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Abstract 

Several researchers have studied the Sleipner model to understand the inherent flow physics 

better, to find a satisfactory match of the CO2 plume migration. Various sources of uncertainty 

in the geological model and the fluid have been investigated. Most of the work undertaken on 

the Sleipner model employed the one factor at a time (OFAT) method and analysed the impact 

of uncertain parameters on plume match individually. In this study, we have investigated the 

impact of some of the most cited sources of uncertainties including porosity, permeability, 

caprock elevation, reservoir temperature, reservoir pressure and injection rate on CO2 plume 

migration and structural tapping in the Sleipner. We tried to fully span the uncertainty space 

on Sleipner 2019 Benchmark (Layer 9) using a vertical-equilibrium based simulator. To the 

best of our knowledge, this is the first time that a study has focused on the joint effect of six 



 

uncertain parameters using data-driven models. This work would raise our scientific 

understanding of the complexity of the impact of the reservoir uncertainty on CO2 plume 

migration in a real field model. The caprock elevation was shown to be the most important 

parameter in controlling the plume migration (overall importance of 26%)  followed by 

injection rate (24%), temperature (22%),  heterogeneity in permeability (13%), pressure (9%) 

and porosity (6%). 

 

1. Introduction 

Global warming, which is primarily caused by the rapid increase in carbon dioxide (CO2) 

emission, is one of the major issues of our time (Onoja et al., 2019). One of the proposed 

solutions to tackle this problem is carbon capture, utilisation and storage (CCUS) which has 

the potential to decrease greenhouse emissions up to 85% by 2050 (Edenhofer, 2015; IEA, 

2012; Viebahn, Vallentin, & Höller, 2015). The best formations for the safe long-term storage 

of CO2 are usually sedimentary rocks with appropriate porosity and permeability to prevent the 

gas from escaping (Rutqvist, 2012). Likewise, other parameters such as volume, temperature 

and pressure, heterogeneity (which affects the sweep efficiency), caprock permeability, 

formation thickness, the presence of reactive minerals, CO2 solubility in brine, seismic fault 

potential, stress regime, injectivity and fracture formation should also be considered in any 

storage site selection process (Grataloup et al., 2009; Wei et al., 2013). Note that although we 

have learnt a lot from different storage pilot projects worldwide, the reality, however, is that 

the geological formations are generally very heterogeneous, and their properties vary 

significantly with location. 

The Sleipner CCS project, operated by Equinor, is acknowledged to be the first storage project 

on a commercial scale (Ghosh, Sen, & Vedanti, 2015; Torp& Gale, 2004). The operation costs 



 

were approved to be financially reasonable as the Norwegian government was exempt by 

almost the same amount of carbon tax (Kaarstad, 1992). The project started in 1996 using a 

saline aquifer located at a depth between 800 m to 1,000 m beneath the sea and the CO2 is 

provided by a nearby natural gas processing field (Arts et al., 2004; Head et al., 2004). The 

storage formation Utsira is late Cenozoic, a 200-250 m thick sandstone that has stored 

approximately around 17 Mt of CO2 since 1996 (Ringrose& Oldenburg, 2018), while the 

caprock formation is a Nordland shale with a thickness of 200-300 m. About three years after 

the start of the project, the plume migrated through thin layers of shale and stopped beneath 

the cap-rock (Arts et al., 2004). These layers help the dissolution process as they increase the 

interaction time between the brine and the CO2 (Bachu, 2000).  

Although nothing suggests the CO2 at the Sleipner storage site may escape to the atmosphere, 

it is, however, essential to managing the risk of leakage through all stages of the storage process 

(Nooner et al., 2007). Moreover, to make better decisions, a reliable estimation of storage 

capacity and plume dynamic behaviour is needed. For this purpose, it is also essential to 

quantify any uncertainties in the model. There have been numerous studies (Allen et al., 2018; 

Cavanagh, Andrew J., Haszeldine, & Nazarian, 2015; Chadwick RA& Noy DJ., 2010; 

Chadwick, RA et al., 2009; Hermanrud et al., 2012; Hodneland et al., 2019; Nilsen et al., 2017) 

to find a match between the CO2 flow in the Utsira formation resulting from simulations with 

the one from seismic surveys.  

Gravity-driven flow was shown to be an essential factor in CO2 plume migration in the Sleipner 

storage site (Cavanagh, Andrew J. et al., 2015). The researchers applied a capillary flow model 

to the Sleipner model to solve the overprediction of viscous effects in gravity segregated 

systems. While a better match was achieved in the northern part of the plume, the upslope 

plume migration was, however, overestimated, explained as being due to neglecting viscous 

effects, acting against the gravity drive. Their study, therefore, highlights the importance of 



 

gravity-driven flow and suggests using models with sufficient vertical grid resolution or 

reduced orders models, such as vertical equilibrium. In order to improve the match, higher 

permeabilities (6 and 10 Darcy) for the Utsira formation has also been considered (Chadwick 

RA& Noy DJ., 2010; Chadwick, RA et al., 2009). The authors also studied cases with 

anisotropic permeabilities and increased the temperature to 36 oC, the history matching result, 

however, was unsatisfactory.  

A history matching study was previously performed for the Sleipner model (Nilsen et al., 

2017). The results suggested that the plume outline is governed by caprock, permeability, and 

density influence, the CO2-brine contact shape and porosity and injection rate affect the plume 

volume. Impact of uncertainties in temperature and fluid impurities on CO2 migration in the 

Sleipner was investigated (Hodneland et al., 2019). While the impact of CO2 impurity on plume 

migration was negligible, the study showed that raising the average storage site temperature to 

46oC improves the history matching results. A recent history matching study on Sleipner 2019 

benchmark model (Ahmadinia, M.& Shariatipour, 2020) showed an improvement of around 

8% in the plume match resulted by an absolute elevation calibration of 3.23 meters in the 

caprock. Calibrating porosity, permeability, CO2 density and injection rate all together resulted 

in 5% improvements in the match, and once caprock elevation was adjusted too, the match 

increased by 16%.  

