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Abstract: A dynamic model of a flexible rotor supported by ball bearings with rubber damping rings was proposed by 

combining the finite element and the mass-centralized method. In the proposed model, the rotor was built with the 

Timoshenko beam element, while the supports and bearing outer rings were modelled by the mass-centralized method. 

Meanwhile, the influences of the rotor’s gravity, unbalanced force and nonlinear bearing force were considered. The 

governing equations were solved by precise integration and the Runge-Kutta hybrid numerical algorithm. To verify the 

correctness of the modelling method, theoretical and experimental analysis is carried out by a rotor-bearing test platform, 

where the error rate between the theoretical and experimental studies is less than 10%. Besides that, the influence of the 

rubber damping ring on the dynamic properties of the rotor-bearing coupling system is also analyzed. The conclusions 

obtained are in agreement with the real-world deployment. On this basis, the bifurcation and chaos behaviors of the 

coupling system were carried out with rotational speed and rubber damping ring’s stiffness. The results reveal that as 

rotational speed increases, the system enters into chaos by routes of crisis, quasi-periodic and intermittent bifurcation. 

However, the paths of crisis, quasi-periodic bifurcation, and Hopf bifurcation to chaos were detected under the parameter 

of rubber damping ring’s stiffness. Additionally, the bearing gap affects the rotor system’s dynamic characteristics. 

Moreover, the excessive bearing gap will make the system’s periodic motion change into chaos, and the rubber damping 

ring’s stiffness has a substantial impact on the system motion. 

 

Keywords: Finite element method; Timoshenko beam; Rubber damping ring; Bifurcation; Chaos 

 

Cite this article as: ZHU Hai-min, CHEN Wei-fang, ZHU Ru-peng, ZHANG Li, GAO Jie, LIAO Mei-jun. Dynamic 

analysis of a flexible rotor supported by ball bearings with damping rings based on FEM and lumped mass theory [J]. 

Journal of Central South University, 2020. 
                                                                                                            
 

1 Introduction 

 
The rotor of the helicopter tail transmission system 

is often made into a thin-walled structure, which is 

installed on bearing supports through ball bearings. To 

improve the vibration and adjust the natural frequency of 

the rotor-bearing system, rubber damping rings are often 

installed between ball bearings and bearing supports, so 

that the movement between them is coupled and 

influenced by each other. As the influencing factors 

considered in the rotor system increase, the lumped mass 

method and linear mechanics model cannot accurately 

explain the system’s dynamic behaviors. The modelling 

methods and nonlinear characteristics of the complex 

rotor system have received extensive attention during 

recent years. 
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Fukata et al. [1] considered the varying compliance 

vibration (VC vibration) due to the change of ball 

bearing stiffness and studied the ultra-harmonic, 

sub-harmonic and chaotic behaviors of the horizontal 

rotor-bearing system supported by ball bearings. Kim 

and Noah [2] introduced the unbalance force and bearing 

gap to the dynamic model of the system, but did not 

consider VC vibration. Their work also investigated the 

instability and nonlinear dynamic behaviors of the rigid 

rotor-bearing system. Tiwari et al. [3] comprehensively 

considered the unbalance force and VC vibration, and 

then discussed the instability and bifurcation behaviors 

of the rotor system with a bearing gap. Harsha et al. [4-5] 

established a rotor-bearing analysis model with surface 

waviness to predict the system’s nonlinear behaviors. 

The nonlinear stiffness between the raceway and the ball 

element was obtained by the Hertz contact theory, and 

the Newton-Raphson method and Newmark-β numerical 

algorithm were combined to solve the system formulas. 

Mevel and Guyader [6] discussed the path of the 

bearing’s VC vibration to chaos through numerical 

calculation and experiments. It indicated that the system 

has the path of double period bifurcation and 

quasi-periodic bifurcation into chaos. Bai and Xu [7] 

developed a rotor-bearing model with bearing gap and 

surface waviness, in which the unbalance force and ball’s 

gyroscopic moment were considered. The results were 

compared with those obtained by their experiment, and 

the effects of the bearing gap, surface waviness and 

radial force on system stability were analyzed. Chavez et 

al. [8] used a Jeffcott rotor to study the path to the chaos 

of the rotor system with loose supports. It was found that 

the rotor system with supporting gaps can lead to chaos 

through the path of period doubling bifurcation. Hou et 

al. [9] established the rub-impact and crack fault model 

of the rotor-bearing system under maneuvering flight 

load, then analyzed the influence of maneuver load on 

the faulty rotor system. Chen et al. [10-12] created a 

rotor-support-casing coupling dynamic model and 

studied the bifurcation and chaos characteristics of the 

aero-engine system. Wang et al. [13] established a 

rotor-bearing-casing dynamic model of a real engine 

with bearing gaps, then investigated the bifurcation 

behaviors of the coupling system at different bearing 

positions with rotating speed. Liu et al. [14] investigated 

the stability and the system’s nonlinear behaviors 

supported by active magnetic bearings. It was revealed 

that Hopf bifurcation occurs in the system through 

theoretical analysis, and the accuracy of the result is 

verified by numerical calculation. Han et al. [15] 

discussed the influence of the heaving motion on the 

rotor-bearing system’s nonlinear dynamics. The 

mathematical model of the rotor-bearing system was 

established in the non-inertial reference. The required 

equations were solved by a numerical algorithm, and the 

global bifurcation, the maximum Lyapunov exponent, 

the time history response, the axial trajectory and the 

Poincare map were obtained. The results showed that the 

heaving motion exerts an effect on the dynamics of the 

rotor system. Wang et al. [16] presented the identification 

method of the unbalance parameter based on a 

single-disc rotor system, wherein the Rayleigh beam 

theory was utilized to construct the rotor’s dynamical 

model and solved the partial differential equations to 

obtain an analytical solution. Moreover, the finite 

element method was employed to calculate the 

unbalanced response of the rotor and compared with the 

analytical solution obtained by the Rayleigh model. 

