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INTRODUCTION 

Limitat ions on s .eed yield of flax ( Linum usitat i ssimum L.) are a 

major concern o f  researchers trying . to develop higher yi elding oil­

seed c ult ivars ( 37 ,  71 ) .  Dybing ( 37 ) stated that comparat ive studies 

of physiological and b iochemi cal factors could provide nec e s sary in­

sight into the cause of these l imi _tations . Based  on repeated  obser­

vations an� yield  trials of lines from the world coll ection , CI 2 522 

( 'Linott' ) and CI 1194 ( Grant ) were selected as an "appropri at e" pair 

for such studies ( 37 ) .  

The basic  criteria o f  selection of thes e two cult ivars were a 

consi stent difference in s eed yield �cros s environments t e st ed and 

similarities  in such cat egories as dis eas e res i stance , agronomic type ,  

morphology , flowering habit , fruiting habit , and flower ing dat e ( 37 ) .  

During yield trials , Linott was consistently higher y i elding than 

Grant . Although Grant expresses  suscept ibi lity to  a North American 

race o f  rust ( Melanpsora lini ) and Linott does  not , thi s factor was 

1 

not respons ible for the yield differences observed during the yield 

tri als ( 37 ) . Yield component s data have indicated that the greater 

yi eld capacity of Linott st ems from it s ability to maintain more sinks , 

either as s eeds per boll or boll s per area , than Grant (71). Comparison 

of Linott and Grant for total dry weight , period of main boll produc­

tion ( 71 ) ,  and net co2 exchange rate ( 37) failed to s how any differ­

ences that would explain the di fferent yield pot ent ials . 

Seed production in flax i s  very sens it ive to  environmental factors 

such as temperature and so il moisture level ( 42) ·• Yet the crop is 



grown in areas of meditnn to low rainfall. Therefore, it was decided 

that :f'urther comparat ive studies in Linott and Grant should include 

water relat i ons . Stomatal charact erist ics, stomatal resistance, and 

osmotic potent i al were chosen as the areas that would be studied to 

determine if differences exist that could help to explain the differ­

ence in yield potential of Linott and Grant . 

2 
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REVIEW OF LITERATURE 

Function of stomata 

Evolution o f  plant s into highe� terrestrial l ife forms was 

pos s ible b ecause of certain adaptive , morphological development s .  One 

of these was an epidermal coating , cut in ,  which restricted the move­

ment of wat er away from aerial st�uctures . Though thi s  e ffect ively 

retarded w�ter los s from the plant it also greatly constrained two 

es sential plant funct ions , transpiration and gas exchange . Therefore , 

a necessary evolutionary development , accompanying the above mentioned 

modificat ion ,  was a mechanism by which transpiration and gas exchange 

could be carried out at a level better suited to internal demand and 

whi ch was regulated by the internal water status of the plant . This 

was provided by development of epidermal pores  and as soc iat ed , func­

tionally specialized cells . These pores and as soc iat ed c ells are 

referred to as stomata ( 39) . Cont rol of both water los s  and gas 

exchange is accomplished by internally controlled movement s of the 

funct ionally specialized cells , guard c ells , which border the pore . 

Stomata are , therefore , structural mediators between ant agonistic  

drives of the plant . The balance stomata maintain b etween leaf 

turgor, which i s  an integral part of growth , and photosynthes i s , 

which i s  the ult imate energy source in the plant system , has a major 

influence on growth ( 18 ) . 

Stomatal Characterist i c s  

Genet i c  variation in leaf stomatal density i s  evident from 

3 
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differences in frequencies between species ( 27, lll , ll3 )  as well as 

within species ( 2 5 ,  36 , 74 , 86 , 84, 123 ) .  Stomata are present on either 

or both leaf surfac es· , depending on the species ( 39 , 8 4 ) • The general 

rule in agronomic crops is for amphistomatal leaves .  Densities on the 

individual leaf surfaces are not necessarily relat ed .  I n  corn ( 27 ,  lll ) , 

beans , pumpkin ,  tomato ( 27 ) , cotton ( 89 ) , sunflower ( 5 ) ,  s oybean ( 2 5 ) , 

sorghum (36 , 74 ) ,  and panigrass ( lll ) the abaxial sur.:fac e has the 

greater stomatal frequency . The inverse is true in alfal fa ( 27 ,  111 ) 9  

Triticum aestivum , T .  monococcum , T .  turgidum, T .  timopheevi (11 3 ) , 

Bromus ·inerrnis ( 123 ) , and creepin5 bentgras s ( lll ) . In b arley ( 86 ) 

and Cassia auriculate L. ( 14 )  the stomata were reported to be equal in 

frequency on both leaf surfaces. The ratio of stomata on the adaxial 

sur face to stomata on the abaxial surface is  nearly three times great er 

in C3 species than in C4 species ( 30 ) . 

Guard c ell length is negatively correlated with stomatal density 

(25 ,  74 , 123 ,  128 ) . Therefore , the leaf surface pos sessing the lower 

stomatal frequency can be expected to have the long er guard c ells . 

An exception to this is found in Triticum spp . where no such relation­

ship was observed ( 25 ) . Guard cell length can be an indirect means of 

gausine the relative pore length of a stomata ( 86 ) ,  because longer guard 

c ells as sumably surround longer pores. 

Generally , a gradient exist s for stomatal density and guard cell 

length across a leaf Rnd along the entire plant ( 27 , lll, 113 ) . For 

an indivi.dual leaf, stomatal number decreas es and guard cell length 

increases from leaf tip to leaf base and from leaf c enter to it s 



margins . An exc eption to this generalization has been reported in 

pani cgrass ( 36) where stomatal dens ity did not change along the leaf . 

In relation to leaf ins ertion , stomatal density increases  and guard 

cell length decreas es as one proceeds acropetally , but pani cgras s ( 36 )  

and Bromus inermis ( 123 ) are exceptions . 

5 

Stomata may be as sociated with morphologically distinct epidermal 

cells ( 84). These cells are referred to as sub sidiary c ells and are 

physically and metabolicly involved in the movement of guard c ells ( 96) . 

Subsidiary c ells are part of  the stomatal apparatus ( 84 ) . 

Though an organism's genes determine the maximUJl number or' 

protoderm c ells whi ch differentiate into stomata,  environmental factors 

can alter thi s potential .  Aoo�g �he eLvi=cnrnental factors that in­

fluenc e  stomatal density are irradiance (2 5, 66, 86), temperature (25 ) ,  

and water stress ( 25, 27, 80 ) .  An increase in irrad i ance produces a 

greater number of stomata on new
.

leaves ( 25, 66 ) .  This  occurs as a 

result o f  an increase in cell conc entration per area ( 66, 84) and in 

the ratio of stoma mother cells to protoderm cells in developing leaf 

tissue ( 84 ) .  The change i n  stomatal density with temperature, at least 

in soybean , is not l inear ( 25 ) .  The direction of change depends 

heavily on the variety . The effect of water stress  on stomatal 

density, like that of light , is two fold . Through the inhibition of 

cell expansion , the superfic ial effect of water stress  is to increase 

the number of stomata per square millimeter of tis sue ( 25, 27, 7 0, 80 ) .  

Zalenski was the first to as sociate this increase in c ell concentration 

with a diminution of cell size  (34 ) . 'Zalenski's law' has been 



indicat ed as the reason for the negat ive correlat ion between stomatal 

density and guard c ell length (86, 123 ) and the gradient from the 

lower to the upper leaves of the canopy ( 36, 80) . The latter results 

because the leaf environment includes a progressively greater level 

of wat er stress as one moves up the plant ( 65, 81 , l2l). The less 

obvious · effect of water stress on stomatal frequency is the inhibition 

of stoma mother cell differentiation in the protoder.m ( 2 5 ) .  This 

causes a decrease in the stomata-to-epidermal cell rat io of water 

stressed plants, in comparison to non�stressed plants . 

Density variat ion, as illustrated, can be attributed either to 

smaller cells, i . e� the concentration of more c ells into a given 

area, or to a greater stoma to e�idermal cell rat io . Whether a 

density difference corresponds to one or the other situation can be 

determined by calculating "stomatal index", which is defined as 

follows ( 84 ) : 

stomatal index = 
stomata per area x 100 

stomata epidermal c ells 
per area + per area 

This value quant i fi es the percentage of protodern cells that success-

fully di fferentiate into stomata (113). Unlike a density value it 

will not vary greatly for an individual plant ( 84 ), lf no significant 

inhibition o f  stoma mother cell differentiation takes place during 

the course o f  ontogeny . 

For a t ime, stomatal density and pore  area·were considered as 

possible indirect selection criteria for photosynthet ic rate ( 86, 

113, 128). The central premise behind this posit ion was that the 

6 



great er the number of stomata (86, ll3 , 128 ) and the greater the 

aperture area (ll3 , 128 ) the less restricted would be  the movement of 

co2 into the plant for photosynthesis .  

7 

The real ity of a pos itive correlation between stomatal density and 

photosynthesis  i s  doubtful considering the number of experiment s which 

have failed to note a relationship (45, 65, 72, 87, 100 ) compared to 

those  that have (87 ) .  I n  one particular study that f ailed to  find a 

correlation , plant s were compared with their colchicine doubled count er­

parts ( 100 ) .  In this study it was concluded that stomatal number and 

photosynthes i s  were not correlat eJ because the lower ploidy member of 

the pair had the greater stomatal density but. a lower rate  of photo­

synthes i s. Because thi s  was a comparison of genetically similar 

individual s , exc ept ·for ploidy level , the possibility of g enetic 

variat ion in enzyme activity theoretically was eliminatedo It , therefore , 

strongly suggest s the lack of a relationship between stomat al frequency 

and photosynthetic rate and indicates that other factor s maybe more 

important in limiting photosynthesiso 

A s  was the case with stomatal density , neither guard c ell length 

nor pore dimension have proved to be satisfactory indicators of 

photosynthetic c apac ity (45, 87, 100 ) . 

Diffus ive Resist ance 

Though the stomatal density and :full pore dimension define the 

maximum area acro s s  which diff'usion c an take plac e , rate  of diffusion 

through a stomatal pore i s  dependent on the degree of pore opening 

(45, 56, 76, 87, 88, 121 ) . Restriction of diffusion by the aperture 
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dimension i s  termed stomatal resistance, the unit s of which are s 

cm-1. The degree and duration of stomata opening have been shown to 

be genet ically variable ( 82 ) . 

Even though co2 and H20 both are channeled through the stomata , a 

difference exist s in the levels of resistance to their movement between 

a plant and its environment ( 17 ) . This differenc e  stems parti ally from 

their innate chemical differences and partially from the di s s imilarities 

in their respect ive biochemical paths through the plant . 

The total resistance to H20 loss  from a leaf surface , r1, can be 

described as ( 17 ) : 

where rb is the resistance to vapor diffusion away from the leaf 

surface , imposed by· the boundary layer of air surrounding the le af, 

and r and r define physical resistances to water lo s s  which can be s c 

ascribed to the leaf . The parameter rs, stomatal resistance, des cribes 

resi stance to water vapor diffusion from the stomatal pore and varies 

with aperture area.  Resistance to water loss  through the cuticle 

layer of the epidermis is measured by re . The parameter re varies 

little between varieties and usually is of litt:e importanc e, as rs 

i s  much larger than re unles s  wat er stress is severe (l2). 
The diffusion of co2 into the plant encompas se s  the same re si stance 

components defined for water vapor ,  but these resistance components of 

C02 differ from those of water vapor in magnitude . As a general 

approximation 

1. 7 
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This proportionality stems from the basic  chemi cal difference  between 

the two molecules, relative to their diffusivity into the air . Besides 

these common resi stance components ,  C02 encount ers additional point s 

of resi stance  as it moves from the substomatal c avity to the cytoplasm 

of the mesophyll cell and finally to fixation . Thi s  i nt rac ellular 

resistance  c an be broken into the following subunits ( 4 8 ):  

ri = rm + rx + re 

The intracellular resistanc e ,  ri , is  the sum total of res i st anc es  

along the route of  co2 to fixation . �esistance to the  movement of 

carbon dioxide through the mesophyll walls lining the sub stomatal 

cavity and finally to the site of fixation is represented by rm . The 

term rx compris es resistance to C02 movement posed by the rate  of 

carboxylation . The ex citat ion resist ance , re , relat es to resistanc e 

exerted because of the limits of energy availability. for c arboxylation 

and is not important if light is saturating ( 48 ) . 

Intracellular resistance, ri, and non-intrac ellular resistanc e ,  

r1 - ri , contrast in their relative importanc e  in C02 regulation . 

Int racellular resistance is  far more import ant when co2 i s  not 

limit ing ( 48 ,  87 , 93 ) .  When C02 is limiting , then ri - ri is more 

cons equential . With C4 species , r1 - ri is of great er importanc e to 

the level of net photosynthesis , whereas in C3 species ,  ri is  the 

limiting res istance ( 93 ) . 

A detailed s cenario of stomatal movement has yet to be  developed 

(51, 73, 96). The mechanism of active guard cell movement centers 

around alterat ion of o smotic potential in the guard c ell vacuole (73). 



Shifts in osmoti c  potential of the vacuole cause guard cell turgor 

pressure to change with the osmosis of water (73 ) . A decrease in the 

osmotic potential of the guard cell·vacuole causes endomosis of water 

from the adjacent epidermal cells , which results in an increase in 

turgor pressure of the guard cell. Guard c ells separat e , to open the 

pore, when their turor pressure exceeds that of the surrounding 

epi dermal c ells , which allows the dorsal walls of the .guard cells to 

deform ( 84 ) .  Pore closure oc curs when a rise in osmot ic  pot ential 

of the vacuoles causes exoraosis of wat er from the guard c ells. This 

results· in a loss of turgor pressure and the guard c ells being pushed 

together by the expansion of the more turgid ,  surrounding , epidermal 

cells. 

Cert ain fundamental features of events during opening have been 
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documented ( 51 ,  73 , 96 ) . These are "( a )  uptake o f� into the vacuoles, 

(b) excretion of H+ from guard cells , ( c )  producti on o f  organi c acids , 

parti cularly malic acid , ( d ) disappearance o f  st arch" ( 96 ) . In his 

197 5  review of stoma physiology , Raschke ( 96 )  t entatively outlined 

the following probable sequence for these occurrenc es .  Upon receiving 

the signal to open , H+ is excreted from the guard cell. This raises 

cytoplasmic pH and stimulates malate produ ction at the expense of 

starch reserves stored in the guard cells. Malat e  then serves as a 

donor for additional protons and as an osmoticum for lowering osmot ic 

potential in the vacuole . Electroneutrality of the cell is re­

established by an influx of potassiwn ions into tne guard c ell and 

their t ransport to the vacuole to counterbalanc e the charge of the 



malate cations. This K ion migration further drops osmotic potential 

in the vacuole. 

T"ne system by which osmotic potential of the guard cell vacuole 

increases to produce closure is as obscure as the system responsible 

for opening. Essentially, two main events take place. Malate is 

transported out of the guard cell (122) and le+ is returned to storage 

sites (96) . 

The mechanism of control is not exact (84 , 96). Overshooting of 

the optimum aperture generally occurs. A decrescendoing vacillation 

between extremes follows until the optimum level of co2 intake is 

achieved (29) . 

11 

The transport of K+ during guard cell movement is energy requiring 

(51). It appears that both photosynthesis and respiration provide 

energy for the re+ pump ( 51 ) . 

The maintenance of stomatal opening is also energy requiring (84) ; 

but, because the energy demands for maintenance are less then for 

opening, it can be assumed that separate mechanisms are involved in 

guard· cell movement and the maintenance of a particular aperture 

dimension (84). 

The identity of the signaling agent ( or agents ) that initiates 

stomatal movement has not been unequivocally shown. Raschke ( 96 )  

proposed that intracellular co2 and ABA are the signaling agents in 

stomatal movement. He contended that intracellular co2 is the 

key signaling agent in periods of low water stress whereas ABA 

dominates the control system when a plant is undergoing high water 
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stress . Cowan (28) did not limit the control of stomatal movement to 

just those factors indicated by Raschke . Inst ead he supported an 

integrat ion of signaling factors which interact t o  produc e the opt imum 

stomatal aperture for a parti cular combination o f  internal and external 

environments . 

Since stomata commonly demonstrate an acute sensitivity to intra­

cellular co2 c oncentrat ion (126), 'co2 is a prime c andi dat e for the 

signaling agent of stomatal movement . The intrac ellular co2 
monitoring system lies in the guard cells (96). High intracellular 

carbon · dioxide levels may instig�.te closure by provi ding suffi c ient 

substrate c oncentrat ions so that the synthesis o f  malate becom es self 

limiting (96). Inhibit ion results from incre ased pH as malate 

produ ction outstrip.s the cell's ability to deac idif'y malat e o r  move it 

to the vacuole (_96). As the malate level is reduced by deac idification 

and t ransport to the vacuole , osmot ic potent ial increases and the cell 

turgor drops (96). Reduct ion in stomatal aperture restri cts diffusion 

of  additional co2 into the plant . If the new intrac ellular concentra­

tion is no longer saturating photosynthesis, leaf photosynthesis 

diminishes the intracellular C02 supply unt il  malat e synthesis is no 

longer self restricting . Malat e production then rises, which causes 

the stomata to open . 

The involvement of abscisic acid in the regulat ion o f  guard cell 

movement during wat er stress is widely documented (57, 83, 84 , 96, 

107, 127). Its importance in the non-stress control o f  stomat al 

movement is demonstrated by a tomato mutant with a one-lo cus lesion, 



which causes it to be deficient in ABA (_53). This wil ty mutant 

lacks the capability to rapidly close its stomata with the onset of 

mild ·diurnal water deficits ( llO, 125). 

