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Age-related changes in concentric and eccentric isokinetic peak torque of the trunk muscles in 1 

healthy older versus younger men2 



2 | P a g e  

 

Abstract 1 

This study investigated age-related changes in trunk muscle function in healthy men and the moderating effect 2 

of physical activity (PA). 3 

Twelve older (67.3±6.0 years) and 12 younger (24.7±3.1 years) men performed isokinetic trunk flexion and 4 

extension tests across a range of angular velocities (15°·s-1 - 180°·s-1) and contractile modes (concentric and 5 

eccentric).  6 

For concentric trunk extension, mixed-effects ANCOVA revealed a significant interaction between angular 7 

velocity x age group (p=.026) controlling for PA. Follow-up univariate ANCOVA revealed that the younger 8 

group produced significantly greater peak torque for all concentric extension conditions. Eccentric trunk 9 

strength was somewhat preserved in the older group. Age-related changes in trunk strength were independent of 10 

PA. 11 

The normal loss of trunk muscle strength in older age is muscle and contractile mode specific. These findings 12 

provide guidance for effective intervention strategies to offset adverse health outcomes related to trunk strength 13 

loss in older adults. 14 

Key words: muscle strength, ageing, sarcopenia, abdominal muscles, paravertebral muscles15 
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Introduction 1 

Skeletal muscle atrophy is associated with muscle weakness, however, studies have shown that the rate 2 

of strength loss is disproportionately greater than muscle atrophy (Delmonico et al., 2009; Mitchell et al., 2012) 3 

and better in predicting adverse outcomes (Menant et al., 2017; Schaap, Koster, & Visser, 2013). Indeed, low 4 

muscle strength is now the principal determinant for identifying sarcopenia (Cruz-Jentoft et al., 2019). Studies 5 

investigating age-related declines in muscle function typically focus on the appendicular musculature (Mitchell 6 

et al., 2012), despite growing evidence for the importance of trunk muscles in performing activities of daily 7 

living (ADLs) (Granacher, Gollhofer, Hortobágyi, Kressig, & Muehlbauer, 2013; Hicks et al., 2005) and 8 

constituting an important factor for overall health (Cho et al., 2014; Crawford, Volken, Valentin, Melloh, & 9 

Elliott, 2016; Valentin, Licka, & Elliott, 2015). 10 

The abdominal and lumbar paravertebral muscles are inextricably linked, controlling trunk movement 11 

and promoting mechanical stability in the lumbopelvic region (Barr, Griggs, & Cadby, 2005; Cholewicki, 12 

Juluru, & McGill, 1999; Gardner-Morse & Stokes, 1998). The importance of maintaining strength in the lumbar 13 

extensor muscles is highlighted by the large forces they generate. Due to a relatively small moment arm, the 14 

lumbar extensor muscles must produce a substantially larger force than the weight of the upper torso and ventral 15 

loads to counterbalance the external moment. In older adults, decreased neuromuscular control of the trunk 16 

muscles compromises their ability to stabilise the spine in response to perturbations in the environment, which 17 

increases susceptibility to injury (Hwang, Lee, Park, & Kwon, 2008; Mannion, Adams, & Dolan, 2000). A 18 

strength reserve is therefore needed to react to unpredictable occurrences such as falls, sudden loading of the 19 

spine and quick movements (Barr et al., 2005). A sudden need to regain spinal stability may also result in 20 

excessive muscle activity; a mechanism implicated in the onset of lower back pain and injury (Cholewicki & 21 

McGill, 1996; Mannion et al., 2000). Since older adults exhibit slower trunk movements (McGill, Yingling, & 22 

Peach, 1999), it is imperative that trunk strength is maintained for balance (Granacher et al., 2013) and to 23 

mitigate excessive muscle activity in response to instability (Anderson & Behm, 2005). Therefore, maximum 24 

strength of the trunk muscles is an important factor in older adults when dynamic stabilisation is required 25 

(Rantanen, Era, & Heikkinen, 1994). 26 

Studies using dynamometric approaches to evaluate trunk strength have typically opted for isometric 27 

conditions (Granacher, Lacroix, Roettger, Gollhofer, & Muehlbauer, 2014; Hernandez, Goldberg, & Alexander, 28 

