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ABSTRACT 

PREDICTING FARINOGRAPH STABILITY OF WHEAT FLOUR WITH 

MIXOGRAPH AND GLUTOMATIC TESTS 

BROOKE SHUMATE 

2020 

Hard red spring wheat (Triticum aestivum L.; HRSW) flour is typically used to 

produce wheat-based foods where dough strength is a key quality component. 

Maintaining acceptable levels of dough strength is an important goal in the development 

of new HRSW cultivars. In a commercial setting, dough strength is often measured as 

Farinograph stability, though due to various resource constraints, stability is often 

predicted in breeding programs via other methods like the Mixograph. The objective of 

this research was to combine Glutomatic with Mixograph data to determine whether 

Farinograph stability predictions might be improved over the use of Mixograph data 

alone. Five hundred and forty flour samples of 33 to 48 HRSW genotypes grown at three 

locations over years 2015 – 2019 were subjected to Farinograph, Mixograph, and 

Glutomatic tests. Stepwise linear regression methods and pairwise correlation was used to 

select independent variables from the combined dataset to predict Farinograph stability. 

Including Glutomatic data with that of the Mixograph may assist breeders in selecting 

HRSW breeding lines and cultivars with sufficient levels of dough strength.  

Midline peak time, midline peak integral, and gluten index were found to be the 

most significant predictors of Farinograph stability. Stability was affected by the 
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environment from year to year. Analysis on genotype averages was found to be the most 

useful and least effected by environmental interactions. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction 

Wheat (Triticum aestivum L.) is one of the ‘big three’ cereal crops (along with 

rice and corn) with approximately 600 million tons harvested each year (Shewry, 2009). 

Wheat has a wide range of cultivation from Russia to Argentina, tropic regions and sub-

tropic regions (Shewry, 2009). Significant wheat exporting areas of the world include the 

United States, Canada, Austrialia, The Black Sea Region, Europe, and Argentina (Sharma 

et al., 2015).   Wheat has a wide variety of uses from human food to livestock feed, and 

in many cultures and religions wheat bread is of significance (Shewry, 2009). There are 

over 620 million tons of wheat grown worldwide every year (Dubcovsky & Dvorak, 

2007). Approximately 95% of wheat grown is common wheat used for breadmaking and 

pastries, and the remaining amount is durum wheat used for pasta products. Wheat 

consumption represents about 1/5 of the world’s caloric intake (Dubcovsky & Dvorak, 

2007). The other 5% of wheat grown is durum wheat, which is often used to make pastas; 

einkorn and other hulled wheats such as emmer are of minor economic importance 

(Dubcovsky & Dvorak, 2007).  

  In the United States, wheat is the third crop for both value and acreage, behind 

corn and soybeans (Vocke & Ali, 2014). Unlike other crops, wheat has distinct varieties 

that are meant to be produced across different regions during different seasons. This  

causes a variation in the costs and competitiveness of wheat with other crop species in the 

United States (Vocke & Ali, 2014). Along with productivity of the wheat plant, the value 

of wheat lies in its flour quality that affects milling and breadmaking (Briggle & Reitz, 

1963). Producing a wheat crop in which the sale price of the wheat outweighs the cost is 
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important to keep farmers growing wheat and not switching to a potentially more 

valuable crop.  

1.2 Origin of Domesticated Wheat 

Wheat in the genus Triticum originated in Asia and parts of Africa where wheat as 

we know it today evolved from wild grasses (Beldrok et al., 200 C.E.). Triticum aestivum 

is a 42-chromosome wheat that is believed to have descended from Aegilops squarrosa 

(Triticum tauschii) and Triticum dicoccoides; the use of colchicine aided in the discovery 

of T. tauschii as a parent (Beldrok et al., 200 C.E.).  

Before using cereals to make bread, they were used to make porridges which is 

believed to be the first form of cereals being used as a human food source (Beldrok et al., 

200 C.E.). Sumerians were the first to bake unleavened bread sometime around 6000 

B.C. (Beldrok et al., 200 C.E.). The Egyptians were the ones who began using yeast they 

created from brewing beer in their bread around 3000 B.C. as well as developing a bread 

oven that could bake multiple loaves at one time (Beldrok et al., 200 C.E.).  

Domestication of crop species makes them dependent on human interaction with 

their cultivation (Peng et al., 2011a). Wheat is a universal cereal crop and was among one 

of the first domesticated crop plants dating back 10,000 years ago (Peng et al., 2011a). 

Domestication of wheat led it to become more susceptible to environmental stress, pests, 

and diseases (Peng et al., 2011a). One major change in wheat development was the 

resistance to shattering created by humans. Wild wheat spikelets were free threshing, and 

the spikelet would fall to the ground when it was mature. The arrow like shape of the 

glume would help it to penetrate the soil (Peng et al., 2011a). Today, wheat is bred to not 

shatter which causes it to rely on humans to thresh and replant the seeds. Domestication 
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of T. aestivum, wheat commonly grown for bread, began from a cross between 

domesticated emmer wheat (T. dicoccum) and goat grass (Aegilops tauschii) (Peng et al., 

2011). 

Today, wheat cultivars usually refer to two species: hexaploid bread wheat, 

Triticum aestivum (2n = 6x = 42, AuAuBBDD), and tetraploid durum wheat, T. durum 

(2n = 4x = 28, AuAuBB) (Peng et al., 2011a). A wild diploid wheat (T. urartu, 

2n=2x=14, genome AA) formed a hybrid with goat grass (Aegilops speltoides, 

2n=2x=14, genome BB) which produced wild emmer wheat (Peng et al., 2011b). This 

resulted in the AABB genome of emmer wheat (T. dicoccum) (Peng et al., 2011b). T. 

dicoccum was then crossed with another species of goat grass, Ae. tauschii (2n=2x=14, 

genome DD), which produced T. spelta (2n=6x=42, genome AABBDD) (Peng et al., 

2011b). Natural mutation evolved into the free-threshing durum and bread wheats we 

have today.  

1.3 Wheat Classification 

There are three commonly grown types of wheat in the United States: winter 

wheat, spring wheat, and durum (Bond & Liefert, 2019). In the US, winter wheat 

represents 70-80% of the production (Bond & Liefert, 2019).  Followed by spring wheat 

with approximately 25% of production and durum wheat making up the remainder (Bond 

& Liefert, 2019). Wintertime temperatures help determine which kind of wheat will be 

planted in any given location (Vocke & Ali, 2014). Winter wheat is planted in the fall and 

establishes before going dormant during the winter, it is then harvested in the summer. 

Spring wheat is planted during the spring and is harvested in the late summer into fall 

(Vocke & Ali, 2014). Winter wheat has a higher yield potential because of its longer 
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growing season; most US spring wheat is grown in areas where the winter would be too 

cold and would kill dormant seeds (Vocke & Ali, 2014).  

There are five major classes of wheat: hard red winter wheat (HRWW), hard red 

spring wheat (HRSW), soft red winter wheat (SRWW), white wheat and durum (Bond & 

Liefert, 2019). Hard red spring wheat accounts for approximately 25% of US production 

and is valuable because of its high protein levels which are useful for specialty breads 

and blending with lower protein wheat for loaf bread (Bond & Liefert, 2019; Vocke & 

Ali, 2014). Hard red winter wheat makes up approximately 40% of US production and is 

a high protein wheat commonly used for bread flour in the Great Plains (Bond & Liefert, 

2019; Vocke & Ali, 2014). Soft red winter wheat accounts for 15-20% of wheat 

production and is used for cakes, cookies and crackers (Bond & Liefert, 2019; Vocke & 

Ali, 2014). White wheat, spring or winter, makes up 10-15% of production and is used 

for noodles, crackers, cereals, cookies, white crusted bread, and other wheat products that 

use low-protein flour (Bond & Liefert, 2019; Vocke & Ali, 2014). Durum wheat, making 

up 3-5% of production, is used in pasta production (Bond & Liefert, 2019; Vocke & Ali, 

2014).  

1.4 Wheat Grain Quality 

Wheat grain quality depends on the suitability of the grain for its intended 

processes and products (Högy & Fangmeier, 2008). The quality of the grain for its 

purpose could include milling performance, dough rheology, baking quality, nutritional 

value and storage properties (Högy & Fangmeier, 2008). Grain quality relates to how 

successful wheat flour preforms in both consumer products and in industrial processes; 
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improving wheat quality increases desirability of consumer products (Mergoum et al., 

2009).  

The properties of wheat dough and its baking qualities can vary between different 

cultivars and can be influenced by abiotic stresses like a high temperature (Maphosa et 

al., 2015). High temperatures during grain filling have been known to decrease the dough 

strength (Maphosa et al., 2015; Randall & Moss, 1990).  There are many variables that 

play a role in determining the quality of a wheat flour, such as physical properties, 

protein content and composition, and starch content (Bonfil & Posner, 2012). There are 

several proteins in the endosperm that have shown to be associated with flour and dough 

quality. These proteins include puroindolines, serpins, glutenins, and gliadins (Maphosa 

et al., 2015). Seed storage protein content is one of the best protein indicators of baking 

quality, but variation in the protein content alone does not explain all variation, protein 

quality is also a big factor (Bonfil & Posner, 2012).  

Rheology is the study of how materials deform, flow, or fail when there is a force 

applied to them (Amjud, Shehzad, Hussain, Shabbir, Khan, & Shoaib. 2013). Dough 

rheology is an important tool to measure the stress in the dough, which is related to the 

gluten network (Amjud et al. 2013). The rheological properties of wheat are significant in 

determining the way doughs behave during handling and on the quality of the finished 

product (Mani et al., 1992). Mixing alters the rheological properties of dough; it rapidly 

hydrates flour particles, develops the gluten matrix, and aerates the dough (Mani et al., 

1992). As the proteins in the dough become hydrated, they create fibrils that create a 

matrix and resistance to extension increases (Mani et al., 1992). A dough’s full 

breadmaking potential is at the optimum point of dough development where there are no 
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intact flour particles, only a random mixture of protein fibrils with starch granules (Mani 

et al., 1992). Past the optimum mixing point, the dough begins to break down where it 

becomes wet and sticky (Mani et al., 1992).  

Another important wheat characteristic for quality is kernel hardness. Soft kernels 

are easy to break, which can result in a large number of intact starch granules after 

milling a fine flour (Pasha et al., 2010). Harder wheats produce coarser flours that have 

more broken granules of starch, higher levels of starch damage, and consume more power 

on the flour mill (Pasha et al., 2010). Harder wheats are better for leavened breads 

because the broken starches absorb more water. Soft wheats are more suitable for 

cookies, cakes, and pastries because of their lower protein content and less starch damage 

(Pasha et al., 2010).  

Interactions between carbohydrates and proteins influence the quality of flour and 

is related to the hardness of the endosperm (Pasha et al., 2010). The proteins that remain 

adsorbed to the outside of starch granules are the glutenins and gliadins, storage proteins 

(Pasha et al., 2010). Starch granule-associated proteins (SGAPs) are tightly bound to the 

surface, these proteins are biologically different from plant storage proteins (Goldner & 

Boyer, 1989; Pasha et al., 2010). Puroindoline, or friabilin, is prominent in soft wheat, 

hard wheat has a faint band, and it is lacking in durum (Pasha et al., 2010). Friabilin is a 

starch granule protein that is linked to both the texture and the quality of wheat.  

1.5 Wheat Flour 

The rheological properties of wheat flour are significant in influencing the quality 

of the final baked product. Mixing is one way the dough is severely altered; mixing 

hydrates the flour, incorporates air into the mixture, and develops the gluten (Mani et al., 
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1992). The maximum potential of the dough’s breadmaking ability is achieved at the 

optimum point of dough development (Mani et al., 1992). The properties of the dough 

system are related to the gluten; nonprotein components interact with the gluten and 

contribute significantly to the theological properties of the gluten (Mani et al., 1992).  

Wheat flour is made up of several constituents: starch, non-starch 

polysaccharides, protein, lipids, and whole wheat flour contains other byproducts. These 

components enhance and define the properties of wheat flour as discussed in the 

following sections. 

