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ABSTRACT
Oxygen isotope ratios in magnetite can be used to study the origin of iron-oxide ore deposits. 

In previous studies, only 18O/16O ratios of magnetite were determined. Here, we report triple 
O isotope data (17O/16O and 18O/16O ratios) of magnetite from the iron-oxide–apatite (IOA) 
deposits of the Yazd and Sirjan areas in central Iran. In contrast to previous interpretations of 
magnetite from similar deposits, the triple O isotope data show that only a few of the magnetite 
samples potentially record isotopic equilibrium with magma or with pristine magmatic water 
(H2O). Instead, the data can be explained if magnetite had exchanged O isotopes with fluids 
that had a mass-independently fractionated O isotope composition (i.e., MIF-O), and with 
fluids that had exchanged O isotopes with marine sedimentary carbonate rocks. The MIF-O 
signature of the fluids was likely obtained by isotope exchange with evaporite rocks of early 
Cambrian age that are associated with the IOA deposits in central Iran. In order to explain 
the triple O isotope composition of the magnetite samples in conjunction with available iron 
isotope data for magnetite from the deposits, we propose that magnetite formed from mag-
matic fluids that had interacted with evaporite and carbonate rocks at high temperatures and 
at variable water/rock ratios; e.g., magmatic fluids that had been released into the country 
rocks of a magma reservoir. Additionally, the magnetite could have formed from magmatic 
fluids that had exchanged O isotopes with SO2 and CO2 that, in turn, had been derived by the 
magmatic assimilation and/or metamorphic breakdown of evaporite and carbonate rocks.

INTRODUCTION
The formation of iron-oxide–apatite (IOA) 

deposits is much debated. Studies on the origin 
of IOA deposits have often focused on the δ18O 
values of magnetite, which were suggested to 
reflect isotopic equilibrium with magmas or 
with magmatic water; i.e., H2O in equilibrium 
with magma (e.g., Jami et al., 2007; Nyström 
et al., 2008; Knipping et al., 2015; Bilenker 
et al., 2016; Johnson et al., 2016). In some cas-
es, the δ18O of the magnetite was interpreted to 
also reflect isotopic equilibrium with water of 
a nonmagmatic origin (e.g., Rhodes and Oresk-
es, 1999). Based on δ18O data, magnetite from 
IOA deposits was therefore suggested to have 
predominantly formed by magmatic and mag-
matic-hydrothermal processes, whereas a minor 

portion of the magnetite would have formed by 
late-stage hydrothermal processes that involved 
fluids of a nonmagmatic origin (Jonsson et al., 
2013; Troll et al., 2019).

Additional constraints on the origin of IOA 
deposits may be obtained from determining not 
only δ18O, but also δ17O of magnetite. Mass-de-
pendent isotope fractionation processes can result 
in variable δ17O/δ18O between different rocks and 
minerals, due to variations in the triple O isotope 
exponent theta (θ; e.g., Pack and Herwartz, 2014; 
Sharp et al., 2018). Studying the triple O isotope 
composition (i.e., δ17O, δ18O) of magnetite from 
IOA deposits therefore potentially provides better 
constraints on the phases with which magnetite 
isotopically exchanged when it formed. A second 
motivation for studying the triple O isotope com-

positions of magnetite is the fact that evaporite 
rocks were conjectured to play a role in the for-
mation of iron-oxide deposits (e.g., Barton and 
Johnson, 1996; Hitzman, 2000; Torab and Lehm-
ann, 2007; Li et al., 2015; Ghazi et al., 2019). 
Oxygen in evaporitic sulfate can in part be derived 
from atmospheric O2 and, consequently, carry a 
mass-independent deficit in 17O relative to 16O and 
18O (e.g., Crockford et al., 2019). Determining the 
triple O isotope composition of magnetite from 
IOA deposits therefore potentially allows us to 
test whether evaporite rocks were involved in the 
formation processes of these deposits.

