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Abstract

Seasonal influenza results in substantial annual morbidity and mortality in the United States

and worldwide. Accurate forecasts of key features of influenza epidemics, such as the timing

and severity of the peak incidence in a given season, can inform public health response to

outbreaks. As part of ongoing efforts to incorporate data and advanced analytical methods

into public health decision-making, the United States Centers for Disease Control and Pre-

vention (CDC) has organized seasonal influenza forecasting challenges since the 2013/

2014 season. In the 2017/2018 season, 22 teams participated. A subset of four teams cre-

ated a research consortium called the FluSight Network in early 2017. During the 2017/2018

season they worked together to produce a collaborative multi-model ensemble that com-

bined 21 separate component models into a single model using a machine learning tech-

nique called stacking. This approach creates a weighted average of predictive densities

where the weight for each component is determined by maximizing overall ensemble accu-

racy over past seasons. In the 2017/2018 influenza season, one of the largest seasonal out-

breaks in the last 15 years, this multi-model ensemble performed better on average than all

individual component models and placed second overall in the CDC challenge. It also

outperformed the baseline multi-model ensemble created by the CDC that took a simple

average of all models submitted to the forecasting challenge. This project shows that collab-

orative efforts between research teams to develop ensemble forecasting approaches can

bring measurable improvements in forecast accuracy and important reductions in the vari-

ability of performance from year to year. Efforts such as this, that emphasize real-time test-

ing and evaluation of forecasting models and facilitate the close collaboration between
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public health officials and modeling researchers, are essential to improving our understand-

ing of how best to use forecasts to improve public health response to seasonal and emerg-

ing epidemic threats.

Author summary

Seasonal influenza outbreaks cause millions of infections and tens of thousands of deaths

in the United States each year. Forecasting the track of an influenza season can help public

health officials, business leaders, and the general public decide how to respond to an ongo-

ing or emerging outbreak. Our team assembled over 20 unique forecasting models for sea-

sonal influenza and combined them together into a single “ensemble” model. We made

predictions of the 2017/2018 influenza season, each week sending real-time forecasts to

the US Centers for Disease Control and Prevention (CDC). In the 2017/2018 influenza

season, one of the largest seasonal outbreaks in the last 15 years, our ensemble model per-

formed better on average than all individual forecast models in the ensemble. Based on

results from this study, the CDC used forecasts from our ensemble model in public com-

munication and internal reports in the subsequent 2018/2019 influenza season.

Introduction

Seasonal influenza results in a substantial annual public health burden in the United States and

worldwide. The United States Centers for Disease Control and Prevention (CDC) estimates

there were 48.8 million cases of influenza, 959,000 influenza-related hospitalizations, and

nearly 80,000 influenza-related deaths in the U.S. from October 2017 through May 2018, mak-

ing the 2017/2018 season one of the largest on record [1]. The CDC utilizes a variety of surveil-

lance methods to assess the severity of an influenza season, including monitoring outpatient

visits for influenza-like illness (ILI), influenza-related hospitalizations, and virologic testing

[2]. However, like all surveillance systems, these records describe only a sample of events that

have already taken place, and provide limited indication of the future timing or severity of the

epidemic, which can vary substantially from season to season [3]. Forecasts of an influenza sea-

son offer the possibility of providing actionable information on future influenza activity that

can be used to improve public health response. Recent years have seen a substantial increase of

peer-reviewed research on predicting seasonal influenza [4–11].

Multi-model ensembles, i.e. models that combine predictions from multiple different com-

ponent models, have long been seen as having both theoretical and practical advantages over

any single model [12–15]. First, it allows for a single forecast to incorporate signals from differ-

ent data sources and models that may highlight different features of a system. Second, combin-

ing signals from models with different biases may allow those biases to offset and result in an

ensemble that is more accurate and has lower variance than the individual ensemble compo-

nents. Weather and climate models have utilized multi-model ensemble systems for these very

purposes [16–19], and recent work has extended ensemble forecasting to infectious diseases,

including influenza, dengue fever, lymphatic filariasis, and Ebola hemorrhagic fever [20–23].

Throughout the manuscript, we will use the term ensemble to refer generally to these multi-

model ensemble approaches.

Since the 2013/2014 influenza season, the CDC has run an annual prospective influenza

forecasting competition, known as the FluSight challenge, in collaboration with outside
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researchers. The challenges have provided a venue for close interaction and collaboration

between government public health officials and academic and private-sector researchers.

Among other government-sponsored infectious disease forecasting competitions in recent

years, [24, 25] this challenge has been unique in its prospective orientation over multiple out-

break seasons. Each week from early November through mid-May, participating teams submit

probabalistic forecasts for various influenza-related targets of interest. During the 2015/2016

and 2016/2017 FluSight challenges, analysts at the CDC built a simple ensemble model by tak-

ing an unweighted average of all submitted models. This model has been one of the top per-

forming models each season [26].

The FluSight challenge has been designed and retooled over the years with an eye towards

maximizing the public health utility and integration of forecasts with real-time public health

decision making. All forecast targets are derived from the weighted percentage of outpatient

visits for influenza-like illness (wILI) collected through the U.S. Outpatient Influenza-like Ill-

ness Surveillance Network (ILINet), weighted by state populations (Fig 1B and 1C). ILI is one

of the most frequently used indicators of influenza activity in epidemiological surveillance.

