
Edge Hill University

An Ontology-Driven Approach To

Personalised mHealth Application

Development

Daniel George Campbell
Department of Computer Science

March 2018

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF

EDGE HILL UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Declaration

This thesis is submitted to Edge Hill University in support of my application for the

degree of Doctor of Philosophy. It has been composed by myself, all copyrighted material

appearing in this thesis and all such use, has been clearly acknowledged. This thesis has

not been submitted in any previous application for any degree.

Daniel George Campbell

March 2018

In Loving Memory

Blue

2003 - 2016

Acknowledgements

It goes without question that my PhD journey has been an extremely challenging but also

rewarding experience. It has not only enabled me to develop as an academic but also grow

as a person. My journey would not have been the same without the support from numerous

colleagues, friends and family. I therefore would like to take this opportunity to extend my

gratitude to everyone involved.

I would like to begin by thanking my supervisors, Professor Ella Pereira, Dr Gary Mc-

Dowell and Dr Chitra Balakrishna for all their support and guidance they have provided

throughout my PhD journey. I would like to especially thank Professor Pereira for her

constant positivity, motivation and her desire for me to succeed. You have been truly

inspirational throughout my time as a student at the university and I can only wish to one

day do the same for others.

I would like to thank my examiners, Professor Nik Bessis and Dr Muhammad Younas for

investing their time in their busy schedules to read my work.

To colleagues (past and present) within the Department of Computer Science. It has been

an honour to work alongside so many of you. I would like to especially thank: Dr Mark

Hall and David Walsh for the inspirational ‘just get it done’ talks. Dr Chris Beaumont, for

providing me with the opportunity to teach & inspire others. Collette Gavan who played a

vital role in my development as a tutor, providing advice, guidance and most importantly

sweets.

To all my friends, thanks for all the adventures, miss-adventures and the support you have

all gave me. I apologise if I was not there when you needed me most, or let you down, or

I was the cause of your demise or even kicked you. But I can assure you it is extremely

difficult to play games and work on a PhD at the same time. All I can say is ‘GG’, ‘WP’

and ‘my ultimate is ready’.

I consider myself extremely lucky to have also made some new friends along my journey.

To the departments ‘wizard’ and good friend Dan Kay, you never failed to provide a

hardware or software solution that I needed, and I have honestly lost count of how many

pints I owe you. To my fellow PhD colleagues Alex Akinbi, Darryl Owens and Peter

Matthew who also embarked on their journey at the same time; the office we all shared

at the beginning may have been small but the influence you guys had on my journey was

huge. Our discussions, ideas and rants will be forever remembered.

To my Mum, Dad and family; for providing me with the foundations to pursue my dreams.

I would not be the man that I am today without the sacrifices you have made and for that, I

am eternally grateful.

The final thanks and arguably the most important one. To my fiancée Chloé, I know

the PhD journey has placed a strain on our relationship, but throughout you have shown

nothing but love, support and compassion. From the beginning, you said to me that you

believed in me, at the time I did not realise how important those words were. When times

were tough, those words echoed in my mind and it was you that provided the light that

guided me through when I got lost. Without you, this thesis would not have been possible

and for that, I cannot thank you enough. But as this chapter in our life begins to come to

an end, I would like to say I love you and look forward to the adventures that lie ahead.

Abstract

Mobile devices when provisioned with intuitive mobile healthcare (mHealth) applications

provide a powerful platform that has been recognised to have made a significant impact

on healthcare delivery. The popularity of mHealth applications is rapidly expanding

amongst consumers and there is a continuous demand to improve the effectiveness of

mHealth applications. Personalisation has already been acknowledged by the healthcare

industry as a mechanism to improve healthcare delivery, recognising that each consumer

is unique. Yet, a typical mHealth application is designed to cater for the needs of large

target demographics and are frequently developed without the necessary knowledge and

expertise of healthcare providers. As a result, they often fail to meet the consumer’s

specific healthcare requirements. Since healthcare professionals understand the specific

healthcare requirements of a consumer, they are best suited for developing personalised

mobile healthcare applications. However, they do not possess the familiarity, skills and

knowledge to address the challenges associated with mobile application development.

Therefore, this research addresses the need for a new approach to personalised mHealth

application development in the form of an extensible ontology-driven framework that

enables healthcare professionals to create personalised mHealth applications for healthcare

consumers. This research explored personalisation & the challenges of personalised mobile

application development, existing approaches and related works. Followed by a detailed

investigation into the various health-related functions available in mHealth applications

designed for healthcare consumers, that led to the creation of the mHealth Application

Function Taxonomy. The next phase presents the theoretical design and development

considerations of the Personalised Mobile Application Development (PMAD) ontology.

The PMAD ontology encapsulates key knowledge associated with the development of per-

sonalised mHealth applications, that can be operationalised to compensate for the missing

domain expertise during the personalised mHealth application development process. The

final and contribution of this research describes and defines the approach and components

of the Personalised Mobile Application Development ontology-driven framework that ad-

dresses the limitations of existing end-user programming solutions and enables healthcare

professionals to create personalised mHealth applications for healthcare consumers.

Keywords: personalisation, mobile, healthcare, mHealth, taxonomy, ontology, frame-

work

List of Publications

1. D. Campbell, E. G. Pereira, and G. McDowell, “Ontology Driven Framework for

Personal mHealth Application Development,” 2014 Eighth Int. Conf. Next Gener.

Mob. Apps, Serv. Technol., pp. 320–325, 2014.

2. D. Campbell and E. Pereira, "A novel ontology-based approach to personalised

mHealth application development," 2016 SAI Computing Conference (SAI), London,

2016, pp. 985-989.

Contents

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Research Aim and Objectives . 3

1.3 Research Scope . 4

1.4 Original Contributions to Knowledge . 5

1.5 Thesis Structure . 5

2 Background and Literature Review 8

2.1 Mobile Healthcare . 8

2.2 Personalisation . 10

2.3 Discussion . 39

2.4 Summary . 50

3 Research & Development Methodologies 51

3.1 Research Design . 52

3.2 Taxonomy . 53

3.3 Ontology . 56

3.4 Framework . 59

3.5 Tools and Techniques . 62

3.6 Summary . 68

Contents x

4 mHealth Application Function Taxonomy 70

4.1 Method Overview . 71

4.2 Taxonomy Scope . 72

4.3 Analysis . 76

4.4 mHealth Application Function Taxonomy 97

4.5 Testing and Evaluation . 103

4.6 Summary . 110

5 PMAD Ontology 112

5.1 Ontology Theory . 113

5.2 Establishing Guidelines . 130

5.3 Purpose and Scope Definition . 136

5.4 Implementation: Capturing . 139

5.5 Implementation: Coding . 170

5.6 PMAD Ontology Overview . 176

5.7 Summary . 186

6 PMAD Framework 187

6.1 Purpose, Scope and Design Influences 188

6.2 Building A Conceptual Design . 189

6.3 PMAD Framework Architecture . 202

6.4 Summary . 209

7 Evaluation 210

7.1 Evaluating the Model . 211

7.2 Evaluating Consistency . 225

7.3 Evaluating Competence . 233

7.4 Evaluation Summary . 242

8 Conclusion 243

8.1 Contributions and Achievements . 243

8.2 Limitations & Recommendations for Future Work 245

8.3 Critical Evaluation . 247

References 249

Appendix A Taxonomy appendices 261

A.1 Taxonomy analysis: Frequency analysis Python script 262

A.2 Taxonomy analysis: Concept maps . 263

A.3 Taxonomy analysis: PageRank Python script 266

A.4 Taxonomy analysis: Function categorisation 269

A.5 Taxonomy testing: Test dataset . 280

Appendix B Ontology appendices 290

B.1 Android overview . 291

B.2 PMAD Ontology description logic expressivity 292

Appendix C Evaluation 293

C.1 Subsumption check results . 294

C.2 Disjoint test data and results . 294

C.3 OOPS! validation results . 307

List of Figures

2.1 Three stage medical practice model . 12

2.2 Medical practice model for personalised healthcare 14

2.3 Screen density . 17

2.4 Overview of application architectural styles 21

2.5 Blom’s taxonomy of motivations for personalisation 26

2.6 Composition of a generic mobile service 27

2.7 FLAME2008:User Model (top) and modular ontology architecture (right) 30

2.8 Survivor engagement framework . 31

2.9 Skillen Et-al. personalized, context-aware system architecture 33

2.10 Help on Demand: Architecture . 34

2.11 Mobile µ-Healthcare Service System: Application execution model . . . 36

2.12 Mobile µ-Healthcare Service System: Application designer 36

3.1 Research flow . 52

3.2 Uschold and Grunninger Skeletal methodology 57

3.3 Framework development process . 59

4.1 Taxonomy development approach . 71

4.2 Frequency analysis - Article Data (orange), Application (blue) 78

4.3 Examples of relationships . 80

4.4 Concept map - Synonym relationship . 81

4.5 Comparison of SET B concept maps through varying stage of analysis . . 83

4.6 Structurual similarity: concept map vs webgraph 85

4.7 Page Rank Notation . 86

4.8 Set A - PageRank values . 88

List of Figures xiii

4.9 Set B - PageRank values . 88

4.10 Set C - PageRank values . 89

4.11 Set D - PageRank values . 89

4.12 Frequency distribution of mHealth functions 90

4.13 Reasoning process behind the definition of a relationship for the code result 94

4.14 mHealthe application function taxonomy 97

4.15 Flow chart for classifying functions . 100

4.16 Maintenance procedure for the taxonomy 101

4.17 A bar chart to show the classification results of the test data used to test

the taxonomy . 105

4.18 A bar chart to show the comparison between the number of functions vs

the number of categories. 105

4.19 Percentage Freqency Distribution of Test Data 108

4.20 Pratical Use of the mHealth Application Function Taxonomy 109

5.1 The Semantic spectrum . 114

5.2 Semiotic triangle . 119

5.3 Perspective of a conceptualisation . 120

5.4 Semiotic triangle: Including the constraints of a domain 121

5.5 Guarino’s ontology classification . 122

5.6 Description logic architecture . 125

5.7 OWL species . 125

5.8 Components of the domain of discourse 137

5.9 Nexus 5 Device Attributes and Features 141

5.10 Excerpt from the Nexus 5 concept map 141

5.11 Composition of a function . 143

5.12 CallServiceProvider function concept map 143

5.13 CallServiceProvider: Application logic example 144

5.14 Android manifest <uses-permission> example 145

5.15 Telephony demonstration . 146

5.16 Structure of a object property . 151

5.17 Functional property . 153

List of Figures xiv

5.18 Class building blocks in OWL . 158

5.19 Visual representation of operators in OWL: Intersection, Union & Compli-

ment . 161

5.20 Necessary condition . 162

5.21 Necessary and sufficient condition - . 163

5.22 Excerpt from the primitive skeleton . 164

5.23 Class definitions represented in description logic notation 164

5.24 Example of a covering axiom . 166

5.25 Monitoring: Disjoint sibling classes . 167

5.26 Activities with the ‘Coding process’ of the ontology’s development 170

5.27 The process of creating the Asserted class hierarchy in Protégé 172

5.28 The process of creating Object properties In Protégé 172

5.29 The process of annotating entities in Protégé 172

5.30 Several uses of the disjoint class axiom in Protégé ontology editor 173

5.31 MobileDevice class: Necessary and sufficient conditions 174

5.32 AndroidDevice class: Necessary and sufficient conditions 174

5.33 Monitoring class: Covering axiom . 174

5.34 Comparison between the Asserted Class hierarchy & Inferred Class hierarchy175

5.35 Upper level of the ValuePartition class hierarchy 177

5.36 Hardware class hierarchy found within the ValuePartition hierarchy . . . 178

5.37 Excerpt of the API class hierarchy found within the ValuePartition hierarchy179

5.38 FunctionType class hierarchy found within the ValuePartition hierarchy . 179

5.39 Excerpt of the FunctionLogic class hierarchy found within the ValueParti-

tion hierarchy . 181

5.40 Manufacturer class hierarchy found within the ValuePartition hierarchy . 181

5.41 PersonalisedComponent class hierarchy found within the ValuePartition

hierarchy . 181

5.42 Defined concept hierarchy comparison 182

5.43 Defined concept hierarchy: MobileDevice Class hierarchy 183

5.44 Defined concept hierarchy: Function class hierarchy 185

6.1 High level use case scenario . 190

List of Figures xv

6.2 Existing solutions development process 192

6.3 Overview of a hybrid mobile application architecture 196

6.4 Conceptual design of the PMAD framework 201

6.5 PMAD Framework architecture . 203

7.1 Overview of the OOPS! catalogue of pitfalls 211

7.2 OOPS! evaluation summary of results 216

7.3 P08: Missing Annotations Test 1 . 218

7.4 P08: Missing Annotations Test 2 . 219

7.5 P11: Missing ‘Domain’ or ‘Range’ in properties 221

7.6 P24: test two results . 221

7.7 Naming convention compliance results 223

7.8 Demonstration of an inconsistent class in Protégé 226

7.9 Satisfiability verification using a description logic query 227

7.10 Protégé classification results using the HermiT reasoner 228

7.11 Bar chart to show the results from the class hierarchy checks 229

7.12 Testing disjointness using description logic queries 231

7.13 Disjoint test results . 231

7.14 Screenshot showing PMADs and DSR example 234

7.15 DSR examples . 239

List of Tables

2.1 Mobile platform comparison . 20

2.3 Description of the fundamental building blocks of a generic mobile service 27

2.4 Summary of existing and related work 42

2.4 Summary of existing and related work 43

2.4 Summary of existing and related work 44

2.4 Summary of existing and related work 45

2.5 Sign Posts . 49

3.1 Summary of Methodology and Tools . 69

4.1 Inclusion criteria . 74

4.2 Descriptive Statistics . 77

4.3 Article dataset: Upper quartile codes 80

4.4 Sets within the initial coding framework 82

4.5 Summary of PageRank for each set . 87

4.6 Codes requiring additional work . 93

4.7 Codes disregarded and justifications . 94

4.8 mHealth application function taxonomy characteristics 108

5.1 Summary of semantic models . 117

5.2 Guarino’s ontology classification definitions 122

5.4 Summary of OWL ontology components 127

5.6 Description of ontoloyg tools . 128

5.8 Ontology Development Overview . 131

5.10 Naming convention . 135

5.11 Competency questions . 138

List of Tables xvii

5.12 Examples of entities within the glossary of terms 148

5.14 Excerpt From the relationship dictionary 156

5.15 Excerpt from the concept dictionary . 168

5.17 Summary of the design documentation produced during the capturing phase169

5.19 PMAD metrics . 176

6.1 Description of data sources . 208

7.1 Results Summary: Manual Pitfalls . 213

7.4 Disjoint: description logic query outcomes 230

Chapter 1

Introduction

The first chapter in this thesis aims to clearly introduce: the motivation behind this research,

the aim & objectives, scope, the intended contributions. It concludes by outlining the

topics and themes of the remaining chapters.

1.1 Motivation

Mobile devices when provisioned with intuitive mobile healthcare (mHealth) applications

provide a powerful platform that has been recognised to have made a significant impact on

healthcare delivery [1, 2]. From a consumer’s perspective mHealth applications provide a

variety of functionality that provides an effective mechanism for promoting of long-term

well-being and independence [3, 4]. As the popularity of mHealth applications is rapidly

expanding amongst consumers, there is a continuous demand to improve the effectiveness

of mHealth applications [5].

Personalisation has already been acknowledged by the healthcare industry as a mechanism

to improve healthcare delivery, recognising that each consumer is unique [6]. Healthcare

1.1 Motivation 2

providers possess a set of domain expertise to understand the unique healthcare require-

ments of the consumer and can optimise treatment, drugs and resources to deliver targeted

personalised healthcare [7, 8]. Studies [9, 10] indicate that consumers respond more

favourable when treatment is tailored to their personal needs and providing high-quality

target care requires the expertise of a healthcare provider [11, 12].

Yet, a typical mHealth application is designed to cater for the needs of large target de-

mographics and are often developed without the necessary knowledge and expertise of

healthcare providers [13, 14]. As a result, they often fail to meet the consumer’s specific

healthcare requirements [13, 15]. Lee et al. highlights the need for medical providers to

develop personalised mHealth applications, as they understand the consumer’s specific

healthcare requirements [13].

However, healthcare providers do not possess the familiarity, skills and knowledge to

address the challenges associated with mobile application development [16]. Existing

mobile application development services, platforms and frameworks [17–19, 13] that are

designed to enable a layperson to develop mobile applications, would not be feasible for

personalised mHealth application development; as they are restricted to basic functionality

and lack the necessary capabilities to support a diverse range of healthcare scenarios. More-

over, other approaches to personalised mHeatlh applications [20–22] utilise ontologies

to model consumer characteristics that drive personalised functionality within a mHealth

application. Although they demonstrate the capabilities and advantages of personalised

mHealth applications, they are restricted to a single healthcare scenario and still require

mobile application development domain expertise.

Many of the challenges and issues highlighted throughout the literature have also been

experienced first-hand by the author in his previous involvement in projects that are related

to the development of mobile applications and software within the healthcare industry.

Therefore, the demand for this research is driven by challenges identified in the literature

1.2 Research Aim and Objectives 3

and previous experience to improve the effectiveness of mHealth applications for healthcare

consumers. This goal is to develop a new approach that enables healthcare providers to

create personalised mHealth applications, that is extensible and addresses the current

challenges and limitations with existing approaches to mobile application development

and personalisation.

1.2 Research Aim and Objectives

The aim of this research is to develop an extensible ontology-driven framework that enables

healthcare professionals to produce personalised mHealth applications for a healthcare

consumer. Fulfilling the aim requires the completion of the following four objectives.

• Objective (a) - Understand the Technological Challenges and Issues of person-

alised mHealth Application Development

Mobile application development is a complex process and faces a vast array of

challenges brought about by a range of factors including the mobile device, mo-

bile technologies and users. The goal of this objective is to identify limitations,

restrictions of existing approaches to related specifically personalisation and mobile

application development to identify a series of requirements for the framework.

• Objective (b) - Analyse mHealth Application Functions

The focus of this objective is to understand the various types of health-related

functions that are available within mHealth applications that are intended to be

used by healthcare consumers. The goal is to produce a taxonomy that categorises

these functions into distinct categories and investigate their feasibility within the

framework.

1.3 Research Scope 4

• Objective (c) - Establish A Suitable Ontology Model

Knowledge acquired from previous objectives will form a solid understanding of a

range of areas that include mobile computing, mHealth applications, personalisation

and application development. The ontology model must be capable of being extended

and encapsulating necessary and sufficient knowledge, so it can be utilised within

the framework.

• Objective (d) - Framework Design and Evaluation

Design a suitable framework that enables healthcare professional to build person-

alised mHealth applications on demand for health care consumers, without the

intervention from mobile applications developers. The framework must also address

the requirements identified from the completion of objective (a). A prototype that

simulates critical components of the framework will be developed and used to test

and evaluate the technical feasibility of the framework.

1.3 Research Scope

The focus of this research is surrounding the personalisation of mobile healthcare appli-

cations designed to be used by healthcare consumers. It is not the intention of the aim of

this research to create a fully operational system, but rather a theoretical, modular, and

high-level framework which represents and defines the main architectural components and

services of such a system. For this reason, consultation with healthcare professionals would

not suitable throughout during its development. However, to demonstrate the feasibility of

the framework core components were implemented that integrated the ontology to simulate

the key functionality of the framework.

1.4 Original Contributions to Knowledge 5

1.4 Original Contributions to Knowledge

This thesis intends to deliver an original contribution to knowledge in three forms. Each

contribution is summarised below:

• A Taxonomy - A method for classifying healthcare related functions found within mHealth

applications based upon the services they provide to the healthcare consumer.

• An Ontology - An extendible ontology model that encapsulates key knowledge associated

with the personalised mobile healthcare application development process so it can be made

operational via the framework, compensating for the missing mobile application development

domain expertise.

