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Magnetotellurics: the CBB or phase tensor and Bahr’s 1988 analysis

Frederick E. M. Lilley

Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia

ABSTRACT
The phase tensor of magnetotellurics is analysed in terms of its invariants with regard to axes
rotation. These invariants are displayed as conic sections (ellipses), eigenvectors, and as Mohr
diagrams. Attention is drawn to a supplementary ellipse which may be constructed to comple-
ment the usual phase tensor ellipse. The two ellipses together help convey the full information
available from phase tensor analysis. For the cases of 1D and 2D regional structure, the ellipses,
eigenvectors and Mohr diagrams show distinctive features, such as no preferred strike direction
in the case of 1D, and a consistent strike (or across-strike) direction in the case of 2D. In the gen-
eral case of 3D regional structure a “closest 2D strike” direction may be apparent, though there
is a range of possibilities for this quantity. The range includes Bahr’s regional strike estimates,
which are shown to be given by the eigenvectors of the phase tensor. Generally in this paper,
the phase tensor will be referred to as the CBB tensor, in recognition of its discoverers Caldwell,
Bibby and Brown.
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1. Introduction

Contemporary magnetotelluric (MT) practice com-
monly involves the use of three tensors: the distor-
tion tensor which may be modelled, often numerically,
to assist in interpretation; the basic MT tensor which
relates observed magnetic and electric fields; and the
“phase tensor” which is not observed directly but is
calculated from the MT tensor.

This paper is intended as an introduction to the
phase tensor and follows earlier papers (Lilley, 2016,
2018) which introduced, in turn, the distortion tensor
and the MT tensor. See also Lilley and Phillips (2018)
for a description of the distortion tensor. In addition to
being well-described in texts on magnetotellurics such
as Chave and Jones (2012), the phase tensor has also
been recently reviewed by Booker (2014). This paper is
intended to be both complementary and supplemen-
tary to these works.

As there ismuch activity inMT in Australia at present,
for example, Roberston et al. (2017), with new practi-
tioners involved, the presentmanuscriptwill emphasise
the basic linear algebra aspects of phase tensor analysis
with a worked numerical example. An ellipse supple-
mentary to that commonly used todepict phase tensors
will be introduced, andMohr diagramswill also be used
to illustrate phase tensor properties. Direct eigenanaly-
sis of the phase tensor, and its link to the earlier work of
Bahr (1988), will be included.

It should at the outset be emphasised that “phase
tensor” may be a misleading name, especially for

newcomers to the subject. In the context of the field
practice ofmagnetotellurics,where anMT tensor relates
two vector quantities both of which are observed, there
may be an expectation that a “phase tensor” will be
based on actual field observations of phase. However,
the elements of phase tensors are derived from calcu-
lated MT tensors, are not themselves observed, and are
not observed phase angles in any sense.

Indeed it is important to emphasise that the ele-
ments of the phase tensor are not phase angles. Under
particular circumstances only, they are the tangent val-
ues of some very particular phase angles.

Such confusion is avoided in the present paper
where, in recognition of its discoverers Caldwell, Bibby
and Brown, the phase tensor is generally referred to as
the CBB tensor.

2. The CBB tensor

Caldwell, Bibby, and Brown (2004) introduced the CBB
tensor as calculated from an observed MT tensor, and
the concept was further developed by Bibby, Caldwell,
and Brown (2005). Taking the MT equation as

E = ZH (1)

where E and H denote the electric and magnetic fields,
all quantities are complex functions of frequency, and Z
is the MT tensor with in-phase and quadrature parts Zp
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and Zq such that

Z = Zp + iZq (2)

and other quantities similarly, then the CBB tensor is a
real matrix defined as

� = Zp−1Zq (3)

by Caldwell, Bibby, and Brown (2004) who use for it the
notation �.

Henceforth in this paper, however, to avoid confu-
sionwith the commonusageof� andφ as actual angles
of phase, the notation Awill be used for the CBB tensor
in place of �. Then

A = Zp−1Zq (4)

For MT observations which are assumed to be affected
by local galvanic distortion of the electric field accord-
ing to

Z = DZb (5)

whereD is a pure real distortionmatrix and Zb is theMT
tensor before distortion, then

Zp = DZbp (6)

and

Zq = DZbq (7)

From Equation (4)

ZpA = Zq (8)

and substituting from Equations (6) and (7) gives

DZbpA = DZbq (9)

and so

A = [Zbp ]
−1

Zbq (10)

for non-singular D (and a naturally occurring D is most
unlikely to be exactly singular).

The CBB tensor as calculated by Equation (4) is thus a
2 × 2matrix, free of galvanic distortion as defined. It is a
measure of theprocess of EM induction in the Earth and,
to the extent that it is possible to do so with an inver-
sion process, CBB tensor data contribute to quantita-
tive information on Earth conductivity structure (Tietze,
Ritter, and Egbert, 2015). Such inversion processes are
complicated, for the CBB matrix is a non-linear function
of the MT tensor components used to compute it, and
these components are in turn non-linear functions of
the parameters describing the regional Earth conduc-
tivity structure (Kelbert et al., 2014). The inversion of
CBB matrix data is a major frontier of contemporary MT
practice (Avdeeva et al., 2015).

Figure 1. The rotation of axes by angle θ ′, from OX and OY
(north and east) to OX ′ and OY ′.

3. Rotation of observing axes

Short of inverting or interpreting the CBB matrix as cal-
culated, present common usage of it involves axes rota-
tion. The purpose of the axes rotation is to bring out
in the data some characteristic which indicates that, for
someparticular rotation angle, the axes are nowaligned
along and across geologic strike. Such axes rotation will
now be described quite generally.

Taking horizontal directions north and east and
denoting them by OX and OY respectively with OZ ver-
tically downwards, upon rotation by angle θ ′ as shown
in Figure 1 the axes will be denoted OX ′ and OY ′.

First introduce a rotation matrix R(θ) as

R(θ) =
[
cos θ sin θ

− sin θ cos θ

]
(11)

Then to get a context for how the values of the CBB
matrix change when the observing axes of the original
MT tensor are rotated, note that the basic MT tensor Z
changes according to the following: relative tonewaxes
rotated through angle θ ′ as in Figure 1, the electric and
magnetic fields E′ and H′ will be related to E and H by

E′ = R(θ ′)E (12)

and

H′ = R(θ ′)H (13)

so that

E = R(−θ ′)E′ (14)

and

H = R(−θ ′)H′ (15)

and substituting Equations (14) and (15) into
Equation (1) gives

R(−θ ′)E′ = ZR(−θ ′)H′ (16)

Thus denoting by Z′ the MT tensor as would be
observed in the rotated axes, Equation (1) becomes

E′ = Z′H′ (17)
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with Z and Z′ related by

Z′ = R(θ ′)ZR(−θ ′) (18)

and so also by

Z = R(−θ ′)Z′R(θ ′) (19)

Note that because R(θ) is a pure real matrix,
Equation (18) can be expressed in its in-phase and out-
of-phase parts as

Z′
p = R(θ ′)ZpR(−θ ′) (20)

and

Z′
q = R(θ ′)ZqR(−θ ′) (21)

or equivalently

Zp = R(−θ ′)Z′
pR(θ ′) (22)

and

Zq = R(−θ ′)Z′
qR(θ ′) (23)

From Equation (22) an expression for [Zp]−1, needed for
Equation (4), may now be obtained as

Z−1
p = [R(−θ ′)Z′

pR(θ ′)]−1 (24)

Remembering from Frazer, Duncan, and Collar (1963,
25) that if S = UVW for matrices S, U, V and W then
S−1 = W−1V−1U−1, the inverse Z−1

p may be expressed

Z−1
p = [R(θ ′)]−1[Z′

p]
−1[R(−θ ′)]−1 (25)

Equation (25)may nowbe combinedwith Equation (23)
to give, for Equation (4),

A = [R(θ ′)]−1[Z′
p]

−1Z′
qR(θ ′) (26)

and so, because [R(θ ′)]−1 = R(−θ ′),

A = R(−θ ′)[Z′
p]

−1Z′
qR(θ ′) (27)

Further, defining A′ as

A′ = [Z′
p]

−1Z′
q (28)

then

A′ = R(θ ′)AR(−θ ′) (29)

The similar forms of Equations (18) and (29) show
that when observing axes are rotated, the CBB tensor
changes in just the samewayasdoes theMT tensor from
which it is calculated, though it is a non-linear function
of the latter.