Alves et al. [17] created a flexible rotor modelled by 

finite element method, which subjected to an unbalanced 

force. Yang et al. [18] proposed a nonlinear rotor-bearing 

mechanical model with imbalance-rub-pedestal 

looseness and then analyzed the motion states of the 

system by means of time history diagrams, axis 

trajectory maps, bifurcation graphs and Poincaré section 

maps, respectively. Dong et al. [19] talked about the 

rotor-bearing system’s dynamic response with rubber 

support utilizing experiment and software simulation. 

The results revealed that the viscoelastic damper could 

significantly improve the system’s dynamic 

characteristics. Saeed and Eissa [20] investigated a 

cracked shaft system’s nonlinear behaviors using the 

global bifurcation diagram, in which the nonlinear 

bearing force, the unbalance force and shaft crack’s 

breathing were taken into account. Peng et al. [21] 

constructed a transient dynamics model of a multi-span 

shaft system based on the Lagrange method. A 

polynomial fitting method was proposed to obtain the 

explicit expression of the vibration mode with elastic 

support. On this basis, the effects of the bearing damping 

and support stiffness on the system’s unbalanced 

dynamic response were analyzed. Maraini and Nataraj 

[22] presented a modelling technology of a nonlinear 

rotor-bearing system which contains the bearing’s VC 

vibration and mass unbalance. The system’s dynamic 

equations were divided into linear and nonlinear 

components, and an equivalent equation was represented 

the nonlinear force of the bearing. Han and Ding [23] 
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developed the differential equations of the complex 

coupling system utilizing finite element and lumped 

mass hybrid modeling methods, in which the linear 

damping support and squeeze film damping support were 

used at both ends of the shaft, respectively. Finally, the 

mixed numerical method was employed to study the 

system’s dynamic response under maneuvering. Liu [24] 

constructed a nonlinear dynamic model of a coupled 

rotor system considering bearing friction, and analyzed 

the influence of external load and speed on system 

vibration. Chouksey et al. [25] introduced the rotor’s 

material damping and the journal bearing’s oil-film force 

to the system, and then investigated their effects on the 

modal characteristics of the flexible rotor-bearing system. 

Mirtalaie et al. [26] established the nonlinear differential 

equations of the bending-torsional-axial coupling 

vibration of the rotating shaft through the Rayleigh beam 

theory. In the model, the effects of bending, torsional and 

axial deformation, gyroscopic force and moment of 

inertia were taken into consideration. The nonlinear 

natural frequency was obtained by solving the equations 

using the multi-scale method. Lu et al. [27] introduced 

the misalignment and rubbing faults to the dynamic 

model of the multi-span rotor-bearing system with the 

gear coupling. The effect of the rotor’s misalignment on 

the stability and dynamic response of the coupling 

system was studied. Nan et al. [28] developed a 

rotor-bearing nonlinear model considering both the 

centrifugal force and rolling bearing’s VC vibration, and 

the effects of the rotational speed, bearing gap, and 

support stiffness on the dynamic response were studied 

utilizing the bifurcation diagrams, Poincare mappings 

and axis orbits. Tadayoshi [29] studied the chaotic 

behavior of a rigid rotor and journal bearings which is 

flexibly supported by rubber O-rings. The threshold of 

stability was clarified as parameters of rotational speed, 

stiffness and damping of the O-ring. Xu et al. [30] 

established the bifurcation tree of the flexible nonlinear 

rotor system moving from period 1 to chaos. The 

semi-analytical method was employed to obtain the 

stable and unstable periodic motions on the bifurcation 

tree of the flexible rotor system, and the eigenvalue 

analysis method was used to analyze the stability and 

bifurcation of the periodic motion. Haslam et al [31] 

proposed a novel method that combines the Jeffcott rotor 

supported by a detailed bearing model with the 

generalized harmonic balance method, which enables 

in-depth study of complex rotor-stator interactions. To 

sum up, several studies on the rotor-bearing system’s 

nonlinear behaviors have been carried out at present, but 

most of the models are relatively simple. Judging from 

the literature retrieved at present, there are few studies on 

bifurcation and chaotic characteristics of the flexible 

rotor system supported by ball bearings with rubber 

damping rings. 

Therefore, a comprehensive coupling model of a 

flexible rotor supported by ball bearings with rubber 

damping rings is proposed and constructed in this 

research, and the system’s equations are computed by the 

precise integration and the Runge-Kutta hybrid 

numerical algorithm. Then, the accuracy and efficiency 

of the coupling dynamic model are proven by the 

multi-span rotor test platform and the influence analysis 

of the rubber damping ring. On this basis, the effects of 

parameters such as rotational speed and rubber damping 

ring’s stiffness on the nonlinear dynamic behaviors of the 

coupling system are investigated by means of the global 

bifurcation diagrams and Poincaré maps. 

2 System Model 

As shown in Fig. 1, the coupling system discussed 

in this paper includes a thin-wall rotor, ball bearings, 

rubber damping rings between ball bearings and bearing 

supports, and a foundation [32]. As mentioned above, to 

consider the effect of the rotor flexibility and the bearing 

position on the coupling system’s dynamics, the finite 

element theory is employed to discretize the thin-walled 

rotor into Timoshenko beam elements, and then the 

differential equations of the bearing’s outer races and the 

supports are established by the lumped mass method. 