• A Framework - A theoretical, multi-layered architecture for an on-demand service that

enables healthcare professionals to create personalised mobile healthcare applications for

healthcare consumers.

1.5 Thesis Structure

Presented below are the structure and a description of the remaining seven chapters within

this thesis.

• Chapter 2: Background and Literature Review

Introduces relevant concepts, challenges and ideas that are considered to be influ-

ential and significant to the development of this research. It has been divided into

two sections. It begins by introducing the area of mobile healthcare, it’s benefits to

the industry, healthcare delivery and the objective of the next generation of mobile

healthcare. Followed by an in-depth discussion surrounding personalisation from

1.5 Thesis Structure 6

the perspective of healthcare and mobile application development and the challenges

and issues of related work.

• Chapter 3: Research & Development Methodologies

Discusses and justifies both the research and development methodologies that were

adopted throughout this research. It will describe in detail the techniques used to

explore, analyse, test and evaluate the products of this research.

• Chapter 4: mHealth Application Function Taxonomy

The objective of this chapter is to gain an understanding of the health-related func-

tions available within mHealth applications that are designed for healthcare consumer.

It discusses in detail the considerations associated with design, development and

evaluation of the mHealth Application Function Taxonomy (mHAFT).

• Chapter 5: PMAD Ontology

The objective of this chapter is to present the theoretical, design and development

considerations for the Personalised Mobile Application Development (PMAD) On-

tology. The chapter is composed of two parts. The first part presents the theoretical

considerations exploring key areas important to the development of an ontology.

The second part of this chapter provides a detailed insight into the design and

development process of the PMAD Ontology.

• Chapter 6: PMAD Framework

The motivation behind this chapter is to present and discuss the design considerations

of an ontology-driven framework. It is constructed from three parts. The first defines

the purpose, scope and design criteria of the PMAD Framework. The second

aspect discusses the creation of a conceptual model and explores various factors

that influenced the design of the PMAD Framework, and the final part presents an

overview of the PMAD Framework and discusses each component in detail.

1.5 Thesis Structure 7

• Chapter 7: Evaluation

This chapter presents a three-stage evaluation process of both the ontology and

framework. The first stage utilises the OntOlogy Pitfall Scanner to identify potential

commonly found pitfalls within ontologies. The second stage evaluates the ‘con-

sistency’ of the knowledge encoded within the ontology. The final phase evaluates

the competence of both the PMAD Ontologyand PMAD Frameworkin fulfilling the

overall aim of this research.

• Chapter 8: Conclusion

The final chapter provides a summary of the research and how the work completed

fulfils the aim and objectives discussed earlier, discussing the achievements, limita-

tions and recommendations for future work.

Chapter 2

Background and Literature Review

The focus of this chapter is to introduce relevant concepts, challenges and ideas that are

considered to be influential and significant to the development of this research. It has

been divided into three sections. It begins by introducing the area of mobile healthcare

it’s benefits to the industry, healthcare delivery and the objective of the next generation of

mobile healthcare. The following section introduces personalisation from the perspective of

healthcare discussing the advantages, process and characteristics of personalised healthcare.

This is followed by an in-depth discussion surrounding the challenges of developing

mobile application, motivation for personalisation, existing approaches and related works.

Finally, this chapter concludes by discussing the strengths and limitations of approaches to

personalisation and the process of developing personalised mHealth applications.

2.1 Mobile Healthcare

Mobile health care or mHealth, is defined as the provision of health related services or

activities via the utilisation of: information & communication systems, computing &

internet and wearable & sensor technologies [3, 23]. mHealth applications play a vital role

2.1 Mobile Healthcare 9

within the healthcare industry and are designed to be utilised by both healthcare providers

and consumers.

mHealth applications provide a unique opportunity to significantly improve the quality of

consumer-oriented care, where patients are directly involved in the care process and are

already deployed in a diverse range of healthcare scenarios such as; assisting patients with

chronic diseases, provide warnings and vital information about an illness or for diagnosing

a patient [24]. From a consumers preservative, mHealth applications are designed to

transfer the expertise of the care provider to the consumer, without the constraints of

physical boundaries [4, 5].

At the consumer’s fingertips, a mobile application enables unique access to a diverse range

of tools, resources and utilities. In addition to the on-board capabilities of the mobile

device, a mobile application can make efficient use of other technologies such as wearable

computing devices and sensors to gather data, improve accuracy and extend its capabilities.

Provisioned correctly they provide for an efficient mechanism for promoting of long-term

well-being and independence [25, 26]. Making it an ideal flexible platform for pervasive

and ubiquitous healthcare delivery [27].

As the popularity of mHealth applications is rapidly expanding amongst consumers, there

is a continuous demand to improve the effectiveness of mHealth applications [28]. Mobile

technologies have been recognised to enable healthcare services to scale while reducing

the strain and extending the current capacity and accessibility [4]. However, developments

in technologies such as cloud computing, smartphones and 4th and 5th generation mobile

networks are laying the foundations for the next generation of mHealth applications to

provide targeted, personalised healthcare services [25].

2.2 Personalisation 10

2.2 Personalisation

The Oxford English dictionary defines the term personalise as ‘Design or produce (some-

thing) to meet someone’s individual requirements’ [29]. However, how personalisation

is achieved in different domains differs. This section explores how personalisation is

achieved within the healthcare and mobile application domains and is divided into three

parts. Section 2.2.1 explores the notion of personalised healthcare, its components and

process. Section 2.2.2 focuses on personalisation of mobile applications analyses, the

motivation for personalisation, approaches to achieve personalisation and presents existing

and related work. Section 2.3 examines the strengths and limitations of existing approaches

to personalisation. Followed by a review of the process of personalised development

and discussion surrounding the requirements a framework. The final section provided a

summary of the key issues raised within this chapter.

2.2.1 Healthcare

The notion of healthcare is subjective to the individual characteristics that make a person

unique, what is right for one person may not be right for another [30]. The primary

stakeholder in the healthcare delivery process is the consumer [31]. Recognising that each

consumer is unique, the healthcare providers utilises personalisation as a mechanism to

improve health care delivery. Personalised healthcare, is the product of long-term research

and observation of how patients with the same diagnosis react to the treatment they receive.

Patterns and trends discovered in evidence-based research and patient data have allowed

healthcare providers to optimise; treatment, drugs and resources to the unique personal

requirements of the consumer, enabling consumers to take more of a proactive approach to

the care they receive [6–8].

2.2 Personalisation 11

Throughout the literature, there have been multiple studies surrounding the effectiveness of

personalised healthcare. Studies such as [6, 9, 10, 32–34] have indicated that personalised

healthcare provides the consumer with more efficient targeted care, can further improve

the quality of life and overall consumers react more favourably. For example, Nicole et al.

studied the effectiveness of personalised interventions against universal interventions in

tobacco cessation. Those who received a personalised intervention were assessed, and their

care was tailored based upon the following characteristics: gender, age, sense of humour,

the level of tobacco use, readiness to quit and illness. Overall the study concluded that the

cessation rates were significantly higher for individuals who received personalised care

compared to those who received universal care [32].

2.2.1.1 Process and Components of Personalised Healthcare

Providing high quality, effective healthcare requires the expertise of a healthcare provider

[12]. Typically, in a healthcare scenario there are two key stakeholders a healthcare

consumer and a healthcare professional. According to Shieh et al., the practice of healthcare

can be modelled as a three stage process, resulting in a treatment plan for the consumer

[11]. As can been seen in Figure 2.1, the model consists of:

2.2 Personalisation 12

Data Acquisition

Data Interpretation

Decision Making

Treatment Plan

Medical History
Evidence based
Knowledge Base

Figure 2.1 Three stage medical practice model [11]

1. Data Acquisition: A healthcare provider will the begin to evaluate the consumer’s

current health status and acquire the data via a variety of methods such as diagnostic

tests, medical assessment, medical history and physical examination.

2. Interpretation: The healthcare provider will analyse and validate the data to

identify disease, illness or condition that is impacting the consumers health. If

required further diagnostic tests are performed.

3. Decision Making: The decision making process is influenced by three factors: Data

and results from the initial two phases, consumers medical history and knowledge

derived from an evidence based knowledge based are used to formulate the necessary

treatment for the consumer.

Although the medical practice model identifies the universal phases of medical practice, it

does not show how healthcare is personalised to the consumer. Synderman and Drake iden-

tify six components of personalised healthcare [6]. The first two components “Evaluation

2.2 Personalisation 13

of the patient’s current health status” and “Assessment and quantification of their health

risk” are already represented by the first two phases in the Shieh et al. medial practice

model. However, “Enhancement of the consumers engagement’ is a critical component

of personalised healthcare. Previous studies have documented that placing the consumer

at the centre of their care produces the best outcomes. Utilising an inclusive approach to

healthcare enables consumers to be directly involved in the process of their care alongside

healthcare providers. This interaction from the consumer is vital as it influences the

remaining components:

• Development of a therapeutic plan: After data is analysed and validate during

the interpretation phase a healthcare provider will have an insight into the factors

and risks that are impacting a health of the consumer. The healthcare provider will

discuss both the results of the assessment along with the therapeutic needs with the

consumer. The outcome is to establish shared goals and produce a therapeutic plan

that meets the therapeutic needs of the consumer.

• Tracking metrics: Monitoring the consumer progress requires establishing metrics

via bio-markers and clinically approved tracking tools.

• Creation of a personalised health plan: Documents the goals to be achieved, their

timing, and the metrics to track progress. The personalised health plan, if necessary

includes formal follow-up in which the health provider can monitor the patient’s

progress through relevant clinical metrics such as via wearable health technology,

mobile applications, or additional visits if necessary.

Therefore, Figure 2.2, presents the alignment of Shieh et al. medical practice model with

the personalised healthcare components identified by Synderman and Drake to represent a

medical practice model for personalised healthcare.

2.2 Personalisation 14

Influence Factors

Enhancement of Consumers Engagement

Data Acquisition

Data Interpretation

Decision Making

Creation of a
Personalised

Healthcare Plan

Medical History

Evidence based
Knowledge Base

Development of a Therapeutic Plan

Tracking metrics

Figure 2.2 Medical practice model for personalised healthcare

2.2.2 Mobile Health Applications

Personalisation has been recognised throughout the mobile application development in-

dustry to increase the quality of mobile services and applications [35]. Throughout the

literature, personalisation has many interpretations and has been approached differently to

achieve varying objectives [22, 35–38]. This section discusses the key challenges that are

associated with mobile application development and explores how the motivation behind

personalisation and how personalisation is achieved in mobile applications.

2.2.2.1 Challenges of Personalised Mobile Application Development

Mobile devices such as a smartphone and tablet have created tremendous opportunities

for the healthcare industry and have become a pervasive component of everyday life. The

last decade saw the smartphone become the most successful electronic consumer product

[26, 39] and statistics indicate that ownership is rising year on year [40] and they are being

used throughout the entire adult (16+) age spectrum [41]. Not only do mobile devices

2.2 Personalisation 15

provide the most personal computing experience, but have now achieved such a pervasive

presence in society users are becoming more reliant on them for their personal computing

needs [40].

However mobile application development is a complex process. Sommerville describes the

software engineering process as; theories, methods and tools which are needed to develop

software [42]. A software process refers to set of interrelated or interacting activities that

result in the creation of a software product and requires the collaboration of technical

and managerial processes to produce a mobile application [43]. Sommerville identifies

four fundamental phases of the software engineering process: Specification, Design &

Development, Testing and Maintenance [44]. Arguably the most critical aspect of the

software engineering process is the specification activity. Prior to developing any mobile

application, it is vital to understand what exactly it is supposed to do and how it will

benefit the end-user. A typical mobile application is designed to target the needs of a

large demographic [45]. However, in context of this research if a mobile application is

identified as a suitable clinical metric within a personalised healthcare plan, it is integral

that a application is designed specifically to the personal requirements of the healthcare

consumer, this also includes taking into consideration the device they own; not only does

this reduce the investment in hardware from the healthcare industry [46], it also will dictate

key decisions during the development process.

Developing high quality personalised mHealth applications it is imperative to understand

key characteristics and challenges associated with developing such mobile applications

[47]. Throughout the literature researchers have identified that the challenges of mobile

application development can be traced back to three categories: Hardware, Software

and Communication [47–49]. The subsequent sections discuss the key challenges of

mobile application development from the perspective of personalised mHealth application

development.

2.2 Personalisation 16

2.2.2.1.1 Hardware

The hardware is one of the factors that dictates the scope of an application. Although

mobile applications are relatively small in size, the hardware in modern mobile devices

provides the capabilities to mobile applications to perform various tasks. Nevertheless, it

is inherently limited by its composition of hardware and portable form factor [48].

Battery

The demands for fast and responsive mobile applications from end-users while addressing

the constraints associated with hardware is a major challenge for mobile application

developers [49]. Common to all mobile devices and arguably the biggest limitation, is the

battery. Developers of mobile applications believe efficient code, suitable architectures,

intelligent software design can significantly minimise power consumption by reducing

computation and perform tasks periodically or only when necessary to satisfy the users

demands [47, 49].

Storage Capacity

Liu et al. states the healthcare industry is one of the leading areas for utilising mobile

technologies to gather data [50]. Although, there has been a steady growth in the storage

capacity available on a mobile device to coincide with the use of high definition multimedia,

the volume of applications and their associated data. As Joorabchi et al. states dealing with

data can be problematic for developers as local storage capacity is limited, using a network

connection to synchronise data or the use of offline caching for data intensive application

is challenging [51]. Therefore, developers have to be conscious of the volume of data

produce by the mobile application and implement suitable data management techniques.

Accessibility, Input and Output

Mobile applications have a small number of input and output mechanisms such as the

display, microphone and speaker. The display is typically the primary interface for users

to interact with and for the system to indicate the effect of the users’ interaction, making

2.2 Personalisation 17

screen real estate a premium [47]. The design of the user interface is an essential activity

in the software engineering process [44]. A user interface should be simple and easy to use.

It is equally important that a personalised mHealth application is designed to be accessible.

The World Wide Web Consortium (W3C) has produced a working draft that describes

four accessibility principles and guidelines that can be applied to mobile web content,

native, web and hybrid applications [52]. The four accessibility principles are: Perceivable,

Operable, Understandable and Robust.

Perceivable refers to how information is rendered on screen. Although some displays

provide high resolutions, they are typically smaller compared to their desktop counterparts.

There are three attributes of a display: physical dimensions, resolution and pixel density

[53]. As demonstrated in Figure 2.3a, each of these attributes affect the appearance of user

interface and controls in various displays. However, if an application is density indepen-

dent Figure 2.3b, the UI (user interface) elements appear to take up the same proportional

area of the display regardless of the pixel density of the display. Moreover, minimising

the volume of information and inclusion of zoom, magnification and contrast control all

improve the accessibility of information for the end-user.

(a) Screen density: How UI controls are affect by displays with different screen densities (low,
medium, high)

(b) Screen density independence: Low, medium and high screens

Figure 2.3 Screen density

2.2 Personalisation 18

The operable principle considers how the end-user interacts with a mobile application. The

placement, size and spacing of the UI controls, as well as gestures all, can impact the user’s

ability to interact with an application. The third principle understandable defines various

good practices when designing a user interface. Although each mobile platform follows

a specific set of HCI (Human-computer Interaction) principles to provide a consistent

UI experience across applications coexisting on the same device [51]. Consistent layout,

positioning, grouping, an indication of actionable items and instructions all improve the

user’s experience making it easier to navigate and interact with new applications. The

robust principle focuses on data entry and supporting the characteristics of the platform.

As briefly mentioned a mobile device has limited input and output capabilities, therefore

data entry is often difficult. Developers can manipulate the virtual keyboard to the type of

data entry required, for example, numerical values only for entering a telephone number.

Developers can also utilise various UI controls such as lists, radio buttons or check boxes

to reduce the volume of text entry. Therefore, it is highly recommended that mobile

applications are optimised for the display and adhere to the accessibility guidelines and

principles defined by WC3 to provide the end-user with a consistent and accessible user

experience.

Hardware Fragmentation

The device an end-user owns runs a particular operating system that is a component of a

mobile platform. In a utopian world, mobile applications that are developed to run a specific

mobile platform should run on all devices that run the platforms operating system [47].

However, hardware fragmentation prevents this from occurring. Hardware fragmentation

is the result of several factors; variations in hardware configurations, proprietary drivers

and software [51]. These variations can cause applications to function unexpectedly even

though they may work fine on other devices. This is a major concern for developers as

it can have negative implications for the end users but also makes it difficult to test the

application [51].

2.2 Personalisation 19

2.2.2.1.2 Software

Software characteristics refers to the interaction, development and security of a mobile

application. This includes: mobile platform, application architectural style, integration

with data sources, security, credibility and maintenance.

Mobile Platform

At a fundamental level, a mobile platform is a term referring to the operational ecosystem,

consisting of various services, tools, products and operating systems. There are numerous

mobile platforms available. In the United Kingdom, there are three major competitors:

Android, iOS and Windows phone that form approximately 90 percent of the market share

[54]. Each platform has its own requirements for developing native applications. Manu-

factures produce software development kits (SDK’s) that contain all the necessary tools

and libraries (API’s) to develop mobile applications for that specific platform. Table 2.1

presents a comparison between the Android and iOS mobile platforms.

As can be seen in Table 2.1, each platform requires different Integrated Development

Environments (IDE) and programming languages to develop mobile applications. As

a mobile platform matures, changes and improvements are made to the operating sys-

tem. Although this drives innovation; rather than unification occurring, fragmentation

is introduced, as changes to the newer operating system, results in modifications to the

libraries, tools and resources within the SDK. This is a major challenge for developers [51].

However, unlike developing a traditional application that would require the supporting

multiple devices and/or multiple platforms, a personalised mHealth application within the

context of this research would require an application designed to operate on the user’s

device, thus reducing the effect of fragment within the mobile platform.

2.2 Personalisation 20

Table 2.1 Mobile platform comparison

Mobile Platform
Android iOS

Manufacturer Google Inc Apple

Operating Systems
Examples • Lollipop

• Honeycomb

• Ice Cream Sandwich

• iOS 4

• iOS 3

• iOS 5

Programming
Language(s) • Java

• C

• C++

• C

• C++

• Objective-C

• Swift

Integrated
Development
Environment

Android Studio Xcode

SDK Android SDK IOS SDK

App
Marketplace

Google Play Store App Store

2.2 Personalisation 21

Application Architectural Style

When developing a mobile application, developers can choose between three types of

application architectural styles: Native, Web and Hybrid. As highlighted in Figure 2.4

each approach has its advantages and pitfalls:

Figure 2.4 Overview of application architectural styles [55]

• Native Applications: are specifically developed using the programming language

and development tools designed to operate specifically on a particular mobile plat-

form, such as Android, iOS or Windows 10 mobile. Developers have access to

the native application programming interfaces (APIs) allowing applications to fully

utilise the device’s hardware and software capabilities, to provide the richest and

most compelling user experience [56, 57]. Native applications also can run offline,

since the application is installed on the device and data transfers can synchronise

with back-end services when a internet connection is available. Native applications

are exclusive to a single platform and are distributed via the platforms app store. Any

changes that are made to the mobile application, such as a patch or new functions

requires re-validation by the mobile platform to ensure it meets their strict standards

and regulations. Although native applications excel with regards to performance and

2.2 Personalisation 22

functionality, they are associated with longer development times, typically cost more

to develop and are required to adhere to mobile platform regulations [58].

• Web Applications: have the greatest reach, require less financial investment, but

at the expense of performance and user experience. They are built using web

frameworks and technologies such as HTML5, Java script and CSS. Web applications

are platform independent (with minor modifications in some cases). This means

they possess the ability to run on a device regardless of the mobile platform. This

is achieved since the application is located on a central server and is accessed via

the devices web browser. However, as Gokhale et al. [59] indicates this approach

has two distinct limitations: Web Applications cannot access the native APIs and

require an internet connection in order to function; thus restricting their capabilities

and performance.

