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Neural Graph for Personalized Tag
Recommendation

Yonghong Yu, Member, IEEE, Xuewen Chen, Li Zhang, Senior Member, IEEE, Rong Gao, Member, IEEE,
Haiyan Gao

Abstract—Traditional personalized tag recommendation meth-
ods cannot guarantee that the collaborative signal hidden in
the interactions among entities is effectively encoded in the
process of learning the representations of entities, resulting in
insufficient expressive capacity for characterizing the preferences
or attributes of entities. In this paper, we firstly propose a
graph neural networks boosted personalized tag recommenda-
tion model, namely NGTR, which integrates the graph neural
networks into the pairwise interaction tensor factorization model.
Specifically, we exploit the graph neural networks to capture
the collaborative signal, and integrate the collaborative signal
into the learning of representations of entities by transmit-
ting and assembling the representations of neighbors along
the interaction graphs. In addition, we also propose a light
graph neural networks boosted personalized tag recommendation
model, namely LNGTR. Different from NGTR, our proposed
LNGTR model removes feature transformation and nonlinear
activation components as well as adopts the weighted sum of
the embeddings learned at all layers as the final embedding.
Experimental results on real world datasets show that our
proposed personalized tag recommendation models outperform
the traditional tag recommendation methods.

Index Terms—Personalized Tag Recommendation Algorithm,
Graph Neural Networks, Collaborative Signal

I. INTRODUCTION

As a branch of the recommendation systems [1], tag recom-
mendation systems automatically recommend a list of tags for
users to annotate an item. Personalized tag recommendation
systems (PTR) [2], [3], [4] provide personalized tag recom-
mendation for each user by taking users’ tagging preferences
into account, which makes personalized tag recommendation
more challenging than non-personalized tag recommendation.
Recently, deep learning techniques have shown great potential
in various fields, such as natural language processing and
computer vision. Among them, the graph neural networks
(GNNs) [5] is an effective graph representation learning
framework, which learns the representations of nodes or sub-
graphs that preserve the structures of graphs. In the field of
recommendation systems, some researchers incorporate the
GNNs into traditional recommendation models to improve the
recommendation performance [6], [7], [8]. As shown in the ex-
isting studies [6], [7], [8], GNNs could provide great potential
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to advance the item recommendation models. However, few
works have employed the GNNs techniques to boost the PTR.
In addition, the collaborative signal is intuitively beneficial to
PTR, whose effectiveness is verified in item recommendation
[8], [6]. In fact, the collaborative signal can be viewed as
the behavior similarity among interacted entities. However,
traditional PTR methods obtain the embeddings of entities
only based on entities’ IDs, and ignore the collaborative signal
in the process of embedding. Hence, this scheme limits the
expressive capacity of the embeddings.

In this paper, inspired by [8], we firstly propose a GNNs
boosted PTR model (NGTR), which integrates the GNNs into
the classic pairwise interaction tensor factorization model.
Specifically, we consider two bipartite interactions derived
from the user-item-tag assignment information, i.e. the user-
tag interactions and item-tag interactions. Then, for each
type of interactions, we exploit the GNNs to enrich the
representations of entities by aggregating the messages of
their neighbors, which are propagated over the corresponding
interaction graph. In this way, we explicitly inject the col-
laborative signal into the process of learning representations
of entities. In addition, as reported in [9], [10], the GCNs
inherit considerable complexity from their deep learning lin-
eage, which can be burdensome and unnecessary for many
downstream applications. Moreover, in PTR, each node (i.e.
user, item and tag) of the user-tag and item-tag interaction
graph only has an ID as input which has no concrete semantics.
In this case, performing multiple nonlinear transformation will
not be beneficial for GNNs-based PTR model to learn better
representations of users, items and tags. Even worse, it may
increase the difficulty for training the GNNs-based PTR model
and degrade the performance of PTR. Hence, we also propose
a light GNNs boosted PTR algorithm, named LNGTR, which
removes the feature transformation and nonlinear activation
and adopts the weighted sum of the embeddings learned at
all layers as the final embedding. Finally, we adopt the BPR
criterion [11] to optimize the model parameters of NGTR and
LNGTR.