1.5.1 Starch  

Starch is the most abundant wheat component making up 63-72% of the grain and 

is found in the endosperm (Van Der Borght et al., 2005). The starch granules come in two 

sizes: large- lenticular A-type granules and small- spherical B-type granules (Van Der 

Borght et al., 2005). An important property of starch is its ability to absorb water which 

results in a gelatinization and loss of the granular organization (Blazek & Copeland, 

2008) 

Starch is the most important reverse polysaccharose and is abundant in many 

plants (Goesaert et al., 2005). Starch is mostly composed of the glucose polymers: 

amylose and amylopectin (Goesaert et al., 2005). Amylose is a linear molecule, and 

amylopectin is a large branched molecule (Goesaert et al., 2005). Starches that have a 

higher level of amylose content are of nutritional interest because they are slow digesting, 

which is associated with beneficial physiological effects (Blazek & Copeland, 2008). 

Breeding for a higher amylose content has been successful in other crops like corn and 
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rice, but due to wheat’s hexaploidy, it is difficult to combine mutations in genes for 

encoding amylose increase (Blazek & Copeland, 2008). 

During the milling process, approximately 5-8% of wheat flour starch granules 

are damaged (Van Der Borght et al., 2005). This damage to the starch increases the water 

absorption during dough mixing, there is also an increase in enzymic degradation (Van 

Der Borght et al., 2005). Hard wheats tend to have a higher content of damaged starch 

because they do not mill into flour as easily as the soft wheats (Barrera et al., 2007). In 

doughs with little or no added sugar, the damaged starch should be enough so that there is 

a good production of yeast gas, but not so much starch damage that there are dough 

handling problems (Barrera et al., 2007). Starch damage is much more detrimental to the 

quality of the soft wheats used for cookies and cakes. Damaged starch can reduce the size 

of a cookie (Barrera et al., 2007).  

1.5.2 Protein 

About 12% of wheat grain is composed of proteins found in the endosperm (Van 

Der Borght et al., 2005). These proteins can be divided into two groups: gluten and non-

gluten proteins. Non-gluten proteins make up 15-20% of the total protein in wheat grain 

and consist of water soluble albumins and iwater nsoluble globulins (Van Der Borght et 

al., 2005). Gluten proteins, which make up the remaining 80-85% of the protein, are 

made up of gliadins and glutenins (Van Der Borght et al., 2005).  

The non-water soluble proteins form a viscoelastic network that allows the dough 

to retain yeast fermentation gases and help to produce an aerated baked good (Van Der 

Borght et al., 2005). Protein content in hard wheats can be a good indicator of how well 
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the wheat will perform in the baking of yeast breads (Stiegert & Blanc, 1997). However, 

the quality of the protein also contributes to a better end quality (Stiegert & Blanc, 1997). 

Gluten is the protein responsible for the visco-elastic properties that allow wheat 

dough to be processed into baked and other goods (Cesevičiene & Butkute, 2011). Gluten 

is responsible for determining wheat baking quality by conferring water absorption 

capacity and cohesivity, viscosity and elasticity of wheat flour doughs (Cesevičiene & 

Butkute, 2011; Ionescu & Stoenescu, 2010). Gliadins and glutenins are needed for 

producing the balance of viscous and elastic properties in both gluten and in the dough 

(Song & Zheng, 2007). 

 Glidians affect the viscous properties of dough and glutenins, expressed by G’ 

(storage) and G” (loss moduli) are responsible for the elasticity and strength (Song & 

Zheng, 2007). Gliadins are monomeric proteins that can be solubilized in alcoholic 

solutions (Graybosch et al., 1996). An increase in gliadin content will produce a weak, 

sticky, inelastic gluten (Wrigley et al., 2006). A sulfur deficiency can cause changes in 

dough quality by upsetting the normal balance of gliadin and glutenin content (Wrigley et 

al., 2006).  

Flours that have a higher glutenin content tend to be strong, tough, elastic, and 

have non-adhesive gluten proteins (Wrigley et al., 2006). Larger glutenin molecules 

require a longer mixing time to achieve full dough development due to their increased 

surface area (Wrigley et al., 2006). A balance between glidians and glutenins is required 

to form a desirable dough.  

Gliadens come in several different subunit groups (a-; b-; g-; w-gliadins) which 

are all controlled by genes in the complex Gli-1 and Gli-2 loci (Mergoum et al., 2009). 
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Glutenen have high- (HMW-GS) and low- (LMW-GS) molecular weight subunits and are 

controlled in the complex Glu-1 and Glu-3 loci (Mergoum et al., 2009). HMW-GS 

contributes to the dough strength, and LMW-GS and w-gliadins contribute to dough 

extensibility and ciscosity (Mergoum et al., 2009). Allelic variations mainly at Glu-1, 

Glu-3, and Gli-1 are where most variation in strength and extensibility in dough mixing is 

found (Mergoum et al., 2009).  

An increase in the amount of glutenin-to-gliadin can lead to a longer mixing time 

(Uthayakumaran et al., 1999). Most likely this increase led to a reduced resistance 

breakdown or to an increased tolerance to overmixing (stability) (Uthayakumaran et al., 

1999). An increase in the glutenin-to-gliadin ratio was also associated with an increase in 

the resistance to extension and a decrease in extensibility (Uthayakumaran et al., 1999). 

An increase in the glutenin-to-gliadin  ratio also showed a significant increase in loaf 

height, which is an important quality in the production of pan bread (Uthayakumaran et 

al., 1999). The glutenin-to-gliadin ratio was found to be negatively correlated with dough 

development time (DDT), dough stability, gluten index, and protein content (Barak et al., 

2013).  

Protein content and the glutenin-to-gliadin ratio both have different roles in the 

determination of dough and bread quality (Uthayakumaran et al., 1999). Glutenins have a 

strong negative correlation with peak viscosity, breakdown viscosity, and pasting 

temperature while gliadins have a positive correlation with breakdown viscosity, setback, 

and final viscosity (Barak et al., 2013).  
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1.5.3 Non-starch polysaccharides 

Wheat grain also contains non-starchy polysaccharides which are present in cell 

walls of the endosperm and in the bran (Van Der Borght et al., 2005). These 

polysaccharides are arabinoxylans, cellulose, and arabinogalactan-peptides; 

arabinoxylans are the most abundant (Van Der Borght et al., 2005). 

Although the non-starch polysaccharides are a minor component of wheat, they 

significantly affect the physical properties of dough (Sasaki et al., 2000). The pentosans 

are composed of arabinoxylans and xylans. Water insoluble arabinoxylan is known to 

influence the dough characteristics as well as baking performance because of its water-

binding capacity as well as its high viscosity (Sasaki et al., 2000). This positively affects 

the dough quality while adding water insoluble arabinoxylans will decrease loaf volume 

(Sasaki et al., 2000).  

Cellulose is the most abundant organic compound found in nature; it comprises 

over 50% of all the carbon in vegetation (Choct, 1997). Cellulose is insoluble in water 

and has a high molecular weight. It is also believed that cellulose is identical in chemical 

composition regardless of the source (Choct, 1997). In cereals, cellulose can be recovered 

from the insoluble residue left after extraction of cell wall material (Choct, 1997).  

1.5.4 Lipids 

Two percent of the wheat grain is lipids and can be classified as either starch 

lipids or free and bound non-starch lipids depending on their extraction conditions (Van 

Der Borght et al., 2005). Non-starch lipids compose 75% of the lipids and are 

predominantly triacylglycerols and are sometimes digalactosyl diacylglycerols (Van Der 

Borght et al., 2005). The starch lipids, making up the remaining 25%, are majorly 
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lysophospholipids (Van Der Borght et al., 2005). The lipids interact with the dough and 

gluten; most of the non-starchy lipids bind to gluten during the dough mixing process 

(Van Der Borght et al., 2005).  

Lipids also effect the relationship between the proteins and water; defatting gluten 

can improve the water uptake (Song & Zheng, 2007).  In dough mixing, the lipid 

interaction is mainly with the gluten proteins which results in structural modification 

(Addo & Pomeranz, 1991). Lipids in the gluten are bound mainly to the glutenin proteins 

(approximately 20%) while only 1.5% of lipids bind to gliadin (Chung et al., 1978).  

1.5.5 Byproducts 

There are several byproducts created when wheat is milled into flour: bran, shorts 

and middlings. Bran is the outer seed coat of the wheat kernel (Figure 1) which has a high 

nutrient content but is typically used in animal feed and not human consumption 

(Balandrán-Quintana et al., 2015). Bran is sometimes incorporated into fiber-rich foods 

like cereals and baked goods because of its dietary fiber and B vitamins (Balandrán-

Quintana et al., 2015). Although bran is a good source of protein, nutrients and fiber, 

adding it to bread affects bread quality(Kaprelyants et al., 2013).  

1.6 Wheat flour quality measurement 

1.6.1 Farinograph  

The Brabender Farinograph measures the rheological behaviors of dough (Diósi et 

al., 2015). The farinograph uses arbitrary units called Brabender units to incorporate 

torque to dough mixing (Diósi et al., 2015). The Farinograph measures several different 

rheological behaviors in wheat flour dough: arrival time, peak time, mixing tolerance 

index, departure time, stability, and water absorption capacity. The Farinoraph is widely 
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used to predict the functionality of flour and provides information in determining the 

quality of a cereal grain (Saleh et al., 2016). Dough performance during quality testing is 

associated with changes in the chemical composition and structural changes in the gluten 

network formation of a flour (Saleh et al., 2016). The Farinograph is considered a major 

quality testing instrument in the baking industry; it measures the plasticity and mobility 

of a dough that is subjected to gentle mixing at a constant temperature and speed (Saleh 

et al., 2016). Typically on the Farinograph test, water is added to a sample of 50g or 300g 

of wheat flour that has a 14% moisture content until the consistency reaches 500 

Brabender units (BU) (Okuda et al., 2016).  

Farinograph arrival indicates of the rate of flour water uptake and protein content 

(Diósi et al., 2015; Saleh et al., 2016). The arrival time is the amount of time in minutes it 

takes for the center of the Farinograph curve to reach the 500-BU line (AACC Approved 

Methods of Analysis, 11th Ed. Method 54-21.02. Rheological Behavior of Flour by 

Farinograph: Constant Flour Weight Procedure. Cereals & Grains Association, St. Paul, 

MN, U.S.A., 2011). Water absorption is important to the breadmaking process, typically 

the water content in a bread dough is 65% (Okuda et al., 2016). If the water content is 

low, the mixing time will increase. Bread volume is more effected by a water content that 

is too low than it is a water content that is too high (Okuda et al., 2016). Bread volume is 

reduced when the water content falls below approximately 45% (Okuda et al., 2016).  

The dough development peak time is an indication of the flour development 

(mixing) time (Diósi et al., 2015; Saleh et al., 2016). The peak time begins when water is 

added to when the dough reaches its maximum consistency (Wheat Marketing Center 

Inc, 2004). The dough development peak time measurement from the Farinograph gives 



 14 

an indication of the optimum mixing time under standardized conditions (Wheat 

Marketing Center Inc, 2004).  

Mixing tolerance index (MTI) is the difference between the Brabender unit value 

at the top of the curve 5 minutes after the peak time (Wheat Marketing Center Inc, 2004). 

The MTI indicates the extent of which a dough will break down and soften during the 

mixing process (Wheat Marketing Center Inc, 2004).  

The departure time is the time when the top of the curve leaves the 500-BU line 

(Wheat Marketing Center Inc, 2004). This measurement indicated when the dough is 

beginning to break down and soften, this is an indication of what the dough’s consistency 

will be like during processing (Wheat Marketing Center Inc, 2004).  

Farinograph stability is the difference in the time between arrival and departure 

(Wheat Marketing Center Inc, 2004). Stability is a good indication of the dough strength 

and indicated the amount of time a dough will remain at its maximum consistency 

(Wheat Marketing Center Inc, 2004).  

The Farinograph procedure is as follows using large (300g flour) or small (50g) 

flour bowls (AACC Approved Methods of Analysis, 11th Ed. Method 54-21.02. 

Rheological Behavior of Flour by Farinograph: Constant Flour Weight Procedure. 

Cereals & Grains Association, St. Paul, MN, U.S.A., 2011): 

Procedure 

1) Adjust the Farinograph thermostat to a temperature of 30 ± 0.2 ° , this needs 

to be maintained. Check the temperature of the circulating water, check that 

the water is circulating freely through the hose and bowl jackets, and confirm 

that the flow pattern matches the equipment manual.  
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2) Adjust the position of the base plate to be horizontal, and then fix the four 

foot-screws with their locknuts. 

