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Abstract 

Biomining of base and precious metal-containing sulfidic ores and concentrates is an 

important global biotechnology. Currently, mineral bio-processing is carried out in dumps, 

heaps and stirred tanks located on the land surface. An alternative approach, “deep in situ 

biomining”, would solubilise target metals from fractured ore bodies buried deep (>1 km) 

underground, using a microbially-generated acidic, ferric iron-rich lixiviant. Pregnant leach 

solutions (PLS) generated are pumped to the land surface where metals are extracted and 

recovered, ferric iron regenerated in a bioreactor and the oxidised lixiviant re-injected 

underground. To examine the feasibility of using an indirect bioleaching approach to extract 

metals from an ore body, a laboratory test was carried out using a polymetallic sulfidic black 

schist ore (from Talvivaara, Finland) in a non-aerated column reactor, maintained at 30ºC at 

atmospheric pressure. Following an initial acid leaching phase (using 100 mM sulfuric acid) 

the ore was subjected to ferric iron-catalysed oxidative dissolution using a lixiviant generated 

in a laboratory-scale ferric iron-generating bioreactor (FIGB). During the 16 week time course 

of the experiment, 93% of manganese, 88% of cobalt, 79% of nickel, 75% of iron, 75% of zinc 

and 55% of copper present in the ore was extracted. The planktonic microbial populations in 

the FIGB and those in the PLS were similar, and dominated by Leptospirillum ferriphilum, iron-

oxidising Acidithiobacillus spp. and the archaeon Ferroplasma acidophilum.  

 

 

1. Introduction 

Using the microorganisms to accelerate the oxidative dissolution of sulfidic minerals in  ores 

and minerals (“biomining”), has developed into an global biotechnology for extracting and 

facilitating the recovery of copper and gold, and to a lesser extent of cobalt, nickel and zinc 

(Rawlings and Johnson, 2007). Although still a niche technology, it has the potential to be 

used in a variety of contexts where conventional mineral processing is not economically or 

environmentally feasible, such as low grade (“run of mine”) and polymetallic ores, and those 



 

with high arsenic contents (Brierley and Brierley, 2001). Since readily accessible, high-grade 

metal ores are becoming depleted, and demands for base and precious metals are increasing, 

there is a need to find an economical way to recover metals from materials that are currently 

perceived as being inaccessible, for example due to their placement deep (> 1 km) below the 

land surface.  

Conventional biomining is carried out in dumps, heaps and stirred tanks (Brierley, 2008). 

Another approach, used both historically and in more recent times to extract additional 

uranium from otherwise worked out mines, is to use an in situ approach, whereby underground 

mines are periodically flooded to facilitate the microbially-assisted solubilisation of target 

metals which are subsequently recovered from the pregnant leach solutions (PLS). Uranium 

is currently being extracted from shallow aquifers using an in situ approach, in various parts 

of the world (Mudd, 2001), though in these situations the “bio” component is probably of minor 

significance. The proposal to develop and test a “deep in situ biomining protocol”,is the remit 

of the European Union Horizon 2020 project “BioMOre” (www.biomore.info). Here the 

objective is to bioleach base metal ore deposits located at far greater depths (> 1 km), where 

conditions, such as elevated temperatures and pressures, would be much different from those 

encountered hitherto in in situ operations. In addition, ensuring the supply of oxygen and 

carbon dioxide, which are both essential for growth and oxidation of iron and sulfur by 

biomining microorganisms, to fractured ore bodies at these depths would not be pragmatic. 

To get around this problem, an indirect bioleaching protocol has been suggested (Johnson, 

2015). This involves delivering an acidic, ferric iron-rich lixiviant, generated in bioreactors 

located at the land surface, to the ore body where it flows through channels opened by 

hydraulic fracturing, oxidising sulfide minerals and solubilising metals such as copper. The 

PLS generated is reduced (ferrous iron-rich), rather than oxidised as in conventional 

biomining, and is pumped to the land surface where the soluble copper is removed, e.g. using 

sulfide precipitation or solvent extraction and electrowinning. Ferrous iron in the raffinate 

solution is then re-oxidised to ferric in the bioreactor, and the regenerated lixiviant recirculated 

into the ore body. Indirect mineral bioleaching has been described elsewhere (Schippers and 



 

Sand, 1999; Rawlings, 2004) and has the advantage of separating (chemical) mineral 

oxidation from (biological) ferrous iron oxidation, allowing conditions (such as temperature) for 

each to be optimised separately. Also, since ferric iron-catalysed oxidation of sulfide minerals 

is independent of molecular oxygen, the absence of oxygen in lixiviants percolating through a 

deep-buried ore body would not preclude the extraction of base metals, though it would mean 

that there would be no regeneration of ferric iron in situ, in contrast to biomining carried out in 

aerated bioheaps and stirred tanks.          

