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Optimization of Fuzzy Energy Management System
for Grid-Connected Microgrid Using NSGA-II

Tiong Teck Teo, Member, IEEE, Thillainathan Logenthiran, Senior Member, IEEE, Wai Lok Woo, Senior Member,
IEEE, Khalid Abidi, Member, IEEE, Thomas John, Member, IEEE, Neal S. Wade, Member, IEEE,

David M. Greenwood, Member, IEEE, Charalampos Patsios, and Philip C. Taylor, Senior Member, IEEE

Abstract—This paper proposes a fuzzy logic based energy
management system (FEMS) for a grid-connected microgrid
with renewable energy sources (RES) and energy storage system
(ESS). The objectives of the FEMS are reducing the average peak
load (APL) and operating cost through arbitrage operation of
the ESS. These objectives are achieved by controlling the charge
and discharge rate of the ESS based on the state-of-charge of
ESS, the power difference between load and RES, and electricity
market price. The effectiveness of the fuzzy logic greatly depends
on the membership functions. The fuzzy membership functions
of the FEMS are optimized offline using a Pareto based multi-
objective evolutionary algorithm, nondominated sorting genetic
algorithm (NSGA-II). The best compromise solution is selected as
the final solution and implemented in the fuzzy logic controller. A
comparison with other control strategies with similar objectives
are carried out at a simulation level. The proposed FEMS
is experimentally validated on a real microgrid in the energy
storage test bed at Newcastle University, UK.

Index Terms—energy storage management, membership func-
tion tuning, microgrid, multiobjective evolutionary algorithm.

I. INTRODUCTION

Microgrids are small-scale power systems which contain
renewable energy sources (RES) such as photovoltaic (PV)
and wind power, demand, and control and energy management
systems to allow them to operate independently from the main
transmission and distribution system. The variability of the
load and generation within a microgrid pose serious challenge
to the stability and security of the power system [1]. Energy
Storage Systems (ESS) are seen as a key enabling technology
to mitigate these challenges. However, while capital costs
have fallen significantly, large-scale ESS remain expensive. As
such, the operation of a single ESS should provide multiple
services to maximize its benefit [2].

ESS can provide services such as energy arbitrage and peak
demand reduction. Energy arbitrage describes the process of
charging the ESS when the cost of electricity is low and
discharging when the cost is high. The ESS can thereby gain
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revenue by capitalizing on the price difference. Peak demand
reduction is a technique to reduce the power consumption
during the period(s) of maximum demand. The ESS charges
when the demand is low and discharges when the demand is
high; this can assist the power system operator to reduce or de-
fer costly infrastructure expansion, avoid operating expensive
peaking generators, and reduce network losses.

Several control strategies have been proposed for the energy
management system (EMS) to enable the ESS to combine
these services, including fuzzy logic-based EMS (FEMS) [3],
fuzzy logic controller (FLC) for wind power smoothing [4],
frequency response [5] and grid power smoothing [6]. These
methods improve the operation of the ESS, the design process
heavily rely on expert knowledge and optimization is not
conventionally applied.

Mathematical optimization methods such as mixed-integer
linear programming (MILP), stochastic programming and con-
vex optimization can also be applied to the EMS. Day-ahead
and week-ahead scheduling of ESS to maximize revenue is
proposed in [7]. The bidding, scheduling and deployment of
an ESS, solely for revenue maximization, using stochastic
programming is proposed in [8]. A daily cost minimization
using convex optimization by considering time-of-use tariffs
and day-ahead forecast of solar PV is proposed in [9]. These
methods aim to find the optimal solution for the respective
objective function which can result in a large optimization
problem. In order to achieve computational viability for real-
time operation, they have to consider a smaller set of uncer-
tainty scenarios or constraint relaxation For the EMS of a
microgrid, many factors have to be considered besides revenue
maximization, such as peak demand reduction [10], storage
degradation [11], and real-time operation under uncertainty
[12]–[14]. A multiobjective ESS in a grid-connected micro-
grid, with the objective of significantly reducing operating cost
and power exchange is also investigated in [15].

An EMS based on Multi-Objective Optimization (MOO) is
proposed in [16]–[18]. The operating cost and peak shaving
of the microgrid are formulated as a single-objective opti-
mization problem through scalarization [16]. The hydrogen
consumption of the fuel cells and load variation are minimized
to prolong the lifetime of the fuel cell using FLC in [17]. The
parameters of the FLC are tuned using a genetic algorithm
(GA). The economic cost and CO2 equivalent emission are
formulated as a day-ahead unit commitment problem and min-
imized using dynamic programming in [18]. These methods
only produces a single solution and do not consider the trade-
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off between objective functions.
In MOO, no single solution exists to minimize both ob-

jectives simultaneously. However, there exists a set of Pareto
optimal solutions. A solution is part of the Pareto set if none of
the individual objective can be improved without deteriorating
the other objective function. Without any additional informa-
tion or preference, all Pareto optimal solutions are considered
equally good [19].