Most of the previous studies undertaken on the Sleipner model took one factor at a time (OFAT) 

approach (Allen et al., 2018) in which the response to one parameter is investigated, and the 

rest are kept at their initial value. Some other works also considered a limited number of 

parameters in their sensitivity analyses (Hodneland et al., 2019). In order to fully span the 

uncertainty space, to the best of our knowledge, this is the first time the focus will be on the 

joint effect of six important parameters, to show their impact on the overall CO2 migration and 

trapping in Sleipner. The motivation for the current work is to analyse the impact of individual 



 

uncertain parameters on CO2 storage process while interacting with other parameters. The 

uncertain parameters in this study are chosen from previous works based on their impact on 

the CO2 plume migration. Mainly we are interested in the importance of caprock morphology 

in the range lower than the seismic detection limit. The limitation in the seismic maps 

introduces errors in the geological models used in reservoir simulation studies. This study 

indicates to some extent this limitation would affect the final results (i.e. plume outline) in the 

Sleipner model. The current work also helps to understand which of the addressed uncertain 

parameters for Sleipner model in literature should be prioritised and calibrated more carefully 

to improve the match. A similar study can be performed on other models to find the impact of 

uncertain parameters on final results and minimise the mismatch between simulation and 

observed data by improving the geological, operational and fluid properties. 

Several sources are considered including uncertainties in the geological model (porosity, 

permeability and caprock morphology), aquifer property (pressure and temperature) and 

operational condition (volume entry rate into layer 9). We have generated ten thousand samples 

of the six uncertain parameters within their reported ranges in literature for Sleipner model 

Layer 9 and ran a simulation for each set of input parameters. The study was performed on the 

most recent Sleipner Benchmark simulation grid, 2019 (Santi A., Furre A.K., & Ringrose P., 

2020). Considering the computational cost, we decided to perform the forward simulations 

using the VE modelling approach implemented in MRST-co2lab (Nilsen, Lie, & Andersen, 

2016a; Nilsen, Lie, & Andersen, 2016b). co2lab is an add-on module providing a family of 

computational tools specially developed to study the long-term CO2 storage in large-scale 

aquifer systems. The MRST-co2lab performance was compared with full 3-D simulations in 

previous studies (Ahmadinia, Masoud et al., 2019; Nilsen et al., 2011), and compared 

reasonably. Each forward simulation of CO2 injection in Layer 9 for 12 years, took about 30 

seconds using the VE approach; while using the same computational power configuration the 



 

simulation could take up to 10 and 14 hours in black-oil and compositional simulation tools, 

respectively. In order the make this study feasible in terms of computational time, we used a 

cluster system to run 80 parallel simulations at a time. Random forest (RF) and decision tree 

(DTree) (Dumont et al., 2009; Tin Kam Ho, 1995) models available in Scikit-learn machine 

learning library in Python programming language are employed to find the importance of each 

parameter in the plume shape. The input is a matrix of ten thousand by six (temperature, rate, 

porosity, heterogeneity in permeability and porosity, pressure and caprock elevation) and the 

output is a matrix of ten thousand by four (The dice coefficient for four time steps).   

 

2. Material and method 

2.1. Geomodel 

Sleipner (Santi A. et al., 2020) is a CO2 storage site located off the western coast of Norway, 

in the Utsira formation. This site has been actively used by Equinor ASA since 1994, with a 

goal to prevent CO2 emission associated with the gas production from the same region.  The 

site has been monitored from its inception, and a comprehensive set of documents including 

well-logs, baseline seismic and time-lapse seismic data showing the plume migration extension 

has been established. The 2019 Benchmark model is the first complete 3D model of Sleipner. 

The model covers eight reservoir zones within the Utsira formation (L1 to L8) interbedded 

with eight laterally continuous intra-formational shale layers each of them about 1m thick. 

Layer 9, is located right above L8 separated by a relatively thick (~7.6m) shale layer. The 

seismic lateral and vertical resolutions are about 12.5 m (Santi A. et al., 2020) and 8 m 

(Chadwick, RA et al., 2004), respectively. Figure 1 shows the cross-sectional model for the 

Sleipner saline aquifer. In the present study, we include the caprock layer, L9 sand layer (red 

zone in Figure 1) and a continuous shale layer on the bottom of L9. The caprock and shale 



 

layers are considered to be impermeable to fluid flow. The sand layer is characterised by a 

porosity between 27 to 40 % (Lothe& Zweigel, 1999; Pearce, Kemp, & Wetton, 1999) and 

horizontal permeability of 1100 to 5000 mD (Lindeberg et al., 2001).  

 

Figure 1. Cross-sectional model for the Sleipner saline aquifer. Purple line: bottom of the 

reservoir; blue lines: intra-formational shale layers; red zone: the only sand layer considered 

in this study (L9); dotted line: injection well in the original model; 15/9-A-16: injection well. 

The injection well (15/9-A-16) surface coordinates in the model are (436137.42 m, 6470282.86 

m) (Santi A. et al., 2020). The injection rates (volume entry rate into layer 9) for the reference 

case are the same as in (Nilsen et al., 2017) and are listed in Table 1. The rates presented in the 

table are representative of the CO2 entry rate into Layer 9. The model is initially fully saturated 

with brine (33500 ppm), at hydrostatic balance.  

Simulations are based on a two-phase black-oil formulation where gas can dissolve into water. 

Density and viscosity are functions of pressure and temperature using the sampled tables taken 

from the CoolProps open-source package (Bell et al., 2014). The residual saturation of 0.11 

and 0.21 was assigned to the brine and CO2, respectively (Singh VP et al., 2010).  The CO2 is 

injected for 12 years (1999 to 2010) and dissolution is considered in the study. Dissolved CO2 

is the dominant phase in the first couple of days after the start of injection, as the injected CO2 

encounters undersaturated brine (with respect to the CO2). The fraction of dissolved CO2 after 



 

12 years approaches 9% in the base case model, which is within the reported range (i.e. less 

than 10%) in literature (Cavanagh, Andrew, 2013). Mineralisation trapping is likely to become 

effective in a timescale of hundreds to thousands of years (Wilkinson et al., 2009). Therefore, 

due to the time scale of the study and also computational cost, the mineralisation trapping has 

been neglected. 