Finally, dynamic equations are coupled by nonlinear 

bearing forces and linear support forces of rubber 

damping ring. In order to rapidly create the dynamic 

equations of the coupling system, the mechanical model 

is obtained by simplifying the actual three-dimensional 

model. Fig. 2 shows the finite element model of the 

coupling system with rubber sealing rings. 

 

http://dict.cnki.net/dict_result.aspx?scw=%e5%bb%ba%e7%ab%8b&tjType=sentence&style=&t=construct
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Figure 1 The three-dimensional model of the coupling system 

 
Figure 2 The finite element model of the coupling system

3 System Dynamic Equations 

3.1 Differential Equations of Rotor 

Fig. 3 is the rotor’s mechanical model, where the 

bearing inner rings are fixed at both ends of the rotor and 

are subjected to the nonlinear bearing force. According to 

the analysis, the rotor dynamics equation includes the 

finite element modelling of the rotor and the force 

analysis of the ball bearing. The specific analysis is 

provided made below. 

(1) Finite element modelling of rotor 

In this study, only the lateral vibration of the 

rotating shaft is considered. The Timoshenko beam 

element is utilized to discretise the shaft and establish its 

dynamic model. The schematic diagram of the 

Timoshenko beam element is shown in Fig. 4. As 

indicated in Fig. 4, each node has 4 degrees of freedom, 

and that is the movement in the X and Y directions and 

the rotation around the X and Y directions. The element 

node’s displacement vector includes 8 degrees of 

freedom, and it can be expressed as 

( 1) ( 1)1 1 i i

T

e i i xi yi i i x yX x y x y   
  

 
 

. 

 

Figure 3 Mechanical model of rotor 
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Figure 4 Schematic diagram of beam element 

According to the literature [33-35], the beam element 

mass matrix eM , stiffness matrix eK , gyroscopic 

matrix eG , and gravity matrix eQ  can be obtained, 

respectively, as shown in Appendix, in which E  is 

elastic modulus, G  refers to the shear modulus,   

stands for the density, I  indicates diametral inertia, A 

denotes the element’s cross-sectional area,   

represents Poisson’s ratio, L  means the length of the 

element, Lm  is the shaft element mass, iD  and oD  

are the outer and inner diameter of the element. 

(2) Force analysis of ball bearing 

Fig. 5 is the ball bearing’s schematic diagram. 

cage  represents the ball element’s angular velocity 

which can be given by as follows 

r
cage

r R


 


                                (1) 

where   denotes the rotor’s angular velocity, while 

R  indicates the bearing outer ring’s radii, and r  

represents the bearing inner ring’s radii. 
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Figure 5 The ball bearing’s schematic diagram 

The bearing’s nonlinear elastic forces can be 

described as [36] 

3/2

1

3/2

1

w (w )cos
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        (2) 

Here 0cos sin
i i iw x y      , 

2 ( 1)
i cage

i
t

N


 


  , 

1, 0
( )

0, 0
H


 


 represents a function of Haversian, 

sN  means the ball number and pk  is the contact 

stiffness. 

when 0z   and z L , the left bearing’s relative 

displacement can be given by (0, )r wlx x t x  , 

(0, )r wly y t y  , and the right bearing’s relative 

displacement can be described as ( , )r wrx x L t x  , 

( , )r wry y L t y  . The bearing’s elastic force, namely, 

kxblF , kyblF , kxbrF  and kybrF , can also be obtained from 

equation (2). 

Through research, it is found that the bearing’s 

damping is mostly equivalent to Rayleigh damping, 

which can be written in the following form. 

cxb

cyb

F cx

F cy





                                 (3) 

when 0z   and z L , the left bearing’s relative 

speed can be obtained by (0, )r wlx x t x  , 

(0, )r wly y t y  , and the relative speed of right bearing 

is given by ( , )r wrx x L t x  , ( , )r wry y L t y  . 

According to equation (3), the bearing outer ring’s 

damping force can be expressed as follows 

( (0, ) )

( (0, ) )

( ( , ) )

( ( , ) )

cxbl r wl

cybl r wl

cxbr r wr

cybr r wr

F c x t x

F c y t y

F c x L t x

F c y L t y

 


 


 
  

                             (4) 

Therefore, the nonlinear ball bearing forces applied 

to two ends of the rotor can be given by 

xbj kxbj cxbj

bj

ybj kybj cybj

F F F
F

F F F

   
    

   

 ( , )j l r                 (5) 

Since the rotor’s coordinate system and the global 

coordinate system have the same direction, no spatial 

transformation is needed, and the beam element matrices 

eM , eK , eG  and eQ  can be assembled directly. The 

bearing’s inner ring mass [ 0;0 ]bj bj bjm mM  

( , )j l r  and the bearing’s nonlinear force bjF  

( , )j l r  are integrated into the corresponding beam 

element node, and the rotor’s overall mass matrix rM , 

overall stiffness matrix rK , overall gyro matrix rG  

and whole gravity matrix r
Q  can be acquired, 

respectively. Then, the rotor’s dynamic equations can be 

obtained as follows. 

( )r r r r r   M q C G q K q Q                  (6) 

Here rC  represents the rotor’s Rayleigh damping matrix, 

i.e. r r r  C M K . 

3.2 Differential Equations of Bearing Outer 

Rings 

The bearing outer ring establishes dynamic equations 

by the lumped mass method. Referring to Fig. 2, the 

bearing outer ring is subjected to the bearing’s nonlinear 

force and the rubber damping ring’s force. At the same 

time, the rubber damping ring expresses the dynamic 

behaviors of the viscoelastic material, which can be 

represented by the Kelvin-Voigt linear mechanical model 

in Engineering [37]. Thus, the rubber damping ring’s 

supporting force can be written as follows [38]. 

s 1(1 )F k u k i u                                   (7) 

Here k   represent the rubber damping ring’s complex 

stiffness; u  denote the rubber damping ring’s relative 

displacement; 1k  and   are the rubber damping ring’s 

stiffness and loss factor, respectively. 