We determined the triple O isotope com-
positions of 23 magnetite samples from IOA 
deposits in the Yazd and Sirjan areas in central 
Iran (Fig. 1). The mineral assemblages of these 
deposits are characteristic of “Kiruna-type” ore 
deposits. They are hosted within and close to 
early Cambrian felsic igneous rocks (Ramezani 
and Tucker, 2003). For comparison, a sample 
from a Cenozoic granite-related magnetite skarn 
deposit in the Sangan area in northeastern Iran 
was also analyzed. We studied the triple O iso-
tope compositions of magnetite from the IOA 
deposits of the Yazd and Sirjan areas, in particu-
lar, because the country rocks of the felsic intru-
sions and their IOA deposits consist of limestone 
and evaporite rocks of late Ediacaran to early 
Cambrian age (Faramarzi et al., 2015). Evapo-
rites from the Ediacaran and early Cambrian 
carry large 17O deficits compared to evaporites 
that formed later in the Phanerozoic (Bao et al., 
2008; Crockford et al., 2019). The deposits from 
these areas are therefore well suited to investi-
gating the putative role of evaporite rocks in the 
formation of iron-oxide deposits.
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METHODS AND DEFINITIONS
Magnetite samples were taken from high-

grade magnetite ore from run-of-the-mine ma-
terial in open pits and drill cores. Individual, 
millimeter-sized magnetite crystals were hand-
picked for triple O isotope analysis. Oxygen 
was extracted from the samples as O2 by la-
ser fluorination, using BrF5 as the fluorinating 
agent, at the University of Göttingen, Germa-
ny (Pack et al., 2016). The extracted O2 was 
cleaned from contaminant gases using freeze-
thaw techniques in combination with liquid ni-
trogen, a 5 Å mesh molecular sieve, and a gas 
chromatograph. The cleaned sample gas was 
released at 65 °C from a molecular sieve into 
the sample bellows of a dual-inlet system of a 
MAT253 gas-source mass spectrometer. The O 
isotope composition of the sample gas was then 
measured as m/z = 32, 33, and 34 relative to a 
reference gas that had been calibrated against 
the Vienna standard mean ocean water 2 (VS-
MOW2) standard. The samples were analyzed 
together with UWG2 garnet standard as an ex-
ternal reference material (Valley et al., 1995). 
In order to test the reproducibility of the laser 
fluorination method for iron oxides, we also 
performed replicate extractions of a hematite 
pseudomorph after magnetite from a chlorite 
schist (NZ-IO) of the Pounamu ultramafic belt 
(New Zealand) as an internal reference material 
(Cooper and Ireland, 2013, 2015).

Measured oxygen isotope ratios (17O/16O, 
18O/16O) of samples are henceforth expressed 
as δ17O and δ18O; i.e., as per mil deviation 
from the VSMOW2 standard (McKinney et al., 
1950). Variations in δ17O/ δ18O ratios between 
samples are conventionally expressed as the pa-

rameter Δ′17O, which denotes the deviation in 
linearized triple O isotope space of a sample’s 
δ′17O from its δ′18O relative to a reference line 
with given slope and intercept, in ppm. Based 
on the considerations by Sharp et al. (2018), 
we used a reference line with a slope of 0.528 
to express the composition of our samples, i.e., 
Δ′17O0.528 = 1000 × (δ′17O – 0.528 × δ′18O). The 
primes in the notation indicate that the measured 
δ values were linearized (i.e., δ′17,18O = 1000 × 
ln[δ17,18O/1000 + 1]; Miller, 2002) for calculation 
of Δ′17O0.528, whereas the subscript 0.528 indi-
cates the choice of slope. The Δ′17O0.528 values for 
the samples are reported relative to VSMOW2, 
using the calibration of San Carlos olivine on 
the VSMOW2 scale by Pack et al. (2016). The 
mean values for the internal iron oxide reference 
material NZ-IO were δ18O = −1.43‰ ± 0.06‰ 
and Δ′17O0.528 = −41 ± 10 ppm (±1 standard de-
viation [SD], n = 7; Table DR1 in the GSA Data 
Repository1).