• Hybrid Applications: as the name suggests, combine elements of both native and

web applications. Typically the user interface is built using web technologies and

contained within a native wrapper, such as Adobe Phone Gap. Allowing the applica-

tion to access the devices native hardware and software [55]. The amalgamation of

both the native and web technologies allows developers to reuse portions of the code

for different mobile platforms, reducing development time, costs and supporting

cross platform development.

The delivery of healthcare should not be restricted by the device a consumer or to a

particular mobile platform. Selecting a suitable application architectural style requires

developers and stakeholders have to carefully consider: the cost associated with the

development, differences in the underpinning architecture, advantages and drawbacks

constructed as a consequence of the required functionality, intended use and scope of the

application [56, 57]. Incorrectly choosing the wrong approach can limit the applications

capabilities and/or impact end-user satisfaction.

2.2 Personalisation 23

Integration with Data Sources

Mobile applications interact with various sources to send and receive data. Data is a

valuable asset to consumers and healthcare providers. Interoperability is another concern

for developers [16]. Many healthcare services are heavily invested in their own IT systems.

For data produced by a personalised mHealth application to be effective and accessible, it

is vital that they are compatible and capable of communicating with back-end services of

existing systems [60, 61].

Security

Healthcare is one of the leading areas for utilising mobile technologies to gather data

[50]. Due to the nature of personalised and the various environments a mobile device can

operate in, security, privacy and safeguarding of personal data are prominent concerns for

the healthcare industry [16, 61]. Plachkinova et al. emphasises that many existing mHealth

applications currently available have flaws that could prove detrimental to healthcare

consumers, providers and services [62]. Although mobile platforms may offer varying

degrees of support for safeguarding data, it is the responsibility of the developer for

protecting data. Therefore, it is paramount that security, privacy and data management

mechanisms such as encryption, automatic backup and remote wipe are present in all

mHealth applications and the services they interact with [63].

2.2 Personalisation 24

Credibility

The rapid growth, developments and introduction of new mobile technologies make the

development of mobile applications complex. Mobile Application Developers posses

the necessary skills, knowledge and familiarity of a mobile application enabling them to

address and or manage challenges throughout development [43]. However, many mobile

applications that are readily available to download, are designed and developed without

the necessary knowledge, familiarity or experience of healthcare, thus leading to questions

regarding the accuracy and credibility of the content, data and functionality provided

[13, 46]. When developing mobile applications for healthcare, a developer should be

conversant with aspects of healthcare they are developing the application for [64].

Maintenance

Due to the nature of mobile technology, there is a consistent introduction of new techniques

and trends driving the industry forward. Alongside these new technologies and trends,

requirements change, bug fixes are required as the mobile application matures. As a result,

maintaining a mobile application requires developers to regularly update their skills and

knowledge to ensure that they are capable of producing high quality up-to-date mobile

applications [44].

2.2.2.1.3 Communication

Users of mobile devices have the freedom to navigate throughout a physical space and are

reliant on wireless communication technologies for transferring and receiving informa-

tion. As mobile device are operate in heterogeneous networked environments, developers

must consider factors associated with wireless networks such as variable bandwidth and

robustness, routeing and network failure or disconnection [65, 66]. By ignoring these

factors when developing mobile applications can impede functionality and user satisfac-

2.2 Personalisation 25

tion. Therefore, requiring developers to design and implement suitable redundancies and

solutions into mobile applications.

2.2.3 Motivation for Personalisation, Approaches and Related Works

Within mobile applications, personalisation can exist in various forms and can be achieved

through several different approaches. The remainder of this section discusses the motivation

for personalisation within the context of a user, the approaches to personalising mobile

applications and concludes by presenting a series of related works.

2.2.3.1 Motivation For Personalisation

So why personalise a mobile application? Bolm’s work on personalisation presents a

user centric taxonomy that focuses on the motivations for personalisation and defines

personalisation as ‘a process that changes the functionality, interface, information content,

or distinctiveness of a system to increase its personal relevance to an individual’ [36].

Blom identifies two distinct categories of motivations for personalisation as depicted in

Figure 2.5.

Work related motivations consist of: ‘enable access to information content’, ‘accommodate

work goals’ and ‘accommodate individual differences’. This group of motivations is

typically centred around the mobile applications functionality. In the context of person-

alised mobile healthcare, these three categories may provide a consumer with: access to

information regarding a specific illness, calculate insulin dosage and provide accessibility

features to accommodating for a visual impairment, respectively. Whereas Socially related

motivations include ‘elicit emotional responses’ and ‘maintaining and expressing identity

of a user’. Socially related motivations typically relate to an individual’s character.

2.2 Personalisation 26

For example, Blom associates ‘elicit emotional responses’ with choosing a particular ring

tone as it may symbolise happiness from the perspective of the user. Maintaining and

expressing identity is described as ‘a key part to social identity is the group or groups

one associates with’ [36]. From a mobile applications perspective this may include a user

displaying a badge in their profile to represent support for a charity. Although, this work

identifies motives for personalisation from a user centric perspective, it does not identify

approaches used to achieve personalisation within a mobile application.

Motivations for personalisation

SocialWork

Elicit
emotional
responses

Maintaining and
expressing

 the identity of
the user

Enable access
to information

content

Accommodate
work goals

Accommodate
individual

differences

Figure 2.5 Blom’s taxonomy of motivations for personalisation

2.2 Personalisation 27

2.2.3.2 Approaches to Personalisation in Mobile Applications

Within mobile applications personalisation has been approached differently. According to

Jorstad [38, 67, 68], understanding how personalisation can be supported in the form of a

mobile application requires considering composition of the fundamental building blocks of

a mobile application. Figure 2.6 shows the fundamental building blocks of a personalised

each component is described in below Table 2.3.

MobileService

ServiceLogicServiceLogic ServiceDataServiceData ServiceContentServiceContent ServiceProfileServiceProfileServiceLogic ServiceData ServiceContent ServiceProfile

Figure 2.6 Composition of a generic mobile service

Table 2.3 Description of the fundamental building blocks of a generic mobile service

Building Block Description Example/s

Service Logic Essentially code that forms to create the

functions within a mobile application

Drug Monitoring, Email, Insulin cal-

culation

Service Data Data that is used during the execution of the

service logic

Variables such as drug

Service Content Persistent data that must exist from one ses-

sion to another. It is typically consumed or

produced by the user

Documents, Database

Service Profile User configurable settings or preferences Layout, Text size, Theme

2.2 Personalisation 28

Each building block provides an opportunity to personalise a mobile application to the

specific requirements of the end user. The following works identify various approaches to

personalisation. Henricksen and Indulska [37] identifies multiple approaches to person-

alisation in mobile applications and are as follows: End-user programming, User Profile

Modelling & Machine Learning and Preference based. Ho and Bull [35] also identify

that location based information can also be used to achieve personalisation. Each of the

aforementioned approaches are described below.

• Location based: Location Based Approach Personalisation that utilises the users

current location data such as GPS to tailor mobile content and services [35, 69, 70].

• Preference based: This technique is reliant on the users input to achieve personali-

sation. Users are presented with various options, rule or files that can be manipulated

to influence the behaviour of a mobile application [35, 37].

• User Profile modelling & Machine learning: This approach utilises modelling

and machine learning techniques to derive the user’s requirements from historical

data. The user profile model is utilised by the system or application to influence the

behaviour of the application, rather than relying on the end-user [22, 37, 70].

• End-user programming: A technique where the end-users of a system can con-

struct a mobile application to the desired requirements. This approach is heavily

reliant on the end user to specify requirements and create functionality accordingly

[14, 37].

2.2 Personalisation 29

2.2.3.3 Related Works

The following works demonstrate how the aforementioned approaches have been utilised

to achieve personalisation in mobile applications.

(i) Flexible Semantic Web Service Management Environment :

The motivation behind the development of the Flexible Semantic Web Service

Management Environment (FLAME2008) was to facilitate and supply better in-

formation to the general public during the 2008 Beijing Olympic games [71, 72].

Users would access this service via a mobile application to receive meaningful

information (service content) based on the users current ‘situation’. FLAME2008

achieves personalisation by combining two of the approaches to enable the system

to understand the situation of the user. Location based data such as users current

location, time and date are derived from sensors that are built into the mobile device

which is then combined with the user preference data (Figure 2.7) inputted by user

by to provide the system with various characteristics. Behind the scenes away from

the end users, the services and situations supported by FLAME 2008 are described

semantically in the form of multiple ontologies, see Figure 2.7. The characteristics

that form the users “situation’ are then fed to the inference engine, on-demand via

the mobile application. The FLAME2008 system will then process the situations

characteristics as described in [72], to determine the necessary required information

for that particular user, resulting in the personalised services and information pushed

to the user’s mobile device.

2.2 Personalisation 30

	
	
	
	
	

	

Figure 2.7 FLAME2008:User Model (top) and modular ontology architecture (bottom)
[72]

2.2 Personalisation 31

(ii) mHealth solutions for cancer survivors’-Engagement in healthy living:

The motivation behind Myneni et al. research was to develop an ontology-driven

cancer survivor engagement framework to facilitate rapid development of mobile

applications that are targeted, extensible and engaging for adult and young adults

(AYA) [20]. A AYA ‘Survivorship care plan’ is dynamic and documents various

transitional characteristics such as: adolescence to adulthood, physiological and

psychological growth, self-identity, separation from parents/family, career pursuits,

and involvement in intimate relationships. Myneni et al. identifies in order to engage

AYA’s in health management requires the design of a multi-component, modular

solution that can be utilised across the care continuum based on the specific personal

attributes of the patient.

Figure 2.8 Survivor engagement framework [20]

Their proposed framework (Figure 2.8) again utilises an ontology to model the

users profile. The Profile Ontology for Cancer Survivors (POCS) was designed to

model and store knowledge of the patient’s after treatment care plan. It is built on

top of the Friend-of-a-Friend ontology [73] and integrates the Patient Engagement

Framework [74] and the Behavioural Intervention Technology Model [75] to identify

survivor ‘Digi-Legos’. The ‘Digi-Legos’ provide the framework with reusable and

customisable blocks that can be arranged to build a personalised application, these

are represented in Figure 2.8 as the functionality within the mobile application.

2.2 Personalisation 32

Knowledge contained within the ontology can be used to evoke rule-based machine

intelligence and decision-making provided via reasoning capabilities and querying

of the POCS ontology to identifying the required ‘Digi-Legos’ for the user. Cur-

rently there are eleven ‘Digi-Legos’: Insurance information, Health behavioural

trackers, Treatment summary, personalised late affects summarization, Follow-up

care scheduling, personal profile, targeted health tips, transition assistance, lifestyle

tips & care reminders, social hub and question corner.

(iii) Assisting people with dementia in mobile environments:

The motivation behind this work is to provide a personalised, context aware assis-

tance services for users with dementia [21]. The mobile application is designed

to assist users with dementia through activities of daily life, such as shopping and

navigation. Skillen et al. adopts both the user profile modelling & machine learning

and location based approaches to personalisation. By extending upon the existing

user-profile ontology models (User Profile Ontology with Situation-Dependant Pref-

erences Support [76] & General User Model Ontology [77]) Skillen et al. address the

personalisation limitations within the context of this work. The inclusion and mod-

elling of additional user-characteristics such as personal information, capabilities,

interests, preferences enables for the end-user’s lifestyle and healthcare requirements

to influence the behaviour of the mobile application and achieve the desired level of

personalised assistance.

The characteristics of the conceptual user profile model combined with the location

based data enables the mobile application to utilise this information to assist people

with dementia throughout various daily activities. The architecture of the mobile

application is shown in Figure 2.9 and a summary of each layer is provided below,

for a detailed description of the architecture see [21].

2.2 Personalisation 33

Figure 2.9 Skillen et-al. personalized, context-aware system architecture [21]

• Domain Layer: Contains three core elements: User, Application Scenario and

Environments. Combined these provide the application with the necessary data

and information required by the application.

• Modelling and Management Layer: Is responsible for modelling and manag-

ing the three core elements from the domain layer to model, manage and

maintain the user profile ontology.

• Personalisation Layer: Contains a user profile learning and adaptation com-

ponent, a reasoning engine and a knowledge base consisting of a set of rules,

which enable the delivery of the personalised service to the user of the applica-

tion.

• Application Layer: Focuses on the delivery of the application via the smart-

phone based user interface, the application- specific systems and the monitoring

of user behaviours. Information is fed back from the user , enabling the

application to monitor the users actions and behaviour, new information is then

2.2 Personalisation 34

used as input for the learning and adaptation component, where it is added to

the user profile ontology for future reference.

(iv) Travel Assistance: Help-On-Demand services in pervasive environments:

Skillen et al. work considers a systematic approach to service personalisation for

mobile users in pervasive environments and presents a service-oriented distributed

system architecture. Currently this work focuses specifically phase focusing specifi-

cally on travel assistance.

Figure 2.10 Help on Demand: Service-oriented distributed system architecture for service
personalisation [22]

By modelling the changing intelligent pervasive environments, the system utilises

user: requests and preferences, as well as environmental and application context, to

provide personalised services based on domain knowledge, heuristics and rule-based

reasoning [22]. The functionality of the personalised services where tested and

evaluated using three case studies and deploying the mobile application on three

Android mobile devices. Parameters linked to preferences can be modified using the

application and are stored on an application server alongside the ontology model.

Combined with location based information retrieved from the mobile device the

application provides personalised help-on-demand assistance services for the user

such as purchasing of train tickets in a foreign country, use personalised media or

2.2 Personalisation 35

provide directions to the nearest hotel in a text based format taking into account

users vision and hearing limitations.

(v) Mobile µ-Healthcare Service System:

Lee et al. proposed the Mobile µ-Healthcare Service System (MUSS) is a applica-

tion platform and development environment designed for medical specialists [13].

Following a two stage linear process, as seen in Figure 2.11,the platform enables

healthcare specialists creates configurable web based applications for healthcare

consumer.

The application designer allows the Healthcare specialist to select the necessary

services (functionality) from a predefined selection (sensing, questionnaires, data

processing, disease treatment and user feedback). To personalise the service to

the healthcare consumer, healthcare specialists are required to modify the service

process model as shown in Figure 2.12. Once the application is completed the

application designer exports and XML scenario, that is downloaded to a mobile

device. The scenario is used to configure the ‘scenario player’ (mobile application)

to provide the personalised services to the consumer.

2.2 Personalisation 36

Figure 2.11 Mobile µ-Healthcare Service System: Application execution model [13]

Figure 2.12 Mobile µ-Healthcare Service System: Application designer [13]

2.2 Personalisation 37

(vi) Appy Pie :

Appy Pie [17] is a cloud based mobile application builder for creating hybrid mobile

applications for multiple mobile platforms (iOS, Android, Windows Phone, Black-

berry and FireOS). The platform was designed specially to enable people who lack

the necessary skills to build a mobile application but want to develop a mobile appli-

cations. Appy Pie utilises a menu driven user interface, that guides users throughout

each step of a three stage linear development process. Appy pie’s development

process consists of Selection, Design and Build; each activity is summarised below:

(a) Selection: Requires the user to input a unique name for the application, select

a category (domain) and predefined theme.

(b) Design: This activity enables the user to customise the look and functionality

of the mobile application. Users can add multiple ‘app pages’ (functionality)

to their application. The platform provides five categories: social, multimedia,

contact, commerce and information, each consisting of a limited number of

‘app pages’. Each ‘app page’ can also have selected parameters modified via

the on screen controls to tailor the functionality to their requirements.

In addition to the menu system, the user can interact with a web-based represen-

tation of their application. Not only does this provide the user with an insight

to how the application will look but it also can be used to quickly navigate and

modify the ‘app page’.

(c) Build: Following the on screen instructions the users submit their application

to be built. Based on the subscription, users can choose what mobile platforms

the application is going to be built for. This process can take several hours to

complete, once ready the application will appear in the users dashboard.

(vii) Microsoft App Studio :

Microsoft App Studio [19] is free web application developed by Microsoft. It

2.2 Personalisation 38

has been designed to enable users to quickly develop, test, publish and maintain

applications for Window Phone and Windows operating systems. Microsoft App

studio deploys similar menu driven approach to seen in the Appy Pie. However,

adopts a non-linear development process consisting of the following activities Start

New, Content, Tiles, Settings and Finish.

• Start New: Requires the user to input a name for the application and choose

between various templates or build a empty application from scratch.

• Content: Allows the user to edit the application’s content by adding ‘sections’

such as menus, social media integration and custom API’s. Each section can

be customised using the various on screen controls. Here the theme can be

customised, again users can opt to choose between a preconfigured theme or

create their own.

• Tiles: Allows the user to configure how the application is displayed on a

Windows Phone 10 or PC running Microsoft Windows 10.

• Settings: Allows the user to change the applications title and enter the app

stores association details.

• Finish: The users application is then created, this process take a few minutes

to complete.

2.3 Discussion 39

2.3 Discussion

This section provides a discussion of two key areas. The first examines the strengths and

limitations of existing approaches to personalisation. This is followed by a review of the

process of personalised development.

2.3.1 Strengths & Limitations of Existing Approaches

Each existing works discussed in Section 2.2.3, demonstrates how the various approaches to

personalisation have been utilised within mobile applications. The following discusses each

approach to personalisation and related works highlighting the strengths and limitations. A

summary of which is shown in Table 2.4.

(i) Location-Based:

Location based personalised services are becoming more and more widespread as a

result of the onboard capabilities of mobile devices. Location data enables a mobile

application to react immediately to the changes in the user’s environment providing

the application with the ability to deliver the right service at the right time, by

modifying service data and content as demonstrated by the ‘FLAME2008 project’.

However, security and privacy are major concerns with this approach [78]. Also, as a

stand-alone mechanism, location based data is not always a suitable approach to for

personalising a mHealth application. Instead it is often used alongside user profile

modelling & machine learning to provide further context of the current situation of

the user as seen in [21, 22].

(ii) Preference-Based:

Preference-based approach allows the end-user to explicit specify their own require-

ments at any time based upon a predetermined series of parameters. Preference based

2.3 Discussion 40

personalisation was used during the FLAME2008 project, to allow users to configure

their interests. Again, it is typically used in conjunction with other personalisation

mechanisms to provide additional context to the application [35].

(iii) User profile modelling & Machine learning:

The most popular approach for achieving personalisation in mobile applications is

via user profile modelling & machine learning. The user model serves as a template

for generating distinct user profiles for different users within the context of the

application.

Although this approach is heavily centred around the user’s characteristics to drive

personalisation and is capable of supporting the work motivations defined in Blom’s

taxonomy. All of the works discussed that implement this approach, target a particu-

lar user demographic. However, user profile modelling & machine learning enables

an application to support sophisticated, personalised functionality that is capable of

supporting multiple users that belong to a particular demographic. Kay et al. [79]

argues that it takes a considerable amount of time and effort to build a sufficient

dynamic model that contains the necessary characteristics and attributes of the user.

As a result this approach would not be sustainable for supporting a diverse range of

personalised healthcare scenarios.

(iv) End-User programming:

The end-user programming paradigm enables domain experts, such as a healthcare

provider, who do not possess the skills and expertise of a mobile application de-

veloper to become involved in the development process [14]. Each of the end-user

programming solutions discussed share similar characteristics. Each adopt tech-

niques to reduces the complexity of mobile application development, enabling the

functionality (service logic) of a mobile application to be tailored to accommodate

for the individual differences and work goals of the end-user.

2.3 Discussion 41

Out of the three end-user programming solutions discussed, the Mobile µ-Healthcare

Service System (MUSS) [13] is specifically designed to be used by a healthcare

provider to produce a personalised mobile application for the healthcare consumer.