3) Check that the chart paper is exactly horizontal. Two small plates on spring-

loaded hinges are the guides for the paper and can be adjusted.  

4) To clean, at the end of each test, while the machine is running, add dry flour 

to the bowl to make a dough with a consistencey of 800-900BU within 1 

minute of mixing with the test dough. Stop the machine, unscrew the bowl, 

discard the dough, and scrape the bowl with a plastic spatula. Clean the bowl 

with a damp cloth and wipe completely dry.  

Constant flour weight procedure for large and small bowls 

1) Sensitivity: There are four sensitivity settings, two choices of position linkage 

between balance levels, and two choices of weights (400 and 1000). Chose the 

correct sensitivity for the bowl size.  

2) Zero position of the scalehead pointer: Adjust the scalehead pointer to the zero 

position when the instrument is running at 63±2 rmp with the mixer empty.  

3) Adjustment of bandwidth: The damping device should be adjusted after the oil 

in the damping chamber has been at temperature for 1 hour or more and after 

the damping piston has been moved up and down several times. Raise the 

dynamometer until the scalehead pointer indicates 1,000BU. Measure the 

amount of time it takes for it to go from 1,000BU to 100 BU (should be 

1±0.2s).  

Large bowl procedure 

1) Turn the thermostat and circulating pump on 1 hour before use 
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2) Determine the flour moisture content and keep the flour in moisture proof 

containers 

3) Place 300 ±0.1g of flour (14% moisture basis) in the bowl 

4) Fill the large burette with room temperature water making sure the tip is full, 

and that the automatic zero adjustment is functioning.  

5) Set the pin-point to 9 minutes, turn the machine on to the 63rpm setting and 

then run for 1 minute until the zero-minute line is reach. Then begin to add 

water to the right front corner of the bowl from the burette to the expected 

absorption of the flour. When the dough begins to form, scrape the sides of the 

bowl with a plastic scraper working counterclockwise. Cover the bowl with 

the plexiglass cover to prevent any evaporation. If the mixing curve will be 

higher than 500BU. Add more water. This will be used to estimate the 

absorption for the next attempt.  

6) The first titration rarely has a curve with the maximum resistance centered at 

500BU. In the next titration adjust the absorption up or down until it is within 

20 of 500BU.  

7) In the final titration, add the water within 25s of opening the burette. Let the 

instrument run until an adequate curve is produced for evaluation. Then, lift 

the pen from the paper, and clean the bowl.  

8) Report the absorption values to the nearest 0.1%, and calculate the absorption 

on a 14% moisture basis using the following equation:  

!"#$%&'($)% =
(- + / − 300)

3
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X=mL of water needed to produce a curve with maximum consistency 

centered on the 500BY line 

Y= g of flour used 

Small bowl procedure 

 The same method is used except that 50±0.1g of flour is added. Titration is 

conducted with a small burette instead of a large one. The absorption rate is calculated 

with the following equation:  

!"#$%&'($)% = 2(- + / − 50) 

 X= mL of water needed to produce a curve with maximum consistency 

centered on the 500BY line 

Y= g of flour used 

Farinogram interpretation is derived from the Farinograph curves, an example of which is 

shown in (Figure 2).  

1.6.2 Mixograph  

The Mixograph records the dough and gluten properties of a wheat flour by 

measuring the resistance of a dough to mixing (Wheat Marketing Center Inc, 2004). 

Mixograph output includes water absorption, peak time, peak width, peak value, and peak 

right value. The Mixograph curve indicated the strength of the gluten, optimum dough 

development time, and mixing tolerance (Wheat Marketing Center Inc, 2004). The peak 

time illustrates the dough development time which begins when the recorder is started 

and ends when the dough has reached its maximum consistency (Wheat Marketing 

Center Inc, 2004). The Mixograph mixing tolerance is the resistance of a dough to 

breaking down during continuous mixing, this measurement is expressed as a score 
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relative to a control (Wheat Marketing Center Inc, 2004). Weak gluten flours have 

shorter peak times and less of a mixing tolerance than in strong gluten flours (Wheat 

Marketing Center Inc, 2004).  

The Mixograph method is as follows (AACC Approved Methods of Analysis, 11th 

Ed. Method 54-40.02. Physical Dough Tests: Mixograph Method. Approved 1999. 

Cereals & Grains Association, St. Paul, MN, U.S.A., 199 C.E.):  

1) The moisture content of the flour should be determined, then weigh the 

flour samples (10 or 35g on a 14% moisture basis) to 0.01g. The flour 

should be kept in moisture proof containers.  

2) Room temperature needs to be maintained at 25±1° for 24 hours a day. 

The equipment, flour, and water should be at room temperature. The 

mixing bowl can be soaked with water between samples but should be 

dried before the next use.  

3) After long idle periods, two or three mixograms of standard flour should 

precede the other recordings.  

4) Transfer weighed flour to the dry mixograph bowl. This can be aided with 

a camel-hair brush. 

5) With a tongue depressor or spatula, move the flour between two bowl pins 

to create a triangular shaped hole in the middle.  

6) Before starting the mixogram, be sure the ink is running freely from the 

pen. 

7) The mixogram should be started on a major arc and run for a fixed time 

(typically 8-10 minutes). 
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8) Place the bowl in position on the Mixograph, dispense the water from an 

automatic pipet, lower the mixing head, and start recording the mixogram.  

 

The dough absorption is calculated using the following equation (14% moisture 

basis): 

/ = 1.5- + 43.6 

X= percent of flour protein content 

Y= Percent absorption of water 

1.6.3 Glutomatic  

The glutomatic measures the wet gluten quantity and quality of a wheat flour 

(Wheat Marketing Center Inc, 2004). Gluten gives wheat dough its elasticity and 

extensibility characteristics. We gluten reflects the protein content and is commonly a 

required specification for end-users (Wheat Marketing Center Inc, 2004). Wet gluten is 

determined by washing the flour in a salt solution which removes starch and other 

solubles, the remaining residue is the wet gluten (Wheat Marketing Center Inc, 2004). 

The wet gluten is centrifuged and forced through a sieve, the percentage of gluten left on 

the sieve is measured as the Gluten Index (GI) (Wheat Marketing Center Inc, 2004). The 

gluten index is an indicator of the gluten strength, a high GI indicated strong gluten 

(Wheat Marketing Center Inc, 2004).  

The Glutomatic procedure is as follows (AACC Approved Methods of Analysis, 

11th Ed. Method 38-12.02. Gluten: Wet Gluten, Dry Gluten, Water-Binding Capacity, 

and Gluten Index Approved 2000. (AACC Approved Methods of Analysis, 11th Ed. 

Method 54-40.02. Physical Dough Tests: Mixograph Method. Cere, 2000): 
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Gluten washing flour 

1) Place the 88-µm polyester screen in the washing chamber. On top of the 

screen place the plastic chamber wall with the cylindrical insertion tool inside. 

Wash from top to bottom to remove any leftover debris.  

2) Add wash liquid to the washing chamber to wet the polyester screen. Hit the 

screen three times on your hand covered with a cloth to remove excess water. 

Add 10±0.01g of well mixed flour onto the screen that contains a film of 

liquid to prevent the flour from falling through.  

3) Add 4.8ml of wash solution from a dispenser while holding the chamber at 

about a 30° angle. Shake the chamber gently in circular motions to spread the 

liquid over the sample.  

4) Assemble the washing chamber onto the Glutomatic and start it for a 20s 

dough mixing and 5min gluten washing cycle. The wash liquid flow rate 

should be 5-56ml/min.  

5) At the end of the cycle, remove the gluten from the chamber without tearing 

to place it in a centrifuge.  

Wet gluten content and gluten index 

1) Place the wet gluten from wash chamber into a separate gluten index cassette in a 

centrifuge.  

2) Centrifuge for 30sec at 6000±5rpm for 1min.  

3) Remove the gluten from the cassette. With a spatula, remove the gluten that has 

passed through the sieve. Weigh the gluten to the nearest 0.01g. Leave the gluten 

on the scale.  
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4) With tweezers, remove the gluten that is remaining on the top of the sieve and 

weigh for the total wet gluten.  

Dry gluten content and water binding in wet gluten 

1) Take the total amount of wet gluten and place it in the center of a lower heating 

surface or a dryer.  

2) Close the dryer and dry at 150° for 4min.  

3) With tweezers, remove the dry gluten and weigh to the nearest 0.01g.  

The calculations for total wet gluten, gluten index, dry gluten, and water binding in wet 

gluten are as follows:  

:;'	=>?';)	@$)';)'%	(14%	A$(#'?%;	"B#(#) = 	
'$'B>	C;'	=>?';)(=) ∗ 860
100 −%#BA&>;	A$(#'?%;

 

F>?';)	()G;- = 	
C;'	=>?';)	%;AB()()=	$)	#(;H;(=) ∗ 100

'$'B>	C;'	=>?';)(=)
 

I%/	=>?';)	@$)';)'%	(14%	A$(#'?%;	"B#(#) =
'$'B>	G%/	=>?';)(=) ∗ 860
100 −%#BA&>;	A$(#'?%;

 

:B';%	"()G()=	@B&B@('/	(CB';%	"$?)G	()	C;'	=>?';))%

= C;'	=>?';)	@$)';)'% − G%/	=>?';)	@$)';)'% 

1.7 Environment 

Environment is known to have a significant impact on the end-use quality of 

wheat cultivars, but the magnitude of the genotype by environment (GxE) interactions is 

unclear (Peterson et al., 1986). Temperature during the growing season, temperature 

during grain fill, distribution of precipitation, late season frost, and the duration of the 

grain fill have all been shown to be impactors of the end use quality of wheat flour 

(Peterson et al., 1986). Busch used regression analysis that characterized the bread 

making response and stability of hard red spring wheat grown in multiple environments, 
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there were significant differences found for quality traits (Busch et al., 1969; Peterson et 

al., 1986). There are many environmental factors that can play a role in wheat quality, but 

some of the main factors are temperature, soil nutrients, and soil moisture.  

Warmer than normal temperatures can alter the plant’s functions and productivity, 

short heat stress above 35°C during the post anthesis period can reduce grain weight and 

grain quality (Sial et al., 2005). With normal temperatures, genotypes that are typically 

relatively late in heading had better vegetative growth, which was reflected in the plant 

height and more internodes (Sial et al., 2005). Also associated with this vegetative growth 

was an increased number of spikelets per spike and in the number of seeds per spike (Sial 

et al., 2005). High temperatures late in the season decrease grain yield significantly, with 

an average loss of 8.9% according to Tahir et al, although the percentage of loss varied 

significantly across different genotypes (2006). 

Planting date can also have an effect on the end-use quality of wheat. Late 

planting of varieties that require a higher number of days for maturation, grain filling (68 

to 90 days for grain fill), and for heading had a lower grain weight due to forced heat 

stress maturation (4 to 10 days earlier than usual) (Sial et al., 2005). When the same 

genotypes were planted at optimal conditions, the grain filling period was higher (42 to 

55.5 days) (Sial et al., 2005). Under late planting, vegetative growth was stunted resulting 

in shorter plants with less spikelets and seeds per spike (Sial et al., 2005). Sial et al also 

found that the percent of protein was significantly influenced by changes in planting date, 

the proteins are synthesized at higher rates under heat stress so later planting  dates 

increased the protein content (Sial et al., 2005).  
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Soil moisture was the main factor affecting the protein content of Thatcher wheat 

in a study conducted by Sosulski et al in 1962. With a high moisture regimen (moisture 

was always above 17%) and up to 200lbs of nitrogen per acre failed to increase the 

protein content above 12.7% (Sosulski et al., 1962). When the wheat was allowed to go 

through drier periods, the protein content was over 20%. They concluded that lower 

levels of moisture with high available nitrogen increased the wheat protein content 

(Sosulski et al., 1962).  

1.8 Breeding for quality improvement 

In the beginning of wheat domestication, there was likely no human involvement 

in breeding wheat for milling or quality, just natural selection and some human 

intervention for choosing the best landraces for cultivation (Kiszonas & Morris, 2017). 

