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Abstract

Purpose: The objective was to develop a natural language processing (NLP) algorithm to 

identify vaccine-related anaphylaxis from plain-text clinical notes, and to implement the algorithm 

at five health care systems in the Vaccine Safety Datalink.

Methods: The NLP algorithm was developed using an internal NLP tool and training dataset of 

311 potential anaphylaxis cases from Kaiser Permanente Southern California (KPSC). We applied 

the algorithm to the notes of another 731 potential cases (423 from KPSC; 308 from other sites) 

with relevant codes (ICD-9-CM diagnosis codes for anaphylaxis, vaccine adverse reactions, and 

allergic reactions; Healthcare Common Procedure Coding System codes for epinephrine 

administration). NLP results were compared against a reference standard of chart reviewed and 

adjudicated cases. The algorithm was then separately applied to the notes of 6 427 359 KPSC 

vaccination visits (9 402 194 vaccine doses) without relevant codes.

Results: At KPSC, NLP identified 12 of 16 true vaccine-related cases and achieved a sensitivity 

of 75.0%, specificity of 98.5%, positive predictive value (PPV) of 66.7%, and negative predictive 

value of 99.0% when applied to notes of patients with relevant diagnosis codes. NLP did not 

identify the five true cases at other sites. When NLP was applied to the notes of KPSC patients 

without relevant codes, it captured eight additional true cases confirmed by chart review and 

adjudication.
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Conclusions: The current study demonstrated the potential to apply rule-based NLP algorithms 

to clinical notes to identify anaphylaxis cases. Increasing the size of training data, including 

clinical notes from all participating study sites in the training data, and preprocessing the clinical 

notes to handle special characters could improve the performance of the NLP algorithms. We 

recommend adding an NLP process followed by manual chart review in future vaccine safety 

studies to improve sensitivity and efficiency.
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1 | INTRODUCTION

Anaphylaxis is a rare but serious allergic reaction that is rapid in onset and may cause death.
1,2 Anaphylaxis could cause multiple symptoms3 and it could be caused by various triggers. 

Vaccine components including antigens, adjuvants, excipients used in the manufacturing 

process (eg, gelatin, neomycin), or a latex stopper on the vial could each trigger an 

anaphylactic response.4

Anaphylaxis is a very difficult condition to identify using diagnosis codes and medications 

in vaccine safety studies because some anaphylaxis cases may be coded as general allergic 

reactions (eg, urticaria and allergy) and the temporal relatedness to a vaccination versus 

another potential exposure may be unclear. Possible cases are typically identified through 

diagnosis codes followed by manual chart review and expert adjudication to confirm case 

status, a labor-intensive process. In addition, information on sensitivity is unknown (ie, 

researchers do not have information to assess how many true cases are missed). One 

example is the recent study evaluating the risk of anaphylaxis due to vaccination in the 

Vaccine Safety Datalink (VSD) by McNeil et al, in which over a thousand possible cases 

were identified based on diagnosis codes and only 33 anaphylaxis cases due to vaccination 

were manually confirmed by medical chart review and adjudication.5

Natural Language Processing (NLP) techniques have been used to identify adverse events in 

electronic health records in several studies.6–8 Botsis et al developed an NLP algorithm to 

identify anaphylaxis cases.9 The NLP algorithm was essentially a rule-based classifier 

combined with machine learning techniques and was applied to detect reports of anaphylaxis 

in the Vaccine Adverse Event Reporting System database following H1N1 vaccine. In a later 

study, Ball et al reevaluated the algorithm against the unstructured data derived from 

electronic medical records (EMR).10 Although the algorithm demonstrated the ability to 

identify potential anaphylaxis cases, the algorithm did not detect timing, severity, or cause of 

symptoms. In this study, we developed an NLP algorithm with temporal detection, symptom 

severity detection and causality assessment to detect anaphylaxis cases caused by 

vaccination using unstructured data from five VSD sites.
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2 | METHODS

2.1 | Study population

The study was conducted at five health care organizations within the VSD that were 

included in the study by McNeil et al, which analyzed data from 2009 through 2011.11 Each 

participating VSD site routinely creates structured datasets containing demographic and 

medical information (eg, vaccinations, diagnoses) on its members. For this study, 

participating sites also created text datasets of clinical notes from the organizations’ EMR 

according to a standard data dictionary. The text datasets included progress notes, discharge 

notes, and nursing notes from all care settings (outpatient, emergency department, and 

inpatient) and telephone notes from 0 to 8 days following the date of vaccination. Kaiser 

Permanente Southern California (KPSC) served as the lead study site responsible for 

development of the NLP system and creation of the algorithm using KPSC data. The other 

participating sites included Kaiser Permanente Colorado, Kaiser Permanente Northwest, 

Kaiser Permanente Washington, and Marshfield Clinic Research Institute. All five sites 

participated in the McNeil et al study. The Institutional Review Board of each participating 

organization approved this study.