Table 1. CO2 reservoir volume entry rates 

year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

rate (m3)  

106 0.03 0.08 0.14 0.21 0.31 0.44 0.62 0.87 1.18 1.57 2.06 2.65

 

Simulations are performed using the co2lab module in MRST (Nilsen et al., 2016b). Further 

information about the parameters used in this study is listed in Table 2.  

 

 

 

 

 

Table 2. Model information 

Parameter Value Reference 

Porosity 0.27 – 0.4  (Holloway et al., 2000; Lothe& 

Zweigel, 1999) 



 

Permeability (mD) (1.1 – 5) × 103 (Lindeberg et al., 2001) 

Number of cells (NX×NY×NZ) 64×118×47 (Santi A. et al., 2020) 

Cell dimensions (m)  

(DX×DY×DZ) 

50×50×2 (Santi A. et al., 2020) 

Area (km2) 18 (6×3) Seismic depth map 

Seafloor temperature (oC) 7 (Nilsen et al., 2017) 

Brine viscosity (Pa.s) at 31oC and 

81bars  

8×10-4 (Nilsen et al., 2017; Singh VP et al., 

2010) 

CO2 viscosity (Pa.s) at 31oC and 81bars 6×10-5 (Nilsen et al., 2017; Singh VP et al., 

2010) 

CO2 density (kg/m3) at 31oC and 81bars  687 Coolprops  data (Bell et al., 2014) 

Water density (kg/m3) at 31oC and 

81bars  

1020  (Bickle et al., 2007a) 

Brine compressibility (Pa-1) at 81bars 4.37×10-10 (Nilsen et al., 2017) 

CO2 compressibility (Pa-1) at 81bars 4.37×10-9 (Nilsen et al., 2017) 

Rock compressibility (Pa-1) at 81bars 1.00×10-10 (Nilsen et al., 2017) 

 

2.2. Model uncertainty:  

In the following, further details about the uncertain parameters are provided: 

Temperature and pressure 

One source of uncertainty addressed in previous studies on Sleipner model is CO2 density 

(Alnes, Eiken, & Stenvold, 2008; Alnes et al., 2011; Cavanagh, Andrew J.& Haszeldine, 2014; 

Zhu et al., 2015) which is a function of pressure and temperature. We have considered 

temperature and pressure as uncertain parameters in the study.  



 

The Sleipner aquifer is characterised with high porosity, permeability and lateral extension. 

This suitable combination, has resulted in negligible pressure build-up (< 0.1 Mpa) since the 

beginning of the injection phase (Chadwick, RA, Zweigel et al., 2004; Williams, Gareth& 

Chadwick, 2012). There is no downhole pressure gauge in the model (Boait et al., 2012; Furre 

et al., 2017). While wellhead pressure data have remained stable, however, since CO2 at the 

wellhead is at the liquid/gas state, it is not possible to relate the pressure data at the wellhead 

to bottom-hole without having the gas/oil ratio (Furre et al., 2017). In this study, the reservoir 

pressure is assumed to be initially hydrostatic, and its uncertainty is addressed using a term 

(DP) within the range of -4 to 4 bars.  

Temperature uncertainty in the Sleipner model has been a topic of discussion in the literature 

(Hodneland et al., 2019). Changing the temperature would primarily affect the CO2 density and 

viscosity, and therefore its buoyancy and mobility. There is not any accurate data available for 

the temperature in the Sleipner due to the absence of any downhole gauge (Alnes et al., 2011; 

Eiken et al., 2011; Furre et al., 2017). A wide range of values was suggested for temperature 

in the Sleipner model, including 34 to 40oC (Hermanrud et al., 2012) and  28.6 to 40.6 

(Hodneland et al., 2019). Cavanagh and Haszeldine (Cavanagh, Andrew J.& Haszeldine, 2014) 

suggested two temperature values of 31oC and 37oC at 800 metres depth for the Sleipner layer 

9. One of the most accurate data for the temperature in the Sleipner model is achieved from the 

gauges placed in water producing well in the Volve field, 10km north of the Sleipner injection 

well (Alnes et al., 2011). Using the temperature data from the Volve field, the temperature in 

the vicinity of Sleipner as a function of depth can be expressed as (Alnes et al., 2011):   

T=31.7oC/km × z + 3.4oC (±0.5 oC)      Equation. 1 

Where z denotes the depth measured in km. Based on Equation 1 which has been used in 

previous studies on Sleipner (Williams, GA, Chadwick, & Vosper, 2018; Williams, Gareth 

A.& Chadwick, 2017) the average temperature in Sleipner is around 31 oC. In this study, we 



 

added term DT to Equation 1 to consider the uncertainty in temperature in the model. Ten 

thousand random values of DT between -4 to +4 is considered to modify the aquifer 

temperature. 

Changing temperature and pressure has an impact on CO2 dissolution. With the temperature 

increased by 4oC in the base case model (at constant pressure condition), CO2 solubility was 

reduced by around 1.1%. On the other hand, by decreasing pressure by 4 bars at isothermal 

condition, solubility dropped by around 0.2%. Temperature ranges used in previous studies on 

the Sleipner are listed in Table 3. 

 

 

 

 

Table 3. Temperature range considered for the Sleipner model in previous studies on L9.  

Study Temperature (oC) Reference depth 

(Hodneland et al., 2019) 28.6 to 40.6 Average depth 

(Chadwick RA& Noy DJ., 2010) 29 Top surface 

(Alnes et al., 2011) 32.2 Top surface 

(Bickle et al., 2007b) 35 Average depth 

(Singh VP et al., 2010) 35 Top surface 

(Allen et al., 2018) 35 Top surface 

(Cavanagh, Andrew J. et al., 2015) 35 Average depth 

(Cavanagh, Andrew J.& 

Haszeldine, 2014) 
31 & 37 Average depth 

(Baklid, Korbol, & Owren, 1996) 37 Average depth 



 

(Hermanrud et al., 2012) 34 to 40 Average depth 

Current study 27 to 35 Average depth 

 

Injection rate (volume entry rate into layer 9) 

The Sleipner original model is made up of nine layers each separated with a thin shale layer 

(Figure 1), and the plume is injected at a depth of 1010.5 metres (L1) below sea level (Singh 

VP et al., 2010). In this study, we are only modelling Layer 9 (L9), and the coordinate of the 

entry point in L9 is considered to be the same as of L1. In real case storage process, once 

injected, the plume encounters and passes through eight intra-formational shale layers (which 

are neglected in the current study) before reaching L9. The shale layers would result in 10-20 

m thick CO2 layers (beneath each shale layer), vertically stacked and extended by hundreds of 

metres laterally (Gregersen& Johannessen, 2001; Zweigel et al., 2004). Despite the accurately 

mapped areal distribution of the CO2 plume, its flow behaviour is still subject to uncertainties 

(Cavanagh, Andrew J.& Haszeldine, 2014). 

