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ABSTRACT 

SURFACE AND STRUCTURE ENGINEERING FOR NEXT GENERATION 

LITHIUM METAL BATTERIES 

KE CHEN 

2020 

Lithium (Li) metal has been considered as one of the most promising anode materials to 

replace conventional graphite for Li-ion battery due to its high theoretical capacity (3860 

mAh g-1) and low electrochemical potential (-3.04 V vs standard hydrogen electrode). 

However, it still faces some problems such as unstable solid electrolyte interphase (SEI), 

uncontrolled Li dendrites growth, and infinite volume change during battery 

charging/discharging. To develop a stable and low-cost Li metal anode for next-generation 

Li metal battery, in this dissertation, we have made efforts to understand and solve these 

problems in two aspects, by introducing an artificial SEI and constructing a 3D porous 

current collector. Firstly, a multifunctional artificial SEI protective layer was designed via 

using a nitrogen plasma treatment on the Li metal. A highly [001] oriented Li nitride (Li3N) 

layer was formed on the surface of Li metal with a plasma activation time of fewer than 5 

minutes. Due to its high Young’s modulus (48 GPa) and high ionic conductivity (5.02×10-

1 mS cm-1), the Li3N artificial SEI layer blocked the direct contact between reactive Li 

metal and the liquid organic electrolyte, and suppressed the Li dendrite formation. 

Secondly, a highly flexible copper (Cu)-clad carbon framework (CuCF) current collector 

was designed for Li metal batteries. The pyrolysis of melamine-formaldehyde foam and 

following Cu electrodeposition were employed to fabricate the CuCF. The advanced 

current collector exhibited excellent flexibility with uniformly distributed Li nucleation 



xv 
 

sites on its surface. The cross-linked fiber network structure with large space could 

accommodate the volume change, while the high surface area and uniformly distributed Li 

nucleation sites led to the quench of the formation of Li dendrites.  

As a result, a dendrite-free Li metal anode was achieved in both circumstances. The Li3N 

artificial SEI and CuCF both gave rise to a stable Li plating/stripping with high Coulombic 

efficiency. In both cases, Li/LCO or Li/LFP full cells exhibited a long cycling life at a high 

current density of 1C. Furthermore, the Li deposition behavior with an artificial SEI and 

3D current collector was also studied and compared with bare Li in the dissertation. The 

methods and strategies we used in the dissertation can provide a facile approach to realize 

a stable and safe Li metal anode for next-generation Li metal batteries.   
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Chapter 1 Introduction: Advances in Li Metal Batteries  

 

1.1 Background 

Lithium-ion (Li-ion) batteries have significantly changed our lifestyle, becoming an 

essential part of our daily life. They have been widely used in many portable devices such 

as smartphones and laptops. Furthermore, electric vehicles powered by Li-ion batteries 

have emerged into the market in recent years and become more and more popular around 

the world. On the other hand, with the increasing concerns of environmental pollutions and 

fossil fuel shortage, renewable energy has been intensively explored in recent years. 

According to the Monthly Energy Review published by the U.S. Energy Information 

Administration[1], 17.5% of the U.S. electricity generation in 2019 is from renewable 

sources such as hydropower (6.6%), wind (7.3%), and solar (1.8%). To efficiently store the 

intermittently generated energy, large-scale and reliable energy storage devices are highly 

demanded. To fulfill the needs of both small portable devices and large scale grid storage, 

next-generation energy storage devices should have a higher energy density and long 

cycling life.  

Current Li-ion batteries technology using graphite as anode and Lithium nickel cobalt 

aluminum oxides (NCA) as cathode can deliver an energy density of ~300 Wh kg-1, which 

is more than three times higher comparing to 80 Wh kg-1 of the first generation Li-ion 

battery [2, 3]. However, the development of the Li-ion battery has come to its bottleneck 

because both anode and cathode have almost reached their theoretical capacity value. 

Therefore, high capacity and advanced electrode materials are highly needed for 
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developing next-generation Li-ion batteries. Li metal has been considered as the “holy grail” 

anode material because of its high capacity of 3860 mAh g-1 and lowest reduction potential 

of 3.04 V versus standard hydrogen electrode (SHE)[4]. In the Li metal battery, the energy 

density can reach 500 Wh kg-1 by replacing graphite with Li metal as the anode. Even 

higher capacity can be further achieved with other emerging cathodes such as sulfur and 

oxygen. Li metal battery therefore is considered as the next-generation battery technology 

beyond Li-ion battery.  

1.2 Li-ion battery 

1.2.1 A brief history of Li-ion battery  

After the finding that Li metal has the highest electrode potential of 3.3044 V in reference 

to a saturated calomel electrode (3.04V vs SHE) by Lewis and Keyes in 1913[5], scientists 

have started to try to invent a battery based on Li metal or its derivatives. In the 1970s, the 

Huggins group at Stanford University was studying a group of materials that had layered 

structures and could host guest-species into these structures. Whittingham, who was from 

the Huggins research group, was working at Exxon Mobile at that time. He discovered that 

titanium disulfide (TiS2) could serve as an ideal host for Li ions because Li ions could 

reversibly intercalate/deintercalate into TiS2 (Figure 1a) [6]. However, TiS2 is unstable in 

moist air and easily decomposed. Besides, TiS2 also has a low potential against Li. Thus, 

the first generation of Li based battery with TiS2 as cathode and Li metal anode can only 

deliver a voltage of ~2.5V. In 1980, Goodenough found that LiCoO2 could be a suitable 

cathode material to replace TiS2, as it had a similar structure to TiS2 and could revisable 

store Li ions (Figure 1b). LiCoO2 also exhibits a much higher potential of 4V against Li 

[7].  
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Figure 1.1 (a) Structure of TiS2 with intercalated Li ions. (b) The layered structure of 

CoO2 with intercalated Li ions.[8] 

 

Although Armand has proposed a battery design that using intercalation compounds as 

both electrodes at that time, [9]. Li metal was still used as the anode materials because there 

is no intercalation host was discovered that could act as an anode. In 1988, a company 

called Moli Energy commercialized the first Li metal rechargeable battery using MoS2 as 

a cathode which has a similar structure and electrochemical behavior to TiS2 [10]. Fire 

accidents caused by Li metal dendrites induced short-circuits had Moli Energy recalled 

these batteries after several months. In 1983, Yoshino found that petroleum coke, an 

amorphous carbon from the residual petroleum fraction, can be used as the Li ion host and 

demonstrated the first dual-intercalation battery [11]. Sony finally commercialized the 

rechargeable battery and named it “Li-ion battery” in 1990. Later graphite was adopted as 

the anode material with ethylene carbonate-based electrolyte to finalize the well-known 

graphite/LiCoO2 Li-ion battery structure [12]. To recognize the pioneer scientists, the 2019 
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Nobel Prize in Chemistry had been awarded to John B. Goodenough, M. Stanley 

Whittingham, and Akira Yoshino for their contribution in developing Li-ion batteries. 

1.2.2 Working principle of Li-ion battery 

Figure 1.2 shows the working principle of the typical commercial graphite/LiCoO2 Li-ion 

battery, which compromises a carbon-based anode (e.g. graphite), a metal oxide base 

cathode (e.g. lithium cobalt oxide), and Li salt contented carbonate-based liquid electrolyte 

(e.g. lithium hexafluorophosphate (LiPF6) in the mixture of ethylene carbonate (EC) and 

diethyl carbonate (DEC)). Other components such as a polymer separator (e.g. 

polypropylene (PP)), current collectors (Cu at anode side and Al at cathode side), battery 

cases are also used. During battery charging, the external power forces Li ions to migrate 

from the cathode electrode into the layered graphite through the electrolyte. The electric 

energy is converted to chemical energy and stored in the battery. During discharge, the Li 

ions go back to LiCoO2 and the electrons travel through the external circuit, powering 

electronic devices. The chemical reactions happen at cathode and anode are shown in 

equation (1.1) and (1.2). 

LiCoO2 ↔ Li1-xCoO2 + xLi+ + xe-         (1.1) 

6C + xLi+ + xe- ↔ xLiC6                        (1.2) 
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Figure 1.2 Working principles of Li-ion battery.[13] 

 

1.2.3 Energy density bottleneck of Li-ion battery.  

Since the Li-ion battery with graphite anode and LiCoO2 cathode was commercialized in 

1991 by Sony, the specific energy has been increased from 80 Wh Kg-1 of the 1st generation 

of Li-ion battery to 300 Wh Kg-1, nearly approaching the theoretical value of cathode/anode 

materials [4, 8]. Meanwhile, the cost has also decreased to 300 US$ kWh-1[14]. However, 

to meet the fast-growing energy demands and develop high-energy batteries for electric 

vehicles and grid storage applications, the high specific energy of 500 Wh Kg-1 and cost 

below 100 US$ kWh-1 at the pack level is needed [2]. One of the strategies to achieve high 

energy density is to use high-capacity cathode and anode materials. From the cathode side, 

high nickel content lithium nickel manganese cobalt oxide (NMC) (Ni > 60%) such as 

NMC622 and NMC811, is one of the choices as NMC holds a higher capacity of more than 

200 mAhg-1 and high operation voltage (3.8V) [2]. From the anode side, compared to the 
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graphite anode (specific capacity of 372 mAh/g), Li metal has a high specific capacity of 

3860 mAh g-1, as well as a much lower reduction potential (-3.04 V vs SHE)[14, 15]. 

Besides, the Li Li-sulfur batteries and Li-oxygen batteries had a higher theoretical energy 

density of 2567 and 3505 Wh kg-1, respectively, in which they both have to use Li metal 

as their anode.  

1.3 Li metal battery 

1.3.1 The revisit of Li metal anode 

During the development of the Li-ion battery, as discussed above in section 1.2.1, Li was 

used in Li/TiS2 battery in every early battery prototype. It was later discarded because of 

its capacity loss and safety concerns. At that time, graphite was also discovered to serve as 

a better anode. With the increase of energy density demand, Li metal has become one of 

the most attractive, if not the only, anode choice for future battery technology to reach the 

goal of 500 Wh kg-1(Figure 1.3)[16]. Replacing the graphite electrode with lithium metal, 

which results in a ~35% increase in specific energy and ~50% increase in energy density 

at the cell level, provides a path to reach those goals. Therefore, more and more researchers 

are starting to reconsider Li metal anode in the recent 10 years. In addition, the Li metal 

anode also opens up a great opportunity for the application in the next-generation energy 

storage cells including Li sulfur (Li-S) and Li-air batteries. They hold the potential to 

deliver theoretical energy densities of 2567 Wh kg-1 and 3505 Wh kg-1, respectively.  
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Figure 1.3 The development of battery technology [16]. 

 

Different from the insertion-host electrode materials (such as graphite and lithium titanate), 

Li metal is a conversion-pattern host-less anode. Equation (1.3) describes the reaction that 

happens at the Li anode side. During charging, Li ions are electrochemically reduced and 

deposited onto the Li metal surface. During discharge, Li metal is oxidized and dissolved 

into the electrolyte.  

   Li – e- ↔ Li+                     (1.3) 

 

1.3.2 The challenges of Li metal anode 

There are several issues while using Li metal as an electrode. Except for the highly reactive 

feather of the Li metal, the growth of dendrites during the Li deposition is another big issue, 
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which gives rise to many consequences (Figure 1.4). Firstly, the dendrites could penetrate 

the separator and cause the inner short circuit of the battery, companying thermal runaway, 

and even cell explosion. Secondly, side reaction happens because of the increased surface 

area, which consumes the electrolyte and active Li. Thirdly, “dead Li” will be generated 

due to the broken of dendrites. The isolated “dead Li” is electrochemically inactive, which 

causes the capacity loss in the battery. Fourthly, the accumulation of dead Li, depleting of 

the electrolyte, and the porous structure will increase the cell polarization. Besides, Li 

anode has an infinite volume change without matrix, comparing to conventional anode 

materials such as graphite (10%) and silicon (400%). The porous structured Li deposition 

makes the volume change even larger. All these lead to low Coulombic efficiency (CE) 

and fast battery failure.[17] 

Two theories have been developed to explain the mechanisms behind the dendrite growth 

until now: space charge theory and non-uniform solid electrolyte interface (SEI) theory 

[18]. In the first theory, the cations in the vicinity of the negative electrodes will be rapidly 

consumed with a sharp concentration depletion, which leads to a local space charge with a 

strong negative electric field [19]. Massive Li ions will electroabsorb and electroplate in a 

short period, resulting in the formation of dendrites on the Li metal anode surface [3, 20, 

21]. To reduce the ions depletion, researchers developed different strategies such as using 

high concentration electrolyte to increase the ion concentration[22], pulsed charging 

protocols[23] for replenishing Li+ concentration and using an elevated temperature during 

battery operation[24]. Another way to reduce the ion depletion is to use a 3D current 

collector such as carbon[25], copper[26, 27], and nickel foams[28], which could help to 

reduce the local current density. In the second theory, Li dendrite growth is explained due 
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to the non-uniform SEI layer and the uneven current collector surface. More Li is deposited 

at higher ion-conducting sites of the SEI layer on the surface of the Li, which promotes the 

growth of Li dendrites. In addition, the uneven surface of the current collector affects the 

electric field distribution and ion flux in the battery because of the electron accumulation 

at the tips. Li is preferentially deposited to the tips instead of forming a flat layer. Strategies 

such as adding electrolyte additives [29], and coating a protective layer on Li metal [30] 

were proved to help obtain a much robust and uniform SEI. However, the requirement for 

this protective layer is critical, such as high Young’s modulus for blocking the growth of 

dendrites, high ionic conductivity for transporting Li ions, as well as low electronic 

conductivity for preventing the top surface deposition.   

 

Figure 1.4  (a) SEM images of Li dendrites. (b) Scheme of Li metal anode failures during 

battery cycle.[3] 

 

1.4 Recent advances in Li metal protection 

1.4.1 Artificial SEI 

SEI layer forms when Li anode meets the electrolyte due to the high electronegativity of 

the Li. It mainly has insoluble inorganic salts (Li2O, LiF, Li2CO3, etc.) and organic products 
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((CH2OCO2Li)2 and ROLi). However, the species and ratios of each chemical composition 

might vary in different electrolyte systems depending on the electrolyte compositions[31].  