2010; Kassebaum et al., 2016; Porto et al., 2020; Sasaki et al., 2018; Shahtahmassebi, Hebert, Hecimovich, & 29 

Fairchild, 2017; Sinaki, Nwaogwugwu, Phillips, & P. Mokri, 2001). Although isometric measures provide valid 30 
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and reliable outcomes for peak torque of the trunk musculature (De Blaiser, De Ridder, Willems, Danneels, & 1 

Roosen, 2018; Roth, Donath, Kurz, Zahner, & Faude, 2017), torque measured at a single standardised joint 2 

angle may not reflect muscle function across the functional range of motion (ROM) effectively (Rousanoglou & 3 

Boudolos, 2008). Given that torque production is joint angle dependent (Samuel & Rowe, 2009), measurement 4 

at one or a few discrete joint angles provides limited information about the force generating capacity of the 5 

muscles. Continuous measurement of joint torque elicits more detailed evaluation of a muscle group’s function 6 

under controlled movement conditions. Furthermore, assessing force generation whilst the muscle is shortening 7 

and lengthening is more indicative of dynamic muscle activity during ADLs. Indeed, isokinetic dynamometry is 8 

widely regarded as the gold standard for dynamic muscle performance testing (Dvir, 2004; Felicio et al., 2014). 9 

The effect of ageing on isokinetic trunk strength has been seldom studied with only a few studies 10 

reporting on adults over 50 years of age (Danneskiold-Samsøe et al., 2009; Gomez, Beach, Cooke, Hrudey, & 11 

Goyert, 1991; Hasue, Fujiwara, & Kikuchi, 1980; Hulens, Vansant, Lysens, Claessens, & Muls, 2002; Langrana 12 

& Lee, 1984; H. J. Lee et al., 2012). Of these studies, the effect of age on trunk strength varies from 13 

insignificant to large and it is unclear whether the age-response is equivalent between the abdominal and 14 

paravertebral muscles. Confounding factors which are often overlooked, such as PA level, may also moderate 15 

the age-response (Rantanen, Era, & Heikkinen, 1997). Furthermore, the lack of consensus regarding isokinetic 16 

parameters, such as ROM limits, angular velocity and contractile mode, precludes conclusions from being 17 

drawn on age-related loss of trunk strength.  Most importantly, research on eccentric trunk strength with respect 18 

to ageing does not exist to the authors’ knowledge, leaving a considerable gap in our understanding of muscle 19 

function in older age.  20 

The loss of strength in older age is detrimental to physical function and is associated with adverse 21 

health outcomes, however, normal age-related decline in trunk strength is not fully understood. Assessing trunk 22 

strength at a range of angular velocities and under dynamic contractile modes is important to further our 23 

understanding of ageing trunk muscle function under conditions that reflect trunk kinematics during ADLs. This 24 

understanding will inform efforts to extend the period older adults are able to live independently. Therefore, this 25 

study aimed to investigate age-related changes in peak isokinetic trunk muscle torque across a range of 26 

contractile modes in healthy young and older men. A secondary aim was to evaluate the moderating effect of 27 

PA. 28 

 29 
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Methods 1 

Reporting of this prospective observational study is based on the Strengthening the Reporting of 2 

Observational Studies in Epidemiology (STROBE) Statement (von Elm et al., 2007). Coventry University 3 

Ethics Committee approved the study (P70399) on 13th September 2018. Participants were recruited between 4 

November 2018 and June 2019 from the community and from University staff and students in Coventry, 5 

England. Inclusion criteria were healthy males aged 18 – 30 years or above 60 years. Individuals who had a 6 

BMI outside of 18.5 – 29.9 kg·m-2, smoked, consumed alcohol on a daily basis or had an existing or past 7 

medical history of metabolic diseases, neuromuscular disorders or musculoskeletal impairments that may affect 8 

muscular strength were excluded. Younger participants were matched to older participants based on PA level 9 