In plants under non-stress conditions, . .ABA is concentrated in the 

chloroplast fraction of the leaf; whereas in stressed plants a greater 

percentage of the total leaf ABA is found in the non-chloroplast 

fraction (78 , 129). The reason for the latter increase is that during 

stress AJ3A is transported from ·the chloroplast, where it is produced 

(70 ) , to metabolic sinks (_129), such as the stomata (46), stem tip, 

roots (l25), and fruits, in larger quantities than normal. The 

level of AJ3A in leaf tissue needs only to double for stomatal closure 

to occur (70, 79). This is an over estimation of the concentration 

necessary for stomatal closure, as much of the AEA in a total leaf 

extract is uninvolved in stomatal closure (79). Genetic variation in 

rate of AJ3A biosynthesis and metabolism has been reported (43). 

Only the positive enantiomer of ABA is capable of causing 
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stomata! closure (70, 96). This specificity m� relate to conformational 

demands at the possible site of activity, the stomatal plasma membrane 

(46) . Two binding sites were found on this structure. The site with 

the greater affinity for ABA involves a "membrane-bound, Mg2+ de­

pendent, � stimulated, ATPase and glucan synthetase" ( 46). 

The means by which AJ3A regulates stomata! movement is yet un­

determined. ABA is not directly involved in movement but instead 

interferes in the metabolic processes of stomatal movement. Its 

activity may be related to movement of malate from the guard cell to 

35043b 
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adjacent cells (55, 99, 122 ) . This hypothesis is supported by the 

observation that ABA is ineffective on the stomata of leaf discs 

floating on solutions containing a high concentration of c1-, as 

influx of cl- into guard cells ionically compensates for loss of 

malate and prevents closure ( 99 ) . 

The effectiveness of ABA is amplified by the presence of water 

deficits at the time of application of exogenous so·urces of ABA and by 

previous periods of water stress ( 32 ) o It is probable that other 

changes within the plant, associated with water stress, interact with 

A.BA to cause closure. The necessity of these other factors is 

exemplified by plant response to waterloggingo In this situation, 

there is an increase in the level of .A.BA greater than that in ;..;ater 

stressed plants, but there is no significant increase in stomatal 

resistance (107). 

other hormones and growth regulators influence stomatal movement. 
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These are auxin (110), kinetin, and cytokinir. (1, 13, 15, 54, 67, 96, 

110)0 Like ABA, auxin increases stomatal resistance. In contrast to 

A.BA and auxin, both kinetin and cytokinin promote stomatal opening. The 

various hormones may possibly constitute a system of regulation where the 

balance between the various hormones is the key rather than an individual 

molecule (53, 59, 75). This type of a system is supported by Tal's 

(110) work with the previously mentioned wilty tomato mutant. 

The influence of the signaling agent is not restricted ·to the 

leaf on which a stimilus is applied. Stomata have been observed to 

respond to stimuli applied on other parts of the plant (84)o 
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In the c ourse of  stomatal movement the subsidiary c ells play an 

important role . By their physical presence they provide the epidermal 

counterforce which is partially responsible for the characteristic 

movement of the guard cell s (96). Also , they o stensibly serve as 

storage sites for ions involved in guard c ell movement ( 51, 96) or at 

least as channel s for ion movement (96). 

A number of' environmental factors influence rs·· .Among these  are 

humidity (77, 84, 96) , leaf surfac e po sitioning ( 5 , 22, 31, 89, 118), 

light (61 , 67, 73, 84 , 96 , 117, 118, 126), temperature (84 ) , ambient 

C02 concentrat ion (2, 48), leaf water deficit s (60, 116, 117), and 

source- slink manipulation (3, 34, 44 , 68 , 69, 79 , 114). Only the 

latter two will be dis cus sed in this thesis . 

The effect of water stress on rs has long been known . The 

connection between internal wat er deficit s and stomatal behavior is 

an indirect one (4, 21, 116 , 117). Guard cell turgor is independent 

of  that of the surrounding tis sue . This is demonstrat ed by the 

Iwanoff surge ( 5 , 21 ,  84 ) ,  which refers to  the g radual increase  in 

transpiration over a period of several minut es a.fter petiole excision 

(84 ) .  The Iwanoff surge is a passive response of stomata resulting from 

dehydrat ion of  the mesophyll, which lit erally pull s the still turgid 

guard c ells apart . The Iwanoff respons e is prec eded by an in­

significant jump in resistanc e (84 ) . This jump is als o  a passive 

response , which oc cur s  within the initial minut e af'ter excision , due 

to the momentary increase in water available to  the epidermal ti ssue . 

This water increas es turgor in the epidermal c ell s and, therefore , 



increases their resistanc e  to guard cell expansion. Eventually, as 

subsidiary cells lose water, a rise in stomatal resist ance is noted 
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after· the Iwanoff surge . Extent of·this response is dependent on leaf 

water potent i al in that when leaf wat er potential is low a less marked 

response is observed (84). If bulk leaf water pot ent i al is suffi-

ciently low, no increase in transpirat ion accompanies p et iole excision 

(84) .  

Early experiments on plant·- response t o  wat er stress showed the 

existence of a threshold water potential for stomatal closure (60, 116 ,  

llj). Supposedly, stomata resisted closure during development of water 

deficits until a certain threshold was reached. This postulated 

critical water stress level varied with species (ll6 , 117) , age, 

previous stress history, and leaf position (117 ) . A recent study has 

challenged the idea that a threshold for closure is real (58) . This 

study indicat es that the rate at which stres� is imposed is the 

dominant factor in determining the pattern of stomatal closure with 

stress and that threshold closure previals only when drought stress is 

imposed rap idly . The position held by challengers to the threshold 

hypothesis is that closure takes place gradually over a wide water 

potential range in the field (58). 

Source-sink manipulat ion studies have shown that changes in 

r 6  occur as a result of such treatments . Sink removal is character-

ized by an i ncrease in rs (3, 44, 68 , 79 , ll4)o Source removal is 

followed by a decrease in rs of the remaining leaf or leaves (3, 34, 
44, 54) .  Shading of all but one leaf also results in a decrease in 
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r5 of the lighted leaf (ll4). Changes in intracellular co2 l evel, 

which is a plant respons e as sociated with these stimuli, is thought to 

be the cause  of t he corresponding changes in rs ( 126) .  

Changes in a plant's internal environment during the s eason, in 

response to external environmental variation or as the result of plant 

senescence, stimulat e changes in rs. Principally, changes in r8 follow 

the pattern of fluctuation in photosynthesis. In the case of perennials, 

photosynthetic rate varies seasonally with sink demand (ll). In 

annuals, variation occurs not only with sink demand during the s eason 

(3, 114-) but also stems from a gradual deterioration of the pr.)to­

synthetic mechanism as the plant senescences (3, 34, 59) . 

Although changes in photosynthetic activity are as sociated with 

eventual changes in rs, the inverse is not neces sarily true (94, 

113). For instance, when C02 is not limiting, increases  in rs will 

not cause a corresponding reduction in the rate of photosynthesis, as 

long as closure does not reduce C02 to limiting levels. A low rs is 

not neces sarily as sociated with high photosynthetic rates. Plants 

in the C4 group have a high rate of photosynthesis but also a high 

rs compared to c3 species (30). This is pos sible because the 

morphology of C4 species allows them to maintain high internal co2 
levels. Evidence that a deceleration of photosynthesis precedes 

stomatal closure (3, 10) contradicts the belief of some authors 

that stomatal movement is the central regulating force between the s e  

two systems. A s  it appears now, stomata respond to the rise in 

intracellular co2 concentrations, which follow the initial reduction 



in photosynthetic rat e. Movement of co2 into the plant in then cur­

tailed, and this further diminishes photosynthetic rate. The only 

exception to this generalization is in the case of stomatal respons e 

to humidity deficit s where stomatal closure occurs first ( 7 7 ) .  

Besides intracellular co2 levels, an additio�al mechanism 
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binds the rs and photosynthetic rate together. This one revolves 

around ABA. As was discus sed earlier, ABA has a marked influence over 

stomatal behavior. Recent studies have indicated that an early 

metabolite of ABA, phaseic acid ( 69, 7� ) ,  pos sesses  the capacity to 

interfere in electron transport proces ses of photosynthesis ( 20 , 79 ) .  

In the case of water stress ( 96 )  and possibly sink removal (96 ) an 

ABA-PA regulation system may dominate the C02 regulation m echanism 

(69). 

Osmotic Potential 

A widely accepted expression of water stress  describes the chemical 

activity o:f cell water compared to that of "pure free" water under the 

same conditions o:f pres sure and temperature ( 109 ) . The critical 

assumption behind this postulated measure of water stres s is that the 

chemical activity and the physiological activity of water are strong-

ly related. It should be noted that a positive relationship between 

water potential and physiological activity .is, so far, only theoretical 

(.50, 109 ) . How they relate in reality is uncertain. 

The symbol �w is used to signify the sum tot al of the component 

potentials of chemical activity in the symplastic system ( 16 ) : 
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Gravitational potential, 1Pg, is of little importance when leaf water 

potential is determined on excised tissue. Matrix potential, lJlm, which 

includes the reduction in free energy of the water in the cell due 

to absorbed solutes, binding of water by the solid phase, and matrix 

surface tension between the cell water and the cell wall, commonly is 

considered to be insignificant unless stress is extreme (16 , 90). 

However, Boyer (16 ) cautioned that 
'
this assumption ma� not be universal-

ly true. The general contention, therefore, is that 1Pn and �P are 

the primary component potentials of the overall leaf water potential. 

Osmotic· potential, ipn, measures tl1e contribution of cell solutes to 

the decrease in free enthalpy of the cell water. 
·
Effect of the hydro-

static tension within the cell, turgor, on the free energy of the water 

in the cell is expressed by lJJp• Unlike lJln and �w' lJlp is positive. 

Because �n varies curilinearly with lPw (85, 91, 124), it is con­

sidered an indicator of water stress, though a less sensitive one 

then lPw ( 9) • In initial stages of a slowly applied stres.s, Wn of the 

tissue decreases only slightly with decreases in 1Pw (�l). After Wp 

becomes negible, changes in �w depend solely on decreases in �n (51) . 

Osmotic potential of a plant varies diurnally (58, 98, 119, 124). 

Across the season a gradual decline in the �n may (63, 98) or may not 

occur (119). Osmotic potential follows the same gradient in th� plant 

canopy as �w (81). Upper leaves possess a more negative 1Pn than lower 

leaves in the canopy, and this gradient provides part of the riving 

force for water movement up the plant (112). 

A decline in lPn may correspond to a decrease in water (9, 23, 98, 

124) or the accumulation of solutes ( 1, 9, 23, 98., 102), such as soluble 
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carbohydrates (63, 119) and amino acids (63). 
A correlat ion between photosynthet ic activity and osmotic potential 

has been projected ( 9 ) , as maintenance of leaf turgor by osmotic adjust� 

ment in the cell was thought important in su�taining the rate of photo­

synthesis during stress (9 ) .  However, research by Jones (58) into the 

effect of the rate of stress on plant response has shown in sorghum 

that the osmotic adjustment of a plant does not closely relate to photo­

synthetic rat e . Therefore, osmotic adjustment of a plant may not actu­

ally relate to the maintenance of the rate of this physiological system .  

Relat ion of stomatal characterist ics, stomatal resist ance, and osmot ic 

potential to yi eld . 

A positive correlation bet'1een stomatal frequency and yield of 

guard cell length and yield was not indicated in the literature review­

ed, when yield was defined as weight of grain produced (65, 74, 114 ) .  

However, when yield was defined as total biomass, one study reported 

a positive correlation between yield and stomatal density (�28) . 

Between stomatal resistance and yield, a relat ionship has not 

been consistantly observed . Peet (94) concluded that in soybean there 

existed a correspondence between low rs at pod set, and seed yield 

through in his study the variety 'Pinto' was among the high yielding 

variet ies in the study but had a rs level during pod set in the int er­

mediate range of the varieties studied . Comparisons of C3 and C4 

speci es have shown that though C4 species have a higher rate of biomass 

production (90 ) they do not have lower r5 ( 30). 



Osmotic adjustment was as sociated by early researchers with a 

plant's drought tolerance, i. e. its ability to yield satisfactorily 

under·water stress conditions ( 64 ) .  ·In many water stress  studies 

though the relationship between osmotic pot ential and yield has been 

variable ( 64 ) .  Keim ( 64 )  found the association between osmotic 

potential with yield not to be statistically significant in all cas es  

and, therefore, indicated that the relationship was· not an absolute. 
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MATERIALS AND METHODS 

General Information 

Linott , a widely grown cultivar in South Dakota , and Grant , a line 

from the collection of supplementary different ials comp iled by Flor  (41) , 

were used in this study . For simplicity , the t erm cult ivar has been 

·redefined in this  thes i s  to include _both .  

These cultivars were part · o f  a nursery planted  i n  1977 and 1978 

on Li smore s ilty clay loam at Brookings , South Dakota .  Planting 

dates in 1977 and 1978 were April 29 and May 2 respectively . Plots 

were arranged in a randomized , complete block des ign with four repli­

cat ions in 1977 and three replications in 1978 . In  both year s , s eed 

was drilled in rows 0 . 36 meters a�art at a seedling rate o� 207 viable 

seeds /met er o f  row. The plots cons isted of four rows 5.49 meters in 

length in 1977 and twelve rows 3 . 05 meters long in 1978 . 

Data were collected from the center rows o f  the plots and sampling 

from row ends was avoided.  In 1978 the twelve rows of each plot were 

not totally available for s ampling throughout the s eason . Although 

early in the season samples were collected from any location  in the 

plot , appli cation of spray treatments for a concurrent experiment 

start ing on July 7 restricted sampling to the untreat ed  port ion of the 

plot .  Because border rows were not used in sampling , the area for 

sampling was limited for the remainder of the year to two rows which 

were 1 . 52 met ers  long . 

Fert ilizer was broadcast over the plot s at a rat e of 23-ll-O 

actual kg per ha . Weed control measures in the plots  involved 



1. 82 kg a . i . /ha of prop�cl9r ap�lied pre-emergence and O.ll .kg a.i . /ha 

of MCPA applied when plants were at a height of ap�rox�mat ely lO cm .  

Seed yield was based on the quantity of seed produced in l.73 m2 

area in 1977 and a 0 . 3  m2 area in l9T8 . In 19T8, yield components, 

harvest index, and daily flower counts were determined on plants in 

7.5 cm sections of row in each plot . 

Experiment._ l: Stomatal Characteristics 

In 1977, t en plants of each cultivar were pulled at random from 

each plot 60 days after planting . This .corresponded to 17 days after 

the first flowers were noted in Linott and approximat ely ll days after 

the first flowers wer e  noted in Grant . Plants were transport ed from 

the field t o  the laboratory in plastic bags containing moist ened paper 

towels and refrigerated until they could be processed that same day .  

In the laboratory, replicas of leaf surfaces were made by coating 

the surface with liquefied plastic prepared by dissolving 9 g of poly­

styrene in 5 0  milliliters of a 50:50 (v/v ) mixture of benzene and 

toluene (9 5 ) .  Four leaves were taken from each of five locations on 

a plant . Two of these were used to make replicas of the adaxial sur­

face, and the other two were used to make replicas of the abaxial sur­

face . Areas on the plant sampled were : base segment of stem, middle 

segment of stem, stem segment just below the panicle, and within the 

panicle (bracts and sepals ) . No special procedure was followed in 

storage of the replicas prior to their examinati on .  

For clarification, various ambiguous terms will.be defined for 

the purposes of this thesis as follows : 
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stomata �- epidermal pore and its associat ed guard cells . 

subs idiary cells two morphologically dist i nct cells in the 

epidermis w�ich surround guard cells . 

stomatal apparatus stomatal pore, guard cells, and adj acent 

subsidiary cells . 

epidermal cell non-stomatal apparatus cell of the epidermis . 

combined guard cell width -- width across the two guard cells . 

After removal of leaf debris, replicas were mounted in water and 

examined with a light microscope .  Counts of stomata p e r  microscope 

field ( 0 , 05 mm2 ) were made at the t ip, middle, and base of each l eaf .  

The only deviation from this pattern was for the abaxial surface of 

the sepal which contains no stomata on the lower half ; in this case 

readings were made only at the apex . Microscope fields were set in 
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the general sampling regions on the leaf without the use of the 

eyepieces . Field adj ustment was made afterwards so that only whole 

stomata were included in the sampling field . Also, at these positions, 

length and width were measured on a typical stomatal. apparatus .  

Stomatal apparatus width was measured from the outside wall of one of 

the subsidiary cells to the outside wall of the other at the broadest 

point ( Figure l). Stomatal apparatus length was determined along a 

line perpendicular to the width measurement ( Figure l). To accommodat e  

extreme differences in the contour of individual subsidiary cell, which 

sometimes occurred, an average maximum length was estimated .  

In 1978 , this experiment was repeated with only minor modification . 

Plants were pulled 57 days after planting ( 10 days after flowers were 
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Figure l. Diagram showing the manner in which stomatal apparatus and 
guard cell dimension measurements were made . 
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noted in both cultivars ) . Five plants per replication were proc essed , 

and four addit ional data categories were collected : guard c ell length , 

combined guard cell width , number of epidermal cells per field, and 

average leaf dimension . Combined guard cell �idth and guard c ell l ength 

were determined in a manner similar to that used for measurement o f  

stomatal apparatus dimensions ( Figure 1 ) . The number o f  epi dermal c ells 

per field was recorded so that stomatal index could be det ermined . 