Often people and nature were selecting the landraces that survived freezes, disease, and 

drought (Kiszonas & Morris, 2017). Vilmorin in 1859 advocated for the selection of 

individual plants to purify lines, now known as pure line selection, but at the farmer’s 

level, selecting landraces was still predominantly how wheat was improving at the time 

(Kiszonas & Morris, 2017). Improvement in knowledge in genetics and improved 

methods for flour milling and transportation in the early 1900’s had an influence on the 

improvement of wheat (Kiszonas & Morris, 2017). In the United States and Canada, 

expansion of hard red spring wheat helped to inspire new methods for flour milling 

(Kiszonas & Morris, 2017).  

Early measurement for wheat quality was almost synonymous with bread quality 

where studies were aimed at finding wheats with flours that made the best bread 

(Kiszonas & Morris, 2017). In 1884 Richardson found a relationship between the quality 
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of bread and the quantity of gluten present (Kiszonas & Morris, 2017; Richardson, 1884). 

Thatcher in 1907 began researching into wheat flour quality that kickstarted into the 

research of today (Kiszonas & Morris, 2017; Thatcher, 1907).  

Along with a higher yield, today there is demand to produce wheat cultivars that 

offer end-use optimized flours, more nutrition, and higher quality wheat products 

(Battenfield et al., 2018). There are different end uses needed for different products in 

different settings. A home baker requires a different wheat quality than an industrial 

baker. Similarly, different products such as leavened bread or noodles also need different 

kinds of wheat flours with different quality parameters. Breeding strategy and priorities 

must be used with the cultivars intended use in mind as well as to fit the demand of the 

target market (Mergoum et al., 2009).  

Determining the quality of wheat flour includes measurements on the wheat grain, 

flour, dough, and the final product which all need to be assessed by the wheat breeding 

program (Battenfield et al., 2018). This process can be limited or made more difficult by 

the amount needed for a sample or by the cost of each different assessment. There are 

some grain tests that can be done on a small scale, quickly, and cheaply, but dough 

rheology and end-use tests need larger quantities of grain to mill into flour which can 

restrict their use in advanced breeding stages (Battenfield et al., 2018).  

Genetic mapping with complex structured populations (GWAS) has become more 

common with but is limited in breeding programs because of time and resource 

constraints (Battenfield et al., 2018). One benefit of GWAS is that it does not require 

structured mating, instead large diverse samples are needed to associate genomic markers 

to phenotypic variation (Battenfield et al., 2018). Statistical power of GWAS can be 
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strengthened  by combining the results from several populations through meta-analysis 

(Battenfield et al., 2018). GWAS can be used as an approach for insight into genetic basis 

of some of the most important traits in wheat breeding programs which can enable more 

robust breeding approaches to compliment Quantitative trait loci mapping (QTL) 

(Battenfield et al., 2018).  

Electrophoresis (sodium dodecyl sulfate polyacryl-amide gel electrophoresis, 

SDS-PAGE) is used to identify allelic variations at Glu-1, Glu-3, and Gli-1 to 

characterize parental lines (Mergoum et al., 2009). Information on glutenin subunit and 

gliadin composition assists breeders in choosing crosses that are aimed at achieving 

allelic combinations that are known to contribute to dough properties needed for 

producing bread products (Mergoum et al., 2009). Electrophoresis is a small scale, high 

throughput testing method that can be used on breeding lines for improving wheat 

quality.  

Marker assisted selection (MAS) is a better option than electrophoresis for other 

traits such as grain color, hardness, and proteins and is used on plant tissue before the 

seed sets. This can help quickly eliminate breeding lines before harvesting occurs 

meaning less grain testing can be done to be more cost effective (Mergoum et al., 2009). 

MAS has proven itself to be useful for germplasm characterization and in the 

manipulation of DNA markers in genomic regions that are involved in trait expressions 

(Hoisington & Ribaut, 1998). MAS has also been a successful tool used in moving 

desired alleles from wild relatives into elite cultivars as well as in the process of selecting 

for parental lines (Hoisington & Ribaut, 1998). These molecular markers are used to 

identify and tag desired genes and to create linkage maps (Mohan et al., 1997). There are 
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several requirements for MAS to be successful in a breeding program: the markers should 

be closely linked to the desired trait, the screening technique should be easily replicable, 

and economical (Mohan et al., 1997). MAS is advantageous for several agronomic traits 

that can otherwise be difficult to tag such as pathogen resistance, insect and nematode 

resistance, abiotic stress resistance, quality parameters, and quantitative traits (Mohan et 

al., 1997).  
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CHAPTER 2: PREDICTING FARINOGRAPH STABILITY USING 

MIXOGRAPH AND GLUTOMATIC PARAMETERS  

2.1 Introduction  

Wheat (Triticum aestivum L.) is one of the ‘big three’ cereal crops (along with 

rice and corn) with approximately 600 million tons harvested each year (Shewry, 2009). 

Wheat has a wide range of cultivation from Russia to Argentina, tropic regions and sub-

tropic regions (Shewry, 2009). Significant wheat exporting areas of the world include the 

United States, Canada, Australia, The Black Sea Region, Europe, and Argentina (Sharma 

et al., 2015).   Wheat has a wide variety of uses from human food to livestock feed, and 

in many cultures and religions wheat bread is of significance (Shewry, 2009). There are 

over 620 million tons of wheat grown worldwide every year (Dubcovsky & Dvorak, 

2007). Approximately 95% of wheat grown is common wheat used for breadmaking and 

pastries. Wheat consumption represents about 1/5 of the world’s caloric intake 

(Dubcovsky & Dvorak, 2007). The other 5% of wheat grown is durum wheat, which is 

often used to make pastas. Einkorn and other hulled wheats, such as emmer, are of minor 

economic importance (Dubcovsky & Dvorak, 2007).  

  In the United States wheat is the third crop for both value and acreage behind 

corn and soybeans (Vocke & Ali, 2014). Unlike other crops, wheat has distinct varieties 

that are meant to be produced across different regions during different seasons, this 

causes a variation in the costs and competitiveness of wheat with other crop species in the 

United States (Vocke & Ali, 2014). Along with productivity of the wheat plant, the value 

of wheat lies in its flour quality that affects milling and breadmaking (Briggle & Reitz, 
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1963). Producing a wheat crop in which the sale price of the wheat outweighs the cost is 

important to keep farmers growing wheat and not switching to a potentially more 

valuable crop.  

2.2 Materials and Methods 

2.2.1 Field plot and sample preparation  

All grain used for analysis was derived from Advanced Yield Trial (AYT) entry 

plots grown within the South Dakota State University Spring Wheat Breeding and 

Genetics program. Trials were grown in seven to 10 locations each year, though for the 

purpose of this study, samples were collected from three locations in each of the years 

2015-2019 (Table 1). All AYTs were fashioned as a randomized complete block design 

composed of three replications at each location. Composite samples of each genotype 

selected for analysis were created by combining grain from each replication into a single 

container prior to milling. Thirty-three to 48 samples were milled each year, and a total of 

540 were subjected to Farinograph, Mixograph and glutomatic tests to measure end-use 

quality potential.  

2.2.2 Flour quality determination 

Quality determination was performed as described by (Caffe-Treml et al., 2011). 

Grain samples were tempered at 15% moisture for at least 16 hours before being milled 

in a Quadramat Jr. Mill (C.W. Brabender Instruments, South Hackensack, NL). Flour was 

collected from a rotating US #60 sieve (250-μm aperture). Byproducts (bran and shorts) 

were discarded and not used in this study. Protein content with a 14% moisture basis was 

determined by the NIR Systems 6500 Monochromators (Foss, Laurel, MD). The amount 

of water added to each sample was determined by the estimates obtained by the NIR.  
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The Gluten Index Method, as described in AACC Approved Methods of Analysis 

38-12.02 was determined by the Glutomatic. The Mixograph was also conducted on all 

samples as described in ACC Approved Methods of Analysis 54-40.02. The Farinograph 

using the ACC Approved Methods of Analysis 54-21.02 was conducted at the Northern 

Crops Institute Fargo, North Dakota.  

2.2.3 Data Analysis 

2.2.3.1 Stepwise regression 

All statistical analyses were carried out using SAS-JMP version 14.0.0 (SAS 

Institute,2018). Parameters tested in this study include stability (S), midline peak time 

(MPT), midline peak value (MPV), midline peak width (MPW), midline peak integral 

(INTEG), gluten index (GI), and Gluten left on the sieve after centrifuging by gluten 

index (GOODXGI). 

Stepwise linear regression methods in JMP were used to create two models to 

predict the Farinograph stability (S in seconds) measurement. Stepwise regression was 

performed on all 540 samples. All other analyses were performed on averaged datasets to 

reduce variability: one averaged by genotype and the other averaged by year genotype.  

Stepwise regression is a method of variable selection for the purpose of specifying 

a linear regression model (Agostinelli, 2002). Stepwise regression allows a computer to 

select the best predictors from a set of potential variables to predict an outcome (Malek et 

al., 2007). There is an issue with using stepwise regression to create prediction models. 

Stepwise regression can produce an inflated R-squared, which can lead to an inaccurate 

test of statistical significance (Malek et al., 2007). Stepwise regression has the potential 

to fail at taking into account how many variables were considered in its analysis (Malek 
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et al., 2007). Hierarchical analysis can be used alongside stepwise regression to allow the 

researcher to have some control over the order of entry of predictor variables (Malek et 

al., 2007). Stepwise regression with hierarchical analysis was used to create Model 1 and 

Model 2 using JMP. Bidirectional stepwise regression with a 0.5 and 0.25 stopping p-

value were used to create the original model; then, the model was cleared of any 

remaining non-significantly contributing values. 

2.2.3.2 Pairwise correlation analysis 

 Pairwise correlation analysis was conducted on the raw data for all 540 samples, 

as well as on the data averaged by genotype year and by genotype. Pairwise correlation 

gives correlation coefficients for all parameters for all observations that have no missing 

values. This was used to aid in the creation of Model 3 containing the parameters that 

were significantly correlated in a positive linear fashion.  

2.3 Results 

2.3.1 Summary statistics of all parameter values by genotype and genotype year  

 The summary statistics for all parameters measured can be seen in table 2.  

Summary statistics for each parameter used by each genotype can be seen in tables 7-14.  

2.3.2 Correlation between parameters, by genotype and by genotype year 

Pairwise correlation tables were created in JMP for all 15 parameters, all 15 

parameters by genotype, and all 15 parameters by genotype year in Tables 3, 4, and 5 

respectively. There was a high correlation between stability and MPT (0.57), INTEG  

(0.55), and GI (0.57) when looking at the complete unaveraged dataset with all 540 

samples (Table 3). When comparing the pairwise correlation coefficients for the data 

averaged by genotype, stability had a high correlation with MPT (0.74), INTEG (0.73), 
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and GI (0.70) (Table 4). Pairwise correlations for genotype by year show stability to be 

correlated with MPT (0.61), INTEG (0.57), and GI (0.62) (Table 5). Pairwise correlation 

was also done on all 15 parameters by genotype year subsetted by year. In 2015 stability 

had a high correlation with MPT (0.68), INTEG (0.69), GI (0.63), and GOODXGI (0.65). 

In 2016 stability was highly correlated with MPT (0.51), INTEG (0.51), and GI (0.66). In 

2017 stability was correlated with MPT (0.54), INTEG (0.57), and GI (0.54). In 2018 

stability was correlated with MPT (0.77), INTEG (0.82), GI (0.63), and GOODXGI 

(0.60). In 2019 stability was correlated with MPT (0.77), INTEG (0.89), GI (0.73), and 

GOODxGI (0.74). All correlation coefficients with stability considered, there were three 

that were always correlated: midline peak time, midline peak integral, and gluten index 

2.3.3 Stability prediction 

Averaging the measurements for genotype or genotype over years reduces the 

effects of the environment and variables are more likely to have a genetic effect on the 

response variable (Lu, 2017). Prediction models were created using stepwise regression 

to select variables for model 1 without GI and model 2 with GI, model 3 was created with 

the parameters that were significantly correlated to stability in every case.  

 

J$G;>	1 = JKL +JK: +JML +JKN 

J$G;>	2 = JKL +JK: +JML +JKN + FO 

J$G;>	3 = JKN + OPNQF + FO 

Model 1 containing midline peak value, midline peak width, midline right value, 

and midline peak time explained 55.7% of stability in 2015, 42% in 2016, 40.2% in 2017, 

62.8% in 2018, and 78% in 2019 (Table 5; Figure 6). Across all years model 1 explained 
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47.9% of stability (Table 5; Figure 7). Across genotypes model 1 explained 57% of the 

stability measurement (Table 5; Figure 3).  

