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ABSTRACT The field of optical nanoscopy, a paradigm referring to the recent cutting-edge developments
aimed at surpassing the widely acknowledged 200nm-diffraction limit in traditional optical microscopy,
has gained recent prominence & traction in the 21% century. Numerous optical implementations allowing
for a new frontier in traditional confocal laser scanning fluorescence microscopy to be explored (termed
super-resolution fluorescence microscopy) have been realized through the development of techniques such
as stimulated emission and depletion (STED) microscopy, photoactivated localization microscopy (PALM)
and stochastic optical reconstruction microscopy (STORM), amongst others. Nonetheless, it would be apt
to mention at this juncture that optical nanoscopy has been explored since the mid-late 20 century, through
several computational techniques such as deblurring and deconvolution algorithms. In this review, we take
a step back in the field, evaluating the various in silico methods used to achieve optical nanoscopy today,
ranging from traditional deconvolution algorithms (such as the Nearest Neighbors algorithm) to the latest
developments in the field of computational nanoscopy, founded on artificial intelligence (AI). An insight is
provided into some of the commercial applications of Al-based super-resolution imaging, prior to delving
into the potentially promising future implications of computational nanoscopy. This is facilitated by recent
advancements in the field of Al, deep learning (DL) and convolutional neural network (CNN) architectures,
coupled with the growing size of data sources and rapid improvements in computing hardware, such as
multi-core CPUs & GPUs, low-latency RAM and hard-drive capacities.

INDEX TERMS Super-resolution microscopy, computational nanoscopy, high-resolution microscopical

imaging, optical microscopy, deep learning.

I. INTRODUCTION

Optical microscopy has proven to be a ubiquitous tool and
a gold standard for biological, geological and materials sci-
ence research, as well as industrial quality control pro-
cesses. Nonetheless, traditional optical microscopy suffers
from numerous limitations, including (but not being restricted
to) blurring/haze, lateral and axial resolution limitations [1],
poor signal-noise ratio (SNR) and poor contrast at higher
magnifications. In particular, an oft-cited equation describing
the inherent resolution limitation faced by the compound
optical microscope is the Abbe equation (proposed by Ernst
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Abbe in 1873 [1]), which may be defined as follows:

A
Abbe Lateral Resolution, dyy = ——— (D
’ 2nsin 6
2)
Abbe Axial Resolution, d, = — 2)
(nsin@)

where A is the wavelength of the irradiating light, n is the
refractive index of the imaging medium and 6 is the aperture
angle of the light cone [1]. The product n sin 6 is also
sometimes defined as the numerical aperture (NA) of the lens.

In 1896, Rayleigh extrapolated (1) to include an addi-
tional contribution by the condenser optics, thereby contrast-
ing episcopic (traditionally epifluorescence) microscopy with
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FIGURE 1. The 3 widely-utilized formulae (i.e. Rayleigh, Sparrow and
Abbe) for resolution computation. The red and blue curves represent the
individual intensity variations at different points in a specimen where the
vertical (y-) axis is the intensity and the horizontal (x-) axis is the lateral
separation between the points. The top plots describe the said individual
contributions to the intensity distribution while the bottom plots
illustrate a super-imposed intensity profile formed by each of the
individual components in the respective top plots. The Abbe limit is
based on the full width at half maximum (FWHM) of the 2 overlapping
Airy disks, the Rayleigh limit is used when the central maximum of one
Airy disk overlaps with the first minimum of another (producing a
superimposed trough of 20-30% of the peak intensity) and the Sparrow
limit when the 2 Airy disks overlap so that there is no visible difference in
their superimposed intensities across the entire resolution distance. Airy
disk patterns are further described in Fig. 3. Figure reprinted with
permission from [5] and adapted.

conventional diascopic brightfield illumination [2]:

0.61A
Rayleigh Criterion, d, , = (for fluorescence) or
obj
1.22
dx,y = ——————— (for brightfield)
NAcond + NAobj
3)

where NAcong and NAp; refer to the numerical apertures of
the condenser and objective optics respectively [2].