Since full inclusion o f  all epidermal cells was impossible , some cells 

were only part ially included in the sampling area. These were added to 

the total· epidermal cell count i1 it was estimat ed that more than 7 5  

percent of  the cell lay within the sampling field . Before removal of 

the dried leaf debris from the plast ic replicas , images of the leaves 

were made by plac ing leaves on Hel i os Blue Paper , exposing the pap er 

to light , and developing the images in ammonia vapor .  Average leaf 

dimension was calculat ed from the combined weight of the cut-out images 

of the two leaves sampled per plant per lo cation-surfac e .  Weights were 

converted to  average leaf areas by multiplying by the c onversion 

factor 7 . 2 5 5  x io-3 g cm-2 and then dividing by two. 

Stomatal index was obtained from the following formula : 

Stomatal index = 
# of stomata per area x 100 

# of stomata per + # of epidermal 
area cells per area 

Data were analyzed by location-surface as a factorial design with 

subsampling ( 105 ) .  There were no missing data so analysis o f  

variance was used to calculate the sums of square values ( 7 ) .  



Experiment £: Stomat al Res ist ance 

In 1978 field measurement s of stomatal resistanc e  were made us ing 

a Li- Cor Model Li 65 Autoporometer . Sensor modifications were 

neces sary for adaptation to the small size of flax leaves . First of 

all , the aperture in the pad on the under surface of the s ensor cup 

was reduced from 20 mm x 10 mm to 4 mm x 10 mm ,  without alt ering the 

aperture re sistance plate . This smaller aperture was· pos it ioned over 

the aperture res istanc e plate so that calibration could st ill be 
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carried out us ing the Model 2018 Calibration Plate . In all c alibrat ion 

pos it ions � the ratio of the cros s-sect ional area of the c alibration 

holes to the new aperture area was greater than the minimal value of 

1/30 suggest ed (62) . The other modification was to  subst itut e a plexi­

glass plate  for the · foam pad of  the sensor acryli c  bas e plat e . Thi s  

allowed visual po sitioning o f  the leaf over the aperture in the foam 

so that total aperture coverage was ac complished with each sample . 

This exchange appeared not to cause tissue damag e . The t ight er seal 

produc ed by thi s subst itution ,  however , meant that the s ensor  needed to 

be held open during drying of the chamber in order to ext end the life of 

the pump batteries . 

Calibration was carried out according to the manual instructions 

( 7 )  with the following exc eptions .  To as sure adequate water reserves 

during c alibrat ion of the sensor , blotter paper was used for tile 

water reservo i r  and chromatography paper was ut ili zed for the water 

wicks and to c over the coarser blotter paper . Also , before the 

equilibrat ion period prior to calibration , the knurled knobs on the 

� 
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calibrat ion plat e  were t ightened until wat er from the blott er paper 

reservoir rose up in the calibration nole s . The knobs were then losened 

j ust enough to lower the water level to the paper surfac e .  Slope ,  

intercept , and summary statistic s of the calibration curve used are 

list ed in Appendix I ( 105 ) o  Calculation of res istanc es  was bas ed 

on the equation of Kanemasu et al o (62 ) o  
Leaves were det ached from the stem for insertion into the sensor 

cup o This departure from the COmtllOn procedure of sampling attached 

leaves was followed because of the difficulty in pos it ioning the flax 

leaf over . the sensor aperture . Leaf angle from the st em was net used 

as a criter ion for sampling , though the manual (7) indic ated that it 

introduced additional variability into reading s in other species . 

It was not pos s ible with thi s modified sensor to c ollec t  both 

stomatal resist ance reading s and temperature reading s  without re­

posit ioning t he l eaf , because of the small leaf s i z e  and the compara­

tively large  distance between the aperture and the thermi stor .  Re­

posit ioning of the l eaf under the thermistor of the s ensor was , t here­

fore , carried out after each diffusive resistanc e reading . 

Diffus ive resist anc e values were determined for the adaxial 

surfac e of detached l eaves from the first four nodes at the top of the 

stem. Initially , only plant s from which leaves had not previously 

been taken were used for sampling .  This policy was abandoned later 

in the season because of  insufficient plants in the area availabl e  for 

sampling . Both the s ensor and sampled leaf were shaded during data 

collection 0 
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Data c ollection started June 19 , ( 48 days after planting ) . Plants 

had j ust begun flowering . Reading s were made on Monday , Wednesday , and 

Friday . of  each week i.intil July 26 . Data collection was t erminat ed ( 87 
days after plant ing ) because of the spread of an unident if i ed leaf 

disease . Five leaves were sampled per replication per cultivar during 

each sampling periodo Reading s were made at 0700 , lOOO, 1300 , 1600 , and 

1900 hours , exc ept when rain or dew prohibited sampling _. Sampling was 

carri ed out in the order of the replications , but varieties  were · sampled 

at random within each replication .  Most readings f o r  a s i ngle t ime 

period were collected in an hour . 

Data were evaluated as a factorial design with sub sampiing ( 105 ) . 

A balanc ed data set was construct ed by dropping all 0700 reading s  and 

all days in which data for all four remaining periods were unbalanc ed. 

The sums of squares were calculated for the reduced data using analysi s  

of varianc e ( 7 ) . 

Experiment 1_: O smotic  Potential 

Samples for o smot ic potential ( �n )  analys i s  wer e  c ollect ed in l978 .  
For each sample , five leaves were randomly detached from within t e 

canopy for pooling . The locations for s ampling were the nodes on the 

bottom one-third of the stem and the first four nodes at the top of the 

stem . As far as pos sible all foreign matt er , such as mo i sture or dirt ,  

was removed from the leaves before they were inserted into a 7 . 62 cm 

length of tygon tubing ( interior diameter o . 63 5  cm ) . The tube  c ontain­

ing t i s sue
�

then stoppered at both ends and immediat ely placed in a 

container with dry ice .  Later the tubes were transferred t o  a freezer 



for storage . Two such samples were taken per location per plot at 

0700 , 1200, and 1700 . Order of sampling was the same as that used 

for stomatal resist ance . Collect ion df samples for a single t ime 

period required less than an hour . 
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The first samples were taken June 16  ( 4 5  days after plant ing ) .  At 

this time a few plants had produced flowers . Subsequent samples were 

collected on Tuesday of each sampling week . After the July 11 

sampling date no further samples were taken from tne stem base since 

leaf abscission had removed most of the leaves from this area . Sampling 

at the top of  the stem cont inued unt il July 27 ( 84 days aft er plant ing ) .  

By this t ime an unidentified leaf disease had caused necrot ic areas 

on the leaves . 

Processing of the samples was carried out in the laboratory using 

a psychromet eric technique ( 52 ) .  After removal from storage, samples 

were allowed to warm to room temperature before sap was expressed 

from the leaf t issue in the tube by placing the tube in a v ise . Sap 

was absorbed on a o . 6 cm disc punched from Schleicher and Schuell #1 

filter paper and then placed in a Wesor Inc . Model C-51 Sampling Chamber . 

After the sample chamber was sealed, a one minut e equilibrat ion period 

was allowed before application of a 1 . 35 volt, 3 . 8  milliamperes cooling 

current . The resulting current flow produced by the cooling period 

was read on a microvolt meter connected to the sample chamber . Sample 

holders were lef't in the slide during cleaning to avoi d  handling be­

tween samples . Two readings per sample tube were recorded and lat er 

averaged . Samples were randomly processed in a single day for a 
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specifi c sampling date and time ,  although instrument problems prevented 

this  in some cases . 

Calibration was based on readings · obtained from known solutions of 

KCl ranging from 0 . 1  to 0 . 5 molality . The calibration curve was revised 

whenever stock solutions were changed . Int erc epts ,  slopes , and 

sunnnary statistics for the calibration curves used are presented in 

Appendix II ( 10 5 ) .  

Since there were no missing data the sums of squares  were calculated 

using analysis  of variance ( 7 ) . The experiment was analyzed as a 

factorial design ( 10 5 ) .  
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RESULTS 

General 

Weather dat a  from April 15  to July 30  for 1977 and 1978 are pre­

sented in Appendix III and IV respectively . For t hi s period the total 

precipitat ion for 1977 was 30 . 96 cm ; of thi s , 12 . 14 cm fell on June l6. 
For the same period in 1978, 33 . 05 cm of rain fell . Daily prec ipitat ion 

totals for that period in 1978 did not exceed 5 cm . Generally , in  1978 

temperatures were lower than in 1977 . 

Wilting , presumably from mo isture stress , was observed in 1977 but 

not in 1978 .  On July l2, 1978 ( 71 days aft er plant ing ( DAP ) ) ,  it was 

noted that a leaf disease , pos sibly pasmo ( Septoria lin i c ola ( Speg . ) 

Gar . ) ,  had begun to atta.ck both cultivars . Dis eas e severity increased 

towards the end of the season . No maj or diseas e outbreak. was ob served 

in i977 . By July 24, 1978 ( 83 DAP ) , Linott was becoming chlorotic  

whereas Grant still remained green . Harvest ing in 1978 was carred out 

when plant s in the individual replications reached agronomic maturity . 

Therefore , repli cat ions two and three of Grant were harvest ed on August 

14 (104 DAP ) ,  replicat ion one of Grant and two and three of Linott were 

harvested on August 24 ( 114 DAP ) , and replication one of Linott was 

harvested August 31 ( 121 DAP ) . 

In 1977, the s eed yield of Grant was higher t han that for Linott , 

but the inverse was true in 1978 ( Appendix V ) . In  1978, Linott pro­

duced more bolls per area and more seeds per boll than Grant ( Appendix 

V } . In addition , Linott had a higher harvest index ( Appendix V) .  The 

1978 season tot als for flower count s ( Appendix VI ) shows that 
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more flowers were observed in subplots of Linott than in tho s e  of Grant . 

Daily flower c ount total s show that flowering in the cult ivars b egan 

approximately at the same t ime and that the number of  flowers observed 

per day was similar for the two cult ivars until the middle o f  the 

flowering period ( 5 5  to 59 DAP ) ,  during which time Linott produced more 

flowers o  The number o f  blos soms per day again became qui t e  s imilar 

during the latter part of  the flowering periodo  

Experiment l :  Stomatal Characteristic s 

In 1977 and 1978 stomata! density ( Taole l) increased in an 

acropetal direction on both leaf surfaces o A gradi ent of increasing 

stomata! number was also present from leaf base to the t ip ( Table l ) . 

In both years stomata! fre�uency was ·greater on the adaxial surfac e 

than the abaxial surface , except for sepals in 1978 where the inverse 

was true . Stomata! apparatus width ( SAW ) ( Table 2 )  and st omatal 

apparatus length ( SAL ) ( Table 3 )  tended to decreas e , in bot h  years , 

from the sampling locat ion at the bas e of the stem to the s epals , for 

both leaf surface s . No such gradient was apparent from the base of 

the leaf to the l eaf apex for SAW ( Table 2 )  or SAL ( Table 3 ) .  However , 

a stomata! apparatus on the leaf tip was most often short er than one 

in either of the other leaf regions ( Table 3 ) .  A stomata! apparatus on 

the abaxial surface was wi der and long er than one on the adaxial 

surface , except for the sepals ( Table 2 and 3 ) .  On the s epals , adaxial 

stomatal apparatus averaged wider and shorter than tho se o f  the adaxial 

surface.  



Table 1 .  Stomatal Frequency. Means (X) , standard deviation ( S ) , and F-t est results of cultivar 
comparisons of stoma counts per 0 . 05 mm.2 at three regions on the leaf and both leaf surfaces for 
leaves taken from five locations on the plant . Information i s  presented on two flax cultivars , 
Linott fl_.nd Grant , grown at Brookings , South Dak.ota in 1977 and 1978 .  

Humb er Ada.xial sur fac e Aba.xia.l sur face 

of stomata Linott Grant F-test.�/ Linott Grant F-test.§/ 
x s x s x s y s 

Locat 7on "Jl±! 
19T(!. 

Leaf Region5 / 
Tip 5 1 . 1  5 1 . 2  N . S .  4 l .l 4 1 . 4  N . S . 
Middle 4 0 . 9 4 1 . 0  N . S .  4 l . l  4 1 . 1  N . S .  
Bas e  4 l . 2  3 1 . 0  N . S .  3 1 . 3 3 0 . 9 N . S .  
Average1/ 4 -- 4 -- -- 4 - - 4 

197 sf/  
Leaf Region 

Tip 4 1 . 3 5 1 . 3 N . S . 3 1 . 2  3 1 . 0  N . S .  
Middle 4 0 . 9  4 0 . 9 N . S .  3 1 . 0  3 1 . 0  N . S .  
Bas e 3 l . l  3 l .l N . S .  2 1 . 4  2 0 . 7 ' N  . s .  
Averag e 4 -- 4 -- -- 3 -- 3 

Locat7on 241 
19771. . 

Leaf Region.2/ 
6 6 Tip 1 . 2  1 . 3 N . S .  5 1 . 2  5 1 . 3 N . S .  

Middle 5 1 . 4  5 1 .1 N . S .  4 l . l  4 1 . 2  H . S .  
Base 5 1 .  7 4 l . l  N . S .  4 1 . l  4 1 . 2  N . S .  
AverageJ/ 5 -- 5 -- -- 4 -- 4 

w . 
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Table 1 . Continued. 

Number Adaxial surface 

of  stomata LinQ:t:t Grant 
x s -

x s 

i97a?} 
Leaf Region 

Tip 6 1 .  5 7 l . 5 
Middle 5 l . 1  5 l . 3 
Base 4 1 . 1  4 1 . 3 
Average 5 -- 5 --

Locat}on -J!J 
19Tr1 

Leaf Regier)} 
Tip 7 1 . 2  6 l . 2  
Middle 6 1 . 2 6 1 . 2  
Base 5 1. 3 4 l . l  
Averag� 6 -- 5 - -

197 8?:_/ 
Leaf Region 

Tip 7 1. 5 8 l . 7 
Middle 6 1 . 1  6 1 . 5 
Base 5 1 . 2  4 1 . 4 
Av�rage 6 -- 6 - -

Locat ion 0./ 
1977l/ 

Leaf Region,2./ 
Ti ig 4 . 5 ig 4

. �  Mi�dle 1 . 3  1 .  
ase 6 1 . 3  5 1 . 1 

Average1/ 7 -- 7 --

F-test6/ 

N. S. 
N . S .  
N . S .  

--

* 
N . S. 
N. S. 

- -

* 
N . S. 

* 
--

N. S. 
N. S. 
N. S. 

--

Linott 
x 

5 
4 
4 
4 

6 
5 
4 
5 

6 
5 
3 
4 

7 
� 
5 

s 

1 . 3 
0 . 7 
0 . 7  

- -

l . 3 
1 . 1  
l . 3 

. .,._ 

l .  7 
1 . 2 
1 . 1  

--

3 . 0  
1 . 2  
1 . 2  

--

Abaxial surf ace 
Grant F-t est6/ 

-

x s 

5 l . 0  N. S. 
4 1 . 1  N. S .  
3 0 . 9 H . S. 
4 

6 1 . 3 N . S. 
5' 1 . 2 N . S. 
4 l .l N. S. 
5 

7 1 . 2  N. S. 
5 l.. 3 N . S. 
4 1 . 1  N . S . 

. 5 

9 4 . 5 N . S .  

� 1. 5 N. S. 
1 . 3 N . S. 

6 -- -- w V1 



Table 1 .  Continued . 

--· 

Number Adaxial �yz:!ac� Abaxial surf ace 
of stomata Linott Grant F-test6/ Linott Grant F-test6/ 

x s x s x s x s 

1972£/ 
Leaf Region 

Tip 8 1 . 4  8 2 . 3  N . S .  7 1 . 6  6 1 . 7 N . S .  
Middle 7 1 . 3  6 1 . 3  N . S .  5 1 . 3  5 l . O  N . S .  
Base 5 1 . 6  5 1 . 6  N . S .  4 l . 4  4 1 . 0  N . S .  
Average 7 - - 6 - - - - 5 -- 5 

Location r;}:_I 
197'7 1/ 

· Leaf Region2/ 
Tip 9 1 . 5 9 1 . 6  N . S .  9 l . 3 9 l . 2 N . S .  
Middle 7 l . 2  6 1 . 3  N . S .  
Base 4 1 . 9  3 1 .  7 N . S .  
Averag;J/ 7 -- 6 

1918?) 
Leaf Region 

Tip 8 1 . 1  8 l . 5 N . S .  10 1 . 8  9 l . 5 N . S .  
Middle 6 1 . 3  5 1 . 4 N . S .  
Bas e 3 1 . 9  3 1 . 8  N . S .  
Average 6 -- 5 

--

l/80 observa�ions per cult ivar . 
2/30 obs ervations per cultivar . 
lJAverage = ( Tip + Middle + Base ) /3 .  

w 0\ 



Table 1 . Continued . 

�Location 1 = leaves from lower 1/3 of stem; Location 2 - leaves from middle 1/3 of stem ;  ·Location 
3 = leaves from upper 1/3 of stem ; Location 4 = bracts ; Locat_ion 5 = s·Jpals . 

2/Tip = upper 1/3 of leaf ; Middle = middle 1/3 of leaf ; Base = lower 1/3 of leaf .  
6/ *  - significant at 5% level 7 ** - significant at 1% level , N . S .  - not significant at 5% or 1% level . 

w � 



Table 2 . Stomatal apparatus width. Means (x) ; standard deviations ( S ) , and F-test results for 
cultivar comparisons of stomatal apparatus width at three rer �ons on the leaf and both leaf surfaces  
for leaves taken from five locations on the plant . Information is  presented on two flax cultivars , 
Linott and Grant , grown at Brookings ,  South Dakota in 1977 and 1978 . 