Weekly submissions to the FluSight challenge contain probabilistic and point forecasts for

seven targets in each of 11 regions in the U.S. (national-level plus the 10 Health and Human

Services (HHS) regions, Fig 1A). There are two classes of targets: “week-ahead” and “seasonal”.

“Week ahead” targets refer to four short-term weekly targets (ILI percentages 1, 2, 3 and 4

weeks in the future) that are different for each week of the season. “Seasonal” targets refer to

quantities (outbreak onset week, outbreak peak week, and outbreak peak intensity) that repre-

sent a single outcome observed for a region in a season (see Methods).

In March 2017, influenza forecasters who had worked with CDC in the past were invited to

join in establishing the FluSight Network. This research consortium worked collaboratively

throughout 2017 and 2018 to build and implement a real-time multi-model ensemble with

performance-based model weights. A central goal of the FluSight Network was to demonstrate

the benefit of performance-based weights in a real-time, multi-team ensemble setting by out-

performing the “simple average” ensemble that CDC uses to inform decision making and situ-

ational awareness during the annual influenza season. The CDC used this project to evaluate

in real-time the feasibility and accuracy of creating an ensemble forecast based on past perfor-

mance. Based on the forecast accuracy shown in this experiment, the CDC decided to adopt

the approach described here as its main forecasting approach for the 2018/2019 influenza

season.

In this paper, we describe the development of this collaborative multi-model ensemble and

present forecasting results from seven retrospective seasons and one prospective season. The

FluSight Network assembled 21 component forecasting systems to build multi-model ensem-

bles for seasonal influenza outbreaks (Table A in S1 Text). These components encompassed a

variety of different modeling philosophies, including Bayesian hierarchical models, mechanis-

tic models of infectious disease transmission, statistical learning methodologies, and classical

statistical models for time-series data. We show that using multi-model ensembles informed

by past performance consistently improved forecast accuracy over using any single model and

over multi-model ensembles that do not take past performance into account. Given the timing

of this experiment, during a particularly severe influenza season, this work also provides the

first evidence from a real-time forecasting study that performance-based weights can improve

ensemble forecast accuracy during a high severity infectious disease outbreak. This research is

an important example of collaboration between government and academic public health

experts, setting a precedent and prototype for real-time collaboration in future outbreaks, such

as a global influenza pandemic.

Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S.
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Results

Summary of ensemble components

Twenty-one individual component models were fit to historical data and used to make pro-

spective forecasts during seven training seasons (2010/2011–2016/2017, Table A in S1 Text).

Their forecast accuracy varied widely across region, season, and target. A detailed comparative

analysis of component model forecast performance can be found elsewhere [27]; however,

here we summarize a few key insights. A seasonal baseline model, whose forecasts for a partic-

ular target are based on data from previous seasons and do not update based on data from the

current season, was used as a reference point for all component models. Over 50% of the indi-

vidual component models out-performed the seasonal baseline model in forecasting 1-, 2-,

and 3-week ahead incidence as well as season peak percentage and season peak week. How-

ever, season-to-season variability in relative forecast performance was large. For example, 10

Fig 1. Overview of region-level influenza surveillance data in the US. (A) Map of the 10 U.S. Health and Human Services

regions. Influenza forecasts are made at this geographic scale. (B) Publicly available wILI data from the CDC website for the

national level. The y-axis shows the estimated percentage of doctor’s office visits in which a patient presents with influenza-like

illness for each week from September 2010 through July 2018. The dashed vertical line indicates the separation of the data used

by the models presented here for the training (retrospective) and testing (prospective) phases of analysis. (C) Publicly available

wILI data for National level and each of the 10 HHS regions. Darker colors indicate higher wILI.

https://doi.org/10.1371/journal.pcbi.1007486.g001
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component models had, in at least one season, better overall accuracy than the model with the

best average performance across all seasons. To evaluate model accuracy, we followed CDC

convention and used a metric that takes the geometric average of the probabilities assigned to

a small range around the eventually observed values. This measure, which we refer to as “fore-

cast score”, can be interpreted as the average probability a given forecast model assigned to the

values deemed by the CDC to be accurate (see Methods). As such, higher values, on a scale of 0

to 1, indicate more accurate models.

Choice of ensemble model based on cross-validation

We pre-specified five candidate ensemble approaches prior to any systematic evaluation of

ensemble component performance in previous seasons and prior to the 2017/2018 season

(Table A in S1 Text) [28]. The pre-specified ensemble approaches all relied on taking weighted

averages of the component models, including two seasonal baseline components, using a pre-

dictive density stacking approach (see Methods). They ranged in complexity from simple

(every component is assigned a single weight) to more complex (components have different

weights depending on the target and region being forecasted, see Methods). The FSNetwork

Target-Type Weights (FSNetwork-TTW) ensemble model, a medium-complexity approach,

outperformed all other multi-model ensembles and components in the training phase by a

slim margin (Fig 2). The FSNetwork-TTW model built weighted model averages using 40

estimated weights, one for each model and target-type (week-ahead and seasonal) combination