Multi-objective evolutionary algorithm (MOEA) such as
niched Pareto genetic algorithm (NPGA) [20], strength Pareto
evolutionary algorithm (SPEA) [21] and non-dominant sorting
algorithm II (NSGA-II) [22] can find a set of Pareto optimal
solutions in a single run. It has been used in induction
machine design [23], generation and transmission expansion
planning [24], [25] and electric power optimal dispatch [26]–
[28]. NSGA-II is able to find a more diverse solution on the
Pareto-optimal front when compared to other multi-objective
evolutionary algorithms [22], [29]–[31].

FLC based energy management system (FEMS) can be ap-
plied in real-time to manage variability of the load and RES. In
FEMS, key parameters – including the membership functions
(MF) and its fuzzy rules – are defined by expert knowledge.
Determination of optimal FEMS parameters remains a chal-
lenge. Moreover, parameter optimization algorithms for FLC
only focus on a single objective function [32].

The main contributions of this paper are:
1) A new method to simultaneously minimize the operating

cost and peak demand of a microgrid by tuning the
membership functions of a FEMS using NSGA-II;

2) an investigation into the trade-off between conflicting
objective functions;

3) validating the real-time operational perforance of the
proposed FEMS using the energy storage test bed in
Newcastle University, UK.

The rest of this paper is organized as follows: the mathemat-
ical model of the microgrid and proposed FEMS are presented
in section II; section III shows the implementation of NSGA-
II to optimize the fuzzy membership functions; simulation
studies and result can be found in section IV. The experimental
validation of the proposed methodology is presented in Section
V, and conclusions are drawn in Section VI.

II. PROBLEM FORMULATIONS

This paper considers the problem of operating an ESS which
is connected to a microgrid containing renewable generation
sources. The problem is formulated using a fixed time step
equal to the electricity market trading period. All system
variables, constraints, and decisions are assumed constant
for the duration of each time step. The rest of this section
describes the mathematical models of the microgrid and ESS.

A. Grid-connected Microgrid Model

An overview of a grid-connected microgrid test system is
shown in Fig. 1. This microgrid is similar to those considered
in [3], [33], [34]; it contains RES (PV and wind generation),
load, and an ESS. The RES and ESS are connected to a
common DC bus via unidirectional and bidirectional DC/DC

converters, respectively. The DC bus is coupled to the AC
bus via a bidirectional DC/AC converter, and the AC bus is
connected to the main grid and the AC load.

Fig. 1: Schematic of grid-connected microgrid

The power generated by the wind and PV generators are
Pwind and Ppv respectively. Due to the intermittent nature
of wind and PV, the power generated may be greater or less
than the actual load, Pload. The difference between the actual
load and renewable energy is expressed as Pbalance. A positive
Pbalance means the actual load is greater than the renewable
power generated and a negative Pbalance means the renewable
power generated exceeds the load as shown in (1).

Pbalance(t) = Pload(t)− Pwind(t)− Ppv(t) (1)

The ESS power set point, Pess, varies to mitigate the
imbalance as shown in (2). Pgrid is the remaining power
imbalance which must be met by the main grid.

Pgrid(t) = Pbalance(t)± Pess(t) (2)

B. Energy Storage System Model

Energy storage can be modeled by characterizing it in terms
of power rating, energy capacity, and efficiency [35]. These
characteristics are used to design the ESS model in this paper.

1) Power and Energy Limits: There are limits on the
maximum power that can be imported or exported by an ESS;
these limits can be expressed as follows.

0 ≤ Pc(t) ≤ P̄c (3)
0 ≤ Pd(t) ≤ P̄d (4)

where P̄c and P̄d are the maximum charging/discharging rate
of the ESS. The maximum charging and discharging rate is
considered in (3) and (4) in kW.

The energy limits of an ESS can be expressed using the
state-of-charge (SoC).

SoCmin ≤ SoC(t) ≤ SoCmax (5)

SoCmodel(t) = SoCmodel(t− 1) +
Pess(t)∆t

Emax
(6)

where ∆t is the assumed to be the duration of trading period
of the electricity market, in a fifteen-minute basis and SoC(t)
expressed as a percentage.

2) Charging/Discharging Efficiency: When storing energy
in an ESS, some energy will be lost in the conversions from
AC to DC, from electricity to a storable form of energy,
and when reversing these processes to supply power to the
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network. These losses can be quantified by modelling the
charging and discharging efficiencies of the system.

Pess(t) = Pc(t)− Pd(t) (7)

Pc(t) =
pc(t)

ηc
(8)

Pd(t) = pd(t).ηd (9)

where p, η and P are DC power, efficiency and AC power
respectively. Subscripts c and d denotes charging and discharg-
ing. The power losses during conversion between DC/AC and
AC/DC are considered in (8) and (9). The net output power
of ESS is considered in (7) in kW.