Stomat aJ.2.1 Adaxial surface Abaxial surf ace 
apparatus Linott Grant F-testlf Linott Grant F-te

-
st1/ 

width x s x s x s x s 

Locat}on i41 
19171_ 

Leaf Region2/ 
47 48 5 . 4 5 . 6  Tip 5 . 0 N . S . 49 50 5 . 6 N . S .  

Middle 47 5 . 9 49 5 . 7 N . S .  49 5 . 8  49 4 . 9  N . S .  
Base 48 5 . 8  52 6 . 2 N . S .  50 5 . 9  51 5 . 5 N . S .  
Averagelf 47 -- 50 -- -- 49 -- 50 

1978Y 
Leaf Reg ion 

Tip 47 4 . 8  49 5 . 3  N . S .  49 . 5 .  3 51 5 . 6  N . S .  
Middle 47 4 . 3  49 6 . 1  N . S .  50 5 . 2  52 5 . 8  N . S .  
Base 47 5 . 2  49 5 . 6  N . S .  49 6 . 9  50 5 . 6  N . S .  
Average 47 -- 49 -- -- 49 -- 51 

Locat�on 24/ 
1977-!. 

1eaf· Region.2/ 
43 46 Tip 5 . 4  5 . 2 N . S .  43 3 . 5  47 4 . 6  N . S .  

Middle 43 3 . 9  46 4 . 9  * 4 5  4 . 5  48 4 . 7  N . S .  
Base 4 5 5 . 1  50 6 . 2 * 45  5 . 1  47 4 . 6 N . S .  
Averagd/ 43 -- 47 -- -- 44 -- 47 

w CX> 



Table 2 .  Continued . 

Stomata16/ Adaxial surf ace 
apparatus Lino:t:t Grant 

width x s x s 

197�/ 
Leaf Region 

Tip 42 3 . 2  43 3 . 6  
Middle 42 3 . 4  4 5 4 . 3 
Base 4 5 4 . 6  47 4 . 4  
Average 43 -- 45 --

Locat�on � 
19n1. 

Leaf Region 
Tip 42 3 . 6 44 3 . 9  
Middle 41 3 . 7 44 3 . 3  
Base  4 5 4 . 1 47 3 . 7  
Averagd/ 43 - - 45 --

1978?./ 
Leaf Region 

Tip 41 3 . 4  41 3 . 5 
Middle 40 2 . 8  41 4 . 1  
Base 43 4 . 5 44 4 . 4 
Average 41 -- 42 --

Locat7on 10..I 
19771. 

Leaf Region.2/ 
Tip 40 3 . 6 41 4 . 4  
Middle 41 4 . 1  l.�3 4 . o 
Base  42 4 . 1  44 4 . 4  
Averagd./ 41 -- 43 --

F-testl/ 

N . S .  
N . S .  
N . S .  

--

N . S .  
* 

N . S .  
--

N . S . 
N . S .  
N . S .  

--

N . S . 
* 

N . S  
--

Linott 
x 

44 
45 
4 5 
45 

44 
44 
43 
44 

43 
43 
42 
43 

43 
43 
44 
43 

s 

3 . 7 
3 . 0  
3 . 6  

--

4 . 3  
4 . 3 
4 . l  

. --

3 . 1  
3 . 2  
3 . 9  
--

4 . 9 
4 . 2  
4 . 9  

--

Abaxi.al surface 
Grant F-t�stl/ 

x s 

46  4 . o  N . S .  
47 5 . 8 N . S .  
46  4 . 6  N . S .  
46  

46  3 . 9 N . S .  
46 '  4 . o  * 
47 4 . o  * 
46 

42 3 . 4  N . S .  
4 5 3 . 9  * 
42 4 . o  N . S .  
43 

44 5 . 1  N . S . 
44 3 . 7 N . S .  
45 4 . 3 N . S .  
44 - - - - w \0 



Table 2 .  Continued. 

Stomatai2/ Adaxial surface Abaxi al surfac e 

apparatus Linott Grant F-test1/ Linott Grant F-te
.
stl! 

width x s x s x s x s 
-

1978?:_/ 
Leaf Region 

Tip 39 3 . 0  39 3 . 7 N . S . 39 3 . 6  40 3 . 3  N . S .  
Middle 38 2 . 4 40 3 . 6  N . S .  41 2 . 5 42 4 . 2  N . S .  
Base 38 3 . 5  40 3 . 4  N . S .  42 3 . 6  41 4 . 4  N . S .  
Average 38 -- 40 - - - - 41 - - 41 

Location rJ!-1 
19Tr11 

Leaf Region2/ 
Tip 40 3 . 7 4o 5 . 0 N . S .  · 40 2 . 8  38 2 . 9 * 
Middle 41 4 . 8  42 4 . 7 N . S . 
Base 39 4 . 8  37 3 . 6  N . S  
Aver8€,eJ./ 40 - - 40 

i97ag_/ 
Leaf Region 

Tip 38 3 . 6  40 3 . 3  N . S .  36 2 . 7 38 3 . 5 N . S .  
Middle 39 2 . 7 40 3 . 3  N . S . 
Base 38 3 . 7  39 3 . 6  N . S .  
Average 38 -- 40 

1/80 observations per cultivar . 
2/30 observations per cultivar . 
lf Average = ( Tip + Middle + Base ) /3 • 

.!±f 1ocation 1 = leaves from lower 1/3 of stem ; Lo cation 2 = leaves from middle 1/3 of stem ; 
Location 3 = leaves from upper 1/3 of stem ;  Location 4 = bract s ;  Location 5 = sepals . ,t=-0 



Table 2 .  Continued . 

21Tip = upper 1/3 of leaf ; Middle = middle 1/3 of leaf ; Base = lower 1/3 of leaf . 
6/units µ 
7/ * - signifi c ant at 5% level , * *  

- significant at 1% level , N . S .  - not significant at 5% or 
1% level . 

.s;;­f--1 



Table 3 . Stomata! apparatus length . Means (X'} , standard deviations (S ) , and F-test results for 
cultivar comparisons of stomatal apparatus length at three regions on the leaf and both leaf 
surfaces for leaves taken from five locations on a plant . Information i s  presented on two 
flax cultivars , Linott and Grant , grown at Brooking s ,  South Dakota in 1977 and 1978 .  

Stomataiil Adaxial surfac e Abaxial surf ac e 
apparatus Linott Grant F-testl/ Linott Grant F-testl/ 

length x s x s x s x s 

Locat7on i 4/ 
19771 

Leaf Region.2/ 
Tip 34 3 . 0  36 3 . 2  N . S . 37 3 . 3  40 3 . 5 * 
Mi ddle 36 3 . 0  39 3 . 4  * 38 3 . 0  42 3 . 7 N. S .  
Bas e  35 3 . 5  38 2 . 8  N . S . 37 3 . 6  42 4 . 1 N . S .  
Averagel/ 35 -- 38 -- -- 37 -- 41 

1978Y 
Leaf Region 

Tip 38 3 . 7  41 4 . 2  N . S .  42 4 . 6  43 4 . 7  N . S .  
Middle 41 3 . 2  43 4 . 6  N . S .  44 3 . 8 . 47 4 . 3  N . S .  
Base 40 3 . 6  42 5 . 7  N . S .  42 4 . 6  46 4 . o  N . S .  
Averagel/ 40 -- 42 -- -- 43 -- 4 5  -- N . S .  

Locat7on 24/ 
19771 . 

Leaf Region.2/ 
Tip 34 2 . 5 36 2 . 5 N . S .  37 3 . 5 39 3 . 3 N . S .  

Middle 35 3 . 1  37 2 . 8  N . S .  37 2 . 9  40 3 . 1  * *  
Bas e 3 5  3 . 2  38 3 . 0  N . S .  36 3 . 4  40 3 . 5 * *  
Averagel/ 35 -- 37 -- -- 37 -- 40 

� 
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Table 3 . Continued . , 

-

StomataJ...2/ Ada.xial surface 

.apparatus Linott Grant 
length x s x s 

197@/ 
Leaf Region 

Tip 37 3 . 6 37 3 .1 
Middle 39 2 . 8  40 4 . 2 
Base 38 3 . 7 40 3 . 9  
Average 38 -- 39 - -

Locat ion � 
1977l/ 

Leaf Region 
Tip 34 2 . 5 36 2 . 5 
Middle 35 3 . l 37 2 . 8  
Base 36 3 . 2 38 3 . 0  
Average1/ · 35  - - 37 --

1978£/ 
Leaf Region 

Tip 36 2 . 8  34 2 . 9  
Middle 36 2 . 4  38 3 . ( 
Base 36 3 . 2  36 3 . 4  
Averagel/ 36 -- 36 --

F-testll Linott 
x s 

N . S .  39 2 . 5 
N . S .  42 3 . 0  
N . S .  38 3 . 8  

-- 40 --

N . S . 37 3 . 5 
* 37 2 . 9  

N . S .  36 3 . 4  
- - 37 - -

N . S .  37 2 . 9  
* 38 2 . 6  

N . S .  36 2 . 2  
-- 37 --

Abaxial surf ac e 

Grant 
x s 

40 2 . 7  
44 3 . 5  
4o 3 . 8  
41 

39, 3 . 3  
40 3 . 1  
40 
40 

3 . 5  

37 2 . 8  
39 3 ·. 3  
38 3 . 1  
38 

F-t estl/ 

N . S .  
N . S .  
N . S .  

N . S .  
• * 
N . S .  

N . S .  
N . S .  
N . S .  

.i=­
w 



Table 3 . Continued .  

Stomata� Adaxial surface 

apparatus Linott Grant 
length x s x s 

Location 4!±/ 
19771/  

Leaf Region2/ 
34 Tip 3 . 1 35 3 . 0 

Middle 3 5  3 . 5  37 3 . 2 
Base 35  3 . 5  38  3 . l  
Averagel/ 35 -- 37 --

197ag_/ 
Leaf Region 

Tip 33 2 . 8  34 2 . 5 
Middle 33 2 . 4  35 3 . 0  
Base 33 3 . 7 34 2 . 4  
Average 33 -- 34 --

Location r;)J../ 
1911Y 

Leaf Region2/ 
. Tip 33 3 . 0  33 3 . 0  

Middle 34 3 . 7 34 3 . 7 
Base 36 4 . 4  36 3 . 9 
Averagd/ 34 -- 34 

F-test7/ Linott 
x s 

* 36 3 . 8  
* 37 3 . 8 
* 37 3 . 8 
-- 37 --

N . S .  3 6  3 . 1 
N . S .  36 2 . 7 
N . S .  34 3 . 0  
-- 35 --

N . S .  38 3 . 0  
N . S .  
.N . S .  

Abaxial surf ace 

Grant 
x s 

38 3 . 2  
38 3 . 8 
39 3 . 4  
38 

36 ' 3 . 2  
36 2 . 6 
36 2 . 8  
36 

38 . 2 . 7 

F-testl/ 

N . S .  
N . S .  

* *  

N . S  • . 

N . S .  
N . S .  

N . S .  

+:"" +:"" 



Table 3 .  Cont inued . 

Stomat ai2/ 
apparatus 

length 

197 8?:.I  
Leaf Reg ion 

Tip 
Middle 
Bas e 
Averag e  

Linott 
x s 

31 
32 
3 5 
33 

2 . 4  
2 . 4  
2 . 9  

Adaxial s ur face 
Grant 

x s 

33 
3 4  
37 
3 5 

2 . 4  
3 . 8  
3 . 9  

l / s o  ob s ervat ion s per cult ivar . 
2/ 30 ob servat i ons per cult ivar . 
3 / Aver age = ( Tip + Middle + Bas e ) / 3 .  

F-test71 

N . S .  
N . S .  
N . S .  

Linott 
x s 

37 3 . 0  

Abaxial sur fac e 
Grant 

x s 

37 3 . 3  

F-testl/ 

U . S .  

� Lo c at ion 1 = leaves from lower 1/ 3 o f  stem ;  Locat ion 2 = leaves ·from middle J_ / 3 of stem ;  Location 
3 = leaves · from upper 1/ 3 of stem ; Loc at ion 4 = bract s ; Location 5 = sepals . 

2./Tip = upper 1 / 3  of leaf ; Middle = middle 1/ 3 of lear "; Base = lower 1/ 3 of leaf . 

6/unit. s µ 
.l/ * - s ignificant at 5�� level , ** 

- significant at l% level , N . S .  - not significant at 5% or 1% level . 

� V1 



stomat al apparatus dimensions . All lo cation-surfac e combinations for 

SAW were wider in 1977 than in 1978 ( Table 2 ) .  Average s  for SAL 

4 6  

( Table 3 )  were  great er in l978 then 1977 for leaves collected from the 

fi rst two locations on the plant , but at l�af insertions higher on the 

pl ant the oppo site  was true . From a closer examination of the individ­

ual leaf regions means in Table 1 tprough 3 ,  it app�ars t hat an overall 

chang e in the c at egories measured for all leaf regions , rather than a 

drast ic  change in one part icular region , is  respons ible for the 

differenc e between years . 

In 1978 c ombined guard cell width ( CGW ) decreas ed from the lea:f 

apex to the leaf base , was greater on the adaxial surfac e than on the 

abaxial surfac e ,  but did not change greatly from t he base of the plant . 

to the top ( Table 4 ) . Guard cell length ( GCL ) followed no pattern 

from leaf t ip to leaf base ( Table 5 ) but did dec reas e from stem base 

to the stem top . 

Aver age leaf dimensions inc reased from the bas e of the stem to 

the top of the stem ( Table 6 ) . For sampling s it e s  above the stem ,  

average leaf ar ea decreased as one moved to the brac t s  and then t o  the 

s epals ( Tabl e  6 ) . Stomatal index ( Table 7 ) showed a decreas ing gradient 

from the leaf t ip to  leaf bas e  and plant base to plant top . In 

addition , stomatal indices  of the adaxial surface appeared greater 

than tho se of the abaxial surfac e ,  except on the s epal s  where the 

invers e  was true . 

In both years , differences between cultivars for stomatal density 

were s ignificant ( a  = 0 . 05 ) for the top of the ada.xial surfac e of 



Table 4 .  Combined guard cell width. Means (X}, standard deviations ( S }  and F-test results for 
cultivar comparisons of combined guard cell width at three r�gions on the leaf and both leaf 
surfaces for leaves taken from five locations on the plant . Information is  presented on two 
flax cultivars , Linott and Grant , grown at Brookings , South Dakota in 1978 . 

Combined A.dax.ial surface Abax.ial surface 
guard ce71 Linott Grant F-test.0' Linott Grant F-test6/ 

width.1 X£/ s x s x s x s 

Location l!±/ 
Leaf Region.2/ 

Tip 21 1 . 8  21 2 . 3  N . S .  20 2 . 0  19 2 . 2  N . S .  
Middle 20 2 . 5 20 1 . 6  N . S .  20 2 . 2  19 l . 9  N . S .  
Base 18 3 . 1  20 3 . 1 N . S .  17 l . 8  17 2 . 1 N . S .  
Average1J 20 -- 20 -- -- 19 -- 18 

Location � 
Leaf Region.2/ 

Tip 20 1. 7 19 l . 8 N . S .  19 1 . 8  17 1 . 5 N . S .  
Middle 20 2 . 2  20 1 . 6 N . S .  18 1 . 5  17 l . 5  * 
Base  18 2 . 9  18 2 . 8  N . S .  15 2 .1 15 2 . 0 N . S .  
AverageJ./ 19 -- 19 -- -- 17 -- 16 

Location -}!_I 
Leaf Region.2./ 

Tip 20 2 . 6  19 1 . 8  N . S . 18 l . 6  16 1 . 9  N . S .  
Middle 18 1 . 6  18 2 . 0  N . S .  17 1 . 6  16 1.  7 * 
Bas e 18 2 . 7  17 1 . 9  N . S .  14 2 . 2· 15 2 . 1  N . S .  
Averagel/ 19 -- 18 -- -- 16 -- 16 

� � 



Table 4 . Continued. 

Combined Adaxial surface 
guard cill Linott Grant 

widtbl 

Location 44/ 
Leaf Region.2/ 

Tip 
Middle 
Base 
AverageJ/ 

Location r:)i! 
Leaf Region2/ 

Tip 
Middle 
Base 
Average]/ 

1/units µ 

XS] 

20 
18 
17 
18 

20 
19 
18 
19 

s x 

1 . 6  18 
1 . 6  18 
1. 7 16 

- - 17 

2 . 5 20 
2 . 0  18 
2 . 7 18 
-- 19 

2/30 observations per cultivar . 
}/Average = ( Tip + Middle +

. 
Base ) / 3 

s 

2 . 1  
2 . 0  
l . 6  

- -

2 . 3  
2 . 1  
2 . 6  

Aba.xial surf ace 
F-testY Linott Grant F-test.2/ 

- -

x s x s 

N . S .  19 1 .  7 16 1 . 8 * *  
N . S .  16 1 . 6  16 1 . 1  N . S .  
N . S .  1 5 l . 9  15  2 . 4 N . S .  

-- 17 -- 16 

N . S .  17 2 . 4  17 2 . 3  N . S .  
N . S . 
N . S .  

2±/1ocation 1 = leaves from lower 1/3 o f  stem ;  Location 2 = leaves from middle 1 /3 of stem ;  Location 
3 - leaves from upper 1/3 of stem ;  Location 4 - bracts ;  Location 5 = sepals • 

.2/Tip = upper 1/3 of leaf ; Middle = middle 1/3 of leaf ; Base = lower 1/3 of leaf . 
§/ * - signi ficant at 5% level , ** - significant at 1% level , N . � .  - not significant at 5% or 1% level . 