(IPAQ-SF) (Craig et al., 2003) and ethnicity. Informed written consent was obtained from all participants, and 10 

suitability to undergo the protocol was assessed through a pre-test health questionnaire and the Modified 11 

Oswestry Low Back Pain Disability Questionnaire (ODQ-m) (Fritz & Irrgang, 2001) immediately prior to 12 

testing. A priori sample size estimation was performed in G* Power (Version 3.1.9.2) using means and standard 13 

deviations from a previous study (Danneskiold-Samsøe et al., 2009) assessing isokinetic trunk torque in a 14 

similar population of healthy younger and older men. Based on large observed effect sizes, a sample size of 15 

eight participants per group was calculated (α-error = 0.05, β-error = 0.8). This study enrolled 12 healthy older 16 

men (67.3 ± 6.0 years) and 12 healthy younger men (24.7 ± 3.1 years). Height and mass were measured in 17 

addition to whole-body and segmental lean mass and whole-body fat mass using bioelectrical impedance 18 

analysis (Tanita MC-780MA S, Tanita, Tokyo, Japan). 19 

Isokinetic dynamometry 20 

A Trunk Modular Component (TMC) docked to a HUMAC® NORM™ isokinetic dynamometer 21 

(HUMAC® NORM™ Testing and Rehabilitation System, CSMI, MA, US) with proprietary software 22 

(HUMAC® 2009, v10.000.0082) was used for data acquisition. Calibration was performed according to the 23 

manufacturer’s guidelines before each testing session. Prior to testing, the TMC was adjusted for each 24 

participant to ensure alignment of the dynamometer axis to the rotation axis of the trunk while in a comfortable 25 

standing position (Figure 1). Participants held the downward-facing handle in front of the chest to prevent 26 

motion of the upper limbs. Restricting upper-body motion and stabilising the lower body was performed to 27 

avoid extraneous movements and minimise the unwanted contribution of muscles not being tested. Whilst 28 

standing with a neutral spine, the participant’s anatomical zero position was determined as an angle of 0° 29 
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between the trunk and thighs. Mechanical stoppers were applied as a safety precaution. Gravity correction was 1 

performed according to the manufacturer’s instructions to minimise differences in upper-body mass between 2 

participants and the effect of gravity on reciprocal muscle groups.  3 

Familiarisation 4 

Participants performed a familiarisation session at least 10 days before testing to ensure adequate 5 

recovery. Participants were instructed to perform the familiarisation session at sub-maximal effort, 6 

approximately 50 % maximal voluntary contraction (MVC), to prevent excessive muscle damage (Deschenes et 7 

al., 2000). In accordance with previous studies (Ly & Handelsman, 2002), familiarisation was considered 8 

complete when participants were confident in performing the trials consistently for each condition. 9 

Confirmation was sought by visually inspecting torque-time graphs, where participants were able to successfully 10 

perform three sub-maximal consecutive contractions. Participant positioning and initial dynamometer set-up 11 

was performed and recorded during the familiarisation sessions and recalled during experimental trials. 12 

Protocol 13 

Participants abstained from caffeine ingestion on the day of testing and from undertaking strenuous PA 14 

within seven days of testing. A five-minute warm-up on a cycle ergometer (Wattbike Ltd, Nottingham, UK) 15 

against low resistance (target power = 50 W; cadence = 60-80 rpm) was completed before participants 16 

performed a series of sub-maximal concentric flexion/extension contractions on the TMC through a full range of 17 

motion to specifically target the trunk musculature. During these sub-maximal contractions, the testing ROM 18 

was determined by reducing the participant’s maximum ROM by 10° from maximum extension and flexion to 19 

minimise the injury risk and allow sufficient force production to initiate movement during the eccentric trials. 20 

Prior to each test condition, participants performed five sub-maximal efforts (≈ 50 % MVC) that replicated the 21 

test. This approach ensured sufficient preparation and correct performance whilst serving as another 22 

familiarisation to minimise learning effects. Following the warm-up trials, participants rested for as long as 23 

required until they felt fully recovered and prepared for the three reciprocal flexion and extension MVCs. 24 

