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ABSTRACT In recent years, both the scientific community and the industry have focused on moving
computational resources with remote data centres from the centralized cloud to decentralised computing,
making them closer to the source or the so called ‘‘edge’’ of the network. This is due to the fact that the cloud
system alone cannot sufficiently support the huge demands of future networks with the massive growth of
new, time-critical applications such as self-driving vehicles, Augmented Reality/Virtual Reality techniques,
advanced robotics and critical remote control of smart Internet-of-Things applications. While decentralised
edge computing will form the backbone of future heterogeneous networks, it still remains at its infancy
stage. Currently, there is no comprehensive platform. In this article, we propose a novel decentralised edge
architecture, a solution called OMNIBUS, which enables a continuous distribution of computational capacity
for end-devices in different localities by exploiting moving vehicles as storage and computation resources.
Scalability and adaptability are the main features that differentiate the proposed solution from existing edge
computing models. The proposed solution has the potential to scale infinitely, which will lead to a significant
increase in network speed. The OMNIBUS solution rests on developing two predictive models: (i) to learn
timing and direction of vehicular movements to ascertain computational capacity for a given locale, and (ii) to
introduce a theoretical framework for sequential to parallel conversion in learning, optimisation and caching
under contingent circumstances due to vehicles in motion.

INDEX TERMS Edge computing, 5G, 6G, V2X, ubiquitous AI, distributed AI, multi-access edge
computing (MEC).

I. INTRODUCTION
In 2025, there will be more than 75 billion connected devices
around the world, as predicted by Cisco [1]. According to
Cisco’s forecast, by 2030, the predicted number of connected
devices to the Internet will reach up to 500 billion [2]. The
centralised cloud system alone will be incapable of efficiently
handling future networks [3]–[5]. An environment where
billions of devices equipped with sensors, geared to collect

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuiguang Deng .

huge amounts of data and drawing inferences to conduct
an action, will be present. Transferring massive amounts
of data from connected devices to the cloud for analysis
will create very crowded traffic on the network infrastruc-
ture [6]–[10]. Moreover, the back and forth transfer of data
between the cloud and individual devices increases latency.
Numerous new applications, such as self-driving vehicles,
remote surgery, AR/VR, 8K video, advanced robotics in man-
ufacturing and drone surveillance communication, require
real-time and ultra-low latency performance [9], [11], [12].
This is the current case with Fifth-Generation (5G) networks,
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FIGURE 1. Growth of connected devices (1950-2050).

however, it will become more critical with the deploy-
ment of Sixth-Generation (6G) networks, which require
higher frequency bands and lower latency in comparison
to 5G networks [13]–[15]. Furthermore, implementing more
robust edge computing will contribute for solving band-
width, autonomy and privacy requirements. The fast-digital
transformation and accelerated cloud and edge adoption
are driving Wide Area Network (WAN) edge infrastruc-
ture changes for infrastructure and operations strategies for
future networking. Also, the edge computing has moved from
Internet-of-Things (IoT) concentrated to a largely consid-
ered complement to the more centralized hyper-scale cloud.
So, the edge role in distributed cloud and digital business
ensures that despite the nascent market, technologies and
architectures, edge computing is here to stay. In addition,
the edge computing use-case landscape is broad, and early
deployments are highly customized. Therefore, in the future
network developing a multiyear edge computing strategy is
needed to include the variety of use cases required by their
enterprise.

In view of these challenges, data centre operations are
being pushed to the ‘‘edge’’ of the network. The edge allows
certain time-critical and security-sensitive Artificial Intelli-
gence (AI) applications to operate, either entirely on a device,
or in conjunction with localised data centres [16], [17]. To the
best of our knowledge, none of the proposed edge archi-
tectures [18]–[23] are sufficient in handling massive data
traffic computing in future networks. Most existing solutions
focus on installing edge devices to singular static locations
(e.g., factories, shoppingmalls) or around specific geographic
areas (urban centres), which bear the cost of additional infras-
tructure deployments [24]–[27]. There is also a growing body
of research on exploiting connectivity among end-devices in
close proximity to process tasks cooperatively in local area
computation groups. However, these efforts are also limited
in scope.

The main contribution of this article is to develop a novel
mobile edge architecture, introduced as the OMNIBUSa solu-
tion. The aim is to advance a decentralised computing and
storage architecture using vehicles. Road vehicles are the

aA French word originated in 1820s for transportation.

FIGURE 2. Our vision for the future of edge computing.

most promising candidates for future distributed data cen-
ters on the edge of the network for two primary reasons:
(1) most road vehicles display predictable movement pat-
terns, and (2) hardware capabilities for storage and computing
in cars are expected to tremendously advance in coming
years. In our proposed architecture, clusters of cars form a
powerful local hub in individual areas. They are capable of
offering high ad-hoc computational and virtualised resources
for end-devices.

The OMNIBUS solution will address two interrelated sci-
entific challenges. The first is the creation of a mobility
prediction model. Timing and direction of vehicular move-
ments will be predicted proactively to ascertain computa-
tional capacity and also to determine the flow of individual
cars in a given area at a certain time. A local hub can be
created for end-devices in that area by using cars as build-
ing blocks. Efficient algorithms can be developed to ensure
computing and storage workloads for individual regions as
cars move in and out of a given area. The second challenge
is minimising networking overheads as cars move in and out
of a region. It is necessary to study the required distribution
of computing and storage resources among cars. The main
scientific contribution of the OMNIBUS solution will be
to initiate a theoretical framework for sequential to parallel
conversion in learning, optimisation and caching algorithms
under unreliable circumstances for time-critical performance.
This propose OMNIBUS solution reaches near device edge.
Thus, the future of edge computing is expected to be scalable
and energy efficient, providing ultra-low latency network-
ing for time critical applications at a flat cost, as shown
in Fig. 2.

