stored. The updated surface water elevations are retrieved from the USDA’s web server. Next, 
the up-to-date volume changes are derived from the new surface water height observations based on the (S-
H) relationship and the new storage variations (Sn) are stored (Figure 4). All data used and produced are 
stored on the Australian National Computational Infrastructure (NCI) and exposed via THREDDS web 
services. 

All dynamic river discharge and lake and reservoir storage information is displayed online through a web 
application using the NCI web services. The statistics for rivers are also provided, including real-time 
streamflow compared to historical streamflow for the time of year, the river discharge hydrograph showing 
different flood return periods, and recent river discharge plotted over the long-term statistics of discharge for 
each day of the year. River morphology data (e.g. Hou et al. 2019) may also present useful information that 
can be assigned to each river reach and may be added in future. 

3. DISCUSSION AND CONCLUSION 

This study presents the workflow of a global monitoring system that measures river discharge and lake and 
reservoir storage variations from satellite observations in near real-time. The algorithm developed by Hou et 
al. 2018 was used here to predict river discharge, and we extended this approach to a global application and 
made the best use of the near real-time merit of MCD43C product. The global surface water change dataset 
(Ji et al., 2018) and G-REALM surface water height product provide basic elements to measure lake and 
reservoir storages, and G-REALM product makes it possible to both reproduce historical storage records 
back to 1992 and provide valuable near real-time information. Errors in forcing data (e.g., precipitation, 
radiation, temperature), a lack of model parameter optimization or model structural deficiencies from the 
hydrological model can propagate to model-based SGRs. But some model-based SGRs did outperform the 
model itself, which provide opportunities to improve model estimates through assimilation of SGR discharge 
estimates. Wide channels and broad floodplains provide the best conditions for SGRs, and lake and reservoir 
storage measurement targets at water bodies with water extent above 100 km2, limited by G-REALM 
product. Higher temporal and spatial input remote sensing data could enhance the capabilities of the 
monitoring system to observe more rivers, lakes, and reservoirs and to improve the accuracy of the 
measurements. 

Surface water area can also be measured with alternative passive and active satellite sensors, which could be 
incorporated into the monitoring system. Active microwave sensors (e.g. synthetic aperture radar) are able to 
observe water regardless of cloud and vegetation cover, but can require complex image processing that is 
currently not easily automated (Gao, 2015). Passive microwave sensors (e.g., AMSR-E, AMSR2, SMAP) 
can be used to estimate inundation extent, but their spatial resolution is too coarse to detect narrow or small 
water bodies, including many rivers, lakes and reservoirs. The most common way to estimate the surface 
water area of rivers, lakes and reservoirs at global scale has been to use passive visible/infrared bands of 
satellite sensors such as MODIS and Landsat. The main advantage of MODIS (2000-current) is that it 
provides daily observations with medium spatial resolution (250 m or 500 m) that are readily available from 
NASA. Similar observations are available from Sentinel-3 and VIIRS. Landsat (1972-current) provides a 
higher spatial resolution (ca. 30 m) but is available with much lower frequency (i.e. 16 days). Both are 
affected by cloud contamination. The Sentinel-2A and B instruments provide potential to improve revisit 
time for most of the world to 5 days or better with a spatial resolution of 10-60 m. However, they were 
launched in or after 2015, and hence currently only cover a relatively short period of observation. 

There are several satellite radar altimeters commonly used to estimate surface water elevation of large inland 
water bodies at global scale. These satellites include GEOSAT (1985-1989), Topex/Poseidon (1992-2002), 
ERS-1 and 2 (1992-2003), GFO (2000-2008), ENVISAT (2002-2010), Jason-1, 2 and 3 (2002-current), and 
Sentinel-3A and B (2016-current). Their return period ranges from 10 to 35 days. The main limitations of 
radar altimeters are their low spatial resolution and the influence of the target’s surrounding topography 
(Gao, 2015). In contrast, satellite laser altimeters (e.g. ICESat) are able to measure elevation of water bodies 
even at smaller sizes or in mountainous regions, as they have higher spatial resolution and smaller cross track 
spacing (Zhang, et al., 2014). However, they have quite a long return period (e.g. 91 days for ICESat), which 
makes them unsuitable for operational monitoring. There are other satellite altimetry databases, including the 
Database for Hydrological Time Series of Inland Waters (DAHITI), the European Space Agency’s (ESA) 
River and Lake data set and the French Space Agency Centre National d’Etudes Spatiales’ (CNES) 
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Hydrology by Altimetry. These datasets, as well as available near real-time in-situ water level records (e.g. 
from the United State Army Corps of Engineers and the United States Geological Survey) could also be 
implemented in this global monitoring system and this will be the focus of future research. 

Long-term records are the basis for designing flood control, irrigation and hydropower systems, and 
transboundary water agreements, while real-time data are needed to operate water infrastructure, and manage 
and reduce flood and drought risk (García et al. 2016; Sheffield et al. 2018). They are valuable to make better 
connections between researchers, policy-makers, and the society for a deeper understanding of the changes 
that are occurring in our environment due to climate change and anthropogenic activities. Our goal was to 
contribute global, near real-time information on river, lake and reservoir dynamics to make it easier for 
government, the community and individuals to access current information on the state of water resources in 
their region of interest and in a historical context. 
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