The polymetallic sulfidic black schist which outcrops at the land surface at Talvivaara, Finland, 

has been processed using heap bioleaching during the past decade (Riekkola-Vanhanen, 

2013), though recent problems at the site have caused a curtailment in mining (Bedford, 2015). 

The ore body contains of quartz (25%), aluminium silicates (38%), iron sulfides (16%), graphite 

(10%), magnesium-iron silicates (8%) and sphalerite (ZnS)-pentlandite ((Fe,Ni)9S8)-violarite 

(FeNi2S4) (3.2%) (Loukola-Ruskeeniemi, 1996). The major base metals present are Fe (10 – 

13%), Zn, (0.2 – 0.5%), Ni (0.2 – 0.3%), Cu (0.1 – 0.6%) and Co (0.02 – 0.04%) (Puhakka et 

al., 2007; Dopson et al., 2008; Wakeman et al., 2008; Halinen et al., 2009), with nickel being 

the primary metal targeted for extraction and recovery. This is deported in pentlandite and 

violarite, pyrite (FeS2) and pyrrhotite (Fe(1-x)S). Attempts to produce a high-grade nickel 

concentrate from the ore were not successful because of its graphite content, and heap 

bioleaching is carried out using ground ore particles, agglomerated using sulfuric acid. Several 

independent preliminary studies, carried out in aerated columns, had suggested that 

Talvivaara ore was amenable to oxidative dissolution in aerated, irrigated heaps (Puhakka 

and Tuovinen, 1986a-c; Riekkola-Vanhanen and Heimala, 1999; Wakeman et al., 2008; 

Halinen et al., 2009). The exothermic nature of pyrrhotite oxidation, in particular, maintains 

elevated temperatures (up to ~80ºC) in the insulated heaps, supporting the activities of 

thermophilic as well as mesophilic biomining microorganisms (Riekkola-Vanhanen, 2013). 

Dopson et al. (2008), however, reported that bioleaching the ore at extremely low pH (~ 1.5) 

resulted in extensive solubilisation of silicon (by acid dissolution of aluminosilicates) which 

greatly increased the viscosity of percolating liquors and impeded the bioleaching process. 



 

 

2. Materials and Methods 

2.1. Ferric iron-generating bioreactor (FIGB) 

A laboratory-scale biofilm reactor was commissioned to generate an acidic ferric iron lixiviant. 

A 2 L glass reactor vessel fitted with a stainless steel top plate and various inserts (Electrolab, 

U.K.) was filled sequentially with a layer (~ 2 cm depth) of acid washed gravel, followed by ~ 

13 cm of acid-washed porous glass beads (8 mm diameter; Poraver-Dennert GmbH, 

Germany) and a second 2 cm layer of gravel. Six hundred millilitres of a solution containing 

basal salts and trace elements (Ňancucheo et al., 2016), adjusted to pH 1.6 with sulfuric acid, 

was added and the reactor vessel sterilised by autoclaving. After cooling, a filter-sterilised 

solution of ferrous sulfate was added to the vessel, to give a final Fe2+ concentration of ~50 

mM. The reactor was then inoculated with 14 strains of acidophilic bacteria and archaea, 

commonly or occasionally found in biomining operations and maintained in the Acidophile 

Culture Collection at Bangor University, UK (Table 1). These acidophiles had been pre-grown 

in appropriate liquid media (ferrous iron or elemental sulfur for obligately autotrophic species; 

yeast extract-amended media for facultatively autotrophic and obligately heterotrophic 

species) and at suitable temperatures (30ºC for mesophilic species and 40ºC for thermo-

tolerant species). The temperature of the FIGB was maintained at 35ºC using a FerMac 240 

temperature controller (Electrolab) and the bioreactor was aerated (at ~ 1 L/min) with filter-

sterilised air. When all of the ferrous iron had been oxidised, the bioreactor was switched to 

continuous flow mode, using a slightly more acidic (pH 1.5) influent liquor (to minimise jarosite 

precipitation) and amended also with 100 mM magnesium sulfate to increase the buffering 

afforded by the sulfate/bisulfate couple. Flow rates into and out of the bioreactor vessel varied 

between 55 and 400 mL/h, equivalent to hydraulic retention times (HRTs) of between 33 and 

5 hours. Effluent liquors generated by the FIGB where >99% of the ferrous iron had been 

oxidised to ferric, were collected and used as lixiviants for indirect bioleaching of Talvivaara 

ore, as described below.      