C. Fuzzy Energy Management System
A Mamdani type FLC has been used as an EMS to control

the charging and discharging rate of the ESS, an overview
of which is shown in Fig. 2. It is a multi-input single-output
FLC. The inputs are the power imbalance between the RES
generation and consumers’ demand, electricity market price,
and ESS state-of-charge. These inputs are fed into the FLC to
determine the charging and discharging rate of the ESS.
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Fig. 2: Framework of the proposed fuzzy energy management system

The proposed fuzzy energy management system aims to:
1) Minimize the cost of energy bought and sold by the ESS
2) Reduce the average peak load (APL) of the microgrid
3) Avoid over and under charging of the ESS by maintain-

ing the SoC within a upper and lower limits
The first and second aims are achieved by discharging the

ESS during high demand or cost period and charge during low
demand or cost period. The third aim is achieved by operating
the ESS within the upper and lower limits. The proposed FLC
is designed to reduce the consumers’ electricity bill and reduce
the power exchanged between the main and microgrid. The
detailed design of this FEMS is discussed in [34].

III. PROPOSED NSGA-II FOR TUNING OF FUZZY
MEMBERSHIP FUNCTIONS

NSGA-II finds the Pareto-front quickly and efficiently com-
pared to other multi-objective evolutionary algorithms such
as Pareto-archived evolution strategy (PAES) and SPEA [22].
NSGA-II is used offline to optimize the locations of the
membership function by minimizing the operating cost and
APL of the microgrid while satisfying the constraints in
Section II.

The GA starts with a population set which comprises ran-
domly generated chromosomes, each representing fuzzy mem-
bership functions from the proposed FEMS. The chromosomes

are evaluated using the fitness functions, domination count
and crowding distance. After the chromosomes are evaluated,
this population is evolved in through selection, crossover and
mutation operators [36].

The selection operator chooses chromosomes with a higher
fitness and assigns them to the set of parent chromosome, λ.
This set then undergoes crossover and mutation to produce the
chromosomes for the next generation.

In this paper, binary tournament selection is used to select
the parents [37]. pairs of chromosomes are selected randomly
and evaluates head-to-head; the fitter chromosome is then
added to λ. This selection algorithm allows less-fit chromo-
somes to be selected because the fitness is relative to the
opponent rather than the absolute fitness of the population.
The fittest chromosome of the population is also added to λ
to ensure elitism.

The crossover operator works on the principle that the fitter
chromosomes comprising λ will combine to produce a better
chromosome for the next generation. The chromosomes pro-
duced by the crossover operator is the offspring. A simulated
binary crossover is used in this paper [38].

The mutation operator randomly selects chromosomes and
alters them. This broadens the exploration of the search space
and prevents the algorithm from becoming stuck in local
minima.

The parent and offspring chromosomes from these opera-
tions are used in the next generation. This process is repeated
until the termination condition is met. These processes are
described in more detail in the following sections, and the full
algorithm is summarized and in Algorithm 1.

A. Chromosome design

Each membership functions is coded as a string of real
numbers, because precision is lost when the solutions are
coded in binary, and moving to a neighboring solution requires
changing many bits[39]. The type of encoding and the total
number of membership functions determine the length of each
chromosome.

Five membership functions are used to represent different
linguistic terms for each input variable of the FLC. The
membership functions tuned in this paper are triangular and
trapezoidal. The membership functions are encoded into chro-
mosomes, each of which represents a potential solution. Let
chromosome be Cgj,q .

Cgj,q =

m1︷ ︸︸ ︷
x1, x2, x3, x4, ..., xn︸ ︷︷ ︸

m2

(10)

where q is the qth chromosome within generation g for jth

variable, m1 and m2 are the first and second membership
functions respectively. Fuzzy variable Pbalance, ESS and
Pess comprises five triangular membership functions, each
represented by a vector of three elements. From (11), the
left span, center and right span of the triangle are a, b and
c respectively.

f(x, an, bn, cn) = max
(
min

( x− an
bn − an

,
cn − x
cn − bn

)
, 0
)

(11)



4

Algorithm 1: NSGA-II
1) Chromosome Design
2) Initial Population Generation, G = Gk
3) while Termination Condition ¬ do

Fitness Function
Evaluates the quality of each chromosome for All
chromosomes do

Nondominant Sorting
Assign a domination count to each chromosome
for Chromosomes with same domination count
do

Calculate Crowding distance

Binary Tournament Selection
From population P , select λ = {s1, ..., sλ}
s = 1
for s ≤ λ do

Randomly select two chromosome
Compare domination count and crowding
distance
Put fitter chromsome into λ
s = s+ 1

Simulated Binary Crossover
Select two parents x1 and x2
Compute offspring xnew1 and xnew2

Mutation
Random select a chromosome from λ
Change a single gene in the chromosome
Sort the mutated chromosome in descending order.
New population
Combine parent and offspring population
G = Gk+1

Five triangular membership functions are used for Pbalance,
ESS and Pess as shown in Fig. 3. From Table I, the center,
b1 and right span, c1 of the first linguistic term, M1 is equal
to the left span, a2 and center b2 of the second linguistic term,
M2. This is to ensure that there is sufficient overlap between
adjacent linguistic terms. Continuity is lost if the overlap is
too small, and the linguistic term is redundant if overlap is
too large. In this manner, five triangular membership functions
can be represented using seven parameters, g1 to g7. The left,
right and center of M1 can be represented by g1, g2 and g3
respectively.