3.1. The CBB tensor under rotation of axes

Denoting the elements of Zp as [Zxxp, Zxyp; Zyxp, Zyyp]
and of Zq as [Zxxq, Zxyq; Zyxq, Zyyq] the CBB tensor as
defined by Equation (4) is

A = 1
detZp

[
Zyyp −Zxyp

−Zyxp Zxxp

][
Zxxq Zxyq
Zyxq Zyyq

]
(30)

which may be expanded to give

A = 1
ZxxpZyyp − ZxypZyxp

×
[

ZyypZxxq − ZxypZyxq ZyypZxyq − ZxypZyyq
−ZyxpZxxq + ZxxpZyxq −ZyxpZxyq + ZxxpZyyq

]

(31)

and under rotation of axes

A′ = 1
Z′
xxp

Z′
yyp

− Z′
xyp

Z′
yxp

×
[

Z′
yyp

Z′
xxq

− Z′
xyp

Z′
yxq

Z′
yyp

Z′
xyq

− Z′
xyp

Z′
yyq

−Z′
yxp

Z′
xxq

+ Z′
xxp

Z′
yxq

−Z′
yxp

Z′
xyq

+ Z′
xxp

Z′
yyq

]

(32)

For 2D structures, when the observing axes are aligned
either along or across the geologic strike, basic electro-
magnetic theory gives the result that Z′

p and Z′
q take

the form [0, Z′
xyp

; Z′
yxp

, 0] and [0, Z′
xyq

; Z′
yxq

, 0]. The quan-

tities (Z′
xyp

+ iZ′
xyq

) and (Z′
yxp

+ iZ′
yxq

) are then known

as the E-pol and B-pol impedances or vice-versa (and
sometimes as the TE and TM impedances).

The CBB tensor A′ then takes the form

A′ =
[
Z′
yxq

/Z′
yxp

0

0 Z′
xyq

/Z′
xyp

]
(33)

which is seen to be diagonal, with the A′
xx and A′

yy ele-
ments taking thevaluesof the tangents of the alongand
across-strike phase angles, which for 2D situations are
defined as arctan(Z′

xyq
/Z′

xyp
) and arctan(Z′

yxq
/Z′

yxp
).

It is the search for such a 2D geologic strike direction,
in the present instance revealed by the rotated CBB ten-
sor showing a diagonal form, which drives not only the
present CBBmethod but also, quite generally, methods
such as that of Bahr (1988) which seek a direction for
regional geologic strike.

Alsoquitegenerally,whenobserveddatadonot con-
form to the 2D ideal for some particular rotation direc-
tion, “closest” or in some sense “best fitting” 2D strike
directions may be sought, according to certain criteria.

However, on the basis of single-station horizontal-
field MT data alone, there is always an ambiguity in a
determination of geologic strike, which may be either
along strike or across strike.
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4. The CBBmatrix as a fictitious operator and
its representation by two ellipses

4.1. The first ellipse

The CBB matrix does not actually operate on any mea-
surable quantity to give another measurable quan-
tity, but it is implicitly imagined to do so by Caldwell,
Bibby, and Brown (2004, 469) and Bibby, Caldwell, and
Brown (2005, 930); andalsobyWeidelt andChave (2012,
135) and Booker (2014). Such hypothetical models pro-
vide a geographic reference frame for the geometric
representation of the CBB matrix by an ellipse.

Thus imagining that some vector quantity V is
related to another vector quantity v by

V = Av (34)

it is then possible to represent a number of the char-
acteristics of this equation (and so of matrix A) by
conic sections, and in particular by ellipses. This point
is demonstrated generally, for example, by Nye (1957),
and for MT in particular by Lilley (1976). Nye refers to
the figures as representation quadrics, with radial arms
of a particular length and in a particular direction. Note
however that Nye (and Lilley) are dealing with measur-
able (not imagined) quantities as, in his earlier work, is
Bibby (1986).

Now further imagine that Equation (34) applies in
the same geographic space and relative to the same
measurement axes as Equation (1). That is,

[
Vx
Vy

]
=

[
Axx Axy
Ayx Ayy

] [
vx
vy

]
(35)

and take, as a numeric example, A = [2.44, 1.61; 0.50,
1.20] to give

[
Vx
Vy

]
=

[
2.44 1.61
0.50 1.20

] [
vx
vy

]
(36)

where the source of this numeric example is given in
Section 13 below.

Then consider a V signal of amplitude V and bearing
θ to accompany a v signal of amplitude v and bearing
φ. Equation (35) becomes

[
V cos θ

V sin θ

]
=

[
Axx Axy
Ayx Ayy

] [
v cosφ

v sinφ

]
(37)

which gives

V2 = v2[(A2xx + A2yx) cos
2 φ + (A2xy + A2yy) sin

2 φ

+ (AxxAxy + AyxAyy) sin 2φ] (38)

Then if say φ is varied through 2π while the amplitude
of v is adjusted so that the amplitude ofV is maintained
at unity, vx = v cosφ, vy = v sinφ and Equation (38)

becomes

(A2xx+A2yx)v
2
x+(A2xy+A2yy)v

2
y+2(AxxAxy+AyxAyy)vxvy = 1

(39)

which may be expressed

[vx vy]ATA
[
vx
vy

]
= 1 (40)

and is the familiar equation for an ellipse when vx
and vy are plotted appropriately. It can be seen that
Equation (39) has the form

ax2 + 2bxy + cy2 = 1 (41)

where a = (A2xx + A2yx), b = (AxxAxy + AyxAyy) and c =
(A2xy + A2yy). For the current example,a = 6.20,b = 4.53
and c = 4.03.

Equation (39) may thus be expressed

[vx vy]
[
a b
b c

] [
vx
vy

]
= 1 (42)

and, for the example,

[vx vy]
[
6.20 4.53
4.53 4.03

] [
vx
vy

]
= 1 (43)

Note that the matrix in Equation (42) is symmetric, as
is the numerical example in Equation (43); whereas the
matrix in Equation (35) in general is not symmetric (just
as the numerical example in Equation (36) is not sym-
metric).

In Equation (42) thematrix [a, b; b, c], being symmet-
ric, may be diagonalised by eigenanalysis to give

[vx vy]
[
Qxx Qxy

Qyx Qyy

] [
λ1 0
0 λ2

] [
Qxx Qyx

Qxy Qyy

] [
vx
vy

]
= 1

(44)

where λ1 and λ2 are the eigenvalues of [a, b; b, c]
and the orthonormal eigenvectors (of unit length and
perpendicular to each other) are [Qxx Qyx]T for λ1 and
[Qxy Qyy]T for λ2.

For the example,

[vx vy]
[
0.785 −0.619
0.619 0.785

] [
9.78 0
0 0.461

]

×
[
0.785 0.619

−0.619 0.785

] [
vx
vy

]
= 1 (45)

so that λ1 = 9.78 with [Qxx Qyx]T = [0.785 0.619]T,
and λ2 = 0.461 with [Qxy Qyy]T = [−0.619 0.785]T.

The ellipse then has semi-axes of magnitude λ1
−1/2

(= 0.320) and λ2
−1/2 (= 1.47). The directions of the

ellipse axes are those of the eigenvectors, at rota-
tions arctan(Qyx/Qxx) (= 38.3◦) and arctan(Qyy/Qxy) (=
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Figure 2. Three ellipse diagrams for the example matrix [2.44, 1.61; 0.50, 1.20], and a fourth diagram for its eigenvectors. North
(bearing zero) is to the top of the figure. (a) The first ellipse derived in this paper. The major axis is at bearing−51.7◦ and the minor
axis is at bearing 38.3◦. (b) The second ellipse derived in this paper, and the traditional CBB ellipse. The major axis is at bearing 21.3◦
and the minor axis is at bearing −68.7◦. (c) The two ellipses plotted together, with the first ellipse dashed. The two major axes fail
orthogonality by 17.0◦, which CBB refers to as the “skew” angle. (d) The results of eigenanalysis of the example matrix (solid lines)
and of the inverse of that matrix (dashed lines), see Section 6 below. The eigenvectors also fail orthogonality, by 26.9◦. In this figure,
all ellipses are drawn with the samemajor axis length. Thus regarding axis length, only the ratio of the major and minor axis lengths
is significant. Note that for V = Avwith V and v as polar vectors, v describing the ellipse in (a) results in V describing a circle; and v
describing a circle results in V describing the ellipse in (b).

−51.7◦) from the original XOY (and vx O vy) axes, as can
be seen by writing Equation (44) as

[v′
x v′

y]
[
λ1 0
0 λ2

] [
v′
x
v′
y

]
= 1 (46)

where v′
x = vx cos τ + vy sin τ and v′

y = −vx sin τ +
vy cos τ with τ = 38.3◦, that is

λ1v
′
x
2 + λ2v

′
y
2 = 1 (47)

This ellipse is shown in Figure 2(a).

4.2. The second ellipse

Given the hypothetical nature of Equation (34), it is
equally valid to consider a second figure, drawn by
a radial arm proportional to V and plotted at bear-
ing θ with the magnitude of v maintained at unity.
Equation (34) is written as

v = A−1V (48)

where, A being invertible, its inverse is given by

A−1 = 1
detA

[
Ayy −Axy

−Ayx Axx

]
(49)

Equation (37) then becomes

[
v cosφ

v sinφ

]
= 1

detA

[
Ayy −Axy

−Ayx Axx

] [
V cos θ

V sin θ

]
(50)

and[
v cosφ

v sinφ

]
= 1

2.123

[
1.20 −1.61

−0.50 2.44

] [
V cos θ

V sin θ

]
(51)

in the current example.