However, to reduce the complexity of mobile application development, requires

the healthcare professional to modify the ‘services’ process to provide personalised

functionality. Although the services supported by the framework are designed

specifically for healthcare. The technique to personalise functionality potential

limits the scope of the application as a consequence of the healthcare professional’s

ability to use the system. Moreover, the framework is only capable of supporting a

limited range of functionality that are currently limited to a one-dimensional pipeline,

making complex logic difficult to model.

Unlike the MUSS framework, the Appy pie and Windows App studio platforms

guides users through the various stages of development, via streamlined menus and

options that use lay terminology. However, they are both designed to support a wide

range of use cases, as a result provide simple and generalised functionality, that are

not suitable for supporting the diverse range of personalised healthcare scenarios.

2.3
D

iscussion
42

Table 2.4 Summary of existing and related work

Existing work Approach(es) Summary of Personalisation Strengths & Limitations

Mobile U-Health

Service System

• End-User

Programming

Functionality is created by healthcare

providers, using an application designer

to form a web based mobile application

• Strength(s):
– Applications are built by the domain expert

• Limitation(s):
– Limited functionality support

– Restricted to specific set of sensors

– One dimensional pipeline for personalisation

Flexible Semantic

Web Service

Management

Environment

• Location Based

• Preference Based

Provides personalised meaningful

information to the general public based

on the users current situation

• Strength(s):
– Services provided by the system can be extended

(server side)

• Limitation(s):
– User has to manually request each time

personalised information

– Designed for a specific scenario

– Reliant on location based data which may not be

always available

2.3
D

iscussion
43

Table 2.4 Summary of existing and related work

Existing work Approach(es) Summary of Personalisation Strengths & Limitations

mHealth solutions

for cancer

survivors’-

Engagement in

healthy living

• User Profile

Modelling

Queries an ontology to evoke

rule-based machine intelligence and

decision making to identify the

required functionality for the user

• Strength(s):
– Functionality is identified based upon the users

profile

• Limitation(s):
– Small number of supported functionality (11)

– Designed for a specific healthcare scenario

Assisting people

with dementia in

mobile applications

• User Profile &

Machine

Learning

• Location Based

Ontology based approach to provide

personalised context aware assistance

services for users with dementia, via

the use of machine learning

• Strength(s):
– Utilises machine learning to provide the right

functionality based upon the current users

situation

• Limitation(s):
– Application is designed for a specific healthcare

scenario

– Limited functionality support

2.3
D

iscussion
44

Table 2.4 Summary of existing and related work

Existing work Approach(es) Summary of Personalisation Strengths & Limitations

Travel Assistance:

Help-on-demand

services in

pervasive

environments

• User Profile &

Machine

Learning

• Location Based

• Preference Based

Provide personalised travel assistance

services based on the user profile

model, user requests and preferences

• Strength(s):
– Combines various approaches to provide rich

personalised services

• Limitation(s):
– Designed for a specific scenario

– Limited functionality support

Appy Pie

• End-User

Programming

Utilises end-user programming and

aids and guides the user through the

mobile application development

process utilising wizards and forms.

• Strength(s):
– Supports various mobile platforms

– Streamlined development process for the

layperson

• Limitation(s):
– Limited functionality support

– Subscription based

2.3
D

iscussion
45

Table 2.4 Summary of existing and related work

Existing work Approach(es) Summary of Personalisation Strengths & Limitations

Microsoft App

Studio

• End-User

Programming

Utilises end-user programming and

aids and guides the user through the

mobile application development

process utilising wizards and forms.

• Strength(s):
– Rich functionality

• Limitation(s):
– Limited functionality support

– Complication application builder

2.3 Discussion 46

2.3.2 Process

During the creation of a personalised healthcare plan, if a healthcare provider identifies

that a mobile application would be a suitable clinical metric, there are currently two

options: seek a mobile application that is already available in the mobile market place

that best fits the consumers needs; or focus their efforts in developing a personalised

mobile application that meets the requirements of the consumer. However, personalised

healthcare is driven by optimising the healthcare delivery process to provided targeted care

to the unique requirements of the consumer. Therefore to increase the effectiveness of

a mHealth applications it is integral that they are developed in accordance to the unique

requirements of the healthcare consumer to provide the necessary functionality to support

their personalised care.

Of all of the approaches discussed earlier, end-user programming not only enables health-

care providers to develop mobile applications, it can be used to facilitate the rapid produc-

tion of mobile applications with functionality that is required and tailored to the healthcare

consumer; bridging the gap between supply and demand of personalised mHealth appli-

cations [80, 81]. However, many existing end-user programming solutions are limited to

a small number or provide simple and generalised functions that are not suitable for sup-

porting the diverse range of personalised healthcare scenarios. In addition, many existing

solutions either focus specifically on particular aspect of healthcare and do not provide any

mechanism to expand the functionality they support. Therefore there is a need to explore

and categorise existing mHealth application functionality to determine their suitability of

the framework.

Olff argues to develop credible and effective mHealth applications requires the inclusion

of a multidisciplinary team that consists of healthcare providers and mobile application

developers [46]. The combination of the domain expertise is recognised as good practice

2.3 Discussion 47

with software engineering literature [44, 64]. However, the requirements engineering

activity is particularly challenging aspect of the software engineering process. LeRouge

highlights that previous studies have indicated that the lack of shared understanding of

the end users are among the major problems of the requirements gathering process [82].

Although the healthcare provider understands the requirements of the consumer, it can be

difficult for mobile application developers to quickly identify and translate the healthcare

requirements to form a personalised mobile application, as they are unfamiliar and lack the

sufficient knowledge

Moreover, Lee et al. [13] highlights that following traditional mobile application devel-

opment routes is not economical or a sustainable method for developing personalised

applications. As discussed earlier, many of the approaches to personalisation either target

a specific user demographic or are not suitable as a standalone personalisation mechanism

that is capable of supporting a diverse range of personalised healthcare scenarios.

Recently ontologies have become an increasingly popular approach in system and software

engineering. Skillen et al. highlights several advantages for the use of ontologies such

as interoperability, knowledge sharing and reuse across several application domains [22].

Many of the works discussed earlier successfully utilise ontologies in various scenarios. For

example, the FLAME2008 [71, 72] utilises several ontologies to provide users personalised

services and information. Myneni et al. [20] uses an ontology to identify the end users

required functionality based upon the user profile; Skillen et al. [21] exploit an ontology

to facilitate machine learning to drive personalised assistance services. Both examples

demonstrate that ontologies provide the necessary flexibility required to model a domain

of discourse. As highlighted towards the beginning of this chapter, the device a user

owns dictates the outcomes of several decisions throughout the engineering process,

such as API version and hardware limitations defining the scope of any potential mobile

application. Hence, an ontology would be a suitable mechanism to model both the

2.3 Discussion 48

characteristics of a mobile device and functions whilst also would be capable of addressing

the issue of extensibility as seen in existing works whilst also providing a system with

sufficient knowledge that can be queried to assist healthcare professionals throughout the

development process.

2.3.3 Sign posts

Based upon the discussions, regarding existing approaches and the process of personalised

mHealth development presented throughout Section 2.3 there is a need for the develop-

ment of an extensible ontology-driven framework that enables healthcare professionals to

produce personalised hybrid mHealth applications for a healthcare consumer. As a result

the following signposts that define the objective, purpose and challenges it aims to address

is presented in Table 2.5. These signposts will be used to direct, govern and evaluate the

products of this research.

2.3
D

iscussion
49

Table 2.5 Sign Posts

Signpost Description
Taxonomy Objective: Analyse and Categorise existing healthcare related functions within mHealth applications

designed to be used by healthcare consumers.
Purpose: Is to identify the scope of functions that will and will not be supported by the framework and
provide a tool for classifying health related functions in mHealth applications designed for healthcare
consumers.
Addresses: The limited scope of functions available to the framework as seen in existing end-user program-
ming solutions.

Ontology Objective: Is to encapsulate knowledge associated with the development of personalised mHealth applica-
tions.
Purpose: Is to provide the framework with sufficient knowledge that can be interrogated to make critical
decisions associated with the development of personalised mHealth applications, ultimately compensating
for the missing/lack of mobile application development expertise of a typical healthcare professional.
Addresses: The reliance of mobile application development domain knowledge by the healthcare profes-
sional. Also addresses the issues with extensibility with regards to expanding support of new functions

Framework Objective: Is to provide a platform that enables healthcare professionals to build personalised mHealth
applications on demand for healthcare consumers.
Purpose: Is enable healthcare professionals to develop, without intervention from mobile application
developers, effective personalised mHealth applications for healthcare consumers.
Addresses: The limited personalisation capabilities of existing works. Reduces unnecessary complexities
during the creation of a mobile application. The restrictions of existing solutions that only support a particular
healthcare scenario.

2.4 Summary 50

2.4 Summary

To summarise, this chapter has introduced, discussed and analysed relevant concepts,

challenges and ideas that are considered significant and influential to the foundations

of this research. As a consequence of the discussions throughout this chapter there is

a clear indication of the need for an ontology driven framework that enables healthcare

professionals to create mHealth applications that contain the necessary functions that are

required and personalised for a individual healthcare consumer.

Chapter 3

Research & Development

Methodologies

This chapter presents the justification of the adopted research and development methods;

tools and techniques to achieve each of the objectives defined in Section 1.2 to ultimately

accomplish the aim of this research. The chapter is organised into six sections each

concentrates on a particular aspect of this research and is organised as follows. The first

section provides an overview of the research design and how each objective influences

the route the research took. The next three sections each focus on a individual original

contribution to knowledge, with respect to the research & development methods tools

and techniques used exclusively to developed the taxonomy, ontology and framework,

respectively. The penultimate section outlines the tools and techniques used throughout

this research. This chapter concludes with a table that summarises each objective, the

contribution to knowledge (where applicable) and the methods, tools and influence it has

on the research.

3.1 Research Design 52

3.1 Research Design

The aim of this research is to develop an ontology-driven framework that enables healthcare

professionals to produce personalised mHealth applications for a healthcare consumer.

In order to achieve the aim, requires the completion of four objectives (see Section 1.2).

Each objective is a step that shapes the individual products of this research and are vital

in achieving the overall aim. As a result, Figure 3.1 is a representation of the flow of this

research. For each of the artefacts; the methods, tools and techniques used to create and

evaluate are discussed in further detail later in this chapter.

Objective (a) - Understand
the Technological
Challenges and Issues of
personalised mHealth
Application Development

Identification of
challenges and
requirements

= Original Contribution= Original Contribution

Aim:
The aim of this research is to develop an extensible ontology-driven framework
that enables healthcare professionals to produce personalised mHealth
applications for a healthcare consumer.

Aim:
The aim of this research is to develop an extensible ontology-driven framework
that enables healthcare professionals to produce personalised mHealth
applications for a healthcare consumer.

Objective (b)
Analyse mHealth
application functionality

Objective (c)
Establish a suitable
ontology model

Objective (d)
Develop a framework that
is adaptable and
extensible

Framework

OntologyOntology

 Taxonomy Taxonomy

Framework

Ontology

 Taxonomy

Framework

Ontology

 Taxonomy

Figure 3.1 Research flow

3.2 Taxonomy 53

3.2 Taxonomy

A taxonomy is the science and practice of classification, enabling users to classify entities of

interest in a particular domain in a hierarchical structure [83]. When developing a taxonomy,

it is important to consider appropriately the separating elements of a group into subgroups

that are mutually exclusive, unambiguous, and as a whole, include all possibilities. For a

taxonomy to be applicable in the real world, it must also be uncomplicated and easy to

understand and use [84].

Bailey [85] provides a thorough review of taxonomy development and identifies two main

techniques to achieve classification, empirical and conceptual. An empirical taxonomy

derives classification from empirical data utilising statistical methods, such as cluster

analysis. A conceptual taxonomy represents types of concepts rather than empirical cases;

however, such data may be brought in at a later stage.

Throughout the literature, researchers have formally and informally categorised mHealth

applications in various ways, such as the type of end user, security & privacy and intended

purpose [31, 62, 84]. All of these works focus specifically on the mobile application as

a single entity rather than the individual functions it provides the end user. As discussed

in Section 2.3, for a personalised mHealth application to be effective requires functions

that are suitable to support the needs of the healthcare consumer. Therefore, this research

has chosen to adopt the use of a conceptual taxonomy to classify the individual mHealth

functions within mHealth applications.

3.2 Taxonomy 54

3.2.1 Taxonomy Development Approach

Described in the subsequent sections are the guidelines, development, testing and evaluation

methods adopted for the development of the taxonomy.

3.2.1.1 Nickerson’s Taxonomy Attributes

Nickerson argues that a good taxonomy should possess five key attributes [83], each of

which are discussed below.

• Concise: It should contain a limited number of dimensions or a limited number of

characteristics in each dimension, because an extensive classification scheme with

many dimensions and many characteristics would be difficult to comprehend and

difficult to apply.

• Mutual exclusivity: No function falls into more than one category.

• Sufficiently Inclusive: It should contain enough dimensions and characteristics to

be of interest.

• Comprehensive: It should provide for classification of all current objects within the

domain under consideration.

• Extendible: It should allow for additional dimensions and new characteristics within

a dimension when new types of objects appear.

Works such as [31, 83, 84] have utilised Nikerson’s attributes for various purposes including

governing development decisions and as criteria during evaluation. Therefore Nikerson’s

attributes have been adopted for the development of the taxonomy and are to be used as

guidelines during development and as criteria during the evaluation of the taxonomy.

3.2 Taxonomy 55

3.2.1.2 Development Method

Therefore, to ensure that these attributes are present within the taxonomy requires combin-

ing qualitative data derived from sources of existing grounded theory and empirical data,

via a systematic review of existing literature and analysis of current mobile applications.

The development process begins by first establishing the purpose and scope of the and will

determine the boundaries and use of the taxonomy. The next step requires identifying the

sources for data collection, definition of inclusion/exclusion criteria and techniques for data

extraction and documentation. During the extraction process the source are analysed and

‘codes’ (words phrases, descriptions) are to be extracted and documented. The next stage

analyses the ‘codes’ to determine relationships and identify and define mutually exclusive

categories. It is not the intention of the taxonomy to present an absolute classification

scheme, but rather to be used as a tool for examining the individual mHealth functions and

identify those suitable of being supported by the framework. This way the taxonomy has

practical use outside of the scope of this research.

3.2.1.3 Testing and Evaluation

Finally, to test taxonomy, a sample of mHealth applications were chosen at random. As

already mentioned an mHealth application consist of various mHealth functions, each

function will be documented and categorised into one on the distinct categories defined in

the taxonomy. The results will be analysed against Nikerson’s criteria defined earlier to

determine the robustness of the taxonomy.

3.3 Ontology 56

3.3 Ontology

To ensure that the framework contains sufficient knowledge to build personalised mHealth

applications and also assist in addressing the technological challenges discussed in Chap-

ter 2, required selecting a suitable technique capable of encapsulating the necessary

knowledge. Therefore this research has opted to develop an ‘skeleton ontology model’.

Unlike software engineering, there is not a single definitive, standardised or mature

methodology for developing an ontology [86, 87]. Therefore there has been several

independent, ad-hoc methodologies developed such as [88–91]. Each methodology was

designed to address challenges such as clarity, reuse and extensibility [92, 93].

The methodology chosen for the development of the mHealth Application Function ontol-

ogy model is the Uschold and Grunninger Skeletal Methodology [88]. The methodology

was formulated using the experiences from multiple authors. Several reasons influenced

this decision. Rather than providing a precise step-by-step instructions, the methodology

illustrates a clear set of guidelines that govern the development process as a whole, thus

the development process is flexible [87]. This allows for a fine balance between control

during the development of the ontology and flexibility surrounding choices surrounding

modelling approach, conventions, tools and ontology language.

3.3 Ontology 57

3.3.1 Skeletal Methodology Overview

Figure 3.2 represents the Skeletal Methodology. The various colours highlight 5 different

stages of the ontology development process. Documentation is a vital continuous process

throughout the design and development of the ontology and is responsible for documenting

key aspects of the ontology’s development to support knowledge sharing and reuse.

Implementation

Documentation

Specify
Guidelines

Identify Purpose
and Scope

Ontology
Capture

Ontology
Coding

Ontology
Integration

Evaluation

Figure 3.2 Uschold and Grunninger Skeletal methodology [88]

1. Specify Guidelines: The purpose of this stage is to establish a series of agreed

guidelines that govern the development process as a whole.

2. Identify purpose and scope: The objective of this stage is to understand and

define why the ontology is being developed, its possible uses, intended users and

boundaries.

3. Implementation: Consists of 3 stages, 2 of which are compulsory stages Capturing

& Coding that relate to the design and development of the ontology. The third is

optional and is associated with the integration or reuse of existing ontologies.

3.3 Ontology 58

(a) Capture -Identification, organisation and structure key entities within the do-

main such as concepts, terms relationships to form a conceptual model of the

domain of interest.

(b) Coding - Explicit representation of the conceptualisation captured in the previ-

ous phase using a formal language. This requires committing basic terms used

to specify the ontology, choosing a representation language and finally writing

code.

(c) Integrating Existing Ontologies - Optional Integrate or reuse existing ontolo-

gies.

4. Evaluation: Although the ontology will be routinely tested throughout the devel-

opment process to ensure that the knowledge modelled is satisfiable. Evaluating

ontologies is still an developing area and there are various different approaches for

evaluating an ontology [94, 95]. Therefore the ontology will be assessed from three

different perspectives. The first will utilise the Ontology Pitfall Scanner, to identify

the presence of any potential pitfalls. The second utilises the HermiT reasoner [96]

and description logic queries to demonstrate the correctness of the knowledge mod-

elled within the ontology. Finally, the competence of the ontology will be assessed

against the criteria established during stage 1 of the ontology development.

3.4 Framework 59

3.4 Framework

To achieve the final objective requires combining the products of this research into in the

form of a framework that represents an ontology driven approach to personalised mHealth

application development, that enables healthcare professionals to produce such application

for the healthcare consumer. It is not the intention of this research to implement a fully

operational platform, but rather a framework which represents the architectural components

of such a system. Therefore, this research has chosen to adopt and adapt key technical

processes defined in the ISO15288 Standard (System and software engineering - System

life cycle processes) [97] to produce the Personalised Mobile Application Development

(PMAD) Framework.

3.4.1 Development Approach

As presented in Figure 3.3, the design and development of the framework consists of two

stages and four sequential processes:

Specification and Requirements

1. User Specification &
Requirements Definitions

2. System Requirements
Definitions

Design and Define

3. Architecture Definition

4. Design Definitions

Figure 3.3 Framework development process

3.4 Framework 60

Specification and Requirements

1. Stakeholder Needs & Requirement Definitions: The purpose of this process is to

define the stakeholders requirements to identify the required capabilities of sys-

tem. This process will utilise the challenges discussed in Chapter 2 alongside

the stakeholders requirements to identify the necessary interaction and operational

requirements of the system from the perspective of the users.

2. System Requirements Definitions: Is the process of transforming the stakeholders

needs into a technical requirements that meets the needs of the user.

Design and Define

3. Architecture Definitions: Is the generation of a system architecture that meets the

users and technical requirements of the system. During this process UML Activity

diagrams will be utilised to identify key framework components.

4. Design Definitions: The purpose of this process is to provide sufficient detailed

information about the system and its components as defined in the model views of

the system architecture.

3.4 Framework 61

3.4.2 Evaluation

As the main aim of this research is to create a framework, it is vital that the frameworks per-

sonalisation capabilities are evaluated. The evaluation of the framework will be conducted

on a small-scale software concept that consists of the frameworks critical components.

The following tests are designed to determine if the framework contains the necessary

characteristics to achieve the overall aim of this research.

(a) Application Feasibility: This test assesses the frameworks capability to determine

the feasibility of the application regarding the development characteristics (platform,

hardware dependencies, etc.). This requires the creation of hypothetical use cases

to simulate both the positive and negative outcomes. Within this context a positive

outcome would be the mobile devices characteristics are sufficient in addressing the

requirements of the personalised mHealth application. Where as a negative outcome

would be the opposite, i.e the mobile devices characteristics are not sufficient in

addressing the requirements.