Evaluation of the Abbe and Rayleigh equations above yield
a minimum lateral resolution of ~174nm (for Rayleigh) and
143nm (for the Abbe equation), when considering the shortest
possible wavelength of visible light (400nm) and the highest
possible NA attainable by most microscope objectives and
condenser lenses today (~1.4) [3] (Ienses having NAs beyond
this value are known to be manufactured but are excluded
from the current context, as their applications are rather con-
strained and specialized in nature, e.g. TIRF [4]). A third
method for lateral resolution computation (the Sparrow cri-
terion) may be defined as dyxy = 33171)9‘ , which evaluates to
a value much closer to that obtained from the Abbe lateral
resolution formula [1]. A diagram illustrating each of these
3 methods of resolution computation (and their differences)
is depicted in Fig. 1:

As such, numerous researchers globally have sought to
circumvent these limitations through the development and
exposition of both optical and computational approaches,
prominently exemplified through the emergence of super-
resolution fluorescence microscopy (as an optical enhance-
ment of existing fluorescence microscopy methods) which
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FIGURE 2. The 3 eras of nanoscopy (inferred from publication count as
obtained from ScienceDirect). In this aspect, the publication count may
be employed as a tentative measure to indicate the research interest in
the said area.

culminated in the Nobel Prize in Chemistry being awarded
to its developers (Moerner, Betzig and Hell) in 2014 [6].
Nonetheless, in this succinct (yet desirably impactful) review,
we seek to evaluate some of the recently-employed com-
putational advancements in the field of optical microscopy,
with the intent that researchers worldwide would be inspired
to address some of the existing limitations through fur-
ther advancements in these in silico methodologies. This
would inadvertently aid in potentially pushing the envelope
of optical microscopy into the nanoscopy domain. In doing
so, it would also be imperative to highlight the need for
exploring the principles of image deconvolution, which is
exemplified within the present review as well. In this light,
Fig. 2 depicts a general timeline plot of publications which
illustrates the advancements made in the field of nanoscopy
over the decades:

At this juncture, it would be noteworthy to mention
that optical nanoscopical procedures (such as STED [7],
GSDIM [8], dSTORM [9], Lattice SIM [10], etc) are not
discussed in the present review, as the focus of this study is to
assess the computational aspects of nanoscopy. Nonetheless,
as optical approaches are complementary to the computa-
tional aspects in most nanoscopy applications, the interested
reader is encouraged to explore the afore-mentioned refer-
ences (or [11]) for a detailed discussion on each of these tech-
niques. The review is thus structured in the following manner:
Section II presents an overview of some popular deconvo-
lution algorithms utilized in microscopical imaging today,
Section III discusses some commonly-used noise removal
methods, while Section IV delves into Al and its current role
in computational optical nanoscopy. The use of deep learning
for image denoising is further presented in Section V and this
is coupled with an exploration of the commercialized appli-
cations of current Al-based image enhancement approaches
in Section VI. Section VII details the present limitations and
potential future advancements in the field of computational
nanoscopy, with the study being concluded in Section VIIIL.

Il. DECONVOLUTION IN OPTICAL MICROSCOPY
Deconvolution methods have long been a source of image
refinement and sharpening, although it would be prudent to
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FIGURE 3. Airy disk patterns and their corresponding PSFs (which
represent a Gaussian distribution). PSFs are widely used in the optics
domain to refer to the blurring kernel (imposed by the limitation of the
imaging optics, mismatch between the exact specifications of the
objective and the mountant, deviations from ideal imaging conditions,
etc). A higher resolution is attained by using a lens having a higher
numerical aperture [11], as the FWHM of the PSF (and consequently the
diameter of the centroid maximum of the Airy disk) is reduced.

mention that deconvolution differs from sharpening, in that
the former is intended to increase the resolution of an image,
while the latter enhances edges in an image. Nonetheless (in
some instances), the consequence of a resolution enhance-
ment may very well be a sharpened image. Initially devel-
oped for temporal analysis by Wiener [12], deconvolution has
gained prominence in the field of optical microscopy due to
its ability to reassign out-of-focus light spots to their centroid
maxima — made plausible due to the symmetric nature of
the point spread function (PSF) of the light rays, as shown
in Fig. 3:

Generally, the emergence of light rays through the opti-
cal train may be expressed by the mathematical convolution
operation (®) as described in (4):