The study population included patients who had a vaccination in 2008 or 2012 at KPSC 

(used to develop the training dataset), and patients who had a vaccination between 2009 and 

2011 at KPSC and the other four participating sites mentioned above (used to develop the 

validation dataset). Potential anaphylaxis cases were identified by using the International 

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes used in 

the McNeil et al study.5 These ICD-9-CM codes included anaphylaxis codes, vaccine 

adverse reaction E codes, and selected allergic reaction codes. The anaphylaxis codes were 

searched within the 0 to 2 days following vaccination. The E codes were searched only on 

day 0 (same day as vaccination date). Allergic reaction codes were identified only on day 0 

and were without a prior diagnosis in the preceding 42 days. The potential allergic reaction 

cases were further restricted to those who received epinephrine (based on Healthcare 

Common Procedure Coding System codes) within 24 hours of vaccination, which was the 

same approach implemented in the McNeil et al study. Receipt of epinephrine was also used 

as a major criterion to identify anaphylaxis cases by Ball et al10

2.2 | Training dataset

A total of 311 potential cases were identified in 2008 and 2012 at KPSC. The charts of these 

potential cases were manually reviewed by KPSC abstractors and adjudicated by a KPSC 

physician. The results were then used to develop the NLP algorithm. Out of the 311 

potential cases, 15 (4.8%) were confirmed as anaphylaxis cases, of which 5 (33.3% of 

confirmed cases) were related to vaccination. Notes from sites other than KPSC were not 

included in the training dataset to avoid the transfer to KPSC of other sites’ protected health 

information in clinical notes text data which would have been needed for training purposes.

2.3 | Validation dataset

The 731 potential cases following 13 939 925 vaccine doses administered during 2009 to 

2011 at all five sites were used to generate the validation dataset. These cases were identified 
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in the previous McNeil et al study.5 Chart reviews were performed by abstractors at each 

participating site, and adjudication was performed centrally by two physicians. Out of the 

731 potential cases, 46 (6.3%) were confirmed as anaphylaxis cases, of which 21 (45.7% of 

confirmed cases) were related to vaccination. Of those 21, 16 (76.2%) were identified at 

KPSC and 5 (23.8%) were identified across the other four sites.

The NLP algorithm developed based on KPSC training data was pushed to each 

participating site to be run on each site’s validation dataset locally, with the NLP output sent 

back to KPSC for analysis. NLP developers were blinded to all validation datasets at the 

time of algorithm development.

2.4 | NLP algorithm

We leveraged KPSC Research & Evaluation (RE) NLP software to develop the algorithm 

using the training dataset. The software was previously used in multiple KPSC RE 

studies12,13 to identify cases and retrieve clinical information. It was developed based on 

open source application programming interfaces (APIs)/libraries including the Natural 

Language Toolkit (NLTK),14 NegEx/pyConText,15 and Stanford Core NLP.16 The RE NLP 

software was created using various elements from these open source packages.

The NLP algorithm was developed in multiple steps which are described below. An example 

is presented in Figure 1.

Step 1. Clinical notes preprocessing. The extracted clinical notes were preprocessed 

through section boundary detection, sentence separation and word tokenization. 

Three paragraph separators (new line, carriage return, and paragraph sign) were used 

to identify the sections. The sentence boundary detection algorithm in NLTK and an 

additional customized sentence boundary detection algorithm were used to separate 

sentences. The algorithm was customized to handle some special cases with a 

nonterminating period. For example, in the sentence “Dr. xxx recommended …,” the 

period right after “Dr” was not considered as a sentence terminator.

Step 2. Anaphylaxis signs and symptoms list creation. A list of signs or symptoms 

that were indicative of anaphylaxis was built according to the Brighton Collaboration 

case definition of anaphylaxis which is used in the McNeil et al study5 and ontologies 

in the Unified Medical Language System.17 This was further enriched by linguistic 

variations identified in the training data.