(Fig 3). In the training period, consisting of the seven influenza seasons prior to 2017/2018,

this model achieved a leave-one-season-out cross-validated average forecast score of 0.406,

compared with the FSNetwork Target Weights (FSNetwork-TW) model with a score of

Fig 2. Training phase performance of the five pre-specified multi-model ensembles. The five ensembles tested were Equal Weights (EW),

Constant Weights (CW), Target-Type Weights (TTW), Target Weights (TW), and Target-Region Weights (TRW). The models are sorted from

simplest (left) to most complex (right), with the number of estimated weights (see Methods) for each model shown at the top. Each point

represents the average forecast score for a particular season, with overall average across all seasons shown by the X.

https://doi.org/10.1371/journal.pcbi.1007486.g002
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0.404, the FSNetwork Constant Weights (FSNetwork-CW) model with a score of 0.400, and

the FSNetwork Target-Region Weights (FSNetwork-TRW) model with a score of 0.400 (Fig

4). Prior to the start of the 2017-18 FluSight Challenge, we chose the target-type weights model

as the model that would be submitted in real-time to the CDC during the 2017/2018 season.

This choice was based on the pre-specified criteria of the chosen model having the highest

score of any approach in the cross-validated training phase [28].

Fig 3. Component model weights for the FluSight Network Target-Type Weights (FSNetwork-TTW) ensemble model in the 2017/2018

season. Weights were estimated using cross-validated forecast performance in the 2010/2011 through the 2016/2017 seasons.

https://doi.org/10.1371/journal.pcbi.1007486.g003

Fig 4. Overall test and training phase performance scores for selected models. Displayed scores are averaged across targets, regions, and

weeks, and plotted separately for selected models. Models shown include the FSNetwork-TTW model, the top performing model from each

team during the training phase and, for the last two training seasons and the test season, the unweighted average of all FluSight models received

by CDC. Model ranks within each row are indicated by color of each cell (darker colors indicates higher rank and more accurate forecasts) and

the forecast score (rounded to two decimal places) is printed in each cell. Note that a component’s standalone accuracy does not necessarily

correlate to its contribution to the overall ensemble accuracy. See discussion in the Ensemble Components subsection of the Methods.

https://doi.org/10.1371/journal.pcbi.1007486.g004
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Using the results from the training period, we estimated weights for the chosen

FSNetwork-TTW ensemble model that would be used for the 2017/2018 real-time forecast-

ing. The FSNetwork-TTW model assigned non-negligible weight (greater than 0.001) to 8

models for week-ahead targets and 6 models for seasonal targets (Fig 3). For week-ahead tar-

gets, the highest non-zero weight (0.42) was given to the Delphi-DeltaDensity1 model.

For seasonal targets, the highest weight (0.26) was given to the LANL-DBM model. In the

weights for the seasonal targets, six models shared over 99.9% of the weight, with none of the

six having less than 0.11 weight. All four research teams had at least one model with non-negli-

gible weight in the chosen model.

Summary of ensemble real-time performance in 2017/2018 season

The 2017/2018 influenza season in the U.S. exhibited features that were unlike that of any sea-

son in the past 15 years (Fig 1B and 1C). As measured by wILI percentages at the national

level, the 2017/2018 season was on par with the other two highest peaks on record since 1997:

the 2003/2004 season and the 2009 H1N1 pandemic. In some regions, for example HHS

Region 2 (New York and New Jersey) and HHS Region 4 (southeastern states), the peak wILI

for the 2017/2018 season was more than 20% higher than previously observed peaks. Because

all forecasting models rely, to some extent, on future trends mimicking observed patterns in

the past, the anomalous dynamics in 2017/2018 posed a challenging “test season” for all mod-

els, including the new ensembles.

In spite of these unusual dynamics, the chosen FSNetwork-TTW ensemble showed the

best performance among all component and ensemble models during the 2017/2018 season.

In particular, we selected the single best component model from each team in the training

phase stage and the FluSight-unweighted_avg model (the unweighted average of all

models submitted to the CDC) to compare with the FSNetwork-TTW model (Fig 4). The

results from 2017/2018 were consistent with and confirmed conclusions drawn from the train-

ing period, where the FSNetwork-TTW model outperformed all other ensemble models and

components. The FSNetwork-TTW model had the highest average score in the training

period (0.406) as well as the highest average score in the 2017/2018 test season (0.337). This

strong and consistent performance by the chosen FSNetwork-TTW ensemble model is note-

worthy given that our team identified this model prospectively, before the season began, essen-

tially wagering that this ensemble model would have the best performance of any model in the

2017/2018 season, which it did. The FSNetwork-TTW model consistently outperformed a

simpler ensemble model and the seasonal average model across all weeks of the 2017/2018 sea-

son (Fig F in S1 Text).

The FSNetwork-TTW model showed a higher performance in both training and testing

phase than the CDC baseline ensemble model, FluSight-unweighted_avg. This multi-

model ensemble contained forecasts from 28 models submitted to the FluSight competition in

2017/2018. While some of these 28 models submitted to the CDC were or contained versions

of the 21 models in our performance-based FluSight Network multi-model ensemble, over

two-thirds of the models submitted to the CDC were not represented in the FluSight Network

components. In 2017/2018, the FSNetwork-TTW model earned an average forecast score of

0.337 while the FluSight-unweighted_avg model earned an average forecast score of

0.321 (Fig 4).