RESULTS
The δ18O values of magnetite samples from 

the Yazd and Sirjan areas vary between 1.9‰ 
and 6.9‰ (Table DR2); i.e., in good agreement 
with previously published δ18O data for mag-

netite from deposits in these areas (e.g., Moore 
and Modabberi, 2003; Jami et al., 2007; Taghi-
pour et al., 2015; Ghazi et al., 2019). The cor-
responding Δ′17O0.528 of magnetite ranges from 
−35 to −174 ppm (Table DR2). The lowest 
Δ′17O0.528 values in the data set are among the 
lowest Δ′17O0.528 values that have been reported 
for terrestrial rocks and minerals so far, at the 
given range of δ18O values, together with some 
samples of carbonate-associated sulfate and 
evaporites (Bao et al., 2008; Crockford et al., 
2018, 2019). Magnetite from the skarn ore of 
the Sangan area has a lower δ18O and a higher 
Δ′17O0.528 (δ18O = −0.68‰; Δ′17O0.528 = −19 ppm) 
than magnetite from the IOA deposits of the 
Yazd and Sirjan areas.

DISCUSSION
The Δ′17O0.528 values of some of the mag-

netite samples from the Yazd and Sirjan areas 
are close to −40 ppm; i.e., the Δ′17O0.528 of these 
samples is similar to most igneous rocks and 
minerals (Fig.  2). The δ18O values of these 
samples are typical for magnetite that is in 
equilibrium with magma and with magmatic 
water; i.e., typical for “orthomagmatic mag-
netite” (δ18O = 1‰–4‰; Taylor, 1968). These 
particular samples were therefore potentially in 
equilibrium with magma or with magmatic wa-
ter at high temperatures when they formed. The 
majority of the samples, however, have Δ′17O0.528 
values ≪−40 ppm. Those samples cannot have 
been in equilibrium with magma or with pristine 
magmatic water when they formed. The samples 
were not in equilibrium with fluids derived from 
seawater or from meteoric water either, because 
magnetite that is in equilibrium with such fluids 
has Δ′17O0.528 > −40 ppm (Fig. 2).

Three End-Member Mixing Model for 
Magnetite Triple O Isotope Variations

In triple O isotope space, the magnetite sam-
ples from central Iran define trends with higher 
Δ′17O0.528/δ′18O slopes than predicted for mass-de-
pendent O isotope variations (Fig. 2). The varia-
tions in magnetite triple O isotope compositions 
may therefore reflect mixing of isotopically dis-
tinct magnetite end-member components in dif-
ferent proportions. At least three magnetite end-
member components are apparently reflected in 
the triple O isotope compositions of the samples 
(Fig. 3). One magnetite end-member component 
(Mgt A) has δ18O and Δ′17O0.528 similar to ortho-
magmatic magnetite; i.e., δ18O = 1‰–4‰ and 
Δ′17O0.528 ∼−47 ppm. The second magnetite end-
member component (Mgt B) has δ18O similar to 
orthomagmatic magnetite, but it has a significant-
ly lower Δ′17O0.528 than orthomagmatic magnetite; 
i.e., Δ′17O0.528 is approximately −200 ppm. The 
third magnetite end-member component (Mgt C) 
has a higher δ18O than orthomagmatic magnetite 
(δ18O > 4‰), and it has Δ′17O0.528 in between the 
two other end-member components.

1GSA Data Repository item 2020057, Table DR1 
(analytical reproducibility of internal reference mate-
rial NZ-IO for triple oxygen isotope analysis of iron 
oxides), Table DR2 (triple oxygen isotope composi-
tions of magnetite from iron oxide deposits in central 
Iran), and a supplementary discussion and speci-
fication of model parameters, is available online at 
http://www.geosociety.org/datarepository/2020/, or 
on request from editing@geosociety.org.