(b) Personalisation: This test will assess the personalisation capabilities of the frame-

work. The software concept will be used to “build” each of the personalised appli-

cations defined in each of the use case profiles. The concept will generate a design

specification which will be compared against the requirements in the scenario.

3.5 Tools and Techniques 62

3.5 Tools and Techniques

This section outlines, in no particular order the tools and techniques used throughout this

research. A detailed description of each tool/technique and how it was utilised is discussed

in the relevant chapters.

• Taxonomy: A taxonomy is the science and practice of classification. Taxonomies

enable users to classify entities of interest in a particular domain in a hierarchical

structure [83]. When developing a taxonomy, it is important to consider appropriately

the separating elements of a group into subgroups that are mutually exclusive,

unambiguous, and as a whole, include all possibilities. For a taxonomy to be

applicable in the real world, it must also be uncomplicated and easy to understand

and use [84].

• Systematic Review: A systematic review is a type of literature review that collects

and critically analyses multiple research studies or papers. A review of existing

studies is often quicker and cheaper than embarking on a new study.

• Coding: Coding is a method for arranging entities in a systematic order to make

something part of a system or classification [98]. Coding will be used to identify the

distinct taxons (classes) during the development taxonomy.

• Use Case Scenarios: Modelling an entire domain is a time-consuming task. As

this research has a limited time frame for completion, a set of fictitious use case

scenarios where created, based on grounded theory and are outcome of the taxonomy

chapter. These represent a healthcare consumers healthcare plan where a mobile

application is recommended as a clinical metric. Each profile consists of background

information regarding the health status of the consumer, attributes, treatment and a

description of the mHealth functions required. The set of use case profiles will be

3.5 Tools and Techniques 63

used as a tool used to assist in the design, testing and evaluation of the ontology and

to evaluate the framework.

• Unifiied Modelling Language: The Unified Modelling Language (UML) is a

general-purpose, developmental, modelling language in the field of software en-

gineering, that is intended to provide a standard way to visualise the design of a

system or application [99]. UML consists of various models that provide system

and software engineers insights into different aspects of an application or system.

Described below are the diagrams used during this research:

– Use Case Diagram: During the development phase of the ontology, use case

diagrams were used alongside the use case profiles for two purposes. The first

is to quickly represent the usage requirements of the personalised mHealth

application and the second is to be used to identify functionality of the frame-

work.

– Activity Diagram: Used by System and Software Engineers to model the flow

of computational and organisational through a series of stepwise activities

using a standardised series of nodes to depict different functions [100] [101].

Throughout the frameworks development, activity diagrams were used to gain

a quick understanding and envisage how components of the framework would

function.

• Android Developer Tools: The Android platform is the fastest growing mobile

platform that powers millions of devices around the world [102]. The platform

provides a freely available Android Developer Tools(ADT). The ADT’s provides

a full Java IDE and features for developing , debugging and packaging Android

Applications. Also the tools allows virtual devices to be created that are capable of

emulating various hardware configurations. When necessary, the ADT’s were used

3.5 Tools and Techniques 64

to develop small scale applications to be used as a tool to assist in the modelling of

the various ontology components.

• Ontology: An ontology in computer science is defined as a “explicit specification of

a conceptualisation” [103]. Researchers at the time adopted a naïve realistic approach

when developing ontologies, choosing to denote a systematic representation of only

the necessary knowledge required to perform a particular task, referred to as the

universe of discourse. The universe of discourse represents a set of named entities

that are described using primitive concepts and formal axioms that constrain the

interpretation and use of these terms to form an ontology [103, 104, 94, 105]. From

a simple perspective, developing an ontology typically requires defining: individuals,

classes, properties and relationships [106], these will be discussed in more detail in

Chapter 5.

• OWL: An ontology language defines which language constructs can be used in an

ontology and also defines the formal semantics of that language. There are several

ontology languages that are discussed throughout the literature, all of which have

been designed to represent semantic information, so it can be shared, processed

and interpreted by machines. OWL has become an increasingly popular choice for

developing an ontology within the literature and has is the ontology language adopted

for this research. OWL is a semantic web language designed to represent rich and

complex knowledge about things, groups of things and the relationships between

them [107]. OWL is part of the growing stack of W3C recommendations related

to the Semantic Web and is built on top off the Resource Description Framework

(RDF) schema, adding more vocabulary for describing properties and classes. This

is discussed in further detail in Section 5.1.5.

• Protégé is a freely available open source ontology editor developed by the Centre for

Biomedical Informatics at the Stanford University School of Medicine. It provides a

3.5 Tools and Techniques 65

rich environment with full support for OWL, including visualisation tools to interact

with the ontology throughout development, advanced support for tracking down

inconsistencies and operations to modify the various ontology components[108].

The version used throughout this research was Protégé 4.30. Again this is discussed

in more detail in ??.

• OWL API: The OWL API is an open source Java based API and reference imple-

mentation for creating, manipulating and serialising OWL ontologies [109]. The

OWL API version 4.0.1 is to be utilised during the testing of the framework.

• Glossary of Terms: Is a central repository that include all the relevant terms of

the domain such as concepts, instances, attributes, relations between concepts; a

description in natural language, synonyms and acronyms [110]. The glossary of

terms will be used to document the terms used within the ontology and as a tool to

help build the ontology model.

• Concept Map: A concept map is a graphical conceptual representation that depicts

the relationships between concepts and is used to organise and structure knowledge

[111]. Concept maps will be used to organise codes during the development of the

taxonomy and also utilised throughout the development skeleton ontology model.

• Systematic Review: A systematic review is a type of literature review that collects

and critically analyses multiple research studies or papers. A review of existing

studies is often quicker and cheaper than embarking on a new study.

• Coding: Coding is a method for arranging entities in a systematic order to make

something part of a system or classification [98].

• Use Case Scenarios: Modelling an entire domain is a time consuming task. As

this research has a limited time frame for completion, a set of fictitious use case

3.5 Tools and Techniques 66

scenarios where created, based on grounded theory and are outcome of the taxonomy

chapter. These represent a healthcare consumers healthcare plan where a mobile

application is recommended as a clinical metric. Each profile consists of background

information regarding the health status of the consumer, attributes, treatment and a

description of the mHealth functions required.The set of use case profiles will be

used as a tool used to assist in the design, testing and evaluation of the ontology and

to evaluate the framework.

• Unifiied Modelling Language: The Unified Modelling Language (UML) is a

general-purpose, developmental, modelling language in the field of software engi-

neering, that is intended to provide a standard way to visualise different perspectives

system or application [99].

– Use Case Diagram: A use case diagram specifies a set of interactions between

actors and use cases in order to achieve a particular goal [112, 113].

– Activity Diagram: Used by System and Software Engineers to model the flow

of computational and organisational through a series of stepwise activities

using a standardised series of nodes to depict different functions [100] [101].

• Android Developer Tools: The Android platform is the fastest growing mobile

platform that powers millions of devices around the world [102]. The platform

provides a freely available Android Developer Tools(ADT). The ADT’s provides

a full Java IDE and features for developing , debugging and packaging Android

Applications.

• OWL: An ontology language defines which language constructs can be used in an

ontology and also defines the formal semantics of that language. OWL is discussed

in further detail in Section 5.1.5.

3.5 Tools and Techniques 67

• Protégé is a freely available open source ontology editor developed by the Center

for Biomedical Informatics at the Stanford University School of Medicine. The

version used throughout this research was Protégé 4.30. Again this is discussed in

more detail in Chapter 5.

• OWL API: The OWL API is an open source Java based API and reference imple-

mentation for creating, manipulating and serialising OWL ontologies [109].

• Glossary of Terms: Is a central repository that include all the relevant terms of

the domain such as concepts, instances, attributes, relations between concepts, a

description in natural language, synonyms and acronyms [110].

• Concept Map: A concept map is a graphical conceptual representation that depicts

the relationships between concepts and is used to organise and structure knowledge

[111].

3.6 Summary 68

3.6 Summary

In summary, this chapter has presented and discussed the considerations regarding the

tools, techniques, research and development approaches adopted to achieve the objectives

of this study, a summary of which is presented in Table 3.1.

3.6
Sum

m
ary

69

Table 3.1 Summary of contributions, methods, tools and influence they have on this research

Objective Contribution Method(s) Tool(s)/ Technique(s) Influence on this research

a
n/a • Literature

Review

• Identification of challenges for developing
personalised mHealth applications

• Identifies framework requirements

b Taxonomy • Classification
• Taxonomy
• Coding
• Concept Maps

• Determine the feasibility of mHealth
functionality

• The design of the use case scenarios
• Identifies components in Ontology

c
Ontology
Skeleton

• Skeletal
Methodology

• Ontology
• Use Case Profiles
• UML: Use Case Diagrams
• Concept Maps
• Glossary of Terms
• OWL
• Protégé

• Encapsulation of knowledge associated with
development of personalised mHelath
applications

d Framework
• ISO15288

(processes)

• OWL API
• Conceptual model
• Use Case Profiles
• UML: Activity Diagrams

• Fulfilment of the aim of this research

Chapter 4

mHealth Application Function

Taxonomy

The purpose of this chapter is to present the design and development considerations for

the mHealth Application Function Taxonomy, which has been developed to gain an un-

derstanding the functions and their associated characteristics within mHealth applications.

The chapter begins by presenting an overview of the development process of the taxonomy.

The following sections discuss each process in detail from the data collection and analysis

activities. Section 4.4 presents the taxonomy as a completed artefact including the defini-

tions for each of the distinct function categories. Followed by testing and evaluation of the

results and a discussion surrounding the types of functions to be supported by the mHealth

Application Development framework. To conclude this chapter summarises the key and

influential components presented in this chapter.

4.1 Method Overview 71

4.1 Method Overview

4. Testing and
Evaluation

• Define Test Data Sources, Inclusion and Exclusion Criteria
• Define Test Data Extraction and Documentation Procedure
• Define Testing Procedure
• Perform Tests
• Evaluate Results

4. Testing and
Evaluation

• Define Test Data Sources, Inclusion and Exclusion Criteria
• Define Test Data Extraction and Documentation Procedure
• Define Testing Procedure
• Perform Tests
• Evaluate Results

3. mHealth
Application
Function
Taxonomy

• Present Taxonomy
• Define Classes
• Develop Classification Tool
• Define Maintenance Procedure
• Construct Use Case Profiles

3. mHealth
Application
Function
Taxonomy

• Present Taxonomy
• Define Classes
• Develop Classification Tool
• Define Maintenance Procedure
• Construct Use Case Profiles

1. Scope
• Define Purpose and Scope
• Define Data Sources, Inclusion and Exclusion Criteria
• Define Data Extraction and Documentation Procedure

1. Scope
• Define Purpose and Scope
• Define Data Sources, Inclusion and Exclusion Criteria
• Define Data Extraction and Documentation Procedure

2. Analysis

• Frequency Analysis
• Establish The Coding Framework
• Establish Function Categories
• Sort Functions
• Handling Unknown Codes

2. Analysis

• Frequency Analysis
• Establish The Coding Framework
• Establish Function Categories
• Sort Functions
• Handling Unknown Codes

4. Testing and
Evaluation

• Define Test Data Sources, Inclusion and Exclusion Criteria
• Define Test Data Extraction and Documentation Procedure
• Define Testing Procedure
• Perform Tests
• Evaluate Results

3. mHealth
Application
Function
Taxonomy

• Present Taxonomy
• Define Classes
• Develop Classification Tool
• Define Maintenance Procedure
• Construct Use Case Profiles

1. Scope
• Define Purpose and Scope
• Define Data Sources, Inclusion and Exclusion Criteria
• Define Data Extraction and Documentation Procedure

2. Analysis

• Frequency Analysis
• Establish The Coding Framework
• Establish Function Categories
• Sort Functions
• Handling Unknown Codes

Figure 4.1 Taxonomy development approach

The development of the mHealth Application Function Taxonomy followed the approach

described in Section 3.2. As can be seen in Figure 4.1 the development consists of

four stages Scope, Analysis, mHealth Application Function Taxonomy and Testing and

Evaluation. Each stage consists of various activities and are described in detail throughout

Sections 4.2 to 4.5.

4.2 Taxonomy Scope 72

4.2 Taxonomy Scope

The focus of this section is to discusses and justify the considerations and decisions made

during the data collection phase of the taxonomy. The subsequent sections describe: the

scope and purpose of the taxonomy, identifies and justifies the data sources, inclusion and

exclusion criteria and data extraction techniques for data collection.

4.2.1 Purpose and Scope

Categorisation of mHealth applications is a technique that has been applied throughout the

literature to gain an understanding of mHealth applications and how they are used within a

particular context. Works such as [31, 84] categorise mHealth applications based on the

intended purpose, user or the overall functionality they provide. However, functionality

is not a single entity within a mobile application. The ISO/IEC 9126 standard defines

functionality as ‘the capability of the software product to provide functions which meet

stated and implied needs when the software is used under specified conditions’ [114].

Therefore, an mHealth application consists of various functions that combine to provide the

necessary functionality to enable the healthcare consumer to perform various operations.

As highlighted in Chapter 2 for a personalised mHealth application to be effective as a

clinical metric, requires providing functions within a mobile application that are suited to

the specific healthcare requirements of the consumer. Hence, gaining an understanding

of the different types of healthcare functions and their common associated characteristics,

rather than the kind of application is a critical factor in achieving the aim of this research.

As identified in Chapter 3, to gain an understanding of the functions and their charac-

teristics this study chose to develop a conceptual taxonomy to classify the individual

mHealth functions within mHealth applications. The mHealth Application Function Taxon-

4.2 Taxonomy Scope 73

omy (mHAFT) was developed as a tool that can be used to analyse, identify and categorise

the different type of health related functions available within mHealth applications, that

are designed to be used by healthcare consumers. The taxonomy is based on the principles

of a functional hierarchy diagram. A functional hierarchy diagram is used by software

engineers to organise the overall functionality into functions arranged by mutual attributes

to gain an insight into the needs of system [115]. However, rather than grouping the func-

tions based upon their relation to one another in a system, the taxonomy groups functions

based upon the service they provide to the user. Nickerson et al. describes this as the

meta-characteristic on the taxonomy [83].

The objective of the taxonomy is not to produce an exhaustive classification schema,

but rather a high-level representation of the core types of mHealth functions. Therefore

adopts a top-down development strategy for the development of the taxonomy, as this will

identify the core categories and prevent unnecessary complexity [83, 116]. This allows the

taxonomy also to be deployed as an appropriate tool that can be used by others outside

the context of this work such as, mHealth application developers during the development

of mHealth applications. Within the boundaries of this research, the taxonomy is utilised

to assess each type of function defined within the taxonomy and determine the scope of

support by the framework. The taxonomy also is exploited during the creation of use-case

profiles and the development of the mHealth Application Function Ontology Model; as

discussed in further detail in Chapter 5.

4.2 Taxonomy Scope 74

4.2.2 Data Sources, Inclusion and Exclusion Criteria

Gathering a rich dataset that provides a broad representation of the current functions that

are available is vital to the development of any taxonomy. Therefore, a decision was made

to manually gather data from two sources, articles and mHealth applications. Data from

articles was based upon grounded theory and mHealth applications produce empirical data.

Deciding what data to include and exclude from the study required establishing criteria.

Listed below are a list of the inclusion criteria for each respective data source. If a potential

source did not meet the criteria defined below, it was excluded from the study.

Table 4.1 Inclusion criteria

Type Source Inclusion Criteria

Article • PubMed

• Google Scholar

• IEEE Xplore

Articles that discussed: the use of, design, develop-

ment, evaluation, categorisation or personalisation of

mHealth applications that are intended to be used by

healthcare consumers

Application • Google Play

• App Store (iOS)
Applications that are freely available from the mobile

application marketplace and are intended to be used

by healthcare consumers

The reasoning behind combining two types of data is to: embrace the terminology that is

commonly used throughout the related literature and to ensure the categories identified

are synonymous to the functions within the mHealth applications. This also will help

accelerate the taxonomy development process. But also provides the coding process with

empirical data based on observations of current mHealth applications, since the taxonomy

is intended to be used as a tool. Additionally this will also help ensure the taxonomy

possesses the attributes defined earlier in Section 3.2.1.1.

4.2 Taxonomy Scope 75

4.2.3 Data Extraction and Documentation

The objective of the data extraction and documentation phase was to identify codes1 so that

they could be analysed to form a coding framework. The purpose of the coding framework

is to establish thematic relationships to reveal distinct and mutually exclusive function

categories based upon the data that was extracted from both the article and applications

sources. The procedures that follow, describe how and what data was manually extracted

from each type of source.

• Articles which met the inclusion criteria defined in Table 4.1 were read in full to

extract key information from the article. This included documenting the bibliograph-

ical information such as the articles title, keywords used to index the article and

abstract. Also documented during this process was any words and or phrases used to

describe of the application(s), functionality and functions (if available).

• mHealth Applications mHealth applications which met the criteria defined in Ta-

ble 4.1 were then downloaded to a compatible mobile device and the functionality and

functions that are specifically health related to would be observed and documented.

The following data would be recorded: application name, developer, application

description, description of function(s), alongside any words and or phrases used to

within the application or application description to be used as codes.

As a consequence of the inclusion criteria defined in Section 4.2.2, a total of 41 sources

consisting of 21 articles and 20 mHealth applications were eligible for this study. Following

the extraction process defined above, the 41 sources that met the inclusion criteria combined

to produce a sample size of 213 individual mHealth functions following the process defined

above. Meaning on average each source consisted of 5 health related functions. Since

1only one instance of a code was recorded per source (article/application)

4.3 Analysis 76

the inclusion and extraction processes were performed manually and the objective of the

taxonomy is to define at a high level types (categories) of functions present in mHealth

applications and not a exhaustive granular classification system. A sample size of 213

mHealth functions provided a suitable representation of the domain whilst also still being

at a size that is manageable. The data obtained from this process was then organised into

the retrospective data sets in a table format and can be found in the following appendix

Appendix A.4.

4.3 Analysis

The purpose of this stage is to analyse each dataset to identify a series of distinct mHealth

application function categories. As discussed in Section 4.2.2 and Section 4.2.3 the

development of the taxonomy is composed of two complimenting datasets. Therefore, it

was important that data was processed systematically and in manageable iterations, to allow

greater control over the developing categories. The subsequent sections provide details

surrounding the analysis process demonstrating how the mHealth function categories were

devised.

4.3.1 Frequency Analysis

In its raw form, the data extracted was qualitative. Therefore, the first step towards identi-

fying suitable mHealth function categories, required quantifying the data, via frequency

analysis. Using a python script (see Appendix A.1) each dataset was processed, calculating

the frequency each code occurred. The data shown in Table 4.2 represents descriptive

statistics for each dataset and was extracted using a python data analysis library, Pandas

[117]. Combined, both of the datasets produced a combined total of 186 codes, of which

4.3 Analysis 77

72 were unique. This is an initial indicator that there is some common ground between

the two data sets, as there are 13 instances of codes appearing in both datasets. The data

from each datasets was aggregated forming a single coherent dataset as represented in the

stacked bar chart in Figure 4.2.

Table 4.2 A summary of the descriptive statistics relating to the codes extracted from
the Article and Application data sets. Statistics were produced by the Pandas data frame
describe function

.
Statistic Article Apps Combined

Count 83 103 186

Unique 39 46 72

Mean 2.100 2.239 2.749

Min 1 1 1

25% 1 1 1

Median 1 1 1

75% 2 3 3

Max 13 10 14

4.3 Analysis 78

Figure 4.2 Frequency analysis - Article Data (orange), Application (blue)

4.3 Analysis 79

4.3.2 Coding Framework: Establishing The Foundations

The objective of the second stage required establishing an initial set of thematic relation-

ships that will be used to form the basis of a coding framework. Therefore, it was important

to understand and model the lexical semantics between the codes gathered during the data

extraction phase. A decision was made to analyse the articles dataset first, since these

codes represent themes from grounded theory. In addition, priority was also given to codes

that lie within the upper quartile (see Table 4.3) as this consisted of codes that occurred

most frequently. The data was processed in several phases and is described below.