Step 3. Symptom name entity identification. Pattern matching with predefined pattern 

strings was used to identify the signs and symptoms in the clinical notes. A dictionary 

was created to map regular expression patterns to the symptoms described as major or 

minor criteria defined in the Brighton Collaboration case definition of anaphylaxis.

Step 4. Negation detection. A negation algorithm based on NegEx/ pyConText was 

applied to the identified symptoms in Step 3. Negated symptoms were excluded.

Step 5. Relationship detection. A distance-based relationship detection algorithm was 

applied to relate the identified signs or symptoms to certain body sites as needed. For 

example, in the statement “Patient has swelling in his eyes,” the algorithm related 
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“swelling” to “eyes” if the allowable distance (number of words) between the words 

was equal to or less than 5.

Step 6. Temporal relationship (timing) detection. Temporal relationship detection was 

utilized to identify and exclude any signs or symptoms prior to vaccination. For 

example, if the symptom “skin rash” happened before vaccination day, it was 

excluded. The process was based on pyConText, an algorithm for determining 

temporal relationship from clinical notes.

Step 7. Case classification. All remaining signs and symptoms identified from the 

above steps were grouped into the following categories as defined in the Brighton 

Collaboration case definition: Major Dermatology, Major Cardiovascular, Major 

Respiratory, Minor Dermatology, Minor Cardiovascular, Minor Respiratory, Minor 

Gastrointestinal, and Minor Laboratory. The grouped results were processed by the 

Brighton Collaboration case definition algorithm and produced the final outputs to 

determine the level of anaphylaxis diagnostic certainty for each clinical note. NLP 

note-level results were then combined into patient-level results, such that any positive 

note-level result was translated into a positive patient-level classification. The results 

of this step were also compared to the chart review and adjudication results from the 

training dataset. If there was a mismatch, the NLP algorithm was tuned until the NLP 

results completely matched with the results of chart review and adjudication.

Step 8. Causality assessment for cases meeting Brighton Collaboration criteria. 

Anaphylaxis cases were classified as vaccine-related based on the following three 

criteria: onset of the symptom(s) occurred after vaccination, vaccination was 

mentioned and related to anaphylaxis in the notes, and the anaphylaxis case was not 

caused by something other than vaccination. The algorithms in the above steps were 

combined in the final NLP algorithm.

2.5 | Analysis

The results generated from the NLP algorithm were evaluated against the chart-reviewed and 

adjudicated reference standard validation dataset. Sensitivity (referred to as “recall” in the 

informatics literature), specificity, positive predictive value (PPV) (ie, precision), negative 

predictive value (NPV), and F-score (ie, harmonic mean of recall and precision) were 

estimated.18 The F-score can range from 0 to 1 with larger values indicating better accuracy. 

Confidence intervals (CIs) for sensitivity, specificity, PPV, NPV, and F-score were also 

estimated.

F =
β2 + 1 ∗ PPV ∗ sensitivity

β2 ∗ PPV + sensitivity
, with β = 3

Using the validation dataset, we evaluated the performance of the NLP algorithm in 

identifying vaccine-related anaphylaxis for KPSC and for other sites. Two sets of 

performance measures were reported. The first set included patients with or without clinical 

notes, and the second set only included patients with clinical notes. Electronic text notes 

may not be available for treatment outside of the health care system, and therefore the set 
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including only patients with clinical notes represents more reasonably the merit of the NLP 

algorithm. In addition, we evaluated the performance of the NLP algorithm in identifying 

anaphylaxis cases regardless of cause among all the study subjects (ie, regardless of the 

availability of clinical notes).

To identify anaphylaxis cases that would have been missed using diagnosis codes, we 

applied the NLP algorithm to the clinical notes of 6 427 359 KPSC vaccination visits from 

2009 to 2011 without depending on the relevant codes (ie, diagnosis, medication). We then 

performed chart review and adjudication on the potential anaphylaxis cases identified by 

NLP.

3 | RESULTS

The NLP algorithm was able to identify 12 of the 16 confirmed vaccine-related anaphylaxis 

cases at KPSC (sensitivity 75.0%). The NLP algorithm achieved a specificity of 98.5%, PPV 

of 66.7%, NPV of 99.0%, and F-score of 0.74 (Table 1). In addition, the level of Brighton 

Collaboration diagnostic certainty assigned by the NLP algorithm matched the manually 

validated Brighton levels for all 12 true positive cases.