� 
CX> 



Tab1e · 5 .  Guard cell length. Means (:X) , standard deviations ( S ) , and F-test results for cultivar 
comparisons of guard cell length at three regions on the leaf and both leaf surf aces for leaves 
taken from five locations on the plant . Information is presented on two flax cultivars ,  Linott 
and Grant , grown at Brookings , South Dakota in 1978 . 

Guard c e71 Ada..xia.l surf ace Abaxial. surf ace 
length.b Linott Grant F-t est!i/ Linott Grant F-test.£/ 

- 2/ s - s - s - s x - x x x 

Location ill I Leaf Region-2 
Tip 36 3 . 4  38 3 . 2  N . S .  38 3 . 4 38 3 . 5 N . S .  
Middle 38 2 . 9  40 3 . 7  N . S .  39 2 . 5 4 2  3 . 1  * 
Bas e  38  3 . 1  42 5 . 5  N . S .  38 4 . o  41 3 . 0  N . S .  
Averagei/ 37 -- 40 - - - - 38 - - 40 

locat ion i!JJ 
Leaf Region.2./ 34 2 . 8 Tip 34 3 . 0  2 . 5 N . S .  3 5 1 . 9 35 N . S .  

Middle 36 2 . 4  36 4 . 4  N . S .  36  2 . 5 37 1 . 8  N . S .  
Bas e 36 3 . 6  37 3 . 6  N . S .  34 3 . 8 36 2 . 5 N . S .  "'.> I  3 5 36 36 Averaged./ - - -- - - 3 5 --

Location :)Ji I .Leaf Region-2. 
2 . 6  34· 2 . 8  Tip 33 3 . 3  32 N . S .  33  2 . 3 N . S .  

Middle 34 1 . 9 35 3 . 5 · N . S .  34 2 . 3  3'6 2 . 4 N . S . 
Base 34 2 . 7  3 5 2 . 9  N . S .  33 1 . 8 · 34  2 . 5 * 
Averagel/ 34 -- 34 -- -- 33 - - 35 

+:"" \0 .  



Table 5 . Continued . 

Guard cell 

lengthl/ 

Locat ion l}±..1 
Leaf Region.LI 

Tip 
Middle 
Base 
Average]/ 

wcat ion r;}!/ 
I Leaf Region2 

Tip 
Middle 
B as e  
Ave rag el/ 

l/units µ 

Linott 
xE..7 s 

31 2 . 3  
31 1 . 8  
31 3 . 0  
31 --

30 3 . 3 
30 3 . 9 
33 3 . 9  
31 --

Adaxial · S:!£.f'ace 

Grant 
x s 

32 2 . 3  
33 2 . 4  
32 2 . 1 
32 --

31 2 . 6  
33 3 . 9  
36 4 . 3  
33 

2/30 observat ions per cultivar . 

3/Average = ( Tip + Middle + Base ) /3 

Abaxial surface 

F-test.§/ Linott Grant F-tes-t£1 

x s x s 

N . S .  33 3 . 1 33 2 . 5  N . S .  
* 32 2 . 9 33 1 . 8  N . S .  

N . S .  30 2 . 6  33 2 . 4  ** 
-- 32 -- 33 

N . S .  35 3 . 2  34 3 . 9  N . S .  
* 

N . S .  -- -- -- -- --

4/1ocation 1 = leaves from lower 1/ 3 of stem ;  Location 2 = leaves from middle 1/3. of stem ; Location 
3 = · leaves from upper 1/ 3 of stem ;  Location 4 = bracts ;  Location 5 = sep�ls • 

.2./Tip = upper 1/3 of leaf;  Middle = middle 1/3 of leaf ; Base = lower l/3 of leaf . 
6/ * - significant at 5% level , ** - significant at 1% level , N . S .  - not significant at 5% or 1% level . 

VI 0 



Table 6 .  Average leaf dimension . Means (x) , standard deviations (S ) ,  and F-test result s for 
cultivar comparisons of the average leaf dimension or leaves us ed in coliection of stomatal 
characteristics dat a .  Information is  presented o n  a location bas i s  for two flax cultivars , 
Linott and Grant , grown at Brookings , South Dakota in 1978 . 

Average 
leaf 

dimension!/ 

Location JJ.I 
Locat ion 21/ 

Location :J.I 

Loc ation 41/ 

Location 5lf 

l/unit s cm2 

L7nott 
--x2 s 

o . 4 360 0 . 1250 

1 . 1882 0 . 1463 

1 . 2029 0 . 1602 

0 . 6693 0 . 1526 

0 . 17069 0 . 0281 

Adaxial surface 

Grant 
x s 

o . 4 519 0 . 1197 

1 . 1031 0 . 2069 

1 . 1540 0 . 2689 

o . 6444 0 . 1098 

0 . 1633 . 0215 

2/30 observations per cultivar . 

F-test.!±f Linott 
x s 

N . S . o . 4 597 0 . 0920 

N . S .  1 . 1865 0 . 1034 

N . S . 1 . 2638 0 . 1779 _ 
i 

N . S .  0 . 7 552 0 . 1199 

N . S .  0 . 1915 0 . 0257 

Abaxial surface 

Grant 
x s 

o . 4 590 0 . 1281 

1 . 2058 0 . 2347 

1 . 2122 0 . 2882 

0 . 7407 0 . 2162 

0 . 1949 0 . 0338 

F-�esJ/ 

N . S . 

N . S .  

N . S .  

N . S .  

N . S .  

l/Location 1 = leaves from lower 1/3 of stem ;  Location 2 = leaves from middle 1/3 o f  stem ; Loc ation 
3 = leaves from upper 1/3 of stem ;  Location 4 = bracts ;  Locat ion 5 = sepals . 

· 

'!!l * - significanc e at 5% level , ** - significance at 1% level , N . S .  - not significant at 5% or 1% level . 

\J1 
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Table 7 .  Stomatal index . Means (�) , standard deviations (S } , and F�test results for cultivar 
comparisons of stomatal index at three regions on the leaf and both leaf surfaces for leaves 
taken from five locat ions on a plant . Information i s  presented on two cultivars , Linott and 
Grant , grown at Brookings , South Dakota in 1978 . 

Adaxial surface Abaxial surface 
StomataJl./ Linott Grant F-testW' Linott Grant )/ F-test-

Index - 07 x .::.. s x s x s x s 

L · 14 / ocation -
Leaf Region.2/ 

Tip 26 6 . 5 28 5 . 5 N . S .  24 7 . 1  23 6 . 9 N . S . 
Middle 25 6 . 2  28 5 . 0  N . S .  22 6 . 6  23 7 . 1  N . S .  
Base 21 6 . 6  23 6 . 2 N . S . 18 7 . 2  18 5 . 9 N . S . 
Averagel/ 24 -- 26 -- -- 21 -- 21 

Location 2!i../ 
Leaf Region.2/ 

Tip 30 5 . 3 29 6 . 7  N . S . 24 5 . 0  22 3 . 9  N . S . 
Middle 27 4 . 5  26 5 . 8  N . S . 21 4 . 7  23 5 . 5 N . S .  
Base 19 5 . 5  22 5 . 7  N . S .  16 3 . 7  17 4 . 3 N . S . 
Averagel/ 25  -- 26 -- -- 20 -- 21 

Location #f 
Leaf Regio� 

26 3 . 8  26 4 . 7  24 4 . 8  Tip N . S .  22 . 4 . 2 N . S . 
Middle 24 4 . 3  27 5 . 1  N . S .  20 5 . 3  20 5 . 3 N . S . 
Base 22 5 . 1  20 5 . 4  ** 14 4 . 5  18 4 . 5  N . S .  
Averagel/ 24 -- 24 -- -- 19 -- 20 

\.n I\) 
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Table 7.  Continued . 

Adaxial surface 
Stomatal1/ Linott Grant F-test.2/ 

Index - 2/ s x s x -

Loc at ion � 
Leaf RegionL/ 

Tip 2 5  4 . o  2 5  5 . 3  N . S . 
Middle 2 5  4 . o  22 3 . 6  N . S .  
Bas e  20 4 . 4  21 4 . 5  N . S .  
Averagel/ 23  - - 2 3  - - - -

wcation s}:_/ 
Leaf Region.2/ 

Tip 16 1 . 8  1'7 3 . 4  N . S . 
Mi ddle 15 3 . 4  15  3 . 8  N . S .  
Bas e  9 5 . 1  9 4 . 4  N . S .  
Averagel/ 13 -- 14 

1f { No .  stomat a/ ( No .  stomat a + No . c ell epidermal ) }  x 100 . 
'E:/ 30 observat ions per cultivar 
llAverage = ( Tip + Middle + Base ) /3 

Abaxial surface 
Linott Grant F-

�
t�sty 

x s x s 

22 4 . 5  20 4 . o  N . S .  
19 4 . 6  18 4 . 0  N . S .  
1 5  4 . 8  16 4 . 3  N . S .  
19 - - 18 

22 3 . 1  20 2 . 4  N . S .  

�/Loc ation 1 = leaves from lower 1/3  of stem ;  Locat ion 2 = leaves from mid4le 1/3 of st em ;  Loc at ion 
3 = leaves from upper 1/3 of stem ;  Loc at ion ·4 = bract s ; Locat ion 5 = sepals • 

..2./Tip = upper 1/3  of  leaf ; Middle = middle 1/ 3 of  leaf ; Base = lower 1/ 3 of leaf. 

§_/ * - s ignifi cant at 5% level , ** - signi ficant at 1% level , N . S .  - not s ignificant at 5% or 1% level . 

V1 w 



leaves sampled from the upper third of the stem ( Table l ) .  However , 

while Linott showed the greater density at thi s locat ion in 1977 , 

Grant had the great er dens ity in 1978 0  For GCL , CGL , SAL , and SAW , 

Grant averaged slightly higher , but in only a few instances  did thi s 

prove t o  be stat i st ically important ( Table 2 through 5 ) .  No con-

sistent , statist i c ally significant di�ferences were present b etween 

cultivars for average leaf area or stomatal index ( Table 6 and 7 ) . 

Experiment £: Stomatal Resi stance 

54 

During the day , adaxial storoatal res i stance ( rad ) bas i c ally follow-

ed a parabolic  pattern o f  change , with the lowest values o ccurri ng 

around midday ( Table 8 and Figure 2 ) .  Differences  between the over-

all means for the sampling periods were highly signi ficant ( a  = O. Ol )  

(Appendix VI II ) .  Daily average rad for both cultivar s  decl ined sharply 

after the fourth sampling date and remained relat ively low for about 

15 dEcy"s af't er whi c h  there was a rise in rad · Differenc es  between sam-

pling dates  and the Day ( D ) x Time ( T )  interaction were highly s ignif-

icant ( Appendix VIII ) .  

Linott and Grant were not significantly different for rad 

(Appendix VII ) .  However , the interactions of T x Cult ivar ( C )  and DC 

were highly s ignificant . Figure 2 , whi ch shows overall means for daily 

time periods , indicat e s  that Grant and Linott had s lmilar rad readings 

early in the day , but that as the day progres sed a difference between 

Cultl.· var d 1 d d 1· ncreas ed i· n � Q�ni· tude . D ...... · · ilv  r_aa� for the s eve ope an �-� '-"t>  � 

cultivars were very similar during the first half of  the s eason , but 

by post-bloom Grant generally showed a greater daily mean rad than 



Table 8 .  Adaxial stomatal resistance . Means (r) and standard deviations (S )  or ad.axial stomatal resistance readings of' flax leaves 
detached from the top of' the stem . Sampling took place five times per day at two day intervals starting in early bloom and con-
tinuing for approximately five weeks . 

ra.d 
Se.mp le!/ 

0700 hrsY 
Linott 

Grant 

1000 hrsl/ 
Linott 
Grant 

1300 hrs?:.! 
Linott 
Grant 

1600 hrsY 
Linott 

Grant 

1900 hrsY 
Linott 
Grant 

Daily x 
Combined 

Linott . 
Grant 

48 
x 

2 . 92 
2 . 9 5  
2 . 89 
2 . 01 
2 . 02 
2 . 00 
1. 53 . 
1 . 59 
1 . 47 
1 . 81 
1 .  72 
1 . 89 

2 . 07 
2 . 07 
2 . 06 

s x 

2 . 42 
2 . 42 
2 . 4 2 

-
- 1 .  78 

0 . 672 1 .  79 
0 . 510 1 .  77 

- 2 . 14 
0 . 397 2 . 17 
o . 414 2 . 10 

-- 2 . 12 
0 . 277 . 2 . 13 
0 . 265 2 . 10 

-
- 2 . 16 

0 . 521 2 . 27 
0 . 266 2 . 04 

-- 2 . 12 
-- 2 . 16 
-

- 2 . 09 

20 
D�s after Elanting 

52 22 
s x s x s 

-- 2 . 17 --

o . 47 5  2 . 17 0 . 215 
0 . 3.:S5 2 . 17 0 . 333 

- - l . ll -- 1 . 36 -
-

0 . 280 1 . 16 0 . 289 1 . 38 O • .:>oe3 
o . 4 48 1 . 06 0 . 194 1 . 34 o . 4 96 

-- 1 . 33 -
- 1 . 94 -

-0 . 7 52 l . 41 0 . 362 2 . 08 o. 436 
0 . 37 5  1 . 25 0 . 389 1 . 80 0 . 374 

-- 1 . 68 -- 2 . 50 --
0 . 789 1 . 58 0 . 253 2 . 38 0 . 728 
2 . 102 l . 19. 0 . 281 2 . 63 o . 4 46 

-- 1 . 94 -- 3 . 33 --

0 . 274 1 . 95 0 . 332 3 . 06 o . 641 
0 . 276 1 . 93 0 . 279 3 . 61 0 . 804 

- - 1 . 65 -- 2 . 28 --

-- 1 . 65 -- 2 . 22 --

-- 1 . 64 -- 2 . 35 --

Yunits s cm-1• Sampling took place on the first four nodes on the top of the stem .  
E./15 observations per cultivar. 

21 
x s x 

2 . 05 
2 . 16 
l . 9h 
1 . 48 
1 . 58 
1 . 37 

l . 25 - 1 . 16 
1 . 19 0 . 294 1 . 24 
1 . 31 o . 405 1 . 09 
l . 03 1 . 08 
1 . 08 0 . 269 1 . 02 
0 . 98 0 . 136 1 . 14 
1 . 44 -- 2 . 04 
1 . 4 5 0 . 251 2 . 05 
1 . 44 0 . 304 2 . 03 

1 . 24 -
- 1 .  56 

1 . 24 - - 1 . 61 
1 . 24 -- 1 . 51 

:J/12 observat ions per cultivar on date 52 . All other dates had 15 observations per cultivar at this time period. 

59 
s 

0 . 512 
0 . 217 

o . 418 
0 . 351 

0 . 264 
0 . 184 

0 . 201 
0 . 205 

0 . 363 
0 . 207 
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Table 6. Continued. 

De.ya after planting 
rad --6-2------�6"""4 ______ 66 69 71 7 3  

Sample!/ x S x S x S x S x S x S 

0700 hrsY 2 . 16 - 2 . 16 
Linott 2 . 26 0 . 267 2 . 23 0 . 405 
Grant 2 . 07 0 . 161 2 . 08 0 . 4 62 

1000 hrsY 1 . 17 -- 1 . 80 -- o . 84 -- 1 . 22 -- 0 . 95 
Linott 1 . 20 0 . 261 l . 86 0 . 263 0 . 77 0 . 170 1 . 16 0 . 210 0 . 83 0 . 320 
Grant 1 . 14 0 . 232 1 . 74 0 . 282 0 . 91 0 . 284 1 . 29 0 . 299 1 . 07 0 . 261 

1300 hrsY 1 . 32 - 1 . 57 -- 1 . 62 - 1 . 18 -- 1 . 04 -- 1 . 56 
Linott 1 . 33 0 . 315 1 . 52 0 . 206 . 1 . 50 0 . 316 1 . 09 0 . 396 0 . 9 5  Q,. 23T 1 . 5 5 0 . 318 
Grant 1. 32 o. 584 1 . 62 0 . 118 1. 74 0 . 819 1 . 27 o . 4 33 1 . 13 2. 058 1. 58 o .- 499 

1600 hrsY 1 . 50 -- 1 . 07 - 1 . 28 -- 1 . 17 -- 1 .  70 
Linott 1 . 51 0 . 191 1 . 0l 0 . 287 1 . 16 0 . 220 · 1 . 24 0 . 196 1 . 87 0 . 694 
Grant 1 . 48 0 . 309 1 . 12 0 . 337 1 . 39 0 . 327 1 . 10 0 . 141 1 . 53 0 . 4 01 

1900 hrsY 2 . 32 -- 1 . 86 -- 2 . 56 -- l . 95 -- 2 .  74 
Linott 2 . 21 O .  31 0 1 . 68 0 . 410 2 .  28 O .  l·.11 1 . 91 0 . 3 54 2 .  32 O .  553 
Grant 2 . 4 3 0 . 523 2 . 05 o . 476 2 . 84 0 . 800 2 . 00 o . 644 3 . 16 i . 256 

Daily x 
Combined 1 . 58 -- 1 . 68 - l . 52 -- 1 . 47 -- 1 . 51 -- 1 . 82 

Linott 1. 56 -- l. 68 -- 1 .  4 0 -- 1 .  33 -- 1 .  50 -- 1 . 1 6 
Grant 1 .  59 -- 1 .  68 -- 1 .  64 -- 1 .  60 -- 1 .  52 -- 1 .  88 

!/units s cm-1 . Sampling took place on the first. four nodes on the top of the stem. 
£!15 observations per cul.tivar. 