Phase One: Identifying Common Origins

The first step was to identify and group codes that shared common origin word and

documenting the relationships using a concept map. Figure 4.3 presents two independent

concept maps as a result of this process. The relationships between codes represent binary

relationships. Words contained within a rectangle illustrate how the two codes are related,

while the arrow represents the direction of the relationship.

4.3 Analysis 80

Table 4.3 Article dataset: Upper quartile codes

Code Frequency

monitoring 13

management 6

communication 6

education 5

tracking 5

information 4

remote-monitoring 3

self-management 3

assessment 2

monitor 2

diagnosis 2

recording 2

record 2

self-monitoring 2

reminder 2

Monitoring

Self-Monitoring Remote-Monitoring

Extension-of Extension-of

Monitor

Noun-of Verb-of

Monitoring

Self-Monitoring Remote-Monitoring

Extension-of Extension-of

Monitor

Noun-of Verb-of

Verb-of

Record

Recording

Noun-of

Record

Recording

Noun-ofVerb-of

Record

Recording

Noun-of

Figure 4.3 Examples of concept maps showing the relationship between a common codes

4.3 Analysis 81

Phase Two: Identify Synonyms

The goal of phase two was to further reduce the number of concept maps and begin to

define further relationships by identifying codes that are synonymous (words that have the

same or similar meaning as one another). As can be seen in Figure 4.4, four independent

concept maps have now merged together. Again this helps towards achieving usefulness &

utility attribute defined in Section 3.2.1.1.

Monitoring

Self-Monitoring Remote-Monitoring

Assessment

Extension-of Extension-of

Monitor

Noun-of Verb-of

Record Recording

Synonym-ofSynonym-of

Synonym-of

Synonym-of

Synonym-of

Synonym-of
Tracking

Synonym-of

Synonym-of

Synonym-of

Synonym-of

Verb-of

Noun-of

Verb-of

Noun-of

Diagnosis

Example-of

Figure 4.4 Concept map - Synonym relationship

4.3 Analysis 82

Phase Three: mHealth Functions

The objective of phase three was to establish relationships between codes that represent

examples or components of mHealth functions. During this stage in the analysis, it was

critical to check that each code was exclusive to a single set as this ensures that the sets

remain mutually exclusive from one another, as discussed in Section 3.2.1.1. At this stage

in the analysis, the 15 individual codes formed 4 mutually exclusive sets, labelled A to D

as illustrated below in Table 4.4. These sets along with the associated semantics provide

the foundations of the coding framework which is used to help process the remaining data.

Table 4.4 Sets within the initial coding framework

Set A Set B Set C Set D
tracking management communication education

assessment reminder information
recording self-management
monitor
record

self-monitoring
monitoring

remote-
monitoring
diagnosis

Phase Four: Coding Framework: Further Development

The purpose of this stage was process the remaining data from both datasets and further

develop the coding framework. Following the same methods as described in the previous

section, the remaining data from the articles data and then the application dataset was

processed. Through each iteration, new semantics were added, refining and refactoring

the coding framework, again taking care to ensure that each code remained exclusive to a

single category. Figure 4.5 shows a comparison between the entities belonging to Set B

throughout the different stages of development.

4.3 Analysis 83

(a)

ManagementSelf-Management Extension-of ReminderExample-of

(b)
Reminders

Management

Manage

Health-Management

Disease-Management

Self-Management

Self-Manage Extension-of

Extension-of

Extension-of

Extension-of Reservation

Decision-Support

Manager

ReminderExample-of

Example-of

Example-of

Example-of

Same-asSame-as Noun-of Verb-of

(c)
manageself-manage extension-of

managementmanagement

noun-of verb-ofnoun-of verb-of

reservationreservationcalendar plan

example-ofexample-of example-of example-ofexample-of example-of

reservationcalendar plan

example-ofexample-of example-of

same-as same-assame-as same-as same-as same-assame-as same-as

reminders

decision-supportdecision-support

managermanager

reminderreminder

notifications notify

example-of

example-of

example-of

example-of

noun-of

verb-of

noun-of

verb-of

decision-support

manager

reminder

notifications notify

example-of

example-of

example-of

example-of

noun-of

verb-of

health-managementhealth-management

disease-managementdisease-management

self-management extension-of

extension-of

extension-ofhealth-management

disease-management

self-management extension-of

extension-of

extension-of

Figure 4.5 Comparison of SET B concept maps through varying stage of analysis: (a)
Initial, (b) Article Data, (c) All data

4.3 Analysis 84

4.3.3 Establishing Categories

The final stage of the analysis process to establish a suitable name and definition of each

category within the coding framework. The process in described throughout the subsequent

sections.

4.3.3.1 The Importance of Naming Each Set

PageRank is a link analysis algorithm that is used to measure the relative importance of a

web-page within a web-graph [118]. A web-graph is directed graph constructed of nodes

and transitions A node represents a single web-page, whilst a transition defines how the

node is connected to a neighbouring node. Transitions can have one of two properties:

in-degree (inbound link) and out-degree (outbound link) in relation to a particular node.

The basic principle of the PageRank algorithm considers each in-degree to a page as-a

vote. A web-page is generally considered of greater importance if the sum of all its votes

is higher.

Although PageRank is commonly used within information retrieval, the principle has been

applied to this work in order to name each set within the coding framework. Furthermore,

by applying this technique when naming the categories ensures that the taxonomy can

still evolve and be refactored in the future. In the context of this work, the structure of

the concept map is substituted to form a web graph. As shown in Figure 4.6, codes in the

concept map represent nodes, while the relationships represent transitions. For example,

information has 4 in-degree and 1 out-degree transitions.

4.3 Analysis 85

(a
)

in
fo
rm

a
ti
o
n

in
fo
rm

e
d
u
ca
ti
o
n

ex
am

pl
e-
of

e
d
u
ca
te

no
un
-o
f

ve
rb
-o
f

no
un
-o
f

ve
rb
-o
f

no
un
-o
f

ve
rb
-o
f

no
un
-o
f

ve
rb
-o
f

sy
no
ny
m
-o
f

sy
no
ny
m
-o
f

n
e
w
s

a
d
vi
se

ex
am

pl
e-
of

ex
am

pl
e-
of

ex
am

pl
e-
of

ex
am

pl
e-
of

n
e
w
s

a
d
vi
se

ex
am

pl
e-
of

ex
am

pl
e-
of

(b
)

in
fo
rm

a
ti
o
n

in
fo
rm

e
d
u
ca
ti
o
n

e
d
u
ca
te

n
e
w
s

a
d
vi
se

Fi
gu

re
4.

6
D

em
on

st
ra

tin
g

th
e

st
ru

ct
ur

e
si

m
ila

ri
ty

be
tw

ee
n

a
(a

)c
on

ce
pt

m
ap

an
d

(b
)w

eb
gr

ap
h

4.3 Analysis 86

(a)

Transitions due to random jumps

Probability of a random jump

Transition matrix

Number of nodes in the graph

Vector consisting of 1's

(b)

New iteration of vector r

Transition matrix that is stochastic, aperiodic and irreducible

current iteration of vector r

Figure 4.7 PageRank: Matrix notation - (a) expression used to calculate matrix A, (b)
expression used to calculate PageRank

The PageRank algorithm is calculated using a simple iterative algorithm that can be

expressed using the following matrix notation as shown in Figure 4.7. It is assumed

that during the initial iteration r0 of the algorithm, the PageRank value for each node is

uniformally distributed, meaning that each node begins with the PageRank value 1
n , n being

the number of nodes within the graph. The algorithm continues calculate the PageRank

values until the data reaches a state of convergence. To compute the PageRank scores for

4.3 Analysis 87

each set with the coding framework a python script was developed (see, Appendix A.3) that

implemented the PageRank algorithm. Table 4.5 provides an summary of the PageRank

process for each set. For each set, the table identifies the most important code and the

Page Rank value it received as well as the number of iterations required to reach a state of

convergence and the number of codes that belong to it.

Table 4.5 Table showing a summary of the PageRank process for sets A, B, C & D
.

Set Most important code PR # Iterations # Codes

A monitoring 0.24 14 22

B management 0.40 20 15

C communication 0.43 17 8

D inform 0.34 17 6

Figures 4.8 to 4.11 depict the PageRank values for each of the sets within the coding

framework. Using Figure 4.8 as an example, you can see initially the PageRank values

fluctuate. However, several iterations later, the data reaches a state of convergence. As

can be seen in this example, the code monitoring has the highest PageRank score and is

therefore considered the most important code within Set A. Thus monitoring is established

as the name to represent functions that belong to Set A.

4.3 Analysis 88

Figure 4.8 Set A - PageRank values

Figure 4.9 Set B - PageRank values

4.3 Analysis 89

Figure 4.10 Set C - PageRank values

Figure 4.11 Set D - PageRank values

4.3 Analysis 90

4.3.4 Sorting Functionality

The penultimate step of the analysis process required sorting each of the functions col-

lected during the extraction and documentation phase, to assist in defining the categories:

monitoring, management, communication, diagnosis and inform. The behaviour of each

function was assessed in conjunction with the semantics defined in the coding framework

to assign the function a type (see Appendix A.4). Figure 4.12 represents the distribution of

the 213 mHealth functions that where surveyed.

Figure 4.12 A bar chart depicting the frequency distribution of mHealth functions from
both the article and application datasets

However, 22 of the functions could not be classified for one of the following reasons:

• The function was derived from an article that didn’t provide sufficient context
regarding the functions behaviour

• The function was ’locked’ as it was a premium feature within a free/lite version of
the application thus fell beyond the scope defined earlier in Section 4.2.1

4.3 Analysis 91

The remaining 191 functions included within this study were successfully categorised.

Each category is discussed below:

Monitoring:

Approximately 47% of the functions assessed where categorised as monitoring, making it

the most frequently used function within the scope of this work. Monitoring functions are

often used in conjunction with Inform functions as a mechanism to visualise the data for

the user. The page rank analysis also reviled two distinct forms of monitoring functions.

• Tracking: enables a user to observe, collect and store data regarding a specific

aspect of their health. Examples include, tracking number of steps, blood glucose

monitoring and heart rate.

• Examination: Focuses on assessing an aspect of the user’s health to identify the

nature of an illness or other health related issue. These typically required data from

the user, such as a responding to a series of questions, followed by an assessment to

reach a conclusion, such as a diagnosis.

Management:

Management functions are designed to assist the user in managing an aspect of their

health. Out of all the function categories identified, management is the most diverse. In the

applications surveyed, management functions existed in various forms, examples included:

convenient calculators, others provided reminders to the user to take their medication or

the ability to create a shopping list. Interestingly there were instances that used games and

challenges to positively influence the users health.

Inform:

As can been seen in Figure 4.12, inform functions are used frequently throughout mHealth

applications. The intent of this type of function is to provide the user with health-related

4.3 Analysis 92

information. In the applications surveyed information existed in five distinct forms:

informative, educational, advisory, instructional and statistical.

• Informative: Many applications utilised informative functions to provide the user

with news on current events.

• Educational: As the name suggests, this type of function provides the user with

information that is designed to educate the user of a particular aspect of their health.

• Advisory: Advisory functions offer suggestions to the user to positively influence

and aspect of their health.

• Instructional: The nature of instructional functions is to provide the user with step

by step instructions regarding a specific aspect of their health. This was often in the

form of text, images and video.

• Statistical: Many applications utilised statistics to present data to the user. As

mentioned earlier this type of function is often used in conjunction with monitoring

function to present data to the users

Communication:

As the name of this category suggests, the objective of this type of function is to provide

the user with a mechanism to communicate. In the applications that were observed, email,

call and instant messaging where all common methods used by mHealth applications,

often used to contact health care service providers. Moreover, applications also used social

media as a channel for communication.

4.3 Analysis 93

4.3.5 Handling Unknown Codes

During the earlier stages of the analysis process, several codes shown in Table 4.6, could

not be initially assigned to a set and required further attention. Therefore, the final step in

the analysis process aims to utilise the newly acquired definitions to place them into the

relevant categories.

Table 4.6 Codes requiring additional work

Unknown

user-profile tools medical-reference suggestions

location view-progress calculate charts

counter find locate logs

goals graphs guidance history

personal-profile results set-goals tips

medical-measurement-devices

Upon initial review, the codes required context from its original source, this information

was aggregated to form a new table. Using the contextual information and the coding

framework relationships could then be established enabling the unknown codes to be

categorised, as shown in Figure 4.13. In this example the code result when combined with

its context, was able to define a relationship with code tracker. Therefore, the assumption

can be made that result is-a function that is an example of a tracker.

Yet, despite the additional work to establish relationships of these particular types of codes,

the following codes where disregarded as they only occurred once within the datasets and

for the reasons defined in the table Table 4.7.

4.3 Analysis 94

from_source

Context

Type: Function
Function Name: Annual Review Tracker
Description: Annual Review Tracker:
Allows the user to keep track of annual
reviews or important test results

Source

Type: mHealth Application
ID: B4
Name: Diabetes & ME

from_source
Code

Name: result
gives_meaning

Relationship Definition

Relationship: result is a example-of Tracker

 result is a function that belongs to Monitoring

has_relationship

Figure 4.13 Reasoning process behind the definition of a relationship for the code result

Table 4.7 Codes disregarded and justifications

Code Frequency Justification

Tool 1 Used to describe a broad spectrum of mHealth

application functions.

Medical Measurement Devices 1 Refers to additional devices/sensors that are capa-

ble of monitoring the users physical parameters

and not the specific functionality.

4.3 Analysis 95

4.3.6 Observations

Presented in the subsequent sections is a discussion surrounding some of the observations

made during the analysis of the mHealth applications.

4.3.6.1 Personalisation Spectrum

After analysing and classifying functions it was evident that functions from a person-

alisation perspective existed in two forms: generalised and specialised. At first glance,

functions within a single mHealth application appear to be all designed for a specific

healthcare scenario. However, surveying a large collection of applications revealed that

many functions provide the same or very similar service to the user. For example, medica-

tion tracking was a popular function found in the applications surveyed. Although, they

typically tracked medication that related directly to the context of the application. From

a personalisation perspective the service logic was fundamentally the same, it was the

service data/content (personalisation component) that made the service they provided to

the user unique. Functions such as this can be considered as general functions since they

can be used in a large variety of application scenarios. At the other end of the spectrum,

functions were the service logic and service data are designed specifically for a single

healthcare scenario for example Peak Detection function provide a very narrow margin

for personalisation and can only be used in very specific and specialised contexts, in the

case of the example atrial fibrillation screening. Therefore these type of functions are

considered as specialised functions.

4.3 Analysis 96

4.3.6.2 Composition of a Function

The second observation, extends slightly upon the first and reflects specifically on the

composition of a personalised mHealth function. The previous observation identified

two core components of a function. At the heart of a function is the logic. The logic

represents the code necessary in order to perform a specific task. From a personalisation

perspective, the logic of function can be tailored to the user via personalisation components.

Personalisation components represent the specific feature or features of a function that can

be personalised, this may include data or user consumable content. The final component

of a function relates to its specific hardware dependencies. There were cases throughout

the application surveyed that require a mobile device to have a specific hardware feature

present in order for the function to operate. Examples from the applications surveyed

included: Find Nearest A&E Service which required location based hardware such as

a GPS to function; Monitor Blood Pressure that required Heart rate sensor and Call

NHS required telephony hardware in order to make a call. From a mobile application

development perspective understanding each of these components is vital when designing

personalised mHealth applications.

4.4 mHealth Application Function Taxonomy 97

4.4 mHealth Application Function Taxonomy

mHealth Function

Management

Communication

Inform

MonitoringMonitoring

Instructional

Educational

Advisory

Informative

Statistical

Instructional

Educational

Advisory

Informative

Statistical

Tracking

Examination

Tracking

Examination

Figure 4.14 mHealthe application function taxonomy

The mHealth Application Function Taxonomy (mHAFT) was developed as a tool that can

be used to analyse, identify and categorise the various types of health related functions

that are available within mHealth applications that are intended to be used by healthcare

consumers. As shown in Figure 4.14, the taxonomy is constructed of 4 dimensions, each

representing a distinct type of service that a function provides to a healthcare consumer

and are defined in Section 4.4.1.

4.4 mHealth Application Function Taxonomy 98

4.4.1 Class Definitions

This section presents the definition for each class within the mHealth Application Function

Taxonomy.

Monitoring: A function that allows the user to monitor an aspect of their health.

Assessment: A function that assess an aspect of the user’s
health status to identify the nature of an ill-
ness or other health related issue.

Tracking: A function that enables a user to observe and
collect data regarding specific aspect and of
their health.

Inform: A function that provides the user with health related information.

Educational: A function that provides educational informa-
tion to the user

Informative: A function that provides Information that pro-
vides the user with news on current events.

Instructional: A function that provides instructional infor-
mation to the user.

Advisory: A function that provides advice to the user.

Statistical: A function that provides statistical informa-
tion to the user.

Management: A function that is designed to assist a user with managing an aspect
of their health.

Communication: A function that provides a user with a mechanism to communicate.

4.4 mHealth Application Function Taxonomy 99

4.4.2 Classification Tool

Figure 4.15 is a classification tool that has been developed alongside the taxonomy to assist

user’s when categorising mHealth functions. The tool has been designed to systematically

classify mHealth functions. It ensures that the taxonomy is being used correctly, removes

potential ambiguity, ensures that a function only receives a single classification and

identifies potentially new categories. As can be seen, the tool consists of a series of simple

questions, which the user is required to answer. The answer to each question will lead to

one of three outcomes: the user is required to answer another question, determine the type

of mHealth function or identify a potential new function category.

4.4 mHealth Application Function Taxonomy 100

START

Is the function designed to provide the
user with health related information?

Function Type:
Inform

Investigate:
Potentially new

Function type found

False

True

False

False

False

Does the function provide instructional
information to the user?

Does the function provide advise into
the user?

Does the function provide educational
information to the user?

Does the function provide statistical
information to the user?

False

False

Function Type:
Educational

Function Type:
Instructional

Function Type:
Advisory

False

Function Type:
Statistical

Function Type:
Informative

False

True

True

True

True

Is the function designed to allow the
user to monitor their health?

True
Function Type:
Monitoring

Does the function assess an aspect of
the user's health status to identify the

nature of an illness or other health
related issue?

Does the function enables a user to
observe and collect data regarding
specific aspect and of their health?

False

Function Type:
Assessment

Function Type:
Tracking

True

True

True
Is the function designed to provide the

user a mechanism to communicate?
Function Type:
Communication

True
Is the function designed to assist a user

with managing an aspect of their health?
Function Type:
Management

Figure 4.15 Flow chart for classifying functions

4.4 mHealth Application Function Taxonomy 101

4.4.3 Maintenance

To ensure that the mHealth Application Function Taxonomy remains comprehensive, it is

critical that it is maintained. A vital aspect during the development was to utilise techniques

that enable the taxonomy to evolve as more data is analysed and processed or when a

potential new function or subcategory is identified. As a result the procedure shown in

Figure 4.16 is a modified version of the development processed followed to create the

initial revision of the taxonomy. The maintenance process is designed to build upon the

existing relationships.