The key contributions of our work are summarized as
follows:
• For the task of PTR, we propose to take two types of

interactions into account, i.e. the user-tag interactions and
the item-tag interactions, and integrate the collaborative
signal into the process of embedding by leveraging the
embedding propagation layers.

• We propose a GNNs boosted PTR model, namely NGTR,
which boosts the classic pairwise interaction tensor fac-
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torization (PITF) model by utilizing the GNNs.
Note that this study is an extension of a previous conference

paper in IJCNN2020 [12]. This extension makes the following
new contributions:
• Inspired by [9], [10], we propose a light graph neural

networks boosted PTR model, namely LNGTR, which
removes the feature transformation and nonlinear activa-
tion from NGTR.

• We conduct comprehensive experiments to evaluate the
effectiveness of LNGTR. The empirical results indicate
that the LNGTR is superior to the NGTR in most cases.

II. RELATED WORK

A. Personalized Tag Recommendation Methods

The representatives of PTR methods include HOSVD [13],
RTF [14], and PITF [3].

In [13], Symeonidis et al. applied the Higher Order Singular
Value Decomposition (HOSVD) technique to reveal the latent
semantic associations among entities. By contrast, Rendle
et al. [14] proposed the ranking with tensor factorization
(RTF), which learns personalized ranking of user preferences
for tags. The computation cost of HOSVD and RTF makes
them infeasible for large-scale PTR systems. In [3], Rendle
et al. proposed the PITF model, which explicitly models the
pairwise interactions among entities. Fang et al. [4] proposed
a non-linear tensor factorization method, named NLTF, which
exploits the Gaussian radial basis function to capture the
complex relations among entities. Recently, Yuan et al. [15]
proposed a deep-learning-based method, called ABNT, which
utilizes the multi-layer perceptron to model the non-linearities
of interactions among entities.

B. The GNN-based Item Recommendation Methods

Typical GNN-based item recommendation algorithms in-
clude GraphRec [6], SR-GNN [7], and NGCF [8].

Fan et al. [6] presented a GNN framework, namely
GraphRec, for social recommendation. The GraphRec coher-
ently models the user-user social graph, the user-item interact
graph as well as the heterogeneous strengths. In [7], Wu et
al. proposed the SR-GNN model for session recommendation,
which utilizes GNN to capture complex item transitions. Wang
et al. [8] proposed a recommendation model based on GNNs,
which exploits the user-item graph structure by propagating
embeddings on it. Wu et al. [16] proposed an influence
diffusion neural network based model, namely DiffNet, which
leverages the GCN for recursive social diffusion in social
networks. Recently, Zheng et al. [17] proposed the price-aware
preference-modeling that employs the GCN to learn price-
aware and category-dependent user representations. Wang et
al. [18] proposed a multi-task multi-view graph representation
learning framework for web-scale recommender systems. Hu
et al. [19] proposed a graph neural news recommendation
model based on unsupervised preference disentanglement.

In comparison with the above methods, the major difference
is that our proposed models focus on PTR, while the above
existing studies focus on item recommendation. In addition,

unlike the GraphRec that only aggregates the representations
of one-hop neighbors to learn the representation of the target
node, our proposed models take high-hop neighbors into
account, which may integrate high-order collaborative signal
in the process of embedding.

III. PRELIMINARIES

A. Formalization

PTR systems usually consist of three types of entities: the
set of users U , the set of items I and the set of tags T . We
use S ⊆ U × I × T to denote the interactive behavior records
among three entities, i.e. users’ historical tagging information.
A ternary (u, i, t) ∈ S indicates that the user u has annotated
the item i with the tag t.

The goal of PTR systems is to recommend a ranked list of
tags to users for annotating an item. Formally, the ranked list
of Top-N tags given the user-item pair (u, i) is defined as,

Top(u, i,N) =
N

argmax
t∈T

ŷu,i,t (1)

where N denotes the number of recommended tags. And ŷu,i,t
indicates the probability of the user u annotates the item i with
the tag t.

IV. THE GNNS BOOSTED PERSONALIZED TAG
RECOMMENDATION MODELS

A. The Framework of PTR Method Based on GNNs

Figure 1 presents the architecture of our proposed model,
which mainly consists of three layers: the embedding layer,
the embedding propagation layer and the prediction layer.