During the measurement verbal encouragement was given to facilitate maximal voluntary efforts (Matheson et 25 

al., 1992). The protocol is shown in Table 1. Contractions at slower angular velocities were tested first to 26 

increase the reproducibility of results between conditions (Karataş, Göğüş, & Meray, 2002; Wilhite, Cohen, & 27 

Wilhite, 1992). To avoid inflated concentric torques augmented by preceding eccentric contractions (Finni, 28 

Ikegawa, Lepola, & Komi, 2003; W. Herzog, Schappacher, DuVall, Leonard, & Herzog, 2016), reciprocal 29 

muscle groups were paired (i.e. extensor contraction followed by flexor contraction) with inter-contraction 30 
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pauses of at least five seconds. Due to the strenuous nature of the slower angular velocity contractions, longer 1 

pause times were given if required to ensure the participants’ safety and recovery. To prevent the cumulative 2 

effects of fatigue influencing MVC torque (Gregory, Narula, Howarth, Russell, & Callaghan, 2008), a minimum 3 

of 60 seconds rest time was given between test conditions. If the participant required more rest time, this period 4 

was extended until the sensation of fatigue abated. A maximum rest time was not prescribed due to the 5 

individualised recovery response to fatigue, especially between older and younger adults. 6 

Data processing 7 

Torque, angular velocity and trunk angle data were acquired at a sampling rate of 100 Hz. The 8 

analogue torque signal from the dynamometer was filtered and digitised by the system’s Digital Signal 9 

Processor (CYBEX, 1995). Data were exported and analysed in Microsoft Excel (Microsoft® Excel ® for 10 

Office 365 Version 16.0, Redmond, WA, US). For each test condition, the contraction which displayed the 11 

greatest peak torque was used for analysis. Peak torque values were identified during the isokinetic phase of the 12 

movement. Data which were not within 5% of the target velocity were discarded. In addition, the first 20 13 

consecutive data points that fell within the target velocity limits signified the start of the isokinetic phase. These 14 

constraints were designed to remove artefacts associated with torque overshoot and impacts at the start and end 15 

of the movement. Torque values were normalised to body mass to reduce the effect of inter-subject variation in 16 

body size. 17 

Physical activity measurement 18 

Participants wore an Actigraph GT9X accelerometer, sampling at 90 Hz, on their dominant wrist for 19 

seven consecutive days. The decision for wrist-worn accelerometers was made due to wear-time compliance and 20 

hip placement potentially lacking the sensitivity to reflect less traditional modes of PA more commonly 21 

performed in older adults (Walsh, Pressman, Cauley, & Browner, 2001). The dominant wrist was preferred due 22 

to greater PA classification accuracy than the non-dominant wrist, albeit a negligible difference (Zhang, 23 

Rowlands, Murray, & Hurst, 2012). Data were processed using dedicated software (Actilife, version 6.13). To 24 

ensure data were representative of PA performed in a typical day and week, wear-time criteria were established. 25 

Data must have been obtained for a minimum of four days including one weekend day and at least 10 hours of 26 

awake time during these days. Valid data were divided into 1 second epochs to increase accurate identification 27 

of high intensity bursts of activity. Average time (hours) spent per day in moderate-to-vigorous PA (MVPA) and 28 
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vigorous PA (VPA) were calculated using cut-off values of 1031 counts/minute for moderate and 3589 1 

counts/minute for vigorous intensities (Diaz et al., 2018). 2 

Statistical analysis 3 

Statistical analyses were performed using SPSS (SPSS® for Windows Version 24.0, IBM Corp, 4 

Armonk, New York) and graphical presentation performed using GraphPad Prism (Version 8.3.1, San Diego, 5 