2. Refine Coding Framework

• Perform frequency analysis
• Identify new codes
• Integrate new codes into

existing concept maps. If
necessary create new
concept map

2. Refine Coding Framework

• Perform frequency analysis
• Identify new codes
• Integrate new codes into

existing concept maps. If
necessary create new
concept map

1. Extract Functions

• Source a sample of mHealth
applications

• Document and Extract
Functions

1. Extract Functions

• Source a sample of mHealth
applications

• Document and Extract
Functions

3. Establish Categories

• Perform PageRank
• Update class names

(if necessary)
• Sort functionality
• Update class descriptions
• Update Classification Tool
• Update Taxonomy
• Document Changes

3. Establish Categories

• Perform PageRank
• Update class names

(if necessary)
• Sort functionality
• Update class descriptions
• Update Classification Tool
• Update Taxonomy
• Document Changes

2. Refine Coding Framework

• Perform frequency analysis
• Identify new codes
• Integrate new codes into

existing concept maps. If
necessary create new
concept map

1. Extract Functions

• Source a sample of mHealth
applications

• Document and Extract
Functions

3. Establish Categories

• Perform PageRank
• Update class names

(if necessary)
• Sort functionality
• Update class descriptions
• Update Classification Tool
• Update Taxonomy
• Document Changes

Figure 4.16 Maintenance procedure for the taxonomy

1. Extract Functions: As with before, a selection of mHealth applications that met

the criteria described in Section 4.2.2 would be required and be subjected to the

same extraction and documentation processes.

2. Refine Coding Framework: Next would be to refine and refactor the the coding

framework, identifying any new codes and integrate them into the existing concept

maps. If for example a new, type of function is identified this would require the

creation of new concept map.

3. Establish Categories: The third phase in the maintenance process requires follow-

ing the steps described in Section 4.3.3. From a comprehensive perspective this is

vital step to ensure the taxonomy is remains representative of current the trends and

4.4 mHealth Application Function Taxonomy 102

themes. To accommodate changes to the taxonomy all functions including those

previously assigned a category will require classification. The final step would be

then to update the class descriptions, classification tool and taxonomy. Again, this

process must be documented.

By following the maintenance process described above helps ensures that new data is

processed the same, but also helps quality assure the information prior to revising the

taxonomy.

4.4.4 Construction of Use Case Scenarios

The development of the taxonomy also provided the opportunity to construct a collection

of use case scenarios, that are based upon themes and trends found within the literature

and applications surveyed. The objective of the use case scenarios is to simulate a potential

scenario of a healthcare consumer that requires a personalised mHealth application. A

summary of the contents of each use case profile is presented below:

• A narrative describing the current health status of the healthcare consumer.

• An outline of a personalised healthcare plan.

• The Healthcare consumers mobile device2.

• A description of the required functions3 for a personalised mHealth application.

2All device used in the use case scenarios are Android devices.
3Functions extracted from mobile applications were used in the use case scenarios

4.5 Testing and Evaluation 103

4.5 Testing and Evaluation

The following sections provide details surround the testing procedure and evaluation aspect

of the mHealth Application Function Taxonomy. Section 4.5.1, describes how the test data

was collected and the procedure it was subjected to. Section 4.5.2 discuses the results and

evaluates the taxonomy against the criteria defined by Nickerson (see Section 3.2.1.1).

4.5.1 Test Data Collection and Procedure

Using the same inclusion criteria defined in Table 4.1, a sample of 10 mHealth applications

(Taxonomy Test Dataset) were chosen at random. Each application is then subjected to the

following process:

1. Record the Applications name, platform, description.

2. Download and install the application on the appropriate device.

3. Observe, describe and document the functions.

4. Attempt to categorise each function using the method described in Section 4.4.2
record the results.

The complete test dataset (and results) are available in Appendix A.5.

4.5 Testing and Evaluation 104

4.5.2 Tests and Evaluation of Results

The following discusses the results and each of the 5 criteria described by Nickerson.

Comprehensive: Can the taxonomy classify all current mHealth functions?

With regards to the comprehensive nature of the taxonomy, its not practical nor feasible to

test all available mHealth functions. However, to but things into perspective, the taxonomy

and its components are the product of the analysis of 213 mHealth applications functions,

representing trends from both literature and currently available mHealth applications. In

total the taxonomy has successfully classified 191 out of 213 (22 were excluded from the

classification process for reasons stated in Section 4.3.4) functions during its development

and a further 63 functions during testing(please refer to Figure 4.17 for results). At

no stage during the development or testing of the taxonomy has a function not been

able to be classified using the classification tool, suggesting that the taxonomy is indeed

comprehensive. Furthermore, it is acknowledged that this is a rapidly developing area, as

a result the taxonomy has been developed using techniques that can facilitate evolution

when new data is processed, additionally the classification tool has been designed to also

identify potentially new function types and subtypes to help ensure the taxonomy remains

comprehensive as time progresses.

4.5 Testing and Evaluation 105

Figure 4.17 A bar chart to show the classification results of the test data used to test the
taxonomy

Figure 4.18 A bar chart to show the comparison between the number of functions vs the
number of categories.

4.5 Testing and Evaluation 106

Mutually Exclusive: No function falls into more than one category. A simple test was

conducted that compared the number of functions against the number of categories assigned

during the testing of the taxonomy. As can be seen in Figure 4.18, the number of functions

(63) is equivalent to the number of categories assigned (63) during testing. This infers that

no function was assigned more than one category. Suggesting that the classes are mutually

exclusive. This is also reinforced by the sequential design of the classification tool which

prevents a function being assigned to more than one category. Therefore classes within the

mHealth Application Function Taxonomy are considered to be mutually exclusive.

Extendibility: Does the taxonomy allow for additional dimensions and new characteristics

within a dimension when new types of objects appear? In addition to taxonomy, the primary

purpose of Figure 4.15 is to assist a user when classifying functions, its secondary purpose

is also identify potential new categories as they emerge. If a new category is discovered,

further investigation into its characteristics would be required prior to establishing it as a

new distinct category or sub category. The maintenance process was designed to support

new iterations of the taxonomy, by following the procedure shown in Figure 4.16 not only

allows new data to further refine existing categories, for example renaming of a class.

But once there is sufficient evidence to define the new category, the taxonomy and the

classification tool can be updated to reflect the newly processed data or function type.

Concise: Is the taxonomy succinct?

With regards to the concise nature of the taxonomy, Table 4.8 represents various char-

acteristics of the mHealth Application Function Taxonomy. As can be seen in the table,

the four main types of mHealth functions were constructed from 55 unique codes. This

allowed 191 of the initial functions to be classified. Both monitoring and inform have

child classes that are associated to them. This is because there was significant evidence

that they provided a distinctly different service to the user. However, Management and

Communication do not. Communication functions although enable the user to commu-

4.5 Testing and Evaluation 107

nicate through different mechanisms, they fundamentally only provide a communication

service to the user. By adding child classes to communication for example Call, Email

and Instant Message would not provide any further benefit to the taxonomy. As these are

considered as instances of communication and could indeed affect the the concise nature of

the taxonomy. Management functions on the other hand are quite the opposite. As already

mentioned Management functions were the most diverse. This made it difficult to identify

distinct subclasses using the data that was initially collected. However, this is something

that could be addressed future revisions of the taxonomy.

Throughout the development of the taxonomy careful consideration was taken to remove

any potential for ambiguity. Class definitions are succinct, short sentences. The classifica-

tion tool utilises a flow chart and short true or false questions to guide users through the

classification process. The benefits of these decisions during the development can be seen

in the results from the test data. Figure 4.17 shows the percentage frequency distribution

of the test data. As can be in the test data provided a range of functions that covered all

aspects of the taxonomy. Overall the details provided above along with the results from

the test data suggest that the taxonomy is concise.

4.5 Testing and Evaluation 108

Table 4.8 mHealth application function taxonomy characteristics

Monitoring Management Communication Inform
Number of unique
codes during
development

22 15 8 6

Number of functions
classified during
development

90 33 17 51

Number of
subclasses identified

2 0 0 5

Number of functions
classified during
testing

12 9 2 40

Figure 4.19 Pie chart representing the percentage frequency distribution of mHealth
functions within the test data

4.5 Testing and Evaluation 109

Inclusive: Does the taxonomy contain enough dimensions and characteristics to be of

interest?

The inclusive attribute is difficult to quantify since it was primarily developed for use

within the scope of this research. However, the taxonomy has several applications both

within and out of the scope of this research. The taxonomy, with regards to this research

has several uses. The first use was to obtain an understanding of the types of health related

functions that are designed to be used by healthcare consumers, including their associated

characteristics that make them distinct. This is critical in achieving the second objective of

this research. As discussed in Section 4.4.4, the taxonomy and the data associated to it was

also used to develop use case scenarios that are to be utilised, during the development of

the ontology and evaluation of the framework.

Moving outside of the boundaries of this research, the taxonomy also can be utilised from

a practical standpoint during the development of a mHealth application. The taxonomy

along with the classification tool can also be utilised by mobile application developers to

identify the types of healthcare related functions required for a specific application during

the design phase, since the taxonomy is based upon the principles of a functional hierarchy

diagram.

ManagementAppointment ScheduleF2 ManagementAppointment ScheduleF2

CommunicationCall Service ProviderF3 CommunicationCall Service ProviderF3

EducationLiving With DiabetesF4 EducationLiving With DiabetesF4

TrackerBlood Glucose TrackerF1 TrackerBlood Glucose TrackerF1

Application
 [X]

Figure 4.20 Demonstration of the practical use of the mHealth application function taxon-
omy during the development of a mHealth application

4.6 Summary 110

4.5.3 Results Synopsis

The taxonomy developed as part of this research is representative of the trends and themes

found within the literature and from the United Kingdom’s two most popular platforms4

app stores. The testing and evaluation of the taxonomy has demonstrated that the taxonomy

is capable of classifying health related functions that are found in mHealth applications

that are designed to be used by healthcare consumers. Furthermore, the results obtained

from the testing and evaluation of the mHealth Application Function Taxonomy provides

sufficient evidence to suggest that the taxonomy in its current from possess all of the

attributes described by Nikerson.

4.6 Summary

In summary, this chapter presents the development considerations for the creation of the

mHealth Application Function Taxonomy, a tool that is capable of categorising health

related functions within mHealth applications designed specifically for healthcare con-

sumers. The mHealth Application Function Taxonomy was developed as part of this

research was to gain a solid understanding of the trends and themes of functions and the

distinct attributes that made them unique. The analysis of the functions also provided an

insight into the composition of a function from a personalisation perspective, leading to

the creation of the generic function model. The product of which, led to the construction

of several use case scenarios that simulate healthcare consumer personalised requirements

for a mHealth application. These scenarios are to be utilised throughout the key stages

of development in both the PMAD Ontology and PMAD Framework. The testing of the

taxonomy was conducted using functions extracted from a random sample of mHealth

applications. Using the attributes defined by Nikerson as evaluation criteria, both the

4Android and iOS

4.6 Summary 111

taxonomy and results were then evaluated. The outcome from the testing and evaluation

of the results demonstrated that the taxonomy is capable of classifying health related

functions that are found in mHealth applications. Furthermore, the evaluation of the

mHealth Application Function Taxonomy provided sufficient evidence to suggest that the

taxonomy in its current form, possess all of the attributes of a good taxonomy as described

by Nikerson. Overall, the development of the taxonomy has satisfied the requirements of

Objective (b) of this research.

Chapter 5

PMAD Ontology

The objective of this chapter is to present the theoretical, design and development consider-

ations for the Personalised Mobile Application Development Ontology (PMAD Ontology).

The chapter is composed of two parts. The first part presents the theoretical considerations,

exploring what an ontology is in computer science and how it differs from its traditional

origins of philosophy. This section also discusses the relationship between various se-

mantic models and how they can be used to develop an ontology and how knowledge is

represented by ontologies represent knowledge. The theoretical considerations conclude

with a discussion of ontology languages and tools used during the development process.

The second part of this chapter provides a detailed insight into the design and development

process of the PMAD Ontology. The development process follows the skeletal methodol-

ogy of Uschold and Grunninger and begins with an overview of the development process,

the guidelines that were established and scope and purpose of the ontology. The imple-

mentation is divided into two stages; the first is associated the capturing and organisation,

the second focuses on the encoding of the knowledge captured. The penultimate section

presents an overview of the PMAD Ontology. The chapter concludes with a summary of

the key points raised.

5.1 Ontology Theory 113

5.1 Ontology Theory

5.1.1 Ontology Definition

Many of the works discussed in Section 2.2.3.3 successfully implemented an ontology to

provide intelligent and personalised services to users of mobile applications. Ontologies

are also heavily utilised in areas such as artificial intelligence, web technologies and

information systems. Their ability to address challenges such as interoperability and

knowledge sharing has seen the interest and application of ontology in the realm of

computer science increase tremendously in recent years. To help understand what an

ontology is in computer science, it is worthwhile contemplating its original application

within the area of philosophy. In its original context, the term ontology refers to the

“science of being” [119]. Philosophers strived to understand and systematically model

abstract concepts that related to the meaning of existence, its prerequisites, conditions,

origins and future horizons. In other words philosophers questioned what it means to exist

[104, 105, 120].

During the 1990’s computer scientists began to recognise the potential of ontology and

began implementing ontologies in areas such as artificial intelligence, natural language

processing and knowledge-based systems [121, 122]. However, unlike the philosophical

interpretation of an ontology, computer scientists the time adopted a naïve realistic approach

[104]. Meaning researchers choose only to denote a systematic representation of only the

necessary knowledge to perform a particular task. This body of knowledge is referred to as

the universe of discourse and represents a set of named entities that described concepts and

formal axioms that constrain the interpretation and use of these terms, forming an ontology

[104, 105, 103].

5.1 Ontology Theory 114

Throughout the literature, there have been many attempts to define an ontology, the most

widely accepted definition ‘formal explicit specification of a shared conceptualisation’

[103, 123] was proposed by Gruber. Although concise, the definition represents a series of

requirements (see below) for the use of ontologies within the field of computer science.

• Conceptualisation is an abstract model about a domain, represented by objects,

concepts and entities as well as the relationships that exist among them.

• Explicit Concepts and the restrictions applied to them are clearly defined.

• Formal The ontology must be defined using a formal language so it can be read and

interpreted correctly by a machine (machine understandable).

• Shared Reflects the notion that an ontology captures consensual knowledge – it is

not restricted to some individual but is accepted by a group.

5.1.2 Ontology and the Semantic Spectrum

However, throughout many different subject disciplines, an ontology has been portrayed

using various semantic (knowledge-based) models, each model has varying degrees of

complexity with regards to its structure and the semantics they represent. The Semantic

Spectrum (see, Figure 5.1) was developed by McGuinness to compare the ‘semantic

richness’ of such models as they increase in expressivity and complexity[125].

Thesaurus Taxonomy Conceptual
Schema

Logic
Theory

Enriched Semantic Expressions

Catalogue GlossaryCatalogue Glossary

Is alphabetically next to Has narrow meaning
than

Is Informal subclass off

Is formal subclass of

Is formal subclass of

Weak
Semantics

Strong
Semantics

Figure 5.1 The Semantic spectrum [124]

5.1 Ontology Theory 115

A Catalogue and Glossary (shown in blue) are examples of simple controlled vocabularies,

as they are basically a list of terms structured alphabetically. Whereas a Thesaurus

and Taxonomy are considered as examples of complex controlled vocabularies (shown

in orange) since they are more expressive with regards to the semantics they represent.

Thesauri provide some additional semantics such as synonym, homonym, narrower than

(NT), broader Than (BT) and related to (RT) relationships associated with terms within the

domain[125]. As demonstrated in Section 4.4, taxonomies are based upon a glossary of

terms and thesaurus and is primarily used for classification. Entities within a taxonomy

form a hierarchical tree structure that represents the relationship between a parent and child.

However, it is common that relationships defined in complex controlled vocabularies are

informal, meaning there is often some ambiguity regarding the relationships they represent

[124, 126]. A conceptual schema, on the other hand, formalises the relationships between

the concepts. A conceptual model is a model of a domain that represents the primary

entities of a domain, the relationships among them, the properties and property values of

the entities. A conceptual model may also model rules that are associated with entities,

relationships and properties [126]. Conceptual models are often represented using Entity

Relationship diagrams (ERD’s).

The aforementioned semantic models are all machine-readable, meaning the model can

be represented in a format that a machine can read, such as XML. However, they are

not machine-interpretable, meaning that they cannot be used by a machine to make valid

inferences and enforce semantic constraints (axioms) [127]. In order for a machine to make

valid inferences and enforce semantic constraints, the model must be described formally

using logic theory (knowledge representation languages) such as First Order Logic (FOL)

or Description Logic (DL). This is so the knowledge modelled is in a format that is

both readable and interpretable by a machine, thus making it machine-understandable.

Reflecting upon Gruber’s requirements more specifically the Formal requirement, we

can clearly see that an ontology (with regards to computer science) is restricted to the

5.1 Ontology Theory 116

logical theory end of the Ontology Spectrum [128]. Furthermore, McGuinness states for

something to be considered an ontology within the field of computer science, that it must

have least the following properties [125]:

• Finite controlled (extensible) vocabulary

• Unambiguous interpretation of classes and term relationships

• Strict hierarchical subclass relationships (is-a) between concepts

These three properties indicate the relationships and similarities between controlled vocab-

ularies and an ontology [95, 124]. Table 5.1 represents attributes of each of the semantic

models presented in Figure 5.1. As can be seen, each model has a specific purpose and

presents knowledge from a domain differently with regards to its structure and semantics.

Since the complexity (structure and semantics) of each semantic model increases, as we

progress throughout the ontology spectrum, we can consider each of the semantic models

to the left of the logical theories, as mechanisms to assist in solving complex problems

throughout the development of a formal ontology [95, 128].

5.1
O

ntology
T

heory
117

Table 5.1 Summary of semantic models

Model Glossary Thesaurus Taxonomy Conceptual Model Ontology

Based on Catalogue Glossary Thesaurus Taxonomy Taxonomy

Purpose
Define Terms within a

domain
Information Retrieval Classification Enterprise Modelling

To capture and

represent knowledge

of a specific domain

Structure List Tree Tree and Hierarchy
Hierarchy of

knowledge

Relationships between

categories

Relationships
• Term

• Definition

• Synonym

• Homonym

• Narrower than

• Broader than

• Related to

• Parent

• Child

• Entity

• Relationships

• Values

• Rules

• Classes

• Instances

• Properties

• Restrictions

• Axioms

Presents
List terms and

definitions

Presents the

relationships between

terms

Classification of

concepts, terms and

things

A Conceptual view of

knowledge within a

domain

Represent complex

semantics of concepts

and the relationships

between them within a

domain of discourse

Machine

Readable
Yes Yes Yes Yes Yes

Machine

Interpretable
No No No No Yes

5.1 Ontology Theory 118

5.1.3 Ontology Representation

The knowledge encapsulated in an ontology is constructed based on semiotic theory and

consists of three overlapping areas: Syntax, Semantics and Pragmatics [129]. Each area is

summarised in the list below.

• Syntax: Syntax is concerned with the rules (form, format and structure) used for

constructing, or transforming the symbols and words of a language.

• Semantics: Is the analysis of the relationships between signs in reality.

• Pragmatics: Pragmatics is the study that relates signs to the agents who use them

to refer to things in the world and to communicate their intentions about those things

to other agents who may have similar or different intentions concerning the same or

different things.

Again referring back to Gruber’s definition, the purpose of an ontology is to share (commu-

nicate) a common understanding of a conceptualisation between agents. To help understand

the meaning of sharing a common understanding first, requires understanding how we as

humans communicate meaning in natural language.

The semiotic triangle (Figure 5.2), commonly referred to as the triangle of meaning, was

developed by Ogden and Richard and illustrates the relationship between objects and

concepts and the indirect relationship between terms and objects [130]. The lower left of

the triangle represents terms that are bound by rules that are dictated by the syntax used

(language). Terms can represent a single word, phrase or even a sentence. However, alone

they have no meaning until associations are made with the other angles in the triangle. For

example, if you were asked the meaning of the term ‘AA45@SD’, you would not be able

to relate it to a concept in order to identify the object the term refers to. This is because

concepts are a fundamental aspect of proposition. However, if the same question was asked

5.1 Ontology Theory 119

Invokes Identifies

Terms Objects

ConceptsConcepts

Refers to

Constraints

Figure 5.2 Semiotic triangle

about the meaning of the term ‘jaguar’ one could make semantic associations that refer to

objects in the real world. For instance, the term ‘ jaguar’ could refer to a ‘car’, ‘animal’ or

‘the operating system’.