Equation (38) becomes

v2(detA)2 = V2[(A2yy + A2yx) cos
2 θ + (A2xy + A2xx) sin

2 θ

− (AyyAxy + AyxAxx) sin 2θ ] (52)

and if now v is maintained at unit amplitude and
the amplitude of V is plotted at angle θ as θ is var-
ied through 2π , remembering Vx = V cos θ and Vy =
V sin θ the equation is given

(A2yy + A2yx)V
2
x + (A2xy + A2xx)V

2
y

− 2(AyyAxy + AyxAxx)VxVy = (detA)2 (53)

Equation (53) may again be expressed in the form of
Equation (42)

[Vx Vy]
[
a b
b c

] [
Vx
Vy

]
= 1 (54)

but now a = (A2yy + A2yx)/(detA)2, b = −(AyyAxy +
AyxAxx)/(detA)2 and c = (A2xy + A2xx)/(detA)2. For the
current example, a = 0.375, b = −0.699, c = 1.90 and
eigenanalysis as before now gives

[Vx Vy]
[
0.363 0.931

−0.931 0.363

] [
2.17 0
0 0.102

]

×
[
0.363 −0.931
0.931 0.363

] [
Vx
Vy

]
= 1 (55)

Thus again the equivalent of Equation (46) is reached as

[V ′
x V ′

y]
[
λ1 0
0 λ2

] [
V ′
x

V ′
y

]
= 1 (56)

but with different eigenvalues and eigenvectors than
before.

Now for the numerical example, λ1 = 2.17 with
[Qxx Qyx]T = [0.363 − 0.931]T, and λ2 = 0.102 with
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[Qxy Qyy]T = [0.931 0.363]T. The ellipse then has semi-
axesofmagnitudeλ1

−1/2 (= 0.679) andλ2
−1/2 (= 3.13).

The directions of the ellipse axes are those of the eigen-
vectors, at rotations arctan(Qyx/Qxx) (= −68.7◦) and
arctan(Qyy/Qxy) (= 21.3◦) from the original XOY (and
Vx O Vy) axes. This ellipse is shown in Figure 2(b).

Notehowever that though theeigenvalues arediffer-
ent, they are in the same ratio as before (for the exam-
ple, 9.78/0.461 = 21.2 and 2.17/0.102 = 21.2). The two
ellipses thus have the same shape but are oriented dif-
ferently, as their eigenvectors are different. Thus gener-
ally the same ellipse is given, but at a different rotation
angle, as can be seen by comparing Figure 2(a,b).

The procedure set by Caldwell, Bibby, and
Brown (2004), which produces Figure 2(b), is gener-
ally followed by practitioners. However realising that
another ellipse can be drawn, generally at a differ-
ent orientation as in Figure 2(a), should help empha-
sise the nature of phase tensor interpretations. Thus
Figure 2 explores in (c) a further possible representa-
tion of the CBB matrix on a map. Plotting both ellipses
demonstrates quantitatively (by any evident lack of
their orthogonality) the departure of the CBB matrix
from 2-dimensionality. Presenting both ellipses also
helps emphasise, especially in the case of 2D data, the
ambiguity of the geologic strike which can be in the
direction of either the major axis or the minor axis of a
CBB ellipse. Without both ellipses plotted, there may a
tendency for the viewer to take a “default” (but unjus-
tified) view that it is always the major axis of a single
plotted ellipse which shows the strike direction.

4.3. Note onWeidelt and Chave (2012)

Note that A−1 is not the “alternative definition of the
phase tensor” mentioned by Weidelt and Chave (2012,
134). In the notation of the present paper, the alterna-
tive phase tensor of Weidelt and Chave (2012) would
be ZqZp−1. In contrast, A−1 as investigated above is
[Zp−1Zq]−1, that is Zq

−1Zp.

5. The singular value decomposition of the
CBBmatrix

The singular value decomposition (SVD) of a matrix is
one of the most powerful and basic tools of linear alge-
bra. Applying it to the 2 × 2 CBB matrix produces the
diagonalisation

[
Axx Axy
Ayx Ayy

]
= R(θ1)

[
w1 0
0 w2

]
RT (θ2) (57)

Upon expanding Equation (57), the four individual
equations for Axx , Axy , Ayx and Ayy obtained may be
solved to give the following solutions for θ1, θ2, w1 and

w2:

θ1 + θ2 = arctan
[
Axy + Ayx
Ayy − Axx

]
(58)

θ1 − θ2 = arctan
[
Axy − Ayx
Axx + Ayy

]
(59)

w1 + w2 = (Axy − Ayx) sin(θ1 − θ2)

+ (Axx + Ayy) cos(θ1 − θ2) (60)

and

w1 − w2 = (Axx − Ayy) cos(θ1 + θ2)

− (Axy + Ayx) sin(θ1 + θ2) (61)

For the example matrix [2.44, 1.61; 0.50, 1.20] the above
equations give θ1 = −21.3◦, θ2 = −38.3◦, w1 = 3.13
andw2 = 0.679.

Also more formally, see Strang (2006, 331), in
Equation (57) the columnsofR(θ1)will be the (orthonor-
mal) eigenvectors of AAT . The columns of R(θ2), and
thus the rows ofRT (θ2), will be the (orthonormal) eigen-
vectors of ATA. The diagonal entries w1 and w2 are the
singular values of A, and are also the square roots of the
eigenvalues of both AAT and ATA.

For the example the eigenvectors of AAT are [0.932,
0.363]T and [−0.363, 0.932]T, while the eigenvectors of
ATA are [0.785, 0.619]T and [−0.619, 0.785]T. For both
cases, the eigenvalues are 9.78 and 0.461 so that the
singular valuesw1 andw2 will be 3.13 and 0.679 respec-
tively.

Thus for the example, Equation (57) becomes[
Axx Axy
Ayx Ayy

]
=

[
0.932 −0.363
0.363 0.932

] [
3.13 0
0 0.679

]

×
[
0.785 0.619

−0.619 0.785

]
(62)

which can be written[
Axx Axy
Ayx Ayy

]
= R(−21.3◦)

[
3.13 0
0 0.679

]
RT (−38.3◦)

(63)

Substituting Equation (57) into Equation (35) gives[
Vx
Vy

]
= R(θ1)

[
w1 0
0 w2

]
RT (θ2)

[
vx
vy

]
(64)

Thus

R(−θ1)

[
Vx
Vy

]
=

[
w1 0
0 w2

]
R(θ1 − θ2)R(−θ1)

[
vx
vy

]
(65)

and so [
V ′
x

Vy ′

]
=

[
w1 0
0 w2

]
R(θ1 − θ2)

[
v′
x
v′
y

]
(66)

where V ′
x , V

′
y , v

′
x and v′

y are the components of V and
v in a coordinate system rotated angle −θ1, that is
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[
V ′
x

V ′
y

]
= R(−θ1)

[
Vx
Vy

]
and

[
v′
x
v′
y

]
= R(−θ1)

[ vx
vy

]
, follow-

ing the form of Equation (12).
In Equation (66) if v is kept at unit amplitude and

allowed to vary in direction φ in the rotated axes, then[
v′
x
v′
y

]
=

[
cosφ
sinφ

]
and Equation (66) becomes

[
V ′
x

Vy ′

]
=

[
w1 0
0 w2

]
R(θ1 − θ2)

[
cosφ

sinφ

]
(67)

Remembering that sin2(φ − θ1 + θ2) + cos2(φ − θ1 +
θ2) = 1 the equation of an ellipse is reached

V ′
x
2

w1
2 + V ′

y
2

w2
2 = 1 (68)

where the major axis of the ellipse will be aligned with
the rotated V ′

x axis, i.e. at bearing −θ1 to the original
direction of north.

For the example, θ1 = −21.3◦, w1 = 3.13 and w2 =
0.679. The ellipse is the secondellipse of Section 4.2, and
is depicted in Figure 2(b).

If however in Equation (64) the axes are rotated by
angle θ2, and a V of unit amplitude is considered to
occur at a varying direction θ in the rotated axes, then

now
[
V ′
x

V ′
y

]
= [

cos θ
sin θ

]
and in place of Equation (67) we

have

R(−θ1 + θ2)

[
cos θ

sin θ

]
=

[
w1 0
0 w2

] [
v′
x
v′
y

]
(69)

leading to the ellipse equation

v′
x
2

(1/w1)2
+ v′

y
2

(1/w2)2
= 1 (70)

This ellipse will have its minor axis in the direction of
−θ2. For the example, θ2 = −38.3◦, and the ellipse is
that depicted in Figure 2(a).