California). Data are presented as means with standard deviations (mean ± SD) unless otherwise stated. For 6 

demographic, anthropometric, PA and questionnaire data, independent samples t-tests were performed to 7 

compare statistical differences between the old and young groups. For the isokinetic data, two-way mixed-8 

effects ANCOVA (angular velocity x age group) controlling for VPA were performed to compare mean 9 

differences in peak torque between the old and young groups. Concentric and eccentric conditions for the 10 

extensors and flexors were analysed separately. Following a significant interaction or main effect, multiple 11 

univariate ANCOVA with Bonferroni adjustments were performed to assess significant differences between age 12 

groups for each test condition. An alpha level of 0.05 was required for statistical significance. Effect size (ηp
2) 13 

and observed power (1-β) were also determined for each comparison. Data for all conditions were normally 14 

distributed (Shapiro-Wilk test, p > .05) and homogeneous variances were assumed (Levene's test, p > .05). The 15 

assumption of sphericity was violated (Mauchly’s test < .05), therefore, Greenhouse-Geisser corrections were 16 

adopted. 17 

Reliability 18 

A sub-sample (n = 10) of five old and five young participants repeated the test protocol after 16 weeks 19 

to assess long-term intra-operator reliability. The same researcher (AD) conducted the retests and analysed the 20 

data. For each test condition, intra-class correlation coefficients (ICC) for peak torque were calculated using 21 

single-measurement, absolute-agreement, two-way mixed-effects models. Linear regression (difference vs 22 

mean) was also used to determine the existence of proportional bias for each test condition (p ≤ .05). 23 

 24 

Results 25 

Participant characteristics are presented in Table 2. There were no statistical differences in height, 26 

mass, BMI, MVPA, whole-body lean mass and ODQ-m scores between the groups. The older group had more 27 

fat mass (t(22) = 2.62, p = .016), less appendicular muscle mass (t(22) = 3.28, p = .003) and engaged in less VPA 28 
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(t(22) = -2.37, p = .027) than the younger group. Whilst the older group exhibited a smaller trunk ROM (t(22) = 1 

2.85, p = .009) than the younger group, maximum extension and flexion trunk positions were not statistically 2 

different between groups (p > .05). 3 

Isokinetic dynamometry 4 

Mixed two-way ANCOVA revealed a significant interaction between angular velocity x age group 5 

(F(3.3,69.8) = 3.2, p = .026) for concentric contractions of the trunk extensor muscles after controlling for VPA 6 

(F(1,21) = 0.32, p = .581). Significant main effects for age group (F(1,21) = 19.9, p < .001) and angular velocity 7 

(F(3.3,69.8) = 3.6, p = .015) were also revealed, showing that the younger group produced greater peak concentric 8 

extension torque (4.64 N·m·kg-1) than the older group (3.04 N·m·kg-1) and that both groups showed a general 9 

decline in peak concentric extension torque with increasing angular velocity. No significant interactions or main 10 

effects were observed for any other condition. Appendicular lean mass was not a significant covariate of trunk 11 

extensor concentric strength between groups (F(1,21) = 0.03, p = .866). Peak torque data are presented in Table 3. 12 

One-way univariate ANCOVA (Bonferroni adjustment) revealed significant differences between the 13 

old and young groups at all angular velocities for concentric trunk extension. At  14 

• 15°·s-1 (F(1,21) = 14.0, p = .001, ηp
2 = 0.399, 1-β = 0.945);  15 

• 30°·s-1 (F(1,21) = 13.0, p = .002, ηp
2 = 0.382, 1-β = 0.930);  16 

• 45°·s-1 (F(1,21) = 12.0, p = .002, ηp
2 = 0.364, 1-β = 0.911);  17 

• 60°·s-1 (F(1,21) = 14.0, p = .001, ηp
2 = 0.399, 1-β = 0.945);  18 

• 90°·s-1 (F(1,21) = 20.2, p < .001, ηp
2 = 0.491, 1-β = 0.990);  19 

• 120°·s-1 (F(1,21) = 20.9, p < .001, ηp
2 = 0.499, 1-β = 0.992) and;  20 

• 180°·s-1 (F(1,21) = 19.0, p < .001, ηp
2 = 0.475, 1-β = 0.986)  21 

the younger group produced significantly greater peak concentric extensor torque than the older group. Peak 22 

concentric extensor torque was generally consistent from 15°·s-1 to 60°·s-1 for both groups. The older group 23 

exhibited decrements thereafter, whilst the younger group showed declines from 120°·s-1. This resulted in a 24 

trend for increasing difference between old and young groups as angular velocity increased past 45°·s-1 (Figure 25 