The rest of this paper is organised as follows. Edge
Computing (EC) and Edge Computing with End-Devices
(ECED) are discussed in Sections II and III, respectively.
The OMNIBUS architecture and its implementation are
described in Section IV, while its methodology is explained
in Section V. Next, proof of the concept is discussed in
Section VI. The study’s challenges and impacts with the pro-
posed solution are then highlighted in Sections VII and VIII,
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FIGURE 3. Description for the architecture of integrated space networks with the terrestrial and airborne networks in the future
ultra-dense networks.

respectively. Finally, the Summary of this paper is presented
in Section IX.

II. BACKGROUND AND RELATED WORK
This section provides a brief overview of Edge Comput-
ing. That includes the concept, type of solutions and related
works that have been performed in the literature. This section
will briefly summarise the research challenges that must be
addressed.

A. EDGE COMPUTING
The cloud has been an important solution for companies look-
ing to scale their computational operations without investing
in new infrastructure, while cutting down on operational
costs, by transferring their data centres to cloud providers.
Although the cloud catalysed the growth and adoption of
big data, it hides the costs and limitations related to net-
work latency, security and privacy. This becomes increas-
ingly significant with the integration between space and
terrestrial networks, especially with 5G and 6G networks,
as illustrated in the architecture described in Fig. 3. The
requirements of ultra-reliable networks in 5G and 6G have
become extremely critical. For that reason, edge comput-
ing is a significant technology enabler for achieving this
target. In recent years, discussions on computational oper-

ations have increasingly shifted from centralised cloud,
with remote data centres, to decentralised computing that
is closer to the source or the so called ‘‘edge’’ of the
network.

Edge Solutions allow information processing to take place
at the device or gateway level. This reduces the need to
transfer data back and forth between the cloud or a data
centre, therefore, decreasing latency, bandwidth requirements
and connectivity dependencies. Besides technical reasons,
decentralised computing is energy saving; given the power
and cooling costs associated with big data centres. Research
on edge computing is driven by security and privacy con-
cerns related to the centralised cloud on the part of states,
firms and consumers [28]–[33]. At the same time, falling
prices in computation and storage, together with the rise of
machine learning, is prompting the adoption of edge comput-
ing. According to the International Data Corporation (IDC),
by 2019, a minimum of 40% of data created by the IoT ‘‘will
be stored, processed, analysed and acted upon close to, or at
the edge of, the network’’ [34].

Systems typically known as edge computing include Cyber
Foraging [35], [36], cloudlets [37], [38], Fog Comput-
ing [39]–[42] and Mobile Edge Computing (MEC).

The nameMobile Edge Computingwas recently replaced
with Multi-Access Edge Computing. Multi-Access Edge

215930 VOLUME 8, 2020



M. Ergen et al.: Edge on Wheels With OMNIBUS Networking for 6G Technology

Computing was initiated by the European Telecommuni-
cation Standards Institute (ETSI) in 2014 with a focus
on mobile networks and Virtual Machine technology [43].
In 2017, its scope was expanded to incorporate non-mobile
network requirements and other virtualisation technologies.
The concept initially envisioned providing cloud-computing
capabilities at the edge of mobile networks and within the
Radio Access Network (RAN) by deploying MEC servers
at Long-Term Evolution (LTE)/LTE-A macro base sta-
tion (eNodeB) sites, 3G Radio Network Controller (RNC)
sites and at multi-Radio Access Technology (RAT) sites. The
ETSI initiative was also assigned a key role in standardising
the Application Programming Interfaces (APIs) between the
mobile edge platform and applications, with the aim of fos-
tering innovation in an open environment.

Fog computing, a concept introduced by Cisco in 2012,
is an extension of the cloud computing paradigm, from the
core to the edge of the network [44]. Hence, unlike MEC, fog
is strongly linked to the cloud and is unable to operate in a
standalone mode. As a result, there has been special focus on
communication between the fog and cloud [45]–[47]. Unlike
MEC, which is generally deployed at a base station, fog nodes
can be placed anywhere with a network connection; e.g.,
factory floor, on top of a power pole, railway tracks, vehicles,
etc., [44]. Cisco offers application platforms to simplify fog
application development, as well as Cisco Fog Data Services
for data analytics [48].

In parallel, big Internet companies are rolling out edge
infrastructure. Facebook is building micro data centres for
specific types of applications and workloads. Amazon has
launched Amazon Web Services (AWS) Greengrass to allow
developers to move some tasks to the device itself. There are
also companies that describe themselves as edge companies,
including EdgeConneX and vXchnge, that are building net-
works of urban data centres. For instance, Vapor IO, a startup
company, develops micro-centers that can be deployed any-
where.

Most of the proposed applications bear the cost of addi-
tional infrastructure deployment, whether it is installing edge
devices to singular static locations (e.g., factories, shopping
malls) or around specific geographic areas (urban centres).
Hence, scalability is negatively affected with the massive
increase of people performing transactions within a given and
specific edge domain. In contrast, with our proposed solution,
scalability rises with adoption. In other words, as a vast num-
ber of users require computing and storage transactions on
the network, we expect computation to become much faster,
allowing for the rise of a truly global network.