(h®x)+e=y “4)

where h refers to the PSF (convolved with x as a consequence
of the optical limitations of the system in question), x is the
actual signal to be recovered, y is the detected signal/impulse
response of the system and ¢ is the noise which has interacted
with the convolved signal (& ® x) (adapted from [13]).
Notably, the convolution operator would be translated to
multiplication in Fourier space, hence deconvolution may be
perceived as division following a Fourier transform (FT) of
the acquired impulse response y, where the FT of the PSF is
known as the Optical Transfer Function (OTF) [1]. Nonethe-
less (and as expected in most instances), the introduction of
noise ¢ makes it exceedingly difficult to accurately obtain
the unaltered signal x, although numerous techniques (both
optical and computational) have been proposed to counter and
mitigate the effects of ¢ on the detected impulse response y.

VOLUME 8, 2020
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FIGURE 4. A micrograph of an ovary section blurred with a Gaussian
kernel and subsequently deconvolved (using Wiener filtering) in MATLAB
(The MathWorks, Inc.) Notice the computed difference between the
deconvolved and raw image (the image on the bottom right) which is
almost negligible, implying the high restorative efficiency of Wiener
filtering in this context.

In this regard, optimal performance in deconvolution has been
reported for thin (<50um) sections, or optically-transparent
material with little fluorescence, posing a challenge for
live cell imaging applications due to motion blurring and
enhanced spherical aberration effects [14]. Fig. 4 illustrates
an image subjected to a Gaussian blur kernel/PSF and its
corresponding deconvolved image, while Fig. 5 shows the
diffraction limitations imposed by the OTF (referred to as the
Abbe limiting frequency) [1]:

As such, it would be noteworthy to explore the various
current computational approaches to resolving this dilemma,
although one should be aware that none of these methods
provide a perfect solution in reality. Moreover, the prob-
lem is further exacerbated by spatiotemporally-variant PSFs
(partially elucidated in [15] which describes a non-linear
variation in the PSF across different axial planes), coupled
with complications such as the variable optical density of
the specimen and mountant at different locations. In this
regard, it would be essential to holistically evaluate the var-
ious deconvolution and denoising algorithms being utilized
today, emphasizing on their underlying principles, advan-
tages and shortcomings (where appropriate). Past studies
(such as [16]) have attempted to assay and categorize the
numerous deconvolution algorithms presently available into
3 main classes, namely (i) deblurring, (ii) inverse filtering
and (iii) constrained iterative protocols, with both (ii) and
(iii) being regarded as image restoration algorithms [14]. Fur-
ther details on each of these algorithms and their respective
classes are as depicted in Table 1 below (information adapted
from [14] and [17]):
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FIGURE 5. A simplified diagram illustrating the conversion of spatial
displacements in real space into spatial frequency variations in Fourier
space (the PSF in real space is translated into the OTF in Fourier space).
The low frequency (blue) wave in real space corresponds to large
features, while the high frequency (yellow) and max frequency (magenta)
waves correspond to much smaller features (interference caused by
super-positioning of these waves result in the final image as observed
through the microscope eyepiece). In the Fourier space, waves having
frequencies beyond the Abbe limiting frequency (f5p) are not captured by
the lens, implying that features smaller than the Abbe diffraction limit
(dap) cannot be effectively resolved. The diagram in the middle depicts
how the light rays enter the objective lens - as the frequency of the
incident light ray increases, its angle of deviation from the optical axis of
the objective lens increases as well, since higher frequency waves are
refracted more than their lower frequency counterparts when traversing
the boundary between 2 optically different media. Figure adapted

from [1].

TABLE 1. Categorization of current image deconvolution procedures
(Adapted from [14] and [17]).

Main Class Sub Class Filters / Algorithms
e Nearest Neighbors
Deblurring | Subtractive e No neighbors
e Unsharp mask
e Tikhonov-Regularized Inverse
Linear Inverse Filter (TRIF)
Inverse e Naive Inverse Filter (NIF)
Filtering . . Laplacian) Regularized Inverse
ﬁle\iliaerlzed ;iltgr [(L)l%IF]%includes Wiener
filter)
e Maximum Likelihood Estimation
[e.g. Richardson-Lucy (RL) and
Poisson Noise RL with Total Variation]
e  Blind / Adaptive blind / Non-blind
deconvolution
e  Jansson van Cittert
e Tikhonov-Miller / Iterative
constraint Tikhonov-Miller
Iterative Gaussian Noise | ®  Linear Least Squares (Landweber)
deconvolution
e Wavelet deconvolution (including
ISTA, FISTA, SURE-LET,
PURE-LET)
e  Blind / Adaptive blind / Non-blind
Constrained deconvolution
(Non-negative) | e  Least squares deconvolution
(including NNLS, BVLS)