Figure 1.  Location of magnetite deposits in central Iran that were sampled for this study.
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Mgt B: Influence of MIF-O from Evaporitic 
Sulfate

The lowest Δ′17O0.528 values in the data set, 
at the corresponding δ18O of the samples, plot 
significantly below the array of mass-dependent 
O isotope variations (Fig. 2). It is therefore con-
ceivable that the magnetite end-member compo-
nent with Δ′17O0.528 ∼−200 ppm (Mgt B) contains 
oxygen with a relative deficit in 17O, i.e., oxygen 
with a mass-independently fractionated isotope 
composition (MIF-O). Terrestrial rocky materi-
als that carry MIF-O have gained oxygen from 
atmospheric O2. Rocky materials that are known 
to have incorporated atmospheric O2 are bioapa-
tite (Gehler et al., 2011), cosmic spherules (Pack 
et al., 2017), some tektites (Magna et al., 2017), 
possibly ocean-floor manganese nodules (Sharp 
et al., 2018), carbonate-associated sulfate (CAS), 
and sulfate in marine barite and in evaporite rocks 
(Bao et al., 2008; Crockford et al., 2018, 2019). 
It is therefore probable that the magnetite end-
member component that is recorded in the data 
set with Δ′17O0.528 ∼−200 ppm (Mgt B) formed 
from fluids that had exchanged O isotopes with 
the early Cambrian evaporite rocks that are as-
sociated with the IOA deposits in central Iran. 
The Δ′17O0.528 of these evaporite rocks was likely 
similar to that of the evaporite rocks from the 

Hormuz Formation in south Iran, which is strati-
graphically equivalent to the evaporite horizons in 
the Yazd and Sirjan areas. Gypsum samples from 
the Hormuz Formation have an average Δ′17O0.528 
of ∼−200 ppm (Crockford et al., 2019).

Mgt C: Influence of Oxygen from Marine 
Sedimentary Carbonates

The magnetite end-member component with 
δ18O > 4‰ that is recorded in the data set (Mgt 
C) exchanged O isotopes with a phase that had 
higher δ18O than most magmas and magmat-
ic H2O (δ18O = 5.5‰–10‰, excluding S-type 
granitoids; Bindeman, 2008; Eiler, 2001), and 
that had a higher Δ′17O0.528 than evaporite rocks. 
Such a triple O isotope composition is predicted 
for fluids that have interacted with marine sedi-
mentary carbonate rocks (δ18O = ∼20‰–30‰; 
Hoefs, 2009). The third magnetite end-member 
component (Mgt C) therefore possibly records 
magnetite that formed from fluids that had ex-
changed O isotopes with the marine sedimentary 
carbonate rocks that are associated with the iron-
oxide deposits in central Iran, and/or with CO2 
that was derived from those carbonate rocks. 
The possible relevance of fluid interaction with 
carbonate rocks in the formation of the IOA de-
posits is also demonstrated by the presence of 

abundant secondary carbonate minerals in most 
of the deposits in central Iran (Jami et al., 2007; 
Daliran et al., 2010; Heidarian et al., 2017; Dey-
mar et al., 2018).

Geological Mechanisms of Isotope 
Exchange

In order to explain the triple O isotope com-
positions of the magnetite samples, we propose 
that magnetite from the IOA deposits in the 
Yazd and Sirjan areas formed from magmat-
ic fluids that had exchanged O isotopes with 
evaporite and carbonate rocks at variable water/
rock ratios (Fig. 3). The available iron isotope 
data for magnetite from the deposits in the Yazd 
and Sirjan areas (δ56Fe = 0.2‰–0.5‰) indicate 
a high-temperature magmatic (e.g., ≥800 °C) 
rather than a low-temperature hydrothermal 
origin for the magnetite (Troll et  al., 2019; 
Alibabaie et al., 2019, personal commun.). We 
therefore propose two geological mechanisms 
by which O isotopes could have been exchanged 
at high temperatures between magmatic fluids 
and evaporite and carbonate rocks. First, mag-
matic fluids could have reacted with evaporite 
and carbonate rocks, e.g., as would be the case 
for magmatic fluids that were injected into the 
country rocks of a magma reservoir. A second 