The rubber damping ring’s relative displacement can 

be expressed as u x iy   , and then sF  can be 

rewritten as [38] 

1 1

1 1

-xs

s

ys

F k k x
F

F k k y









    
      

    

                    (8) 

where x  and y
 are the rubber damping ring’s 

relative displacements in X and Y directions, respectively. 

Then, the forces of the rubber damping ring are 

solved by equations (8), which can be expressed as 
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follows. 
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                  (9) 

Here xslF , yslF , xsrF  and ysrF  are the rubber 

damping ring’s forces in the X and Y directions, 

respectively; ( )blx t , ( )bly t , ( )brx t  and ( )bry t  

represent the left and right support’s displacement in the X 

and Y directions, respectively; ( )wlx t , ( )wly t , ( )wrx t  

and ( )wry t  are the left and right bearing outer ring’s 

displacement in the X and Y directions, respectively. 

Hence, the dynamic equations of the bearing outer 

rings could be obtained as follows:  

bwl wl xsl cxbl kxbl

bwl wl ysl cybl kybl bwl

bwr wr xsr cxbr kxbr

bwr wr ysr cybr kybr bwr

m x F F F

m y F F F m g

m x F F F

m y F F F m g

  


   


  
    

                (10) 

Here bwlm  and bwrm  are the left and bearing outer 

race’s mass, respectively. 

3.3 Differential Equations of Supports 

The supports are bolted to the foundation in this 

study, and the bolt connection is equivalent to a 

mass-spring model, which are subjected to a linear spring 

force and damping force. According to the analysis, the 

supports are affected by the rubber damping ring’s 

reaction force and the equivalent spring and damping 

force of the bolt connection. According to Newton’s 

second law, the dynamic equations of the supports could 

be given by, 

bsl bl x1 bl x1 bl xsl

bsl bl y1 bl x1 bl ysl bsl

bsr br x1 br x1 br xsr

bsr br y1 br x1 br ysr bsr

m x k x c x F

m y k y c y F m g

m x k x c x F

m y k y c y F m g

  


   


  
    

           (11) 

where bslm  and bsrm  represent the left and right 

support’s masses, respectively; 1xk  and 1yk  denote the 

support’s stiffness in the X and Y direction, respectively; 

1xc  and 1yc  are the support’s damping in the X and Y 

direction, respectively. 

3.4 Coupling Equations of Rotor System 

Based on the rotor’s differential equations, the 

bearing outer ring’s differential equations and the 

support’s differential equations, the coupling equations of 

the flexible rotor supported by ball bearings with rubber 

damping rings can be given by, 

[ ] ([ ] [ ]) [ ] [ ]   M X C G X K X Q              (12) 

Here [M] , [C] , [G] , [ ]K  and [ ]Q  are the coupling 

system’s mass matrix, damping matrix, gyro matrix, 

stiffness matrix and generalized force matrix, respectively, 

while X , X  and X  are the coupling system’s 

displacement, velocity and acceleration vectors, 

respectively. 

Since the magnitude of the parameter values in the 

coupling system’s equations varies greatly, the system is 

dimensionless for the accuracy of the calculation. The 

dimensionless parameters are defined in this equation as 

follows. 

0


X
X , t  , 

d d

d dt





 

X
X X , 2X X  

Equation (12) can be converted into the following. 

2

0 0 0[ ] ([ ] [ ]) [ ] ( , )x          M X C G X K X Q (13) 

Also assume that 
2

0[ ] [ ] M M , 0[ ] [ ]K K , 

and 0[ ] ([ ] [ ])   C C G . Then equation (13) can be 

changed to the formula below. 

[ ]   [M]X [C]X [K]X Q                       (14) 

4 Dynamic Equation Verification 

Since the coupling dynamic equation in this research 

is a strong nonlinear system with many degrees of 

freedom, the precise integration and the Runge-Kutta 

hybrid numerical algorithm that solve not only nonlinear 

systems but also avoid iterative calculations is utilized to 

compute the coupling system’s dynamic equations 

[39-40]. For the convenience of description, this paper 

mainly studies the vibration response of the rotor at the 

intermediate node. Suppose that the unbalance mass is 

applied at the intermediate node, and the product of the 

unbalance mass and diameter is taken as 
42 10 kgmme   . The rubber damping ring’s stiffness 

and loss factor are 
6

1 4 10 N/mk    and 0.08  , 

respectively. The parameters of the rotor, ball bearing and 

bearing supporting are shown in Tables 1-3, respectively. 

At the same time, the elastic model E , Poisson’s ratio 

  and density   of the shaft are 6.81010Pa, 0.3, 

2700kg/m3, respectively.

http://dict.cnki.net/dict_result.aspx?searchword=%e5%be%ae%e5%88%86%e6%96%b9%e7%a8%8b&tjType=sentence&style=&t=differential+equations
http://dict.cnki.net/dict_result.aspx?searchword=%e5%be%ae%e5%88%86%e6%96%b9%e7%a8%8b&tjType=sentence&style=&t=differential+equations
http://dict.cnki.net/dict_result.aspx?searchword=%e5%be%ae%e5%88%86%e6%96%b9%e7%a8%8b&tjType=sentence&style=&t=differential+equations
http://dict.cnki.net/dict_result.aspx?searchword=%e5%be%ae%e5%88%86%e6%96%b9%e7%a8%8b&tjType=sentence&style=&t=differential+equations
http://dict.cnki.net/dict_result.aspx?searchword=%e5%be%ae%e5%88%86%e6%96%b9%e7%a8%8b&tjType=sentence&style=&t=differential+equations
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Table 1 Parameters of rotor 