Ideally, the SEI is electrically insulating but Li ion conductive, and it protects the electrode 

from intercalation by solvent molecules and ions, while protecting these molecules from 

electrolytic breakdown[32]. The mechanical properties also maters, which could prevent 

the stress for the volume change from the electrode. The artificial SEI film is defined as a 

protecting layer on the surface of the Li metal electrode that possesses the functionalities 

of SEI [33]. The coating layer should be not only chemically stable and dense to prevent 

Li corrosion by the electrolyte, but also mechanically strong to suppress the growth of 

dendrites. Besides, high Li-ion conductivity is also desirable [4, 34]. Artificial SEI can be 

fabricated by depositing a thin film onto the electrode by advanced thin-film techniques 

such as physical vapor deposition (PVD), chemical vapor deposition (CVD), spin-coating, 

and doctor-blading. The deposited artificial SEI usually does not react with Li metal. In 

another way, chemical species that can react with Li can be selected to be applied to the Li 

surface. Li componds form in-situ on the surface of the Li metal surface and act as the 

artificial SEI. Some representative researches on both approaches have been listed below 

as examples. 

Carbon materials are stable with Li and have been proved to act as artificial SEI. Cui et 

al.[35] coated a monolayer of interconnected amorphous hollow carbon nanosphere which 

is chemically stable and mechanically strong to reinforce the SEI. As shown in Figure 1.5a 

and b, Li could deposit underneath the carbon layer and grow into a column-like shape. 

The carbon nanosphere layer modified electrode showed a better CE and cycling stability. 

A very thin layer of MoS2 (10nm) was sputtered onto the Li metal surface by Cha et al.[36, 
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37]. MoS2 layer can reduce the impedance and interracial contact due to its unique 

atomically layered structure and its phase-change characteristics (semiconductor to 

metallic trait) (Figure 1.5c and d). In addition, the MoS2 layer eliminated the preferential 

sites for the Li dendrite nucleation. An improved cycling performance was seen in both Li-

S and Li/NCM811 batteries with MoS2 protection. Similarly, Al2O3 thin layer could be 

fabricated by atomic layer deposition (ALD) [38, 39] or sputtering [40] method and used 

as artificial SEI. The Al2O3 layer could mitigate the corrosion from the atmosphere, sulfur, 

and electrolyte exposure. Al2O3 also can react with Li to form LiAlOx solid electrolyte, 

which could enhance the Li-ion transport at the interphase. An ultrathin bilayer of 

graphite/SiO2 artificial SEI was proposed, in which the graphite act as an electric bridge 

between Li metal and the electrolyte while the SiO2 improved the electrolyte affinity and 

Young’s modulus [41]. The multifunctional double-layer artificial SEI improves the 

cycling stability of the Li/Li symmetric cell to more than 1600 hours at a current density 

of 0.5 mA cm-2. 
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Figure 1.5 (a) Schematic showing how interconnected hollow carbon spheres create 

accommodate the volume change and suppress the dendrite growth. (b) Cross-section 

SEM image showing columnar Li deposited underneath the carbon nanosphere layer [35]. 

(c) Schematic showing the fabrication of a thin layer of MoS2 by a sputtering method. (d) 

SEM images of bare Li and MoS2 coated Li before and after cycling[36]. 

 

Polymer materials can also be used as artificial SEI because their flexibility can provide 

intimate contact with the electrolyte and allow effective suppression of the dendritic Li 

growth[33]. Guo and co-workers employed Li polyacrylic acid (LiPAA) on Li surface as 

artificial SEI[42]. A high elasticity was demonstrated by in-situ AFM during Li plating and 

stripping. The LiPAA film was self-adapted to the volume change of Li plating, and also 

reduced the side reactions. A stable cycle of 700 hours was demonstrated in LiPAA 
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protected Li symmetric cells comparing to 300 hours for bare Li. Yu et al. [43] designed a 

dynamic single-ion-conductive network (DSN) as a multifunctional artificial SEI with the 

features of fast ion transport, conformal protection, and parasitic reaction mitigation. In 

their design, tetrahedral Al(OR)4- (R = soft fluorinated linker) anions were used as dynamic 

crosslinking centers, and soft fluorinated chains (1H,1H,11H,11H-perfluoro-3,6,9-

trioxaundecane-1,11-diol, FTEG) are chosen as inert ligands. All these features enabled a 

high-performance Li||NCM full cell. 

Due to the high reactivity of Li metal, artificial SEI can be formed in a way that exposing 

Li with chosen chemicals, the reaction product act as the artificial SEI. The artificial SEI 

layer formed in this method usually has a good attachment to Li metal as it is formed in-

situ on the surface of Li metal. Li metal can be exposed to selected gas such as N2[44], 

Freon gas[45], and sulfur vaper [46]. LiF has been found to effectively help to regulate Li 

deposition, many works have been focused to add fluorinated compounds into the 

electrolyte,  Lin et al. [45] developed a conformal LiF layer as artificial SEI by exposing 

Freon R134a gas with Li metal at a controlled gas pressure and reaction temperature 

(Figure 1.6 a and b). LiF coating was also applied onto a 3D layered Li-reduced graphene 

oxide electrode. As a result, improved cycling stability and reduced side reactions were 

achieved. Li2S artificial SEI was demonstrated by Chen et al. [46]. They placed Li above 

sulfur vapor at an elevated temperature, Li can react with sulfur to form Li2S at the Li metal 

surface (Figure 1.6 c). The obtained Li2S SEI had a high ionic conductivity, which can 

mitigate non-uniform Li flux and dendritic Li deposition (Figure 1.6d). Artificial SEI also 

can be obtained by immersing Li into prepared solutions. Li et al. treated Li with 

polyphosphoric acid (PPA) dissolved in dimethylsulfoxide (DMSO) to get a Li3PO4 
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artificial SEI [47].  The PPA-Li anode exhibits a smooth surface and chemical stability 

with a high value of Young’s modulus of more than 10 GPa.  Pathak et al. [48]used a drop-

casting method and applied the SnF2 dispersed electrolyte onto the Li metal surface. A 

multi-component artificial SEI composed of LiF, Sn, and Li-Sn alloy was formed after the 

reaction between SnF2 reacted and Li metal.  At an optimized thickness, more than 2000 

hours of Li plating/stripping cycles were achieved.  

 

Figure 1.6 (a) Schematic of surface treatment of Li metal with Freon R134a to form LiF 

coating on the Li metal surface. (b) Cross-sectional SEM image of a LiF-coated Li foil 
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[45]. (c) Schematic of fabrication of high ion conductive Li2S artificial SEI layer. (d) 

Illustration of the difference in deposition structure of lithium metal anode with different 

SEI [46]. 

 

1.4.2 3D current collectors 

According to the Li dendrites growth theory that has been discussed above, Li dendrites 

tend to grow at a non-uniform Li flux and high current condition. Specifically, Due to the 

inhomogeneous distribution of charges, Li+ tends to plate at the defects of the substrate 

surface that have higher local current density. As reported, the Li-ion concentration is 

relatively steady at a low current density. However, at higher current density, the cations 

will be rapidly consumed in the vicinity of the negative electrodes with a sharp 

concentration depletion [19, 27]. This leads to a local space charge with a strong negative 

electric field, it will electroabsorb and electroplate massive Li ions in a short period, 

resulting in the formation of dendrites on the Li metal anode surface [3, 20, 21]. This 

behavior for dendrite growth is known as Sand’s behavior as widely reported in the 

literature [26, 49, 50]. The Sand’s time equation (Equation 1.4) describes that the initiation 

time of dendrite growth (τ) is significantly affected by the applied current density J,  where 

J is effective electrode current density, D is the ambipolar diffusion coefficient, e is the 

electronic charge, Co is initial Li salt concentration, and ta is anionic transference 

number.[51] Compare to the planar current collector, the 3D current collector has a much 

higher surface area, which reduces the local current density of the Li metal anode, thus 

mitigate the dendrite growth. Similarly, the Li dendrite growth rate (Vtip) is also found to 

be reduced at a lower current density J (Equation 2), where V is molar volume and F is 
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Faraday’s constant.[52] Besides, submicron ranged structures in the 3D current collector 

induce a homogenous charge distribution, eventually leading to a relatively even Li 

deposition.[53] In addition to the reduced local current density, the 3D current collector 

also functions as a Li host which could reduce the volume change[4]. With all Li depositing 

into the skeleton of the 3D structure, a stable SEI may form without broken due to the 

volume change [54].  

τ = πD (
eCo

2Jta
)

2

   (1.4) 

Vtip =
JV

F
    (1.5) 

 

Guo et al. [53] fabricated a 3D Cu current collector with a submicron-sized skeleton and 

porous structure and further studied the Li deposition behavior on a 3D current collector. 

They found Li can be accommodated into the pores with suppressed dendritic Li. Figure 

1.7 a and b shows Li deposition differences between planar Cu and the 3D current collector. 

At the first deposition step, Li tended to form small nuclei which function as a charge center 

due to the charge accumulation at the sharp end in the electrical field. The subsequent Li 

was then deposited on the nuclei and promoted the continuous growth of dendrites (Figure 

1.7a). In 3D Cu current collector with a submicron skeleton, the numerous fibers worked 

as the charge center and led to a uniform electrical field and homogenous charge 

distribution (Figure 1.7b).  Therefore, Li was expected to nucleate on the Cu fibers and fill 

the pores of the 3D current collector. As a result, a smooth Li surface could be obtained. 

Similarly, Ni foam 3D current collectors were proposed. A Li-Ni composite electrode was 

prepared by immersing Ni foam into a melted Li, [28]. Ni foam not only could host Li into 
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its 3D structure but also accommodated the surface energy between Li metal and electrolyte 

during cycling (Figure 1.7c). To improve the lithiophilicity of the 3D metal current 

collectors, N-doped graphene was coated on to the 3D current collector[55]. Figure c and 

d showed the differences of the current collector with and without N-doped graphene 

coating. Due to the irregular surface of the non-coated 3DCu, Li dendrites grew on the 

surface irreversibly. The SEI also tended to broke after Li was stripped. The N-doped 

graphene contributed a uniform Li flux with scatted distribution of electrons, therefore, 

leading to a stable SEI and uniform Li deposition (Figure 1.7d). Other lithiophilic coating 

could also work in a similar way such as Au[56], Ag[57], Sb[58], and ZnO[59]. A multiple 

layered structure with electrical conductivity and lithiophilicity gradient structure have 

been developed, which has an Al2O3 coating on top and Au coating at the bottom of a Ni 

foam (Figure 1.7e)[60]. In this structure, a regulated bottom Li deposition was observed 

due to electrically passivation of the top Al2O3 coating and lithiophilic bottom Au coating 

(Figure 1.7 f and g).  
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Figure 1.7 Schematic of electrical field distribution on (a) planar Cu and (b)3D current 

collector[53]. Schematic of Li deposition on (c) 3D Cu current collector and (d) N-doped 

graphene-coated 3D Cu current collector [55]. (e) Structure of 3D current collector with 

conductivity and lithiophilicity gradient. (f) Illustration and (g) SEM images of Li 

bottom-deposition [60].  
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Other than metal-based 3D current collectors, materials such as carbon-based materials or 

polymers can also work as the current collector. In comparison, carbon and polymer-based 

current collector are usually more flexible with a much lower density than metal-based 

current collectors, which enables a high energy density and flexible energy storage devices.  

Numerous carbon materials have been explored such as graphene, carbon nanotubes, and 

electrospun carbon nanofibers. Zhang et al. [61] found that N-containing groups (pyridinic 

and pyrrolic nitrogen) in the N-doped graphene is lithiophilic with high binding energy to 

Li, which could introduce a uniform Li nucleation (Figure 1.8a). They used N-doped 

graphene as the Li plating matrix/current collector and achieved a high CE of 98% after 

200 cycles (Figure 1.8b and c). An electrospun mesoporous carbon film with –NH 

functional group was used as a lithiophilic Li host[62]. As shown in Figure 1.8d, Li could 

be easily infused into the pores and coated on the surface of the carbon fibers after –NH 

functional group modification. The Li-C surface was gradually self-smoothed on the 3D 

architecture during the Li plating/stripping cycles. Figure 1.8e showed the SEM image of 

the C-Li composite electrode after 200 battery cycles, it became completed smooth without 

any dendrite. In a practical condition with a high cathode loading, low N/P ratio, and lean 

electrolyte, the Li-C composite electrode achieved high energy densities of 353 Wh kg−1 

and 381 Wh kg−1 coupled with NCM622 and NCM811 electrode, respectively, at a single-

cell level. Most of the conductive 3D current collectors might have a problem of “surface 

deposition” because Li tends to be deposited at where Li ions meet electrons. The surface 

growth can lead to the volume change and undesirable growth of Li dendrites (Figure 1.8f). 
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Liu et al. [63]  infused melt Li into a polymeric matrix as Li metal anode. Due to the non-

conductive nature of the matrix, Li plating and stripping could be well confined.   

 

Figure 1.8 (a) Binding energy of a Li atom with Cu, graphene, and other N-contain 

functional groups. (b) Surface morphology of N-doped graphene after 0.5 mAh cm-2 Li 

was deposited. (c) CE test of planar Cu and N-doped graphene [61]. (d) Schematic 

figures of self-smooth Li-C nanofiber composite Li anode. (e) SEM images of Li-C 
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anode after 200 cycles. (f) Schematic of Li plating and stripping process in conductive 

and non-conductive 3D current collectors. 

1.5 Motivation and objectives 

1.5.1 Motivation   

To reach the 500 Wh kg-1 goal of the next-generation battery, a safe and stable Li metal 

anode is urgently needed. However, uncontrollable Li dendrite growth and unstable SEI 

formation hinder the commercialization of Li metal anode. Therefore, a facile and universal 

strategy to obtain a dendrite-free Li metal anode is highly demanded.  

1.5.2 Objectives and outline 

The objective of this dissertation is to achieve a dendrite-free Li metal anode with a long 

cycling life and high CE. Two approaches will be studied in this research by using artificial 

SEI and 3D current collectors to suppress the dendrite growth and accommodate the 

volume change. Highly ionic conductive materials Li3N and Cu-clad carbon framework 

are used to demonstrate the effects of artificial SEI and 3D current collector on the Li 

deposition, respectively. The electrochemical performance of the Li metal batteries and Li 

deposition behaviors are studied and discussed.  