6. Eigenanalysis of the CBBmatrix

For comparison, the results of the direct eigenanalysis
of the matrix [2.44, 1.61; 0.50, 1.20] are also shown in
Figure 2(d). As explained in Lilley (2016), in this analysis
solutions are sought for the equation which expresses
V and v to be parallel:

V = ζv (71)

where ζ is a real scalar, and so

(A − ζ I).v = 0 (72)

A direction in which V and v are parallel is an eigenvec-
tor ofA, andquantity ζ is the corresponding eigenvalue.

The examplematrixA is not symmetric, so the eigen-
vectors are not orthogonal. However, the eigenvalues

are real and different because

(Axx + Ayy)
2 + 4(AxyAyx − AxxAyy) > 0 (73)

and both are positive as the trace (trA) and determinant
(detA) of A are both positive, having values 3.64 and
2.12 respectively.

The results obtained by standard eigenanalysis
(Strang, 2006) are that there is an eigenvalue of 2.91 at
bearing 16.3◦ (or equivalently −163.7◦) together with
an eigenvalue of 0.73 at bearing 133.2◦ (or equivalently
−46.8◦). These eigenvectors are shown in Figure 2(d) as
solid lines.

For A−1 there is an eigenvalue of 1.37 (the reciprocal
of 0.73) at bearing 133.2◦ (or −46.8◦), and an eigen-
valueof 0.344 (the reciprocal of 2.91) at bearing16.3◦ (or
−163.7◦). These eigenvectors forA−1 are also shown, as
dashed lines, in Figure 2(d).

In Figure 2(d) the eigenvectors of A−1 have been
drawn at a scale which gives them the same lengths
as the corresponding eigenvectors of A, so that the
figure does not suggest either to be the more likely
strike direction. This convention is followed throughout
the present paper when eigenvalues of A and A−1 are
presented together.

7. Eigenanalysis and Bahr’s regional strike
estimates

There is a fundamental link between the CBBmatrix and
the analysis of Bahr (1988) in that direct eigenanalysis
of the CBB matrix produces Bahr’s regional strike direc-
tions. This result may be seen algebraically by taking
Equation (31) and again assuming Equation (34). With
the rotation of axes Equation (34) becomes

V′ = A′v′ (74)

of component equations

V ′
x = A′

xxv
′
x + A′

xyv
′
y (75)

and

V ′
y = A′

yxv
′
x + A′

yyv
′
y (76)

which expand to

V ′
x = 1

Z′
xxp

Z′
yyp

− Z′
xyp

Z′
yxp

[
(Z′

yyp
Z′
xxq

− Z′
xyp

Z′
yxq

)v′
x

+ (Z′
yyp

Z′
xyq

− Z′
xyp

Z′
yyq

)v′
y

]
(77)

and

V ′
y = 1

Z′
xxp

Z′
yyp

− Z′
xyp

Z′
yxp

[
(−Z′

yxp
Z′
xxq

+ Z′
xxp

Z′
yxq

)v′
x

+ (−Z′
yxp

Z′
xyq

+ Z′
xxp

Z′
yyq

)v′
y

]
(78)

If a rotation direction is sought for which the resultant
V′ has only a component V ′

x and is parallel to an applied
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v′ which has only a component v′
x (the definition of an

eigenvector, see Equation (71)) then the condition is
needed that V ′

y = 0 for v′
y = 0, i.e.

A′
yx = 0 (79)

or, expanding A′
yx ,

1
Z′
xxp

Z′
yyp

− Z′
xyp

Z′
yxp

(−Z′
yxp

Z′
xxq

+ Z′
xxp

Z′
yxq

) = 0 (80)

For Z′
xxp

Z′
yyp

− Z′
xyp

Z′
yxp

�= 0 Equation (80) gives

Z′
xxp

Z′
yxp

=
Z′
xxq

Z′
yxq

(81)

which is exactly the equation of Bahr (1988, 123, eq. 9)
by which the regional strike directions of 2D or near-2D
MT data are determined. Thus the eigenvectors of the
CBBmatrix are the two regional strike directions of Bahr.
For locally distorted but otherwise regionally 2D MT
data, the Bahr directions will be along and across strike.
For 3D data, the strike directions will not be orthogo-
nal butmay be taken as approximately along and across
strike for the data regarded as being approximately 2D
regionally.

The equation which Bahr (1988) derives from
Equation (81) above is (using A, B and C for Bahr’s A,
B and C)

−A sin(2α) + B cos(2α) + C = 0 (82)

of solutions

tanα1,2 = ±[(B + C)/(B − C)

+ (A/(B − C))2]1/2 − A/(B − C) (83)

In this paper now distinguish these two solutions as

tanα1 = +[(B + C)/(B − C)

+ (A/(B − C))2]1/2 − A/(B − C) (84)

and

tanα2 = −[(B + C)/(B − C)

+ (A/(B − C))2]1/2 − A/(B − C) (85)

Returning to Equation (78) above, the eigenvector con-
dition is also met if a rotation direction is sought for
which the resultant V′ has component V ′

y only and is
parallel to an applied v′ which has component v′

y only.
Then the condition is needed that V ′

x = 0 for v′
x = 0, i.e.

A′
xy = 0 (86)

The condition then required is that

Z′
yyp

Z′
xyp

=
Z′
yyq

Z′
xyq

(87)

which in the context of his own analysis is noted by
Bahr (1988) but not pursued further there.

Figure 3. The eight possible directions of a rotated OX ′ axis
as given by the analysis of Bahr (1988) for the CBB matrix
[2.44, 1.61; 0.50, 1.20]. α1 = 16.3◦, α2 = 133.2◦, α3 = 43.2◦
and α4 = 106.3◦. Note that the α1 and α4 directions are per-
pendicular, as are the α3 and α2 directions.

However now note that Equation (87) leads to

−A sin(2α) + B cos(2α) − C = 0 (88)

which, differing in the sign of its third term when com-
pared to Equation (82), leads to two further solutions for
α, notably

tanα3 = +[(B − C)/(B + C)

+ (A/(B + C))2]1/2 − A/(B + C) (89)

and

tanα4 = −[(B − C)/(B + C)

+ (A/(B + C))2]1/2 − A/(B + C) (90)

Thus the Bahr analysis gives four solutions for α. They
are not however independent; some algebra based on
Equations (84) and (90) shows that

tanα1 tanα4 = −1 (91)

and thus α4 = α1 ± π/2. Similar application of Equa-
tions (85) and (89) shows that

tanα2 tanα3 = −1 (92)

and thus α3 = α2 ± π/2.
The four solutions for α thus give eight possible

directions for an OX ′ axis, rotated as in Figure 1, to
be aligned with a regional geologic strike. For the cur-
rent example, matrix [2.44, 1.61; 0.50, 1.20], these direc-
tions are shown in Figure 3. As expected, α1 and α2

can be seen to be the directions of the eigenvectors in
Figure 2(d), togetherwith their “cross-directions”α4 and
α3.

In the ideal case of 2D regional structure α1 = α3,
α2 = α4 and Bahr’s C = 0. The number of solutions forα
reduces to two at right angles (along and across strike),
and the number of possible directions for a rotated OX ′
axis reduces to four.

Returning to Figure 2, part (d) is now seen to have
an extra significance. It is that the eigenvectors plotted
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show the directions of closest 2D strike according to the
Bahr (1988) method.

FromEquation (75) it can also be seen that the eigen-
value (call it ζ1) obtained for v′

y = 0 has the value of A′
xx

evaluated for the appropriate rotation of axes. Thus

ζ1 =
Z′
yyp

Z′
xxq

− Z′
xyp

Z′
yxq

Z′
xxp

Z′
yyp

− Z′
xyp

Z′
yxp

(93)

is the coefficient of the linear relationship between V ′
x

and v′
x (with all terms evaluated for the appropriate

rotation of axes). For the current example, the angle of
rotation of axes is 16.3◦, and ζ1 = 2.91 (the value of A′

xx).
Also, fromEquation (76) it canbe seen that the eigen-

value (call it ζ2) obtained for v′
x = 0 has the value of A′

yy
evaluated for the appropriate rotation of axes. Thus

ζ2 =
−Z′

yxp
Z′
xyq

+ Z′
xxp

Z′
yyq

Z′
xxp

Z′
yyp

− Z′
xyp

Z′
yxp

(94)

is the coefficient of the linear relationship between V ′
y

and v′
y (with all terms evaluated for the appropriate

rotation of axes). For the current example, the angle of
rotation of axes is 133.2◦, and ζ2 = 0.73 (the value of
A′
yy).
With reference to Figure 3, the angle (α3 − α1) is

an obvious measure of the departure of the data from
being 2D. This angle is called γ by Weaver, Agarwal,
and Lilley (2003, 2006), and ε by Lilley (2018). The angle
(α1 − α3) is called “(θ1 − θ2)” by Weaver, Agarwal, and
Lilley (2000) (in the notation of their paper) where it
is also the quantity arcsin I7. Lilley (2018) draws atten-
tion to the contrast of Bahr (1988) working with Equa-
tions (84) and (85) above, andWeaver, Agarwal, and Lil-
ley (2000) working with Equations (84) and (89) above,
so that the “(θ1 − θ2)” values of Weaver, Agarwal, and
Lilley (2000) differ by 90◦ from the (α1 − α2) values of
Bahr (1988).