M1 M2 M3 M4 M5

g1 g2 g3 g4 g5 g6 g7

1

M1 M2 M3 M4 M5

g1 g3 g4 g5 g6 g7 g9

1

g2 g8

Fig. 3: Pbalance and ESS Membership Function

A randomly generated vector of 7 elements, g1 to g7,
can represent the placement of all 5 triangular membership

functions for Pbalance and ESS as shown in Table I.

TABLE I: Encoding Pbalance and ESS

Cg
j,q x1 x2 x3 x4 x5 x6 x7

M1 a1 b1 c1
M2 a2 b2 c2
M3 a3 b3 c3
M4 a4 b4 c4
M5 a5 b5 c5

The fuzzy membership function of Cp is similar to those
ofPbalance and ESS, but contains trapezoids in addition to
triangles. Fuzzy variable Cp contains 3 triangular membership
functions and 2 trapezoid membership functions. The trape-
zoidal membership functions are represented by a vector of 4
elements. From (12), the left and right span are a and d. The
”shoulders” are b and c.

f(x, an, bn, cn, dn) = max
(
min

( x− an
bn − an

, 1,
dn − x
dn − cn

)
, 0
)

(12)
Similar to the chromosome design of Pbalance and ESS, from
Table II, the ”right shoulder”, c1 and right span, d1 of the first
linguistic term M1 is equal to the left span, a2 and center, b2 of
the second linguistic term M2. In this manner, two trapezoid
and three triangle membership functions can be represented
with nine parameters, g1 to g9.

Fig. 4 shows the membership functions for Cp.

M1 M2 M3 M4 M5

g1 g2 g3 g4 g5 g6 g7

1

M1 M2 M3 M4 M5

g1 g3 g4 g5 g6 g7 g9

1

g2 g8

Fig. 4: Cp Membership Function

A randomly generated vector of 9 elements, g1 to g9 can
represent the placement of all 5 membership functions for Cp,
as shown in Table II.

TABLE II: Encoding Cp

Ck
j,q x1 x2 x3 x4 x5 x6 x7 x8 x9

M1 a1 b1 c1 d1
M2 a2 b2 c2
M3 a3 b3 c3
M4 a4 b4 c4
M5 a5 b5 c5 d5

B. Initial Population

The chromosomes are randomly generated and are subjected
to the following constraints:

SoCmin ≤ SoC(t) ≤ SoCmax (13)

Pbalance,min ≤ Pbalance(t) ≤ Pbalance,max (14)

Cp,min ≤ Cp(t) ≤ Cp,max (15)
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Constraint (13) restricts the upper and lower operating
capacity of the ESS, which prevents over and under charging
[40]. Constraints (14) and (15) are the maximum and minimum
values of Pbalance and Cp, which are obtained from the
historical data.

The maximum and minimum boundaries of these constraints
can modified to suit any storage technology, electricity market
price and microgrid configuration for which historical data are
available.

C. Fitness Function

The fitness function evaluates the quality of each chro-
mosome in a given generation. A poorly designed fitness
function will result in a weak solution. The objective of the
proposed FLC is to reduce the overall operating cost and APL
by controlling the charging and discharging of the ESS. The
overall operating cost of the microgrid can be calculated by
(16).

f1 =

T∑
t=1

Pgrid(t).Cp(t) (16)

where Cp is the wholesale electricity price. The microgrid can
freely purchase and sell electricity from the main grid at time
t at the same market price, Cp(t).

a) Pgrid(t) > 0 if electricity is purchased from the grid;
b) Pgrid(t) < 0 if electricity is sold back to the grid.
The APL of the power profile is calculated using (17). The

operating cost can be reduced by reducing the peak load of
the power profile because the price is comparatively higher
during this period.

f2 =

∑ω
m=1 Pgrid,max(m)

ω
(17)

where ω is the total number of months.
Because the objective of the FLC is to minimize operating

cost and APL, equations (16) and (17) are used as fitness
functions to evaluate each chromosome.

The focus of this paper is the operation of ESS, therefore
the initial capital and maintenance cost of the ESS – which
are considered during the system planning stages – are omitted
from the operation cost. Furthermore, because the microgrid
can be assumed small relative to the main grid, any arbitrage
operation will have a negligible effect on the energy market
price, therefore the microgrid is assumed to be a price taker.

A multi-objective optimization problem can be formulated
as follows:

min (f1(x), f2(x), ..., fk(x))

s.t. ∀x ∈ X
(18)

where f , k, and x are the fitness function, kth fitness func-
tion and x solution for the fitness function respectively. For
instance, this paper considers (16) and (17) as the objective
functions.

Let the fitness functions f1, f2 be (16) and (17). In addi-
tion to the fitness functions, domination count and crowding
distance are computed to evaluate each solution.