V1 . 0\ 



Table 8. Continued. 

rad 
Dais after I?lantiES 

16 I8 80 83 SW!lple!/ y s y s x s y s 

0700 hrsY 2 . 30 -- 2 . 48 --

Linott 2 . 18 0 . 321 2 . 44 0 . 237 
Gr wit 2 . 42 0 . 390 2 . 51 0 . 317 

1000 hrsY 1 .  55 - - 1 . 94 -- 1 .  72 --

Linott 1 . 46 0 , 305 1 . 60 0 , 371 1 . 73 0 . 655 
Grant 1 . 63 0 . 557 2 . 28 0 , 935 1 . 7l o . �  .1 

1300 hrs'E./ 2 . 47 -- 2 . 40 -- 1 . 99 - 2 . 05 --

Linott 2 . 16 o . 468 2 . 39 o . 668 2 . 01 0 . 335 2 . 07 0 . 548 
Grant 2 .78 1 . 608 . 2 . 41 0 . 567 1 .98 0 . 293 2 . 03 0 . 286 

1600 hrs'Y 2 . 35 -- 2 . 40 -- 2 . 13 -- 1 . 36 --

Linott 2 . 11 o . 479 1 . 87 o .  575 2 . 06 0. 541 1 . 24 0 . 599 
Grant 2 . 60 o . 416 2 . 94 1 . 160 2 . 19 0 . 313 1 . 49 0 , 377 

1900 hrsY 3 . 11 -- 4 . 34 -- 2 . 59 -- 2 . 90 --

Linott 2 . 91 0 . 742 2 . 78 0 . 778 2 . 44 0 . 568 2 . 91 o. 468 
Grant 3 . 30 0 . 950 5 . 90 3 . 867 2 . 75 o. 424 2 . 90 0 . 632 

Daily x 
Combined 2 . 35 -- 2 . 77 - - 2 . 24 -- 2 . 10 --

Linott 2 . 16 -- 2 .16 -- 2 . 17 -- 2 . 08 --

Grant 2 . 5:> -- 3 . 38 -- 2 . 31 - 2 . 13 --

Yunits s cm-1• Sampling took place on the first four nodes on the top of the ste•" . 
E./15 observations per cultivar . 

85 
y 

1 . 78 
1 . 69 
1 . 87 

2 . 24 
2 . 24 
2 . 24 

2 . 31 
2 . 38 
2 . 25 

3 . 47 
3 . 30 
3 . 64 

2 . 45 
2 . 40 
2 . 50 

s 

-

0 , 579 
o . 432 

-

0 . 3�3 
0 . 5 51 

--

o .  794 
0 . 697 

--

0 . 651 
0 . 833 

- -

--

-

r 
across all d�s 

2 . 25 
2 . 27 
2 . 23 

1 . 54 
1 . 51 
1 . 57 

1 . 72 
1 . 70 
1. 74 

1 .  70 
1 . 64 
1 .  76 

. .  2 .  54 
2 . 33 
2 . 74 

1 . 95 
1 . 89 
2 . 01 

V1 . 
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Figure 2 . Adaxial stomat a! res i st ance ( rad ) . Overall cultivar means 
of rad for five sampling periods ( 0700 , lOOO , l300 , l600 ,  l900 ) . 
Adaxial stomata! resist &.�ce was determined during l978 at Brooking s ,  
S . D . for leaves from the first four nodes of the stem . 

( •• •A Linott ., � • Grant ) 

/ 
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Figure 3 . Adaxial stomatal resistanc e (r8d ) .  Daily cultivar means of 
ra:d acro s s  all sampling dat es and precipitat i on data from 48 through 
85 days a�er planting . Osmoti c  potenti al samples were collected in 
1978 at Brookings ,  S . D .  from t he lower third of the stem and the first 
four nodes of the stem . 

( •• • :A Linott , • • Grant ; DAP - days aft er planting ) 
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Figure 4. Adaxial stomatal resistance ( rad ) . Means of' -cllltivars for 
rad by day and hour ( 0700 , 1000 , 1300 , 1600 , 1900 ) for readings from 
the first four nodes of the stem . Adaxial stomatal resistance read­
ings were made in 1978 at Brookings ,  S . D . 

( A Linott , � • Grant , • Linott and Grant ; DAP - days 
after planting ) 
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Linott ( Figure 3 ) . The DTC interaction also proved highly s ignificant . 

Linott repeatedly showed a lower rad at 1600 and 1900 hrs than Grant 

throughout the season . For the first part of the s eason , Linott had a 

slightly higher rad for the periods of 0700 , 1000 , and 1300 hrs 

( Figure 4 ) . At approximately the end of the bloom the inverse was 

true for these periods ( Figure 4 ) .  
The analys i s  of variance also showed that repli cations and in mo st 

cases interactions with replicat ions were significant ( Appendix I II ) .  

Experiment J: Osmotic Potential 

Differences b�tween daily Deans ( Figure 5 )  o'f osmotic  pctential ( �n ) 
at the stem base were s ignificant ( a  = 0 . 05 )  whereas the Day ( D )  x Time 

(T )  interaction was not (Appendix VIII ) .  Season means of  �TI for the 

time periods averaged across  days and cult ivars ( Figure 6 )  did not prove 

to be s ignificantly different (Appendix VIII ) .  No other source of var­

iance was stat i st ically s ignifi cant for this location ( Appendix VII I ) . 

At the top of the st em ,  differences between daily means were highly 

signifi cant ( a  = 0 . 01 ) and the interact ion of days with t ime of  sampling 

was also highly significant ( Appendix VIII ) .  Figure 5 illustrates that 

daily means varied a great deal during the season . The dependency of 

�n obtained at a particular t ime on the date on which the sample was 

taken is shown in Figure 7 .  Means for time periods acros s  all sampling 

dates generally decreas ed during the day ( Figure 6 ) . Differenc es be­

tween time periods for �n at the top of the stem were tighly s ignificant . 

(Appendix VIII ) .  The replication ( R )  x D interaction was also s ignifi-

cant ( Appendix VII I ) .  
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Table 9. Osmotic potential. 
and the top o:t the stem. 
approximately six weeks . 

�·ir 45 SamplJ} x s 
--

Stem Top}-/ 
0700 hrs - 8 . 9  --

Linott - 8 . 4  l . 51 
Grant - 9 . 4  1 . 10 

1200 hrs -11 . 0  -
Linott -11 . 1  o . 88 
Grant -10 . 9  1 . 17 

1700 hrs -13 . 0  --
Linott -12 . 7  1 . 93 
Grtl.llt -13 . 2  1 . 25 

Daily x 
Combined -11 . 0  --
Linott -11 . 2  --
Grant -10 . 7  --

Stem Basel/ 
700 hrs - 8 . 5  --
Linott - 8 . 2  1 , 01 
Grant - 8 . 8  1 . 03 

Means (Y) and standard deviations {S)  or osmotic potential readings tram leavf!!s sampled :tor the base 
Sampling took place three times per d� on a weekly be.sis starting just before bloom and continuing :tor 

42 2� 
D&s after J?le.ntins y 

63 10 11 84 e.ccross e.11 
x s x s x s x s x s x s days 

-10 . 7  -- - 8 . 9  -- -u . 8  -- - 1 . a  -- -14 . 1  -- -13 . 8  -- -10 . 9  
-11 . 3  2 . 25 - 8 . 5  1 . 1 5  -13 . 3  l� . 12 - 6 . 3  1 . 92 -13 . 5  2 . 78 -12 . 4  0 . 78 -10 . 5 
-10 . 1  1 . 73 - 9 . 3  1 . 58 -10 . 3  2 . ·n :... 9 . 2  2 . 43 -14 . 1 2 . 19 -15 . 2  1 . 59 -11 . 2  

-13 . 8  -- -10 . 7  -- -ll . 7  -- - 8 . 1  -- -11 . 5  -- -14 . 9  -- -11 . 7  
-13 . 0  2 . 12 -11 . 2  4 . 70 -10 . 3  1 . 39 - 6 . 6  l . 24 -10 . 4  1 . 57 -14 . o  2 . 35 -11 . 0  
-14 . 5  2 . 03 -10 . 2  4 � 27 -13 . 1  J . 34 - 9 . 4  2 . 49 -12 . 5 3 . 98 -1 5 . 7  2 . 82 -.12 . 3  

-11 . 9  -- -12 . 3  -- -12 . 4  -- - 9 . 3  -- -14 . 6  -- -14 . 3  -- -13 . 4  
-18 . 0  1 . 38 -13 . 1  4 . 58 -12 . 4  2 . 78 . - 9 . 4  l . 56 -14 . 2 2 . 20 -11 . 8  2 . 20 -13 . 0  
-17 . 8  4 . 34 -11 . 5  2 . 71 -12 . 4  2 . 97 - 9 . 3  1 . 63 -14 . 9  2 . 63 -16 . 9  2 . 63 -13 · 7  

-14 . 2  -- -10 . 7  -- -12 . 0  -- - 8 . 4  -- -13 . 4  -- -14 . 4  -- -12 . 0  
�14 . o  -- -10 . 9  -- -12 . 0  -- - 7 . 5  -- -12 . 8  -- -r2 . 7  -- -ll . 5  
-14 . 2  -- -10 . 4  -- -11 . 9  -- - 9 . 3  -- -14 . o -- -16 . 0  -- -12 . 4  

-10 . 8  -- -11 . 9  -- -12 . 6  -- - B. o -- -10 . 3  
-10 . 9  1 . 94 -12 . 3  2 . 68 -12 . 9  1 . 72 - 7 . 6  3 . 42 -10 . 4  
-10 . 7 2 . 65 -11 . 5 2 . 52 -12 . 3  2 . 25 - 8 . 4  1 . 96 -10 . 2  

0\. V1 



Table 9. Continued. 

D!!:B after I?l9.nting 
�1f 4� 42 5� �3 

Sample!/ x s x s x s x s 

1200 hrs - 8 . 2  -- -11 . 6  -- -11. 2  - -13 . 8  --
Linott - 7 .9 1 . 03 -11 . 2  2. 82 -12 . 1  2 . 92 -12 . 2  4 . 59 Grant - 8 . 5 1 . 19 -12 . 0 1 . 85 -10 . 2  3 . 63 -15 . 3  7 . 03 

1700 hrs - 8 . 7  -- -13 . 4  -- -11 .1 -- -15 . 2 --
Linott - 8 . 7  0 . 80 -11 . 5  2 . 53 -11 .1  2 . 10 -16 . 2  2 . 63 Grant - A . 7  2 . 25 -15 . 3  1 . 40 -11 . 1  3 . 28 -14 . 2 3 . 67 . 

Daily x 
Combined - 8 . 5 -- -12 . 0  -- -11 . 4  -- -13 . 9  --
Linott - 8 . 7  -- -11 . 2  -- -11 . 8  -- -13 . 8  --Grant - 8 . 3  -- -12 . 7  -- -10 . 9  -- -13 . 9 --

Yunits bars 
Y6 observations per cultivar . 

lf sampling took place on the first four nodes on the top of the stem • 

.if sampl ing took place on the lower third of the stem. 

10 
x s 

- 7 . 6  --
- 7 .,5 2 . 46  
.. 7 . 6  1 . 85 

- 9 . 3  --
- 9 . 7  1 . 80 
- . 8 . 8  3 . 73 

- 8 . 3  --
- 8 . 3  --
- 8 . 3  --

: . . . 11 84 
x s x s 

x 
across all 

d�s 

-10. 1  
- 9 . 6  
-10. 5 

-11 . 5  
-11 . 4  
-11 . 6  

-10 . 1 
-10 . 5  
-10. 8  

O\ · 0\ 
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Figure 5. Osmot ic pot ent ial ( �n ) .  Daily cultivar means of �; acro s s  
all s ampling dates  an d  precipitat ion data from 48 through 8 5  days 
aft er planting . Osmot i c  potent ial s ample s  were collect ed in 197 8  
at Brookings , S . D . from t'he lower third of the st em and the fir st 
four nodes of the stem .  

( Top o f  st em • •A• •  Linott , • Grant ; 
Base of st em - · -£- · - Linott , - -4 - - - Grant ; 
DAP - days after plant ing ) 
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Figure 6. Osmot ic :pot ent ial Cl./Jn )_ . Overall means of' Wn of three sam­
pling periods (0700 , 1200 , 1500 ) .  Osmot i c  :pot ent ial sample s  were 
collect ed in 1978 at Brookings , S , D ,  from the lower third of' the stem 
and the first four nodes o·f' the st em .  Not e the · means for the sampling 
loc at ion at the top of' the stem includes data from two additional 
sampling dates . 

( Top of' stem • • • • • Linott , 

Bas e  o f  stem - .. -£-·- Linott , 

• Grant ; 
- - •- - - Grant ) 
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Figure 7 .  Osmot ic pot ent ial ( �TI ) .  Means or cultivars for �TI by day 
and hour ( 0700 , 1200 , 1 500 1 for s amples from the first four nodes 
of the stem . Osmot ic potent ial s amples were collected in 1978 at 
Brookings , S . D .  

( • Linott , • Grant , e Linott" and Grant ; 
DAP - deys afier plant ing ) 
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DISCUSSION 

The 1977 yield result s ( Appendix V) contradict the yield results  

reported by Dybing ( 37 )  and Lay et al ·. ( _71 ) . During s even location 

years of field trials and four years of greenhous e t esting prior to 

1977 , Linott had always out yielded Grant . It is  possible that an 
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interact ion of genotypes with envir;nment was the cause · of the dis crep-

ancy observed in 1977 . The cul ti  vars we:.:·e observed to be  in different 

physiological stages at the time when plant s for leaf replica were 

collected. . At this point , Linott had been in the reproductive stage 

· six dEcys long er than Grant . Under these circumstances , it i s  pos s ible 

that Linott experienced some environmental stress at a crit i c al point 

in boll or s eed production whereas , when Grant reached this  critical 

stage , conditions had improved .  In 1978 , when the flowering periods o f  

the cultivars more clos ely coincided (Appendix VI I ) ,  Linott out yielded 

Grant (Appendix V ) . 

Results of harvest index and yield component s studie s  in 1978 

( Appendix V )  agree with those · reported by Lay et al .  ( 71 ) .  From the 

yield component s study , it can be concluded that the greater seed yield 

in 1978 of Linott resulted from its ability to produce more bolls per 

area and more s eeds per boll than Grant . The · harvest index study showed 

that Linott also partitioned a greater percentage of its total dry 

matter product ion to seed production . 

Daily flower counts  (Appendix VI ) indicated that the periods of 

mal.· n  sllll· i" lar i· n 1978 for the two cultivars , which boll production were 

agrees with Lay ' s  conclusion based on 1976 data ( 71 ) . They also 
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indicat e  that some factor o r  factors limit Grant ' s  potent ial for flower 

bud production , because flowering in Grant peaked at a much lower level 

than it did in Linott ·. 

In both 1977 and 1978 , the cultivar with the higher yield also showed 

a stat istically lower stomatal frequency at the apex o f  leaves c ollected 

from the top of the stem ( Table 1 ) .  This relat ionship may be a chanc e 

occurrence and require s  further verification befo re anything c onclusive 

can be statedo  If it i s  a causal as sociat ion , it contradic t s  the 

concept that a great er stomatal frequency· allows for high_ yield by 

providing of a great er area for C· J2 intake . A pos s ible reason for 

the as so ciation is that factors that effected stomatal frequency during 

the ontogeny of leaves in this  location also influenc ed yield potent ial .  

However , 1978  stomata count s at the base o f  leaves  from the t op o f  

the s t em  showed Grant t o  have statisti cally fewer stomata then Linott . 

Because thi s i s  the oppo site of the results at the leaf t ip o f  that 

locat ion , it is more likely that the as sociation of frequency and 

yield observed i s  of little real importance . If thi s as soc iat ion was 

due to environmental factors ,  a more uniform change in stomatal 

frequency across  the leaf would have been expecte d .  

Otherwise , there was an absenc e o f  consist ent and stat i st ic ally 

significant differences  between the cultivars for stomatal frequency 

(Table l ) , stomatal apparatus width ( Table 2 )  and length ( Table S ) , 
combined guard cell width ( Table 4 ) , guard cell length ( Table 5 ) ,  

average leaf dimension ( Table 6 ) , and stomatal index ( Table  7 ) .  This 

indicat es that Linott and Grant po ssess  the same potent i al area for 



gas or water diffusion . Therefore , in the case o f  the s e  two cultivars 

the difference in the yield potential could not be attributed to a 
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difference between the cult ivars in the potential area for gas and wat er 

vapor exchange . This conclusion agrees with those  of similar studies  

in winter wheat ( 65 , 72 ) , barley ( 87 ) ,  and alfalfa (lOO ) .  
The sharp drop in stomatal indices on the adaxial surface ,  which 

occurred between the bracts and the sepals ( Table 7 ) , may in part be 

an artifact of the replica technique used . Replicas were of  poor quality 

for that location-surface because the natural concave shape of that 

se��l surface allowed the liquid plastic to accumulate  on the surface 

replica and form a thicker than nonnal coating . As a result of the 

greater replica thickness , the outline of the epidermal cell was 

distorted .  Stomata in a field could still be dist inqui shed and length 

and width measurement s made ; however , the count of epidermal cells 

may have been inflated .  

The t erm stomatal index as calculated in this thes is  has the  same 

meaning as Salisbury ' s ( 84 )  because in flax the guard c ells and subsia­

iary cells arise  from the same meristoid ( 92 ) . 