Bahr (1988) himself works with the value of his C to
form various skew parameters, but they do not take the
formof angleswhich can be identified on a diagram like
Figure 3.

8. Mohr diagram for the CBBmatrix

With reference to Equation (29), the matrix [Axx ,Axy ;
Ayx ,Ayy] upon rotation of axes by angle θ ′ as in Figure 1
changes to [A′

xx ,A
′
xy ;A

′
yx ,A

′
yy] according to[

A′
xx A′

xy
A′
yx A′

yy

]
= R(θ ′)

[
Axx Axy
Ayx Ayy

]
R(−θ ′) (95)

Expanding Equation (95) shows that the elements of the
two matrices A and A′ are related by the equations

A′
xx = (Axx + Ayy)/2 + C sin(2θ ′ + β) (96)

A′
xy = (Axy − Ayx)/2 + C cos(2θ ′ + β) (97)

A′
yx = −(Axy − Ayx)/2 + C cos(2θ ′ + β) (98)

and

A′
yy = (Axx + Ayy)/2 − C sin(2θ ′ + β) (99)

where

C = 1
2 [(Axx − Ayy)

2 + (Axy + Ayx)
2]
1/2

(100)

(taking the positive square root) and β is defined by

tanβ = (Axx − Ayy)/(Axy + Ayx) (101)

taking the signs of (Axx − Ayy) and (Axy + Ayx) into
account to give β a range of −π to +π .

It is also useful to define an angle μ as

tanμ = (Axy − Ayx)/(Axx + Ayy) (102)

again taking the signs of (Axy − Ayx) and (Axx + Ayy)
into account to giveμ a range of−π to+π ; and then to
define a (positive) quantity ZL as

ZL = 1
2 [(Axx + Ayy)

2 + (Axy − Ayx)
2]
1/2

(103)

and further to define an auxiliary angle β ′ (of range −π

to +π ) as

tanβ ′ = (A′
xx − A′

yy)/(A
′
xy + A′

yx) (104)

Then

θ ′ = (β ′ − β)/2 (105)

Note that (A′
xx + A′

yy), (A
′
xy − A′

yx),C and ZL are indepen-
dent of θ ′, and so are rotational invariants.

It is evident from Equations (96) and 97, squared and
added to give

[A′
xx − (Axx + Ayy)/2]2 + [A′

xy − (Axy − Ayx)/2]2 = C2

(106)

that plotting A′
xx against A

′
xy as the axes are rotated as

in Figure 1 defines a circle, known (with its axes) as a
Mohr diagram. The centre of the circle is at the point
A′
xx = (Axx + Ayy)/2, A′

xy = (Axy − Ayx)/2 and the radius
is C. The diagram for the current example is shown in
Figure 4, with C, β , μ, ZL, β ′ and θ ′ all marked (the val-
ues of the first four are respectively 1.22, 30.4◦, 17.0◦ and
1.90).

Figure 4 also shows angle λA, defined by

sin λA = C/ZL (107)

which is ameasure of the two-dimensionality of the CBB
matrix, and has the value 40.0◦ for the current example.
For 1D data, λA = 0.

It is further evident from Equations (98) and (99),
squared and added to give

[A′
yy − (Axx + Ayy)/2]2 + [A′

yx + (Axy − Ayx)/2]2 = C2

(108)

that plotting A′
yy against A′

yx as the axes are rotated
also defines a circle. The centre of this circle is at the
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Figure 4. Mohr diagram for the CBB matrix [2.44, 1.61; 0.50,
1.20]. Note that μ is reckoned positive clockwise from the ver-
tical axis. The circle crosses the A′

yy axis for A
′
yy values of 0.73

and 2.91. The two eigenvector directions are given by the two
values of θ ′ which take the general point marked with a star to
theseA′

yy values of 0.73 and2.91 respectively. These eigenvector
directions are also the Bahr (1988) directions for regional strike
(or across strike). The A′

xx values, of the points where the circle
crosses the A′

yy axis, are 2.91 and 0.73 respectively. These val-
ues are the eigenvalues of the matrix, giving as they do the A′

xx
values for the two points on the circle where A′

yx is zero.

point A′
yy = (Axx + Ayy)/2, A′

yx = −(Axy − Ayx)/2 and
the radius of the circle is again C. Thus axes for A′

yy
and A′

yx can be added to the Mohr diagram for A′
xx

and A′
xy as shown in Figure 4. The centre of the cir-

cle, at A′
xx = (Axx + Ayy)/2 and A′

yy = (Axx + Ayy)/2 will
be halfway between the A′

xy and A′
yx axes. Similarly,

because the centre is at A′
xy = (Axy − Ayx)/2 and A′

yx =
−(Axy − Ayx)/2 it will be halfway between the A′

xx and
A′
yy axes as they are drawn.
On this figure, nowwith all axes shown, values of A′

xx ,
A′
xy , A

′
yx and A′

yy can be read off together for any angle
of axes rotation.

8.1. SVD analysis

Now referring back to the SVD analysis, note the con-
nections between w1, w2, θ1 and θ2 and the Mohr dia-
gram parameters C, β , μ and ZL to see that the Mohr
diagram displays the SVD results w1 andw2 as

w1 = ZL + C (109)

and

w2 = ZL − C (110)

Figure 5. Mohr diagram for the CBB matrix [2.44, 1.61; 0.50,
1.20] as in Figure 4, now with the singular values w1 (3.13) and
w2 (0.679) shown. Also the angles θ1 and θ2 from SVD anal-
ysis are shown (with θ1 = −21.3◦ and θ2 = −38.3◦, so that
θ1 − θ2 = 17.0◦ and−θ1 − θ2 = 59.6◦).

and the SVD angles θ1 and θ2 as

μ = (θ1 − θ2) (111)

and

β = π/2 + (θ1 + θ2) (112)

Then to Figure 4 can be added the SVD valuesw1,w2, θ1
and θ2 (respectively 3.13, 0.679, −21.3◦ and −38.3◦) as
shown in Figure 5.

8.2. Eigenanalysis

The eigenanalysis results are also shown clearly on the
Mohr diagram. As discussed in Sections 6 and 7, for a
unit v′ vector in the x′ direction the eigenvector con-
dition is that V′ shall also be in the x′ direction, so that
A′
yx shall be nil as in Equation (79). This latter condition

is met at the two points where the circle intersects the
A′
yy axis, and is clear for example on the Mohr diagram

shown in Figure 4. The directions of the two eigenvec-
tors are thus displayed, as the two values of θ ′ appro-
priate for the intersection of the circle with the A′

yy axis
(at the points marked on the A′

yy axis as 0.73 and 2.91
respectively).

The corresponding eigenvalues, as shown in
Section 7, will be the values of A′

xx at those points on the
circlewhereA′

yx is zero. TheseA
′
xx values, of 2.91 and0.73

respectively, are marked on the A′
xx axis in Figure 4.

Thus the eigenvector for the direction marked A′
yy =

0.73 has as its eigenvalue the A′
xx value for A′

yy = 0.73,
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which is A′
xx = 2.91. Similarly the eigenvector for the

direction marked A′
yy = 2.91 has as its eigenvalue the

A′
xx value for A

′
yy = 2.91, which is A′

xx = 0.73.

8.3. The analysis of Bahr (1988)

In fact a Mohr diagram for the CBB matrix gives a com-
prehensive depiction of the Bahr (1988) analysis. Some
algebra based on the equations of Bahr (1988, 123,
above eq. 11) shows that

A = 2(−ZxxpZyyq + ZyypZxxq − ZxypZyxq + ZyxpZxyq)

(113)

B = 2(ZxxpZyxq + ZyypZxyq − ZxypZyyq − ZyxpZxxq)

(114)

and

C = 2(ZxxpZyxq + ZxypZyyq − ZyxpZxxq − ZyypZxyq)

(115)

Reference to Equation (31) shows that Bahr’sA,B and C
may thus be expressed

A = 4 det Zp
(Axx − Ayy)

2
(116)

B = 4 det Zp
(Axy + Ayx)

2
(117)

and

C = 4 detZp
(Ayx − Axy)

2
(118)

Lengths of (Axx − Ayy)/2, (Axy + Ayx)/2 and (Ayx −
Axy)/2 are evident on aMohr diagram. Figure 4 is repro-
duced in Figure 6 with these quantities marked as kA,
kB and kC respectively, where k denotes the constant
(4 det Zp)−1.

From inspection of Figure 6 the condition for the
circle to intersect the A′

xx and A′
yy axes is seen to be

A2 + B2 > C2 (119)

which is also the condition for real values of α to be
given by the solution of Equation (83).