1) Domination count and crowding distance: In multi-
objective optimization, when considering the quality of two
solutions, p and q, with multiple objective functions, i and j,
solution p is considered to dominate solution q if:

1) fi(p) ≤ fi(q) for all indices i ∈ 1, 2, ..., k and
2) fj(p) < fj(q) for at least one index j ∈ 1, 2, ...k

When solution p is compared with q, if the fitness function
for all objectives for p is less than or equal to q and p is less
than q for at least one objective, p dominates q. If this criteria
is not met, p and q are non-dominant and they belong to the
same Pareto front (A set of non-dominated optimal solutions,
in which no objective can be improved without deterioration
of at least one other objective).

All solutions not dominated by any other solutions are
assigned a domination count of 0. All solutions that are
only dominated by solutions with domination count of 0 are
assigned a domination count of 1. This process is repeated
until all the solutions have a domination count. All solutions
with the same domination count are considered equally good.
The solutions with the same domination count are further dif-
ferentiated by introducing a second entity, crowding distance.

Within the same Pareto front, the crowding distance is
calculated. A higher crowding distance signifies a less crowded
region, and vice-versa. When comparing two solutions with the
same domination count, the solution with a higher crowding
distance is the better solution. In this manner, the sorting
algorithm favors a more diverse solution. The detailed im-
plementation of domination count and crowding distance is
found in [22].

2) Best Compromise Solution: Fuzzy set theory is imple-
mented to determine the best compromise solution from the
set of Pareto optimal solutions [26]. For each non-dominant
solution k, the respective fitness function is fuzzified using
(19).

µi =


1 Fi ≤ Fmini
Fmaxi −Fi

Fmaxi −Fmini
Fmini < Fi < Fmaxi

0 Fi ≥ Fmaxi

(19)

For each solution i, the maximum and minimum values are
Fmaxi and Fmini respectively. The normalized membership
function µk for each non-dominant solution, k, is calculated
using (20).

µk =

∑Nobj
i=1 µki∑M

j=1

∑Nobj
i=1 µji

(20)

where M is the total number of non-dominant solutions and
Nobj is the total number of objective functions. The solution
with the highest value of µk is the best compromise solution.
For each minimizing objective within the objective function,
the lowest objective is assigned a value of 1 from (19).

D. Selection: Binary Tournament Selection

Binary tournament selection randomly chooses a pair of
chromosomes from the population [37]. The domination count
of the selected pairs are compared and the chromosome whose
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domination count is lower is selected. If both chromosome
have the same domination count, the chromosome with the
higher crowding distance is selected. Elitism is ensured by
selecting the solution with the highest crowding distance
in the Pareto front and adding it to λ, the set of selected
chromosomes.

E. Crossover & Mutation

Crossover produces the next generation of chromosomes
based on the fittest chromosome from the current generation.
The literature proposes several methods for crossover and mu-
tation, which depend on how the chromosomes are encoded.
Simulated Binary Crossover (SBX) simulates the single-point
crossover operator of the binary-coded GAs. Let Cgj,1 and Cgj,2
be the two fittest chromosome of the gth generation and jth

variable.

Cgj,1 = (c1, ..., ch, ..., cz) (21)
Cgj,2 = (c′1, ..., c

′
h, ..., c

′
z) (22)

where ε is a randomly generated number between 0 and 1,
ψ is a distribution index which determines how similar the
offspring is to the parent and β is the spread factor. The
offspring solution of a large ψ are close to the parent solution
and the offspring solution of a small ψ are far from the parent
solution.

Cg+1
j,1 =

1

2
[(1− β)Cgj,1 + (1 + β)Cgj,2] (23)

Cg+1
j,2 =

1

2
[(1 + β)Cgj,1 + (1− β)Cgj,2] (24)

β =

{
(2ε)

1
ψ+1 if ε ≤ 0.5

( 1
2(1−ε) )

1
ψ+1 otherwise (25)

Random mutation is used in this paper to diversify the
search space based using a predefined mutation probability,
ρm.

IV. SIMULATION RESULTS AND DISCUSSION

The proposed FEMS was implemented using MAT-
LAB/Simulink. The parameters of the grid-connected micro-
grid used to test the FEMS are shown in Table III. The data
used in this paper are obtained from the National Renewable
Energy Laboratory (NREL) [41] and wholesale electricity
prices from Energy Market Company Singapore (EMCSG).
Time series data from January 1st 2013 to March 31st 2014,
with a time step of 15 minutes, were used in this paper. The
resulting dataset contained 43584 data points. The proposed
FEMS aims to minimize the operating cost and APL from
(16) and (17) of the grid-connected microgrid respectively by
tuning the input fuzzy membership functions using NSGA-II.

TheNSGA-II algorithm described in Section II was imple-
mented using a M-script file in MATLAB, and the FEMS was
implemented in Simulink. The data from January 1st 2013 to
December 31st 2013 were used to tune the FEMS and data
from January 1st 2014 to March 31st 2014 were used to test
the FEMS.