In Chapter 2, a new method to obtain a highly ionic conductive Li3N protective layer by 

plasma treatment on the Li metal surface is introduced. Li3N fabrication conditions are first 

studied and optimized. The effects of plasma treatment time on the Li3N crystal structure 

and morphology are then discussed. Symmetric cell cycling tests are used to examine the 

Li plating and stripping performance of the Li3N artificial SEI protected Li metal anode. 

The results are compared with the bare Li and Li3N layer fabricated in the traditional 
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method. The contributions from the optimized Li3N thickness, high oriented crystal 

structure, and superior ionic conductivity are further discussed to correlate the outstanding 

performance. Postmortem analysis is conducted to check the surface morphology after Li 

was deposited on the electrode.   

Chapter 3 introduced a 3D flexible current collector which is fabricated by a simple two-

step method of carbonization and Cu electroplating. The Li nucleation site distribution and 

conductivity of the current collector are tuned by changing the Cu loading. Li deposition 

morphology on different kinds of current collectors is compared to study the effects of the 

current collector on the Li dendrite growth. With the help of the reduced current density 

and uniformly distributed Li nucleation sites, Li can be confined into the framework 

without dendrite formation. The CE, symmetric cell cycling, and full cell cycling are tested 

under different current densities. Besides, the flexibility of the 3D current collector is also 

investigated, which shows that CuCF has the potential for future flexible/wearable 

electronics.  

Chapter 4 summarizes the findings and significance of this dissertation. Future works are 

proposed that may make the project more advanced. Strategies to fabricate practical Li 

metal batteries with artificial SEI and 3D current collectors are also proposed.  
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Chapter 2 Plasma enhanced formation of Li3N as artificial SEI 

for Li metal batteries 

 

2.1 Introduction 

Lithium (Li) metal has been considered as the “holy grail” for Li-ion batteries thanks to its 

high theoretical specific capacity (3860 mAhg-1) and low reduction potential (-3.04 V 

versus standard hydrogen electrode)[3, 4]. By replacing the conventional intercalation-

based graphite anode (specific capacity of 372 mAh g-1) with Li metal in Li-ion batteries, 

the specific energy and energy density can be improved by more than 35% and 50%, 

respectively[14, 15]. Moreover, the high capacity of Li metal anode opens up a great 

opportunity for the application in the next-generation energy storage cells including Li 

sulfur (Li-S) and Li-air batteries. They hold the potential to deliver theoretical energy 

densities of 2567 Wh kg-1 and 3505 Wh kg-1 respectively, which are much higher than the 

performance in the present commercial battery technology[64, 65]. However, the SEI layer 

formed spontaneously on the Li metal surface is very unstable and fragile. The break and 

reform of the SEI layer during the plating/stripping process can consume Li and electrolyte 

 

*Chapter 2, in full, is a reprint of the paper “Flower-shaped lithium nitride as a protective layer via facile 

plasma activation for stable lithium metal anodes” as it appears in the Energy Storage Materials, Ke Chen, 

Rajesh Pathak, Ashim Gurung, Ezaldeen A. Adhamash, Behzad Bahrami, Qingquan He, Hui Qiao, Alevtina 

L. Smirnova, James J. Wu, Qiquan Qiao⁎, Yue Zhou⁎, 2019, 18, 389-396. Ke Chen was the primary 

investigator and first author of this paper. 
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quickly[66], leading to a low coulombic efficiency and severe capacity decay. 

Furthermore, Li tends to form needle-like dendrites that can penetrate the separator 

eventually and cause safety issues such as the short circuit of the battery[67, 68]. One of 

the most effective strategies to address these issues is to introduce suitable protective layers 

between the Li metal electrode and the electrolyte. Those layers will provide an artificial 

protective shell to stabilize the SEI and suppress the growth of lithium dendrites. 

Considerable efforts have been made to select superior materials which can be mainly 

divided into two categories: inorganic materials such as Li3PO4[47], carbon materials[35, 

69] and Al2O3 [70]; and organic materials such as polyethylene oxide (PEO) [71] and 

Nafion [72]. Although those materials can suppress lithium dendrite growth to some extent, 

they still suffered from some drawbacks including complicated preparation process, low 

mechanical strength, and/or low Li ion conductivity[3]. 

It is noted that solid-state lithium ionic conductors are good candidates that can offer high 

ionic conductivity and have recently been employed as interfacial layers with the 

mechanical strength comparable to ceramic materials [73, 74]. Among those, lithium 

nitride (Li3N) has been demonstrated to be a promising solid-state ionic conductor due to 

the high room temperature ionic conductivity of 6×10-3 Scm-1 and high Young’s modulus 

[75-77]. Notably, Li3N can be prepared easily on the top of Li metal by placing Li metal 

under the nitrogen atmosphere according to the reaction 6Li (s) + N2 (g) → 2Li3N (s). Wu 

et al. fabricated a Li3N film with α- and α’-Li3N combined phases by exposing Li metal to 

N2 in a sealed container [44]. They demonstrated that Li metal protected by Li3N also could 

be used in Li-S battery to suppress the shuttle effect [78]. Zhang et al. further investigated 

the Li3N formation condition by controlling the gas flow rate and reaction temperature. 
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They found that Li3N formed at room temperature with a N2 flow rate larger than 100 sccm 

for 2 hours showed the best electrochemical performance among other conditions and bare 

Li [79]. However, the Li3N layer grown at room temperature had a porous structure that 

can still allow the electrolyte to pass through, thus making the system susceptible to the 

growth of Li dendrites at long cycles.  Cui et al. hence prepared a pin-hole-free Li3N from 

molten Li and demonstrated its potential application as a solid electrolyte [80]. Despite 

some successes, all those fabrication methods have the same issue of long growth time 

(several hours) due to limiting N2 diffusion, which makes this process very time consuming 

and high cost [81, 82]. Meanwhile, the uncontrolled fabrication process leads to mixed 

crystal orientations including [100], [001], and [110] [44], which cannot rectify the uniform 

transport of Li ions and suppress Li dendrite growth efficiently. Therefore, developing a 

facile and controllable method in a short time and low cost toward the Li3N protective layer 

with pure crystal orientation is still challenging.  

Here in this work, we employ a novel efficient and scalable plasma technique to achieve a 

desired Li3N film on the Li metal electrode as the protective layer by plasma activation 

under N2 environment in a very short time (within minutes). The obtained Li3N layer 

showed a unique flower shape with pure [001] plane orientation, leading to a high Young’s 

modulus and high ionic conductivity. Hence, by introducing this stable protective Li3N 

layer, the cycling life in a symmetric cell can be enhanced dramatically. A Li-LiCoO2 full 

cell based on the Li3N protected Li anode also demonstrates a lower overpotential and 

stable cycling with a high capacity retention of more than 96% after 100 cycles and superior 

rate capability compared to bare Li anode. 
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2.2 Experimental  

2.2.1 Plasma activation experiment setup 

 As shown in Figure 2.1, the lab-made plasma setup consists of a quartz tube with two 

electrode contacts, a vacuum pump, a radio frequency (RF) power supply, and a gas flow 

meter connected to the gas tank. During operation, a vacuum atmosphere was first 

established and then RF power was applied to the metal contact. After certain gas was 

passed through the quartz tube, the gas molecules were ionized and created a plasma 

atmosphere inside the chamber. 

 

Figure 2.1 (a) Schematic figures of plasma setup and (b) photos of nitrogen plasma 

discharge glow. 
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2.2.2 Preparation of in-situ grown Li3N layer 

Li metal chips (MTI corp. thickness is 450 µm) surface were scratched by a sharp blade in 

the Ar-filled glovebox (moisture and oxygen level <0.1 ppm) to remove the surface 

oxidation layer and other contaminants before use. A tightly sealed vessel was then used 

to transfer Li chips from the Ar-glove box into a lab-made plasma chamber. Nitrogen gas 

was passed through at a flow rate of 200 sccm after a vacuum was created in the tube. The 

power was set to 125W with a radio frequency of 13560 kHz to create nitrogen plasma. 

Different treatment times ranged from 1 minute to 4 minutes was used. After plasma 

treatment, the Li chips were then quickly transferred back into Ar-glovebox for further 

characterization and battery assembling. 

The samples obtained at different plasma treatment times have been defined as LN-1, LN-

2, LN-3, and LN-4, respectively. To compare the difference between plasma-treated 

samples and the samples without plasma, a control experiment was conducted according 

to previous work [78, 79]. Li chips were put into the plasma chamber with the same N2 

flow rate of 200 sccm, to get a thicker Li3N layer, the Li chips were put under N2 flow for 

2 hours without applying plasma power. The control sample was labeled as LN-C.  

2.2.3 Characterization 

2.2.3.1 Scanning electron microscope (SEM) 

Hitachi S-3400N scanning electron microscope was used to exam the morphology of the 

samples before and after battery cycling. The cross-sectional sample was prepared by 

cutting the samples with a sharp blade in the glovebox. A sealed container was used while 

transferring the sample from the glovebox to the SEM chamber. SEM images at different 
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magnifications were taken at an acceleration voltage of 5KV with a sample examination 

distance of ~10 mm.  

2.2.3.2 X-ray diffraction (XRD) 

XRD was conducted using a Rigaku SmartLab diffractometer with a Cu target 

(λ=1.5406Å) at the 30KV and 20 mA. The 2θ Scanning angles were set from 10 to 70o with 

the scanning speed of 4o min−1. All the samples were encapsulated with Kapton tape during 

XRD measurement to avoid moisture contamination.  

2.2.3.3 Young’s modulus measurement 

Quantitative nano-mechanical (QNM) mode was used for Young’s modulus measurement 

by Bruker atomic force microscopy (AFM).  

2.2.3.4 Contact angle measurement 

The electrolyte contact angle of bare Li and plasma-treated samples was measured by the 

VCA2000 video contact angle system to test the wetting property.   

2.2.4 Electrochemical measurements 

CR2032 coin cell structure was used for all the battery assembly and tests. Celgard 2325 

film of 25 µm thickness was used as the separator and 1M LiFP6 in the mixture of ethylene 

carbonate (EC) / dimethyl carbonate (DEC) (1:1 v/v) (Sigma Aldrich) as the electrolyte. 

All the cells were assembled in the Ar glovebox. 

2.2.4.1 Symmetric cell test 

For symmetric cells, the same samples were used at both electrodes of the cell. The as 

assembled cells were discharged by a Land battery analyzer (LANHE CT2001A) at a 
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current density of 0.5 mA cm-2
 with a total capacity of 1mAh cm-2 and then charged at the 

same current and capacity. A larger current of 1 mA cm-2 with a higher capacity of 2 mAh 

cm-2 was also tested.   

2.2.4.2 Full cell test 

Lithium cobalt oxide (LCO) was used as cathode materials. LCO electrode was prepared 

by mixing LCO (MTI corp.), Super P carbon and polyvinylidene fluoride (PVDF) at a 

weight ratio of 8:1:1 in N-Methyl-2-pyrrolidone (NMP) solvent. After overnight stirring, 

the obtained slurry was cast onto aluminum foil by a doctor-blading method and then dried 

in a vacuum oven for 12 hours. The active material mass loading was about 4 mg cm-2. 

Li/LCO full cells were charged to 4.2V and then discharged to 3 V at 0.2C (1C=140 mAhg-

1) for the first cycle and 1C for the following cycles. Full cells were also tested at the 

different current of 0.5C, 1C, 2C, and 5C to test their rate performance.  

2.2.4.3 Electrochemical impedance spectroscopy (EIS) 

VersaSTAT3 (Princeton Applied Research) was used for the EIS test. The frequency range 

was set from 0.1Hz to 100K Hz for both symmetric cells and full cells. 

2.3 Results and discussion 

2.3.1 Crystal structure analysis  

XRD was used to study the phase changes after nitrogen plasma activation. In order to 

protect the reactive sample from contamination of air and moisture, Kapton tape was used 

to cover the samples. As shown in Figure 2.2a, the Kapton tape only has a wide diffraction 

peak at around 20o, which can easily be distinguished from Li and Li3N peaks. Pure Li 
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metal shows peaks at 36o, 52o, and 65o, which are corresponding to (110), (200), and (211) 

planes (PDF #15-0401) [78, 79]. After N2 plasma activation, α-phase Li3N was formed 

(PDF #30-0759) in a short time. With activation time increases from one minute to three 

minutes, the Li3N peaks intensity becomes higher which indicates a higher crystallization. 