2). Significant pairwise differences (p < 0.001) in concentric extension peak torque were found between 120°·s-1 26 

and 180°·s-1 and between each other these conditions with all other angular velocities. 27 

Reliability 28 

Test-retest reliability was good to excellent across the range of test conditions for the concentric 29 

extensor trials (Table 4). Test-retest reliability was moderate to excellent for the concentric flexor trials (ICC = 30 

0.60 – 0.92), good to excellent for the eccentric extensor trials (ICC = 0.78 – 0.92) and moderate to good for the 31 
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eccentric flexor trials (ICC = 0.72 – 0.86). ICC values for these test conditions are presented in appendix b. For 1 

every test condition, regression coefficients were not significant (p > .05), indicating that proportional bias was 2 

not present. 3 

 4 

Discussion 5 

The current study demonstrates for the first time that the normal loss of dynamic trunk muscle strength 6 

in older age is muscle and contractile mode specific. The main finding was that trunk extensor muscles 7 

experience an age-related decrement in concentric strength and the age-effect increases with increasing angular 8 

velocity. Eccentric strength is also somewhat preserved in the trunk flexors and extensors across angular 9 

velocities from 15°·s-1 to 60°·s-1. A progressive decline in muscle strength typically accompanies the ageing 10 

process, however, normal age-related decrements in the lumbar musculature are not fully understood. Given the 11 

inconsistent methods and equivocal nature of findings on this topic, this work provides an in-depth investigation 12 

into age-related changes in trunk strength and constitutes an important contribution to the literature base to date. 13 

Loss of extensor concentric torque 14 

The results show that healthy males experience a loss of concentric extensor torque with ageing in the 15 

trunk. As the proportion of contractile tissue in the lumbar paravertebral muscles decreases due to age-related 16 

atrophy and fat infiltration (Dallaway et al., 2020), the muscles’ capacity to generate force and perform work is 17 

reduced (Ropponen, Videman, & Battié, 2008). However, lean trunk mass was greater in the older group than 18 

the younger group in this study. Whilst the extensor and flexor muscle masses cannot be separated in the current 19 

analysis, it is unlikely that atrophy of the paravertebral muscles caused decreases in concentric extension torque. 20 

Neurological changes in older age are more likely to have contributed to declines in trunk strength. 21 

Neuropathic processes in older age bring about a decline in neural drive and cause muscle to express a 22 

slower phenotype (Campbell, McComas, & Petito, 1973; Evans & Lexell, 1995). The increasing disparity 23 

between groups in concentric extension torque with increasing angular velocity (Figure 2) suggests a shift 24 

towards a slower fibre-type composition in the older group. Indeed, muscles in the lumbar spine have a 25 

propensity towards slower isoforms (Regev et al., 2010). Given that the intrinsic strength of type I fibres is less 26 

than type II fibres (Bottinelli, Canepari, Pellegrino, & Reggiani, 1996; Young, 1984), an increasing proportion 27 

of slow-twitch fibres is likely to reduce muscular force production resulting in a loss of concentric extension 28 
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strength (Ivy, Withers, Brose, Maxwell, & Costill, 1981; Robles et al., 2015). This age-related remodelling of 1 

muscle phenotype may explain why loss of concentric extensor torque is greater with increasing angular 2 

velocity and more pronounced in the older group.  3 

Attenuation of flexor concentric torque 4 

The older group exhibited lower concentric flexion torque, although differences with the younger 5 

group did not reach significance for any of the angular velocities. Similar findings have been previously 6 

reported (Smith, Mayer, Gatchel, & Becker, 1985), although not undisputed (Hasue et al., 1980; Skrzek & 7 