TABLE III: Microgrid Data

Parameter Values

PV Array 13.68 kWp
Wind Turbine 12 kWp
Load 26.8 kWp
Energy storage capacity 90 kWh
Maximum charging\discharging rate 15kW
Upper and lower limit 90kWh, 4kWh
Charging\discharging efficiency, ηc, ηd 0.95

The chromosomes of the population were randomly gener-
ated according to Table III. The membership functions from
each chromosome were encoded and evaluated in the FEMS.
After all the chromosomes within the generation were evalu-
ated, they were sorted using NSGA-II. These chromosomes
then underwent crossover and mutation. This process was
repeated until the maximum number of generations was met.

All of the parameters required by NSGA-II were determined
heuristically, and are shown in Table IV.

TABLE IV: NSGA-II Parameters

P G λ ψ ρc ρm
Parameters 100 100 40 2 0.9 0.05

where P is the total number of chromosomes, G is the
total number of generations, λ is the number of selected
chromosomes for crossover, ψ is the crossover parameter, ρc
and ρm are the crossover and mutation probability respectively.

Three case studies are presented in this paper as follows:

• Case study I: Minimizing operating cost
• Case study II: Minimizing APL
• Case study III: Multi-objective optimization

Case studies I and II were designed to find the extreme
points of trade-off on the solution space with competing objec-
tive functions. Case studies I and II investigate single objective
optimization, minimizing only cost or APL, respectively. In
these cases, a standard GA was implemented. Case study
III was a multi-objective optimization, in which cost and
APL were minimized together. In this case, NSGA-II was
implemented.

For each case study, the FEMS was tuned offline with
historical data from 1 January 2013, to 31 December 2013, and
validated online with data from 1 January 2014 to 31 March
2014. All case studies investigated the effect of adding the
expert system fuzzy membership functions into the initial gen-
eration of GA/NSGA-II. As such, each case study is repeated
twice. The first case, with expert system fuzzy membership
functions as one of the chromosomes in the initial population,
are labelled as Predefined and the second, without any expert
fuzzy membership functions, are labelled as Random.

As a comparison to NSGA-II for case study III, the two fit-
ness functions, f1 and f2 from (16) and (17) were normalized
using (26) and summed into a single figure of merit using (27).
Normalizing both objective before summing them up gives an
equal importance to both objectives instead of using weighted
sum where additional weights parameter must be determined
[42].
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X ′ =
X −min(X)

max(X)−min(X)
(26)

fagg = f1 + f2 (27)

The results of aggregated multi-objective optimization were
compared with NSGA-II. Furthermore, an expert tuned FEMS
was used as a comparison with the proposed methodology in
each case study.

A. Case study I: Minimizing operating cost

This subsection presents the results and discussions for
single objective optimization of operating cost using standard
GA. The offline tuning and online validation results are
shown in Table Va and Vb respectively. In offline tuning, the
operating cost was reduced by approximately 5.5% and 3.8%
in predefined and random. The APL reduced by 6.9% and
8.1% in predefined and random.

TABLE V: Minimizing operating cost

(a) Offline tuning of FEMS for minimizing operating cost

FEMS Cost($) APL(kW) ∆Percentage (%)
Cost APL

Expert FEMS 19246.5 12.5 - -
GA Predefined 18188.1 11.6 -5.5 -6.9
GA Random 18507.9 11.5 -3.8 -8.1

(b) Online validation of FEMS for minimizing operating cost

FEMS Cost($) APL(kW) ∆Percentage (%)
Cost APL

Expert FEMS 4780.6 12.5 - -
GA Predefined 4632.9 11.8 -3.1 -5.8
GA Random 4684.5 12.1 -2.0 -3.6

The GA with predefined membership functions in the initial
population produced a better solution than random member-
ship functions in terms of operating cost in this case study.
Not only did it provide a lower operating cost, it also yielded
a lower APL.

The reduction of population average fitness and fittest solu-
tion is shown in Fig. 5. GA with predefined expert knowledge
membership functions can reach a lower operating cost faster
than a random initialized GA.

B. Case study II: Minimizing APL

This subsection presents the results and discussions for
single objective optimization of APL using a standard GA.
From this subsection onward, the FEMS were tuned offline
and only the online validation results are shown. The objective
of case study II was to reduce the APL of the microgrid.
The result of the online validation is shown in Table VI. The
APL was reduced by approximately 21.2% and 11.4% for
predefined and random respectively.

GA with predefined membership functions in the initial pop-
ulation produced a better solution than random membership
functions in this case study. Not only did it provide a lower
APL but also slightly reduced the operating cost.

Fig. 5: Single Objective Optimization: Cost

TABLE VI: Online validation of FEMS for minimizing APL

FEMS Cost($) APL(kW) ∆Percentage (%)
Cost APL

Expert FEMS 4780.6 12.5 - -
GA Predefined 4796.8 9.9 -0.3 -21.2
GA Random 4822.4 11.1 -0.9 -11.4

Similar to minimizing operating cost, GA with predefined
expert membership functions can reach a lower APL faster
than a random GA as shown in Fig. 6.