1) Embedding Layer: In the embedding layer, we project
users, items and tags into a low-dimensional space according
to their IDs. Specifically, we get the embedded representations
of the user u, the item i, the positive tag t and the negative
tag t′ by the lookup operation over the embedding matrices.
Formally,

eu = U.onehot(u), ei = I.onehot(i),

eU
t = TU .onehot(t), eU

t′ = TU .onehot(t′),

eI
t = TI .onehot(t), eI

t′ = TI .onehot(t′),

(2)

where onehot(.) denotes the one-hot encoding operation.
U ∈ R|U |×d, I ∈ R|I|×d,TU ∈ R|T |×d,TI ∈ R|T |×d (d is
the factorization dimension) are the latent user feature matrix,
the latent item feature matrix, the latent user-specific tag
feature matrix and the latent item-specific tag feature matrix,
respectively.

2) Embedding Propagation Layers: Generally, in PTR
systems, there are three types of interactions, i.e. user-tag
interactions, item-tag interactions and user-item interactions.
Similar to [3], we only consider user-tag interactions and item-
tag interactions. For each type of interactions, we employ the
message-passing mechanism to capture the collaborative signal
along the corresponding bipartite, which is derived from their
interaction information. Taking the user-tag interactions as an
example, the propagated messages include the information that
propagates from tag node to user node as well as information
that propagates from user node to tag node.
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Fig. 1. The framework of our proposed personalized tag recommendation algorithm

Given a user-tag pair (u, t), the propagated messages be-
tween the user u and the tag t are defined as follows:

mu←t = put
(
W1e

U
t + W2

(
eu � eUt

))
mt←u = ptu

(
W1eu + W2

(
eUt � eu

)) (3)

where mu←t and mt←u indicate the messages that are trans-
mitted from the tag t to the user u and from the user u to the
tag t, respectively. And � indicates the element-wise product.
The put and ptu are decay factors that are used to control
each message propagation. Formally, put and ptu are defined
as the Laplacian norm 1√

|Nu||Nt|
, where Nu and Nt represent

the first-hop neighbors of the user u and tag t, respectively.
The W1,W2 ∈ Rd′×d are training weight matrices, where
d′ is the transformation size. In Eq. (3), we first follow the
principle of classic GNNs and take the messages propagated
from neighbors into account. Then, we additionally encode the
interaction between target node and its neighbor (e.g. eu� eUt
and eUt �eu ) into the propagated message. And the interaction
reflects the affinity between target node and its neighbor to
some extent. Intuitively, neighbors that are more similar to
the target node may pass more messages to the target node.
Hence, integrating the additional message is able to increase
the expressive capacity, resulting in better recommendation
performance.

By assembling the messages that are transmitted by the
direct neighbors, the assembled representations for the user
u and the tag t are represented as follows:

e(1)
u = σ

(
mu←u +

∑
t∈Nu

mu←t

)

eUt
(1)

= σ

(
mt←t +

∑
u∈Nt

mt←u

) (4)

where σ(.) is the LeakyReLU activation function [20] and
the mu←u and mt←t consider the self-connections of the
user u and the tag t, respectively. Hence, the assembled
representations e(1)

u and eUt
(1) explicitly take the first-order

connectivity information into account.

In order to further enrich the representations, we inject the
high-order connectivity information into the embedded repre-
sentations of nodes by stacking more embedding propagation
layers. Specifically, with l embedding propagation layers, the
assembled representations of the user u and the tag t are
formulated as:

e(l)
u = σ

(
m(l)

u←u
+
∑
t∈Nu

m
(l)
u←t

)

eUt
(l)

= σ

(
m

(l)
t←t +

∑
u∈Nt

m
(l)
t←u

) (5)

where m(l)
∗←? denotes the messages that are propagated from

their corresponding l-hop neighbors. Formally,{
m

(l)
u←t = put

(
W

(l)
1 eUt

(l−1)
+ W

(l)
2

(
e

(l−1)
u � eUt

(l−1)
))

m
(l)
u←u = W

(l)
1 e

(l−1)
u{

m
(l)
t←u = put

(
W

(l)
1 eUt

(l−1)
+ W

(l)
2

(
e

(l−1)
u � eUt

(l−1)
))

m
(l)
t←t = W

(l)
1 eUt

(l−1)