Among the four false negative cases found at KPSC, one case was treated outside of the 

health care system and the clinical notes were not available. For two cases, the abstractor 

identified symptoms in a flowsheet which was not part of the clinical notes accessible to 

NLP. The remaining false negative case was due to symptom level misclassification in that 

the NLP algorithm failed to identify the cases with symptoms in multiple body locations. 

For example, “tingling on face and hands,” “itching on face, eyes and chest” were 

considered as generalized symptoms by manual chart review, but the NLP algorithm treated 

them as localized symptoms.

At other participating sites, the NLP algorithm failed to identify any of the five anaphylaxis 

cases. In one case, sentence seperation was missing. In two cases, clinical notes were not 

available. In another two cases, a generalized symptom was incorrectly recognized as a 

localized one. The site-specific sensitivity for all non-KPSC sites was either zero or not 

applicable.

When the patients without clinical notes were excluded, the NLP algorithm achieved a 

sensitivity of 85.7%, specificity of 98.5%, PPV of 66.7%, NPV of 99.5%, and F-score of 

0.83 using KPSC data (Table 2).

The performance of the NLP algorithm in identifying anaphylaxis cases regardless of cause 

is summarized in Table 3. When cause was ignored, the number of confirmed cases at KPSC 

increased from 16 to 26. NLP continued to perform well at KPSC with a sensitivity of 

84.6%; however, the sensitivity at non-KPSC sites ranged from 40.0% to 75.0%. At KPSC, 

the NLP algorithm achieved a sensitivity of 84.6%, specificity of 97.7%, PPV of 71%, NPV 

of 99%, and F-score of 0.83. Thirty out of 32 true positive cases across all sites matched the 

validation results for assignment of Brighton Collaboration criteria level. Some of the chart 

notes from non-KPSC sites were missing sentence-ending punctuations (eg, no period to 
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separate consecutive sentences), so the NLP preprocessing step was not able to separate the 

text into individual sentences. This resulted in false negative cases at non-KPSC sites.

After the final anaphylaxis NLP algorithm was applied to the notes of 6 427 359 KPSC 

vaccination visits between 2009 and 2011 without relevant codes, 45 potential cases were 

identified by NLP as vaccine-related anaphylaxis cases (Table 4). Among them, 12 cases 

(26.7%) were confirmed by chart review and adjudication as anaphylaxis positive cases, and 

8 out of the 12 (66.7%) were confirmed to be vaccine-related. Six of the eight vaccine-

related cases (75.0%) had an allergic reaction code. With 9 402 194 vaccine doses given at 

KPSC during 2009 to 2011, the incidence rate of vaccine-related anaphylaxis using the 

traditional approach was 1.70 (95% CI, 0.98–2.75) per million doses, but after adding the 

cases found by NLP the incidence rate was 2.55 (95% CI, 1.64–3.77) per million doses.

4 | DISCUSSION

In this study, we demonstrated that NLP can be applied to identify anaphylaxis cases with 

reasonable accuracy at the site whose data were used for algorithm development. However, 

performance was lower at non-KPSC sites due to rarity of actual positives and inconsistency 

in note formatting between KPSC and non-KPSC sites. In order to improve performance at 

these sites, training data may be needed from each site to enhance the NLP algorithm.

Compared to Ball et al’s evaluation study,10 our study added temporal (timing) detection, 

severity detection and causality assessment to the NLP algorithm, which seemed to increase 

specificity but sacrifice sensitivity. However, the PPV and F-score from our study were 

similar to those of the Ball et al study. The most common reason for false negative cases 

(low sensitivity) was error in symptom severity detection (local vs generalized). Loosening 

or removal of the severity detection may yield higher sensitivity. Temporal detection and 

causality detection in the NLP algorithm helped to achieve high specificity.

This study demonstrated that NLP was able to identify cases directly from clinical notes that 

did not have specific anaphylaxis-related codes. In the McNeil et al study,5 the potential 

allergic reaction cases were further restricted to those with epinephrine receipt within 24 

hours of vaccination, which markedly reduced the number of charts being reviewed. Using 

KPSC data, after applying the NLP algorithm to vaccinated subjects without the relevant 

diagnosis and medication codes and performing chart review and adjudication, we identified 

12 additional confirmed anaphylaxis cases, 10 of which were coded as allergic reactions 

without documentation of epinephrine treatment. The remaining two cases only had 

diagnosis codes related to symptoms of interest (eg rash, wheezing, and urticaria).