Fig. 6: Single Objective Optimization: Average Peak Load

In case studies I and II, having the expert tuned membership
functions in the initial GA population yielded better results.
For example in Case study I, even though minimizing oper-
ating cost was the objective function, both operating cost and
APL were lower than the case where all initial chromosomes
were random.

It is important to note that in online validation, for case
study I: minimizing operating cost, the lowest operating cost
was $4632.9 and with an APL of 11.8kW. In case study
II: minimizing APL, the lowest APL was 9.9kW with an
operating cost of $4796.8. These are the extreme points in the
solution space, at the edges of the Pareto front. By comparing
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the results in single objective optimization from Table Vb
and VI, both objectives functions are in conflict. When the
operating cost is minimized in case study I, the APL increases
and vice-versa in case study II.

C. Case study III: Multi-objective optimization

Case study III compares three FEMS namely: an expert
system from [34], aggregated multi-objective GA, and NSGA-
II. Similar to case study I and II, aggregated multi-objective
GA and NSGA-II were further separated into predefined and
random. The online validation results are shown in Table VII.

The fittest solution from each generation is plotted onto the
scatter heat maps shown in Fig. 7a and Fig. 7b illustrate the
convergence of the GAs. Dark blue represents first generation,
and dark red represents the 100th generation. The optimum
region is in the bottom left region of the heat map. From the
first generation, the fittest solution of each generation improves
and converges into the bottom left region through the genetic
operators. In FEMS optimized using NSGA-II, by comparing
Fig. 7c and Fig. 7d, the NSGA-II predefined have a more
diverse Pareto front compared to NSGA-II random. NSGA-II
predefined also have more solutions on the Pareto front.

As Table VII shows, the solutions obtained by different
FEMS were fuzzified using (19) and (20) to obtain the
µk. Among these solutions, NSGA-II predefined is the best
compromise solution because it has the highest µk of 0.35. In
the solution obtained by NSGA-II predefined, the operating
cost and APL are decreased by 7.5% and 16.1% during
offline tuning and 2.1% and 18.4% during online validation
respectively.

TABLE VII: Best compromise solution for multi-objective optimization

FEMS Cost ($) APL (kW) µ1 µ2 µk

Expert FEMS 4780.6 12.5 0.00 0.00 0.00
Aggregated predefined 4666.2 12.5 1.00 0.00 0.22
Aggregated random 4739.2 9.3 0.36 1.00 0.30
NSGA-II predefined 4681.9 10.2 0.86 0.72 0.35
NSGA-II random 4751.5 11.6 0.25 0.28 0.12

Fig. 8 shows the solutions for case studies I to III. From
these case studies, the optimum solutions for case studies I
and II are obtained from GA with predefined population. It is
similar with case studies III as the best compromise solution
is obtained with NSGA-II with predefined population. By
comparing with the best solution from case study I and II,
all three solutions belong to the same Pareto front as none of
the solution dominates the other.

D. Simulated operation of FEMS using the best compromise
solution

The best compromise solution from Section IV-C was used
as the FEMS. Fig. 9 shows a one day of FEMS operation.
From 0000 to 0600 hours, Pbalance was positive while the
price was low. Hence the storage capitalized on this arbitrage
opportunity to charge the storage. From 0800 to 1600 hours,
Pbalance and Cp began to increase simultaneously; conse-
quently, the storage discharged to reduce the peak demand.
From 1600 to 2000 hours, the evening peak demand kicked

in and the storage continued to discharge. From 2000 to 0000
hours, the SoC of the storage was approaching the minimum
SoC, so the discharge rate gradually decreased to prevent over-
discharging of the storage. The Pgrid power profile fluctuated
less compared to Pbalance as a result of FEM operation. The
SoC of the storage also operated within the upper and lower
boundary.

In multi-objective optimization, NSGA-II converges faster
to the Pareto-optimal front when the initial population is ini-
tialized with expert membership functions. NSGA-II with pre-
defined initial population has higher diversity. While NSGA-II
can automatically generate all the membership functions for
FEMS, empirical evidence from Case I and II have shown that
the solution with predefined expert MF in the initial generation
can yield a more diversified Pareto front and better solution.

Electricity was expensive during peak demand, so discharg-
ing during high price periods also reduced the peak demand
[43]. Reducing peak demand can defer costly expansion of
underutilized peaking power plant, transmission infrastructure,
and distribution network. The APL was reduced by controlling
the charging/discharging of the energy storage without altering
the consumption of the consumer. The proposed methodology
utilizes real-time electricity prices to enhance the operation of
the ESS. It does not require the intervention of consumers to
decide whether to buy or sell from the main grid. Furthermore,
the proposed methodology utilizes the available resources
without any changes or expansion to the current infrastructure
of the microgrid. The proposed FEMS can be applied to
other ESS operation as it is designed with historical data and
parameters of the ESS.