Moreover, the mechanisms of vertical migration (diffusion, migration points or both) and also 

the number and location of vertical migration points are uncertain (Nilsen et al., 2017; Zhu et 

al., 2015). Vertical migration here refers to the flow from intra-formational thin shale layers to 

the above sand layer. The volume entry rate into layer nine used in this study is taken from 

previous works (Nilsen et al., 2017) and represent an anticipation of the amount of CO2 which 

is entering Layer 9 and is subjected to uncertainty because we are not sure how much of the 

injected CO2 in L1 reaches to L9 in reality. Ten thousand random rate multipliers (RM) between 

0.7 to 1.3 are applied to the benchmark's volumetric rate to include the uncertainty of the entry 

rate into Layer 9.  

 



 

Porosity, permeability and caprock elevation 

The reported ranges for porosity and permeability data of Sleipner Layer 9 are 0.27-0.4 

(Holloway et al., 2000; Lothe& Zweigel, 1999) and 1100-5000 mD (Lindeberg et al., 2001), 

respectively. In this study, ten thousand permeability realisations are generated using a 

lognormal distribution approach within the reported range. Porosity realisations are then 

generated from permeability data using the Kozeny-Carman correlation (Carman, 1937). The 

typical seismic resolution is around 10 m and topography variations below this resolution are 

referred to as rugosity (Jones et al., 2009; Pringle et al., 2010). The reported seismic vertical 

resolution for the Sleipner model is 8 m (Chadwick, RA et al., 2004). In order to investigate 

the importance of the topography variations below the seismic detection range, ten thousand 

realisations of top surface elevations within the range of 5 m are considered using Gaussian 

random fields.  

Figure 2 shows an illustrative (not representative of actual uncertainty ranges) of data for 

porosity, permeability and caprock elevation perturbations within the mentioned ranges. Note 

that since we are using the VE model, by porosity and permeability, we are referring to their 

column-wise averaged values. Therefore, the impact of their variation on plume migration 

might be underestimated in comparison to a full 3D model. 



 

 

Figure 2. Samples of realisations representing the elevation (m), porosity and permeability 

(mD) distribution in the model. Figures show the top view of the grid (x and y-direction).  

2.3. Simulation approach 

In this study, we ran ten thousand sets of simulation with two phases, CO2 and formation brine 

using the co2lab module in MRST  (Nilsen et al., 2016b), which is based on the vertical 

equilibrium simulation. The impact of uncertainty in caprock topography, reservoir pressure, 

reservoir temperature, porosity and permeability heterogeneity and volume entry rate into layer 

nine are studied on plume migration and structural trapping. In order to treat the parameters 

equally, in each of the ten thousand simulation runs, the six parameters are randomly selected 

within their allocated range at once, to provide the inputs of the simulations. 

The results from a similar VE setup were reasonable when compared with full 3D simulations 

models in previous studies using synthetic (Ahmadinia, Masoud et al., 2019) and Sleipner 

(Cowton et al., 2018; Nilsen et al., 2011) models. Therefore, the VE method is used in this 

study to decrease the computational cost. Two base assumptions of VE modelling are the 

following:  First, the hydrostatic equilibrium between brine and CO2 is pre-assumed throughout 

the simulation. Due to the difference between the fluid densities, the gravity segregation 



 

process occurs significantly rapidly, and fluids form two separate layers, in comparison to the 

lateral plume migration. For injection rates and formation thickness typical for geological 

carbon storage sites, the VE model is likely to be valid for formation permeabilities higher than 

about 100 mD to have fast vertical segregation of fluids (Court et al., 2012). 

Moreover, the injected plume may migrate several kilometres in the horizontal direction with 

minimal vertical movement (Shariatipour, Seyed M., Pickup, & Mackay, 2016). This makes 

the second assumption, stating that the vertical flow migration can be considered negligible 

compared with the horizontal one (Nordbotten& Celia, 2011). In a VE simulation model, the 

problem is reduced to 2-D, providing the modeller to allocate the computational cost to increase 

the lateral resolution beyond what would be otherwise feasible in 3-D simulations. The MRST 

implementation of a VE model is written based on black-oil based formulations with upscaled 

models for capillary pressure and mobility.  

Note that vertical heterogeneity in permeability is ignored in the basic VE models. 

Consequently, in this study, we do not include intra-layer flow in the simulation here, and by 

permeability, we are referring to horizontal permeability only. However, in a study undertaken 

by (Møyner& Nilsen, 2017; Møyner, Andersen, & Nilsen, 2018), the authors presented a multi-

layer VE approach with full 3-D simulations locally where needed. The errors introduced by 

VE modelling can, in many cases, be lower than the errors resulting from low lateral resolution 

to make the 3-D simulations computationally feasible (Nilsen et al., 2016a). Readers are 

referred to (Nordbotten& Celia, 2011) for a detailed description of vertical equilibrium models. 

Hodneland et al. (Hodneland et al., 2019) showed that for a particular set of assumptions (thin 

plumes moving upwards under a sloping caprock), CO2 migration velocity is given by: 

 



 

         Equation 2 

   

where   represent the fluid velocity,  is the caprock tilt angle and   is CO2 viscosity. 

According to Equation 2, an increase and drop in the values of permeability and CO2 density, 

respectively, results in higher migration speed. Higher permeability means less resistance to 

flow. Moreover, reducing the CO2 density results in a higher driving force for the fluid 

migration, and the fluids tend to migrate from a zone with higher density to one with a lower 

value. Within the temperature range used in this study and the average pressure of 83 bars in 

layer 9 (Hodneland et al., 2019), based on the data provided in the literature (Bachu, 2003), 

increasing the temperature results in lower viscosity and density, thus increasing migration 

velocity. In this study, we have used both plume shape similarity (section 2.4) and structural 

trapping (section 2.5) as quantities to analysis the importance of uncertain parameters on CO2 

migration and trapping process. 