In addition, the distinct (001) and (002) diffraction peaks reveal that Li3N film obtained by 

N2 plasma activation is highly oriented along the direction vertical to the Li surface [80, 

83]. In comparison, LN-C obtained under N2 flow without plasma shows a polycrystalline 

structure with (001), (100), (002), (110), and (102) peaks (Figure 2.2b), which is similar to 

the Li3N film grown in room temperature previous reported [44, 78, 79]. The Li peaks still 

can be found in the XRD patterns in both plasma-treated samples and the control sample 

because Li3N formed on the surface of Li metal is very thin. Figure 2.3 shows a crystal 

structure of α-phase Li3N. It is a layered structure with hexagonal Li2N layers connected 

by the Li ions layer. This special N-Li-N structure provides open tunnels for Li ion transfer 

which offers an excellent Li ion conductivity and lower Li+ ions migration energy barriers 

[75, 76, 84]. Comparing to a multi-crystalline structure, it has fewer defects and could 

provide more mechanical strength to suppress the dendrite penetration. It is worth noted 

that no contaminates (such as LiOH, Li2O, or Li2CO3) are introduced to the electrodes in 

both conditions either by plasma activation or the traditional gas flow process according to 

the XRD patterns, which ensures that all the battery performance improvement are coming 

from the artificial SEI layer in the following discussion.   
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Figure 2.2  (a) XRD patterns of Li3N films at different plasma activation time. (b) XRD 

patterns of Li3N prepared without plasma  

 

 

Figure 2.3 Li3N crystal structure which compromises a layer of Li2N and a layer of Li. 
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2.3.2 Morphology of Li3N 

The color of pure Li is shining silver as shown in Figure 2.4a inset. Due to the formation 

of Li3N, the color changes into dark black (Figure2.4d, g, and j inset). SEM images of bare 

Li shows a relatively smooth surface at a lower magnification (Figure 2.4a). However, 

defects still can be noticed at high magnification (Figure 2.4 b). These defects can serve as 

nuclei, which lead to an uneven Li deposition and the formation of dendrites during the Li 

plating process [85]. On 1-minute plasma-activated sample (LN-1), flower-shaped Li3N 

clusters are formed on the surface of Li metal as shown in Figures 2.3 d, e, and f. The Li3N 

is not covered on the whole surface of the Li metal. The clear color contrast between Li3N 

clusters and background Li metal under SEM can be noticed from Figure 2.4d and e, in 

which Li3N is much brighter than Li metal. The reason can be attributed to the 

accumulation of charges on the electronically insulated Li3N under the SEM electron beam 

[44]. As shown in Figure 2.4 g-i and j-l, a denser Li3N layer is formed on top of the Li 

metal surface at 2-minute and 3-minute treatment respectively. Zhang et al. had proposed 

an island-growth mechanism for Li3N [79] that Li3N first grows at the defect spots to form 

a nucleus and then extends into two dimensions overwhelmingly and forms a dense Li3N 

layer. This island-growth mechanism can perfectly fit into the Li3N formation here. The 

thickness of the Li3N layer can be measured from the cross-sectional SEM images (Figure 

2.3 f, i, and l). In LN-1, the Li3N layer is an incomplete film. With the plasma activation 

time increase, the thickness is increased to ~8µm at 2 minutes and then ~30 µm at 3 

minutes. It should be mentioned that the thickness of the Li3N layer based on plasma 

activation technology can be controlled accurately by simply adjusting treatment time (only 

several minutes) with wide thickness range.  
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In order to prove that the layer of Li3N can be grown much thicker, a sample at a higher 

treatment time of 4 minutes was also prepared. A shown in Figure 2.5a and b, LN-4 exhibits 

a much larger gain sized than the samples obtained at lower treatment time. The thickness 

of Li3N is also increased significantly to ~100 µm (Figure 1.5c). As reported in previous 

work [44, 78, 79], due to the diffusion limit, the growth rate of Li3N is only several 

hundreds of nanometers per hour (~20 nm/min) when putting Li under N2 atmosphere 

without plasma treatment. However, a hundred times higher Li3N growth rate is found in 

this study (>10 µm/min) (Figure 2.5d). It is because nitrogen gas molecules, ions, and 

atoms are highly energetic in a plasma condition. In addition, the heat generated from 

plasma also accelerates the reaction, which makes the reaction 3Li + N* → Li3N more 

efficient. 
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Figure 2.4 SEM images of bare Li and Li3N film obtained at different N2 plasma times. 

(a-c) Digital (a inset) photo, surface (a and b) and cross-section(c) of bare Li. (d-f) Digital 

photo (d inset), surface (d and e), and cross-section (f) of Li3N film after 1-minute N2 

plasma activation. g-i) Digital photo (g inset), surface (g and h), and cross-section (i) of 

Li3N film after 2-minute N2 plasma activation. (j-l) Digital photo (j inset), surface (j and 

k), and cross-section (l) of Li3N film after 3-minute N2 plasma activation.  
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Figure 2.5 Surface (a and b) and cross-sectional (c) SEM images of LN-4. (d) Li3N layer 

thickness at different N2 plasma activation time. 

2.3.3 Young’s modulus analysis 

Young’s modulus was measured by atomic force microscopy (AFM) and an average value 

was then extracted from the mapping at area 10 by 10 µm range. Figure 2.6a, c, and e show 

the topography of bare Li, Li3N obtained under N2 flow, and Li3N obtained under N2 

plasma, respectively. The surface of bare Li is relatively flat with a surface roughness at 

the range of less than 0.2 µm. With the formation of Li3N, the roughness is significantly 

increased to 0.8 µm for LN-C and 1.7 µm for LN-2. This is because of the flower-shaped 
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Li3N formation after nitrogen plasma and is correlated to the SEM images in Figure 2.4.  i 

The corresponding Young’s modulus mappings are displayed in Figure 2.6b, d, and f. The 

average value is of bare Li is calculated to be 0.65 GPa. After 2 minutes of plasma treatment 

with the Li3N layer on top, LN-2 shows a high Young’s modulus of 48 GPa, which is more 

than enough to suppress the formation of Li dendrites. Theoretically, Li dendrites can be 

mechanically blocked if the modulus of a protective layer is larger than 6 GPa [86], 

therefore, Li3N layer could easily block the growth of Li dendrites. The high modulus of 

LN-2 can be attributed to its highly orientated crystal structure, which induces a compact 

and dense film on top of Li metal.  In comparison, Young’s modulus of LN-C was also 

measured, the value is only 4 GPa, which is lower than the required modulus of 6 GPa. As 

expected, LN-C could help to improve the performance of Li metal anode to a certain extent 

but still inferior to plasma-treated samples.  
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Figure 2.6 Topography and corresponding Young’s modulus mapping of bare Li (a and 

b), LN-C (c and d), and plasma-treated Li3N layer (e and f). 

2.3.4 Symmetric cell test 

The Li plating and stripping stability of bare Li and plasma-treated Li metal anodes were 

investigated by symmetric cell cycling tests. In this test, during each cycle, 1 mAh cm-2
 of 

Li was firstly plated onto the working electrode (bare Li or plasma-treated Li) at a current 
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density of 0.5 mA cm-2 and then 1 mAh cm-2
 of Li was stripped. The voltage profiles during 

the plating/stripping cycles are recorded. As shown in Figure 2.7a, the overpotential of bare 

Li symmetric cell increases considerably after only 75 cycles, indicating an increase of cell 

resistance and voltage built-up. There are two main reasons attributes to the early failure 

of the bare Li cell. Firstly, the continuous formation of SEI consumes electrolytes. SEI is 

formed naturally on Li metal when contacting with the electrolyte. However, the SEI is 

very fragile and unstable which breaks easily because of large volume change during Li 

deposition. Fresh Li under the SEI is then exposed to the electrolyte and resulting in further 

consumption of electrolyte to form new SEI. The electrolyte is therefore dries up quickly 

in bare Li cell. Another reason is the formation of “dead” Li. Li dendrites form on the 

surface of the Li electrode due to the uneven deposition. During Li stripping, Li dendrites 

broke down and therefore isolate from the base Li metal, which causes the formation of 

inactive “dead” Li accumulating on top of the electrode. The thick layer of “dead” Li could 

largely increase mass transfer resistance[87]. Thanks to the dense Li3N layer protection, 

much longer cycling life was shown in N2 plasma-treated samples. The 2-minute plasma-

activated sample (LN-2, Figure 2.7c) shows the best performance with a stable voltage 

profile even after 30,000 minutes (500 hours). In LN-2 cells, direct contact between Li 

metal and the electrolyte is blocked, which prevents the continuous formation of the SEI 

layer. Also, the small tips of Li3N grains lead to a more uniform Li flux due to the uniform 

electronic field distribution, which eliminates the Li deposition hot spots [53, 88]. With an 

optimized thickness of 8 µm in LN-2 cells, Li ions can pass through easily and deposit 

underneath the ionic conductive Li3N layer. Li dendrites are thus physically suppressed by 

the Li3N layer. As shown in Figure 2.7b and d, a not fully covered Li3N layer obtained at 
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1 minute (LN-1) or too thick layer (LN-3) have inferior cycling performance than LN-2 

but still better cycling life than bare Li. In LN-1, the formation of the Li3N cluster increases 

the electrolyte wettability of the electrode, which can prevent Li dendrites growth and 

hence delay the process of cell failure [89, 90]. For LN-3, the thicker Li3N layer (~30 µm) 

hinders the Li migration between Li metal and electrolyte, leading to cell failure earlier 

than the LN-2.  

 

Figure 2.7 The symmetric cell cycling test of (a) bare Li, (b) LN-1, (c) LN-2, and (d) 

LN-3.  
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The voltage profiles at the beginning, after 100th, and 200th cycles are magnified and 

shown in Figure 2.8. At the beginning of the test, all three samples are exhibiting identical 

voltage profiles (Figure 2.8a).  The bare Li shows the lowest stripping overpotential in a 

magnified position (Figure 2.8b). With the increased thickness of the Li3N  layer, the 

overpotential is slightly increased. It is because Li ion transfer channels have not been 

initiated yet at the beginning of the cycles. LN-2 exhibits a flat voltage profile with a lower 

than LN-1, LN-3, and bare Li cells after 100 cycles as shown in Figure 2.8c. The 

overpotential of LN-2 is further reduced after 200 cycles (Figure 2.8d) indicating a stable 

plating/stripping of Li and the establishment of a high Li ion conductive channel between 

Li metal and electrolyte. A stable interface is also formed between Li metal and liquid 

electrolyte. These phenomena are going to be further discussed later in the next section. 
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Figure 2.8 (a) Voltage profile of the beginning cycles. (b) The zoomed-in figure of the 

first stripping cycle. Voltage profile at the (c) 100th cycle and (d) the 200th cycle. 

 

To ensure that Li3N protected sample works at an elevated current density and capacity, a 

current density of 1 mA cm-2 with a total capacity of 2 mAh cm-2 was applied to LN-2 and 

bare Li in symmetric cell test. Due to the high ionic conductive and high Young’s modulus 

Li3N layer, the LN-2 sample can keep a stable Li deposition/stripping for 12,000 minutes 

(Figure 2.9). In comparison, bare Li symmetric cells could only last less than 8,000 minutes 

at the same current density.  
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Figure 2.9 Symmetric cell cycling test of bare Li and LN-2 at the current density of 1 

mA cm-2 with a capacity of 2 mAh cm-2. 

2.3.5 Ionic conductivity  

The kinetics of the Li3N protection layer are studied by EIS measurement which provides 

the information of charge transfer resistance at the Li metal/electrolyte interface. EIS of 

symmetric cells was measured before battery cycling and after 50 charge/discharge cycles. 

As shown in Figure 2.10, there are two semi-circles in the spectra. The first semi-circle at 

the higher frequency can be assigned to Li ions diffusion resistance in the Li3N film or SEI, 

while the second semi-circle is attributed to charge transfer resistance at the Li 

metal/electrolyte interphase [91, 92]. The data were fitted using an equivalent circuit shown 

in Figure 2.10b inset and fitting results are listed in Table 2.1. Before cycling, the plasma-

treated samples exhibit a little higher charge transfer resistance than bare Li because Li3N 

layer hinders the charge transference before cycling and an activation process is needed. 

However, a large reduction of charge transfer resistance is found after 50 cycles since Li3N 
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forms a stable interface with high Li ionic conductivity pathways (Figure 2.10b). These 

EIS results are consistent with the flat Li plating/stripping curves in Figure 2.8.  

Li ion conductivity of Li3N can be calculated based on EIS data[80]. In bare Li, the series 

resistance Rs equals the overall resistance (3.5 Ω) from the electrolyte and contact. In LN-

2 or LN-3 symmetric cells, the Rs consist of electrolyte resistance, contact resistance, and 

Li3N layer resistance as well. Therefore, the Li3N layer resistance of LN-2 can be easily 

obtained by Rs(LN-2) – Rs(bare Li). The ionic conductivity of Li3N then can be calculated 

using the equation  σ = 2 L/Ra, in which, L is the thickness of Li3N, R is the resistance of 

Li3N and a is the area. The ionic conductivity of Li3N is calculated as 5.03 × 10-1 mS cm-1 

for LN-2 before the cycle. The superb ionic conductivity can be attributed to the unblocked 

Li ion transport channels along [001] direction in Li3N grains. Anionic conductivity large 

than 5×10-1 mS cm-1 is typically required for battery operation in an artificial SEI layer or 

solid-state electrolyte [93]. Therefore, the ionic conductivity of the plasma-activated Li3N 

layer is high enough to establish a fast Li ions exchange channel between Li metal and 

liquid electrolyte. 
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Figure 2.10 Electrochemical impedance spectra of bare Li and plasma-treated samples. 

(a)  EIS of symmetric lithium cells of bare Li, LN-1, LN-2, and LN-3 (a) before cycling 

and (b) after 50 cycles. (b inset) The equivalent circuit for EIS fitting. 

 

Table 2.1 EIS fitting results of bare Li, LN-1, LN-2, and LN-3 symmetric cells before 

cycling and after 50 cycles. 

 

Rs 

before 

cycling 

(Ω) 

Rs 

after 50 

cycles 

(Ω) 

RSEI 

before 

cycling 

(Ω) 

RSEI 

after 50 

cycles 

(Ω) 

Rct 

Before 

cycling 

(Ω) 

Rct 

After 50 

cycling 

(Ω) 

Bare Li 3.5 5.2 223.2 225 108.0 51.1 

LN-1 5.2 3.8 277.2 201.6 191.3 37.6 
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LN-2 5.9 13.2 307.0 98.2 308.3 13.7 

LN-3 13.2 17.2 352.6 128.8 412.0 23.6 

LN-C 5.1 4.9 412.0 223.4 116.9 115.5 

 

Figure 2.11 shows the modulus and ionic conductivity data of plasma-activated Li3N 

together with those of other related work on the artificial SEI layer in Li metal batteries 

[40, 94-97]. It is noted that this work shows the highest Young’s modulus and fairly high 

ionic conductivity among the similar approaches. The high Young’s modulus and ionic 

conductivity can be attributed to the high orientation of obtained Li3N which provides both 

superior mechanical and electrical properties.    

 

Figure 2.11 The comparison of Young’s modulus and ionic conductivity value of 

plasma-activated Li3N with those of other literature reported artificial SEI. 
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2.3.6 Comparison with Li3N prepared by the traditional method 

The control sample (LN-C) was prepared based on previous works by exposing the Li chips 

under continuous N2 flow for two hours without applying plasma and other parameters are 

kept the same. The LN-C sample shows a porous morphology with multiple cracks like 

features (Figure 2.12 a and b). The electrolyte can easily reach Li metal through the cracks 

and have side reactions. Due to the low Young’s modulus of only 4 Gpa, Li dendrites can 

easily form and penetrate this layer. LN-C after cycling was examined by SEM and shown 

in Figure 2.12c. As expected, LN-C has a rough surface with big particles “dead Li”. 

Similarly, the ionic conductivity was calculated using the same method discussed above. 

The ionic conductivity for LN-C is 9.4 × 10-2 mS cm-1 which is much lower than the Li3N 

with pure crystal orientation (Figure 2.10 a and Table 2.1). It is because Li-ion transport 

was poorly in the polycrystalline structure of LN-C. Symmetric cell cycling performance 

(Figure 2.12e) is slightly improved for LN-C compared to bare Li but is still inferior to the 

plasma-treated samples due to the uneven covered surface and low ionic conductivity. 