In comparison to the literature , the values obtained for adaxial 

stomatal resistance ( rad ) in this study ( Table 8 )  do not seem to be  

unusual for low stress environments . Turner ( 116 ) reported that leaf 

( · t )-1 + ( adaxial resistance )-1) resistance ( defined as ab axial resis ance 

f from 3 S cm-1 at 1200 hrs to 20 s cm-1 at 2000 hrs .  or tobacco ranged 

Wh d f 2 S Cm-1 at 1300 hrs to 11 s cm-1 at ereas in sorghum it range rom 

2100 hrs , and in maize it ranged from 3 x cm-1 at 1200 to  1 5  s cm-1 at 
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1900 . Sojka ( 104 ) reported rad values around 5 to 20 s cm-1 for wheat . 

Peet ( 94 )  reported r8 of 1 . 58 s cm-1 to 3 . 62 s cm-1 during first flower- . 

ing and 1 . 00 s cm-1 to 2 . 31 s cm-1 during early pod development . It was 

not possible to determine if this represented leaf or surface res istance .  

Early in this study o n  flax cultivars ( Figure 3 )  ( 49 through 5 6  DAP 

( days after planting ) ) ,  rad averaged l . 85 s cm-l at 1300 and 2 . 31 s cm-1 

at 1900 . During the period of relat ively low daily rad values ( 57 

through 71 DAP ) , rad averaged 1 . 13 s cm-1 at 1 300 hrs and 2 . 13 s cm-1 
at 1900 hrs . For the remaining portion of the sampling period ( 73 

through 85  DAP ) , rad averaged 2 . 15 s cm-1 at 1300 hrs and 3 . 19 s cm-l 

at 1900 hrs . 

The parabolic  change in rad observed during the day ( Figure 2 )  

agrees with that observed by Turner ( 117 ) for leaf· res i st ance ( r1 ) but 

differs from the pattern of change in rad seen by Soj ka for wheat (104 ) . 

In the latter stomatal resistance rose slightly during the day in the 

nonstress control . 

Davis ( 34 ) concluded from greenhouse st�1dies of soybean that there 

was a drop in r1 throughout the season whereas Peet ( 94 ) reported  that 

r8 dropped for some soybean varieties around early pod fill and that 

a rise in r occurred for these varieties during late pod fill . The 
s 

change in rad during the season in the flax cultivars observed re-

sembles that reported by Peet ( 94 ) for rs with a general drop in rad 

occurring around mid-bloom and then a general rise in rad at mid 

post-bloom ( Figure 3 ) . 
Detachment of  the leaf for stomatal resi stance measurement s should 



not have invalidated the resistance data present ed o  Admittedly , 

detachment would have resulted in an initial jump in adaxial stomatal 

resist·ance  due to  the Iwanoff surge after exci sion ( 84 ) .  The extent 

of this deviation should not be large because . the initial decline in 

transpiration is  short lived after excision ( 84 )  and the Iwanoff surge 

requires  a time period of approximately .five minutes to  reach it s 

peak ( 84 ) .  In all cases in this study readings were  completed in less  

than a minute o Higher order interactions proved to be s ignificant 

indicating that this method of sampling would allow differenc es  to  be 

distingui.shed . 
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The alternate method of sampling for stomatal resistance  values 

required the use of attached leaves .. Because the length o f  t ime needed 

to position leaves in the porometer sensor was variable ,  the use of 

attached leaves while sampling in flax could have resulted in a large 

experimental error . 

Replications and most interactions with replications proved 

statist ically important in the analysis of variance for stomatal 

resistance (Appendix VII ) . A probable reason for thi s i s  that sam ling 

in replication was separated in time .  Therefore , a change in rad with 

time o ccurred with the change in replication because rad is in a 

state of  flux0 Another possible reason for the s ignificance of 

replications i s  that individual replications may have had different soil 

moisture levels ,  which would have affected maturity rates . This would 

be supported by the staggered maturity within the different replicat ions 

of the same cult ivar .  

Overall , osmotic potential ( V''1T ) · at the stem top o f  thes e  flax 



cul t i  vars averaged -11 . 6 bars at 1200 hrs and -13 . !� bars at 1700 hrs 

( Table 9 ) . Sojka ( 104 ) determined that at 1200 and 1600 hrs flag 

leaves · of  wheat under· minimal stress showed �TI o f  -1 5 and -19 bars 

respect ively . Turner ( 116 ) found that �TI at the top of the c anopy for 

maize was -15 bars at 1200 hrs and -16 bars at 14 00 . hrs ,  for sorghum 

was -10 bars at 1300 hrs and -13 bars at 1700 hr s ,  and for t obacco was 

-8 bars at 1200 hrs and -15 bars at 1500 hrs , under low wat er stres s 

condit ions . 

At the base of the stem the flax cul:t ivars averaged -lO . l  at 1200 

hrs and -il. 5 bar s at 1700 hr s (T 1.ble 9 ) . Tucker (11 6 ) found that �7T 
at the b ase for mai z e  was -8 bars at 1200 hr s and -9  bars at 140 0  hrs , 

for sorghum was -10 b ars at 1300 hrs .  and -13 bars at 1700 hrs �nd for 

tobacco was -6 b ars . at 1200 hrs and -7 bars at 1500  hrs . 

Under high soil moi sture levels , Turner found a diurnal decline 

in �n at the top of the canopy for maize  ( 116 , 177 ) and t ob acco ( ll 6 ) 

and a parabolic pattern of change in �TI for sorghum ( ll6) . For the 

flax cult ivars obs erved , both patterns of change were p re s ent within 
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the s eason ( Table 9 ) . However , cultivars were not nec es sarily coordinat ed 

in their response during a part icular day as they generally were for 

rad • The overall means of the time periods do show a g eneral t endency 

for �n to decrease with time ( Figure 6 ) .  

Turner ( 116 ) did not observe �TI at the base of the plant to change 

during the day with the same magnitude as that for the top portion of 

plants o f maize , tobacco , or sorghillll . Thi s  parallel s  the result s  in 

this study as the overall means of time periods were not s ignificantly 
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different at the base whereas they were at the st em top ( Appendix VII I ) .  

Turner (ll6 ) also found di fferences betwe·en the lJJ'Tf of  the bas e  and at 

the top of  the canopy that were much larger than tho s e  observed in 

flax . In the cult ivars observed , lJJn at the base and the st em were 

not statistically different . 

During the pro ce s s ing of samples unexplained  shift s  in lJJn of 

standards did o c cur . This equipment problem should not . have b iased the 

results of thi s experiment beca�se samples were randomly pro c es s ed witn­

in a parti cular combination of sampling date , time period , and sampling 

poF 5.tion on the plant . However ' instrument problems :may have reduc ed 

the sensit ivity of the analysis by increasing the experimental error 

and causing st andard deviations of tne �n for cult i vars for the in­

dividual sampling periods to vary more than standard deviations in 

the other exper iments ( Table 9 ) . 
Analyzing the lJJn data as a split-split plot with sub sampling would 

have provided extra s ensit ivity , but the rat io o f  interact ion terms 

that were to be r espectively pooled deviated from unity t o  suc h  a 

degree that pooling to obtain terms would not have provided valid. 

estimate s  of the t rue error variances .  

The method ut ilized in this the sis  to determine lPn has of late 

come under crit i c i sm ( 23 ) . Values obtained by thi s  proc edure are 

suppos ed to represent the lPn of the cytoplasm . However , some 

authors ins ist that the values include components o f  matric and 

apoplastic  water . These criticisms need to be con s i dered if the t ech­

nique i s  to be used in the future becaus e the fract ion o f  apoplastic  



wat er in a plant i s  genet i cally variable (23 ) .  

The change i n  daily mean rad and lJJn at the top o f  the st em does 

seem to correspond .  The decline in raa was ac companied by a r i s e  in 
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lJJn just after the end of the pre-bloom period· (Figure 3 and 5 ) . During 

the period when rad was at its lowest level during .the s eason lJJn was at 

its highest (less  negative ) . The sharp decreas e in lJJn duri ng the 

latter half of post-bloom occurred at the same t ime that rad increased 

greatly . In all these situat ions rad and lJJn coordinate i n  their 

theoretical descript ion of the physiological condition of the plant in 

t erms of ·water status . 

It i s  uncert ain as to what extent these coordinated responses of 

�n and rad are caus ed by environmental factors affecting the phys iolog-

i cal status of the plant or to what extent they r eflect phys iolog i cal 

changes that took plac e during ontogeny . No pattern in · the data for 

pan evaporat ion , temperature range , or daily total solar radiation 

appeared to correspond to the changes in daily mean rad and Wn across  

the dates sampled ( Appendix II ) .  Rain cannot be di scount ed as having 

influenced the values obtained for rad and lJJn becaus e the period during 

which rad and Wn were at optimum levels ( 57 to 71 DAP ) corresponded to a 

period when rain occurred nearly every day ( Figure 3 and 5 ) . However , 

soil moi sture content was not the sole cont rolling factor in the change 

in daily mean rad and lJJn through the sampling period.  Rain that took 

place during the latter part of the sampling season did not return 

daily mean r or , ,, to mid-s eason levels . It , therefo're , can be co -
ad 'fin 

eluded that s easonal chang es in rad and lJJn ' though they are modified by 

environmental c onditions at a particular time , as a whole represent 



underlying phys iological chang e s  in the plant that influenc e r and ad 

$rr: . 
The divergen c e  of cult ivar s in daily mean rad and �rr st arted at 
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lat e  boll f ill . Grant showed a greater increase in rad and dec rease in 

$rr than Linott , t hough thi s was not stat i st i c ally s igni f i c ant in the 

latter . As sumably , thi s has no relationship to y i eld pot ent i al 

differenc es between the t wo cultivars as t he yield comp onent s that 

different iat e the two cult ivars are determine d duri ng bloom .  The 

greater r�s e  in rad and decreas e in Wrr that was s e en for Grant may 

. relat e  t o  a more rapid rat e of senes cence as the r e sult o f  a great er 

level of pasmo infection . 

Though it appeared that rad and �n were aff ec t ed by the same 

phys i olog i c al chang es in the plant , the o smot i c pot ent i al exper iment 

was not as s en s it ive to these chang es becaus e it f ailed to show a 

Cult ivar x Time or Cult ivar x Day int erac tion wher eas the st omatal 

resi st an c e  experiment did . Though thi s  means that o smo t i c  po t ent i al 

was not s ensit ive enough to different iat e  cultivars , it do e s  not 

eliminat e the po s s ib ility of cult ivar differen c e s  in leaf water 

potenti al or turgor o 

Seeds per unit area in flax i s  det ermined during flowering b e c ause 

at thi s time maximum boll s p er area and s eeds per boll are est abli shed . 

Grant ·  and Linott mo st o ft en di ffer in boll s per area and s eeds per 

boll ( 71 ) .  Seed we ight could st ill be modifi ed l at er in t he s eason , 

but in the c as e  of t hese two cult ivar s thi s i s  not a c on s i st ently 



differentiat ing trait o Therefore , it i s  during the bloom period 

that the difference between cultivars would be most c ritical , as 

photosynthesis during this period , rather than stored ass imilates , 

provides the basic material for sink production ( 38 ) 0 In flax , greater 

photosynthetic activity at this time is  implied from the observation 

that increasing ambient C02 level ea!lY in bloom increases flower bud 

formation ( 49 ) . However , no large cultivar differences  were observed 

at bloom for rad or �� and so cltltivar differences in photosynthetic 

activity during bloom were not indicated by these parameters .  The 

fai�ure to  observe such a difference for rad differs from results with 

soybeans in which strong varietial difference were observed in rs at 

early pod fill which could later be related to yield difference ( 94 ) .  

Throughout the season , though , Grant closed its stomata  e arlier 

in the day than Linott . It will require further testing to  determine 

if this association between the rate of daily stomat a  clos er and yield 

is as consistent as the yield difference .  

The earlier closure o f  stomata in Grant , itself , should not b e  the 

cause for the yield potential difference .  In C3 plant s ,  stomatal 

resistance does not limit the rate of C02 intake for photosynthesi_s un-

less internal co2 concentrations are limiting . Rather , internal 

resistance to co2 movement does , and this is  regulated by the rate  of 

photosynthesis  ( 93 ) . However , because stomatal movement occur s in 

response to internal and external environmental changes ( 84 and 96 ) ,  
the earlier closure  of Grant does imply that it is  undergoing metabolic 

changes that Linott is  not or is undergoing at a slower rate .  



As change s  in stomatal resi st ance were not as s o c i at ed with c hange s  

i n  pan evaporat ion , the reason for stomat al change must involve the co2 
or abs c i s ic acid mechani sm of c ont rol . 
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It may still be valid t o  c ons ider wat er pot ent i al a s  a p o s s ib l e  area 

of di fferen c e  b etwe en cult ivars . It i s  po s s ible t hat the cult ivar s have 

morphologi cally different root sy stepis . Work on s oybean by Sulliv an 

( 106 ) , in wh ich the above ground port i on of a part i cular cult ivar was 

graft ed onto phenotypic ally d if fer ent root type s ,  showed that yield , 

photosynthet i c  rate , and stomat al res i stance were affec t e d  by the root s ; 

capac ity t o  ab sorb suffi c i ent water to meet demands . As suming that the 

cultivar s in thi s study do have dif ferenc es in the ir root sy st ems , then 

Grant woul d  pos s e s s  the root sys t em  ·which cannot prevent a lag from 

developing b etween transpiration and ab sorpt i on .  · stomat al re s i st anc e 

would ri s e  diurnally because o f  increas ed ABA pro duct ion due t o  the 

widening gap between transpirat ion and ab sorpt ion as the day progre s s e d .  

The differences b etwe en cultivar i n  the rate o f  clo s ur e , therefore , may 

relat e  to yield as both the production of s inks and the r at e  of photo­

synthes i s  are s ensitive to wat er stres s ( 18 ) . 

An alt ernat ive explanat ion of the relat i ons hip o f  the chang e i n  rad 

and yi eld relat es to the as s imilat e feedback sy stem that has been support-

ed by some researcher s ( 3 ,  44 , 68 , 70 , 114 ) . I f  Grant lacks the abi lity 

to move as similates out o f  the site of production t o  s i nks at as fast a 

rat e as Linott t hen the shut down of photo synthes i s  ev entually would 

re sult . With the shut down of photosynthe s i s  a ri s e  in intrac ellular 

C Grant ' s  stomat a to clo s e  b e fore Linott • s .  Thi s 02 l evels would cause 



means that Grant i s  not capable of support ing as many s inks a s  Linott 

becaus e of a l im it ed ability t o  keep as s imilat e l eyel from b ecoming 

inh ib itory t o  photo synthe s i s . 
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Appendix I.  Diffus ive res i stanc e calibration . Slop e , inter c ept , c o e f­
fi cient o f  det ermination , standard error o f  e st imat e , standard devi­
ation o f  the slope , and standard deviation o f  the int er c ept pert aining 
to the c alibrat ion curve used to co nvert 1978 �i eld r eadings to values 
of res i st anc e .  

Slope = b1 = 246 . 67 seconds / seconds cent imeter
-l 

Int erc ept = bo = 669 . 3 5 seconds 

r2 = 0 . 98 

sy• x  = 288 . 58 seconds 

= 9 . 49 seconds / se conds cent imet er-l 

= 1 52 . 40 seconil.s 
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Appendix I I . Osmotic  potential calibrat ion . Slopes , int ercept s , coef­
ficients o f  determination , standard errors o f  est imate , standard 
deviation of the slopes , and standard deviat ion of the intercept s 
pert aining to the c alibration curves used to convert 1978 p sychrometer 
readings to bar equivalence . 

Curve I :  Slope = b1 = -6 . 41 millivolts /bar 

Intercept = bo = 2 . 65 millivolt s 

r2 = 0 . 96 

Curve I I : 

Curve III : 

Sy•x = 0 . 64 milliV�lt s 

sbl � 0 . 01 millivolts /bar 

sbO = 0 . 16 millivolt s 

b1 = - o. 48 millivolt s /bar 

bo = 4 . 28 millivolt s 

r2 = 0 . 95 

Sy•.x = 0 . 02 millivolt s 

= 0 . 29 millivolts/bar 

8bo = o . 82 millivolt s 

bi = - 0 . 49 millivolts/bar 

bo = 4 . 28 millivolts 

r2 = 0 . 97 

S = o . 69 millivolt s/bar 
y•.x 

= 0 . 02 millivolts/bar 

= o . 25 millivolts 
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Appendix III . 1977 weather data .  Total solar radi at ion , precipitat ion , 
pan evaporat ion , and daily temperature rang e from April  1 5  to July 31 
for Brookings , South Dakota .  Solar radiat ion dat a were c ollect ed 
approximately s ix kilomet ers from the nurs ery s it e . The remaining 
information was collected les s than two kilomet ers from the nur s ery 
site . 