 

 

2.2. Acid leaching and indirect bioleaching of Talvivaara ore 

A column bioreactor, comprising a Perspex tube (32 cm long and 7.5 cm diameter) filled with 

1.375 kg of non-sterile polymetallic ore (2.0 - 6.7 mm diameter) provided by the Talvivaara 

Mining Company, was set up in a temperature-controlled (30°C +/- 2°C) room. Non-sterile 

sulfuric acid (100 mM; 600 mL) was added to the column, and after three days the column 

was connected to 5 L inflow and outflow vessels and fresh 100 mM sulfuric acid pumped 

through continuously for a further 10 days, at a constant flow rate of 55 mL/h (equivalent to a 

HRT of 11 hours). Following this, this influent liquor was changed to the ferric iron lixiviant 

generated by the FIGB, which contained ~50 mM ferric iron, and had a pH of ~1.8. The same 

flow rate was maintained as during the acid leaching phase, and indirect bioleaching of the 

Talvivaara ore continued for a further 103 days. The column reactor was not aerated in any 

stage of the experiment. Samples of liquids draining the column reactor were withdrawn at 

regular intervals to determine pH, EH, concentrations of dissolved metals and silicon, and also 

for microbiological and molecular biological analysis.  

 

2.3. Chemical and Geochemical analyses 

Concentrations of ferrous iron in the effluent liquors were determined using the Ferrozine 

colorimetric assay (Stookey, 1970) and total iron by the same assay after reducing soluble 

ferric iron to ferrous iron with ascorbic acid. Ferric iron was determined from differences in 

total and ferrous iron concentrations. Concentrations of transition metals (Co, Ni, Zn, Co, and 

Mn) were measured by ion chromatography (IC), using a Dionex DX-320 ion chromatograph 

attached to an Ion Pac CS5A column and an AD25 absorbance detector (Dionex, Sunnyvale, 

CA), and analysed using Chromeleon software (version 6.40) (Wakeman et al., 2008; 

Ňancucheo and Johnson, 2012). The pH values of leachates were measured using a pHase 

combination glass electrode, and redox potentials (adjusted to be relative to a standard 



 

hydrogen electrode, EH values) using a combination platinum silver/silver chloride electrode 

(VWR International, UK). Both electrodes were coupled to an Accumet pH/redox meter 50. 

The transition metal contents of the Talvivaara ore were obtained by fine-grinding of 100 g of 

a representative sample, dissolving replicate 1 g samples in 4 mL of aqua regia (a mixture of 

concentrated nitric and hydrochloric acid, one part of the former to three parts of the latter by 

volume), diluting and measuring soluble metals as described above. 

  

2.4. Microbiological and biomolecular analyses 

Planktonic microorganisms in lixiviant and leachate samples were enumerated using a Thoma 

counting chamber and a Leitz Wetzlar 766200 (Germany) phase contrast microscope, at ×400 

magnification. Cultivatable bacteria and archaea were detected by plating samples onto 

selective solid overlay media (Johnson and Hallberg, 2007). Plates were incubated at both 

30º (for mesophiles) and 45°C (for thermo-tolerant species) for 10 days, and isolates identified 

on the basis of their colony and cellular morphologies (Johnson et al., 2005) and also, where 

necessary, from the T-RF analysIs of their 16S rRNA genes (Kay et al., 2013). Planktonic 

microbial populations were also analysed using terminal restriction enzyme fragment length 

polymorphism (T-RFLP), using protocols described elsewhere (Kay et al., 2013). Two 

restriction enzymes were used to analyse both bacterial (HaeIII and CfoI), and archaeal (CfoI 

and AluI) populations. 