When we included the anaphylaxis cases identified by NLP, the sensitivity based on the 

traditional approach (ie, codes with exclusions plus chart review and adjudication) was only 

67% (=16/24) for vaccine-related anaphylaxis and 68% (=26/38) for anaphylaxis regardless 

of cause. The true sensitivity could be even lower, because NLP did not capture 100% of 

true medically-attended anaphylaxis cases in the validation data set. Moreover, we found 

that NLP performed better in identifying anaphylaxis cases regardless of cause. Without 
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restricting to vaccine-related anaphylaxis, the total true positive anaphylaxis cases increased 

from 12 to 32 across all sites using the traditional approach.

While NLP alone was not able to identify all anaphylaxis cases, NLP identified additional 

cases that were missed by manual chart review. The addition of NLP with chart review and 

adjudication could be a supplemental approach to identify anaphylaxis cases. Initially, the 

resources and expertise to develop an NLP algorithm may be more costly than that required 

to conduct manual chart review; however, once an NLP algorithm is developed and achieves 

acceptable performance metrics, the subsequent manual chart review effort can be reduced.

This study also demonstrates that a distributed NLP system model may be utilized to avoid 

sharing clinical notes containing protected health information among multiple sites for 

safety surveillance. In this study, the NLP algorithm was transferred electronically to each 

site’s NLP server. Notes were processed locally at each respective site. The system was also 

able to handle large volumes of data associated with the vaccinated population. It processed 

nearly 12 million clinical notes on a single processor machine. This study demonstrated the 

feasibility of using NLP to reduce manual efforts in future vaccine safety studies by 

narrowing down the number of cases that would need to be manually chart reviewed and 

adjudicated.

Some limitations of this study may be noted. Due to the rarity of the condition, it is 

inevitable that the number of true cases available to train the NLP algorithm is limited. In the 

training dataset containing 311 potential anaphylaxis cases, there were only five confirmed 

vaccine-related anaphylaxis cases. Thus, rare symptoms were not identified in the training 

dataset, resulting in the failure of capturing some positive cases. For example, the symptom 

“prickle” was described as “Pt c/o feeling like pins and needles” in the validation dataset. 

Since there was no such a description in the training dataset, the NLP algorithm was not able 

to identify this symptom in the validation data. Another limitation is the use of data from 

2008 to 2012 for the conduct of this study. There may have been secular changes since then, 

and ICD-10 codes were not incorporated into the analysis.

Without including all participating sites’ data in the training dataset, our ability to properly 

train the algorithm to achieve the best possible performance was limited. Although summary 

data (eg, average number of chart notes per patient, note types) were generated based on 

site-specific notes to examine data quality at a high level, we were unable to capture the 

details including the formatting of notes from participating sites. Differences in file structure 

and data format (eg different paragraph break symbol) between the lead site, where the 

training sample was generated, and the other participating sites also may have adversely 

affected NLP performance. Introducing a reformatting algorithm in a preprocessing step to 

harmonize clinical narratives from different sites could address this issue and improve 

overall NLP performance.

Lastly, the NLP process was limited to free text electronic chart notes, while medical record 

reviewers had access to all the available information stored in the EMR. For example, the 

medical record reviewers had access to scanned documentation or other non-EMR sources, 

such as insurance claims data, not available to NLP. In the future, complementary 
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approaches using ICD codes, free text notes accessible to NLP, and other structured or 

semistructured data (eg, vital signs, medications, and so on) could be explored.

5 | CONCLUSION

The current study demonstrated the potential to apply rule-based NLP algorithms to clinical 

notes to identify anaphylaxis cases. Increasing the size of training data, including clinical 

notes from all participating study sites in the training data, and preprocessing the clinical 

notes to handle special characters could improve the performance of the NLP algorithms. 

We recommend adding an NLP process followed by manual chart review in future vaccine 

safety studies to improve sensitivity and efficiency.
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FIGURE 1. 
Flow of NLP process
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TABLE 4

Results of application of NLP algorithm to clinical notes of vaccinated subjects without relevant codes

Possibly vaccine-related anaphylaxis 
positive cases identified by NLP

Anaphylaxis positive cases confirmed by chart review/adjudication n = 12

Chart review/adjudication: vaccine-
related

Chart review/ adjudication: not vaccine-
related

45 8 4
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