Model 2 containing midline peak value, midline peak width, midline right value, 

midline peak time, and gluten index explained 55.7% of stability in 2015, 46.8% in 2016, 

40.6% in 2017, 57.4% in 2018, and 75.2% in 2019 (Table 5; Figure 8). Across all years 

model 2 explained 51.2% of stability (Table 5; Figure 9). Model 2 across genotype 

averages explained 60.9% of the stability measurement (Table 5; Figure 4).  

Model 3 containing midline peak time, midline peak integral, and gluten index 

explained 44.5% of stability in 2015, 42.3% in 2016, 32.4% in 2017, 50.6% in 2018, and 

55% in 2019 (Tables 5; Figure 10). Across all genotype years model 3 explained 46.4% 

of stability (Table 5; Figure 11). Across all genotypes model 3 explained 61.3% of 

stability (Table 5; Figure 5).  

2.4 Discussion 

2.4.1 Stability 

 Farinograph stability is often used to determine the strength of a dough, a 

stability prediction can aid a hard-red spring wheat breeder in making selections by 

determining if the dough strength for a variety is acceptable or not. The Farinograph 

stability of a dough is an indication of the amount of time the dough remains at its 

maximum consistency while mixing and is a good indication of dough strength (Koppel 

& Ingver, 2010), Dough with a good strength will have a stability time of 4-12 minutes; 

satisfactory dough will be stable for approximately 6 minutes (Koppel & Ingver, 2010). 

In an industrial setting, doughs with a mixing time that is too long or too short can cause 
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issues. Flours that have short mixing times can cause problems in processes that require 

long formation times (Koppel & Ingver, 2010). 

Stability was significantly correlated with MPT and INTEG from Mixograph tests 

and with GI from Glutomatic tests (Model 3). Together these three parameters across 

genotypes explained 61.3% (R-square of 0.613) of variation in predicting the stability 

measurement. There are environmental influences on stability. There was significant 

changes in the R-square values for these predictors across the years 2015-2019 (0.45, 

0.43, 0.32, 0.51, and 0.55 respectively). Across all genotype years, the R-square for this 

model was 0.46.  

Model 1 showed to be the weakest of the three considered models, MPV, MPW, 

MRV, and MPT. This model also showed stability to be affected by year with R-square 

values ranging from 0.56, 0.42, 0.40, 0.63, and 0.78 (2015-2019) respectively. Across all 

genotype years, this model explained 47.9% of stability. Across genotypes, 57% of the 

stability measurement was explained. 

The variability in stability across years noted in this study confirms data discussed 

by Koppel & Ingver in 2010. The stability measurement varies more by year than it does 

on genotype (Koppel & Ingver, 2010). 

Akaike information criterion (AIC) values estimates the in-sample prediction 

error of a model. Overall, models conducted on data averaged by genotype had lower 

AIC values than models used on data averaged by genotype year (Table 15). Model 3 by 

genotype average had the lowest AIC value of all three models by genotype average 

(1074.4), but Model 2 had the lowest AIC value of all three models by genotype year 

average (2390.07). Model 3 across genotype averages also had the lowest root mean 
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square error (RSME) overall models by genotype average, of 165.03 (Table 6). Model 2 

by genotype average was close behind with an RSME of 165.87. 

2.4.2 Mixograph parameters 

INTEG was found to predict 26-78% of farinograph stability across genotype 

years with an average of 33% prediction and a correlation coefficient ranging from 0.55-

0.72 across genotype years. The integral is the area under the curve from the beginning 

until the peak time is reached.  

MPT explained 26-59% of stability across genotype years with an average of 

37%. MPT across genotypes explained 55% of stability with a correlation coefficient 

ranging from 0.57-0.74. The MPT measurement begins when the mixer starts and 

continues until the dough is at its maximum consistency.  

MPV across genotype years explained 0.04-3% of stability with an average of 

0.00002%. Across genotypes, MPV explained 0.9% of stability. MPV has a correlation 

coefficient of -0.1- 0.10 with stability.  

MPW is a measurement illustrating the strength and elasticity of a dough. Wide 

peaks are stronger and more elastic than narrow ones.  0.7-20% of stability across years 

with an average of 1% was explained by the peak width. Across genotypes, MPW 

explained 0.00002% of stability. MPW has a correlation coefficient of -0.005 – 0.18 with 

stability.  

MRV explained 0.1-12% of stability with an average of 2%. Across genotypes 

MRV explained 0.2% of stability. MRV has a correlation coefficient of 0.04-0.16 with 

stability. The MRV is expressed as a percentage and is the height of the curve 2 minutes 

after the peak time is reached.  
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Szafrańska created a prediction equation for stability using Mixograph parameters 

differing from those mentioned above. A regression model containing water absorption 

(WA), torque measures at 8, 10, 12, and 14 minutes, and time (Szafrańska. 2015). This 

model produced adjusted R-square values ranging from 0.644 to 0.724 depending on the 

type of flour used (Szafrańska. 2015). 

 Environmental changes were found to have an impact on different Mixograph 

parameters in this study which is in line with the conclusions made in a 2000 study from 

Guttieri et al. A drop in moisture altered the Mixograph MPT but did not affect MPV 

(Guttieri et al., 2001). The MPT was longest in flours that came from grain experiencing 

a severe moisture deficit. Flours from a grain grown under well-watered deficit had a 

much lower peak time than the latter (3.7 and 2.9 min respectively) (Guttieri et al., 2001). 

There are also significant changes in the MPV in different environmental conditions, 

different cultivars, and different cultivars with different environmental conditions 

(Guttieri et al., 2001). 

 2.4.3 Glutomatic 

With only the GI measurement across years, 29-53% of stability can be predicted 

with an average of 38.8%. Across genotypes, GI can predict 48.6% of stability. GI has a 

correlation coefficient of 0.57- 0.69 with stability.  

GOODXGI has a correlation coefficient of 0.42-0.46 with stability. Across all 

years, GOODXGI explained 17- 54% of stability with an average of 0.21%. Across all 

genotypes, GOODXGI explained 17% of stability. 

GI is an expression of the weight percentage of wet gluten remaining, and is 

heavily influenced by environmental factors and variety (Bonfil & Posner. 2012). While 
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GI is an indicator of the quality of the wheat, using it as a sole indicator can cause issues. 

There is not a correlation between GI and other quality parameters such as protein or loaf 

volume, both of which are important indications of end use quality (Bonfil & Posner. 

2012). Weak glutens typically will have a GI of less than 30%, normal GI ranges from 

30-80% and strong gluten will have a GI of over 80% (Šekularac, Torbica, Živančev, 

Tomić, & Knežević. 2018).  

2.4.4 Other prediction methods 

Near-infrared (NIR) and mid-infrared (MIR) have been used to predict 

Farinograph parameters such as WA, DDT, degree of softening (DOS), and stability 

(Chen, Ye, & Zhao. 2017). Using NIR and MIR Chen et al. reported R-square values for 

WA, DDT, stability, and DOS of 0.96, 0.94, 0.95, and 0.94 respectively. The time to 

predict Farinograph parameters in this study was very rapid, taking approximately 10 

minutes (Chen, Ye, & Zhao. 2017). 

WA is the amount of water that is required during mixing to achieve the desired 

dough consistency and have optimal gluten development, like stability WA is sometimes 

predicted in breeding programs (Fu, Wang, & Dupuis. 2017). The GlutoPeak instrument 

from Brabender was found to have a positive linear relationship with Farinograph WA 

with an R-square value of 0.97 (Fu, Wang, & Dupuis. 2017).  

2.4.5 Variance inflation factor 

 The variance inflation factor (VIF) is a quantification of how much the variance is 

inflated (PennState. 2018). When VIF is 1 there is no correlation between the predictor 

and there is no inflation, VIFs over 4 should be further investigates, and VIFs over 10 

show multicollinearity that needs to be corrected (PennState. 2018). The VIF scores for 
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all three models on the dataset of 540 hard red spring wheat samples can be seen in table 

16. Every model contains VIF scores that are over 10 and need to be corrected to provide 

an accurate prediction equation for stability.  

2.5 Conclusion 

Hard red spring wheat end-use quality is dependent on genotype, environment, 

and their interactions. Using Farinograph stability on early breeding lines can prove 

useful to hard red spring wheat breeders to find lines that have a sufficient dough 

strength. Both Mixograph and Glutomatic parameters prove to be useful in the prediction 

of Farinograph stability to determine dough strength.  

Mixograph parameters can prove useful to be present in a prediction equation for 

farinograph stability. Model 3 appears to be the best predictor for stability; it contains 

midline peak time and midline peak integral. Midline peak time explained 26-59% of 

stability across years with an average of 37%. Midline peak time across genotypes 

explained 55% of stability. Across years midline peak integral explained 26-78% of 

stability with an average of 33%. The third parameter in the third model is gluten index 

from the glutomatic, which appears to be the most significant predictor variable present. 

With only the GI measurement across years 29-53% of stability can be predicted with an 

average of 38.8% Across genotypes GI can predict 48.6% of stability. When the three 

parameters are used for prediction it can explain 61% (R-square of 0.61) of variation for 

the stability measurement. The AIC value for model 3 across genotype averages is 

1074.4, the lowest of all three models by genotype average. VIF scores in each model are 

high and would need to be corrected to come up with a model that could accurately 
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predict Farinograph stability, but the predictive models can still be useful to a HRSW 

breeder for screening for acceptable levels of dough strength.   

Using Mixograph and Glutomatic parameters can prove useful in helping hard red 

spring wheat breeders make selections for lines that have a sufficient dough strength 

early on in the breeding program. This can save both time and money in a breeding 

program from culling lines that do not meet the requirements of the breeder. 
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Year  Location  

2015 Brookings, SD Selby, SD Watertown, SD 

2016 Brookings, SD Selby, SD Groton, SD 
2017 Letcher, SD Watertown, SD Groton, SD 
2018 Brookings, SD Miller, SD Groton, SD 

2019 Groton, SD Selby, SD Watertown, SD 

Locations of all AYT samples grown from 2015-2019 in the South Dakota State University Spring Wheat Breeding and Genetics 
program 
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Table 2: Simple statistics on observed parameters for all 540 samples 

 N DF Mean Std Dev Sum Minimum Maximum 

S (sec) 540 539 1015.37 388.41 548301 180 2820 

ML PK TIME 534 533 5.73 2.03 3060 2.01 16.34 

ML PK VAL 534 533 50.27 4.45 26843.5 39.87 70.83 

ML PK W 534 533 22.39 4.93 11954.58 9.90 37.51 

ML R VAL 534 533 47.71 3.86 25476.29 38.08 64.83 

INTEG 534 533 200.40 60.49 107012 66.17 465.50 

GI 534 533 91.10 8.03 49127.73 46.68 99.69 

GOOD X GI 534 533 327.35 47.94 174804.1 101.81 470.72 

 

S(sec): Stability in seconds; ML PK T: Midline peak time; ML PK V: Midline peak value; ML PK W: Midline peak width; ML R V: 
Midline right value; INTEG: Integral; GI: Gluten Index; GOODXGI. N: Sample size; DF: Degrees of freedom; StdDev: Standard 
deviation. 
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Table 3: Pairwise correlations for all 540 AYT samples 

 S (sec) MPT MPV MPW MRV  INTEG GI GOOD X 
GI 

S (sec) 1 0.57 -0.06 0.18 0.10 0.55 0.57 0.43 

MPT 0.57 1 -0.43 -0.23 -0.24 0.96 0.58 0.19 

MPV -0.06 -0.43 1 0.58 0.95 -0.26 0.04 0.39 

MPW 0.18 -0.23 0.58 1 0.521 -0.214 0.04 0.44 

MRV 0.10 -0.23 0.95 0.52 1 -0.04 0.25 0.48 

INTEG 0.55 0.96 -0.26 -0.21 -0.048 1 0.65 0.27 

GI 0.57 0.58 0.04 0.04 0.25 0.65 1 0.75 

GOOD X 
GI 

0.43 0.19 0.39 0.44 0.48 0.29 0.75 1 

 
 S(sec): Stability in seconds; MPT: Midline peak time; MPV: Midline peak value; MPW: Midline peak width; MRV: Midline right 
value; INTEG: Integral; GI: Gluten Index; GOODXGI 
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Table 4: Pairwise correlations for data averaged by genotype. 