 

2.4. Plume similarity 

Several methods have been previously utilised to quantify the similarity of the plume migration 

of two different geological models. Some researchers (Han et al., 2011; Manceau& Rohmer, 

2014; Manceau& Rohmer, 2016) have compared the location of the plume's centre of mass 

with a reference point, such as injection point or plume centre of mass of the base model.  

Another method is the Sørensen–Dice coefficient (SDC), a statistic used to quantify the 

similarity of two discrete samples (Dice, 1945; Sørensen, 1948),  

          Equation 3 



 

This method has been recently used to compare the similarity of the simulated and observed 

CO2 footprint at the Ketzin (Lüth, Ivanova, & Kempka, 2015) and Sleipner (Allen et al., 2018; 

Hodneland et al., 2019) storage sites. In the current study, X represents the plume outline from 

the simulation at the desired time, and Y is the observed footprint generated from the seismic 

data at the same time. Therefore, SDC equals twice the overlapping area, divided by the 

summation of plume outlines (Equation 3). SDC ranges between 0 and 1, where an SDC equals 

to 1 corresponds to identical samples.  

To better understand the underlying relationship between our target variables SDC and 

uncertain variables, we must employ a reliable data-driven model that unveils linear/non-linear 

dependence in data. This enables us to quantify later the importance of each uncertain variable 

(i.e. input variables of the data-driven model) based on their contribution to the predicted target 

values. The model inputs are caprock elevation, temperature, pressure, porosity and 

permeability heterogeneity and injection rate (volume entry rate into layer 9), while the output 

(or target) variables are SDC values in different years. Knowing which model is appropriate 

for a given scenario is not always understood and requires more than one data-driven method 

to be trained on any supplied dataset. Therefore, we initially fit a baseline Linear Regression 

(LR) model to a training set, predict an unseen test set (25% of the entire data set), and then 

compared the predicted target values against the observed data. The baseline LR model reached 

an R-squared of about 0.3, which is very poor. We then use the following models to improve 

the baseline model prediction: 

K-nearest neighbours (KNN): a neighbours-based regression model that performs the learning 

process based on the proximity of K closest training examples of each query point, where K is 

a user-defined constant (Goldberger et al., 2004). 



 

Decision Trees (DTree): a tree-based model that sets up decision rules inferred from the 

observed data. Decision-tree learners can generate over-complex trees that fail to reliably 

generalise to unseen data (Dumont et al., 2009).  

Random Forests (RF): an ensemble method to link the predictions of several decision trees to 

improve the predictive capability of each estimator while minimising the risk of overfitting 

(Tin Kam Ho, 1995). 

The training/testing set used for the baseline (LR) model is used to compare the predictive 

power of our KNN, DTree and RF models, and the results are listed in Table 4.  

 

 

Table 4. Comparison between the employed data-driven models. 

Model Mean absolute error Mean squared error R-squared 

LR 6.7423×10-3 2.8866×10-4 3.4532×10-1 

KNN 2.8709×10-2 1.5298×10-2 7.9643×10-1 

RF 3.1603×10-5 1.7620×10-7 9.9912×10-1 

DTree 8.6138×10-6 1.5492×10-6 9.9967×10-1 

 

Table 4 clearly shows that DTree and RF models outperform the LR and KNN models by a 

large margin, with the RF model having R-squared of 0.9991. Therefore, we solely keep our 

DTree and RF models for evaluating variable importance. As for variable importance, simple 

models strongly represent themselves and are highly interpretable as they are based on simple 

rules. However, complex statistical models, such as ensemble methods, are not easy to explain. 

Instead, an interpretable approximation of the original statistical model can be used to represent 



 

an explanation model. To address this problem, we used a unified structure for interpreting 

predictions, namely the SHAP (SHapley Additive exPlanations) method introduced by 

(Lundberg& Lee, 2017) in 2017. The SHAP framework identifies the class of additive feature 

importance methods and finds a solution in this class that quantifies variable importance. SHAP 

relates to the family of models called "additive feature attribution methods" where the real 

variables are replaced by additive variables in that the explanation model for variable 

importance is formulated as a linear function of additive binary features. The exact solution to 

SHAP values is computationally expensive. They can, however, be approximated by 

combining different additive feature attribution methods. SHAP also provides each feature with 

an importance value for a particular prediction. (Lundberg& Lee, 2017) demonstrated that 

SHAP is better adjusted using human intuition and more robustly distinguish between model 

output classes than several existing methods.  

 

2.5. Structural trapping estimation  

Structural traps (ST), the most immediately available trapping mechanism, corresponding to 

the local maxima of the top surface play a key role in CO2 storage. In this trapping mechanism, 

the CO2 plume is prevented from further upward migration after reaching caprock 

(Shariatipour, S. M., Pickup, & Mackay, 2016). MRST-co2lab implements several algorithms 

to identify the ST in the sealing caprock without any flow simulation. Due to its low 

computational cost, this method can be used in large models. "Spill path" refers to the path CO2 

follows beneath the caprock assuming infinitesimal flow. Once injected, the CO2 plume tends 

to move upwards and fill the traps/ridges below the caprock. When a trap has been filled to its 

spill point, any additional CO2 spills and possibly lead to the neighbour trap (Nilsen, Lie, & 

Andersen, 2015). Individual traps are connected by spill paths, like the lakes being connected 



 

by rivers in surface hydrology. The static ST capacity in terms of CO2 mass is estimated using 

Equation 4 (Allen et al., 2018).  

     Equation 4 

where   denotes for CO2 density at aquifer condition (kg/m3),  is trap volume (m3),  is 

porosity,  is residual water saturation and the integrate is over the boundary of . 

Note that for traps with the same pore volume ( ) but located at a different depth, ST capacity 

differs due to CO2 density variation. Readers are advised to refer to (Nilsen et al., 2015) for 

more details about ST capacity and spill-point analysis. 