B. RELATED WORK
A growing body of work is now focusing on exploiting
connectivity among end-devices, particularly, mobile devices
(mobile cloud computing) in close proximity, to process tasks
cooperatively in local area computation groups [49]. The
end devices in a given area communicate with each other
to find resources and deliver requests. Hence, the end-user

stratum and edge stratum are merged. In the literature, col-
laboration is a central feature. The authors in [50] pro-
posed a vision where mobile devices form ‘‘mobile clouds’’,
or mclouds, to accomplish tasks locally. In [51], ‘‘Transient
clouds’’ were suggested as a collaborative computing plat-
form where nearby devices form an ad-hoc network to pro-
vide various capabilities as cloud services. In [52], a resource
sharing mechanism was proposed to utilise mobile devices
through opportunistic contacts in order to emphasise resource
aspects of mobile cloud computing. Other works, published
in [53], focused on Virtual Machine (VM) technology for
harnessing the full power of local hardware at the edges of
the Internet. On the other hand, [54] proposed an adaptive
method of resource discovery and addressed service provi-
sioning in opportunistic computing environments for man-
aging higher load requests without causing instability [55].
The proposal of [56], an architecture called Vehicular Fog
Computing (VFC) for vehicular applications, possesses some
similarities with the OMNIBUS solution.

In 2019, the authors [57] suggested a two-stage method for
detecting the optimal solution regarding Distributed Stream
Processing (DSP) applications in edge computing. The aim
of this method is to address the joint operator scaling and
determine the problem. The target is to offer higher cost
efficiency while considering user-defined QoS constraints.
The study was conducted based on experiments of real-world
DSP test cases.

In 2019, a new study [58] had focused on data-intensive
applications deployed with multiple service components
on the edge. The proposed method was implemented
based on the Genetic Algorithm (DSEGA). Five algo-
rithms were provided to obtain an optimal deployment
scheme.

In 2019, another study [59] presented a wireless acoustic
sensor network that was integrated with the edge computing
structure. This method has been described as a low-cost and
energy-efficient approach. It was mainly designed for remote
acoustic monitoring and in situ analysis. The reported results
indicated that the suggested method achieved noticeable out-
comes in terms of acoustic equivalence and power saving in
comparison to existing solutions.

In 2020, the work of [60] focused on the optimal appli-
cation deployment in resource-constrained distributed edges.
The aim of the study is to determine the deployment problems
of microservice-based applications in MEC. A method was
proposed to optimise the deployment cost of the application
with resources and performance limitations.

In 2020, another study [61] focused on dynamic resource
allocation in an edge environment for IoT systems. This
research implements a Reinforcement Learning process to a
trained resource allocating policy.

In 2020, [62] discussed the AI for edge computing. The
focus is on finding more optimal AI solutions that can con-
tribute to addressing edge computing problems. The main
idea and the research road-map of Edge Intelligence were
provided.
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In 2020, a scheduling method has been proposed [63] to
address themulti-workflow scheduling problemwith proxim-
ity constraint in the Edge Computing environment. The main
aim is to minimise costs. The study was performed based on
experimental and real-world data-sets.

Although this preliminary work also refers to vehicles
(both moving and parked) as an infrastructure for communi-
cation and computation, it only does so with service vehicles
alone and not all other connected devices and applications.
In all proposals regarding edge computing that merge the
end-user stratum and the edge stratum, devices share their
resources among each other in a limited area. Thus, our
challenge is to bring together a whole range of technologies
for decentralised computing.

C. RESEARCH GAP
To summarise, the issue of the central cloud computing is
that it may not efficiently serve in future networks due to
the massive growth in mobile data traffic. Therefore, techni-
cal challenges are anticipated to emerge in future networks.
These challenges must be sufficiently addressed. They are
briefly summarised in the following:

(a) Insufficient Bandwidth: Insufficient bandwidth will
be one of the key issues that require attention in future
networks. This issue will be due to the continuous radical
increase in data movements between connected end devices
and the central cloud.

(b) Ultra Low Latency: The Critical Remote Con-
trol (CRC) applications are one of the key innovations in 5G
and 6G networks. They require ultra-reliable communication.
Enabling this technology to work efficiently entails moving
the central computing to multiple distributed edge computing
units.

(c) Cost Reduction Need: The cost factor is considered as
the main key challenge in the deployment of future ultradense
networks. Looking for wider bandwidth bands and deploying
additional network infrastructure are all factors that raise cost.
Therefore, this issue must also be addressed as well.

(d) Security Attacks and Threats: Security attacks and
threats are key issues facing the implementation of MEC.
They fundamentally result from design flaws, inappropri-
ate configurations and/or implementation bugs. Therefore,
defense mechanisms are necessary for recognising attacks
and threats resulting from all sources. With the OMNIBUS,
security attacks and threats will be a problem as well. How-
ever, finding the solution for security is not the main target of
this paper. The aim is to present the concept of the proposed
architecture. Thus, further research is required to address this
issue.

III. OMNIBUS ARCHITECTURE AND IMPLEMENTATION
The OMNIBUS proposal expands the idea of end user
stratum and edge stratum to the next level. By introduc-
ing a predictive platform for mobility patterns and for the
distribution of storage and computation capacity among
cars, it paves the way for an efficient and highly scalable

architecture for device-level edge computing. The general
concept and structure of the proposed OMNIBUS architec-
ture solution for decentralised storage and computing are
illustrated in Figs. 4 and 5.

A. DISTRIBUTED MACHINE LEARNING AND MODEL
PARALLELISM
Our goal is to speed up large-scale Machine Learning (ML)
by reducing training time via parallel or distributed comput-
ing. Data parallelism and model parallelism are also methods
for improving speed. Data parallelism partitions the data,
while our solution (model parallelism), partitions the ML
model itself to distribute the workload to multiple computa-
tional workers, as described in Figs. 6 and 7. In our architec-
ture, it is necessary to understand the methods to partition
the ML model according to heterogeneity and mobility of
cars, while ensuring interoperability on the level of different
service providers. Given the high number ofmachine learning
models, with each model possessing its own characteristics
and representations, there is no principle way to implement
model parallelism. In distributed machine learning, the syn-
chronisation over-head increases as the system scales.