In the 2017/2018 season, the top models from each contributing research team showed con-

siderable variation in performance across the different prediction targets and regions (Fig 5).

However, the FSNetwork-TTW model showed lower variability in performance than other

methods. Across all 77 pairs of targets and regions, the FSNetwork-TTW model was the only

Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S.
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one of the six selected models that never had the lowest forecast score. Additionally, it only

had the second lowest score twice. While our ensemble model did not always have the best

score in each target-region pair, its consistency and low variability across all combinations

secured it the top average score.

Fig 5. Average forecast scores and ranks by target and region for 2017/2018. Models shown include the FSNetwork-TTW model, the top

performing model from each team during the training phase and the unweighted average of all FluSight models received by CDC. Color

indicates model rank in the 2017/2018 season (darker colors indicates higher rank and more accurate forecasts) and the forecast score (rounded

to two decimal places) is printed in each cell. Regions are sorted with the most predictable region overall (i.e. highest forecast scores) at the top.

https://doi.org/10.1371/journal.pcbi.1007486.g005
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Despite being optimized for high forecast score values, the FSNetwork-TTW showed

robust performance in the 2017/2018 season across other performance metrics that measure

forecast calibration and accuracy. Overall, the FSNetwork-TTW model ranked second

among selected models in both RMSE and average bias, behind the LANL-DBM model (Fig A

in S1 Text). For example, during the scoring period of interest across all regions in the 2017/

2018 season, the FSNetwork-TTW model’s point estimates for season onset were on average

less than half a week after the true value (average bias = 0.38 week) and for 1-week ahead

ILI the estimates were underestimated by less than one-quarter of a percentage point (average

bias = -0.23 ILI%).

According to the probability integral transform metric [29, 30], the FSNetwork-TTW
model was well-calibrated for all four week-ahead targets (Fig B in S1 Text). It was slightly less

well-calibrated for peak performance, and showed indications of having too narrow predictive

distributions over the 2017/2018 season. Over the entire training period prior to the 2017/2018

season, the FSNetwork-TTW model calibration results suggested that in general the model

was a bit conservative, with often a too wide predictive distribution (Fig C in S1 Text).

A new ensemble using the same components but taking into account their performance in

the 2017/2018 season would have different weights. Components that received substantial

weight in the original ensemble but did particularly poorly in the 2017/2018 season saw the

largest drop in weight (Fig D in S1 Text). Overall, three components were added to the list

of six existing components that received more than 0.001 weight for seasonal targets:

CU-EAKFC_SEIRS, CU-EKF_SEIRS, and ReichLab-SARIMA2. One component

(ReichLab-SARIMA2) was added to the list of eight existing components that received

more than 0.001 weight for week-ahead targets.

Ensemble accuracy for peak forecasts

Forecast accuracy around the time of peak incidence is an important indicator of how useful a

given model can be in real-time for public health decision-makers. To this end, we evaluated

the scores of the FSNetwork-TTW ensemble model in each region during the 13 weeks cen-

tered around the peak week (Fig 6). Forecast scores of the peak percentage 6, 5, and 4 weeks

before the peak week were lower than in past seasons, assigning on average 0.05, 0.06, and 0.05

probability to the eventually observed value, respectively. However, at and after the peak week

this probability was over 0.70, quite a bit higher than average accuracy in past seasons.

Similarly, for peak week the average forecast scores improved as the peak week approached.

With the exception of a large dip in accuracy in HHS Region 7 just after the peak occured (due

to revisions to observed wILI data in the weeks surrounding peak), the forecast scores for peak

week tended to be high in the weeks following peak. The average score in more than half of the

regions was greater than 0.75 for all weeks after peak.

Discussion

Multi-model ensembles hold promise for giving decision makers the ability to use “one

answer” that combines the strengths of many different modeling approaches while mitigating

their weaknesses. This work presents the first attempt to systematically combine infectious dis-

ease forecasts from multiple research groups in real-time using an approach that factors in the

past performance of each component method. Of the 29 models submitted to the CDC in

2017/2018 as part of their annual FluSight forecasting challenge, this ensemble was the sec-

ond-highest scoring model overall. The top scoring model was an ensemble of human judg-

ment forecasts [31].
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By working across disciplines and research groups and by incorporating experts from gov-

ernment, academia and industry, this collaborative effort showed success in bringing measur-

able improvements in forecast accuracy and reductions in variability. We therefore are

moving substantially closer to forecasts that can and should be used to complement routine,

ongoing public health surveillance of infectious diseases. In the 2018/2019 influenza season,

based on results from this study, the CDC used forecasts from the FluSight Network ensemble

model in internal and external communication and planning reports.

Even in a very unusual influenza season, the multi-model ensemble approach presented

here outperformed all components overall and did not see a large reduction in overall perfor-

mance compared to performance during the training seasons. This bodes well for the long-

term robustness of models such as this one, compared to single components that show higher

variability in performance across specific years, regions, and targets. During the training and

test phases, the weighted ensemble approaches outperformed two equal weight ensembles: one

constructed based on FluSight Network models presented here (Table A in S1 Text) and one

constructed by the CDC using a wider array of models [26]. This clearly illustrates the value of

incorporating information on prior performance of component models when constructing a

multi-model ensemble.