Item Shaft element 

Node to node 1-2 2-3 3-4 4-5 5-6 

Outer Diameter oD /mm 90 90 90 90 90 

Inner Diameter iD /mm 84 84 84 84 84 

Shaft Length L/mm 10 90 200 200 200 

Node to node 6-7 7-8 8-9 9-10 10-11 

Outer Diameter oD /mm 90 90 90 90 90 

Inner Diameter iD /mm 84 84 84 84 84 

Shaft Length L/mm 200 200 200 90 10 

Table 2 Parameters of ball bearing 

Ball 

bearing 
node 

Inner 

radius

/mm 

Outer 

radius

/mm 

Ball 

number 

Contact 

stiffness/N/m
2/3

 

Damping

/Ns/m 

Gap/

mm 

Inner 

mass/kg 

Outer 

mass/kg 

1 12 40.1 63.9 8 7.0510
9
 200 20 0.03 0.08 

2 13 40.1 63.9 8 7.0510
9
 200 20 0.03 0.08 

Table 3 Parameters of bearing supporting 

Bearing support node 
xk (N/m) xc (Ns/m) yk (N/m) yc (Ns/m) Mass(kg) 

1 14 210
8
 1000 510

8
 2000 8 

2 15 210
8
 1000 510

8
 2000 8 

4.1 Comparison of test and simulation results 

In order to verify the accuracy of the dynamic 

model, the mechanical model of the multi-span rotor test 

rig was established using the same modeling method as 

in this research, and compared with the experimental 

data. The multi-span rotor-bearing vibration test platform 

consists of a multi-span shafting system, a displacement 

sensor, a dynamic signal acquisition device and a 

computer, as shown in Fig. 6; wherein the multi-span 

rotor-bearing system consists of a rotating shaft, an 

inertial disk, fixed support, a motor and so on.

 

Figure 6 The multi-span rotor-bearing vibration test platform

An unbalance amount was applied at the rotor’s 

center node, and the vibration response of the rotor 

accelerated to 4000rpm is analyzed. Fig. 7 shows the 

experimental and simulated vibration responses of a 

multi-span rotor-bearing system with accelerated motion, 

respectively. It can be seen from the test that the 

first-order rotational speed of the rotor-bearing test 

platform is 3025rpm. According to the dynamic model 

method of this research, the first-order critical speed of 

the rotor-bearing system obtained by the solution is 

3225rpm. Therefore, the mean error between the two 

findings is less than 10%. The above analysis shows that 

the multi-span shafting dynamic model established in 

this research has superior accuracy and can be used to 

Computer 

Multi-span shafting system 

Dynamic signal acquisition device 

Displacement sensor 

http://dict.cnki.net/dict_result.aspx?searchword=%e9%95%bf%e5%ba%a6&tjType=sentence&style=&t=length
http://dict.cnki.net/dict_result.aspx?searchword=%e9%95%bf%e5%ba%a6&tjType=sentence&style=&t=length
http://dict.cnki.net/dict_result.aspx?searchword=%e4%bd%8d%e7%a7%bb%e4%bc%a0%e6%84%9f%e5%99%a8&tjType=sentence&style=&t=displacement+sensor
http://dict.cnki.net/dict_result.aspx?searchword=%e4%bd%8d%e7%a7%bb%e4%bc%a0%e6%84%9f%e5%99%a8&tjType=sentence&style=&t=displacement+sensor
http://dict.cnki.net/dict_result.aspx?searchword=%e4%bd%8d%e7%a7%bb%e4%bc%a0%e6%84%9f%e5%99%a8&tjType=sentence&style=&t=displacement+sensor
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predict the dynamic characteristics of the actual 

multi-span shafting system. 

 

 

Figure 7 Vibration responses of the real test and the 

simulation during acceleration motion of the 

rotor-bearing system: (a) Test results; (b) Simulation 

results 

4.2 Analysis of the influence of rubber damping 

ring on the coupling system 

Firstly, when there is no rubber damping ring, the 

coupling system accelerates to 10000rpm with 

acceleration 2=105rad/s ; as can be observed from Fig. 

8(a), the amplitude of the vibration of the rotor-bearing 

system increases with the escalation of the rotational 

speed, which indicates the system is in a subcritical state 

at this stage. The overall supporting stiffness of the 

coupling system decreases when the rubber damping ring 

is installed in the rotor-bearing system. Therefore, the 

first-order critical speed is significantly reduced, and the 

system is in a supercritical state, as shown in Fig. 8 (b). 

 

 

Figure 8 Vibration responses of a coupled system with 

and without rubber damping ring: (a) Vibration 

response without rubber damping ring; (b) Vibration 

response with rubber damping ring 

 

The stiffness of the rubber damping ring has been 

altered to 1.5106N/m, 3106N/m and 4106N/m, 

respectively, and the vibration response of the 

rotor-bearing system under the corresponding working 

conditions is analysed, respectively, as shown in Fig. 9(a); 

It can be observed from the Figure that the critical speed 

of the system also varies under different rubber damping 

ring’s stiffness; Altering the rubber damping ring’s 

stiffness can also adjust the critical speed of the 

rotor-bearing system. Similarly, the loss factors of the 

rubber damping ring are changed to 0.1, 0.2 and 0.4, 

respectively, and the vibration response of the 

rotor-bearing system under the corresponding working 

conditions is also calculated, as shown in Fig. 9(b). Due 

to the damping effect of the rubber damping ring, the 

vibration response of the system is suppressed. By 

changing the loss factor of the rubber damping ring, the 

vibration reduction rate of the system is significantly 

varied. Through the above analysis, it also shows that the 

dynamic model of this research has high reliability.  