Our solution also leverages machine learning software
methods to optimise the hyper-parameters of selected algo-
rithms. It further utilises Hadoop frameworks, including
Hadoop Distributed File System (HDFS), Spark and Cassan-
dra for faster and energy-efficient computation. The Hadoop
framework employs simple programming models that allow
the distributed processing of large datasets across computer
clusters. Spark is a computation engine for Hadoop data that
supports an entire range of applications; e.g., machine learn-
ing, stream processing, etc. Cassandra is a highly scalable
database with no single point of failure, which makes it ideal
for mission critical data.

B. NEXT GENERATION DISTRIBUTED LEDGER
TECHNOLOGY
For storing data and enabling fast computation in the network,
it is crucial to study directed acyclic graphs (DAG)-based
ledger technology. DAGmay be the primary data structure for
us to create a peer-to-peer network protocol. This will allow
us to advance in distributed machine learning methods to add
cognitive capabilities as well as consensus mechanisms.

DAG is largely more suitable for our solution due to its
potential in scalability and lesser processing power require-
ments compared to Bitcoin-like blockchain ledger technolo-
gies [71], [72]. In the blockchain system, the block size and
the time required to generate a new block places limitations
on throughput and transaction times. In contrast to blockchain
technology, DAG transactions are not grouped into blocks.
Each new transaction confirms at least one previous trans-
action, and transactions are represented as ‘‘units.’’ Hence,
selection of a branch and detection of double-transaction are
decoupled from transaction verification, which allows nodes
to verify transactions in parallel. As a result, DAG has the
potential to achieve unlimited scalability.

215932 VOLUME 8, 2020



M. Ergen et al.: Edge on Wheels With OMNIBUS Networking for 6G Technology

FIGURE 4. The general concept of the proposed OMNIBUS architecture solution for decentralised storage and computing. Any accurate
trajectory prediction method can be used as the backbone for this distributed computing [64]–[70].

FIGURE 5. Structure of the proposed OMNIBUS architecture solution for decentralised storage and computing.

However, as DAG-based solutions emerge for high-
frequency transaction scenarios, problems may arise in low
frequency transactions [71]. When an old transaction is not
able to receive a sufficient number of new transactions to be
verified, the old transaction may not be confirmed in time
or not be confirmed at all. To ensure a continuous system,
our solution optimises high frequency and low frequency
transactions by harmonising DAG and blockchain concepts
as required.

C. MOBILITY MODELS
Mobility data contains the approximate whereabouts of indi-
viduals and is used to explore the movement patterns of

individuals across space and time. The vehicular mobility
maps have been addressed in the literature [73]–[75]. How-
ever, they are not comprehensive enough. Mobility data
is among the most sensitive data that is currently being
collected. While the discussion on individual privacy with
respect to mobility data is on the rise, research in this area
is still limited [76]–[80]. The OMNIBUS solution is pro-
posed to design a targeted mobility model for addressing
specific tasks that do not compromise an individual’s privacy.
In doing so, leveraging machine learning software meth-
ods distributed ledger technologies are very important. In
this proposed solution, any accurate and efficient trajectory
prediction method can be used as the backbone for this
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FIGURE 6. A demonstration of machine learning software programming
with Hadoop Distributed File System distributed over cars. JVM is Java
Virtual Machine.

FIGURE 7. A distributed machine learning example.

distributed computing [64]–[70]. These algorithms only
focus on trajectory prediction, whereas the use of these pre-
dictions will enable the computation to be distributed more
efficiently.

IV. METHODOLOGY
A. AGGREGATED MOBILITY HANDLING (AMH)
AHM aims to accurately depict vehicular behaviour and
focuses on the following principles: (i) Charting out mobility
patterns of moving cars to optimise computing and storage
distributions among them. Mobility patterns will be learned
in mixed autonomy with each car that shares the mobility
patterns andmovements of other cars. (ii) Aggregation, which
will take place over a combination of DAG and blockchain
based distributed ledger technologies, must depend on dif-
ferent frequency scenarios. (iii) Leveraging our model is

required to solve the massive routing problem so as to bring
Internet data to unconnected regions.

1) SOLVING THE MOBILITY HANDLING PROBLEM
Self-driving cars, sharing rides and similar exercises in
mobility as a service (MaaS) are turning transportation into
mixed autonomy systems; integrating AI/ML technology.
By reducing randomness, mixed autonomy systems (includ-
ing autonomous and non-autonomous vehicles) make it pos-
sible to accurately depict vehicular behaviour (the mobility
handling problem) [81], [82]. In this relation, mobility pat-
tern challenges and requirements of mixed autonomy sys-
tems are studied; more specifically, a convex optimisation
method predicting the flow is used to represent the coordi-
nation of automated vehicles, which relies on accurate traffic
flow sensing [10], [83], [84]. MaaS applications enable user
induced non-autonomy systems to turn a generally assumed
to be intractable problem into a mixed-autonomy problem.
In the context of a larger dynamic system, this dictates the
progression of the integration or the use of automation [83].