As shown by the FluSight Network Target-Type Weights component weighting structure

presented above (Fig 3), no one model was ever used by the multi-model ensemble as the best

answer and the ensemble instead relied on a combination of components to optimize perfor-

mance. The ensemble assigned non-negligible weight to 11 of the 21 models available and the

updated ensemble weights including the 2017/2018 performance would have added one model

to that list. This work highlights the importance of incorporating different models into a single

Fig 6. Forecast score for the FSNetwork-TTW model in 2017/2018 by week relative to peak. Scores for the two peak targets in each region

were aligned to summarize performance relative to the peak week. On the x-axis, zero indicates the peak week and positive values represent

weeks after the peak week. The black line indicates the overall geometric average across all regions. The grey band represents the geometric

average across all regions and all seasons prior to 2017/2018.

https://doi.org/10.1371/journal.pcbi.1007486.g006
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forecast based on past performance. Moving forward, it will be vital to develop and sustain a

robust ecosystem of forecasting models for infectious disease that represent many different

methods, data sources, and model structures. In particular, we see opportunities in developing

incorporating pathogen-specific data into models [32] and using more spatially structured and

multi-scale approaches [11, 33]. The inclusion of mutiple forecasting approaches and use of

past performance in determining an ensemble structure reduces the risk of relying on a single

probabilistic forecast and therefore strengthens the case for incorporating forecasts into real-

time decision-making.

While the multi-model ensemble approach described here works well for seasonal patho-

gens with multiple seasons of retrospective data available, it would be more limited in an

emerging pandemic scenario. In these settings, there may not be any historical data on how

models have performed nor reliable real-time data to train on. However, adaptive weighting

approaches that dynamically update the weights over the course of a season or epidemic could

remove the requirement that all models have a substantial track-record of performance. Pre-

liminary work on adaptive weighting has shown some promise, though such approaches still

rely on accurately reported real-time data [34]. Furthermore, a simple average of forecasts

remains available in such situations and, as illustrated by the relatively strong performance of

the FluSight Network Equal Weights model and the CDC’s unweighted FluSight ensemble,

can still offer advantages over individual models.

One risk of complex ensemble approaches is that they may be “overfit” to the data, resulting

in models that place too much emphasis on one approach in a particular scenario or setting.

This is a particular concern in applications such as this one, where the number of observations

is fairly limited (hundreds to thousands of observations instead of hundreds of thousands).

Against this backdrop, the relative simplicity of the FluSight Network Target-Type weights

model is a strength, as there is less danger of these models being overfit to the data. Addition-

ally, approaches that use regularization or penalization to reduce the number of effective

parameters estimated by a particular model have been shown to have some practical utility in

similar settings and may also have a role to play in future ensembles for infectious disease fore-

casting [23].

Formally measuring the quality of forecasts is challenging and the choice of metric can

impact how models are constructed. Following the FluSight Challenge guidelines, we used a

probabilistic measure of forecast accuracy, the modified log score, as our primary tool for eval-

uating forecast accuracy. We also assessed point estimate accuracy as a secondary measure

(Fig A in S1 Text). It has been shown that the modified log score (i.e. multiple bins considered

accurate) used by the CDC is not strictly proper and could incentivize forecasting teams to

modify forecast outputs if their goal was only to achieve the highest score possible [35, 36].

Forecasts in the FluSight Network were not modified in such a way [37]. Most component

forecasts were optimized for the proper log-score (i.e. single bins considered accurate) while

the FluSight Network ensembles were optimized to the modified log score. By using single bin

scoring rules to evaluate forecasts, practitioners could ensure that all forecasts were optimized

with the same goal in mind. In the case of the FluSight Network forecasts, the CDC has priori-

tized accuracy in a probabilistic sense over point-estimate accuracy.

Even though we have shown the value in building collaborations between research teams to

develop ensemble forecasts, these efforts largely rely on bespoke technological solutions. This

challenge is not specific to infectious disease forecasting, but covers many areas of quantitative

science. For this project, we built a highly customized solution that relied on GitHub, Travis

Continuous Integration server, unix scripts, and model code in R, python, and MatLab. In all,

the seven seasons of training data consisted of about 95MB and over 1.5m rows of data per

model and about 2GB of forecast data for all models combined. The real-time forecasts for the
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2017/2018 season added about 300MB of data. The framework developed by CDC directly

facilitated this work by identifying targets, establishing common formats, and establishing a

space for this collaboration. To build on this success and move ensemble infectious disease

forecasting into a more generalizable, operational phase, technological advancements are nec-

essary to both standardize data sources, model structures, and forecast formats as well as

develop modeling tools that can facilitate the development and implementation of component

and ensemble models.