3. Results and discussion 

In this section, we analyse two simulations with the best and worst average (in four time steps) 

plume match, together with the ones with the minimum and maximum ST capacity. Moreover, 

the importance of each of the uncertain parameters on plume outline is investigated considering 

the joint effect of all parameters and also one factor at a time (OFAT) approach. Figure 3 shows 

the case with the best match between the plume outline from simulation results (1st row)  and 

seismic (2nd row). The figure also visualises the overlapped area of the plume outlines (3rd row). 

Note that the presented results are generated from one set of uncertain parameters which have 

the highest average SDC in 2001, 2004, 2006 and 2010.  The average SDC of the four time 

steps for each of the ten thousand simulations are calculated, and the results are sorted from 

best (highest average SDC) to worst (lowest average SDC) match. The plume outline at the 

end of each of the studied timestep is reported. The reason to focus on these four outputs is that 

the plume outline data for Sleipner model is available for limited timesteps of which we chose 

2001, 2004, 2006 and 2010 in this study. 

It should be noted that although the vertical seismic resolution is about 8 m, it is possible to 

estimate the thickness of topmost CO2 below the seismic detection range using methods such 



 

as structural analysis of the reservoir top  (Chadwick RA& Noy DJ., 2010; Chadwick, R. A. et 

al., 2009; White et al., 2018) and spectral decomposition technique (Huang et al., 2015; White 

et al., 2015; White, Williams, & Chadwick, 2013; Williams, Gareth& Chadwick, 2012). 

3.1.Best and worst matches 

 

Figure 3. Plume outline from simulation results with the worst average match (1st row) and 

seismic (2nd row), together with their comparison (3rd row; dark blue: seismic, yellow: 



 

simulated, green: overlapped) in 2001, 2004, 2006 and 2010. The legend shows the plume 

thickness (m).  

The plume shape at different time steps shows a good match between the plume lateral 

extension outline from seismic and simulation studies. The presented results are, however, the 

best averaged outcome over four time steps from our ten thousand simulations and not 

necessarily the best possible match for the model. The uncertain input parameters for the 

simulation are listed in Table 5. 

Table 5. Simulation parameters for the case with the highest average SDC. 

Parameter Value 

Average SDC of the studied time steps 0.76 

DP (bar) -3.21 

Rate multiplier (RM) 0.86 

DT (oC) 3.23 

 0.32 

 (D) 2.85 

Average elevation change (m) 0.43 

Average absolute elevation change (m) 2.19 

 

According to Table 5, a positive DT (3.23 oC) results in a better match. Using Equation 1, with 

an average depth of in Layer 9 (~ 818 m) and DT equals to 3.23oC, aquifer temperature is 

around 34oC. The reservoir pressure at the corresponding depth and with DP=-3.21 bars is 

around 78 bars. CO2 density at this pressure and temperature condition, based on the Coolprops 

(Bell et al., 2014) data would be around 390 kg/m3. Cavanagh (Cavanagh, Andrew J.& 

Haszeldine, 2014) and Zhu et al. (Zhu et al., 2015), considered an average CO2 density of 355 



 

kg/m3 and 479 kg/m3, respectively. A density of 391 kg/m3 was also suggested by (Nilsen et 

al., 2017) in one of their calibrated set of parameters for Layer 9. 

The Sleipner condition is close to the critical point (30.4 oC and 73.8 bars), and CO2 has a gas-

like behaviour in a supercritical condition (Hodneland et al., 2019). Therefore, increasing the 

temperature results in a significantly lower density and consequently, a higher buoyancy force. 

Moreover, a higher temperature at pressures close to the average pressure of 83 bars in Layer 

9 (Hodneland et al., 2019), results in a lower viscosity (Bachu, 2003) and consequently higher 

mobility. In this condition (higher temperature) the CO2 plume conforms more accurately the 

caprock morphology. Increasing the temperature was previously (Hodneland et al., 2019) 

suggested improving the match between simulation and seismic surveys results. As it is shown 

in Table 5, an RM of 0.86 results in the best average plume match. Note that the results 

presented here are just one of the many possible "acceptable" results. Since the parameters are 

not entirely independent, a different set of input parameters might potentially lead to the same 

if not better results.  

Table 5 also shows that realisations identified as the best match, happened to have average 

porosity and permeability values of 0.32 and 2.85 D respectively. An average absolute 

elevation change of around 2.19 m is observed in the case with the highest averaged SDC.  

Similar to the previous case, Figure 4 shows the results for the case with the lowest averaged 

SDC over the studied time steps. The uncertain input parameters for the simulation are listed 

in Table 6. 

 



 

 

Figure 4. Plume outline from simulation results with the worst average match (1st row) and 

seismic (2nd row), together with their comparison (3rd row; dark blue: seismic, yellow: 

simulated, green: overlapped) in 2001, 2004, 2006 and 2010. The legend shows the plume 

thickness (m).  

According to Figure 4 (3rd row), all the plume outlines from the simulation results, are larger 

than the ones from the seismic studies. It can be justified by the rate multiplier, which is around 



 

its maximum possible value (Table 6). The case with minimum average SDC in 2001, 2004 

and 2006 has a DT of -1.31 oC. The impact of uncertain parameters on plume migration changes 

throughout the simulation time and the results presented here shows the average impact on 

plume match. The problem we are dealing with in the Sleipner is complex; therefore, a different 

set of parameters might account for the best match in each time step. We will use a data-driven 

modelling approach in Section 3.3. to find the contribution of each parameter in CO2 plume 

migration more precisely. 

Table 6. Simulation parameters for the case with the lowest average SDC. 

Parameter Value 

Average SDC of the studied time steps 0.52 

DP 3.21 

Rate multiplier (RM) 1.28 

DT (oC) - 1.31 

 0.35 

 (D) 3.17 

Average elevation change (m) 0.27 

Average absolute elevation change (m) 3.41 

 

3.2. OFAT approach 

As mentioned earlier, the following set of values are assigned to the uncertain parameters in 

this study: 

- DT: -4 to 4 oC. 

- DP: -4 to 4 bars. 



 

- RM: 0.7 to 1.3. 

- Porosity: 0.27 to 0.4. 

- Permeability: 1.1 D to 5 D. 