Figure 2.  Triple O iso-
tope compositions of 
magnetite from iron-
oxide deposits in central 
Iran, compared to mass-
dependently fractionated 
oxygen in common rocks, 
minerals, and water, and 
mass-independently frac-
tionated oxygen (MIF-O) 
in late Ediacaran to early 
Cambrian evaporites (data 
sources: Sharp et al., 2018, 
and references therein; 
Crockford et  al., 2019, 
and references therein). 
Plotted are the linearized 
δ18O values (i.e., δ′18O) of 
the samples versus their 
Δ′17O, expressed relative to 
a value for λ of 0.528 (indi-
cated by subscript), at the 
1 standard deviation (S.D.) 
level. Also shown are 
modeled compositions 
of magnetite that is in 
equilibrium with magma 
and magmatic water (i.e., 
“orthomagmatic magne-
tite”), magnetite that is 
in equilibrium with sea-
water at a temperature 
(T) range of 150–600 °C, 
and magnetite that is in 
equilibrium with meteoric 

water (MW) at 400 °C, respectively. Field for orthomagmatic magnetite shows the commonly cited range in δ18O of 1‰–4‰ (Taylor, 1968), in 
conjunction with modeled Δ′17O0.528 of −47 ± 10 ppm for magnetite that is in equilibrium with igneous rocks, excluding S-type granitoids (see 
the Data Repository [see footnote 1]; Pack and Herwartz, 2014; Pack et al., 2016; Sharp et al., 2018). Fields for magnetite that is in equilib-
rium with seawater, and magnetite that is in equilibrium with meteoric water, were calculated from fractionation factors and theta values for 
magnetite-water equilibrium from Hayles et al. (2018), using the composition of modern seawater (δ18O = 0; Δ′17O0.528 = −5 ppm) and modern 
meteoric waters (Luz and Barkan, 2010).

18‘ O [‰]

-300

-250

-200

-150

-100

-15 -10 -5 0 5 10 15 20 25 30 35

-50

0

50
17
O

 [
pp

m
]

0.
52

8

Orthomagmatic 

Magnetite in equilibrium 
with MW at 400 °C 

Hydrothermally
altered rocks 

Low-T quartz
and carbonates

Meteoric

Late Ediacaran - Early Cambrian 
evaporites (MIF-O)

Sea-
water

Yazd
Sirjan
Sangan

Magnetite

1 S.D.

Magnetite in equilibrium 
with seawater at 150-600 °C

Granitoids

Meta-sediments

Mantlemagnetite

water

Downloaded from https://pubs.geoscienceworld.org/gsa/geology/article-pdf/48/3/211/4945782/211.pdf
by guest
on 31 March 2020



214	 www.gsapubs.org  |  Volume 48  |  Number 3  |  GEOLOGY  |  Geological Society of America

possible scenario is that magmatic fluids ex-
changed O isotopes with SO2 and CO2 that, 
in turn, had been derived by the magmatic as-
similation and/or metamorphic breakdown of 
evaporite and carbonate rocks, respectively (cf. 
Rye et al., 1984; Sharp et al., 2003; Troll et al., 
2012; see the Data Repository). The latter sug-
gestion is supported by, e.g., the occurrence of 
dolomite xenoliths in the volcanic sequences 
that host some of the deposits, which attest to 
the magmatic assimilation of carbonate rocks 
(Moore and Modabberi, 2003).

The conclusion that magnetite from the iron-
oxide deposits in central Iran formed from mag-
matic fluids that had interacted with evaporite 
and carbonate rocks is in good agreement with 
the continuum that is found between, respective-
ly, magmatic and crustal δ34S in sulfide minerals 
from the deposits, and also with the continuum 
between magmatic and crustal δ13C and δ18O 
in carbonate minerals from the deposits (Jami 
et al., 2007; Heidarian et al., 2017). Whereas 
magnetite likely formed from fluids at magmat-
ic temperatures, sulfide and carbonate minerals 
in the deposits, and also apatite, likely formed 
when temperatures of the magmatic fluids had 

dropped below about <600 °C (Heidarian et al., 
2017). Whereas the triple O isotopes of mag-
netite from the deposits in the Yazd area ap-
parently predominantly record the interaction 
between magmatic fluids and evaporite rocks, 
magnetite from the deposits in the Sirjan area, in 
contrast, apparently predominantly records the 
interaction between magmatic fluids and carbon-
ate rocks (Fig. 3). This conclusion demonstrates 
that the triple O isotope composition of magne-
tite, in general, may help us to better understand 
the geological and lithological contexts within 
which iron-oxide deposits formed.
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