Bolanowski, 2006). Hasue et al. (1980) suggested that the discrepancy in abdominal and paravertebral muscle 8 

strength may be due to the constant use of antigravity muscles in daily life whereas intra-abdominal pressure 9 

aids the function of the abdominal muscles. It is also likely that the apparent attenuation in trunk flexion strength 10 

is the result of abdominal morphometry preservation. Whilst the relative degeneration of the abdominal muscles 11 

compared to the paravertebral muscles cannot be determined in the current study, it has been shown that the 12 

abdominals are relatively spared from the effects of age-related degeneration compared to the paravertebral 13 

muscles (Meakin, Fulford, Seymour, Welsman, & Knapp, 2013; Valentin et al., 2015). This may preserve the 14 

contractile unit of the abdominal muscles relative to the paravertebral muscles, which may explain why 15 

concentric flexion torque was not significantly different between the old and young groups whilst concentric 16 

extension torque was. 17 

Preservation of eccentric strength in older age 18 

This study found that both extensor and flexor muscle groups in the trunk experience a relative 19 

preservation of eccentric strength with ageing. To the authors’ knowledge, this is the first study to investigate 20 

the effect of healthy ageing on eccentric trunk strength, which precludes comparisons with other studies. Age-21 

related preservation of eccentric strength has been observed in other muscle groups (Klass, Baudry, & 22 

Duchateau, 2005; Poulin, Vandervoort, Paterson, Kramer, & Cunningham, 1992) although no mechanisms have 23 

been fully accepted (Hortobágyi et al., 1995; Roig et al., 2010). Compared to concentric contractions, muscle 24 

exhibits significantly lower neural activation at a given force output during eccentric contractions (Kellis & 25 

Baltzopoulos, 1998). Concentric contractions are also affected by increased antagonist coactivation in old age 26 

(Larsen, Puggaard, Hämäläinen, & Aagaard, 2008; Macaluso et al., 2002) whilst the effect is diminished in 27 

eccentric contractions (Kellis & Baltzopoulos, 1999). Therefore, age-related deficits in neural drive (Häkkinen 28 

et al., 1996; Rods, Rice, & Vandervoort, 1997; Unhjem, Lundestad, Fimland, Mosti, & Wang, 2015) are likely 29 
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to have greater impact on concentric contractions than eccentric. Alterations in the passive structural elements 1 

and intrinsic factors associated with cross-bridge cycling may also mediate the relative preservation of eccentric 2 

strength (Walter Herzog, 2014; Hill, Wdowski, Pennell, Stodden, & Duncan, 2019; Power, Rice, & 3 

Vandervoort, 2012). In the current study, lean mass in the trunk was unable to explain the preservation of 4 

eccentric strength. This supports Hortobágyi and colleagues (1995) who state that eccentric strength is 5 

maintained independent of age-related morphometric muscle changes. 6 

Mechanisms regarding preservation of eccentric strength in older age focus on neurological, cellular 7 

and mechanical pathways (Hortobágyi et al., 1995; Roig et al., 2010), however, none consider biomechanical 8 

function, especially relating to the trunk. Thoracolumbar bending moment increases with ageing due to postural 9 

changes (Le Huec et al., 2018). The extensor muscles are subsequently activated to prevent forward flexion of 10 

the trunk (Cresswell, Oddsson, & Thorstensson, 1994; Waters & Morris, 1972), which increases mechanical 11 

energy expenditure required for eccentric control of the lower trunk musculature (McGibbon & Krebs, 2001). 12 

Despite the low-level activity of trunk muscles during ADLs (McGill & Cholewicki, 2001), sustained low-13 

intensity eccentric activation may provide enough stimulus for the muscles to maintain their strength. Whilst 14 

speculative, these suggestions are plausible and attempt to understand this phenomenon in a holistic manner. 15 

More importantly, the current results in the trunk reflect the eccentric strength age-response observed in the 16 

appendicular muscles (Klass et al., 2005; Poulin et al., 1992). This suggests that eccentric strength preservation 17 

is systemic rather than a muscle- or site-specific phenomenon in the body. 18 

Moderating effect of physical activity 19 

PA is generally believed to have a positive effect on muscular strength in older adults (Rantanen, Era, 20 