- Caprock elevation: -5 to +5 m. 

In this section, we employ the well-known OFAT approach, by analysing the response of the 

model to the change in individual uncertain parameters, while keeping the rest of inputs at their 

initial state. One hundred values (and realisations for the cases of porosity, permeability and 

elevation) are considered within the allocated range. The results are presented in Figure 5, with 

the initial values of the model highlighted in purple. It is clear that while changing one 

parameter at a time, the plume has a better match in 2001, and the simulated plume outline 

becomes less similar to the one from seismic as injection continues.  

It is hard to find a similar trend between the results of the same parameters in various time 

steps. For example, looking at the overall trend for rate, while in 2010 an increase in the RM 

rapidly decreases the matching accuracy, the same phenomenon in 2001, 2004 and 2006 has a 

less significant effect on SDC.  

As claimed in work undertaken by (Nilsen et al., 2017), caprock topography is one of the main 

factors in shaping the plume at Sleipner. There is no visible relationship between the employed 

realisation for caprock elevation and the calculated SDC in different time steps. The results in 

2004, 2006 and 2010, however, show more resemblance than 2001. In the current study, the 

elevation is changing within -5 to 5 metres, with an average absolute elevation change of 

around 2 meters. We can see even this small variation, which is a quarter of the vertical 

resolution (8 meters), can significantly impact the CO2 plume migration behaviour.  

 



 

Figure 5. Calculated SDC for each of the input parameters using an OFAT approach. Initial 

values of the model are highlighted in purple. Blue, orange, black and yellow lines represent 

the results for the years 2001, 2004, 2006 and 2010, respectively.  

 



 

 

Note that the overall constant trend of SDC for DT (between -4 to 0) or RM (between 0.7 to 1) 

in 2004 and 2006 does not mean that the plume outline has remained constant while these 

parameters are changing as it is possible to have two different outlines with the same SDC. 

This can be observed in Figure 6, showing the plume outline in an example case for various 

values of DT while keeping other parameters constant. The figure clearly shows that not only 

plume extensions are not identical, but also the CO2 plume seems to become thicker by 

increasing the DT. This could be addressed as one of the limitations of the Dice method as it 

considers the difference in the uncommon elements. In other words, if circle A and B have an 

area equivalent to 90% and 110% of circle C, respectively, we will have 

. Moreover, the plume thickness is not considered in the similarity measure, 

which is a limitation of seismic interpretation, providing only a 2D surface (Hodneland et al., 

2019).  

 

 

Figure 6. Plume outline in an example case for various values of DT. The legend shows the 

plume thickness (m). 



 

Figure 5 shows that the plume match is affected by permeability distribution in the model which 

is in agreement with the results of the work undertaken by Nilsen et al. (Nilsen et al., 2017). 

They used adjoint-based sensitivities, adjusting parameters in a way to minimise the mismatch 

between the observation and simulation. The optimised permeability data set in their work, 

however, had an average one order magnitude higher than the original value reported for Layer 

9. While the reported range of permeability for Layer 9 is between 1.1 and 5 Darcy, the authors 

proposed an average permeability of 21.7 Darcy to improve the plume match. In the current 

study, we are not changing the range of reported permeability (and porosity) data. Therefore, 

the impact of permeability on overall plume match might be less significant than their work. 

Uncertainties in porosity show a smaller impact on plume dynamics than uncertainties in 

permeability and caprock elevation. While the level of perturbations applied to these 

parameters affects their degree of impact, however, similar results were observed in work 

performed by (Allen et al., 2018) where even an increase of ±50% of the original average 

porosity had minimal impact on the match in the Utsira model.   

Results of increasing DT showed an overall improvement in the match. The analysis of the 

worst and best average match also showed that higher temperature would result in a better 

match in plume for Sleipner model. An increase in temperature in the Sleipner model results 

in a lower density and viscosity and consequently, higher mobility (Hodneland et al., 2019). 

Figure 5 also shows that reducing pressure results in a better match which could be due to lower 

density and viscosity. While the OFAT approach in this study for temperature shows a slight 

improvement in plume match by increasing the temperature, a recent study on Sleipner model 

showed that raising storage temperature would significantly improve the match (Hodneland et 

al., 2019).  Hodneland et al. (Hodneland et al., 2019) used the previous Sleipner model; 

therefore, the base case of their model has a different caprock elevation than the one used in 

this study. Moreover, the distribution of porosity and permeability data was also different. 



 

Here, we examined the impact of uncertainty in porosity, permeability and caprock elevation 

in calculated SDC for temperature, using the OFAT approach. For this regard, we repeated the 

simulations illustrated in Figure 5, using different sets of realisations for porosity, permeability 

and caprock elevation (within the allocated range and using the same distribution approach as 

in Section 2.2). Later, the response of the model to the change in temperature was analysed 

(one parameter at a time). The results showed different trends in SDC than the one observed in 

Figure 5 for temperature. The analysis was performed for rate, and a similar result was 

achieved. It is therefore difficult to make a general statement on the impact of a parameter on 

the overall match. The lack of agreement in the trends shows the limitation of the OFAT 

approach as due to the complexity of the problem, the presence of other sources of uncertainty 

affects the results. In the next section, we introduce a data-driven approach to investigate the 

contribution of individual parameters, in the presence of other sources of uncertainty, more 

precisely. 

 

 

3.3. The joint effect of parameters 

Percentage overall variable importance plots for both RF and DTree models approximated by 

SHAP are presented in Figure 7. All SHAP values are obtained by averaging over five trials 

with the different starting point (multiple restarts) to ensure reliability and reproducibility of 

estimations. Both RF and DTree models consistently identify elevation, injection rate, 

temperature, permeability and pressure as the most important parameters when averaged over 

the four years under study. Heterogeneity in porosity is the lowest-impact variable for both RF 

and DTree models. Percentage variable importance is also computed for every variable at each 

year (see the number in the boxes). A higher percentage shows the dominant impact of the 



 

parameter on the SDC or in other words, a better match between the simulated and observed 

plume outlines. For instance, the variable "injection rate" has the highest impact on model 

prediction in 2010. Here we discuss the trends observed in the RF model (which are consistent 

with the DTree model as well). 