S(sec): Stability in seconds; MPT: Midline peak time; MPV: Midline peak value; MPW: Midline peak width; MRV: Midline right 
value; INTEG: Integral; GI: Gluten Index; GOODXGI 

 
 
 

  

 S (sec) MPT MPV MPW MRV  INTEG GI GOOD X 
GI 

S (sec) 1 0.74 -0.1 -0.01 0.05 0.73 0.7 0.42 

MPT 0.74 1 -0.31 -0.32 -0.15 0.95 0.71 0.26 

MPV -0.01 -0.31 1 0.69 0.96 -0.12 0.14 0.6 

MPW -0.01 -0.32 0.69 1 0.62 -0.23 -0.02 0.56 

MRV 0.05 -0.15 0.96 0.62 1 0.09 0.332 0.67 

INTEG 0.73 0.95 -0.12 -0.23 0.09 1 0.81 0.4 

GI 0.7 0.70 0.14 -0.02 0.33 0.81 1 0.7 

GOOD 
X GI 

0.42 0.26 0.6 0.56 0.67 0.4 0.69 1 
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Table 5: Pairwise correlations for data averaged by genotype year. 

 
 
 
 
 
 

 

 
 

S(sec): Stability in seconds; MPT: Midline peak time; MPV: Midline peak value; MPW: Midline peak width; MRV: Midline right 
value; INTEG: Integral; GI: Gluten Index; GOODXGI 

 

  

 S (sec) MPT MPV MPW MRV INTEG GI GOOD X 
GI 

S (sec) 1 0.61 0.004 0.11 0.16 0.57 0.62 0.46 

MPT 0.61 1 -0.28 -0.33 -0.05 0.95 0.7 0.25 

MPV 0.004 -0.28 1 0.63 0.94 -0.09 0.13 0.49 

MPW 0.11 -0.33 0.63 1 0.5 -0.28 -0.03 0.49 

MRV 0.16 -0.05 0.94 0.5 1 0.19 0.37 0.56 

INTEG 0.57 0.95 -0.09 -0.28 0.19 1 0.76 0.33 

GI 0.62 0.7 0.13 -0.03 0.37 0.76 1 0.72 

GOOD X 

GI 

0.46 0.25 0.49 0.49 0.56 0.37 0.72 1 
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Table 6: Model summary statistics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R-squared, root mean square error (RMSE), and mean of response statistics for all three models across genotype averages, genotype 
years, and genotype year averages. 

 

 

 

 

 

Model 
 

Multiple Regression 
 

 
R2 RMSE Mean of Response 

Model 1     
 

Genotype Averages 0.57 173.10 1038.38 

Genotype year (2015) 0.56 191.27 957.93 

Genotype year (2016) 0.42 183.61 980.30 

Genotype year (2017) 0.40 188.20 1210.21 

Genotype year (2018) 0.63 156.81 1031.12 

Genotype year (2019) 0.78 104.84 801.94 

Genotype Year Average 0.48 203.57 1014.76 

Model 2 
   

Genotype Averages 0.61 165.87 1038.38 

Genotype year (2015) 0.56 191.08 957.93 

Genotype year (2016) 0.47 175.83 980.30 

Genotype year (2017) 0.41 187.61 1210.21 

Genotype year (2018) 0.57 167.779 1031.12 

Genotype year (2019) 0.75 111.36 801.94 

Genotype Year Average 0.51 196.99 1014.76 

Model 3 
   

Genotype Averages 0.61 165.03 1038.38 

Genotype year (2015) 0.45 213.97 957.93 

Genotype year (2016) 0.42 183.08 980.30 

Genotype year (2017) 0.32 200.16 1210.21 

Genotype year (2018) 0.51 180.76 1031.12 

Genotype year (2019) 0.55 150.09 801.94 

Genotype Year Average 0.46 206.53 1014.76 
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Table 7: Summary statistics for the stability measurement by genotype 

Column1 Column2 Stability Column3  
Mean StdDev Range 

ADVANCE 1091.33 388.26 1272.00 
BOOST 1221.87 556.39 2172.00 
BRICK 1196.20 394.07 1480.00 
BRIGGS 555.80 226.03 839.00 
FALLER 951.47 381.32 1499.00 
FOCUS 1019.93 308.26 1218.00 
FOREFRONT 935.27 252.35 840.00 
LCS-TRIGGER 759.33 273.20 864.00 
OXEN 1044.20 311.57 983.00 
PREVAIL 902.93 272.69 974.00 
SD4393 948.67 272.63 660.00 
SD4403 962.83 253.56 690.00 
SD4416 1006.17 215.10 630.00 
SD4465 1145.11 398.00 1040.00 
SD4472 1056.00 437.30 1174.00 
SD4492 1308.67 395.91 1020.00 
SD4493 588.17 166.00 394.00 
SD4514 1125.00 232.56 570.00 
SD4529 716.00 326.91 1028.00 
SD4539 1088.58 188.63 614.00 
SD4543 1012.67 180.42 450.00 
SD4546 1264.78 308.45 848.00 
SD4557 1117.67 321.77 756.00 
SD4575 700.50 226.10 599.00 
SD4579 943.89 275.25 780.00 
SD4582 769.00 410.31 1002.00 
SD4587 1043.17 396.24 990.00 
SD4595 1199.56 450.54 1357.00 
SD4624 977.83 329.78 848.00 
SD4625 977.00 397.19 1510.00 
SD4650 1450.00 315.12 630.00 
SD4676 1150.00 617.98 1230.00 
SD4681 1450.00 586.60 1140.00 
SD4689 1320.00 226.50 450.00 
SD4692 1270.00 595.73 1170.00 
SD4693 1370.00 424.62 750.00 
SD4702 1280.00 454.31 840.00 
SD4703 1560.00 670.15 1290.00 
SD4706 1157.83 412.59 1230.00 
SD4707 977.67 200.49 462.00 
SD4708 1553.50 475.27 1230.00 

SD4711 1039.67 292.59 810.00 
SD4719 1075.33 248.25 690.00 
SD4720 789.00 314.13 930.00 
SD4721 1088.33 181.30 570.00 
SD4729 1060.00 255.15 510.00 
SD4732 1100.00 424.62 750.00 
SD4735 1500.00 599.25 1170.00 
SD4738 1640.00 636.63 1170.00 
SD4740 1466.33 433.90 1290.00 
SD4742 1690.00 396.11 780.00 
SD4744 920.00 425.68 840.00 
SD4745 1067.50 223.81 571.00 
SD4746 1279.00 387.81 930.00 
SD4747 1170.00 467.65 810.00 
SD4748 1462.67 355.79 742.00 
SD4752 1006.83 123.90 330.00 
SD4771 731.33 210.16 554.00 
SD4772 712.67 53.15 94.00 
SD4773 915.33 277.74 755.00 
SD4775 849.00 243.42 682.00 
SD4792 908.00 228.95 456.00 
SD4816 1254.33 156.03 284.00 
SD4840 879.67 96.72 191.00 
SD4842 899.00 102.37 204.00 
SD4843 772.33 56.96 113.00 
SD4844 697.67 70.22 135.00 
SD4848 1304.33 133.36 266.00 
SD4849 1092.67 99.61 192.00 
SD4852 1014.67 195.22 369.00 
SD4854 712.67 97.73 195.00 
SD4855 887.00 12.77 25.00 
SD4870 671.33 61.03 119.00 
SD4871 871.67 48.17 96.00 
SD4873 688.00 63.79 127.00 
SD4874 946.33 67.04 119.00 
SD4876 534.00 102.24 204.00 
SELECT 1167.47 331.65 1046.00 
STEELE-ND 888.42 365.79 1080.00 
SURPASS 1078.80 331.92 1200.00 
SY-VALDA 650.33 29.50 59.00 
TRAVERSE 496.73 262.81 1140.00 

The mean, standard deviation, and range of stability for all varieties.
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Table 8: Summary statistics for the MPT measurement by genotype 

Column1 Column2 Midline Peak Time 
 

  Mean StDev Range 
ADVANCE 6.44 0.89 2.29 
BOOST 5.43 1.19 3.13 
BRICK 7.15 1.01 2.56 
BRIGGS 3.76 0.78 2.17 
FALLER 5.56 1.36 3.48 
FOCUS 5.72 0.85 1.92 
FOREFRONT 5.50 0.90 2.39 
LCS-TRIGGER 4.55 0.06 0.12 
OXEN 5.82 0.88 2.22 
PREVAIL 4.93 0.91 2.08 
SD4393 7.01 1.37 1.94 
SD4403 5.20 0.53 0.75 
SD4416 6.59 0.72 1.02 
SD4465 5.68 0.36 0.71 
SD4472 6.14 0.35 0.49 
SD4492 7.25 0.26 0.37 
SD4493 4.93 0.48 0.68 
SD4514 7.53 0.36 0.50 
SD4529 4.57 0.28 0.54 
SD4539 6.25 1.20 2.61 
SD4543 6.14 0.93 1.31 
SD4546 7.20 0.52 1.01 
SD4557 7.96 1.01 1.42 
SD4575 5.66 0.07 0.10 
SD4579 5.11 0.16 0.32 
SD4582 5.27 0.71 1.01 
SD4587 5.34 0.29 0.41 
SD4595 5.98 0.38 0.75 
SD4624 6.51   0.00 
SD4625 6.31 1.65 3.37 
SD4650 6.08   0.00 
SD4676 6.10   0.00 
SD4681 5.76   0.00 
SD4689 8.74   0.00 
SD4692 7.92   0.00 
SD4693 6.98   0.00 
SD4702 5.88   0.00 
SD4703 6.74   0.00 
SD4706 6.01 1.03 1.46 
SD4707 5.28 1.25 1.76 
SD4708 7.50 1.28 1.81 

SD4711 5.44 0.90 1.27 
SD4719 5.93 0.80 1.13 
SD4720 4.12 0.66 0.94 
SD4721 4.17 0.84 1.18 
SD4729 6.99   0.00 
SD4732 5.68   0.00 
SD4735 10.48   0.00 
SD4738 9.42   0.00 
SD4740 6.65 0.43 0.61 
SD4742 6.44   0.00 
SD4744 6.12   0.00 
SD4745 6.26 1.79 2.53 
SD4746 7.30 1.52 2.15 
SD4747 6.54   0.00 
SD4748 7.26 0.93 1.32 
SD4752 6.78 2.08 2.95 
SD4771 4.51 0.30 0.42 
SD4772 4.49   0.00 
SD4773 4.24 0.15 0.21 
SD4775 3.73 0.48 0.67 
SD4792 3.42   0.00 
SD4816 5.39   0.00 
SD4840 5.17   0.00 
SD4842 5.00   0.00 
SD4843 4.70   0.00 
SD4844 4.09   0.00 
SD4848 5.66   0.00 
SD4849 6.39   0.00 
SD4852 4.88   0.00 
SD4854 3.57   0.00 
SD4855 5.21   0.00 
SD4870 4.43   0.00 
SD4871 5.17   0.00 
SD4873 3.73   0.00 
SD4874 4.64   0.00 
SD4876 3.96   0.00 
SELECT 5.47 0.74 1.82 
STEELE-ND 4.92 1.14 2.77 
SURPASS 8.02 1.79 4.69 
SY-VALDA 4.41   0.00 
TRAVERSE 2.96 0.52 1.10 

The mean, standard deviation, and range of MPT for all varieties.
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Table 9: Summary statistics for the MPV measurement by genotype 

 
  