A deeper insight into the various deconvolution method-
ologies highlighted above is provided in the subsequent
sections (to cater to the reader’s interest), although greater
emphasis is placed on the constrained iterative methods
in light of their current popularity and enhanced capabil-
ities (as compared to the deblurring or inverse filtering
protocols).
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A. DEBLURRING

Deblurring algorithms (as the precursor to deconvolution)
seek to remove haze (or blurring) in the image, although
this might not result in a significant improvement in image
resolution. Hence, such algorithms are often utilized for
quick image inspections (e.g. defect identification), rather
than in-depth analysis. Common deblurring approaches
include the No Neighbors or Nearest Neighbors algo-
rithms [18] — the former referring to the projection of the blur
kernel from the image plane itself, while the latter utilizes the
impulse response from a point source above and below the
image plane as a reference to predict the extent of blurring
introduced in the image. In addition, the Unsharp mask [19]
(an image sharpening tool) also represents a popular dehazing
tool employed in professional photography and image-editing
applications, such as Adobe Photoshop. Further details on the
mathematical principles underpinning each of these methods
are discussed in the paragraphs which follow.

The No Neighbors deconvolution algorithm assumes that
the blurring is caused by out-of-focus light originating from
the same image plane as the object being imaged and is
described by lower spatial frequencies [18]. Hence, the No
Neighbors deconvolution algorithm seeks to eliminate this
out-of-focus light by implementing high-pass filters, thereby
amplifying the proportion of high spatial frequencies in the
image. Mathematically, this may be expressed as follows
(adapted from [18]):

~

" =1"(I"® Hy) ®)

where 1™ is the sharpened image, I" is the original blurred
image, H, is the Gaussian blur kernel (derived from the PSF)
and ® is the 2D convolution operator.

In addition, [18] also states how the afore-mentioned equa-
tion may be improved through the incorporation of a weighted
factor (herein represented by ) so that the above equation
becomes:

"=p-1"[(1-p)- (" ® Hy)] (©6)

where the range of g = [0.6, 0.85] to yield optimal results
for I"™ in most instances [18].

In contrast, the Nearest Neighbors algorithm utilizes the
impulse response from the optical planes both immediately
before and after the image plane in an acquired Z-stack to
be convolved with a suitable blur kernel and the result sub-
tracted from the blurred image plane to obtain the sharpened
image [18]. In this respect, the Nearest Neighbors algorithm
is based on the premise that the out-of-focus blur in the
image plane is primarily generated from the optical planes
both immediately above and below the image plane, so that
elimination of the defocused optical planes from the image
plane would yield the sharpened image. As previously, this
may be expressed mathematically by the following equation
(adapted from [18]):

" = 1"y - [I", ® Hy) + (I, @ Hy)] ©)
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FIGURE 6. A Raw image of an anther. B Unsharp mask applied to the raw
image in A using Adobe PhotoShop CS5 (© 1990-2010 Adobe Systems
Inc.). Notice the highlighted structural details evident upon application of
the Unsharp mask algorithm. Filter parameters used are 200% (Amount),
33.6 pixels (Radius), 2 levels (Threshold).

where /™, and I'"| are the images acquired in the optical
planes immediately before and after the evaluated image
plane within a Z-stack and y is the additional weighting
factor. In this respect, an apparent drawback of the Nearest
Neighbors algorithm refers to the step-size in the acquired
Z-stack, which may be perceived as a modulated function
of the depth-of-field (DoF) of the microscope objective lens
being used. An axial step-size greater than the DoF would
result in an inaccurate approximation of the blur introduced
by the image matrices /™, and I™,, which would conse-
quentially result in the computation of a non-optimal raw
image I"™.