Furthermore, this method took two hours which is very time consuming compared to the 

2-minute plasma activation method.  
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Figure 2.12 Li3N prepared by 2 hours of N2 flow without applying plasma. (a) SEM 

images of LN-C as obtained. (b) Cross-sectional SEM images of LN-C. (c) SEM images 

of LN-C after 10 cycles at the current of 0.5 mA cm-2 with a total capacity of 1 mAh cm-

2. d). EIS of LN-C symmetric cell before and after 50 cycles. e) Symmetric cell cycling 

performance of LN-C at the current of 0.5 mA cm-2 with a total capacity of 1 mAh cm-2. 
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2.3.7 Postmortem analysis 

The Li metal battery was disassembled inside the glovebox and the electrode was taken 

from the battery after cycling. Figure 2.13a and b show the SEM images of surface 

morphology of cycled bare Li electrode at low and high magnification, respectively. 

Needle-like Li dendrites can be identified (marked by red circles in Figure 2.13b), which 

forms due to the inhomogeneous surface nucleation and deposition of Li [98]. Short-circuit 

can happen if these dendrites penetrate the polymer separator, leading to serious safety 

concerns. A thick layer of dead Li is also accumulated on the bare Li surface as shown in 

Figure 2.13e, which may affect the mass transfer at the interface. In contrast, LN-2 exhibits 

a dendrite-free morphology as exhibited in Figure 2.11c and d. LN-2 protective layer is 

still interconnected and dense, which physically blocks the growth of Li dendrites. The 

Li3N morphology of Li3N grains is notably changed from a flower shape into a 

hemispherical shape after cycling. It might be caused by the deposition of fresh Li under 

the Li3N protective layer, which swells up the Li3N shells.   
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Figure 2.13 SEM images of bare Li after cycling at (a) low magnification and (b) high 

magnification. SEM images of LN-2 after cycling at (c) low magnification and (d) at high 

magnification. The cross-sectional view of (e) bare Li and (f) LN-2. 
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XRD of LN-2 was also taken after battery cycling to confirm the chemical and structure 

stability of the Li3N layer. Strong α-phase Li3N peaks reveal that its crystal structure is 

stable during charge and discharge (Figure 2.14). Typically, Li2CO3  and Li2O might be 

detected after battery cycling due to the decomposition of the electrolyte and other side 

reactions. However, these peaks are not shown in XRD patterns because the dense Li3N 

layer can block the direct contact between reactive Li and the electrolyte. Pure Li3N 

patterns also prove that Li3N is chemically stable in the electrolyte from decomposition 

into other materials during battery cycling.  

 

Figure 2.14 XRD patterns of LN-2 after 10 cycles at the current of 0.5 mA cm-2 with a 

total capacity of 1 mAh cm-2.  

 

To better illustrate and summarize the roles played by LN-2 during plating and striping, 

schematic figures were created and shown in Figure 2.15. For the bare Li, at the first step 
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of nucleation during plating, Li tends to form small dendrites at the unevenly distributed 

defect spots on the surface. The Li dendrites could serve as charge centers because the 

charges tend to accumulate at the sharp ends [89, 90]. This causes the further growth of the 

Li dendrites. Likewise, in plasma-treated Li3N samples, the Li3N grains showed a unique 

flower shape and the small Li3N grain tips are uniformly distributed on the surface of the 

electrode. These small tips are negatively charged but well distributed when the voltage is 

applied during the plating process. Therefore, the electrical field in Li3N cells is more 

homogenous than that of the bare Li and leading to a more uniform Li flux. Interestingly, 

the Li3N morphology changes into a hemispherical shape after cycling. The possible reason 

is the deposition of fresh Li under the Li3N protective layer that swells up the Li3N shells. 

This shape change is benign to the Li metal electrode because a spherical shape is 

mechanically stronger to hold the Li expansion distributing the expansion force evenly on 

the Li3N shell.   

 

Figure 2.15 Schematic illustration of Li deposition and stripping of (a) bare Li and (b) 

Li3N protected Li metal electrode. 
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2.3.8 Full cell performance  

The electrochemical performance of Li3N protected Li metal was further evaluated in full 

cells with LiCoO2 (LCO) cathode. Figure 2.16a shows the cycling performance of Li/LCO 

full cells at a charge/discharge rate of 1 C (1C = 0.56 mAh cm-2, 1 hour to fully charged). 

The very low capacity retention of 86% is observed for bare Li/LCO full cell due to the Li 

loss from side reactions [45]. In comparison, the Li3N artificial SEI protective layer reduces 

the Li loss due to the suppression of dendrite growth. The LN-2/LCO full cell demonstrates 

superior cycling performances with discharge capacities of 141 mAh g-1 (1st cycle) and 

135.5 mAh g-1 (100th cycle), with a high capacity retention of more than 96%. Figure 2.16b 

shows the charge/discharge voltage profile at the 10th and 100th cycles. Even though bare 

Li and LN-2 full cells have a similar profile at the 10th cycle, the overpotential of LN-2 

full cell becomes much lower than the bare Li full cell after 100 cycles. The continuous 

formation of unstable SEI and dead Li on the bare Li electrode could be the reasons 

resulting in the capacity fading and the increase of cell overpotential compared with the 

performance of LN-2. Meanwhile, with the help of the Li3N layer, LN-2 established a 

strong interface and fast ion transfer channel between electrolyte and Li metal. EIS of the 

full cell was measured after 100 cycles and shown in Figure 2.16c. A lower charge transfer 

resistance was found for Li3N protected LN-2, indicating a stable interface layer forms in 

LN-2 full cell with a  reduced dead Li formation. 
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Figure 2.16 Full cell cycling performance. (a) Cycling performance of bare Li and LN-2 

full cell at the current of 1C. (b) Charge/discharge voltage profile at the 10th and 100th 

cycles. (c) EIS spectra after 100 cycles.  

 

The cycling performance of the full cells at different current rates ranging from 0.5C to 5C 

was conducted and shown in Figure 2.17. Even though there is no significant difference at 

0.5C and 1C, LN-2 exhibits much higher capacity at 2C and 5C rates. It can be attributed 

to the high ionic conductivity and excellent mechanical strength, which benefited from the 

highly oriented Li3N artificial Layer. This protective layer acts as a strong barrier that can 

suppress the formation of Li dendrites and prevent Li loss even at a high current rate. In 
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contrast, because of the accumulation of SEI and dead Li on the surface of bare Li, bare Li 

exhibits a quite low capacity at 5C current and is not able to retain the capacity when the 

rate decreases back to 0.5C while the capacity of LN-2 based cell can still maintain the 

same value compared with the initial state. The rate performance proves that LN-2 can be 

fast-charged and discharged in 12 minutes (5C) without capacity loss, which could provide 

a higher power density for electric car applications. 

 

Figure 2.17 Full cell rate performance of bare Li and LN-2. 

 

LCO/LN-C full cell was also fabricated and tested to compare with bare Li and LN-2 

(Figure 2.18). LN-C full cell has a first discharge capacity of 139.6 mAh g-1. The capacity 

decreases to 126.6 mAh g-1 after 100 cycles, which yields a capacity retention of ~90%. 

The performance of LN-C is slightly higher than bare Li because the thin layer of Li3N 

obtained by the normal nitridation method would help to reduce the battery fading. 
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However, the cracks and pores in LN-C still result in the growth of Li dendrites and a 

capacity fading.  

 

Figure 2.18 Full cell cycling performance of LN-C.  

 

2.4 Conclusions 

In conclusion, a facile and efficient method to prepare the Li3N artificial SEI layer was 

demonstrated in this chapter. The Li3N layer could be in-situ formed on the Li surface after 

a nitrogen plasma treatment in a short time. Li dendrites were greatly suppressed due to 

their high modulus and high ionic conductive. In addition, the dense Li3N layer covered on 

top of Li metal could separate the liquid electrolyte from reactive Li metal, establishing 

stable interphase with reduced side reactions. Consequently, Li3N at an optimized N2 

plasma activation time of 2 minutes showed a stable depositing/stripping cycling stability 

to 30,000 minutes. Furthermore, a high capacity retention of 96% was also demonstrated 
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in the full cell with LCO as the cathode. Therefore, we anticipate this unique method by 

plasma activation may promote a further application for next-generation advanced lithium 

metal batteries.  
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Chapter 3 Flexible Cu-clad current collector for dendrite-free 

Li metal batteries 

 

3.1 Introduction 

To meet the fast-growing energy demands and develop high-energy (> 500 Wh kg-1) 

batteries for electric vehicles and grid storage applications, researchers have explored 

extensive studies on batteries beyond lithium-ion (Li-ion) nowadays.[2, 14, 99-101] 

Among all the approaches, Li metal anode has been considered as one of the most attractive 

options because of its high specific capacity (3860 mAh g-1) and low reduction potential (-

3.04 V vs standard hydrogen electrode).[3] However, the Li metal anode is still facing 

problems such as large volume change, uncontrollable dendrites growth, and unstable SEI 

formation.[102, 103] It is well known that all these problems are correlated with each 

other.[4] On one hand, when Li is plated/stripped, the huge volume fluctuation breaks the 

fragile SEI layer and the fresh Li is exposed to the electrolyte, leading to the continuous 

formation of new SEI. On the other hand, the Li dendrites from uncontrollably due to the 

uneven Li-ion flux and SEI cracks.[104] Further, Li dendrites can be broken during 

 

Chapter 3, in full, is a reprint of the paper “A copper-clad lithiophilic current collector for dendrite-free 

lithium metal anodes” as it appears in the Journal of Materials Chemistry A, Ke Chen, Rajesh Pathak, 

Ashim Gurung, Khan M. Reza, Nabin Ghimire, Jyotshna Pokharel, Abiral Baniya, Wei He, James J. Wu, 

Qiquan (Quinn) Qiao and Yue Zhou, 2020, 8, 1911-1919. Ke Chen was the primary investigator and first 

author of this paper. 
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stripping and produce “dead” Li.[105] As a result, the formation of a thick SEI layer and 

dead Li consume a large amount of fresh Li and electrolyte, leading to a low Coulombic 

efficiency (CE) and fast battery failure.[17] Therefore, to efficiently accommodate volume 

changes and avoid dendrite growth need to be accomplished in order for commercializing 

Li metal anode in the next-generation batteries.  

Considerable efforts have been devoted to stabilizing Li metal anode. One of the strategies 

is to create an in-situ robust SEI layer by introducing electrolyte additives such as LiNO3, 

CsPF6, and AlCl3,[70, 106, 107] or develop an ex-situ artificial SEI layer such as Li3N, 

carbon nanospheres, and Al2O3.[35, 40, 41, 108] Employing new electrolytes such as dual-

salt LiDFOB/LiBF4 electrolyte also can be a potential way to improve the performance of 

Li metal batteries.[109] Although these methods can suppress dendrite growth to some 

extent, they cannot sufficiently avoid large volume changes during the Li plating/stripping 

process. The use of a porous current collector as the host for Li metal has been 

demonstrated as a promising approach because it can accommodate the large Li volume 

change and stabilize the SEI layer. Most importantly, the high surface area reduces the 

local current density that quenches the Li dendrite growth.  

For the Li metal battery, the Li-ion concentration is relatively steady at a low current 

density. However, at higher current density, the cations will be rapidly consumed in the 

vicinity of the negative electrodes with a sharp concentration depletion.[19] This leads to 

a local space charge with a strong negative electric field, it will electroabsorb and 

electroplate massive Li ions in a short period, resulting in the formation of dendrites on the 

Li metal anode surface.[3, 20, 21] This behavior for dendrite growth is known as Sand’s 

behavior as widely reported in the literature.[26, 49, 50] The Sand’s time equation 
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(Equation 1) describes that the initiation time of dendrite growth (τ) is significantly affected 

by the applied current density J,  where J is effective electrode current density, D is the 

ambipolar diffusion coefficient, e is the electronic charge, Co is initial Li salt concentration, 

and ta is anionic transference number.[51] Compare to the planar current collector, the 3D 

current collector has a much higher surface area, which reduces the local current density 

of the Li metal anode, thus mitigate the dendrite growth. Similarly, the Li dendrite growth 

rate (Vtip) is also found to be reduced at a lower current density J (Equation 2), where V is 

molar volume and F is Faraday’s constant.[52] In addition, submicron-ranged structures in 

the 3D current collector induce a homogenous charge distribution, eventually leading to a 

relatively even Li deposition.[53] 

τ = πD (
eCo

2Jta
)

2

   (3.1) 

Vtip =
JV

F
    (3.2) 

Various porous metal hosts such as nickel and copper foams [28, 55, 110-114] have been 

used to extend the lifetime of Li metal anode due to their high surface area and lithiophility. 

However, most of the previously reported metal scaffolds were stiff with little mechanical 

flexibility, and therefore they cannot effectively embrace the large volume changes of Li 

anode after Li deposition. Moreover, metal scaffolds often have a high volumetric mass 

density which significantly reduces the energy density of full cells in practical application 

[115]. For example, copper has a density of 8.96 g cm-3, which is much higher than polymer 

or carbon at less than1 g cm-3[116].  

Herein, we report a novel 3D light-weight and flexible copper-clad carbon framework 

(CuCF) that meet all the desirable properties including high stability and scalability for Li 
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metal anode. This CuCF was simply fabricated via pyrolysis of melamine-formaldehyde 

foam (MF) followed by Cu electroplating. Instead of using high density pure metal-based 

current collector, a thin layer of Cu is deposited on the light-weight carbon fiber backbone 

to achieve a higher energy density. As a large surface area 3D interconnected structure, the 

flexible CuCF can significantly reduce the local current density and accommodate the 

volume changes during Li plating/stripping cycles. In CuCF, more uniform Li nucleation 

sites were induced to achieve a dendrite free-Li metal anode due to a unique wrinkle Cu 

surface. A high CE of more than 99.5% was maintained after 300 cycles (~1200 hours) at 

the current density of 0.5 mA cm-2. The Li@CuCF symmetric cell showed a highly stable 

cycling performance at a high current density of 5 mA cm-2 for more than 170 cycles. 