Days Solar Pan Temperature 
after Calendar radiation Precip .  evaporat ion ( OC )  

planting dat e ( cal/ cm2/min ) ( cm ) ( cm ) High Low 

April 15  329 . 5 0 . 18 19 10 
16 408 . 4 o . ·43 24 12 
17 447 . 6 0 . 08 0 . 25 24 12 
18 140 . 0  0 . 03 o . 66 22 12 
19 206 . 9  0 .. 30  13 6 
20 60 . 8 0 . 25 0 . 25 14 4 
21 522 . 7  1 . 91 0 . 28 6 l 
22 438 . 4 o . 46 16 -l 
23 423 . 1  0 . 53 20 4 
24 448 . 6 0 . 89 18 0 
2 5  541 . l  0 . 36 14 0 
26 514 . 7  1 . 22 18 2 
27 458 . 6 0 . 61 24 5 
28 518 . 5  0 . 05 l . 4 0 30  4 
29 496 . 4 o . 64 19 6 

1 30 555 . 1  0 . 58 22 3 
2 Mey- l 554 . 8 1 . 19 24 11 
3 2 4 54 . 2  0 . 53 17 2 
4 3 465 . 4 0 . 03 o . 84 21 9 
5 4 185 . 4 0 . 03 o . 4 6 18 12 
6 5 284 . 3  0 . 08 0 . 58 23 8 

7 6 551 . 0  0 . 56 23 
8 7 536 . 2  1 . 42 24 7 
9 8 532 . 4 0 . 74 23 

9 470 . 8 0 . 56 26 6 10 
1 . 17 25  8 

11 10 555 . 2  
0 . 21 24 8 

12 11 530 . 3  
0 . 91 26 ll 13 12 500 . 5 
l . 24 28 12 14 13 497 . 7  

14 449 . 0 l . 12 30  13 15 
508 . 6 0 . 94 30 13 16 15 

1 . 19 27 8 
17 16 471 . 7  

1 . 02 31 12 18 17 537 . 6 0 . 10 
18 451 . 0  0 . 99 29 15 19 o . 84 31 17 20 19 340 . 8 

0 . 91 27 13 21 20 28 . 4 1 . 37 
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Appendix III . Cont inued . 

Deys Solar Pan Temperature 
after Calendar radiation Precip . evaporation ( o c )  

planting date ( c al/cm2/min ) ( cm )  ( cm )  High Low 

22 May 21 139 . l  0 . 61 23 12 
23 22 348 . 4 1 . 91 0 . 20 21 13 
24 23 538 . 0  0 . 38 0 . 3 0  18 10 
2 5  24 511 . 2  Q . 97 26 10  
26 25 538 .  7 0 . 91 29 17 
27 26 298 . 2  l . 04 28 l8 
28 27 266 , 3  0 . 58 o • . 43 27 1 6  
29 28 484 . 4 0 . 79 o . 64 · 23 13 
30 29 567 . 9  o . 41 26 13 
31 3 0  181 . 2  0 . 58 27 12 
32 31 587 . 0  0 . 23 0 . 58 22 ll 
33 June l 579 . 2  l . 09 24 9 
34 2 601 . 5  0 . 97 2 5  6 
35 3 53 5 . 4 0 . 33 26 10  
36 4 503 . 4 l . 30 31 17 

37 5 537 . 6 l . 17 33 16 
38 6 609 . 3  l . 42 34  10  
39 7 565 . 5 0 . 99 23 9 
4 0  8 594 . 8  0 . 15 l . 4 2  31 ll 

41 9 208 . 4 l . 1 2  27 9 
42  10 429 . 4 0 . 03 o . 43 22 ll 

43 ll 410 . 5 0 . 05 l . 17 32 14 

44  12 360 . 5  o . 64 27 10 

4 5  13 498 . 2  0 . 91 24 13 
46 14 482 . 8  o . 4 8  26 10 
47 1 5  325 . 0  2 . 31 i . 68 29 11 

48 16 498 . 1  12 . 14 26 1 5  
49 17 406 . 0  o . 86 27 16 

50 18 568 . 1  2 5  . 12 

51 19 560 . 4 0 . 79 24 1l 
52 20 562 . 4 0 . 56 27 9 

53 21 120 . 1  0 . 94 21 10 

54 22 225 . 5  o . 48 0 . 20 19 13 

55 23 565 . 6 0 . 53 0 . 30 21 12 

56 24 556 . 6 o . 69 30  13 

57 2 5  560 . 4 l . 02 28  11 

58 26 474 . 4 l . 19 29 19 

59 27 4 52 . 5  o . 64 32 18 

60 28 520 . 3  0 . 03 o . 89 29 14 

61 29 430 . 3  o . 89 24  8 

62 30  548 . 3  l . 98 l . 02 28 10 
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Appendix I I I . Cont inued . 

Days Solar Pan Temperature 
after Calendar radiation Prec ip . eyaporat ion ( OC ) 

planting dat e ( cal/ cm2/min ) ( cm ) ( cm ) High Low 

63 July l 590 . 2  ' l . 98 0 . 94 2l 11 
64 2 507 . 0  o . 84 26 12 
65 3 570 . 3  0 . 76 28 19 
66 4 542 . 5 o . 84 33 22 
67 5 533 . 6  l . 24 36  23 
68 6 214 . 7  O c 28 l . 07 35  22 
69 7 485 . 5  0 .13 27 16 
70 8 486 . 6  o .  76 ' 31 13 
71 9 159 . 9  0 . 94 24 10 
12 10 416 . 8  0 . 28 19 1 4  
7 3  ll 533 . 0  o . 64 0 . 61 :27 16 
74 12 584 . o  l . 04 28 13 
7 5  1 3  498 . 6 l . 07 26 14 
76 14 367 . 4  l . 02 3 5  18 
77 1 5  519 . 9  0 . 69 27 13 
78 16 408 . 6  o . 84 28 14 

79 17 420 . 6  0 . 18 o . 66 3 3  21 

80 18 466 . 2  0 . 71 32 21 
81 19 505 . 7  l . 27 37 22 

82 20 160 . 6  l . 12 37  21 

83 21 562 . 1  1 . 07 0 . 53 25  13 

84 22 536 . 4  o . 86 . 27 11 

8 5  23 438 . l  0 . 97 28 12 

86 24 424 . 6  1 . 96 o . 84 32 18 

87 25  526 . 1  o . 86 31 13 

88 26 474 . 7  0 . 71 24 12 

89 27 4 52 . 0  0 . 61 23 12 

90 28 496 . 5 0 . 25 0 . 79 31 14 

91 29 4 68 . 8  0 . 56 28 13 

92 30 480 . 2  0 . 05 0 . 79 31 14 

93 31 479 . 3  l . 19 29 14 
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Appendix IV . 1978 weat her data . Tot al sol arradiat ion , prec ipitat ion , 
pan evapor at i on , and daily t emp erature range from April 1 5  t o  July 31 
for Brookings , South Dakota . Solar radiat ion dat a were c ollected 
approximat ely s ix kilomet er s from the nurs ery s it e .  The remaining 
informat ion was c ollected les s than a two kilomet ers from t he nurs ery 
site . 

Days Solar Pan Temperature 
aft er Calendar radiation Pre c ip . · evaporat i on ( O C )  

plant ing dat e  ( c al / cm2/min ) ( cm )  ( cm )  High Low 

April 15 247 . 4 0 . 69 11 0 
16 288 . 6 0 . 28 ll l 
17 32 . 0  0 . 13 14 2 
18 65 . 1  2 . 36 0 . 53 4 0 
19 103 . 2  o . 64 2 -l 
20 363 . 5  l -4 
2l 53 5 . 8  4 -3 
22 110 . 0  l . 04 13 2 
23  96 . l  o . 66 0 . 15 9 4 
24 4 6 . l  l . 17 7 3 
2 5  4 58 . 5 0 . 05 6 3 
26 4 53 . 3  0 . 53 16 2 
27 4 67 . 9  0 . 10 17 2 
28 174 . 2  0 . 91 19  7 
29 186 . 9  0 . 20 14 9 
30 439 . 0  0 . 30 16 4 

May l 573 . 5  . 13 16 -1 
2 549 . 4  12 -3 

1 3 544 . 5  l . 27 16 -1 
2 4 322 . 3  0 . 30 18 2 
3 5 346 . 8  o . 48 16 -l 
4 6 4 57 . 0  0 . 61 16 -1 
5 7 118 . 6 0 . 30 0 . 36 16 
6 8 147 . 2 3 . 00 8 4 

9 576 . 5 o . 46 8 5 7 
2 . 11 17 6 8 10 508 . 5 
0 . 89 27 8 11 595 . 1 9 

7 5 . 6 0 . 91 22 10  10  12 
1 . 7 8 1 5  3 13 548 . 4  . 53 11 o . 64 17 2 12 14 5 56 . 8  
0 . 28 20 3 13 1 5  588 . 1  
0 . 76 22 7 14 16 566 . 1  
0 . 3 6 21 6 

1 5  17 566 . 4 
o . 89 21 6 

16 18 423 . 4 
o . 69 2 5  9 538 . 6 . 51 17 19 l . 02 23 7 

18 20 541 . 5  
0 . 53 19 2 

1.9 21 554 . 6 
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Appendix IV . Cont inu�d . 

Days Solar Pan Temperature 
after Calendar radiation Pr ecip . evaporat i on ( OC )  

planting Date ( cal/cm2/min ) ( cm )  ( cm )  High Low 

20 May 22 503 . 9  0 . 79 24 8 
21 23 298 . 0  0 . 71 22 ll 
22 24 326 . 0  0 . 28 23 13 
23 25 526 . 7  l . 32 0 . 91 27 14 
24 26 293 . 0  0 . 81 29 18 
25 27 312 . 0  3 . 30 27 16 
26 28 236 . 0  0 . 08 l . 57 . 23 16 
27 29 163 . 6  0 . 76 0 . 38 24 14 
28 30 466 . 6 0 . 10 0 . 33 19 10 
:!9 31 238 . 6  0 . 23 0 . 53 23 8 
30 June l 214 . 6  0 . 20 0 . 20 14 7 
31 2 368 . 4  0 . 13 0 . 18 12 5 
32 3 3 53 . 9  0 . 71 20  7 
33 4 378 . 8  o . 64 21 11 
3 4  5 602 . 2  0 . 74 22 7 
3 5  6 610 . 1  0 . 79 2 5  9 
36 7 434 . l  0 . 71 10 
37 8 581 . 6 . 91 17 2 
38 9 548 . 4  23 8 
39 10 560 . 6  1 . 88 28 13 
40  11 554 . 4  0 . 38 o . 66 32  13 
41 12 566 . 3  0 . 08 0 . 58 24 9 
42  13 4 50 . 2  0 . 69 22 9 
43  14  413 . 9  0 . 25 0 . 89 27 12 
44 15 408 . 5 0 . 08 0 . 69 26 17 
4 5  16  336 . 7  0 . 71 29 16 
46 17 428 . 4  o . 64 28 14 
47 18 436 . 6  0 . 38 0 . 58 23 8 
48 19 328 . 7 0 . 99 25  11 
49 20 526 . 7  0 . 23 1 . 55 27 7 
50 21 507 . 2  0 . 76 19 4 

5l 22 255 . 8  0 . 61 24 10 
52 23 446 . 4  o . 4 6 23 1 5  
53 24 227 . 8  0 . 81 29 17 

54 2 5  4 68 . 6  0 . 05 0 . 28 28 19 

5 5  2 6  581 . 4  o . 84 3 0  14 

56 27 596 . 1  0 . 81 27 12 

57 28 426 . 4 o . 43 1 . 30 28 14 

58 29 514 . 5  4 . 57 1 . 17 31 18 

59 3 0  547 . 2  0 . 56 l . 43 32 19 

60 July l 272 . 9 o . 86 3 3  19 
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Appendix IV.  Continued . 

Days Solar Pan Temperature 
after Calendar radiation Prec ip . evaporat ion ( O C ) 

planting Date ( cal/cm2/min ) ( cm) ( cm )  High Low 

61 July 2 563 . 1  o . 41 27 18 
62 3 493 . 2  0 . 19 29  17 
63 4 463 . 9  0 . 89 0 . 89 31 18 
64 5 118 . 7  0 . 25 l . 5 5 31 21 
65 6 379 . 5 0 . 53 0 . 25 26 16 
66 1 435 . 6  l .  70 l . 27 27 16 
67 8 139 . 9  0 . 25 0 . 71 . 24 12 
68 9 505 . 5  l . 24 0 . 33 21 13 
69 10 557 . 0  0 . 71 21 7 
70 ll 563 . 4  0 . 38 '27 11 
71 12 476 . 6  l . 09 24 14 
72 13 588 . 3  0 . 76 31 12 
73 14 562 . 7  0 . 25 o . 86 26 14 
74 15 565 . 3  0 . 81 29 14 
7 5  16 549 . 5 o . 86 33 15 
76 17 500 . 0 o . 84 32 19 
77 18 4 56 . 8  0 . 10 0 . 71 33 18 
78 19 517 . 9  28 14 

79 20 328 . 3 o . 64 27 14 

80 21 326 . 8 2 . 44 22 15 

81 22 34 5 . 4  l .  78 20 14 

82 23 378 . 4  0 . 58 21 7 

83 24 536 . 1  l . 17 26 10 

84 25  348 . 2  0 . 51 27 16 
85 26 564 . 1  0 . 20 o . 66 33 16 

86 27 579 . 0  l . 3 5 29 12 

87 28 4 86 . 4  0 . 74 24 12 

88 29 147 . 0  0 . 76 32  16 

89  30 524 . 4  0 . 23 18 14 

90 31 412 . 8  o . 66 2 5  13 



Appendix V .  Seed yield of Linott and Grant for the plot s grown in 
1977 and 1978 . Harvest index and yield. component s data taken in 
1978 for these s ame cult ivars . Data collected at Brooking s ,  S . D .  

Seed Yield ( kg/ha ) 
Linott 
Grant 

Harvest Index ( % )  
Linott 
Grant 

Yield Component s 
Bolls /Area ( 0 . 0271 m2 ) 

Linott 
Grant 

Seeds /Boll 
Linott 
Grant 

mg/thousand seeds 
Linott 
Grant 

1971-76i/ 

883 
628 

Year 
1977 1978  

1960 
1 580 

29 . 61 
2 5 . 59  

163 .  7 
127 . 3  

7 . 8  
7 . 46 

5 5 56 
5374 

l/Averag e  of yield under field condit ions reported by Dybing ( 37 ) and 
Lay ( 71 ) .  

106 
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Appendix VI . Replicat ion totals for daily flower c ount s made in 7 . 5  cm 
subplot s of  Linott and Grant during 1978 at Brookings , S . D .  

Total number of flowers 
Eer 267 crn2 

Days after planting Linott Grant 

4 5  o . 0 
4 6  
4 7  0 l . 
48 4 2 
49 6 11 
50 2l 17 
51 - 13 12 
52 29 27 
53 29 27 
54 56 54 
55 71 41 
56  114 50 
57 
58 48  8 
59 38 9 
60 17 1 5  
61 6 13 
62 4 3 
63 4 8 
64 l l 
65  2 

_
5_ 

TOTAL 4 63 304 
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Appendix VII . Adaxial stomatal resistance , Degrees of freedom , mean 
squares , and F-test results for reduced adaxial stomatal resistance 
data.  Analysis  was carried out on a balanced s et of data creat ed by 
dropping all 0700 r eadings and t ime period readings for days in which 
all four remaining t ime periods were not represented or .data s et was 
unbalanced . 

Source d . f . m . s .  F-t est11 

Replicat ion (R } 2 5 . 8266 ** 
Day ( D )  ll 61 . 7766 ** 
Time ( T ) 3 lGS . 0788 ** 
Cul t i  var ( C ) l 2 . 734 5  N . S . 
RD 22 l . 1132 N . S .  
RT 6 l . 2101 N . S .  
RC 2 11 . 7908 ** 
DT 33 6 . 9933 · ** 
DC ll 2 . 7422 ** 
TC 3 1·6 . 1059 ** 
DTC 33 2 . 04 52 ** 
RDT 66 2 . 0887 ** 
RDC 22 3 . 7 840 ** 
RTC 6 0 . 517 4 N . S .  
RDTC 66 l . 67 54 ** 
Subsampling 1152 0 . 3697 ** 

l/** - signifi cant at 1% level ; N . S . - not s ignificant .  



Appendix VIII . O smot i c  potent ial .  Degrees of freedom , mean s quares , and F-t est result s for 
osmoti c  pot ent i al data from leaves s ampled from the bas e and the top of the st em . ·  The des ign 
was b alanced and only repli c at ions we re considered f ixed . 

Bas e  of stem To12 of st em 

Sourc e d . f .  m .  s .  F-testY d . f .  m .  s .  F-t estl./ 

Replicat ion ( R ) 2 5 . 1120 N . S . 2 6 . 1718 N . S .  
Date ( D )  4 196 . 4053 ** 6 167 . 0075 * *  . 
Time ( T ) 2 21 . 8190 N . S .  2 . 4 3 . 0 582 * *  
Cultivar ( C )  1 0 . 8980 N . S .  l 4 9 . 2480 N . S . 
DT 8 7 . 6696 N . S . 12 24 . 3 363 ** 
DC 4 7 . 0899 N . S .  6 1 5 . 8246 N . S .  
TC 2 2 . 4222 N . S .  2 3 . 7 011 N . S .  
DTC 8 8 . 8539 N . S .  ' 12 8 . 6080 N . S .  
RD 8 12 . 6389 N . S .  12 10 . 7894 * 
RT 4 10 . 374 5  N . S .  4 1 .  722 5 . N . S .  
RC 2 3 . 3 583 N . S .  2 7 . 9923 N . S . 
RDT 16 8 . 3233 N . S .  24 7 . 8487 N . S .  
RDC 8 5 . 9672 N . S .  12 10 . 9209 * 
RTC 4 4 . 7831 N . S .  4 3 . 3995 N . S . 
RDTC 16 7 . 7122 N . S .  24 l0 . 5669 * 
Sub s ampling 90 7 . 2100 -- 126 5 . 6213 

l/ * - s ignifi c ant at 5% level ; * * · - s ignific ant at 1% level ; N � S .  - not s ignif i c ant . 

� 0 \0 
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