A third deblurring algorithm often utilized in image
processing is the Unsharp mask (which is akin to the No
Neighbors deconvolution algorithm). However, in Unsharp
masking, the edge-enhancing kernel is obtained by subtract-
ing a smoothed/blurred version of the original image from the
original image [19]. This kernel is then added to the original
image to obtain a sharpened image [19]. Mathematically,
this may be illustrated by the following matrix computation
(adapted from [19]):

M=I"—U"®H)=1I"—[" 8)

where H is the smoothing kernel, ™ is the smoothed (blurred)
version of /"™, M is the mask image and

~

I = min[(I" + « - M), 255] ©)

where ™ is the sharpened image of /™ and « is the weight

controlling the extent of sharpening by the mask M.
Visually, an image deblurred through implementation of

the Unsharp mask algorithm is presented in Fig. 6 below:

B. INVERSE FILTERING

Inverse filtering represents another set of frequently
employed image deconvolution algorithms. However, as the
principle of inverse filtering is simple (to introduce a decon-
volution kernel ! which restores the blurred impulse
response y to its original state x, where h ® x = y, ® repre-
senting the convolution operator), the effective use of inverse
filtering is determined by the level of noise (both photon and
detector noise) in the image — the higher the noise, the less
effective the deconvolution. Commonly used inverse filters
include Naive inverse filtering (NIF), the Tikhonov-Miller
filter (an example of a linear inverse filter) and the Wiener
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filter (a regularized inverse filter). An additional approach
couples Tikhonov regularization with NIF, minimizing the
latter’s contribution of noise [20]. The specific details on
each of these inverse filtering algorithms are outlines in the
following sub-sections for the interested reader.

1) NAIVE INVERSE FILTERING (NIF)

NIF represents one of the most basic deconvolution protocols,
which seeks to minimize a least-squares cost function [20].
However, in so doing, NIF also accentuates measurement
noise, resulting in an increased number of high-frequency
waveforms detected in the impulse response of the system.
Mathematically, NIF may be represented by the following
equation:

X= argmxinf;‘ (x) (10)

where £ (x) = ||y-Hx||2, y is the observed data, H is the PSF
matrix and x is the underlying fluorescence signal [20].

When Gaussian noise is present, NIF reduces to the con-
cept of maximum-likelihood estimation, which may be deter-
mined via a quotient of coefficients in Fourier space as
follows:

o~

_y
max(h, €)

X= (11)
where 37\ v and ’h\represent the discrete FT coefficients of X, y
and the PSF, max represents the element-wise maximum and
€ is a constant term, included to circumvent divisions by zero
(adapted from [20]).

Subsequently, the inverse FT of X is used to obtain the
final solution, where a regularization parameter defined as the
squared Euclidean norm of x (||x||%) may be added to & (x)
to accord large values with a penalty (a procedure known as
Tikhonov-regularized NIF/TRNIF) as follows [20]:

£ (x) = ly-Hx|I* + A Ix[I3 (12)

where A is a weighting factor determining the contribution of
the 2 terms in the equation [20].

The above equation may then be minimized by applying
the following relation, which may be considered as a maxi-
mum a posteriori (MAP) model, since A is used to introduce
prior information about x to facilitate its estimation:

-1
X = (HTH + M) HTy (13)
where [ is the identity matrix [20].

2) TIKHONOV-MILLER (TM) AND ITERATIVELY
CONSTRAINED TIKHONOV-MILLER (ICTM) FILTER
Tikhonov-Miller (TM) filtering (as an example of linear
inverse filtering) is often utilized as a preliminary strategy
for image deconvolution prior to iterative deconvolution. This
may be attributed to it being computationally economical and
rapid, although TM filtering is simultaneously susceptible to
artifact generation, allowing noisy effects to be effectively
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transferred and thus unsuited for enhancing an image’s res-
olution [14]. The TM algorithm uses an iterative gradient
descent approach to minimize the regularized inverse filter
cost, allowing the implementation of a positivity constraint at
each iteration [17]. An alternative form of the TM filter refers
to the iteratively constrained Tikhonov—Miller (ICTM) filter,
which is formed with repeated incremental projections of TM
onto the set (R+)K, where K represents the dimensionality of
the fluorescence signal x (i.e. x € RX) [20]. Mathematically,
the iterative construct of ICTM may be expressed by the
following equation from [20]:

" {x(k) +y (HTy - (HTH + /\LTL> x(k)>}
(14)

(k+1) __
X = P(R

where P(R+)K {a} = max(a, 0) and indicates the

component-wise projection of a onto the set (R*)K, yisa
weighting factor and L represents the matrix corresponding
to the discretization of a differential operator [20].