3.2 Experimental  

3.2.1 Preparation of CF 

Melamine-formaldehyde foam (MF, BASF Corp.) was cut into 5 mm thin pieces and then 

carbonized in a tube furnace for two hours at 900 oC under N2 atmosphere, with a 

temperature increase rate of 10 oC/min. After cooling down to room temperature, the 

obtained CF was washed with deionized (DI) water and ethanol several times to remove 

the residual contaminants, and then dried in a vacuum oven at 80 oC.   

3.2.2 Preparation of CuCF 

CuCF was prepared by the electroplating method. As shown in Figure 3.1, a pure Cu foil 

anode and CF cathode are immersed in the 1 M CuSO4 electrolyte solution. A pulse current 

of 10 mA cm-2 was applied to the circuit using Biologic VSP potentiostat (15-second 

electroplating followed by 10-second rest). During electroplating, Cu was dissolved from 
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the Cu anode and deposited on to CF.  After a specific amount of Cu plating time, CuCF 

was washed with DI water and ethanol and then dried in a vacuum oven at 80 oC.   

 

Figure 3.1 Experiment setup of Cu electroplating. (a) Schematic of Cu plating on carbon 

foam. (b) Photo of the experiment setup. 

 

3.2.3 Optimization of Cu electroplating time 

Cu loadings of CuCF can be varied by controlling the Cu coating time, CE test was also 

carried out accordingly. The CuCF obtained at 2, 4, 6, and 8 minutes are named as CuCF-

2, CuCF-4, CuCF-6, and CuCF-8, respectively. At lower electroplating time (2 and 4 

minutes), copper was found to form particles on the surface of carbon fibers with a non-

continuous Cu coating layer (Figure 3.2 a-d). This non-uniform Cu coating leads to an early 

failure of the battery (Figure 3.2i), which might because the Cu particles can induce an 

uneven Li nucleation site and accelerate the dendrite growth. The CuCF-6 shows a uniform 

copper coverage with a thin Cu layer (Figure 3.2 e and f). At a longer deposition time (8 
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minutes), the Cu layer thickness increases significantly because of the high conductivity of 

the pre-deposited Cu (Figure 3.2 g and h). Although CuCF-8 shows a similar cycling 

performance to CuCF-6, the increased Cu loading might decrease the battery energy 

density. Therefore, CuCF-6, which has optimized coating layer thickness and less process 

time, was selected to study the electrochemical performance in this chapter. Hereafter, 

CuCF will be used to refer to CuCF obtained at 6-minute electroplating (CuCF-6) unless 

otherwise indicated. The parameters of CuCF obtained at different electroplating time were 

summarized in Table 3.1. 
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Figure 3.2 Optimization of Cu electroplating time. SEM images of CuCF with the 

electroplating time of (a and b) 2 minutes, (c and d) 4 minutes, (e and f) 6 minutes, and (g 

and h) 8 minutes. (i) CE cycling test of CuCF at different electrodeposition times. 

Table 3.1 Summary of CuCF obtained at different Cu electroplating times. 

Sample 

name 

Total time 

(second) * 

Effective electroplating 

time (second) 

Average 

weight 

(mg) 

Cu 

loading 

density 

(mg/cm-2) 

Cycling 

number 

at CE > 

90% 

CF - - 0.50 - 123 

CuCF-2 200 120 0.92 0.24 161 

CuCF-4 400 240 1.47 0.55 174 

CuCF-6 600 360 2.10 0.91 >200 

CuCF-8 800 480 2.71 1.25 >200 

* Pulse current was applied with 15s of electroplating and 10s of rest for each cycle. 
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3.2.4 Characterization 

3.2.4.1 SEM and XRD 

The detailed experiment steps for SEM and XRD have been discussed in Chapter 2. SEM 

images of CF and CuCF before and after Li plating were taken using a Hitachi 4700 

scanning electron microscope. A sealed container was used while transferring the sample 

from the glove box to the SEM chamber. X-ray diffraction (XRD) was conducted using a 

Rigaku SmartLab diffractometer.  

3.2.4.2 Raman spectroscopy 

Horiba Raman system was used for Raman spectroscopy. 532 nm laser was used and the 

scattered signal from the sample was collected at the range from 1000 to 2000 cm-1.  

3.2.4.3 Brunauer-Emmett-Teller (BET) surface area 

The specific surface area was measured by ASAP 2460 Surface Area and Porosimetry 

Analyzer. After the sample was degassed at 350 oC, the absorption/desorption of the 

samples was performed using the following steps: Absorption Isotherm BET p/po 0.05 to 

0.3 with 0.025 steps (11 data points); Absorption Isotherm BJH p/po 0.5 to 0.995 using the 

geometric approach to saturation (14 data points); Desorption Isotherm BJH p/po 0.995 to 

0.1 using the geometric approach to saturation (20 data points). 

3.2.5 Electrochemical measurements.  

3.2.5.1 CE test. 

The coin cells (CR2032) were assembled in an argon glovebox (Mbraum, O2 and H2O level 

< 0.1 ppm) for all the electrochemical measurements. For the coulombic efficiency test, 
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planar Cu (MTI corp.), commercial Cu foam (MTI corp.), CF or CuCF was used as the 

working electrode and Li metal was used as the counter electrode with Celgard 2500 film 

as the separator. The electrolyte was 1M Lithium bis(trifluoromethanesulfonyl)imide 

(LiTFSI, Sigma Aldrich) in  1,3-dioxolane (DOL, Sigma Aldrich)/ 1, 2-dimethoxyethane 

(DME, Sigma Aldrich) (1:1 volume ratio) with 1 wt% Li nitrate (LiNO3, Alfa Aesar). The 

amount of electrolyte used was controlled as ~50 uL for each cell. Li was first plated onto 

the current collector and then stripped until the voltage exceeding the cutoff voltage of 0.5 

V. Cells were tested under a different current density of 0.5 and 1 mA cm-2 with the 

capacity of 1 or 2 mAh cm-2 using Land battery analyzer (CT2001A).  

3.2.5.2 Symmetric cell test. 

For the preparation of Li@planar Cu, Li@CF, and Li@CuCF electrodes, 4 mAh/cm2 of Li 

were pre-deposited on planar Cu, CF, and CuCF, respectively in the coin cell at a current 

density of 0.5 mA/cm2. After the cells were disassembled, the pre-deposited Li electrodes 

were rinsed in DOL/DME (1:1 v/v ratio) to remove the extra Li salts, and dried in the Ar 

glovebox. The obtained Li@planar Cu, Li@CF, and Li@CuCF were used further for the 

test of symmetric cells and Li/ lithium iron phosphate (LFP) cells according to previous 

reports. [26, 49, 50, 117-120] Symmetric cells were cycled at the current density of 5 mA 

cm-2 with a capacity of 1 mAh cm-2.  

3.2.5.3 Full cell test. 

For making LFP cathode, a slurry containing LFP, Super P carbon, and polyvinylidene 

fluoride (PVDF) (80:10:10 weight ratio) were prepared in N-Methyl-2-pyrrolidone (NMP) 

solvent. The slurry was coated on aluminum foil and then dried in a vacuum oven for 12 
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hours. Li/LFP cells were cycled at the voltage range between 2.5 and 4.2 V at 1C. The 

electrolyte was 1M LiFP6 in the mixture of ethylene carbonate (EC) / dimethyl carbonate 

(DEC) (1:1 volume ratio) (Sigma Aldrich).  

3.2.5.4 EIS test. 

Electrochemical impedance spectroscopy (EIS) was carried out by Biologic VSP 

potentiostat with frequency ranging from 0.1Hz to 100K Hz.  

3.2.5.5 Conductivity measurement. 

The conductivity measurement, linear sweep voltammetry was conducted at a scan rate of 

100 mV/s between -0.5V and +0.5V on the coin cell with only two spacers, two spacers 

with CF or CuCF in between. 

3.3 Results and discussion 

3.3.1 Morphology and chemical composite analysis 

SEM images of the CF and CuCF are shown in Figure 3.3. The carbon fibers in CF having 

a diameter of ~ 2 µm are interconnected and form a cross-linked skeleton (Figures 3.3 a 

and b). The empty spaces between fibers are range from 30 -100 µm, which makes CF a 

very low mass to volume density. The average weight for one piece of CF electrode 

(diameter of 15 mm) is measured to be 0.5 mg. After the Cu coating, CuCF shows a very 

similar porous structure to CF (Figure 3.3d, e, h, and i).  The average weight for the CuCF 

electrode is increased to 2.1 mg, given the Cu loading density of 0.91 mg cm-2. The wide 

spaces of CF and CuCF provide them easy access to the electrolyte with reduced mass 

transfer resistance in batteries[121]. Figure 3.3c shows an enlarged SEM image of a single 
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carbon fiber that has a smooth surface. In comparison, CuCF fibers (Figure 3.3e and f) 

become much rougher after Cu coating. This special morphology and structure could offer 

more Li nucleation sites and increase the Li metal attachment to the fiber surface during Li 

plating [118]. Figure 3.3g shows a cross-sectional SEM of a single CuCF fiber. The Cu 

coating layer on Cu can be found to be very uniform with an average diameter of ~200 nm. 

 

 

Figure 3.3 SEM images of (a) CF, (b) single CF fiber, and (c) magnification of single CF 

fiber. SEM images of (d) CuCF, (e) single CuCF fiber, and (f) magnification of single 

CuCF fiber. (g) Cross-sectional SEM image of a single CuCF fiber. SEM of CuCF at 

(h)top and (i)cross-sectional view. 
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Figure 3.4a shows the nitrogen adsorption-desorption isotherms plots of CF and CuCF. 

The BET specific surface area of CF and CuCF are 624.7 and 470.6 m2/g, respectively, 

which are much higher than a 2D planar current collector. The increased surface area could 

significantly reduce the local current density at the electrode and suppress the dendrite 

formation. Even though the average weight of CuCF current collector is 4 times higher 

than that of CF, the specific surface area of CuCF is only decreased from 624.7 to 470.6 

m2/g, it can be attributed to the unique surface Cu decoration which not only increased the 

conductivity but also the surface area.  

The XRD pattern shows that the CF (Figure 3.4b) has a broad (002) peak at ~20o indicating 

a typical low graphitization structure. After Cu coating, the XRD pattern of CuCF exhibits 

high-intensity peaks of (111), (200), and (220) at 43.4o, 51.5o, and 74.3o (PDF#65-9743), 

respectively. This supports that a highly crystallized Cu was obtained.[122] Raman spectra 

of the control CF (Figure 3.4c) and its fitted curve show D and G bands at 1350 and 1580 

cm-1, respectively. The D band is related to defective/disordered structure, while the G band 

is for graphite sheets.[123, 124] The integrated area ratio between the G band and D band 

is 0.76, indicating a low graphitization level [125], which is consistent with XRD results. 

The conductivity of both CF and CuCF was measured by calculating the slope of their I-V 

curve (Figure 3.4d). With Cu coating, the conductivity of CuCF has improved two orders 

of magnitude than CF from 4.32×10-4 Scm-1 to 1.38×10-2 Scm-1. 
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Figure 3.4 (a) Nitrogen adsorption-desorption isotherms plots of CF and CuCF. (b) XRD 

patterns of the CF and CuCF (inset: enlarged XRD patterns between 15 and 35o). (c) 

Raman spectra of the CF.  (d) The conductivity measurement of CF and CuCF. 

3.3.2 Li deposition behavior on different current collectors 

4 mAh cm-2 of Li was deposited onto planar Cu, CF, and CuCF current collectors at a 

deposition current density of 0.5 mA cm-1 to investigate lithiophilicity of different current 

collectors and corresponding Li morphology after plating. Figure 3.5 shows the Li plating 

voltage profiles of planar Cu, CF, and CuCF. Typically, a voltage dip and a plateau can be 
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found in the profiles and the voltage difference between them is defined as nucleation 

overpotential which is also known as the Li nucleation barrier.[126] The lower nucleation 

overpotential, the higher lithiophilicity of the current collector is, which further enhances 

a dendrite-free Li plating.[127] The planar Cu shows a high nucleation overpotential of 

150 mV, indicating a significantly large energy barrier when Li is plated on its surface. For 

CF, a small discharging slope with a lower nucleation overpotential of 47.1 mV is observed 

because the intercalation reaction between Li and carbon occurred. The small discharging 

slope is commonly found in the carbon-based Li host.[61, 125, 127-130] The intercalation 

reaction product (LiC6) contributes to a higher lithiophilicity in CF than that in the planar 

Cu.[126, 129] The CuCF shows the highest lithiophilicity with the lowest nucleation 

overpotential of 29.0 mV. This can be attributed to enhanced surface conductivity and 

numerous nucleation sites on the surface of the CuCF after copper cladding.[115] 

 

Figure 3.5 Voltage profiles of Li plating on Planar Cu, CF, and CuCF. 
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Ex-situ SEM was conducted at different plating stages (e.g., 1, 2, and 4 mAh cm-2) to 

inspect Li morphology and its revolution on the current collectors. Fibrous Li starts to grow 

on the surface of the planar Cu at 1mAh cm-2 (Figure 3.6a) and becomes longer and thicker 

at a higher capacity of 2 and 4 mAh cm-2 (Figure 3.6 b and c). It is due to the random Li 

nucleation on the surface of the Cu foil and the uncontrollable growth thereafter. For CF, 

at the beginning stage of the Li deposition, Li does not cover the entire surface of carbon 

fibers and nucleates as micrometer-ranged particles (Figure 3.6d). When the Li deposition 

capacity increases, Li keeps depositing on the nucleation sites and further grow into long 

fibrous dendrites at 2 and 4 mAh cm-2 (Figure 3.6 e and f). As expected, CuCF shows a 

much different Li morphology than planar Cu and CF, CuCF fibers show a smooth Li 

coverage due to well-distributed Li nucleation sites on the fiber surface at the capacity of 

1 mAh cm-2 (Figure 3.6g). At a larger Li deposition capacity (2 mAh cm-2), Li tends to 

grow bigger and fills in the space between the CuCF fibers (Figure 3.6h). Even at the 

capacity of 4 mAh cm-2, no Li dendrite was found on the surface (Figure 3.6i). For practical 

applications of Li metal anode, a dense/large nodule size Li plating with a smooth surface 

is required. The dendrite-free and lower surface area Li metal after plating could reduce 

side reactions by decreasing the unnecessary contact between Li and electrolyte during the 

battery cycles.[2]  
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Figure 3.6 The morphology of plated Li on planar Cu at the capacity of (a) 1 mAh cm-2, 

(b) 2 mAh cm-2, and (c) 4 mAh cm-2, CF at (d) 1 mAh cm-2, (e) 2 mAh cm-2, and (f) 4 

mAh cm-2, and CuCF at (g) 1 mAh cm-2, (h) 2 mAh cm-2, and (i) 4 mAh cm-2. 