(6)

where W (l)
1 ,W

(l)
2 ∈ Rdl×dl−1 are the weight transformation

matrices, and the dl is transformation size. The e
(l−1)
u and

eUt
(l−1) are the embedded representations that are obtained at

the (l − 1)-th embedding propagation layer.
It is worth noting that we formulate the layer-wise propa-

gation rule defined by Eqs. (5 and 6) as the matrix-form prop-
agation rule to reduce the computation overhead. Formally,

E(l)
u = σ

(
(Lu + I)E(l−1)

u W
(l)
1 + LuE(l−1)

u �E(l−1)
u W

(l)
2

)
(7)

where E
(l)
u is the set of embeddings for users and tags, which

is obtained after propagating embeddings with l layers. I is
the identity matrix. And Lu denotes the laplacian matrix for
the user-tag interactions, which is defined as:

Lu = D
− 1

2
u AuD

− 1
2

u and Au =

[
0 Ru

RT
u 0

]
(8)
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where Ru ∈ R|U |×|T | is the interaction matrix between
users and tags, and 0 is all-zero matrix. Au is the adjacency
matrix and Du is the diagonal matrix, where the value of
the t-th diagonal element is |Nt|. Hence, with the matrix-
form propagation rule, we can simultaneously update all user
representations and user-specific tag representations.

Similarly, we adopt the similar architecture to deal with
the item-tag interactions, and capture the collaborative signal
between items and tags.

3) Prediction Layer: By stacking multiple embedding prop-
agation layers, we obtain the set of embedded representations
of users, items and tags:{

e(1)
u , e(2)

u , · · · , e(l)
u

}
{
e

(1)
i , e

(2)
i , · · · , e(l)

i

}
{
eUt

(1)
, eUt

(2)
, · · · , eUt

(l)
}

{
eIt

(1)
, eIt

(2)
, · · · , eIt

(l)
}

(9)

For each entity, the element e(l)
∗ is the output of embedding

propagation layer that assembles messages propagated from
the l-hop neighbors. Hence, different element of one set
focuses on different order of connectivity information, and
characterizes different aspect of users’ preferences, items’
and tags’ characteristics. For each entity, we concatenate all
elements to get the final representation for the entity,

e∗u = e(1)
u ||e(2)

u || · · · ||e(l−1)
u ||e(l)

u

e∗i = e
(1)
i ||e

(2)
i || · · · ||e

(l−1)
i ||e(l)

i

eUt
∗
= eUt

(1)||eUt
(2)|| · · · ||eUt

(l−1)||eUt
(l)

eIt
∗
= eIt

(1)||eIt
(2)|| · · · ||eIt

(l−1)||eIt
(l)

(10)

where || is the concatenation operation.
Finally, given a triplet (u, i, t), the predicted score ŷu,i,t is

computed as:

ŷu,i,t =
K∑

f=1

e∗u,f · eUt,f
∗
+

K∑
f=1

e∗i,f · eIt,f
∗

(11)

where K is the dimension of the final representations of
entities.

B. A Light GNNs Boosted Personalized Tag Recommendation

In order to further improve NGTR, we also propose a light
GNNs boosted PTR algorithm, named LNGTR. The LNGTR
also includes three types of layers: the embedding layer, the
embedding propagation layers and the prediction layer. Similar
to NGTR, we adopt the same scheme to obtain the embedded
representations of entities based on their IDs in the embedding
layer. We present the details of the embedding propagation
layer and prediction layer in the following sections.