V. EXPERIMENTAL VALIDATION

The proposed methodology is experimentally validated in
real-time using the energy storage test bed (ESTB) at New-
castle University, UK. An overview of the ESTB is shown
in Fig. 10. The ESTB was connected to a 400V three phase
network via a bi-directional AC/DC power converter rated at
360kVA, which then interfaces with the Northern Powergrid
distribution network.

A. Energy storage test bed setup

1) 400V/400V Isolating Transformer: The ESTB is con-
nected to the University network. The test bed is isolated from
the main grid by this transformer.

2) Engineering station: The engineering station acts as a
supervisory and control center for the ESTB. The proposed
FEMS is implemented in MATLAB simulink model. The
engineering station interfaces with the real-time target (RTT).

3) 700V DC busbar and power converters: The ESTB con-
sisted of a single bi-directional AC/DC power converter rated
at 360kVA and three bi-directional DC/DC power converters
rated at 90kW each. These converters were connected to a
common 700V DC bus. They were capable of setting different
voltage, current and power set points either in real-time or
from historical data.
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(a) Aggregated Predefined Multiobjective (b) Aggregated Random Multiobjective

(c) NSGA-II Predefined Multiobjective (d) NSGA-II Random Multiobjective

Fig. 7: Solution Space with Two Minimizing Objectives

Fig. 8: Solutions of case studies I-III

4) Real-time target: The simulink model from the engi-
neering station was compiled into a C program and executed
in the RTT. The RTT controlled the voltage and current levels
of the AC/DC converters, DC/DC converters and DC bus. This
allowed real-time control of the power converters and ESS.

Fig. 9: Power profiles of simulation

5) Energy storage system: A super-capacitor bank with
ratings of 90 kW and 2 kWh was used in this experiment.
The operating voltage was between 300V to 650V. This ESS
was connected to the 700V DC bus via DC/DC converter.

This ESTB setup enabled experimental validation of the
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400V Isolation Transformer Engineering Station Real-time Target

700V DC Busbar and 
Power Converters Energy Storage System400V Incoming

Legend
Data signal Physical signal

Fig. 10: Experimental setup of energy storage test bed

proposed control methodology in real-time and at grid-scale.

B. Experimental results

In the experiments presented, Pload, Ppv , and Pwind were
represented using with data signals. This did not affect the
results adversely, because the focus of this paper is the
operation of ESS.

The time conversion from simulation to experimental is
shown in Table VIII. Since the data signal is in 15 minutes
interval (900s) and the ESTB runs in real-time, the ESTB
operates 20 times faster. Where 1s in real-time corresponds to
45s in simulation time, as such 20s in real-time corresponds
to 900s (15 minutes) in simulink. This allowed the 2kWh
energy storage system to represent a 90 kWh system within
the experiments.

TABLE VIII: Simulation to Experimental Time Conversion

Time-step Energy Capacity

Simulation 900s 90 kWh
Experiment 1s 2 kWh
Ratio 900:1 45:1

The SoC of the actual ESS was estimated using the open
circuit voltage, VOC and the operating voltage range, Vmax
and Vmin as shown in (28) from [44], [45].

SoCactual =
VOC − Vmin
Vmax − Vmin

(28)

Fig. 11 compares the simulation power profile of ESS and
SoC with the experiment. The SoC of the model can be
accurately estimated using the generalized storage model from
(6) and the actual ESS can follow the power setpoints from
the proposed controller in real-time.

Mean absolute percentage error (MAPE) in (29) is used
to quantify the agreement between the simulation model and
experimental results. It is expressed as a percentage.

MAPE =
100%

S

S∑
t=1

|s(t)− e(t)
s(t)

| (29)

Fig. 11: Comparison between experimental and simulation results of the
proposed FEMS

where S, s and e are the total number of samples, simulation
data and experimental data for time t respectively.

From Table IX, the MAPE of SoC and Pess are 1.87% and
1.66% respectively. This shows excellent agreement between
the model and experiment, thereby affirming the feasibility of
the proposed approach in real systems.

TABLE IX: MAPE of simulation and experiment

MAPE (%)
SoC 1.87
Pess 1.66

VI. CONCLUSION

This paper proposes a fuzzy based energy management
system with three inputs and one output. The objectives
are to minimize the operating cost and APL of the grid-
connected microgrid with real-time pricing. The minimization
of operating cost and APL is formulated into a multi-objective
optimization problem with conflicting objective functions.
Expert knowledge is integrated into the initial population of
NSGA-II to obtain a diverse Pareto front in a single run.
Three case studies were conducted in this paper. Case study I
and II present a single objective optimization problem, where
only operating cost or APL is minimized using standard GA.
Case study III presents a multi-objective optimization problem
by comparing an aggregated multi-objectives and NSGA-II.
The results show that NSGA-II with expert knowledge in
the initial population of GA is effective for handling multi-
objective optimization with conflicting objective. NSGA-II is
also able to obtain a diverse Pareto front. The proposed FEMS
can be deployed to other power system with ESS with similar
objectives as it is designed based on the historical data and
not any specific storage technology. Furthermore, the proposed
FEMS is experimentally validated and shows good agreement
with the simulation.
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