With the promise of new, real-time data sources and continued methodological innovation

for both component models and multi-model ensemble approaches, there is good reason to

believe that infectious disease forecasting will continue to mature and improve in upcoming

years. As modeling efforts become more commonplace in the support of public health deci-

sion-making worldwide, it will be critical to develop infrastructure so that multiple models can

more easily be compared and combined. This will facilitate reproducibility and archiving of

single-model forecasts, the creation of multi-model ensemble forecasts, and the communica-

tion of the forecasts and their uncertainty to decision-makers and the general public. Efforts

such as this, that emphasize real-time testing and evaluation of forecasting models and facili-

tate close collaboration between public health officials and modeling researchers, are critical to

improving our understanding of how best to use forecasts to improve public health response

to seasonal and emerging epidemic threats.

Materials and methods

Influenza data

Forecasting targets for the CDC FluSight challenge are based on the U.S. Outpatient Influ-

enza-like Illness Surveillance Network (ILINet). ILINet is a syndromic surveillance system that

publishes the weekly percentage of outpatient visits due to influenza-like illness, weighted

based on state populations (wILI) from a network of more than 2,800 providers. Estimates of

wILI are reported weekly by the CDC’s Influenza Division for the United States as a whole as

well as for each of the 10 Health and Human Services (HHS) regions. Reporting of ‘current’

wILI is typically delayed by approximately one to two weeks from the calendar date of a doc-

tor’s office visit as data are collected and processed, and each weekly publication can also

include revisions to prior reported values if new data become available. Larger revisions have

been shown to be associated with decreased forecast accuracy [27]. For the US and each HHS

Region, CDC publishes an annual baseline level of ILI activity based on off-season ILI levels

[2].

Forecast targets and structure

As the goal was to submit our ensemble forecast in real-time to the CDC FluSight forecasting

challenge, we adhered to guidelines and formats set forth by the challenge in determining fore-

cast format. A season typically consists of forecast files generated weekly for 33 weeks, starting

with epidemic week 43 (EW43) of one calendar year and ending with EW18 of the following

year. Every week in a year is classified into an “MMWR week” (ranging from 1 to 52 or 53,

depending on the year) using a standard definition established by the National Notifiable Dis-

eases Surveillance System [38–40]. Forecasts for the CDC FluSight challenge consist of seven

targets: three seasonal targets and four short-term or ‘week-ahead’ targets. The seasonal targets

consist of season onset (defined as the first MMWR week where wILI is at or above baseline

and remains above it for three consecutive weeks), season peak week (defined as the MMWR

week of maximum wILI), and season peak percentage (defined as the maximum wILI value for

the season). The short-term targets consist of forecasts for wILI values 1, 2, 3, and 4 weeks

Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007486 November 22, 2019 12 / 19

https://doi.org/10.1371/journal.pcbi.1007486


ahead of the most recently published data. With the two-week reporting delay in the publica-

tion of ILINet, these short-term forecasts are for the level of wILI occurring 1 week prior to the

week the forecast is made, the current week, and the two weeks after the forecast is made. Fore-

casts are created for all targets for the US as a whole and for each of the 10 HHS Regions (Fig

1A–1C).

For all targets, forecasts consist of probability distributions over bins of possible values for

the target. For season onset and peak week, forecast bins consist of individual weeks within the

influenza season, with an additional bin for onset week corresponding to a forecast of no

onset. For short-term targets and peak intensity, forecast bins consist of levels of observed

wILI rounded to the nearest 0.1% (the level of resolution for ILINet publicly reported by the

CDC) up to 13%. Formally, the bins are defined as [0.00, 0.05), [0.05, 0.15), . . ., [12.85, 12.95),

[12.95, 100].

The CDC has developed a structured format for weekly influenza forecasts. All forecasts for

this project used those data standards for all forecasts and this facilitated collaboration among

the teams.

Forecast evaluation

Submitted forecasts were evaluated using the modified log score used by the CDC in their fore-

casting challenge, which provides a simultaneous measure of forecast accuracy and precision.

The log score for a probabalistic forecast m is defined as log fm(z�|x), where fm(z|x) is the pre-

dicted density function from model m for some target Z, conditional on some data x and z� is

the observed value of the target Z.

While a proper log score only evaluates the probability assigned to the exact observed value

z�, the CDC uses a modified log score that classifies additional values as “accurate”. For predic-

tions of season onset and peak week, probabilities assigned to the week before and after the

observed week are included as correct, so the modified log score becomes log
R z�þ1

z�� 1
fmðzjxÞdz.

For season peak percentage and the short-term forecasts, probabilities assigned to wILI values

within 0.5 units of the observed values are included as correct, so the modified log score

becomes log
R z�þ:5
z�� :5 fmðzjxÞdz. In practice, and following CDC scoring convention, we truncate

modified log scores to be no lower than -10. We refer to these modified log scores as simply

log scores hereafter.

Individual log scores can be averaged across different combinations of forecast regions, tar-

get, weeks, or seasons. Each model m has an associated predictive density for each combina-

tion of region (r), target (t), season (s), and week (w). Each of these densities has an

accompanying scalar log score, which could be represented as log fm;r;t;s;wðz�r;t;s;wjxÞ. These indi-

vidual log scores can be averaged across combinations of regions, targets, seasons, and weeks

to compare model performance.