1) Simple Embedding Propagation Layer: Unlike the em-
bedding propagation mechanism of NGTR, in order to simplify
the tag recommendation model and speed up the training,
we discard the feature transformation and nonlinear activation
function from NGTR. Taking the user-tag interactions as an
example, with l embedding propagation layers, the represen-
tations of the user u and the tag t are formulated as:

e(l)
u =

∑
t∈Nu

1√
|Nu|

√
|Nt|

e
U(l−1)
t

e
U(l)
t =

∑
u∈Nt

1√
|Nu|

√
|Nt|

e(l−1)
u

(12)

2) Prediction Layer: With l layers of embedding propaga-
tion, we combine the embeddings obtained at each layer to
form the final representation for each entity. Formally,

e∗u = α1e
(1)
u + α2e

(2)
u + · · ·+ αl−1e

(l−1)
u + αle

(l)
u

eU∗t = α1e
U(1)
t + α2e

U(2)
t + · · ·+ αl−1e

U(l−1)
t + αle

U(l)
t

(13)

where αl denotes the weight of embedded representations of
entities learned with l embedding propagation layers. In order
to simplify the LNGTR as much as possible, we empirically
set the weight parameters as 1/ (l + 1), which demonstrates a
better tag recommendation performance.

Similarly, we adopt the similar scheme to deal with the
item-tag interactions.

C. Model Parameters Learning

We adopt the BPR [11] criterion to learn the model pa-
rameters of our proposed tag recommendation models. Both
the objective functions of NGTR and LNGTR are defined as
follows:

L =
∑

(u,i,t,t′)∈DS

− lnσ(ŷu,i,t − ŷu,i,t′) + λΦ||Φ||2F (14)

where DS is the training set. For the NGTR, the model param-
eter is Φ = {U, I,TU ,TI ,W

(i)
1 ,W

(i)
2 , i = 1, 2, ..., l}. For

the LNGTR, the model parameter is ΦL = {U, I,TU ,TI}.
λΦ denotes regularization coefficient that controls the effect of
the regularization terms. In addition, we adopt the mini-batch
Adam optimizer to optimize the objective function L.

V. EMPIRICAL ANALYSIS

A. Datasets and Evaluation Metrics

We choose two public available datasets, i.e. Last.fm and
ML10M 1, to evaluate the performance of our proposed tag
recommendation algorithms. Similar to [3], [14], all datasets
are 5-core and 10-core in our experiments. The general statis-
tics of datasets are summarized in Table I.

We adopt the common evaluation protocol, which is widely
used in [3], [14]. Specifically, for each user, we randomly
select one post and remove the triples that are related to the

1Two datasets can be found in https://grouplens.org/datasets/hetrec-2011/
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TABLE I
STATISTICS OF DATASETS

Dataset #Users #Items #Tags #Tag Assignments
lastfm 1892 12523 9749 186479
ml-10m 4009 7601 16529 95580

selected post from S to Stest. The remaining observed user-
item-tag triples are the training set Strain := S\Stest. We
employ two widely used ranking metrics to measure the tag
recommendation performance of all compared methods, i.e.,
Precision@N and Recall@N . For both metrics, we set N =
3, 5, 10.

B. Experimental Settings

We choose the following traditional tag recommendation
algorithms as baselines:
• NGCF: NGCF [8] utilizes the GNNs to boost item

recommendation. In our experiments, we use the user-
tag interactions as inputs for NGCF.

• PITF: PITF [3] explicitly models the pairwise interaction
among entities, and is a strong competitor.

• NLTF: NLTF [4] enhances the PITF by exploiting the
Gaussian radial basis function to capture the non-linear
interaction relations among entities.

• ABNT: ABNT [15] utilizes the multi-layer perceptron to
model the non-linearities of interactions among entities.

For all compared methods, the dimension of latent factor
vector d is tuned amongst {8, 16, 32, 64, 128, 256, 512, 1024}.
The mini-batch size is selected from {512, 1024, 2048} and
the learning rate is tuned amongst {0.001, 0.005, 0.01}.
The regularization coefficient is chosen from
{0.001, 0.005, 0.01, 0.05}. For most datasets and baselines,
we empirically set the dimension of latent factor vector
d = 64, the size of batch = 512, the learning rate = 0.001, the
regularization coefficient of latent factor vector = 0.01, the
number of negative instances = 1 and the number of iterations
= 3000. For the ABNT, the structure of multi-layer perceptron
follows the tower structure, i.e. the dimension of hidden layer
is half of that of the previous hidden layer. Moreover, for the
weighted matrices of multi-layer perceptron, the regularization
coefficient = 1. For NGCF, NGTR and LNGTR, we set the
number of embedding propagation layers l = 3.