Midline Peak Value 
 

  Mean StDev Range 
ADVANCE 47.51 2.44 6.40 
BOOST 51.58 2.97 7.33 
BRICK 49.13 2.14 5.65 
BRIGGS 48.78 1.94 5.07 
FALLER 47.77 1.57 3.91 
FOCUS 49.97 0.65 1.57 
FOREFRONT 49.36 1.12 2.71 
LCS-TRIGGER 47.97 2.36 4.52 
OXEN 51.41 1.25 3.27 
PREVAIL 48.69 1.37 3.49 
SD4393 50.33 0.61 0.87 
SD4403 50.01 0.07 0.10 
SD4416 47.90 0.18 0.25 
SD4465 48.51 1.27 2.53 
SD4472 49.02 0.62 0.88 
SD4492 48.73 0.57 0.81 
SD4493 48.72 2.58 3.65 
SD4514 51.00 0.73 1.03 
SD4529 54.60 3.14 5.52 
SD4539 54.32 1.09 2.34 
SD4543 53.77 1.17 1.66 
SD4546 50.48 0.81 1.54 
SD4557 45.56 0.93 1.31 
SD4575 49.68 0.66 0.93 
SD4579 46.71 2.80 5.59 
SD4582 49.96 0.38 0.54 
SD4587 51.14 0.45 0.63 
SD4595 53.54 1.34 2.56 
SD4624 48.78   0.00 
SD4625 46.54 2.03 4.87 
SD4650 53.40   0.00 
SD4676 49.61   0.00 
SD4681 52.52   0.00 
SD4689 46.71   0.00 
SD4692 48.75   0.00 
SD4693 48.45   0.00 
SD4702 53.17   0.00 
SD4703 46.00   0.00 
SD4706 50.96 0.78 1.11 
SD4707 50.94 1.44 2.04 
SD4708 47.76 1.21 1.71 

SD4711 54.81 1.20 1.70 
SD4719 49.97 1.87 2.65 
SD4720 56.59 1.54 2.18 
SD4721 57.18 2.50 3.54 
SD4729 49.79   0.00 
SD4732 47.82   0.00 
SD4735 49.57   0.00 
SD4738 48.41   0.00 
SD4740 46.83 0.21 0.30 
SD4742 50.68   0.00 
SD4744 51.62   0.00 
SD4745 60.83 7.66 10.83 
SD4746 53.76 6.15 8.69 
SD4747 47.69   0.00 
SD4748 50.03 3.09 4.37 
SD4752 51.00 4.56 6.45 
SD4771 50.05 2.65 3.75 
SD4772 50.41   0.00 
SD4773 46.17 3.26 4.61 
SD4775 52.32 0.48 0.69 
SD4792 62.77   0.00 
SD4816 46.34   0.00 
SD4840 48.12   0.00 
SD4842 52.30   0.00 
SD4843 53.07   0.00 
SD4844 55.78   0.00 
SD4848 59.40   0.00 
SD4849 51.05   0.00 
SD4852 58.89   0.00 
SD4854 54.19   0.00 
SD4855 47.29   0.00 
SD4870 52.99   0.00 
SD4871 43.78   0.00 
SD4873 56.11   0.00 
SD4874 49.88   0.00 
SD4876 48.36   0.00 
SELECT 48.89 2.18 4.94 
STEELE-ND 52.73 3.49 7.34 
SURPASS 47.77 0.18 0.46 
SY-VALDA 47.38   0.00 
TRAVERSE 48.52 1.62 4.19 

The mean, standard deviation, and range of MPV for all varieties
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Table 10: Summary statistics for the MPW measurement by genotype 

 
  

Midline Peak Width 
 

  Mean StDev Range 
ADVANCE 19.41 2.81 7.29 
BOOST 23.52 4.27 10.68 
BRICK 21.57 3.76 8.28 
BRIGGS 19.58 4.67 10.71 
FALLER 19.73 4.32 9.34 
FOCUS 22.36 4.72 12.46 
FOREFRONT 20.19 4.34 9.39 
LCS-TRIGGER 23.70 0.48 0.86 
OXEN 22.45 2.64 6.79 
PREVAIL 20.98 3.49 8.07 
SD4393 18.92 0.55 0.78 
SD4403 20.52 2.27 3.20 
SD4416 16.12 0.61 0.86 
SD4465 19.05 2.26 4.04 
SD4472 18.23 1.10 1.56 
SD4492 19.85 0.02 0.03 
SD4493 14.80 2.23 3.15 
SD4514 20.10 0.17 0.25 
SD4529 21.82 1.01 1.93 
SD4539 23.80 1.84 4.36 
SD4543 22.93 0.32 0.45 
SD4546 22.05 3.82 7.53 
SD4557 14.92 0.43 0.61 
SD4575 17.58 1.30 1.84 
SD4579 17.54 0.58 1.05 
SD4582 17.96 0.29 0.41 
SD4587 21.08 2.73 3.86 
SD4595 24.29 1.41 2.79 
SD4624 17.96 

 
0.00 

SD4625 20.59 3.35 8.20 
SD4650 24.92 

 
0.00 

SD4676 22.47   0.00 
SD4681 26.14 

 
0.00 

SD4689 23.82   0.00 
SD4692 20.88 

 
0.00 

SD4693 22.49   0.00 
SD4702 24.73 

 
0.00 

SD4703 20.56   0.00 
SD4706 25.74 1.69 2.39 
SD4707 25.05 0.92 1.31 
SD4708 23.32 0.10 0.14 

SD4711 26.59 0.73 1.03 
SD4719 25.64 2.91 4.12 
SD4720 26.23 3.43 4.85 
SD4721 27.45 1.14 1.61 
SD4729 22.46   0.00 
SD4732 21.83 

 
0.00 

SD4735 23.11   0.00 
SD4738 23.22 

 
0.00 

SD4740 22.84 0.97 1.38 
SD4742 24.91 

 
0.00 

SD4744 22.94   0.00 
SD4745 29.00 6.39 9.04 
SD4746 26.62 5.16 7.30 
SD4747 19.10 

 
0.00 

SD4748 24.85 3.91 5.53 
SD4752 24.95 5.09 7.20 
SD4771 25.83 2.76 3.91 
SD4772 27.83 

 
0.00 

SD4773 22.52 3.06 4.33 
SD4775 27.67 0.10 0.15 
SD4792 32.96   0.00 
SD4816 22.28 

 
0.00 

SD4840 24.57   0.00 
SD4842 27.66 

 
0.00 

SD4843 25.82   0.00 
SD4844 28.92 

 
0.00 

SD4848 32.27   0.00 
SD4849 28.49 

 
0.00 

SD4852 33.40   0.00 
SD4854 28.72 

 
0.00 

SD4855 25.10   0.00 
SD4870 27.71 

 
0.00 

SD4871 24.32   0.00 
SD4873 28.02 

 
0.00 

SD4874 27.51   0.00 
SD4876 26.86 

 
0.00 

SELECT 21.72 4.04 10.21 
STEELE-ND 23.40 4.98 10.40 
SURPASS 20.67 3.43 7.68 
SY-VALDA 22.80 

 
0.00 

TRAVERSE 19.22 4.19 9.90 

The mean, standard deviation, and range of MPW for all varieties
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Table 11: Summary statistics for the MRV measurement by genotype 

 
  

Midline Right Value 
 

  Mean StDev Range 
ADVANCE 45.55 2.42 5.38 
BOOST 49.35 1.83 4.27 
BRICK 47.65 1.83 4.51 
BRIGGS 45.45 1.38 3.49 
FALLER 45.51 0.59 1.44 
FOCUS 47.42 0.88 2.31 
FOREFRONT 46.53 0.68 1.76 
LCS-TRIGGER 45.20 2.57 4.77 
OXEN 49.15 1.22 2.95 
PREVAIL 46.04 1.60 4.39 
SD4393 48.52 0.40 0.56 
SD4403 48.23 0.14 0.20 
SD4416 46.11 0.17 0.24 
SD4465 46.41 1.74 3.28 
SD4472 46.87 0.66 0.94 
SD4492 47.64 0.31 0.44 
SD4493 46.73 2.23 3.16 
SD4514 49.45 0.57 0.81 
SD4529 51.41 3.17 6.11 
SD4539 51.62 1.25 2.60 
SD4543 52.11 0.76 1.08 
SD4546 49.08 1.21 2.39 
SD4557 44.66 0.77 1.08 
SD4575 47.89 0.68 0.97 
SD4579 44.87 3.19 6.37 
SD4582 48.10 0.10 0.15 
SD4587 49.05 0.19 0.27 
SD4595 51.63 1.58 2.77 
SD4624 47.07 

 
0.00 

SD4625 43.84 2.23 4.91 
SD4650 51.00 

 
0.00 

SD4676 46.65   0.00 
SD4681 49.56 

 
0.00 

SD4689 45.09   0.00 
SD4692 46.21 

 
0.00 

SD4693 46.34   0.00 
SD4702 50.17 

 
0.00 

SD4703 44.24   0.00 
SD4706 48.25 0.41 0.57 
SD4707 47.86 0.21 0.30 
SD4708 45.99 0.82 1.15 

SD4711 50.92 0.36 0.51 
SD4719 47.97 1.16 1.64 
SD4720 51.65 0.63 0.90 
SD4721 53.18 1.70 2.40 
SD4729 47.93   0.00 
SD4732 44.98 

 
0.00 

SD4735 47.33   0.00 
SD4738 46.91 

 
0.00 

SD4740 44.98 0.19 0.27 
SD4742 49.23 

 
0.00 

SD4744 48.28   0.00 
SD4745 55.43 6.17 8.72 
SD4746 51.09 5.95 8.42 
SD4747 44.81 

 
0.00 

SD4748 48.12 3.12 4.41 
SD4752 48.05 3.11 4.41 
SD4771 45.84 1.85 2.62 
SD4772 47.13 

 
0.00 

SD4773 42.53 2.42 3.43 
SD4775 47.91 0.64 0.91 
SD4792 55.84   0.00 
SD4816 43.97 

 
0.00 

SD4840 46.27   0.00 
SD4842 49.12 

 
0.00 

SD4843 48.55   0.00 
SD4844 50.85 

 
0.00 

SD4848 56.43   0.00 
SD4849 49.17 

 
0.00 

SD4852 55.52   0.00 
SD4854 51.55 

 
0.00 

SD4855 45.23   0.00 
SD4870 49.87 

 
0.00 

SD4871 42.71   0.00 
SD4873 52.57 

 
0.00 

SD4874 47.61   0.00 
SD4876 44.55 

 
0.00 

SELECT 46.99 2.11 5.10 
STEELE-ND 50.17 2.20 4.83 
SURPASS 46.12 0.62 1.45 
SY-VALDA 44.37 

 
0.00 

TRAVERSE 43.54 1.86 4.57 

The mean, standard deviation, and range of MRV for all varieties. 
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Table 12: Summary statistics for the INTEG measurement by genotype 

Column1 Column2  Integral Column3 
  Mean StDev Range 
ADVANCE 213.57 34.71 92.44 
BOOST 200.89 41.36 112.16 
BRICK 249.71 38.67 94.52 
BRIGGS 135.25 29.94 79.69 
FALLER 191.35 46.93 119.87 
FOCUS 196.90 35.70 83.09 
FOREFRONT 193.44 32.17 82.24 
LCS-TRIGGER 155.16 8.79 15.69 
OXEN 207.12 35.77 91.16 
PREVAIL 167.07 33.22 79.71 
SD4393 249.81 49.23 69.62 
SD4403 188.25 18.54 26.21 
SD4416 228.26 21.08 29.82 
SD4465 194.59 21.69 43.36 
SD4472 199.59 9.95 14.08 
SD4492 261.10 2.10 2.96 
SD4493 182.76 26.28 37.17 
SD4514 271.78 16.23 22.96 
SD4529 178.38 16.36 31.80 
SD4539 232.56 43.67 103.32 
SD4543 240.76 29.16 41.24 
SD4546 258.29 29.13 58.06 
SD4557 269.60 28.74 40.65 
SD4575 206.87 4.45 6.30 
SD4579 170.96 15.61 29.20 
SD4582 196.57 22.57 31.92 
SD4587 196.82 5.75 8.13 
SD4595 225.50 22.91 45.78 
SD4624 229.90 

 
0.00 

SD4625 192.19 50.89 101.80 
SD4650 228.05 

 
0.00 

SD4676 192.78   0.00 
SD4681 197.55 

 
0.00 

SD4689 265.50   0.00 
SD4692 229.38 

 
0.00 

SD4693 229.11   0.00 
SD4702 211.96 

 
0.00 

SD4703 226.24   0.00 
SD4706 211.06 32.73 46.28 
SD4707 183.98 34.83 49.26 
SD4708 246.25 40.72 57.58 

SD4711 194.43 27.40 38.75 
SD4719 210.48 24.17 34.18 
SD4720 159.63 20.60 29.14 
SD4721 160.61 22.13 31.30 
SD4729 238.54   0.00 
SD4732 182.83 