 

3. Results 

3.1 Generation of acidic ferric iron lixiviants by the FIGB 

Ferric iron-rich lixiviants were readily generated by the FIGB following the build-up of biomass 

on the porous glass beads. With HRTs of 10 hours or more, >99% of the ferrous iron in the 

influent was oxidised to ferric, though this declined at higher flow rates (e.g. only ~ 55% of the 

iron was oxidised with a HRT of 5 hours). Only solutions in which >99% of the ferrous iron had 



 

been oxidised were used as lixiviants for ore dissolution, and these had a pH and EH values 

of ~1.8 and +880 mV, respectively. 

 

3.2. Acid dissolution of Talvivaara ore 

Significant amounts of ferrous iron, but little ferric iron, was leached from the Talvivarra ore by 

sulfuric acid (Figs. 1a and 1b). Redox potentials of leachates fell from +560 mV to +370 mV 

(Fig. 1c), the relatively low values reflecting the fact that the sulfide/sulfate couple was 

important in dictating EH values during this phase (hydrogen sulfide was detected, presumably 

resulting from acid dissolution of pyrrhotite). The pH values of the effluent liquors were always 

higher than that of the sulfuric acid influent liquor (pH ~ 1.0) and decreased from about 1.8 to 

about 1.5 as the acid leaching progressed. Many of the transition metals present in the ore 

were found in acid leachates, the exception being copper, which was always below the level 

of detection. The total amounts of metals leached from the ore using sulfuric acid (as 

percentage values of those present) were 10% Fe (16 g), 66% Mn (7.5 g), 4% Zn (0.3 g), 11% 

Ni (0.3 g), and 2% Co (0.01 g) (Fig. 2). In addition, 5.1 g of silicon was leached from the ore 

during the acid leaching phase (Fig. 3). 

 

3.3. Indirect bioleaching of Talvivaara ore 

Over 90% of the ferric iron present in the lixiviant generated by the FIGB was reduced to 

ferrous in the early phase of indirect bioleaching of the Talvivaara ore (Figs. 1a and 1b). 

Thereafter the concentration of ferrous iron in the ore leachates decreased while those of ferric 

iron increased. This was paralleled by a gradual increase in redox potentials, from +600 to 

+690 mV (Fig. 1c). Throughout this phase the concentrations of soluble ferrous iron in the 

leachates exceeded those of the ferric iron present in the lixiviant as a result of the ongoing 

oxidative dissolution of iron-containing sulfide minerals. The pH of the percolating liquor 

increased significantly during the early stage of indirect bioleaching (from pH 1.8 to 2.6) and 

this was accompanied by a visible accumulation of secondary ferric iron precipitates on the 



 

ore particle surfaces. As time progressed, the pH of the ore leachate declined, reaching pH 

1.9 by the end of the experiment (Fig. 1c). 

Cumulative percentages of metals (Fe, Mn, Zn, Cu, Ni, and Co) leached from the polymetallic 

ore are shown in Figure 2. Indirect bioleaching resulted in further extraction of base metals 

from the ore: 65% for iron (103.4 g), 27% for manganese (3.0 g), 71% for zinc (5.2 g), 55% for 

copper (2.4 g), 67% for nickel (1.9 g), and 86% for cobalt (0.5 g). While leaching of manganese 

and copper essentially came to a halt after about 60 days, other base metals (nickel, cobalt, 

iron and zinc) continued to be extracted over the entire timeframe of the experiment. After 116 

days of combined acid and indirect bioleaching, total metal extraction was 75% for Fe, 93% 

for Mn, 75% for Zn, 55% for Cu, 79% for Ni, and 88% for Co. Silicon (21.8 g) was also leached 

from the ore (Fig. 3), with a maximum recorded concentration of 0.5 g L-1. 

  



 

3.4. Microbial dynamics 

Numbers of planktonic microorganisms in the lixiviant produced by the FIGB varied between 

1 – 3 x 107 mL-1, while those present in the ore leachates were more variable (1- 10 x 107 mL-

1). Only five of the fourteen acidophiles used to inoculate the FIGB were isolated from lixiviant 

and ore leachate samples (Table 2). These included both mesophilic (At. ferrooxidans and At. 

ferridurans; their separate identities confirmed by sequencing their 16S rRNA genes) and 

thermo-tolerant (At. caldus, L. ferriphilum and Sb. thermosulfidooxidans) species. In general, 

similar trends were observed in terms of isolates obtained from lixiviants and leachates, with 

the notable exception that At. caldus was more frequently isolated from ore leachates than 

FIGB lixiviant liquors. The same bacteria were also detected using semi-qualitative T-RFLP 

analysis, though At. ferrooxidans and At. ferridurans could not be distinguished separately 

with the restriction enzymes used (Fig. 4). In addition, two other mesophilic acidophiles (the 

iron-oxidising autotroph L. ferrooxidans and the obligate heterotroph A. cryptum SJH) were 

also detected by T-RFLP, though as relatively minor members of the microbial communities. 