Following FluSight challenge convention, to focus model evaluation on periods of time that

are more relevant for public health decision-making, only certain weeks were included when

calculating the average log scores for each target. Forecasts of season onset were included for

each region up to six weeks after the observed onset week within that region. Forecasts of peak

week and peak intensity were included for all weeks in a region-season until the week in which

the wILI measure dropped below the regional baseline level for the final time. Week-ahead

forecasts for each region-season were included starting four weeks prior to the onset week

through three weeks after the wILI goes below the regional baseline for the final time. All

weeks were included for region-seasons that did not have high enough incidence to define a

season onset week.
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To enhance interpretability, we report exponentiated average log scores which are the geo-

metric mean of probability a model assigned to the value(s) eventually deemed to be accurate.

In this manuscript, we refer to these as “average forecast scores”. As an example, the average

forecast score for model m in season s (as shown in Fig 2), is computed as

Sm;�;�;s;� ¼ exp
1

N

X

r;t;w

log fm;r;t;s;wðz
�

r;t;s;wjxÞ

 !

¼
Y

r;t;w

fm;r;t;s;wðz
�

r;t;s;wjxÞ

 !1=N

: ð1Þ

As other forecasting efforts have used mean square error (MSE) or root mean square error

(RMSE) of point predictions as an evaluation method, we additionally evaluated the prospec-

tive forecasts received during the 2017-2018 season using RMSE. The submitted point forecast

was used to score each component, and a point forecast was generated for each FSNetwork

model by taking the median of the predicted distribution. For each model m, we calculated

RMSEm,t for target t, averaging over all weeks w in the s = 2017/2018 season and all regions r,

as RMSEm;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r;w
ðẑm;r;t;w � z�r;t;wÞ

2

N

r

, where ẑm;r;t;w is the point prediction of model m for observed

value z�r;t;w. Average bias is calculated as biasm;t ¼
P

r;w
ðẑm;r;t;w � z�r;t;wÞ

N .

Ensemble components

To provide training data for the ensemble, four teams submitted between 1 and 9 components

each, for a total of 21 ensemble components. Teams submitted out-of-sample forecasts for the

2010/2011 through 2016/2017 influenza seasons. These models and their performance are

evaluated in separate work [27]. Teams constructed their forecasts in a prospective fashion,

using only data that were available at the time of the forecast. For some data sources (e.g., wILI

prior to the 2014/2015 influenza season), data as they were published at the time were not

available. In such cases, teams were still allowed to use those data sources while making best

efforts to only use data available at the time forecasts would have been made.

For each influenza season, teams submitted weekly forecasts from epidemic week 40

(EW40) of the first year through EW20 of the following year, using standard CDC definitions

for epidemic week [38–40]. If a season contained EW53, forecasts were submitted for that

week as well. In total, teams submitted 233 individual forecast files representing forecasts

across the seven influenza seasons. Once submitted, the forecast files were not updated except

in four instances where explicit programming bugs had resulted in numerical issues in the

forecast. Teams were explicitly discouraged from re-tuning or adjusting their models for dif-

ferent prior seasons to avoid issues with over-fitting.

Teams utilized a variety of methods and modeling approaches in the construction of their

component model submissions (Table A in S1 Text). Seven of the components used a com-

partmental structure (i.e. Susceptible-Infectious-Recovered) to model the disease transmission

process, while other components used more statistical approaches to directly model the

observed wILI curve. Six of the components explicitly incorporated additional data sources

beyond previous wILI data, including weather data and Google search data. Two components

were constructed to represent a seasonal baseline based on historical data only.

Additionally, we obtained the predictive distributions from the CDC-created “unweighted

average” model. This ensemble combined all forecast models received by the CDC in real-time

in the 2015/2016 (14 models), 2016/2017 (28 models), and 2017/2018 (28 models) seasons

[26]. These included models that are not part of the collaborative ensemble effort described in

this manuscript, although some variations on the components presented here were also
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submitted to the CDC. Including this model allowed us to compare our ensemble accuracy to

the model used by the CDC in real-time during these three seasons.

It is important to distinguish ensemble components from standalone forecasting models.

Standalone models are optimized to be as accurate as possible on their own by, among other

things, using proper smoothing. Ensemble components might be designed to be accurate on

their own, or else they may be included merely to complement weak spots in other compo-

nents, i.e. to reduce the ensemble’s variance. Because we had sufficient cross-validation data to

estimate ensemble weights for several dozen components, some groups contributed non-

smoothed “complementing” components for that purpose (Table A in S1 Text). Such compo-

nents may perform poorly on their own, yet their contribution to overall ensemble accuracy

may still be significant.

It should be noted that ensemble weights are not a measure of ensemble components’

standalone accuracy nor do they measure the overall contribution of a particular model to

the ensemble accuracy. For example, consider a setting where a component that is identical

(or highly similar) to an existing ensemble component with weight π� is added to a given

ensemble. The accuracy of the original ensemble can be maintained in a number of ways,

including (a) assigning each copy a weight of π�/2, or (b) assigning the first copy a weight

of π� and the second copy a weight of 0. In both of these weightings, at least one high accu-

racy ensemble component would be assigned significantly lower weight due to the presence

of another identical or similar component. In fact, we saw this in our results since the

Delphi-Stat model was the top-performing component model but was a linear combina-

tion of other Delphi models. It received zero weight in all of our ensemble specifications.