 
0.00 

SD4735 310.22   0.00 
SD4738 294.33 

 
0.00 

SD4740 227.62 15.60 22.06 
SD4742 225.69 

 
0.00 

SD4744 211.33   0.00 
SD4745 230.43 30.79 43.54 
SD4746 251.15 24.80 35.07 
SD4747 199.03 

 
0.00 

SD4748 235.36 13.23 18.71 
SD4752 219.76 44.11 62.38 
SD4771 148.54 4.58 6.48 
SD4772 160.99 

 
0.00 

SD4773 133.15 1.59 2.26 
SD4775 133.05 9.94 14.06 
SD4792 140.48   0.00 
SD4816 179.52 

 
0.00 

SD4840 182.95   0.00 
SD4842 178.27 

 
0.00 

SD4843 163.99   0.00 
SD4844 154.12 

 
0.00 

SD4848 233.04   0.00 
SD4849 230.91 

 
0.00 

SD4852 197.52   0.00 
SD4854 150.40 

 
0.00 

SD4855 175.34   0.00 
SD4870 165.47 

 
0.00 

SD4871 176.42   0.00 
SD4873 151.64 

 
0.00 

SD4874 179.42   0.00 
SD4876 139.12 

 
0.00 

SELECT 197.36 33.70 80.53 
STEELE-ND 190.95 43.29 104.32 
SURPASS 265.66 67.40 173.81 
SY-VALDA 151.83 

 
0.00 

TRAVERSE 101.68 18.73 43.65 

The mean, standard deviation, and range of INTEG for all varieties
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Table 13: Summary statistics for the GI measurement by genotype 

 

Column1 Column2 Gluten Index Column3 
  Mean StDev Range 
ADVANCE 97.01 0.89 2.30 
BOOST 93.26 2.65 5.27 
BRICK 96.51 1.63 4.22 
BRIGGS 81.23 3.99 10.23 
FALLER 94.25 3.21 8.18 
FOCUS 90.25 2.98 6.46 
FOREFRONT 93.97 2.13 5.85 
LCS-TRIGGER 88.36 5.25 10.43 
OXEN 96.39 1.41 3.31 
PREVAIL 88.61 5.79 15.90 
SD4393 97.58 1.12 1.58 
SD4403 90.05 2.27 3.21 
SD4416 96.12 0.51 0.73 
SD4465 94.47 2.07 4.04 
SD4472 94.43 3.45 4.87 
SD4492 97.51 0.77 1.09 
SD4493 90.72 4.63 6.55 
SD4514 96.81 1.53 2.16 
SD4529 91.99 2.03 3.93 
SD4539 97.39 1.64 3.70 
SD4543 96.82 1.11 1.58 
SD4546 97.70 0.89 1.73 
SD4557 95.87 1.41 1.99 
SD4575 89.13 2.10 2.97 
SD4579 86.37 6.47 12.20 
SD4582 89.01 3.01 4.26 
SD4587 91.28 2.98 4.21 
SD4595 96.10 2.12 3.85 
SD4624 91.28 

 
0.00 

SD4625 86.62 5.97 10.81 
SD4650 98.34 

 
0.00 

SD4676 91.07   0.00 
SD4681 96.22 

 
0.00 

SD4689 94.91   0.00 
SD4692 96.43 

 
0.00 

SD4693 93.67   0.00 
SD4702 97.01 

 
0.00 

SD4703 97.61   0.00 
SD4706 96.93 0.93 1.31 
SD4707 88.76 4.38 6.19 
SD4708 96.30 0.08 0.12 

SD4711 91.76 3.90 5.52 
SD4719 96.51 1.67 2.36 
SD4720 87.86 1.00 1.42 
SD4721 91.68 3.84 5.43 
SD4729 98.17   0.00 
SD4732 89.03 

 
0.00 

SD4735 98.02   0.00 
SD4738 96.53 

 
0.00 

SD4740 93.15 3.23 4.57 
SD4742 97.71 

 
0.00 

SD4744 94.60   0.00 
SD4745 98.06 0.20 0.28 
SD4746 98.11 0.41 0.58 
SD4747 92.48 

 
0.00 

SD4748 97.60 0.48 0.68 
SD4752 94.92 1.52 2.15 
SD4771 87.36 4.66 6.59 
SD4772 82.41 

 
0.00 

SD4773 82.56 0.67 0.95 
SD4775 87.55 10.08 14.25 
SD4792 90.04   0.00 
SD4816 88.04 

 
0.00 

SD4840 95.29   0.00 
SD4842 86.22 

 
0.00 

SD4843 94.10   0.00 
SD4844 85.83 

 
0.00 

SD4848 95.72   0.00 
SD4849 97.98 

 
0.00 

SD4852 94.97   0.00 
SD4854 85.09 

 
0.00 

SD4855 86.30   0.00 
SD4870 91.38 

 
0.00 

SD4871 88.10   0.00 
SD4873 91.06 

 
0.00 

SD4874 89.13   0.00 
SD4876 80.78 

 
0.00 

SELECT 93.81 3.50 8.15 
STEELE-ND 90.03 2.38 5.41 
SURPASS 97.06 1.59 3.63 
SY-VALDA 84.31 

 
0.00 

TRAVERSE 68.86 10.52 21.91 

The mean, standard deviation, and range of GI for all varieties
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Table 14: Summary statistics for the GOODXGI measurement by genotype 

 

Column1 Column2 Good X GI Column3 
  Mean StDev Range 
ADVANCE 332.45 36.47 83.21 
BOOST 346.96 17.62 46.22 
BRICK 352.65 26.33 56.81 
BRIGGS 274.62 13.45 30.66 
FALLER 331.27 22.34 57.51 
FOCUS 326.05 22.21 60.16 
FOREFRONT 336.56 16.48 37.65 
LCS-TRIGGER 281.56 37.85 74.97 
OXEN 347.56 26.92 67.01 
PREVAIL 299.29 32.53 84.79 
SD4393 335.37 1.93 2.73 
SD4403 314.69 19.43 27.48 
SD4416 331.85 21.31 30.14 
SD4465 314.65 6.21 11.84 
SD4472 323.49 24.67 34.88 
SD4492 334.79 2.55 3.61 
SD4493 288.77 35.19 49.77 
SD4514 344.91 3.84 5.42 
SD4529 323.56 11.17 20.93 
SD4539 350.30 14.16 34.05 
SD4543 346.13 0.24 0.34 
SD4546 335.34 5.20 10.40 
SD4557 286.40 19.14 27.07 
SD4575 289.78 0.99 1.40 
SD4579 294.38 43.70 83.52 
SD4582 300.51 17.84 25.23 
SD4587 322.78 28.50 40.30 
SD4595 345.04 10.35 19.25 
SD4624 314.04 

 
0.00 

SD4625 306.40 21.45 48.15 
SD4650 346.81 

 
0.00 

SD4676 309.55   0.00 
SD4681 352.85 

 
0.00 

SD4689 321.02   0.00 
SD4692 337.24 

 
0.00 

SD4693 316.40   0.00 
SD4702 339.89 

 
0.00 

SD4703 303.11   0.00 
SD4706 352.61 36.96 52.27 
SD4707 317.36 26.02 36.80 
SD4708 360.86 42.64 60.31 
SD4711 339.17 75.30 106.50 

SD4719 349.71 30.31 42.86 
SD4720 351.02 43.69 61.78 
SD4721 360.56 24.62 34.82 
SD4729 317.75   0.00 
SD4732 316.95 

 
0.00 

SD4735 339.71   0.00 
SD4738 346.21 

 
0.00 

SD4740 340.81 27.46 38.83 
SD4742 329.35 

 
0.00 

SD4744 337.04   0.00 
SD4745 409.12 58.68 82.99 
SD4746 380.78 51.84 73.31 
SD4747 317.10 

 
0.00 

SD4748 370.71 46.03 65.10 
SD4752 369.15 34.06 48.16 
SD4771 339.37 39.98 56.54 
SD4772 293.71 

 
0.00 

SD4773 296.90 18.49 26.15 
SD4775 327.89 72.19 102.09 
SD4792 378.91   0.00 
SD4816 325.85 

 
0.00 

SD4840 355.55   0.00 
SD4842 314.98 

 
0.00 

SD4843 351.56   0.00 
SD4844 318.29 

 
0.00 

SD4848 398.52   0.00 
SD4849 378.94 

 
0.00 

SD4852 379.19   0.00 
SD4854 331.92 

 
0.00 

SD4855 310.24   0.00 
SD4870 358.60 

 
0.00 

SD4871 310.60   0.00 
SD4873 374.87 

 
0.00 

SD4874 338.09   0.00 
SD4876 277.70 

 
0.00 

SELECT 334.63 28.48 69.50 
STEELE-ND 326.11 14.07 32.53 
SURPASS 348.39 30.29 73.55 
SY-VALDA 290.53 

 
0.00 

TRAVERSE 199.39 39.38 93.74 

The mean, standard deviation, and range of GOODXGI for all varieties
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Table 15: Model AIC values by genotype year average and genotype average 

 

AIC: Akaike information criterion 

 

 

 

 

 

 

 

 

 

 

 
AIC: Genotype Year Average AIC: Genotype Averages 

Model 1 2401.77 1083.07 

Model 2 2390.07 1082.14 

Model 3 2406.9 1074.4 
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Table 16: VIF values for models 1, 2, and 3. 

 

 

 

 

 

 

 

VIF: Variance inflation factor, MPT: Midline peak time, MPV: Midline peak value, 

MPW: Midline peak width, MRV: Midline right value, GI: Gluten index, INTEG: 

midline integral.  

 

 

 

 Parameter VIF 
Model 1 MPT 1.80 

 MPV 16.10 
 MPW 1.52 
 MRV 13.76 

Model 2 MPT 2.29 
 MPV 19.17 
 MPW 1.52 
 MRV 17.33 
 GI 2.23 

Model 3 INTEG 14.70 
 MPT 12.84 
 GI 1.79 
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Figure 1: The anatomy of a wheat kernel: including bran, endosperm, and germ 

(Flour.Com, n.d.).  
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Figure 2: (AACC Approved Methods of Analysis, 11th Ed. Method 54-21.02. Rheological 

Behavior of Flour by Farinograph: Constant Flour Weight Procedure. Cereals & Grains 

Association, St. Paul, MN, U.S.A., 2011). A: weak flour with an absorption of 54%, DDT 

of 1.25min, MTI of 180.; B: Medium strength flour with an absorption of 57%, DDT 

2.75, MTI of 80; C: Strong flour with an absorption of 64.5%, DDT 5min, MTI of 30; D: 

Very strong flour, absorption 62.7%, DDT 1.75min, MTI 20. 
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Figure 3: Model 1 Regression for averages over all location-years available for each 

genotype (points represent 3, 6, 9, 12, or 15 location-years, n = 82, R2= 0.57). 
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Figure 4: Model 2 Regression for averages over all location-years available for each 

genotype (points represent 3, 6, 9, 12, or 15 location-years, n = 82, R2= 0.61).  
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Figure 5: Model 3 Regression for averages over all location-years available for each 

genotype (points represent 3, 6, 9, 12, or 15 location-years, n = 82, R2= 0.61). 
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Figure 6: Model 1 Regression for yearly genotype averages from 2015-2019 (2015 n= 31, 

R2= 0.55; 2016 n=33, R2= 0.42; 2017 n=48, R2= 0.40; 2018 n=33, R2= 0.63; 2019 n=33, 

R2= 0.78).  
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Figure 7: Model 1 Regression for yearly genotype averages over years (points represent 3 

location-years, n = 178, R2= 0.48). 
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Figure 8: M Model 2 Regression for yearly genotype averages from 2015-2019 (2015 n= 

31, R2= 0.56; 2016 n=33, R2= 0.47; 2017 n=48, R2= 0.41; 2018 n=33, R2= 0.57; 2019 

n=33, R2= 0.75).  
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Figure 9: Model 2 Regression for yearly genotype averages over years (points represent 3 

location-years, n = 178, R2= 0.51). 
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Figure 10: Model 3 Regression for yearly genotype averages from 2015-2019 (2015 n= 

31, R2= 0.46; 2016 n=33, R2= 0.42; 2017 n=48, R2= 0.32; 2018 n=33, R2= 0.51; 2019 

n=33, R2= 0.55).  
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Figure 11: Model 3 Regression for yearly genotype averages over years (points represent 

3 location-years, n = 178, R2= 0.46). 
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