T-RFLP analysis indicated that the most abundant bacterium in the FIGB lixiviants was 

L. ferriphilum, accounting on average for 58% of the total bacterial population, while in the ore 

leachates the iron-oxidizing autotrophic Acidithiobacillus spp. were more abundant (~50% of 

total bacteria) than L. ferriphilum (43%, relative abundance) and that A. cryptum, 

Sb. thermosulfidooxidans, and At. caldus each accounted for 0 - 10% of the bacterial 

populations (Fig. 4). Only Fp. acidophilum, out of the two inoculated archaea, was detected 

by T-RFLP analyses (data not shown). Attempts both to isolate acidophiles and to amplify and 

analyse microbial genes from liquid samples during the acid leaching phase were 

unsuccessful. 

 

4. Discussion 

In situ bioleaching of deep buried ore bodies is a potential important development for metal 

mining in the 21st century. Advantages to in situ biomining include lower processing costs by 



 

eliminating the need to haul, crush and grind ore. In addition, its environmental impact is 

smaller since there is no need for surface storage and disposal of potentially hazardous mine 

wastes; typically ~99% of ore material is waste. In deep in situ biomining, most of the ore body 

remains underground. In contrast to pyrometallurgy/smelting, relatively little CO2 would be 

produced by deep in situ bioleaching (Johnson, 2015). The process would necessarily operate 

by indirect bioleaching, using acidic ferric iron-rich lixiviants generated in bioreactors located 

at the land surface which would allow access of the acidophiles to sufficient oxygen (to 

promote iron oxidation) and carbon dioxide (for cell growth), as well as avoiding the high 

pressures which would exist within a deep-buried ore body. The experiment described in the 

current report was designed to mimic conditions in a deep in situ biomine, with the notable 

exception that both components of the experimental system (the FIGB and the ore column) 

operated at atmospheric pressure.  

The polymetallic ore was subjected to a two-stage leaching process, the first with sulfuric acid 

(primarily to remove acid-labile gangue minerals) and the second with an acidic ferric iron-rich 

lixiviant. Acid leaching solubilised significant concentrations of some, though not all, of the 

base metals present in the ore. However, much more, and a greater variety of metals, was 

leached with the microbially-generated lixiviant. In contrast to previous columns leaching tests 

with Talvivaara ore, where the columns have been actively aerated to promote strongly 

oxidising conditions, the column in this test was not aerated. Some oxygen would be present 

in the FIGB lixiviants, but this would have been anticipated to be rapidly consumed in the ore 

column by bacteria oxidising both ferrous iron and reduced sulfur generated by ferric iron-

catalysed dissolution of the sulfide minerals present. Although concentrations of dissolved 

oxygen were not measured, the fact that redox potentials were far less positive in liquors 

pumped out of the column compared to those that were pumped in (especially during early 

period of indirect bioleaching) reflecting the predominance of ferrous rather than ferric iron, 

strongly suggests that oxygen consumption in the column was extensive. Even with a pre-acid 

leaching phase, the pH of the percolating liquors increased during indirect bioleaching, 



 

causing some precipitation of secondary ferric iron minerals (most probably jarosites), which 

would have probably negatively impacted mineral dissolution both by forming passivation 

layers and by removing the soluble ferric iron oxidant.  

The percentages of base metals extracted by indirect bioleaching in the current experiment 

compare favourably with those reported previously in aerated columns. The latter were 

summarised by Puhakka et al. (2007) to be 57 - 92% for Ni, 60 - 80% for Zn, 12 – 100% for 

Cu, and 14 - 65% for Co. Riekkola-Vanhanen and Heimala (1999) had previously carried out 

a long-term (~ 300 days) ore column test which extracted  92% of Ni, 80% of Zn, 66% of Cu 

and 65% of Co from the polymetallic Talvivaara ore. The current experiment, carried out under 

a far shorter (116 days) period of time, extracted 79% of the nickel present (the main target 

metal at the Talvivaara mine) and 75% of the zinc, 55% of the copper and 88% of the cobalt. 