It is also clear fromFigure 6 thatwhenC = 0, the Bahr
condition for an ideal 2D regional structure, the centre
of the circle will move to lie on the A′

xx axis. The two
Bahr α directions are indeed then at right angles, and
agree with the SVD results of the CBB analysis for strike
direction.

Situations in Figure 6 where the circle just touches
the A′

xx and A′
yy axes, or does not intersect them at all,

are discussed in a general context in Lilley (2016). In
the latter case there are no real eigenvectors, and the
method can not be used to give “closest 2D strike”. The
conclusion to be drawn is that the data are far from
approximately 2D.

Figure 6. Mohr diagram for the CBB matrix [2.44, 1.61; 0.50,
1.20] showing the Bahr A, B and C quantities marked as kA,
kB and kC where k = (4 detZp)−1.

9. Use as a “dimensionality tool”

As first advocated by CBB, and employed by many oth-
ers since, a primeutility of the SVDexpressionof theCBB
matrix lies in its relevance as a “dimensionality tool”.

As will be shown below, in a progression from 3D
to 2D to 1D regional structures the analysis of the CBB
matrix simplifies. Bearing such a progression in mind,
the general 3D case is frequently interpreted as giving
some indication of its “closest 2D” case (defined in some
sense).

Figure 7 combines the SVDellipses, eigenvectors and
Mohr diagram for the current numerical example, and
shows how they change if this 3D example is modified
first to be 2D, then to be 1D.

9.1. The 3D case

Figure 7(a) combines Figure 2(c) and Figure 2(d) with
the essential parts of Figure 5. The major axes of the
two ellipses depart from orthogonality by the angle μ

(= 17◦), which can be seen in the Mohr diagram as the
measure by which the centre of the circle is displaced
from the A′

xx axis. This angle of 17
◦ is a single quantita-

tive measure of the 3D (as opposed to 2D) nature of the
CBB tensor.

The concept of a “best 2D strike direction” was
introduced above in Section 7 in the context of the
Bahr (1988) analysis. Bahr’smethod, developed for ideal
2D data, may also be applied to 3D data to test whether
an “approximate 2D strike direction” is found.

The interpretation approachofCBB is similar. For true
2D data (see the following section) the axes of an ellipse
as in Figure 2(b) will be along and across strike; thus for
“approximately 2Ddata” the axesof theellipse are taken
to give an “approximate strike”.
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Figure 7. Column (a) shows the general 3D case. Column (b) shows the simplifications which occur for 2D. Note that all estimates
of strike direction are now the same. Column (c) then shows the further simplifications or characteristics of a 1D case. The concept
of geologic strike is no longer relevant. Note that for a uniform half-space, for which the phase is π/4 for all orientations of the MT
observing axes, the point plotted in (c) would be at the value of unity on the A′

xx axis, because tanπ/4 = 1. Eigenvectors are not
given for case (c), as for this case there are no preferred directions (every horizontal direction satisfies the criteria for an eigenvector).
Similarly the ellipses have become circles, without any preferred axis directions.

The supplementary ellipse as in Figure 2(a) is relevant
here as its axes also, for true 2D data, will be along and
across strike. Thus for “approximately 2D data” the axes
of this supplementary ellipse also may be taken to give
an “approximate strike”. Then, as the axes directions of
the two ellipses are different, failing orthogonality by
17◦ as is evident in column (a) of Figure 7, an indica-
tion of a range in the “approximate strike direction” is
obtained.

Similarly for true 2D data, the eigenvectors of
a CBB tensor lie along and across strike. For 3D
data, they may give approximate (but different) 2D
strikes, and by their lack of orthogonality (for the
current example, the eigenvectors fail orthogonality
by 26.9◦) indicate a range in the “approximate strike
direction”.

The singular values found, w1 (3.13) and w2 (0.679),
are taken as estimates of the tangent values of the E-pol
and B-pol phases which accompany a 2D model of the
3Ddata. Similarly, the eigenvalues found ζ1 (2.91) and ζ2

(0.73) may be taken as estimates of the tangent values
of those E-pol and B-pol phases.

9.2. The 2D case

Now in Figure 7(b) consider the case A = [2.44, 1.00;
1.00, 1.20], which is the 3D tensor depicted in Figure 7(a)
artificially modified to give a 2D example.

The two ellipses are orthogonal, demonstrating true
2D structure, and the circle in the Mohr diagram now
has its centre on the A′

xx axis. The ellipse axes now show
both the 2D strike and its 90◦ ambiguity, as this strike
may be in either of the directions which the ellipse axes
indicate.

The points of intersection of the Mohr circle with the
A′
xx axis give tangent values of the true E-pol and B-pol

phases of the MT data from which the CBB matrix was
determined (though the general ambiguity regarding
which is which remains). The ellipse axes will be in the
ratio of these two tangent values.
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Note also that the eigenvectors for the matrix are
now orthogonal, in the directions of true 2D strike and
across strike. Further note that the eigenvalues also are
the true tangent values of the E-pol and B-pol phases
of the MT data from which the matrix was notionally
determined.

It is this straightforward anduseful informationgiven
by true 2D cases, concerning E-pol and B-pol phases
which may be modelled and especially regarding 2D
geologic strike, which encourages the hope that 3D
data may be regarded as perturbed 2D data, and
approximately correct E-pol, B-pol and strike values
found accordingly.

9.3. The 1D case of a uniform half-space

Figure 7(c) presents the diagrams for the tensor A =
[1.5, 0; 0, 1.5], chosen as an ideal 1D case.

The two ellipses take the formof a single circle. There
is thus no suggestion of a strike direction, consistent
with 1D geological structure.

TheMohr diagramnow consists of just a single point,
plotted at the 1.5 value on the A′

xx axis.
Eigenvectors are not plotted, as the eigenvector con-

dition (Equation (71)) holds for every horizontal direc-
tion.

10. Interpretation of the SVD results in the
context of a choice of maximum andminimum
phases

In Figure 5 the arctan of w1 (arctan 3.13 = 72.3◦ for the
current example) is taken as themaximumphase angle,
and the arctan of w2 (arctan 0.679 = 34.2◦ for the cur-
rent example) is taken as theminimumphase angle. For
comparison, it is of interest to seehowsomeotherpossi-
ble values for “maximum”and “minimum”phaseplot on
such a Mohr diagram. Figure 8 thus extends the discus-
sionof eigenanalysis of theCBB tensorwhichwasbegun
in Sections 6, 7, 8.2 and Figure 4. The eigenvector points
in Figure 4 (A′

yy = 0.73 andA′
yy = 2.91) aremarkedCand

J in Figure 8, and the corresponding eigenvalue points
(A′

xx = 2.91 and A′
xx = 0.73) are marked F and G.

Then in Figure 8∠BKC (= 32.6◦) is twice the rotation
of 16.3◦ (see Section 6 above) to the direction of the
first eigenvector, of eigenvalue 2.91. Also reflex ∠BKJ
(= 266.4◦) is twice the rotationof 133.2◦ (as in Section 6)
to thedirectionof the secondeigenvector of eigenvalue
0.73.

In Figure 8, the points F and G where the circle cuts
the A′

xx axis not only give the eigenvalues, as described.
These points also give the values where A′

xy = 0, and so
correspond to directions for the OY ′ axis when a v′

y sig-
nal gives a V ′

y response only. In this context, the points F
andGmaybe regarded as giving a repeat eigenanalysis,
this time using the OY ′ direction.

Figure 8. Diagram showing various choices for strike direction
and maximum and minimum phases, given a CBB matrix with
3D characteristics. On the Mohr circle have been marked the
points corresponding to several candidates for “closest 2D strike
direction”. These are: (i) The Bahr directionswhich appear as the
eigenvector directions, at the points marked C, F, G and J. The
corresponding eigenvalues are candidate maximum and mini-
mum phase angles (when their arctangents are taken). (ii) The
point E marks the direction of the maximum A′

xx value, which is
a candidate for maximum phase value (taking its arctangent).
Point E also marks the direction of minimum A′

yy value. (iii) The
point I marks the direction of theminimum A′

xx value, which is a
candidate for the minimum phase value (taking its arctangent).
Point I also marks the direction of maximum A′

yy value.

To rotate the OY ′ axis to any particular direction
requires a lesser rotation (less by 90◦) than is required
to align the OX ′ axis to that direction (see Figure 1).
Thus thepoints F andGare (appropriately) diametrically
opposite points J and C in Figure 8, the angles∠JKF and
∠CKG of 180◦ corresponding to rotations of 90◦.