To the best of our knowledge, our solution is the
first scheme to generalise the mobility handling prob-
lem, using generic reinforcement learning techniques for
improved dimensionality reduction. It applies machine learn-
ing and optimisation methods to mixed autonomy systems for
addressing automation problems of integration into existing
systems. It explores empirical and theoretical justifications
of edge/caching systems and their optimisation methods as
a design paradigm. Through principled learning and opti-
misation methods, even a small number of vehicles can be
harnessed to have a significant impact on the Internet.

At this point, real-time independent decision-making for
the random behaviour of vehicle passengers & drivers
is a crucial factor. For this reason, creating a sequential
decision-making tool/program to model the learning and
decision-making processes of car passengers and/or drivers
would be the first of its kind. As commuters make repeated
decisions, they learn to optimise their route choices over time.
This can be efficiently modelled using a sequential process,
where a payoff function at each step is streamlined and linked
to the results they experience.

Ourmodel will also support the existing literature on traffic
systems that can often be modelled using complex (nonlinear
and coupled) dynamic systems. In addressing complex traffic
control problems, a decentralised, learning-based solution
involving interactions between humans, automated cars and
sensing infrastructure, with the use of deep reinforcement
learning, should be developed. The resulting control laws
and emergent behaviours of cars will potentially provide
insight on the behaviour of each car. These insights will
be replicated, shared and synchronised among cars over a
distributed ledger technology, through peer-to-peer ad-hoc
networking, to understand the potential for automation of
flow. We have already accomplished a simulation for a four
lane road to demonstrate the possibility of computation and
storage period [85].
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FIGURE 8. A distributed storage example.

Our novel computational framework, which integrates
open-source deep learning and simulation tools, can support
the development of edge computing in vehicles in the context
of complex nonlinear dynamics of transportation. Learned
policies, resulting from effectively leveraging the structure of
human driving behaviour, surpass the performance of state of-
the-art predictors designed for various mobile applications,
such as Google Now. The framework will initially focus on
highway traffic, and will later include arterial traffic, transit,
as well as other modes of transportation/commuting (biking,
MaaS, carpooling, etc.).

2) DISTRIBUTED LEDGER AS A DATABASE
DAG will be used in distributed ledger technologies for
storing data to enable fast and scalable computation in the
network, as illustrated in Fig. 8. DAG may be the primary
data structure for the OMNIBUS solution for creating a peer-
to-peer network protocol. However, as DAG-based solutions
emerge for high frequency traffic scenarios, problems may
arise in low frequency scenarios. To ensure a continuous
hybrid system, using a sequential blockchain verification to
parallel DAG verification mechanism is necessary for accom-
modating increasing and unreliable penetration.

3) SOLVING THE MASSIVE ROUTING PROBLEM
Mobility patterns are of crucial importance in the context of
providing network access to areas without Internet. They add
a spatial component to the temporal sequential process, which
may be termed as ‘‘Cartesian’’ machine learning. In doing
so, understanding the ‘‘next move’’ to be applied as the
‘‘next hop’’ in routing purposes is essential. The techniques
we developed in this regard leverage known models such
as replicator dynamics, mirror descent, stochastic gradient
descent and the hedge algorithm. Overall, it is necessary to
converge all these processes towards a set of equilibrium
based on assumptions made during the learning process used
by humans in decision-making, while considering the con-
straints imposed by transportation.

B. DECENTRALISING COMPUTING AND STORAGE
Anticipating the demand for each edge car and deploying
adequate car resources are very important to sufficiently meet
locational demands. For instance, when a single car moves
out of the local area, its storage and computing resources
must be distributed across the cars that remain in that area
and the new cars that enter that area. Therefore, developing
predictive algorithms are crucial to optimally distribute com-
puting and storage resources among cars, while considering
challenges related to redundancy, security, heterogeneity of
devices and federation (where interoperability is ensured on
the level of different service providers). In developing these
algorithms, creating and employing a global mobility map
is a key element. Leveraging and combining existing mesh
networking systems for car-to-car and car-to-device commu-
nication is also necessary. It is equally important to study how
to distribute computing and storage across the entire system;
i.e., whether data should remain local (shared among cars) or
sent to the cloud.

Another vital task would be building parallel systems as
well as harnessing thousands of simple and efficient com-
puting and storage resources, which can be a practical solu-
tion to sustain growth without scaling technology. To this
end, our architecture parallelises algorithms. Tasks must be
implemented speculatively and in an ‘out of order’ manner.
Moreover, thousands of tasks should be efficiently speculated
prior to the earliest active task in order to reveal sufficient
parallelism. To develop parallel algorithms and uncover abun-
dant parallelism in large-scale applications, new techniques
should be developed to exploit locality and nested paral-
lelism. To generate parallel algorithms in cars, the focus
should be on the following.

(i) Ensuring consensus among multiple cars working
towards a common goal. For instance, when all cars involved
are solving one optimisation problem together, yet with dif-
ferent data set partitions.

(ii) Redistribution in the emergency where one of the cars
has become disabled and leaves the cluster. The issue is to
restore the system without restarting it.

(iii) Communication and Managing resources. Communi-
cation: computation requires significant input/output (I/O)
(e.g., disk read and write) and data processing procedures.
TheOMNIBUS solution distributes storage systems to enable
faster I/O and non-blocking data processing procedures for
different types of environments (e.g., single node local disk,
distributed file systems, etc.). Managing resources: the issue
is managing resources within a given cluster of cars to
meet all demands while maximising capacity.

(iv) Designing a programming model to improve effi-
ciency. A new programming model is employed to achieve
distributed computing and storage algorithms, in the same
way as non-distributed ones, which requires less coding and
improves efficiency. Studying programming in a single-node
fashion, while automatically amplifying the program with
distributed computing techniques, is also necessary. Applying
model parallelism to partition the ML model itself so as
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to distribute the workload to multiple computational cars is
highly essential, as well as developing a unique data analytics
engine to specifically target car-to-car and car-to-device for
big data processing.