Another potential advantage of indirect bioleaching of this ore was that less silicon was 

solubilised than in some previous reports. The dissolution of silicate minerals brings silicon 

into solution, which can increase the leach liquor viscosity, form diffusion barriers and lower 

metal extraction. Solution pH, though not temperature has a significant effect on silicate 

dissolution (Dopson et al., 2008). Halinen et al. (2009) and Dopson et al. (2008) reported 

problems with sample filtration due to amorphous gelatinous silica caused by a high Si 

concentrations present in pH 1.5 leach solutions. The maximum Si concentration reported by 

Halinen et al. (2009) was 1.7 g L-1, while 3.0 g L-1 of silicon was reported by Dopson et al. 

(2008). The concentrations of silicon found in leachates in the present study (a maximum of 

0.5 g L-1, found at the end of the acid leaching phase when the pH reached its minimal value 

of 1.5) were considerably lower, and avoided the viscosity and related problems reported 

elsewhere.  

 The apparent absence of microorganisms during acid leaching of the polymetallic ore 

suggests a zero biological input during that phase. In contrast, acidophilic bacteria and 

archaea had a very significant role in indirect leaching. Most of the bacteria used to inoculate 

the FIGB were not detected subsequently, and the dominant organisms comprised a narrow 



 

range of acidophilic microorganisms. No major time-related changes in the microbial 

populations, in either the FIGB or the ore column, were observed over the course of the 

leaching experiment. While most of the acidophiles would be anticipated to be retained in 

biofilms attached to the porous glass beads in the FIGB, the fact that some were continuously 

inputted into the column reactor may have impacted the dynamics of ore dissolution. 

As would be anticipated, most of the bacteria in lixiviants generated by the FIGB were iron-

oxidising acidophiles, as ferrous iron was the only electron donor present. Interestingly, At. 

caldus, a bacterium that does not oxidise iron but uses elemental and reduced inorganic sulfur 

compounds as electron donors, was occasionally detected in column leachates, presumably 

because ferric iron dissolution of sulfide minerals would have generated these materials. 

Obligately (Leptospirillum spp, and Acidithiobacillus spp) and facultatively 

(Sb. thermosulfidooxidans) autotrophic acidophiles, and also obligately heterotrophic 

prokaryotes (A. cryptum, Fp. acidiphilum) were present in ore leachates, the latter presumably 

using dissolved organic carbon (DOC) present as lysates and exudates of the primary 

producers. Even though At. ferrooxidans, At. ferridurans and Sb. thermosulfidooxidans oxidise 

both reduced inorganic sulfur compounds and ferrous iron, they might in the experimental 

conditions where ferrous iron was always present, be expected to have preferentially oxidized 

ferrous iron (generally the electron donor preferred by these bacteria). While ferric iron was 

reduced in the non-aerated column as a result of its oxidation of metal-containing sulfide 

minerals, microbial ferric iron reduction (coupled to the oxidation of sulfur and/or organic 

carbon) may have contributed to the net generation of ferrous iron in ore leachates. In previous 

bioleaching of Talvivaara ore carried out in aerated columns, Wakeman et al. (2008) reported 

that microbial populations changed radically with time and that this seemed to parallel changes 

in the chemistry of ore leachates. This contrasts greatly with the current work using an indirect 

bioleaching approach where microbial populations remained remarkably stable during the 

entire time course of the experiment. 

 



 

5. Conclusions 

Base metals were successfully extracted from a polymetallic black schist sulfide ore by indirect 

leaching, using an acidic ferric iron lixiviant generated in a bioreactor containing a mixed 

culture of iron-oxidising acidophiles which was delivered to a non-aerated column containing 

2.0 – 6.7 mm diameter ore particles. Results were comparable or superior to those reported 

for aerated columns, and no problem was encountered (as found elsewhere) with solution 

viscosity due to elevated concentrations of dissolved silicon. While the microbial populations 

in the lixiviant solutions and ore leachates showed some minor differences, in general they 

were quite similar to each other and dominated by iron-oxidising autotrophic bacteria; 

planktonic bacterial populations also stable over the time course of the experiment. The results 

of this work provide further support for the concept of deep in situ bioleaching of deep-buried 

base metal ore bodies. 
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Abbreviations 

FIGB  ferric iron-generating bioreactor 

PLS  pregnant leach solution 

T-RFLP  terminal restriction enzyme fragment length polymorphism 
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Table 1. Acidophilic prokaryotes used to inoculate the ferric iron-generating bioreactor (FIGB). 