SEM images after Li stripping was also taken. In planar Cu, fibrous dendrites tend to break 

and become inactive dead Li during the stripping process (Figure 3.7a), resulting in a low 

CE and short cycling life. CF shows less dead Li, but some residual Li particles can still be 

found on the carbon fiber surface (Figure 3.7b) because of the breakdown of dendrites and 

the formation of a non-smooth fiber surface. The CuCF exhibits a smooth surface without 

any residual Li particles (Figure 3.7c), which is comparable to the original CuCF before 

plating (Figure 3.3a). The high reversibility of Li plating/stripping of CuCF could lead to 

a high Li utilization efficiency and a better battery performance.       
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Figure 3.7 SEM images of (a) planar Cu, (b) CF, and c) CuCF after Li stripping. 

 

Figure 3.8 shows the schematic for different Li deposition behaviors on planar Cu, CF, 

and CuCF. Uneven charge accumulation typically occurs on the protrusions/defects of the 

planar copper foil due to the “tip effect”.[53] This leads to a faster Li deposition on the 

protrusions/defects of the copper foil and facilitates the Li dendrite growth (Figure 3.8 a, 

b, and c).[131] Even though 3D structured current collectors have been proven to be more 

favorable for Li deposition, they display different Li plating behaviors due to their unique 

composite and surface properties. Both CF and CuCF have a 3D cross-linked structure 

before Li deposition (Figure 3.8 d and g), however, their electron distributions are different 

during plating due to the different conductive features. In CF, the conductivity is lower and 

electron distribution is not uniform due to its low graphitization level. Electrons mainly 

accumulate at the highly conductive spots, where Li first nucleates (Figure 3.8 e). With the 

increase of deposition time, Li preferentially deposits at these nucleation sites and causes 

rapid growth of Li dendrites at larger capacity (Figure 3.8 f). Furthermore, the uneven Li 

deposition along with an unstable SEI formation accelerates Li dendrite growth.[102] 

Consequently, a lower CE and higher cell overpotential occur due to the dead Li 

accumulation and electrolyte drying-up. In the case of CuCF, the electrons are 
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homogeneously distributed on the surface of CuCF fibers due to the highly conductive 

uniform Cu cladding (Figure 3.8 h). Moreover, the nanostructured Cu decoration increases 

its Li adhesion and provides more Li nucleation sites. This helps to form a thin but uniform 

Li layer on the CuCF fiber surface.  This Li layer then grows thicker at higher deposition 

capacity until Li fulfills the CuCF void (Figure 3.8i). Therefore, the dendrite-free Li 

deposition promotes a high CE at each cycle. 
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Figure 3.8 Schematic showing Li plating process on planar (a) Cu, (d) CF, (g) CuCF 

before Li deposition; (b) Cu, (e) CF, (h) CuCF at low capacity; and (c) Cu, (f) CF, (i) 

CuCF at high capacity. 

3.3.3 Comparison with commercial Cu foam.   

To compare the performance of the CuCF with the commercially available Cu foam, Cu 

foam was purchased from MTI Corp, which is widely used in battery or supercapacitor 

anode substrate/current collector. As shown in Figure 3.9a, the commercial Cu foam may 

be folded but cannot resume its initial shape after the bent. SEM images show that the 
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diameter of the Cu fibers in C foam is ~100 µm which is much higher than that of CuCF 

(~1 µm) (Figure 3.9b). At a large magnification (Figure 3.9b), the surface of the Cu foam 

had a similar surface to Cu foil. The Li morphology after plating on commercial Cu foam 

was also studied. Dendrites were found to form at all plating stages because of its poor 

lithiophilicity and relatively low specific surface area.[112]  

 

Figure 3.9 SEM images of commercial Cu foam (a) at low magnification and (b) high 

magnification. (c) Digital photo of commercial Cu foam after bending. SEM images of 

commercial Cu foam after Li deposition with the capacity of (a) 1, (b) 2, and (c) 4 mAh 

cm-2. 

3.3.4 Coulombic efficiency study. 

For the CE test, CuCF maintains a high CE of 99.5% after 300 cycles (~1200 hours) at a 

current density of 0.5 mA cm-2 with a capacity of 1 mAh cm-2 (Figure 3.10 a). This high 

CE can be attributed to the dendrite-free Li deposition on CuCF with reduced side reactions 

between Li and electrolyte. In contrast, the planar Cu shows a rapid CE decrease after only 

80 cycles. The CF also shows a cycling life of only around 120 cycles with a CE decrease 
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to ~50%. The decrease of CE in planar Cu and CF is caused by the continuous formation 

of inactive dead Li when Li dendrites break down into electrically isolated Li. Figure 3.10b 

shows the comparison of charge/discharge profiles between CF and CuCF at the 150th cycle. 

CuCF has a lower voltage hysteresis than CF, which confirms the favorable Li nucleation 

and plating on the CuCF. The CE of CuCF is compared with some similar approaches to 

Li metal battery current collector study, CuCF shows the superior performance among the 

state of the art work (Table 3.2). The CE tests were also conducted at the higher current 

and higher capacity of 1 mA cm-2 with the capacity of 1 mAh cm-2 (Figure 3.10c), and at 

1 mA cm-2 with the capacity of 2 mAh cm-2 (Figure 3.10e). Three different current 

collectors display a similar phenomenon as at the lower current. Though the CF shows 

slightly improved cycling stability than planar Cu, the CE still decreases after 100 cycles 

(1 mA cm-2 / 1 mAh cm-2) and 70 cycles (1 mA cm-2 / 2 mAh cm-2), respectively. Notably, 

the CuCF exhibits a high CE larger than 98% at the current density of 1 mA cm-2 and a 

capacity of 2 mAh cm-2. Figure 3.10 d and f show the corresponding Li plating/stripping 

voltage profiles at the 150th and 80th cycle, respectively. CuCF exhibits a lower voltage 

hysteresis than planar Cu and CF.  
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Figure 3.10 (a) Coulombic efficiency of planar Cu, CF, and CuCF at the current density 

of 0.5 mA cm-2 with the capacity of 1 mAh cm-2, (c) at the current density of 1 mA cm-2 

with the capacity of 1 mAh cm-2, and the current density of 1 mA cm-2 with the capacity 

of 2 mAh cm-2. The corresponding plating/stripping voltage profiles at the (b) 150th 

cycle, (d) 150th cycle, and (f) 80th cycle, respectively.  

  



80 
 

Table 3.2 Summary of the Coulombic efficiency of similar works.   

Literature Li host 

Current 

density 

(mA/cm2) / 

Capacity 

(mAh/cm2) 

Cycle Number 

/ CE after 

cycling 

Electrolyte / 

Amount  

Adv. Funct. 

Mater.2019, 29, 

1808468[26] 

3D Porous Cu current 

collectors derived by 

hydrogen bubble 

dynamic template 

0.5 / 1  

1 / 1 

250 / 98% 

150 / ~90% 

1 M LiTFSI in 

DOL/DME  with 

2 wt% LiNO3  

/ (60µL) 

 

Adv. Energy 

Mater. 2018, 

1703404[50] 

Vertically aligned 

CuO nanosheet 

grown on planar Cu 

0.5 / 1 180 / 94% 

1 M LiTFSI in 

DOL/DME  with 

1 wt% LiNO3  

/ (40 µL ) 

 

Energy Storage 

Materials 11 

(2018) 127-

133[132] 

3D pie-like Cu 

nanowires wrapped 

by graphene 

1 / 2 120 / ~97% 

1 M LiTFSI in 

DOL/DME  with 

1 wt% LiNO3 

/ (not mentioned) 

 

Adv. Energy 

Mater. 2018, 

1800914[55] 

N-Doped graphene 

modified 3D porous 

current collector 

0.5 / 1 

1 / 2 

150 / 97.5% 

50 / 97% 

1 M LiTFSI in 

DOL/DME  with 

1 wt% LiNO3 

/ (70 µL) 

 

Angew. Chem. 

Int. Ed. 2017, 56, 

7764 –7768[61] 

N-Doped graphene 

matrix 

1 / 1 

1 / 2 

200 / 98% 

50 / 98% 

1 M LiTFSI in 

DOL/DME  with 

5 wt% LiNO3 

/ (not mentioned) 

 

This work Flexible 3D CuCF 

0.5 /1 

1 / 1 

1 / 2 

300 / 99.5% 

200 / 98.8% 

100 / 98.4% 

1 M LiTFSI in 

DOL/DME  with 

1 wt% LiNO3 

/ (50 µL) 
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Figure 3.11 shows SEM images of planar Cu, CF, and CuCF after 100 cycles at the current 

density of 0.5 mA cm-2 with a capacity of 1 mAh cm-2. A very thick layer of dead Li can 

be noticed covering all over the planar Cu surface (Figure 3.11a), which is the reason for 

its rapid CE dropping. Similarly, large chunks of dead Li can also be found on CF after 

100 cycles because of dendrite breakdown (Figure 3.11b). For CuCF, a very smooth Li 

surface was observed without any Li dendrites on the surface (Figure 3.11c).  

 

Figure 3.11 The SEM images of (c) planar Cu, (d) CF, and (e) CuCF after 100 cycles at 

the current density of 0.5 mA cm-2 with the capacity of 1 mAh cm-2. 

 

3.3.5 High capacity and charging rate performance of CuCF 

To prove the CuCF can work at both low and high capacity, CE was tested under the current 

of 1 mA cm-2 with different capacities of 1, 2, 4, and 8 mAh cm-2 (Figure 3.12 a). The 

changing of capacity does not affect the CE even at the capacity of 8 mAh cm-2, indicating 

CuCF can be used for very high capacity applications. Figure 3.12 b shows the voltage 

profile at different capacities. The plating curve is flat and no increase of voltage is found 

during high capacity plating, which proves that the fresh plated Li is well accommodated 

into the CuCF. The CE test was conducted at a higher current of 2 mA cm-2 with a capacity 

of 8 mAh cm-2 (Figure 3.12 c). A high CE of more than 96% was obtained for CuCF. Both 
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planar Cu and CF failed earlier than CuCF, which is due to the dendrite growth at a higher 

capacity. The fact that CuCF can work both at high current and high capacity gives it a 

great potential application in fast-charging electric vehicles.  

 

Figure 3.12 (a) Coulombic efficiency test of CuCF at the current of 1mA cm-2 with 

capacity 1, 2, 4, and 8 mAh cm-2. (b) The corresponding plating/stripping voltage profiles 

at different capacities. (c) Coulombic efficiency test of planar Cu, CF, and CuCF at the 

current of 2 mA cm-2 with the capacity of 8 mAh cm-2. 
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The SEM images of Li@CuCF at 4 mAh cm-2 have been illustrated in Figure 3.6i with a 

higher magnification. In order to have a better view of how the Li is distributed, Figure 

3.13 a low magnification SEM image. There is still plenty of space in the CuCF to host 

more Li. SEM images of Li plating to the capacity at 8 and 16 mAh cm-2 are shown in 

Figure 3.13 b and c. All the Li was found to be constrained inside the framework without 

dendrites formation. With further Li deposition, space can be filled up at the capacity of 16 

mAh cm-2 without Li dendrite formation. From the cross-sectional SEM images (Figure 

3.13 d, e, and f), the thickness can be measured after Li deposition. The thickness is much 

lower than that showing in Figure 3.3i because of the pressure applied in the coin cells. 

Although the capacity was increased 4 times from 4 mAh cm-2 to 16 mAh cm-2, the increase 

in the thickness of deposited Li was only two times (from ~70 µm to ~150 µm) indicating 

an adjustable thickness due to the flexibility. The volumetric and gravimetric capacity at 

the capacity of 4 mAh cm-2, 8 mAh cm-2, and 16 mAh cm-2 were then calculated 

accordingly and summarized in Table 3.3. The CuCF has a very high gravimetric capacity 

of 3001.1 mAh g-1 at 16 mAh cm-2, which has reached 77.7 % of the theoretical value of 

Li metal anode (3860 mAh g–1). This can be attributed to the ultra-lightweight of the CuCF. 
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Figure 3.13 Surface SEM images of Li@CuCF at the areal capacity of (a) 4 mAh cm-2, 

(b) 8 mAh cm-2, and (c) 16 mAh cm-2. Cross-sectional SEM images of Li@CuCF at (d) 4 

mAh cm-2, (e) 8 mAh cm-2, and (f) 16 mAh cm-2. 

 

Table 3.3 Summary of the volumetric and gravimetric capacity of Li@CuCF 

Areal Capacity 

/mAh cm-2 

Volumetric Capacity 

/mAh cm-3 

Gravimetric Capacity 

/mAh g-1 

4 571.4 1795.1 

8 888.9 2453.8 

16 1066.7 3001.1 

 

Symmetric cells were assembled using Li@planar Cu, Li@CF, or Li@CuCF, in which 4 

mAh cm-1 of Li was pre-deposited. The symmetric cells were then measured at a high 
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current density of 5 mA cm-2
 with a capacity of 1 mAh cm-2. Li@CuCF exhibits a stable 

cycling profile up to 170 cycles (Figure 3.14a). It also shows a smooth plating/stripping 

profile and low voltage hysteresis compared to Li@planar Cu and Li@CF (Figure 3.14 b 

and c). In comparison, Li@planar Cu and Li@CF have either fluctuated or increased 

voltage profiles with a low cycling life of fewer than 50 cycles. The reason is that both 

planar Cu and CF suffer from dendrite growth and breakdown that cause dead Li 

accumulation. The voltage profiles at the 1st and 50th cycle were magnified (Figure 3.14b 

and c). CuCF has a flat plating/stripping voltage curve with a much lower overpotential, 

indicating its low mass transfer resistance.[121]  



86 
 

 

Figure 3.14  (a) Symmetric cell cycling performance at the current of 5 mA cm-2 with a 

capacity of 1 mAh cm-2 for Li@ planar Cu, Li@ CF, and Li@ CuCF.  The corresponding 

plating/stripping voltage profile at the (b) 1st and (c) 50th cycle. 