(a) 

(b) 

(a) 

(b) 
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Figure 9 Analysis of the influence of rubber damping 

ring on system dynamic characteristics: (a) Vibration 

response under different rubber damping ring’s stiffness; 

(b) Vibration response under different rubber damping 

ring’s loss factor 
 

5 Bifurcation and Chaos Analysis 

5.1 Bifurcation and Chaos Analysis of the Effect 

of Rotational Speed 

The ball bearing has a certain gap due to the 

installation and use, and the existence of the gap makes 

the system have a strong nonlinearity. Therefore, it is 

imperative to investigate the effect of bearing gap on the 

system’s bifurcation behaviors. Additionally, the 

rotational speed plays significant roles in the nonlinear 

behaviors of the complex rotor coupling system. Fig. 10 

shows the bifurcation properties of N with respect to X, 

when bearing clearance equals to 10um , 20um , 40um  

and 60um , respectively. 

     

 

     

Figure 20 Bifurcation diagrams of the system with the rotational speed, bearing clearance:(a) 
0 =10um  (b) 

0 =20um  (c) 
0 =40um  (d) 

0 =60um

Figs. 10(a) and (b) reveal the system’s bifurcation 

diagrams with the rotational speed. It can be seen from 

Fig. 10(a), due to the small bearing gap, the effect of the 

VC vibration is small, while the vibration effect caused 

by the unbalance force is relatively significant at a low 

rotation speed, and the system mainly exhibits 

1T-periodic motion. By comparing Figs. 10(a) and 10(b), 

it can be observed that the unbalance force and the 

(a) 

(b) 

(a) (b) 

(c) (d) 
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nonlinear bearing force are simultaneously presented in 

the system as the speed increases, and the level of the 

magnitude of them is the same, so the motion mainly 

manifests as quasi-periodic motion in the range of the 

low speed. Under current parameters, the system’s 

first-order critical speed is 5200rpm. Moreover, it should 

be noted that the system enters into chaos through 

quasi-periodic motion near the critical speed as 

illustrated in Fig. 10(a), while in Fig. 10(b) the system 

transfers into chaos through crisis changing from 

1T-periodic motion near the critical speed, and at this 

time, the system motion becomes unpredictable, and the 

track never repeats. It always jumps from one track to 

another, which affects the stability of the rotor system. 

Furthermore, as shown in Figs. 10 (a)-(b), when the 

rotational speed is within the range of 

5500rpm<N<12000rpm, the change of the system 

motion is between short and complicated periods (such 

as long period, quasi-period and chaos) in multiple 

rotational speeds. Due to the complexity of actual motion 

conditions, the working rotational speed of the system 

may fluctuate slightly. If the working speed of the system 

falls into the speed which corresponds to the above 

bifurcation points, the system motion becomes quickly 

unstable. As the rotational speed keeps elevating, the 

system motion becomes more stable than that of the low 

rotation speed because the VC vibration effect of the 

system is relatively small at a high rotation speed. 

Referring to Figs. 10(c)-(d), it can be noted that as the 

bearing gap keeps growing, the VC vibration effect also 

increases continuously, and the system’s chaotic area at 

low rotation speed increases gradually, resulting in a 

deterioration in the stability of the system movement. 

Thus, selecting the appropriate bearing gap is of 

considerable significance to improve the stability of the 

system operation. 

Through the Poincaré maps, the system motion can 

be tracked and recorded with the change of bifurcation 

parameters, so that the evolution process of the motion 

state of the system can be qualitatively analyzed and 

understood. The overall bifurcation motion in Fig. 10(b) 

is used as an example to explain the variation laws of the 

system motion state with the rotational speed, as shown 

in Fig. 7. 

Firstly, due to the interaction of VC vibration and 

unbalance force, the system mainly exhibits the 

quasi-periodic motion when N is below 2200rpm, as 

shown in Fig. 11(a). As N increases to the range of 

2300rpm to 3500rpm, it can be observed from Figs. 

11(b)-(e), system motion enters into 1T-periodic motion 

under the effects of stable attractors, and then changes 

into 2T-period motion at N=3600rpm, then bifurcates to 

1T-period when N reaches to 4100rpm. As shown in Figs. 

11(f)-(h), they demonstrate that the system motion 

undergoes Hopf bifurcation to form two constant 

attraction circles at N=4300rpm, and then enters into 

period-two motion. Finally, the system switches to the 

period-one motion at N=4800rpm. 

    

    

Figure 31 Poincaré maps, rotation speed: (a) N=2200rpm (b) N=2500rpm (c) N=3600rpm (d) N=4000rpm (e) 

N=4100rpm (f) N=4300rpm (g) N=4600rpm (h) N=4800rpm 

Furthermore, when N increases to the range of 

4800rpm<N<5100rpm, by combining Figs. 10(b) and 

12(a), the system motion suddenly jumps from the 

periodic-one movement to chaos as the rotational speed 

varies slowly. The process shows the typical 

characteristic of an abrupt change, proving that the 

(b) (a) (c) (d) 

(e) (f) (g) (h) 
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system enters into chaos through the crisis. Since 

transferring to chaotic motion by the channel of crisis 

occurs mostly in the clearance, the existence of the 

bearing gap of the complex rotor coupling system is the 

main reason for the system to enter into the chaos 

through the crisis. Within the range of 5100rpm to 

8800rpm, the system undergoes 8T-period, 6T-period 

and 2T-period, respectively, and then converges to 

periodic-one motion at N=8800rpm after experiencing 

the width of the region of chaotic motion, as observed 

in Figs. 12(b)-(f). However, when N locates at the range 

of 9400rpm<N<10100rpm, there exist multiple periodic 

windows in chaotic motion, which is a transition path 

between chaotic motion and periodic motion. It is a 

typical intermittent chaotic motion, as shown in Figs. 