Mesophilic Acidophilic Bacteria   

Leptospirillum (L.) ferrooxidansT autotrophic Fe2+ oxidizer 

Acidithiobacillus (At.) ferrooxidansT autotrophic Fe2+/S0 oxidizer 

At. ferriduransT autotrophic Fe2+/S0 oxidizer 

At. ferrivorans strain CF27 autotrophic Fe2+/S0 oxidizer 

‘At. ferriphilus’T autotrophic Fe2+/S0 oxidizer 

At. thiooxidansT autotrophic S0 oxidizer 

Acidiphilium (A.) cryptum strain SJH heterotrophic S0 oxidizer 

‘Acidibacillus (Ab.) ferrooxidans’T heterotrophic Fe2+ oxidizer 

  

Thermo-tolerant Acidophilic Bacteria 

L. ferriphilum strain MT63 autotrophic Fe2+ oxidizer 

Sulfobacillus (Sb.) thermosulfidooxidansT mixotrophic Fe2+/S0 oxidizer 

At. caldusT mixotrophic S0 oxidizer 

‘Ab. sulfurooxidansT’ heterotrophic Fe2+/S0 oxidizer 

  

Thermo-tolerant Acidophilic Archaea 

Ferroplasma (Fp.) acidiphilum strain BRGM4 heterotrophic Fe2+ oxidizer 

Acidiplasma sp. strain Fv heterotrophic Fe2+ oxidizer 

    

  
 

  



 

 

Table 2. Bacteria present in lixiviant (unshaded rows) and leachate (shaded rows) liquors 

during ferric iron leaching of the polymetallic Talvivaara ore, as detected by plating onto 

selective solid overlay media. (+) confirmed to be present; (-) not detected. 

 

 

 

 

 

 

 

 

 

 

  

Bacterium Sampling times (weeks) 

5 7 9 11 13 15 

L. ferriphilum 
+ + + + + + 

+ + + + + + 

At. ferrooxidans 
+ + + + + + 

+ + + + + + 

At. ferridurans 
+ + - + + + 

+ + + + + + 

At. caldus 
+ - + + + - 

+ + + + + + 

Sb. thermo-

sulfidooxidans 

+ - + - + - 

- - + + + - 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Changes in concentrations of (a) ferrous iron (□,■), (b) ferric iron (◇,◆), and (c) pH 

(Δ,▲) and redox potentials (●,o) in leachate liquors from the Talvivaara ore column. Solid 

symbols show data from the acid leaching phase, and hollow symbols from the indirect 

bioleaching phase.  
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Fig. 2. Accumulated percentages of soluble iron, manganese, zinc, copper, nickel, and cobalt extracted from the Talvivaara ore in the flooded 

column reactor during sequential acid and ferric iron leaching. The bars in each of the graphs depict the acid leaching phase (day 0 -10); from 

day 10, the ore was subjected to indirect bioleaching with a ferric iron-rich lixiviant. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Accumulated amount of silicon extracted from the Talvivaara ore in the flooded column 

reactor during sequential acid and ferric iron leaching. The bar depicts the acid leaching phase 

(days 0 -10). From day 10, the ore was subjected to indirect bioleaching with an acidic ferric 

iron-rich lixiviant. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Relative abundance of acidophilic bacteria in (a) the FIGB lixiviant, and (b) ore 

leachates, during indirect bioleaching of the polymetallic Talvivaara ore, as depicted by T-

RFLP analysis of amplified 16S rRNA genes digested with HaeIII. Key: (     ) L. ferriphilum,  

(   ) ) L. ferrooxidans, (     ) iron-oxidizing Acidithiobacillus spp., (     ) At. caldus,   

(     ) Sb. thermosulfidooxidans, (     ) A. cryptum.    

 

R
e
la

ti
v
e
 a

b
u

n
d

a
n
c
e

 (
%

) 

(b) 

(a) 


	Indirect oxidative cs
	Indirect oxidative 