C. Performance Comparison

Tables II, III, IV, V present the tag recommendation quali-
ties of all compared methods on four datasets.

From Table II to Table V, we have the following observa-
tions: (1) On four datasets, PITF achieves a better performance
than those of NTLF and ABNT, which demonstrates the
strong competitiveness of PITF model. On the other hand,
the observation also indicates that integrating the multi-layer
perceptron into PITF framework cannot guarantee improve-
ments of tag recommendation quality, although ABNT is built
upon the PITF. One possible reason is that the ABNT involves
more trainable parameters, whereas train data available are
insufficient for learning its model parameters. Except for

ABNT, other methods are superior to NGCF. This is owing to
the fact that NGCF only considers the user-tag interactions and
ignores the item-tag interactions when making tag recommen-
dations. (2) For each compared method, its recommendation
performance is better on the core-10 datasets than that on
the corresponding core-5 datasets. This observation indicates
that increasing the density of datasets could boost the tag
recommendation performance. (3) Our proposed NGTR model
consistently outperforms other methods, which demonstrates
the effectiveness of NGTR. In terms of precision@3, our
proposed NGTR model improves the PITF by 9.3% and 4.1%
on last.fm-core5 and ml-10m-core5, respectively. In terms of
precision@5, the improvements of NGTR over PITF are 2.7%
and 18.6% on last.fm-core10 and ml-10m-core10, respectively.
To some extent, the improvements are considerable. Hence,
this observation confirms that integrating the collaborative
signal into the process of embedding in an explicitly manner
is beneficial for the PTR model. (4) In addition, our proposed
LNGTR model outperforms the NGTR model in all test cases.

TABLE II
PERFORMANCE COMPARISONS ON LASTFM-CORE5

Method NGCF PITF NLTF ABNT NGTR LNGTR
Pre@3 0.16790 0.21266 0.19486 0.15628 0.23244 0.28709
Pre@5 0.13947 0.17893 0.16780 0.13531 0.19125 0.22938

Pre@10 0.10230 0.12737 0.11907 0.10178 0.13272 0.15393
Rec@3 0.21913 0.25711 0.22753 0.15691 0.32444 0.38627
Rec@5 0.29070 0.34786 0.32389 0.21940 0.41697 0.48899

Rec@10 0.40126 0.48138 0.45230 0.32984 0.54541 0.61167

TABLE III
PERFORMANCE COMPARISONS ON LASTFM-CORE10

Method NGCF PITF NLTF ABNT NGTR LNGTR
Pre@3 0.17391 0.25132 0.24431 0.16046 0.26467 0.32298
Pre@5 0.14679 0.20875 0.20642 0.13665 0.21429 0.25776

Pre@10 0.11398 0.14577 0.12493 0.09431 0.14617 0.17567
Rec@3 0.21800 0.32035 0.28488 0.15792 0.34791 0.41993
Rec@5 0.28778 0.41583 0.40170 0.21895 0.45288 0.53992

Rec@10 0.42892 0.56539 0.55412 0.30336 0.58738 0.68393

TABLE IV
PERFORMANCE COMPARISONS ON ML-10M-CORE5

Method NGCF PITF NLTF ABNT NGTR LNGTR
Pre@3 0.09495 0.13976 0.13232 0.08215 0.14545 0.19226
Pre@5 0.06828 0.10206 0.09717 0.06283 0.10545 0.13960

Pre@10 0.04384 0.06414 0.05960 0.04000 0.06717 0.08586
Rec@3 0.24631 0.32077 0.29738 0.20888 0.33312 0.43114
Rec@5 0.28195 0.39096 0.35602 0.25378 0.39653 0.50241

Rec@10 0.34948 0.46230 0.42697 0.30388 0.48516 0.60131

TABLE V
PERFORMANCE COMPARISONS ON ML-10M-CORE10

Method NGCF PITF NLTF ABNT NGTR LNGTR
Pre@3 0.12438 0.16986 0.14357 0.08955 0.19332 0.27150
Pre@5 0.08955 0.11725 0.11429 0.07591 0.13902 0.18891