Using the notations α1 and α2 for the rotation of
the OX ′ axis to the directions of the first and second
eigenvectors respectively,∠CKJ is then 2(α2 − α1), and
so is a reflex angle of 233.8◦. The angle ∠CKF is then
2(α2 − α1) − π , of value 53.8◦. Angles ∠CKE and ∠EKF
are thus both (α2 − α1 − π/2) and so 26.9◦, which is the
misfit of the data to Bahr’s distorted regional 2Dmodel.
Lilley (2018) defines ε = α2 − α1 − π/2, and notes that
the invariant I7 of Weaver, Agarwal, and Lilley (2000)
is given by sin ε (though more correctly I7 = − sin ε).
Weaver, Agarwal, and Lilley (2000) arrive at this estimate
in effect via Equations (84) and (89) and their estimate of
arcsin I7 is (α1 − α3)which in their notation is “(θ1 − θ2)”.
Note that for α2 = α3 + π/2 as in Figure 3, α1 − α3 =
−ε.
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Thus the eigenvalues of the CBB tensor are also can-
didates for “maximum” and “minimum” phase values
(taking their arctangents to get actual phase angles),
with the eigenvectors (which are also the Bahr direc-
tions) being possible “closest” 2D strike directions. The
eigenvalue of 2.91 thus gives a maximum phase angle
of 71.0◦, and the eigenvalue of 0.73 a minimum phase
angle of 36.1◦.

Further, point E in Figure 8 marks the maximum
A′
xx value when the CBB tensor is rotated simply as

in Figure 1, without the SVD procedure of two sets
of axes rotating separately. Similarly point I marks the
point of minimum A′

xx . Thus E and I also give candidate
maximum and minimum phase (tangent) values, corre-
sponding to the rotation directions (they will be at right
angles) which E and I represent. In terms of the nota-
tion of Figure 4 these maximum and minimum phase
tangent values will be (Axx + Ayy)/2 + C and (Axx +
Ayy)/2 − C respectively. For the current example, these
values are 3.04 and 0.59, giving maximum and mini-
mum phase angles of 71.8◦ and 30.6◦ respectively.

Thus in Figure 8, the rotation required (of the axes
together as in Figure 1) forOX ′ to be in thedirection rep-
resented by the point E is 29.8◦ (as angle∠BKE = 59.5◦).
Similarly, the rotation required forOX ′ to be in the direc-
tion represented by the point I is 119.8◦ (as reflex angle
∠BKI = 239.5◦).

It canbe seen that point E in Figure 8gives adirection
which is in effect the arithmetic mean of the two Bahr
directions α1 and α3 (see Figure 3); while point I gives a
direction which is in effect the arithmetic mean of the
two Bahr directions α4 and α2.

When the axes are thus rotated, for OX ′ to be in the
direction represented by the point E, it can be seen that
matrix A′ will have the form

A′ =
[
(Axx + Ayy)/2 + C (Axy − Ayx)/2
−(Axy − Ayx)/2 (Axx + Ayy) − C

]
(120)

giving the values, for the current numerical example, of

A′ =
[
3.04 0.56

−0.56 0.59

]
(121)

and emphasising that while the A′
xx element has

been maximised (with the value 3.04 = tan 71.8◦), and
the A′

yy element minimised (with the value 0.59 =
tan 30.6◦), the resultant rotated matrix is not diagonal.

11. CBBmatrices with near-zero and negative
determinants

Taking the determinants of both sides of Equation (4)
gives

detA = detZq
detZp

(122)

fromwhich it is immediately seen that detAwill be pos-
itive when detZp and det Zq are either both positive or

both negative. However, detA will be negative when
detZp and det Zq are of opposite sign.

The usual situation is detZp, det Zq and detA all pos-
itive. However other cases occasionally arise perhaps
due to error, and flagging negative determinant values
may be useful as an error alert.

Quite common is the situation where, especially due
to strong local distortion, bothZp andZq are near singu-
lar, so that their determinants are near zero. In this situ-
ation, calculated determinants may be negative, simply
due to common error.

Here a fundamental strength of the CBB analysis
enters, in that the effects of even near-singular dis-
tortion tensors are avoided in Equation (10). Although
numerical determinations of Zp and Zq will involve
error, and so in cases of strong distortion it may not be
possible to distinguish det Zp and/or det Zq from zero,
as long as the distortion tensor does not have a deter-
minant of exactly zero (and in nature such a case ismost
unlikely) then this determinant cancels out between
Equations (4) and (10). Thedeterminant of thedistortion
tensor is no longer relevant (and remains unknown).

An example is given in Lilley andWeaver (2010, Figs 2
and 4), where the determinant values of the Zp and Zq
data are consistently small (shown inMohr diagrams by
the circles nearly enclosing the axes origins), whereas
Mohr diagrams for the CBB matrix data show the cir-
cles well clear of the axes origin. In quantitative terms,
the condition numbers for the former case are typically
30 and for the latter case are typically 3 (and so an
order-of-magnitude less).

In contrast to Equation (122), remembering
Equation (10)

detA = detZb
q

detZbp
(123)

and the situation now is that detAwill be positivewhen
detZb

p and det Zbq are both positive or both negative.

However detAwill be negative when detZb
p and detZbq

are of opposite sign.
Except for negative determinants arising in such

cases where strong distortion has affected both Zp and
Zq, observed data with either det Zp negative or detZq
negative are rare. This rarity suggests electromagnetic
induction takes place in the Earth in such a way as
to generally produce positive det Zp and det Zq values
only. Twoexceptions are thoseof theoceanedgeobser-
vations of Key and Constable (2011), and the continen-
tal observations of Selway, Thiel, and Key (2012). It may
be significant that in both these cases it is the quadra-
ture part det Zq which is negative; the present author is
unaware of any reported cases of negative detZp.

For cases of negative A determinants which do
arise, analysis of the CBB matrix should be approached
with great care, and much of the material of the
present papermaybe inapplicable. Caldwell, Bibby, and
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Figure 9. The Mohr diagrams for two CBB matrices [2.44, 1.61; 0.50, 1.20] (left) and [2.14, 2.00; 1.28, 0.21] (right). The latter has a
negative determinant, as shown by the circle enclosing the origin. Both matrices will generate ellipses identical to that shown in
Figure 2(b). To distinguish between the two ellipses it is necessary to declare the different signs of their “minimum phase angles”
(positive in the first case, negative in the second) or indicate that the ellipses have different directions of rotation, when they are
generated by a rotating polar unit vector.

Brown (2004, 469), Bibby, Caldwell, and
Brown (2005, 918), Moorkamp (2007) and Caldwell,
Bibby, and Brown (2007) all discuss procedures for
addressing such negative determinants. Depending on
the SVD convention followed, there should be a neg-
ative singular value or a reflected direction: this point
is discussed in Lilley (2012, 103). If the negative sign is
ignored an ellipsewill be given, but itwill be ambiguous
unless a convention is introduced for the sign of ellipse
rotation. To illustrate this point, Figure 9 shows the dif-
ferent Mohr diagrams for two different tensors which
will both generate the ellipse shown in Figure 2(b).

Regarding eigenvalues, for a negative determinant
the circle in a Mohr diagram will enclose the origin of
axes, and therewill be one negative eigenvalue andone
positive eigenvalue (Lilley, 2016, Figure 4).

It should also be noted that when det Zb
p gets small,

detA will get large, and in particular one of the CBB
parameters (the singular value w1) will get large, con-
sistent with the large value of the tangent of an angle
approaching 90◦. Following the procedure of plotting
all CBB ellipse axes so that themajor axis is of unit length
then has the effect of reducing such an ellipse to a line.
Indeed it is the infinite range of the tangent function
whichmakes it impracticable, inmany instances, to plot
the axes of a set of CBB ellipses all to the same scale.

12. A comparison of notations used, and some
other invariants of the CBB tensor

The quantities θ1, θ2, μ, w1 and w2 of the present
paper are related simply to the quantities α, β , φmin and
φmax of Caldwell, Bibby, and Brown (2004), as depicted
in Figure 10. Figure 10(c) provides an opportunity to
also include the notations J1, J2 and J3 of Weaver and

Lilley (2004) which, it can be seen in the figure, are
expressed simply in terms of the �1, �2 and �3 quan-
tities of Caldwell, Bibby, and Brown (2004). Note that
while J1 and J2 are positive quantities, J3 may be posi-
tive or negative. Weaver and Lilley (2004) also note that
the original CBB tensor can be expressed as

A = J1I + J2J + J3K (124)

where I = [1, 0; 0, 1], J = [sinβ , cosβ ; cosβ ,− sinβ]
with β as defined by Equation (101) and shown in
Figure 4, and K = [0,−1; 1, 0]. As can be seen in
Figure 10, J1, J2 and J3 are gauges for the 1D, 2D and 3D
parts respectively of theCBB tensor, andhave the values
1.8, 1.2 and 0.56 respectively for the current example.

Figure 10(d) also introduces thenotations
1 and
2

of Bibby, Caldwell, and Brown (2005). These quantities
are respectively the circle radius, and the distance from
the origin to the circle centre.