Additionally, inclusion of components with small weights can have a large impact on an

ensemble’s forecast accuracy.

Ensemble nomenclature

There are several different ways that the term ensemble has been used in practice. In this

paper, we use the phrases ‘multi-model ensemble’ or ‘ensemble model’ interchangably to refer

to models that represent mixtures of separate component models. However, a clear taxonomy

of ensemble modeling might distinguish three distinct tiers of ensemble models. First, single-

model ensemble methodologies can be used to fit models and make predictions. Examples of

these approaches include the component models from Columbia University that use, e.g.

Ensemble Average Kalman Filtering, to take weighted averages of model realizations to form

predictive distributions (Table A in S1 Text). Second, multi-model ensembles combine com-

ponent models through techniques such as model stacking (see Methods). Among the models

described in this work, one component model (Delphi-Stat) is a multi-model ensemble

and all of the FluSight Network models are also multi-model ensembles (Table A in S1 Text).

Third, the term superensemble has been used for models that combine components that are

themselves ensembles (either multi-model or single-model) [16, 41]. Since not all of the com-

ponents in our approach are ensembles themselves, we chose the term multi-model ensemble

to refer to our approach.

Ensemble construction

All ensemble models were built using a method that combines component predictive distribu-

tions or densities using weighted averages. In the literature, this approach has been called

stacking [13] or weighted density ensembles [23], and is similar to methods used in Bayesian

model averaging [18]. Let fc(zt,r,w) represent the predictive density of ensemble component c
for the value of the target Zt,r,w, where t indexes the particular target, r indexes the region, and
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w indexes the week. We combine these components together into a multi-model ensemble

with predictive density f(zt,r,w) as follows:

f ðzt;r;wÞ ¼
XC

c¼1

pc;t;rfcðzt;r;wÞ ð2Þ

where πc,t,r is the weight assigned to component c for predictions of target t in region r. We

require
PC

c¼1
pc;t;r ¼ 1 and thereby ensure that f(zt,r,w) remains a valid probability distribution.

A total of five ensemble weighting schemes were considered, with varying complexity and

number of estimated weights (Table A in S1 Text).

• Equal Weight (FSNetwork-EW): This model consisted of assigning all components the

same weight regardless of performance and is equivalent to an equally weighted probability

density mixture of the components: πc,t,r = 1/C.

• Constant Weight model (FSNetwork-CW): The weights vary across components but have

the same value for all targets and regions, for a total of 21 weights: πc,t,r = πc. For purposes of

statistical estimation, we say that the degrees of freedom (df) is (21 − 1) = 20. For each set of

weights, once 20 weights are estimated the 21st is determined since they must add up to 1.

• Target Type Weight model (FSNetwork-TTW): Weights are estimated separately for our

two target-types (tt), short-term and seasonal targets, with no variation across regions. This

results in a total of 42 weights (df = 40): πc,t,r = πc,tt.

• Target Weight model (FSNetwork-TW): The weights are estimated separately for each of

the seven targets for each component with no variation across regions, resulting in 147

weights (df = 140): πc,t,r = πc,t.

• Target-Region Weight model (FSNetwork-TRW): The most complex model considered,

this model estiamted weights separately for each component-target-region combination,

resulting in 1617 unique weights (df = 1540): πc,t,r = πc,t,r.

Weights were estimated using the EM algorithm (Section 6 in S1 Text) [34]. Weights for

components were trained using a leave-one-season-out cross-validation approach on compo-

nent forecasts from the 2010/2011 through 2016/2017 seasons. Given the limited number of

seasons available for cross-validation, we used component model forecast scores from all other

seasons as training data to estimate weights for a given test season, even if the training season

occured chronologically after the test season of interest.

Ensemble evaluation

Based on the results of the cross-validation study, we selected one ensemble model as the offi-

cial FluSight Network entry to the CDC’s 2017/2018 influenza forecasting challenge. The crite-

ria for this choice were pre-specified in September of 2017, prior to conducting the cross-

validation experiments [28]. Component weights for the FSNetwork-TTW model were esti-

mated using all seven seasons of component model forecasts. In real-time over the course of

the 2017/2018 influenza season, participating teams submitted weekly forecasts from each

component, which were combined using the estimated weights into the FluSight Network

model and submitted to the CDC. The component weights for the submitted model remained

unchanged throughout the course of the season.
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Reproducibility and data availability

To maximize the reproducibility and data availability for this project, the data and code for the

entire project are publicly available. The project is available on GitHub [42], with a permanent

repository stored on Zenodo [43]. Code for specific models are either publicly available or

available upon request from the modeling teams, with more model-specific details available at

the related citations (Table A in S1 Text). Retrospective and real-time forecasts from the Flu-

Sight Network may be interactively browsed on the website http://flusightnetwork.io. Addi-

tionally, this manuscript was dynamically generated using R version 3.6.0 (2019-04-26),

Sweave, knitr, and make. These tools enable the intermingling of manuscript text with R code

that run the central analyses, automatically regenerate parts of the analysis that have changed,

and minimize the chance for errors in transcribing or translating results [44, 45].
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