V. PROOF OF THE CONCEPT
The OMNIBUS solution aims to present an advanced decen-
tralised computing and storage architecture by addressing
two interrelated scientific challenges (creation of a mobility
prediction model and an efficient distribution of resources
among vehicles). As mentioned in Section I, the Quality of
Service (QoS) levels are expected to be achieved with the pro-
posed scheme along with the traditional cloud-User Equip-
ment (UE) and MEC-UE communication schemes. They are
also analytically assessed within this section. The aim is to
prove that the OMNIBUS architecture can provide higher
storage and processing capacity compared to cloud and MEC
servers when certain conditions are met.

Let `c, `m and `o denote transmission latency between a
cloud server and a receiver (UE), a MEC server and a UE,
and an OMNIBUS network (vehicles) and a UE, respectively,
for data flow (packet transmissions). As in [86], transmission
latency between the cloud server and the UE can be computed
as follows:

`c = n{(1+ PlW )`W + (1+ PlR )`R} (1)

where n is the number of packets transmitted, PlW and PlR are
the packet loss rates between the cloud server and the Base
Station (BS), and between the BS and the UE, respectively,
occurring during n packet transmissions. Finally, `W and `R
are the average latency per packet in between the cloud server
and BS, and the BS and UE, respectively. To elaborate, `W
and `R are the ratios of the sum of delays caused by pro-
cessing, queuing, transmission and propagation to the total
number of packets transmitted (n) between the cloud server
and BS as well as the BS and UE, respectively.

In contrast to the cloud-UE communication scheme, since
some packets (e.g., m packets, where m ∈ [1, n]) are
expected to be pre-fetched/cached in a MEC server prior to
a request from the UE, MEC-assisted transmission latency
between the cloud server and the UE can be computed as
follows:

`m = n{(1+ PlW )`W + (1+ PlR )`R} − m(1+ P
′
lW )`

′
W (2)

where P′lW and `′W are the packet loss rate and average latency
of the m packets pre-fetched earlier, say within the time
period of [π0, πm]. Considering the shortness of the physical
distance and the data flowing over the cloud, which will also
be transferred to the UE over the base station, it is clear to
say that the download speed of pre-fetched/cached packets to
the UE is faster than the download speed of packets through
a backhaul link between the cloud and UE.

In a similar manner, since some of the packets (e.g., x, y,
and z packets, where x + y + z ∈ [1, n]) are also expected
to be pre-fetched/cached in an OMNIBUS network by vary-
ing the number of vehicles (3 vehicles for this example)

in close proximity to the UE, prior to a request from the
UE, the OMNIBUS-assisted transmission latency between
the cloud server and the UE can be computed as follows:

`o = n{(1+ PlW )`W + (1+ PlR )`R} − (x)(1+ P′′lW )`
′′
W

− (y)(1+ P′′′lW )`
′′′
W − (z)(1+ P′′′′lW )`

′′′′
W (3)

where P′′lW , P
′′′
lW , P

′′′′
lW and `′′W , `′′′W , `′′′′W are the packet loss

rates and average latencies of x, y and z packets pre-fetched
earlier, respectively. In this regard, the following definition
and theorem can be made.
Definition 1: Collaborative pre-fetching/caching is to

allow storing packets on multiple edges (MEC server/
vehicles) within a neighborhood.

Since pre-fetching/caching enables the full utilisation of
front-end throughput between the edge and the UE, the fol-
lowing theorem can be defined.
Theorem 1: Collaborative pre-fetching/caching among

edges reduces end-to-end latency, which extends the total
available buffer-size/storage-capacity per UE.

Proof: Here, the latency considered for reduction is the
latency between the cloud and the edge since no change is
expected to occur between the edge and the UE. The latency
over wired/wireless connections between the cloud and the
edge can be split as `W = `W (π0, πm)+ `W (πm, πn), where
π0, πm and πn are the time at the beginning, the time when
m packets are downloaded and stored on the MEC server
as well as the time when all packets are completely down-
loaded, respectively. It is assumed that downloading speed
for the m pre-fetched packets is faster or equal to/from the
downloading speed of n packets due to the growing backhaul
traffic (Dw(π0, πm) ≥ Dw(π0, πn)) and longer transmission
distances. The buffer size of the edge (buffer size of the MEC
server, or the total buffer size of vehicles) is expected to be
larger than the buffer size of the UE itself, `W (π0, πm) ≥
`′W (π0, πm), where `′W (π0, πm) is the average latency of the
m packets, which is the corresponding time period when
the buffer of the edge is used to transfer pre-fetched/cached
packets to the UE. The theorem suggests that `c ≥ `m.
From Eq.(1), Eq.(2) can be rewritten as `m = `c − m(1 +
P′lW )`

′
W . In the worst case, the second term on the righthand

side of the equation, m(1 + P′lW )`
′
W , will approximate to

0. Hence, `m = `c, otherwise it will be `m < `c, which
simply proves the theorem. Considering that vehicles will be
positioned closer to the UE than the MEC server itself, there-
fore having a higher signal strength from the UE, it would
also be appropriate to say that `m ≥ `o, in case the total
number of packets pre-fetched/cached by vehicles is more
than the packets pre-fetched/cached by theMEC server (when
x + y+ z ≥ m).