12(g)-(l). The system is attracted by a stable attractor, 

and it enters a stable orbit and moves from 

quasi-periodic to 1T-periodic when N reaches to 

10200rpm. As N increased from 10600rpm to 

12000rpm, the system undergoes Hopf bifurcation to 

form two attraction circles, and then enters into 

2T-periodic motion at N=11000rpm, and finally enters 

into the stable 1T-period through inverse bifurcation, as 

shown in Figs. 12(m)-(r). However, the system moves 

from 1T-period to quasi-period motion when N 

increases to 14300rpm, as shown in Fig. 12(s). Finally, 

as N is within the range of 17200rpm<N<18000rpm, the 

system is attracted by the stable attractor and enters the 

stable orbit by quasi-periodic motion, and then reverts 

to a 1T-periodic motion. Figs. 12(t)-(x) illustrate the 

4-mode shape of the system under the effect of a stable 

attractor, which causes the stable attractant domain to 

shrink as the rotational speed increases. 

    

    

    

    

(b) (a) (c) (d) 

(e) (f) (g) (h) 

(j) (i) (k) (l) 

(m) (n) (o) (p) 

(r) (q) (s) (t) 

http://dict.cnki.net/dict_result.aspx?searchword=%e9%97%b4%e9%9a%99&tjType=sentence&style=&t=clearance
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Figure 12 Poincaré maps, rotational speed: (a) N=5100rpm (b) N=7300rpm (c) N=7400rpm (d) N=7500rpm (e) 

N=7600rpm (f) N=8800rpm (g) N=9400rpm (h) N=9600rpm (i) N=9700rpm (j) N=9800rpm (k) N=9900rpm (l) 

N=10000rpm (m) N=10100rpm (n) N=10200rpm (o) N=10300rpm (p) N=10700rpm (q) N=11000rpm (r) N=11900rpm 

(s) N=14500rpm (t) N=16600rpm (u) N=16800rpm (v) N=16900rpm (w) N=17200rpm (x) N=17500rpm 

By Combining the bifurcation diagrams Fig. 10, the 

Poincaré maps Figs. 11 and 12, the nonlinear behaviors 

and bifurcation characteristics of the complex rotor 

coupling system could be studied, and the bifurcation 

point and corresponding critical transition speed of the 

system under various parameters can be obtained, thus 

adjusting the structure or working condition of the 

transmission system to avoid unstable motion transition. 

This method has important applications and reference 

values in improving the motion stability and fatigue life 

of the rotor system. 

5.2 Bifurcation and chaos analysis of the Effect 

of rubber damping ring’s stiffness 

The rubber damping ring plays an important role in 

the coupling system. Adjusting the damping ring’s 

stiffness can change the natural frequency and vibration 

mode, but it may reduce the stability of the rotor. Rubber 

damping rings with different characteristics can be 

obtained by different rubber material and processing 

parameters. The study of bifurcation characteristics of 

rubber damping rings is helpful to guide the design of 

damping ring parameters. Therefore, it is vital to conduct 

a detailed study on the influence of the rubber damping 

ring’s parameter on the dynamic behaviors of the system. 

Under different bearing clearances, the bifurcation 

diagrams of k1 with respect to X are acquired in Fig. 9 at 

the rotational speed N=4200rpm and damping ring’s loss 

factor =0.08 . It can be shown from the bifurcation 

diagrams that the damping ring’s stiffness has a strong 

coupling effect on the system motion. As can be seen 

from Fig. 13(a), when k1 locates in the range of 

0.4e6N/m to 4e6N/m, the system presents diversified 

motion transitions. The system is mainly in stable 

1T-periodic motion when k1 is small. With the increase of 

k1, the system performs the bifurcation between 

short-period and long-period motion States at 2.3e6N/m, 

2.5e6N/m, 2.72e6N/m, 2.8e6N/m, 2.86e6N/m, and 

3e6N/m, respectively. It should be noted that as k1 

increases from 3.28e6N/m to 3.7e6N/m, quasi-periodic 

and chaotic motion appears in the system. Finally, it 

reverts to 1T-periodic motion through the inverse 

bifurcation. By the same method, the overall bifurcation 

diagram of the system motion can be obtained in 

different bearing gaps 0 =20um , 0 =40um  and 

0 =60um , respectively. By Comparing Figs. 13(a)-(d), it 

is found that when the bearing gap is relatively small, the 

system will eventually return to stable 1T-periodic 

motion with the increase of k1; however the bearing gap 

is excessive, the system’s vibration response will greatly 

deteriorate with the increasing the damping ring’s 

stiffness, and the system will eventually progress 

towards chaos. 
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Figure 13 Bifurcation diagram of the system with the damping ring stiffness, bearing clearance: (a) 
0 =10um  (b) 

0 =20um  (c) 
0 =40um  (d) 

0 =60um  

Likewise, the Poincaré maps of X with respect to 

X   at the given bearing gap 
0 =20um , rotational 

speed N=4200rpm and damping ring’s loss factor 

=0.08  are plotted in Fig. 10 to explain the change laws 

of the motion forms of the system. Obviously, within in 

the range of 0.4e4N/m<k1<0.6e6N/m, the system begins 

with a transient period-one motion, and then undergoes 

two times Hopf bifurcations to form three constant 

attraction circles at k1=0.46e6N/m, and finally breaks 

into chaos under the effect of unstable attractors. 

Subsequently, system motion enters into a transient 

2T-period motion through inverse bifurcation when k1 

reaches 0.52e6N/m, and then it moves from 2T-period to 

1T-period at k1=0.6e6N/m, as shown in Figs. 14(a)-(e). 