Another invariant relevant in this context is the ratio
w1/w2. This ratio is a condition number for the matrix
A, and is here given the notation κA. It has the value 4.6
for the current example. Because it is common to plot
CBB ellipses with themajor axis of length unity, and the
minor axis of length w2/w1, the minor axis thus has a
length equal to the reciprocal of the condition number.
This length appropriately reduces to zero and theellipse
becomes a straight line in the case of a singular matrix,
for which the condition number is infinite.

13. Examples of field data

The example given in this section in Figure 11 is the
MT data set over its full period range for site NQ101R in
Queensland Australia. The matrix [2.44, 1.61; 0.50, 1.20]
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Figure 10. Comparison of notations. Left-hand column: Notation as in the present paper. Right-hand column: Notation as in Cald-
well, Bibby, and Brown (2004) and see also Heise et al. (2006, Figure 1). Note that the singular values have been drawn to the same
scale. For example, �max in (b), which shows the semi-axis length of the major ellipse, has the same length as �max in (d), which
shows the singular value on the Mohr diagram. Similarly,�min in (b) has the same length as�min in (d).

examined in earlier sections of this paper is the
T = 1.07 s member of the NQ101R data set.

The data for NQ101R were analysed in the earlier
and companion paper (Lilley, 2018) but recently the
author was supplied with an amended version of these
data (s101R_edi2.dat). This amended set has formed the
basis of the present paper. For completeness and to
enable a full comparisonwith the results of Lilley (2018),
amended versions of Figures 7, 8 and 9 of Lilley (2018)
are now included here as Figures 12–14.

14. Discussion

Figure 11 thus presents the full period-range set-
ting for the numerical example [2.44, 1.61; 0.50, 1.20]
which has been used in this paper, and is the NQ101R
response for period 1.07s. The elements of matrix A

are given in panels M1–M2 and N1–N2. The two-
dimensionality indicator, angle λA, is given in panel
M3, and the three-dimensionality indicator, angle μ, in
panel N3.

Panels M4 and N4 give the “θ1 azimuth” and the “θ2
azimuth”. These azimuths are based on the θ1 and θ2

values obtained in Equations (58) and (59). It is first
remembered that it is the negatives of these values
which give the geographic bearings of the major axes
of the ellipses in Figure 2. For the plots in panelsM4 and
N4 these bearings are then constrained to lie in the first
quadrant in the case of θ1, and the second quadrant in
the case of θ2, by the addition or subtraction of multi-
ples of π/2. This addition or subtraction of multiples of
π/2 is allowed by the general ambiguity of not knowing
whether a strike direction is along strike or across strike.
Thus, for the example matrix [2.44, 1.61; 0.50, 1.20] the
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Figure 11. (a) The elements of theCBBmatrix (panelsM1,M2,N1,N2) and their analysis as described in this paper, for stationNQ101R
(edi2 data). (b) Ellipse pairs representative of periods 0.01 s, 0.1 s, 1 s, 10 s, 100 s and 1000 s, respectively. The same period-dependent
colour palette has been used as for part (a). (c) Eigenvectors for the appropriate periods are shown beneath the ellipse pairs to which
they apply. PanelsM3-M6andN3-N6present angles indegrees. All other panels present dimensionless numbers. In (b) and (c) T = 1 s
is represented by the T = 1.07 s data, see Figure 2(c,d).

θ1 value obtained of−21.3◦ gives a θ1 azimuth of 21.3◦,
and the θ2 value obtained of −38.3◦ gives a θ2 azimuth
of 128.3◦.

Panels M5 an N5 give the maximum and minimum
phase angles as obtained by SVD (the CBB method),
and panels M6 and N6 give the maximum and mini-
mum phase angles obtained by eigenanalysis. Thus M6
is similar to M5, and N6 to N5, except where M6 and N6
haveno solutions (in panel P1 the relevant circles donot
intersect the vertical axis).

Panel O5 gives the condition number w1/w2, while
panels P5, O6 and P6 give the one-, two- and three-
dimensionality gauges J1, J2 and J3, respectively. As
would be expected, the general period-dependent
behaviour of λA in panel M3 is repeated in panels O5
and O6, and that of μ in panel N3 is repeated in panel
P6.

Panel P1gives a complete set ofMohr diagrams (with
Figure 4 present among them). This panel summarises
many of the characteristics of the A data.
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Figure 12. Display and analysis by an SVD method of the MT data for the example site NQ101R (edi2 data). The data are closest
to 1D at the short period (blue) end of the spectrum, where the “near surface” apparent resistivity is of the order of 103 �m. See
text of Lilley (2018) for a description of the results shown. The units for panels A1–A4 and C3–C4 are �m, for panels A5 and B5 are
mV2 · km−2 · nT−2·s and for panels C1 and D1 are mV·km−1 · nT−1 · s1/2. Panels A6 and B6 present dimensionless numbers, and all
remaining panels present angles in degrees.

Below the panels are a set of ellipses for a represen-
tative range of periods. These ellipses have the form of
Figure 2(c), and are coloured according to the palette
adopted in the panels above.

Below the ellipses again are sets of eigenvectors for
the corresponding periods. As was remarked for panels
M6 and N6, eigenvectors are missing where an eigen-
analysis of matrix A has no solution.

A general summary of the information in Figure 11
is that the data are close to 1D at short periods. With
increasing period they becomemore 2D and 3D, simpli-
fying however to closer to 1D again as the longest peri-
ods are reached, at which stage data error causes them
to become scattered. A basic model explaining such
behaviour is a conductivity structure near the observ-
ing site which is not sensed at short periods, but which
is part of the MT inductive response at mid-periods.
Then at longperiods the effects of the structure become
purely galvanic, and are removedby the distortion anal-
ysis.

Figure 12 shows by the contrast it offers how effec-
tive the CBB matrix is in simplifying MT data. For exam-
ple the complicated phase behaviour seen in panel B1,

and as evident in panel C1 where circles intersect the
vertical axis, is now absent from panels M1–M2 and
N1–N2 and most notably from panel P1.

Another observation to be made of Figure 12 is the
similarity of the phase plots in panels D4 and D3 with
the SVD maximum and minimum phase plots in panels
M5 and N5 of Figure 11. The phases in panels D4 and
D3 result fromwhat may be thought of as SVD analyses
of the in-phase and out-of-phase parts of the basic MT
tensor separately, see Lilley (2018) and also the earlier
papers Lilley (1998a, 1998b). A further study of the the-
oretical reasons as to why the results in panels D4 and
D3 are similar to the results in panels M5 and N5 may
prove to be rewarding.

Figure 13, now in review, demonstrates the impor-
tant point that the Bahr directions α1 and α2, plotted
in panels E5 and F5, may be compared with the SVD
directions plotted respectively in panels M4 and N4 in
Figure 11. The expected similarities are evident except
for gaps in panels E5 and F5 where the condition of
Bahr (1988) is not met (Lilley, 2018) and, as pointed out
in this paper, an eigenanalysis of the CBB matrix has no
solution.
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Figure 13. Analysis of theMT data for site NQ101R (edi2 data) showing values of the invariants as functions of period T, as described
in Lilley (2018). The units for panels E1 and G1 are mV·km−1·nT−1 and for panels F1 and H1 are mV·km−1·nT−1·s1/2. Panels E6, F4,
F6 and G4 present dimensionless numbers, and the remaining panels present angles in degrees.

Figure 14. Summary of the MT data for site NQ101R (edi2 data), showing on the left the basic tensor elements plotted as functions
of period T, and on the right their representation by the set of invariants, I′1 to I

′
7, proposed as optimum in Lilley (2018). For panels

I1–I4 and J1–J4 the units are mV·km−1·nT−1 and for panel K1 the units are�m. The remaining panels present angles in degrees.
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15. Conclusions

TheCBBmatrix at theheart of the “phase tensor”maybe
subjected to various linear algebra techniques such as
SVD (Caldwell, Bibby, and Brown, 2004), eigenanalysis,
and a simple rotation of axes tomaximise andminimise
its diagonal elements.

The CBBmatrix has a particular value as a dimension-
ality indicator of the regional geology, and the ellipses
fromSVD show this information clearly, especiallywhen
plotted as a pair. Mohr diagrams also show dimension-
ality information clearly, as do plots of the eigenvectors
of a CBB matrix.

The inverse of the CBB matrix holds similar infor-
mation to the CBB matrix itself. Ellipses from the SVD
analysis of this inverse, and vectors from its eigenanal-
ysis, supplement the information from the basic CBB
matrix in a useful way.

It is a common current practice to compute a CBB
matrix, and immediately represent it as a single ellipse.
Amajor theme of the present paper is to emphasise the
distinction between these two steps, of computation
and diagramatic representation. Having taken the first
step, this paper points out that there may be value in
pausing and lookingmorewidely before taking the sec-
ond step. The eigenanalysis of a CBB matrix may yield
useful information, as may the simple rotation of the
matrix tomaximise andminimise its diagonal elements.
Further the results from analysing the matrix inverse
may also yield useful information.
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