As the transmission latency, packet loss rate also affects
the QoS. Suppose SSi, SSj, SSk and SSl are the signal strength
levels between the UE andMECi, the UE and vehiclej, the UE
and vehiclek , and the UE and vehiclel , respectively. Here,
packet loss rates are denoted with PlR (SSi), PlR (SSj), PlR (SSk )
and PlR (SSl), respectively. In case the UE is closer to MECi
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than any of the vehicles, it is expected that PlR (SSi) ≤
PlR (SSj,k,l). However, since both UEs and vehicles tend to
be mobile, a handover operation could be required/preferred
for the UE whenever signal strength of any of the vehi-
cles is higher than the signal strength of the MEC server
(PlR (SSj,k,l) ≤ PlR (SSi)). In this respect, the following
definition and theorem of packet loss rate are defined as
follows.
Definition 2: Handover among edges is an essential factor

to avoid/limit RAN-based congestion and packet errors.
Theorem 2: Collaborative handover approach reduces

the overall packet loss rate, while increasing the average
Received Signal Strength (RSS) of UEs.

Proof: Let `i, `j, `k and `l be average transmission laten-
cies to be calculated when a UE is held by MECi, vehiclej,
vehiclek and vehiclel , respectively. The theorem suggests that
`i ≥ `j,k,l , given that SSi ≤ SSj,k,l . As can be seen from
Eq.(1), Eq.(2) and Eq.(3), PlR increased the effect on the
right-hand side of all of these equations. In case a single
MEC server (MECi) is used in the system, PlR remains the
same as in the cloud-UE communication scheme since the
sender and receiver are the same entities in both cloud-UE
and MEC-UE methods. However, once UE is handed over
from MECi to any of the vehicles, say vehiclej, given that
SSi ≤ SSj, the packet loss rate will decrease to PlR (SSj), due
to PlR (SSi) ≥ PlR (SSj). Hence, `i ≥ `j is held, which proves
the theorem.

Accordingly, Theorems 1 and 2 state that collaborative
pre-fetching/caching and handover among vehicles assist in
the increase of the total storage capacity, reduce latency
and packet loss rate, provide higher QoS levels per UE and
therefore, enable an advanced decentralised computing and
storage architecture compared to the cloud-UE and MEC-UE
communication schemes.

VI. CHALLENGES
A. DECENTRALISING COMPUTING AND STORAGE
The demand for each edge car must be anticipated so that ade-
quate car resources are deployed to meet locational demands.
For instance, when a single car moves out of the local area, its
storage and computing resources should be distributed across
other cars that remain in that area and new cars that enter that
area. Our architecture supports an excessive mobility map in
developing predictive algorithms to optimally distribute com-
puting and storage resources among cars. In doing this, it is
necessary to consider the challenges related to redundancy,
security, heterogeneity and federation where interoperability
is ensured on the level of different service providers and
mobility handling. TheOMNIBUSmodel leverages and com-
bines existing MANET (Mobile Ad-hoc Network), VANET
(Vehicular Ad-hoc Network) and DTN (Delay Tolerant
Networking) technologies for car-to-car and car-to-device
communication. This model also addresses how to distribute
computing and storage across the entire system; i.e., whether
data should remain local (shared among cars) or sent to the
cloud.

B. AGGREGATED MOBILITY HANDLING (ACCURATELY
DEPICTING VEHICULAR BEHAVIOUR)
At present, there is no large scale mobility map since avail-
able models are not adaptable and do not adequately address
privacy concerns. In our architecture, developing a mobility
prediction model is critical for optimising the allocation of
computing and storage resource sharing among them. These
mobility patterns enable us to provide offloading decisions,
as well as control energy consumption and bytes of data trans-
fer [87]–[89]. Our solution will use databases provided by
mobile operators, smart transportation systems, etc., to build
our mobility model. Mobility patterns will be learned as each
car shares mobility patterns and movements of other cars via
mesh networking technologies. The OMNIBUSmodel uses a
combination of DAG-based and blockchain-based distributed
ledger technologies depending on different frequency scenar-
ios for aggregation. Our problem is complex, since it focuses
on continuously moving cars that exchange data with each
other in order to keep the system alive in any given location.
The proposed solutions to communication regarding moving
vehicles are limited to highly ordered environments. In con-
trast, the OMNIBUS solution seeks to develop communica-
tion protocols for cars in an extremely chaotic environment.
To do this, the OMNIBUS model supports MANET, VANET
and DTN technologies.

C. HETEROGENEITY ISSUES
Heterogeneity of resources, in terms of computational and
storage capabilities as well as their ad-hoc availability, is nec-
essary for optimisation. Heterogeneity is important for decid-
ing which application components should be deployed and
where [45]. This involves developing algorithms to address
heterogeneity while considering the limitations of specific
nodes. For instance, in a content delivery use case, storage
limitations of the caches are incorporated into the caching
algorithm. While node degrees can be optimised, the CPU
of each car must compute multiple items simultaneously.
Ensuring that CPUs are not overwhelmed will be a key con-
sideration in developing our algorithms.

D. FEDERATION ISSUES
In our architecture, cars are geographically distributed on a
very wide scale and could be assigned to different service
providers. The cloud can also be operated by a different
provider. Our architecture will be designed in a way where
interoperability is ensured on the level of federation of dif-
ferent service providers. This means developing a consensus
protocol to understand the capabilities of a variety of cars
using various providers.

E. HANDLING MOBILITY OF END-USERS
In the case that end users physically move, the system
should be able to continuously provide the same quality of
experience, without interrupting the service. Moreover, in the
scenario that several end-users are watching the same video,
the algorithm may need to allow the mobility engine to copy
the video to be pushed to the destination point. Similarly, as a
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car moves in our system, resource displacement occurs with
implications on resource management algorithms. To address
this challenge, studying byzantine fault tolerance methods
for the scenario where a car’s data centre may fail or move
is important. There is inadequate information on whether a
component has failed or moved. The OMNIBUS solution
appliesmodel parallelism for partitioning theMLmodel itself
to distribute the workload to multiple computational cars.
In this architecture, the methods for partitioning the ML
model according to heterogeneity, federation andmobility are
constantly investigated.