Pre@10 0.05714 0.07443 0.07143 0.05011 0.08422 0.11023
Rec@3 0.31983 0.37704 0.33881 0.22100 0.46023 0.62775
Rec@5 0.38369 0.45230 0.43344 0.30174 0.54606 0.71876
Rec@10 0.46876 0.52050 0.53408 0.38579 0.63980 0.80117
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We attribute the improvement of recommendation performance
of LNGTR to the simple structure of underlying GNNs, which
removes the feature transformation and nonlinear activation
from NGTR. The light GNNs make the LNGTR more concise
and are appropriate for effectively learning the embedded
representations of entities in PTR, which results in better tag
recommendation performance.

D. Impact of The Number of Embeddings Propagation Layers
In this section, we conduct a group of experiments to

explore the effect of l on tag recommendation performance by
varying the value of l from 1 to 4. Other parameters keep the
same settings as described in Section V-B. The experimental
results in terms of precision@10 on lastfm-core10 and ml-10-
core10 are shown in Figs. 2 and 3. Other measure metrics
show similar trends.

Fig. 2. Impact of l on NGTR

Fig. 3. Impact of l on LNGTR

As shown in Figs. 2-3, our proposed models (NGTR and
LNGTR) are sensitive to the value of l. With the number of
embedding propagation layers increases, the Prescision@10
firstly increases. Then, if the number of embedding propaga-
tion layers continues to increase and surpasses a threshold
value, the performance of our proposed models begins to
degrade. A possible reason is that: a large value of l makes
our proposed methods leverage the collaborative signal that is
propagated from the relative distant neighbors. Intuitively, the
collaborative signal of the distant neighbors may not be helpful
for enriching the representation of target entities since the cor-
relations between entity and their distant neighbors are weak.
When the number of embedding propagation layers l = 3,
both NGTR and LNGTR achieve their best performance.

E. Impact of The Dimension of Latent Feature Vectors

In this section, we vary the dimension of the hidden feature
vectors d in [16, 32, 64, 128, 256], and investigate the
impact of parameter d on tag recommendation quality. Other
parameters remain unchanged. We only plot the precision@10
of NGTR and LNGTR on lastfm-core10 and ml-10m-core10
in Figs. 4 and 5. And other measure metrics show similar
trends.

Fig. 4. Impact of parameter d on NGTR.

Fig. 5. Impact of parameter d on LNGTR.

As can be seen, the dimension of latent feature vectors
d also affects the tag recommendation performance. In the
early stage, the recommendation performance of NGTR and
LNGTR is constantly improving as the value of d increases.
Then, when the value d reaches to 128, the curve of pre-
cision@10 remains stable and the tag recommendation per-
formance does not further improve as we further increase the
value of d. This is because that if the latent feature vectors can
capture the interacted entities’ preferences or characteristics
effectively, further increasing the value of d could not enhance
the representation capacity of our proposed models. On both
lastfm-core10 and ml-10m-core10, our proposed NGTR and
LNGTR models achieve their best performances when d is
around 128 and 256, respectively.

VI. CONCLUSION

In this research, we firstly propose a GNNs boosted person-
alized tag recommendation model, which exploits the GNNs
to capture the collaborative signal between interacted entities
as well as integrate the collaborative signal into the process
of embedding by performing messages propagation over the
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entity interaction graphs. We also propose a light GNNs
boosted personalized tag recommendation algorithm, which
removes the feature transformation and nonlinear activation
from NGTR. Experimental results on real world datasets
indicate that both of our proposed models outperform the
traditional tag recommendation models.

Recently, the generative adversarial networks [21] have been
widely applied in natural language processing (NLP) and com-
puter vision (CV), and show great potential in these respective
fields. We plan to explore whether the training method of GAN
can be applied to enhance the robustness of our proposed
models. In addition, another future research direction is to
adaptively learn the weights of representations yielded by each
embedding propagation layer since their contributions to the
learning of final representations of entities may be different.
Finally, we also aim to explore the inclusion of the neural
attention model to further improve our proposed approaches.
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