 

3.3.6 Flexibility study of CuCF 

The flexibility test was conducted by comparing the structure and electrochemical 

performance differences before and after 100 times folding of the CuCF electrode.  The as-

prepared CuCF electrode was folded as indicated in Figure S3.15a and b. The CuCF can 

easily recover to its original shape by itself after the pressure was released, showing 

excellent mechanical flexibility (Figure 3.15 c).  In comparison, commercial Cu foam may 



87 
 

be folded but cannot resume its initial shape after bent (Figure 3.9a). Even after 100 times 

folding, there is no significant change was found for CuCF (Figure 3.15 d & e). CuCF was 

also examined by SEM after folding 100 times. It is still cross-linked without any structural 

change (Figure 3.15 f and g). Even s small amount of CuCF fibers are found broken at the 

folding area but it is believed not to affect the battery cycling performance as the EIS and 

CE test results.  

The EIS can be used to evaluate the electrode resistance and battery impedance while 

operating. The EIS curve of CuCF before and after folding shows almost the same serials 

resistance and charge transfer resistance, indicating that the folding does not affect the 

electronic performance of CuCF (Figure 3.16a). CE cycling test was also performed at the 

current density of 1 mA cm-2 with a capacity of 1 mAh cm-2 for both samples with and 

without a folding test (3.16b). Two CE curves are identical with no significant differences 

after 200 cycles. The data are also consistent with the cycling test data presented in Figure 

3.10c.  
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Figure 3.15 The digital photos of  (a) CuCF, (b) folded CuCF, (c) self-recovered CuCF 

after folding, (d) CuCF after 50 times folding, and (e) CuCF after 100 times folding. 

SEM images of (f) CuCF and (g) CuCF after 100 times folding. 

 

Figure 3.16 (a) EIS spectra and (b) CE cycling test of CuCF without folding and after 

100 times folding at the current density of 1 mA cm-2 with a capacity of 1 mAh cm-2.    
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3.3.7 Full cell performance  

To further evaluate the practical application of CuCF, cells with pre-deposited Li@CuCF 

as anode and LiFePO4 (LFP) as a cathode were studied at a current of 1C. Li@CuCF shows 

a stable cycling performance up to 200 cycles with a negligible capacity decrease (Figure 

3.17a). The 1st and 200th discharge capacity of CuCF full cell is 122.2 and 121.6 mAh g-

1, respectively, giving high capacity retention at 99.5%. However, for Li@planar Cu, it 

exhibits a continuous capacity fading due to continuous Li loss during Li plating/stripping 

cycles[125]. Li@CF has a better cycling performance than Li@planar Cu but it still has a 

low Li utilization. The charge/discharge curves at the 10th and 100th cycles are displayed 

in Figure 3.17b and c. Even though all three current collectors have a similar voltage profile 

at the initial cycles, the overpotential increases much more significantly for Li@planar Cu 

and Li@CF than Li@CuCF after 100 cycles. This could be attributed to the dead Li 

accumulation in Li@CF and Li@planar Cu full cells, which hinders the Li ion transfer at 

the interface of the electrode. Interestingly, the Li@CF shows a different charge/discharge 

curve pattern after 100 cycles with a much lower discharge plateau. This might due to the 

Li insertion reaction with the amorphous carbon material in CF after Li was fully consumed. 

The reaction potential between Li and amorphous carbon (~0.3 V vs Li/Li+) is higher than 

Li deposition potential (0 V vs. Li/Li+) [129].  
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Figure 3.17 (a) Full cell cycling performance of Li@planar Cu, Li@CF, and Li@CuCF 

at 1C. (b) Charge/discharge profile at the 10th cycle and (c) 100th cycle 

 

The EIS was performed before cycling and at the 100th cycle (Figure 3.18 a and b). All 

Li@planar Cu, Li@CF, and Li@CuCF show a comparable charge transfer resistance at the 

beginning cycles. However, the Li@planar Cu and Li@CF exhibit a larger charge transfer 

resistance after 100 cycles due to the dead Li build-up at the interface between the active 

Li electrode and liquid electrolyte. In comparison, the charge transfer resistance of 

Li@CuCF keeps almost the same throughout the cycling because of the stable SEI 

formation on the surface of the electrode, benefiting from the dendrite-free deposition in 
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CuCF. The EIS results are consistent with full cell cycling performance, in which 

Li@CuCF exhibits much higher cycling stability than CF and planar Cu samples. 

 

Figure 3.18 EIS of planar Cu, CF, and CuCF full cell before cycling and at the 100th 

cycle. 

 

Fast-changing/discharging ability is one of the most important properties in practical 

application for batteries. The full cells are tested under different current ranges from 0.2C 

(fully charged in 5 hours) to 5C (fully charged in 12 minutes) (Figure 3.19).  Li@planar 

Cu, Li@CF, and Li@CuCF deliver a comparable capacity at the lower current density of 

0.2C, 0.5C, and 1C. However, Li@planer Cu and Li@CF exhibit a lower capacity than 

Li@CuCF at 2C and 5C. Specifically, the Li@planar Cu shows a near-zero capacity 

because of its low Li utilization. In contrast, a highly conductive skeleton of CuCF enables 

a reduced local current density and lower mass transfer resistance even at a high rate, which 

leads to a higher capacity. Besides, Li@CuCF also recovers almost 100% of capacity after 
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returning to 0.5C from 5C, which is attributed to its stable dendrite-free Li plating/stripping 

with a negligible Li loss. 

 

 

Figure 3.19 Rate performance of Li@planar Cu, Li@CF, and Li@CuCF full cell. 

3.4 Conclusions 

In summary, a flexible 3D porous CuCF using carbon fiber as backbone and Cu as the 

coating layer was fabricated as the current collector for Li metal anode via a facile method. 

The obtained nanostructured Cu decorated CuCF has a higher conductivity and larger 

surface area, leading to a uniform, dendrite-free Li plating/stripping. In addition, the 3D 

nanostructured CuCF can accommodate the different amounts of Li due to its adjustable 

thickness and mechanical flexibility. The SEI layer also can be further stabilized because 

of the smooth and compact Li deposition. A high CE of 99.5% was demonstrated after 300 
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cycles (~1200 hours). Even at a high current density of 5 mA cm-2, the CuCF still lasted 

for 170 cycles. This work demonstrates that the flexible 3D CuCF current collector 

provides a promising approach to achieve a dendrite-free and safe Li metal anode.   
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Chapter 4 Conclusion and future work 

 

4.1 Conclusions 

Two facile and efficient methods were successfully demonstrated to obtain dendrite-free 

Li metal anode, by preparing a high modulus and high ionic conductive Li3N artificial layer 

based on the nitrogen plasma activation and designing a flexible 3D porous copper-clad 

carbon framework (CuCF) using carbonization and electrodeposition. The as-prepared 

Li3N artificial SEI layer and 3D CuCF current collector were characterized by SEM, XRD, 

and Raman spectroscopy. Electrochemical tests were performed to study Li plating and 

stripping stability. Full cells with modified Li metal as anode and LCO/LFP as cathode 

were also tested to demonstrate the practical applications of the samples. The main 

conclusions are as following： 

(1) The Li3N artificial SEI prepared by nitrogen plasma treatment was proved to be 

highly crystalized and oriented in [001] direction, therefore, the Li3N layer was 

highly ionic conductive (5.02×10-1 mS cm-1) and mechanically strong (48GPa).  Li-

ions could easily be diffused through this layer and deposited under the artificial 

SEI. The dendrites were suppressed due to its high Young’s modulus.  

(2) The nitrogen plasma treatment promoted the formation of a dense Li3N layer that 

is covered the whole surface of the Li metal surface. In comparison, Li3N prepared 

without plasma showed a lot of creaks.  The dense Li3N layer separated the liquid 

electrolyte from reactive Li metal and reduced side reactions, therefore, decreased 

the electrolyte depletion.  
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(3) The optimized Li3N thickness was found to be 8 µm obtained at 2 minutes of plasma 

treatment time. It showed a stable depositing/stripping cycling stability to 30,000 

minutes and high capacity retention of 96% in the full cell after 100 cycles with 

LCO as the cathode. With a too thick Li3N  layer of more than 8 µm,  It might 

hinder the Li-ion transport. 

(4) The 3D porous CuCF demonstrated a uniform, dendrite-free Li plating/stripping 

comparing with CF and planar Cu. It showed a high CE of 99.5% after 300 cycles 

(~1200 hours) in half cell test and a more than 99% capacity retention in full cell 

test. It could be attributed to the uniformly distributed Li nucleation sites and 

reduced local current density. 

(5) The as-prepared CuCF has a low mass density. A very high gravimetric capacity of 

3001.1 mAh g-1 was demonstrated at 16 mAh cm-2 which has reached 77.7 % of 

the theoretical value of Li metal anode (3860 mAh g–1). The reason could be 

attributed to its copper-clad structure which was constructed based on carbon fibers. 

A thin layer of Cu was coated on its surface by electrodeposition.  The low mass 

density could significantly increase battery energy density. 

(6) CuCF showed a flexibility feature that can be folded 100 times without and 

performance loss. The flexibility enabled an adjustable thickness and could 

accommodate an extra-large amount of Li.  Besides, it provided a possible solution 

to construct flexible electronic devices in the future.  
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4.2 Significance 

In chapter 2, we have demonstrated that ionic conduction and Young’s modulus are two 

very important criteria for an artificial SEI layer in Li metal battery. High ionic 

conductivity enables an easy Li ions transportation while the high Young’s modulus could 

suppress the dendrite formation. These proposed theories can be used to guide future 

research to look for other suitable materials as artificial SEI. In addition, we also found that 

uniform distributed protrusions on the surface might homogenize the distribution of electric 

field and induce a uniform Li flux, which helps obtain an even Li deposition. This could 

inspire the research on the Li surface pattern or designing 3D structured current collectors. 

For the fabrication process, the plasma activation method used in Li3N fabrication has also 

shown a promising way to reduce the processing time to get a high-quality SEI film. Other 

high ionic conductive compounds such as Li2S and LiF could be explored using a similar 

method with a different reactive gas such as H2S and HCF2Cl to generate a plasma 

atmosphere. The parameters including applied DC power, gas flowrate, and plasma 

treatment time, of course, still need to be further investigated to get a working artificial 

SEI.  

To fulfill the high energy density requirement of Li metal battery, a light-weight current 

collector is critically important. We have proposed a 3D current collector with high 

porosity and uniformly distributed Li nucleation sites in chapter 3. The Li deposition 

morphology was studied and correlated with the surface and conductivity of the current 

collector. Due to the non-uniform distribution of conductive spots on the current collector 

at the carbon-based current collector, the dendrites formed inevitability. Future current 

collector design should focus on the surface morphology and create uniform nucleation 
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sites on the 3D current collector to guide the Li deposition. Considering the many materials 

that have been found to be lithiophilic such as Ag, Sn, and ZnO, these materials can be 

used as a modification layer onto the current collector either by chemical modification or 

physical deposition. The conductivity of the current collector is also very important. High 

conductivity can induce a surface Li deposition while a low conductivity promotes uneven 

Li nucleation. The method to prepare the CuCF can be borrowed to fabricate light-weight 

current collectors from other carbon sources. Meanwhile, the electrodeposition method can 

be applied with other metal coatings such as Ni and Ag.  

The research conducted in this dissertation could also be further applied to sodium, 

potassium, calcium, and other similar metal battery chemistry. Take sodium metal battery 

as an example, even though it has a much lower specific capacity (1166 mAh g-1) and lower 

reduction potential (-2.71 V) than that of Li (3860 mAh g-1 and -3.04V),  the sodium source 

is more abundant than Li. Sodium metal batteries therefore can be a good candidate for 

large-scale power grid energy storage. To solve the dendrites growth problem in sodium 

metal batteries, a similar approach can be applied such as creating artificial SEI by plasma 

treatment or constructing porous current collectors.  
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4.3 Future work  

To make this dissertation more comprehensive, some further work can be done, which 

might help to get a deeper understanding of Li deposition under different circumstances 

and push the boundary to future the commercialization of Li metal batteries. Some 

proposed works are listed below. 

(1) The research approaches discussed in Chapter 2 and Chapter 3 can be combined. 

Specifically, after the pre-deposition of Li into the 3D host, a nitrogen plasma can 

be applied to obtain a 3D electrode with a Li3N artificial SEI layer. During battery 

operation, Li ions diffuse through the artificial layer and deposit into the 3D host. 

Therefore, Li metal can be protected in two ways at the same time. The 3D host 

lowers the local current collector and the Li3N suppresses the dendrite growth. This 

might can combine the advantages from both approaches and further boost the 

battery performance.  

(2) Computer simulations such as first principals/density functional theory (DFT) can 

be used to further understand the battery chemistry. Computer simulations can 

provide a way to get a much more fundamental understanding of Li transportation 

through the artificial SEI layer, Li-ion conductivity of different crystal structures 

and orientations, and the Li deposition behavior on different current collector 

surfaces. It will be a powerful tool to predict new materials and a new structure for 

future Li metal battery research. 

(3) The chemical composition and crystal structure can be further analyzed by some 

advanced characterization techniques such as X-Ray photoelectron spectroscopy 

(XPS) and transmission electron microscopy (TEM). It will help to understand the 
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growth mechanism of single-crystalline Li3N and the surface chemical bonding 

information of the electrodeposited Cu. The post-mortem method to study Li 

morphology has some drawbacks such as Li dendrite structure can be destroyed 

during the battery disassembling. It is important to investigate Li deposit behavior 

in a real-time manner.  Therefore, in-situ/operando microscopy can also be used to 

study the real-time Li deposition on the artificial SEI protected Li anode and in a 

3D structured current collector.  

(4) The cells in this dissertation are tested using a coin cell structure, which is used for 

foundational study and proof of the concept. In the future, batteries can be 

fabricated in a pouch cell structure and tested at more strict and practical conditions. 

To fulfill the commercialization goals, batteries have to use a lean electrolyte 

condition (less than 3 g Ah-1), a limited amount of the Li (less than 3 mAh cm-2), 

and high cathode loading (large than 20 mg cm-2). Batteries can be tested in a wide 

temperature range (-20oC – 80oC) instead of only at room temperature. Mechanical 

tests (such as bending and puncture test) can also be done to ensure safe operation 

under collision conditions.  
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