VII. IMPACT
The OMNIBUS solution will have a far-reaching impact in
three areas, as summarised in the following: (i) 5G and 6G
Ultra-Reliable Low Latency Communication (URLLC):
The key objective is to enable a range of new applica-
tions (Smart Driving, Smart Grids, Augmented Reality (AR)
and IoT in general) that depend on ultra-reliable and ultra-
low-latency connectivity. The OMNIBUS solution is driven
by the need to remove present and future bottlenecks in
communication networks and to prepare the groundwork for
future 5G and 6G heterogeneous networks [90]–[96]. The
solution responds to the market requirement for a compre-
hensive edge network platform with faster and more reliable
data processing. Attempts to move computing closer to the
network (cloudlets, Fog Computing and MEC) are not scal-
able. In contrast, our architecture has the potential to scale
almost infinitely while increasing the speed of networks as it
grows. Our ambitions go further and our research paves the
way for employing all connected devices as computing and
storage centres, including people with smart phones and all
IoT applications. The proposed decentralised network archi-
tecture opens up new possibilities for network slicing, result-
ing in lower latency, increased storage capacity, more net-
work resilience and security as well as less energy wastage.
By breaking down and distributing computing and storage
resources for intermittent networking, our solution paves the
way for a scalable collaborative communication network.

(ii) Decentralised Internet: Our architectural framework
can be used for high latency and delay-tolerant Internet access
for more than the 3.9 billion who remain offline today from
the world’s population. A decentralised storage and com-
putational framework, as we have proposed, is more reli-
able than the current digital infrastructures which are vul-
nerable to disaster situations. A single point of failure in
the infrastructure can bring down the entire communication
network. The OMNIBUS solution leverages our mobility
model to solve the massive routing problems. Our predic-
tive algorithms that we developed can optimally distribute
computing and storage among cars to bring Internet data to
unconnected regions. In this regard, the OMNIBUS solution
is expected to open new directions in research on ad-hoc tech-
nologies and DTN-based data mules. In contrast to URLLC,
this can be called UCHLC: Ultra Coverage High Latency
Communication.

FIGURE 9. Vehicle trajectories in low density with four lanes and 500m
communication range. � represents the information travel in upstream
direction and ◦ represents the information travel in downstream direction.

Fig. 9 illustrates an example of how data is transmitted
via vehicles over time in a relatively low density when there
are four lanes with communication range (C) of 500 m
and update interval (t) of 1s [85]. In every update interval,
if the message remains at the same vehicle, then it is car-
ried by transmit relay (stored and forwarded). Otherwise,
it is forwarded to another vehicle by direct relay (multi-hop
forwarding).

Consequently, with the OMNIBUS solution, even a UE
that is out of coverage from any BS will be able to access
the Internet and communicate with the entire world since
the OMNIBUS solution allows any offline data to travel
via vehicles over direct or transport relay until an Internet
connected edge is found. This procedure will create addi-
tional vehicle-based computation and storage capacity for the
system, depending on the distance of the UE and the number
of vehicles in that region.

(iii) Smart Transportation: Our solution will have con-
siderable impacts on smart transportation systems, including
traffic systems and edge computing in vehicles. It has the
potential to redirect research on traffic systems towards a
decentralised, learning-based study of complex traffic control
problems, involving interactions of humans, automated vehi-
cles and sensing infrastructure. The resulting control laws and
emergent behaviours of cars will potentially provide insight
on the behaviour of each car. These insights will be repli-
cated, shared and synchronised among cars over a distributed
ledger technology through peer-to-peer ad-hoc networking to
understand the potential of automation of flow.

Furthermore, our study can be employed by the research
community as a new computational framework that integrates
open-source deep learning and simulation tools to support
the development of edge computing in vehicles in terms of
complex nonlinear dynamics of transportation.

VIII. SUMMARY
A breakthrough is imminently needed to support the demands
of heavy data network edge. Although there are various
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proposed solutions regarding edge computing, most are sub-
stantially limited and not easily scalable. At this point,
the OMNIBUS solution, which proposes the smart distri-
bution of computing and storage resources among vehicles
with a mobility prediction model, provides the breakthrough
technology needed. It brings together a full spectrum of
science and engineering used for various innovations and
has the potential to upend the ecosystem of future net-
work efforts. This solution specifically paves the path for
more efficient and highly scalable device-level edge comput-
ing architectures. It particularly develops serious key objec-
tives to enable a range of new applications (Smart driving,
Smart Grids, Augmented Reality and IoT in general) which
depend on ultra-reliable and ultra-low latency connectivity.
The OMNIBUS solution has the potential to redirect research
on traffic systems towards a decentralised, learning-based
study of complex traffic control problems. It can also be
employed by the research community as a new computational
framework that integrates open-source deep learning and sim-
ulation tools to support the development of edge computing in
vehicles. This would be in the context of complex nonlinear
dynamics of transportation. It can support and further develop
state-of-the-art predictors designed for various mobile appli-
cations. It will also make existing map databases more accu-
rate and more interactive. The OMNIBUS solution can be the
most vital and influential building block for future network
efforts. But, more advanced planning/reinforcement learning
algorithmswill be needed to solve the load balancing problem
in this novel distributed computation architecture.
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