Results clearly show that the impact of each parameter might change throughout the simulation. 

For instance, while the elevation is the dominant factor in 2001 (38%), its impact becomes less 

significant later in 2010 (14.43%). Meanwhile, the importance of injection rate seems to 

increase with time and its percentage predictor importance changes from 17.83% in 2001 to 

32.40% in 2010. One justification is that the injection rate is overshadowing the impact of other 

uncertain parameters in later years. This happens because the volume entry rate into layer 9 is 

not constant and increases with time. Injection rate is the only parameter which impacts the 

mass flow rate in aquifer directly. Since we are using multipliers for this parameter, a constant 

amount is not applied throughout the simulation. As the injection rate in the model increases, 

its impact becomes more significant as well. In the case of temperature, pressure and caprock 

elevation, the weight of adjustment in these parameters is constant during the simulation while 

adding/subtracting a value within the same range over the simulation.  

The results indicate the caprock elevation as the most important parameter in controlling the 

plume outline in Sleipner model. Note that the average absolute change on caprock elevation 

in this study is about 2m with a maximum and minimum of 5m and -5m, respectively. Although 

there have been several sources of uncertainties reported in the literature for determining the 

best plume match, the impact of caprock morphology, however, seems to be underestimated as 

it has average importance of about 26%. We used an elevation change in a range of about half 

of the reported seismic resolution in the Sleipner, and the impact is yet significant. Permeability 

and porosity contribute to changing the shape of the plume outline with overall percentage 

importance of around 13% and 6% respectively.  



 

Uncertainty in pressure has overall percentage importance of around 9%. Pressure and 

temperature both have an impact on viscosity and density. Based on the Coolprops data (Bell 

et al., 2014), an initial condition of T=31oC and P=81bars results in a density of around 687 

kg/m3. Considering values of -4 oC and +4 oC for DT (T=27oC and T=35oC), while keeping the 

pressure constant results in a density of 754 kg/m3 and 491 kg/m3 respectively (i.e. 263 kg/m3 

change in density). The corresponding density for cases with DP of – 4 bars to 4 bars in an 

isothermal condition becomes 710 kg/m3 and 650 kg/m3, respectively (i.e. 60 kg/m3 change in 

density).  This clearly shows that within the pressure and temperature ranges in Sleipner model, 

density in more sensitive to changes in temperature than the pressure which would justify the 

higher overall importance percentage of temperature than pressure. 

 



 

 

Figure 7. Percentage overall variable importance plots for DTree and RF models approximated 

by SHAP 

3.4. ST capacity estimation 

The parameters in cases with the highest and lowest ST capacity are listed in Table 7. As the 

CO2 density increases, the structural traps can contain more CO2 (



 

). As mentioned earlier, a lower temperature and higher pressure in the 

Sleipner aquifer condition would result in a higher density and consequently higher ST 

capacity. The findings in this study agree with previous works (Allen et al., 2018; Bachu, 2003) 

and the minimum and maximum ST capacity corresponds to the DT of 3.78 and -3.95, 

respectively. As expected, a larger (and positive) caprock elevation change and porosity 

increase the structural trapping.  The cases with minimum and maximum ST capacities had a 

DP of -3.01 and 3.23 bars, respectively.  

 

Table 7. Simulation parameters for the cases with minimum and maximum ST capacity. 

Parameter 
ST capacity 

Min Max 

ST capacity (Mt) 1.46 3.68 

DP (bar) -3.01 3.23 

DT (oC) 3.78 -3.95 

 0.30 0.35 

Average elevation change (m) 0.25 1.06 

Average absolute elevation change (m) 1.13 3.63 

 

4. Conclusions 

In this work, we focused on the joint effect of uncertain parameters in which their impact was 

believed to influence the overall CO2 migration and trapping in the Sleipner 2019 benchmark 

model. For this purpose, we performed ten thousand forward simulations to analyse the 

importance of porosity and permeability heterogeneity, reservoir temperature, reservoir 



 

pressure and caprock elevation of plume outline. To make the study computationally feasible, 

the simulations are performed using the VE approach. We disregarded internal layers and 

modelled the whole thickness of the aquifer as one layer as a single VE model. Upwards 

migration of CO2 through internal layers was implicitly modelled through the rate multipliers. 

A more detailed study would involve applying a VE model to each internal layer which we 

consider worthy of future work. 

The results showed that CO2 density values of around 390 kg/m3 improve the plume match in 

the Sleipner model. The caprock morphology was shown to be the most critical parameter in 

controlling the plume migration with the overall importance of 26% followed by the injection 

rate (24%), temperature (22%),  heterogeneity in permeability (13%), pressure (9%) and 

porosity (6%). We would like to highlight that the best combination of parameters reported in 

this study is one of the many possible answers. As was shown in the results of the OFAT 

approach, the effect of a parameter on the plume outline can be different in the presence of 

another parameter which could be considered as one of the limitations of OFAT approach. For 

example, while previous studies showed that increasing temperature would result in a better 

match in Sleipner model, our results showed that this statement is not always valid and depends 

on the realisations used for caprock, porosity and permeability. A similar result was achieved 

for the rate, and various trends of SDC vs RM was observed after using different realisations 

for porosity, permeability and elevation. There are not any fixed correct sets of realisations for 

these data, and any distribution of porosity and permeability within the reported range and any 

elevation variations within the ranges lower than the seismic detection limit can be considered 

as a valid answer. Therefore, it is not suggested to make a general statement on the impact of 

a parameter on the plume match in Sleipner (and possibly other sites), based on the results from 

the OFAT approach. 



 

The current work also helps to understand which of the addressed uncertain parameters for 

Sleipner model in literature should be prioritised and calibrated more carefully to improve the 

match. A similar study could be performed on any CO2 storage or oil and gas site to find the 

importance of uncertain parameters before performing a history matching. After which, it is 

possible to minimise the mismatch between simulation and observed data more efficiently by 

improving the geological, operational and fluid properties. We hope this study helps Equinor 

to improve the Sleipner model in future releases. For instance, caprock morphology which was 

shown as the most important parameter in controlling plume migration in the current study, in 

the recent benchmark model results in a less accurate match in comparison to the previous 

model which needs further improvements. 
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