3) REGULARIZED INVERSE FILTERING (RIF) AND WIENER
FILTERS

Yet another regularized approach to inverse filtering (other
than TRNIF) involves subjecting x to a smoothness con-
straint through reducing the impact of its derivative — a
procedure known as regularized inverse filtering (RIF). The
cost function for RIF may be described by the following
expression [20]:

e
£ (x) = H y—H (HTH + ALTL) HTy

_ 2
a ”(HTH +LTL) 1HTyH2 (15)

The above expression may also be effectively reduced
to (12) when the explicit minimizer x = (H'H +
ALTL)~'HTy [20], thereby proving (15) to be a reformulation
of TRNIF.

According to [20], defining A as the inverse of the noise
variance and coupling it with LTL filtering poses a whitening
effect on x, thereby effectively converting RIF to Wiener
filtering. Wiener filtering shall be discussed in greater detail
in a subsequent section in this review (Noise removal), where
it is being used to both deconvolve and restore a blurred, noisy
image. Nonetheless, [21] has also represented the Wiener
filter via the mathematical relationship below and regarded
it as the “golden linear deconvolution trade-off”’:

H* |x]

V= (16)
HI? - x| + e]

where H* is the complex conjugate of H and |H | refers to the
magnitude of H (adapted from [21]).

For illustration purposes, a single image deconvolved using
ICTM and RIF is depicted in Fig. 7 below:
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FIGURE 7. A Raw image of an oesophagus section; B The raw image in
Adeconvolved using ICTM (N = 20, y-step = 0.7, A = 1.000E-05); C The
same image in A processed using RIF (> = 5). All deconvolution processes
were performed using DeconvolutionLab2 (© 2018 EPFL) [17].

A B

1000 iterations

blue red original

FIGURE 8. A The image of a sub-diffraction-sized bead (corresponding to
the PSF) determined for both blue and red channels. Notice the PSF shift
in the red channel circled above, potentially due to chromatic aberration.
B Raw image of a dividing cell’'s chromosomes (left) and following
application of a NBD algorithm over 1000 iterations (right).

Figures adapted with permission from [22].

C. NON-BLIND DECONVOLUTION

Non-blind deconvolution (NBD) algorithms utilize an empir-
ically determined PSF to deconvolve an image [22]. Most
suited for constant blurring across a specified region of inter-
est, NBD algorithms require the user to image a sample con-
taining sub-diffraction-sized beads [22] (often ~80-150nm in
diameter, or 0.61A/3 NA, where A = 550nm) to compute the
PSF of the optical train and subsequently factor the FT of this
value (as a divisor) into the FT of the impulse response to
obtain the FT of the deconvolved image. Ideally, the sample
containing the beads should be the same sample imaged under
identical conditions to minimize deviations in the acquired
PSF caused by differences in refractive index, optical density
and spherical aberration [22]. A sample image of the PSF
measured using this mode of deconvolution (as well as the
associated images generated via application of the NBD algo-
rithm) is shown in Fig. 8 as follows:

NBD algorithms (generally) have a number of con-
straints, including the need for sample clarity and absence
of dirt, the axial focal range used for acquiring the Z-stack,
the objective type and matching mountant being used,
the temperature of the sample being imaged, etc [22]. Despite
satisfying these conditions, one may still encounter setbacks
through the employment of a NBD algorithm, due to the
varying PSF caused by sample-coverslip distance deviations,
noise or inherent differences between the imaging conditions
of the beads and the sample [22]. However, NBD algo-
rithms are still widely utilized today in popular scientific
imaging application suites such as Huygens Professional
(e Scientific Volume Imaging B.V.) [23] and AutoQuant X3
(e Media Cybernetics, Inc.) [24], as they minimize the num-
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ber of iterations required to attain an optimally-deconvolved
image while accounting for individual setup-specific devi-
ations/aberrations [22]. In this regard, NBD algorithms are
particularly suited for imaging fixed samples, where most of
the confounders, such as varying sample-coverslip distances
due to the movement of the sample (for liv