Kauppinen, & Heikkinen, 2016). Whilst VPA is more beneficial, low-intensity PA can still lead to better 21 

functional ability (Avlund, Schroll, Davidsen, Løvborg, & Rantanen, 1994). However, the results of this study 22 

suggest that habitual VPA does not moderate age-related changes in trunk strength amongst healthy men. 23 

Previous research in a large community-dwelling population supports this finding (Viljanen, Viitasalo, & 24 

Kujala, 1991). It was suggested that the small proportion of adults engaging regularly in resistance training (< 1 25 

%) may have been insufficient to observe a training effect on maximal isometric trunk strength in their sample 26 

(Viljanen et al., 1991). In the current study, PA was measured using accelerometery and a recognised limitation 27 

of using accelerometers is their inability to detect non-ambulatory activities such as resistance exercise (I. M. 28 

Lee & Shiroma, 2014; Viljanen et al., 1991). 29 
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Clinical and practical applications 1 

In clinical settings, understanding the age-related loss of trunk strength could be crucial due to its 2 

association with physical function (Shahtahmassebi et al., 2017), lower back pain (Cho et al., 2014) and falls 3 

risk (Granacher et al., 2013). Whilst the rehabilitation of upper and lower limb muscles is often based on the 4 

relative strength of the unaffected limb, bilateral comparisons cannot be made in the trunk. Therefore, age-5 

specific normative trunk strength values across a range of contraction types and angular velocities are needed to 6 

allow healthcare professionals to evaluate a patient’s trunk strength and determine an effective rehabilitation 7 

intervention. Based on the current results, slower angular velocities than 60°·s-1 may not provide additional 8 

information about the maximal force generating capacity of trunk muscles in healthy men. The substantial 9 

decline in concentric trunk extension torque from 90°·s-1 to 180°·s-1 indicates that investigation at greater 10 

angular velocities may be valuable. However, the range of conditions used in this study accounted for trunk 11 

activity typically observed during ADLs (Goutier, Jansen, Horlings, Kung, & Allum, 2010; Lindemann et al., 12 

2014; Pigeon, Bortolami, Dizio, & Lackner, 2003). Faster conditions would represent more dynamic movements 13 

that may offer additional insight into injury mechanisms of the lumbar spine. Furthermore, these results should 14 

support the use of isokinetic testing in the trunk and establishment of normative data that could provide useful 15 

clinical guidelines for trunk assessment and rehabilitation. 16 

Limitations 17 

The first limitation of this study was that samples comprised of healthy physically active men. Caution 18 

should be taken when generalising these findings as the participants are unlikely to be representative of a 19 

general population. Generalising the findings to female populations should also be done with caution, as women 20 

tend to show greater declines in trunk muscle strength with age (Danneskiold-Samsøe et al., 2009; H. J. Lee et 21 

al., 2012). Comparison with diseased populations may however provide useful information regarding 22 

pathological deviations in trunk strength. The results suggested that the eccentric tests and concentric flexion 23 

test were underpowered. However, the sample size was large enough to observe sufficient power for the 24 

concentric extension test. These results should be used to determine sample sizes in future studies. Finally, 25 

whilst the current study highlights an important feature of age-related musculoskeletal decline, longitudinal 26 

studies are needed to infer causation.  27 

 28 
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Conclusion 1 

This study demonstrates that ageing elicits a muscle and contractile mode specific response in 2 

isokinetic torque of the trunk muscles. Concentric extensor muscle strength declines with ageing whilst 3 

eccentric trunk strength appears to be relatively preserved. Peak torque of the extensor muscles decreased with 4 

increasing angular velocity for concentric contractions and was more pronounced in the older group. The 5 

increasing disparity in trunk extension strength at greater angular velocities was likely due to age-related 6 

neuropathic processes affecting the contractile function of the paravertebral muscles. PA level did not moderate 7 

age-related changes in trunk strength, although this may be due to the way in which PA was measured. These 8 

findings are a useful step in establishing effective clinical and public health intervention strategies that could be 9 

used to offset adverse health outcomes related to trunk strength loss in older adults. Future research should look 10 

to assess trunk strength in a range of populations using a longitudinal design, which may enable identification of 11 

pathological deviations. 12 

 13 
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