As k1 is gradually increasing to the range of 0.62e6N/m 

to 1.2e6N/m, the system switches to quasi-periodic 

motion after going through periodic-one motion at 

k1=0.7e6N/m, and then quasi-periodic torus breaks up 

and transfers to chaos; However, as k1 increases to 

0.8e6N/m, the chaotic motion is replaced by the 

period-two motion, and then converges to 1T-periodic 

motion, as shown in Figs. 14(f)-(j). Furthermore, within 

the range of 1.22e6N/m<k1<2.02e6N/m, the system 

forms two constant attraction circles through Hopf 

bifurcation at k1=1.38e6N/m and enters into the 

2T-period motion later. Then, under the effect of stable 

attractors, the system goes into stable 1T-periodic motion, 

as shown in Figs. 14(k)-(n). As k1 in the range of 

2.04e6N/m to 2.58e6N/m, the system motion undergoes 

2T-period motion and Hopf bifurcation at k1=2.26e6N/m 

and k1=2.3e6N/m, respectively, and then converges to 

period-one when k1=2.46e6N/m, as shown in Figs. 

14(o)-(r). By combining Figs. 13(b) and 14(s), it 

indicates that system motion changes from 1T-periodic to 

the chaotic motion with a certain width by way of crisis 

within the range of 2.8e4N/m<k1<3.66e6N/m. 

Subsequently, the system moves from chaos to 

quasi-periodic motion through inverse bifurcation at 

k1=3.68e6N/m, then bifurcates to a 2T-periodic motion. 

When k1 reaches 3.76e6N/m, the system forms two 

constant attraction circles through Hopf bifurcation from 

2T-periodic motion, and then enters into quasi-periodic 

motion again under the effort of stable attractors, and 

finally reverts to 1T-periodic motion, as shown in Figs. 

14(t)-(x). 

(a) (b) 

(c) (d) 
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Figure 14 Poincaré maps, damping ring stiffness: (a) k1=0.4e6N/m (b) k1=0.46e6N/m (c) k1=0.48e6N/m (d) 

k1=0.52e6N/m (e) k1=0.6e6N/m (f) k1=0.7e6N/m (g) k1=0.74e6N/m (h) k1=0.78e6N/m (i) k1=0.8e6N/m (j) 

(b) (a) (c) (d) 

(e) (f) (g) (h) 

(j) (i) (k) (l) 

(m) (n) (o) (p) 

(r) (q) (s) (t) 

(v) (u) (w) (x) 
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k1=0.84e6N/m (k) k1=1.38e6N/m (l) k1=1.46e6N/m (m) k1=1.92e6N/m (n) k1=1.94e6N/m (o) k1=2.26e6N/m (p) 

k1=2.3e6N/m (q) k1=2.38e6N/m (r)k1=2.46e6N/m (s) k1=2.8e6N/m (t) k1=3.68e6N/m (u) k1=3.72e6N/m (v) 

k1=3.76e6N/m (w) k1=3.78e6N/m (x) k1=3.8e6N/m 

Summarizing the above research, the motion state 

of the system presents complicated bifurcation behaviors 

under various bearing clearances and damping ring’s 

stiffness, and it also can be found that the state of the 

system motion changes into chaos through various ways 

under different damping ring’s stiffness, including crisis, 

quasi-periodic surface rupture, and surface rupture after 

Hopf bifurcation. The proper bearing gap exerts a weak 

effect on the periodicity of the system motion, while the 

excessive bearing gap leads to a larger chaotic motion 

range of the system. Meanwhile, the change of the 

damping ring’s stiffness shows a significant effect on the 

system motion. Choosing a reasonable damping ring 

stiffness is favorable to the stable operation of the rotor. 

6 Conclusions 

This research establishes a coupling dynamic model 

of a flexible rotor supported by ball bearings with rubber 

damping rings. In the proposed model, the rotor is built 

by Timoshenko beam element, and the supports and 

bearing outer rings are yielded by the lumped mass 

method. Subsequently, the coupling system’s equations is 

solved by precise integration and the Runge-Kutta hybrid 

numerical method. 

The accuracy measure of the modelling method in 

this research is carried out by multi-span rotor-bearing 

test platform, in which the error rate between theoretical 

and experimental analysis results is less than 10%. 

Meanwhile, the rubber damping ring’s effect on the 

dynamic properties of the rotor-bearing coupling system 

is analysed, in which conclusions obtained are in 

agreement with the real-world scenarios. Therefore, the 

dynamic model constructed has superior accuracy and 

efficiency. 

The bifurcation and chaos behaviors of the system 

under the parameters of rotational speed and damping 

ring’s stiffness are analyzed. Through the study of 

various parameters, the following conclusions could be 

drawn as follows. 

1) Under the bifurcation parameter of rotational 

speed, the system goes into chaos by way of crisis, 

period doubling, quasi-periodic and intermittent 

bifurcation. By comparing the bifurcation diagrams of 

various bearing gaps, it can be revealed that excessive 

bearing clearances would lead to continuous chaotic 

motion of the system at low rotational speeds, which 

seriously affects the system’s stability. Hence, it is 

crucial to effectively control the bearing clearance during 

the design and use of the system. 

2) Under a specific bearing gap and rotational speed, 

the change of the parameters of the rubber damping ring 

exerts an effect on the bifurcation behaviors of the 

system motion. As the damping ring’s stiffness 

increasing, the routes of the system enter chaos include 

crisis, quasi-periodic and Hopf bifurcation. When the 

bearing clearance is small, the system will eventually 

return to stable 1T-periodic motion through inverse 

bifurcation, and finally, the chaotic movement is 

performed with the gradual increase of the damping 

ring’s stiffness under the larger bearing clearance. 
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