As illustrated in Figure 5.3a, the real world with regards to its scope is huge, hence why

the term ‘jaguar’ is ambiguous and can be interpreted differently depending on the context

and experiences (pragmatics) of an agent. This is often referred to as a weakly defined

relationship. This is why in computer science an ontology only denotes the necessary

knowledge of a conceptualisation required to perform a particular task as depicted in

Figure 5.3b. Therefore, constrains the vocabulary, reducing how terms, concepts and

objects can be interpreted. For example, if we constrain the view of the real world to

just that of cars, then the term ‘jaguar’ in this context refers to a type of car and we

are not concerned with the other interpretations of the concept ‘jaguar’. This not only

reduces the ambiguity between agents but also strengths the logical relationship [131].

Because of this constrained interpretation of the world (universe of discourse), Guarino

and Oberle revisited the semiotic triangle, modifying it to reflect upon the strengthened

logical relationships and the constraints as shown in Figure 5.4.

This view of the semiotic triangle can also be used to illustrate the relationships between

semantic models discussed earlier and an ontology. From a development perspective,

5.1 Ontology Theory 120

(a) Perspective of the whole world and every-
thing in it

(b) Narrow perspective of only the necessary
parts of the world

Figure 5.3 Perspective of a conceptualisation

the left portion of the triangle is associated with the semantically weaker (and limited)

models such as a glossary, thesaurus and taxonomy. A glossary and thesaurus provide the

vocabulary (terms) along with their semantics of the domain of discourse. A taxonomy

allows the classification of terms. Transitioning to the right of the triangle, concepts within

an ontology are organised in a strict is-a hierarchy, a structural property inherited from a

taxonomy. It is at this point we can begin to distinguish between controlled vocabulary and

an ontology. A controlled vocabulary such as a thesaurus only models simple relationships

between terms [132]. Whereas an ontology represents a series of logical conceptual

semantics (axioms) that are expressed in a logic-based knowledge representation language

so that complex, accurate, consistent and meaningful distinctions can be made between

classes, instances, properties and their relations [133].

5.1 Ontology Theory 121

Denotes Identifies

Terms Objects

ConceptsConcepts

Refers to

Constraints

Figure 5.4 Semiotic Triangle - including the constraints of a domain [131]

Therefore, taking into consideration both Gruber’s requirements of an ontology and the

properties described McGuinness: we can say that an ontology in computer science is the

product of engineering, consisting of a controlled axiomatic vocabulary, that consists of

explicit interpretations of concepts arranged in a strict is-a parent-child relationship, their

properties instances and relationships of a specific area of a specific domain.

5.1.4 Types of Ontologies

Ontologies are utilised to achieve many different objectives and as such can be classified

based upon certain characteristics such as the generality of the conceptualisation, their

coverage of a domain, intended purpose and structure [128, 133–135]. Guarino defines four

types (see, Figure 5.5) of ontologies based upon the levels of generality (dependence on a

particular task or perspective) [134]. The arrows in the diagram represent specialisation

relationships, this is made clearer in each of the definitions in Table 5.2

5.1 Ontology Theory 122

Top-Level Ontology

Application
Ontology

Domain Ontology Task OntologyDomain Ontology Task Ontology

Figure 5.5 Guarino’s ontology classification [134].

Table 5.2 Guarino’s ontology classification definitions

Type of Ontology Definition

Top Level Ontology Describes very general concepts like space, time, matter, object,

event, action, etc., which are independent of a particular problem

or domain.

Domain Ontology Describes the vocabulary related to a generic domain (like

medicine or vehicles).

Task Ontology Describes an ontology that relates to a specific task, such as diag-

nosing.

Application Ontology Describes concepts depending both on a particular domain and

task, which are often specializations of both the related ontologies.

These concepts often correspond to roles played by domain entities

while performing a certain activity, like replaceable unit or spare

component.

5.1 Ontology Theory 123

5.1.5 Ontology Languages and Development Tools

When deciding to develop an ontology, there are several challenging questions that must

be addressed: What ontology language to use to encode knowledge associated with the

domain of discourse? Which ontology tools to use to facilitate the development of the

ontology? [136]. Therefore this section provides an explanation of what an ontology

language is and the purpose of ontology tools during the development of ontology. Also

included is a discussion of the ontology language and tools chosen for the development of

the PMAD Ontology.

5.1.5.1 Ontology Languages

As highlighted in Section 5.1.1, an ontology within computer science must be defined

formally in order to enable a machine to interpret the knowledge within the ontology.

An ontology language is a formal language used to construct ontologies. They provide

mechanisms for creating all of the necessary components for encoding knowledge with the

domain of discourse and often include reasoning rules that support the processing of that

knowledge [135, 136]. A number of ontology languages exist such as Cycl, DAML+OIL

and Web Ontology Language and can be categorised as logic based, frame-based or graph

based [137]. Due to its increased interest in academic and commercial applications the

language chosen to encode knowledge within the PMAD Ontology was the Web Ontology

Language, or as it is commonly referred to as OWL.

5.1.5.1.1 Web Ontology Language

The web ontology language (OWL) is a family of semantic web languages for authoring

ontologies. OWL is designed to represent rich and complex knowledge about things,

groups of things and the relationship between them [138] and is the W3C’s recommended

5.1 Ontology Theory 124

ontology language for the Semantic Web since 2004 [139, 140]. The design of OWL

was influenced by three areas: Description Logics, Frames Paradigm and the Resource

Description Framework [141].

• Description Logics: aimed to bring reasoning and expressive power to the Semantic

Web. Description logics (DL) are a family of formal knowledge representation

formalisms that are used to represent the knowledge of a domain [139]. The formal

language constructs and language features of OWL are derived from description

logics. These are discussed in context of OWL and in more detail throughout

Section 5.4. A description logic knowledge base is composed of two components,

TBox and ABox [139]. In the TBox the terminology of the knowledge base is

defined and is associated with concepts and what they denote. Whereas the ABox

contains assertions about individuals in the knowledge base. The architecture of a

description logic system is shown in Figure 5.6.

• Frames Paradigm: OWL also provides a surface syntax based on the frames

paradigm. Frames group together information about each class, making ontologies

easier to read and understand, particularity for users not familiar with description

logics [141].

• Resource Description Framework: To maintain maximum upwards compatibility

with existing web languages, the OWL ontology language extends the syntax and

semantics of the Resource Description Framework adding numerous constructs and

semantics for describing properties and classes: among others, relations between

classes, cardinality, equality, richer typing of properties, characteristics of properties,

and enumerated classes [142].

5.1 Ontology Theory 125

Reasoning
Description

Language

Knowledge Base

ABox

TBox

ABox

TBox

ABox

TBox

Knowledge Base

ABox

TBox

Application Programs Rules

Figure 5.6 Description logic architecture: TBox and ABox

OWL Full

OWL DL

OWL lite

Figure 5.7 OWL species

5.1 Ontology Theory 126

OWL Sub-Languages

As a result of the various demands from specific communities and users of OWL, led to

the specification of three ‘species’; OWL Full, OWL DL (description logic) and OWL

lite. Each sub language of OWL supporting has compromises between expressiveness and

computational tractability [143].

• OWL Full: as indicated by the dashed lines in Figure 5.7, OWL Full has no

expressiveness constraints, but also does not guarantee any computational properties.

It is formed by the full OWL vocabulary, but does not no impose any syntactic

constrains, so that the full syntactic freedom of RDF can be used.

• OWL DL: OWL DL is a syntactic subset of OWL Full, but supports those users

who want the maximum expressiveness while retaining computational completeness1

and decidability 2. OWL DL includes all OWL language constructs, but they can be

used only under certain restrictions.

• OWL Lite: is a syntactic subset of OWL DL but only supports classification

hierarchies and simple constraints.

1all conclusions are guaranteed to be computable
2all computations will finish in finite time

5.1 Ontology Theory 127

OWL Components

The components of an OWL ontology are summarised in the table below. Each component

is discussed in further detail in later sections of this chapter.

Table 5.4 Summary of OWL ontology components

Entity Description

Individual Also referred to as instances, individuals represent objects within

the domain of discourse.

Classes Represents a collection of objects that describes the precisely the

requirements for membership of that class.

Properties Are used to describe relationships, they exist in two forms:

• Object Properties - object properties describe the relation-

ship between individuals.

• Data Type Properties - describe the relationship between

individuals and a given data type.

Restrictions Describe an anonymous classes that contains the individuals that

satisfy the restriction.

Axioms Are used for expressing propositions that are always true.

5.1 Ontology Theory 128

5.1.5.2 Ontology Tools

It is well documented throughout the literature that building an ontology is a complex

and time-consuming process. With the rise of the Semantic Web and increasing academic

and commercial interests of ontologies, saw the development of numerous ontology tools.

Ontology tools are designed to help an alleviate a diverse range of challenges related to

various activities associated with the ontology development process. Extensive work from

Gómez-Pérez et al. identified six categories of ontology tools [122]. Each category is

described in Table 5.6.

Table 5.6 Description of ontology tools [122]

Ontology Tools Description
Development This group includes tools and integrated environments that can be

used to build a new ontology or edit an existing one.

Evaluation They are used to evaluate the content of ontologies and their related
technologies.

Merge and Alignment These tools are used to solve the problem of merging and aligning
different ontologies in the same domain.

Annotation Tools With these tools users can insert instances of concepts and of
relations in ontologies and maintain (semi) automatically ontology-
based markups in Web pages

Query and Inference These allow querying ontologies easily and performing inferences
with them. Normally, they are strongly related to the language
used to implement ontologies

Learning They can derive ontologies (semi)automatically from natural lan-
guage texts, as well as semi-structured sources and databases, by
means of machine learning and natural language analysis tech-
niques.

The following ontology tools, have been chosen for the development of the PMAD Ontol-

ogy:

5.1 Ontology Theory 129

• Protégé: is a freely available open source ontology editor developed by the Center

for Biomedical Informatics at the Stanford University School of Medicine [108]. It

provides a rich frame based environment with full support for OWL and other ontol-

ogy languages. Protégé also includes visualisation tools to interact with ontology

throughout development, advanced support for tracking down inconsistencies and

operations to modify the various ontology components. The version used throughout

this research was Protégé 4.30.

• Hermit Reasoner: Developed by the Shearer et-al;, the Hermit reasoner is written

using the OWL and can perform various automated checks including the consistency,

satisfiability and subsumption of an OWL ontology [96] HermiT is the first publicly-

available OWL reasoner based on a novel "hypertableau" calculus which provides

much more efficient reasoning than any previously-known algorithm. Ontologies

which previously required minutes or hours to classify can often by classified in

seconds by HermiT. HermiT is also the first reasoner able to classify a number of

ontologies which had previously proven too complex for other reasoners.

• OntOlogy Pitfall Scanner: OntOlogy Pitfall Scanner(OOPS!) is a web based tool

crated by Villalon et al. for detecting common pitfalls in OWL based ontologies

[144]. The OOPS! ontology validator detects potential pitfalls within the ontology,

details of all the pitfalls are documented here [145]. The OntOlogy Pitfall Scanner

will be used to during the evaluation of the PMAD Ontology.

• OWL API: The OWL API is an open source Java based API and reference im-

plementation for creating, manipulating and serialising OWL ontologies [109]. In

addition the OWL API has the following dependencies: Java SE development kit 7

[146], Simple Logging Facade for Java (SLF4J 1.7.12) [147] and Jfact reasoner 4.0

[148]. The OWL API version 4.0.1 was utilised during the testing of the framework.

5.2 Establishing Guidelines 130

5.2 Establishing Guidelines

The first stage in the development of the ontology required establishing a series of guide-

lines that will govern aspects of the design and development of the ontology. The subse-

quent sections describe the initial series of guidelines that were established at the beginning

of the PMAD Ontologymodel development. This includes an overview of the activities

and methods used during each stage of the development lifecycle, design criteria and

documentation procedure.

5.2.1 Development Overview

Unlike other methodologies, the Skeletal Methodology of Uschold and Grunninger does

not explicitly define a series of activities to follow but rather suggests an outline to help

guide throughout the design and development process. Although this allows for flexibility

throughout the development, it was worthwhile investing time to construct a plan that

provides details surrounding the key stages in the design and development of the ontology.

The plan is shown in Table 5.8 was constructed, using knowledge discussed earlier in

Section 5.1 and the OWL web ontology language reference material published here [149].

The plan outlines the precise activities, tools and methods associated with each of the

development stages outlined in the methodology. Each activity is discussed in further detail

throughout the respective sections of this chapter. Alongside the development several other

guidelines were also adopted, this included Gruber’s ontology design criteria, Rector’s

modelling approach and a strict naming convention. These are discussed in the sections

that follow.

5.2 Establishing Guidelines 131

Table 5.8 Overview of the activities, methods and tools associated with the development
of the PMAD Ontology model.

Development Stage Activity Methods / Tools / Products

1. Purpose & Scope

Definition

Define the purpose of the ontology Statements using natural language

Define the scope of the ontology Statements using natural language

Define objectives Statements using natural language

2. Implementation: Coding Acquire Knowledge Extract knowledge from various rep-

utable sources

Define Vocabulary Build glossary of terms

Organise Concepts Build Class Taxonomy

Identify Relationships Document relationships

Create Class Expressions Document Class Expressions

3. Implementation

Capturing

Formalise conceptual model Using the OWL ontology language

Protégé development environment

5.2 Establishing Guidelines 132

5.2.2 Design Criteria

The list below represents a series of ontology design criteria originally proposed by Gruber

[103]. As can be seen, the criteria identify several important characteristics of an ontology.

For this reason, the design criteria were adopted to serve as a framework for making key

decisions throughout the design and development of the PMAD Ontology. Furthermore,

the criteria will also be used to evaluate the ontology.

1. Clarity: An ontology should effectively communicate the intended meaning of

defined terms. Definitions should be objective, formal, and documented with natural

language.

2. Coherence: Is a vital criterion in evaluating the consistency of the ontology, an

ontology should sanction inferences that are consistent with the definitions.

3. Extendibility: An ontology should be designed to anticipate the uses of the shared

vocabulary. It should offer a conceptual foundation for a range of anticipated tasks,

and the representation should be crafted so that one can extend and specialise the

ontology monotonically. In other words, one should be able to define new terms

for special uses based on the existing vocabulary, in a way that does not require the

revision of the existing definitions.

4. Minimal Encoding Bias: Encoding bias should be minimized, because knowledge-

sharing agents may be implemented in different representation systems and styles of

representation.

5. Minimal Ontological Commitment: An ontology should require the minimal onto-

logical commitment sufficient to support the intended knowledge sharing activities.

5.2 Establishing Guidelines 133

5.2.3 Modelling Approach

It is common practice for ontology engineers to adopt a modelling approach to help

reduce some of the constraints that are associated with developing an ontology [150].

The modelling approach that has been adopted for the development of this ontology

is referred throughout the literature as normalisation. Normalisation from a relational

database perspective is the process of refactoring and organisation of attributes and tables

to minimize data redundancy and increase reusability and maintainability of the data

contained within the database. This is a formal standardised process, that has a series of

strict guidelines and objectives for database engineers. Although there is currently no

standard formalised process of normalisation available to ontology engineers, there has

been several techniques have been suggested [150–152].

One approach, proposed by Rector [152], aims to normalise domain ontologies by untan-

gling the complexities of ontology modelling. This technique aims to achieve explicitness

and modularity in an ontology to support re-use, maintainability and evolution [153]. The

principle behind Rector’s technique is to divide the ontology into two parts; the primitive

skeleton and defined concepts. The primitive skeleton contains basic concepts structured in

a taxonomy. Concepts within the primitive skeleton form the foundations of the ontology

and act as ‘building blocks’that are used to define concepts.

Rector also specifics criteria that the primitive skeleton must retain in order to guarantee

the accuracy and explicitness of the ontology. These are as follows:

1. The branches of the primitive skeleton of the domain taxonomy should form trees.

2. Each branch of the primitive skeleton of the domain taxonomy should be homoge-

neous and logical.

3. The primitive skeleton should clearly distinguish between:

5.2 Establishing Guidelines 134

(a) Self-standing concepts - objects from the physical or the conceptual world,

for example, Hardware, BluetoothFunctionLogic ect.. . Self-standing

concepts should be disjoint, but use open world assumption. Meaning that the

list of primitive children should not be considered as exhaustive, since things

within a domain can never be guaranteed.

(b) Partitioning concepts - Are value types and values which partition conceptual

spaces. For example “small, medium, large” and are used to refine concepts.

Partitioning concepts may or may not be disjoint and should be exhaustive,

meaning the ‘values’ fully covers the value type.

4. The Axioms range and domain constraints should never imply that any primitive

domain concept should subsume by more than other primitive domain concept.

This approach not only helps towards achieving the objective of the ontology, but also

provides an effective modelling technique for defining concepts within the ontology in

significant amount of detail, whilst also enabling the ontology to remain modular and

extendible.

5.2.3.1 Naming Conventions

To improve the overall clarity of the ontology a naming convention for entities were

established, since OWL does not specify such conventions. Therefore, it was important

from a design, development and maintenance perspectives to clearly and easily distinguish

between the different entities within the ontology. By establishing a strict series of

distinct rules that dictate the character sequences for entities (individuals, classes, object-

properties, data-type properties) at the beginning, promotes consistency throughout the

design, development and maintenance of the ontology. This also has a direct impact on

the readability (from a human’s perspective) of the ontology, strict conventions improve

5.2 Establishing Guidelines 135

clarity between entities during instances of potential ambiguity or problems that may arise.

Therefore, the following conventions presented in Table 5.10, define a series of rules that

dictate the character sequences for naming entities within the ontology.

Table 5.10 Naming convention

OWL Entity Conventions Example

Class Upper Camel Case Notation ExampleClassName

Object-Property Lower Camel Case Notation exampleObjectProperty

Data-Property Lower Camel Case Notation dataProperty

Annotation-Property Lower case, single word annotation

Individual Sentence Case Individual

5.2.4 Documentation

Documentation is a continuous activity throughout all aspect of the design and development

of an ontology. Moreover, documentation is a critical component in assuring that the

ontology adheres to the clarity and coherent criterion defined by Gruber. Therefore, all

documentation produced must be explicit and coherent. Key documentation produced

during the development of the ontology is made available throughout Appendix B.

5.3 Purpose and Scope Definition 136

5.3 Purpose and Scope Definition

As described in Section 3.3, the intent of this stage is to define in natural language the

purpose and scope of the PMAD Ontology model. This included specifying the overall

purpose of the ontology; including how it is intended to be used, its scope and the

characteristics of the domain of discourse.

The purpose of the ontology is to play an integral role within a framework that enables

healthcare professionals to create personalised mHealth applications to be used as part

of a patients care plan. As discussed in Chapter 2, healthcare professionals recognise

the benefits of mHealth applications and understand the healthcare requirements of the

consumer. However, healthcare professionals are not convergent with mobile application

development. Therefore, the ontology model aims to encapsulate key knowledge from the

mobile application development process, so it can be made operational via the framework

to compensate for the missing domain expertise. The knowledge encapsulated within the

ontology will be responsible determining if the mobile device a user owns is capable of

supporting the required functionality and the relevant development choices based upon the

device a user owns. Furthermore, the ontology will also drive user interface elements of

the framework such as menus and options. The ontology is considered as an application

level ontology, since it is engineered to be used under a specific use case [122, 154].

Note, it is not the intention of the model to encapsulate the entire domain but utilise the

use case scenarios developed in the previous chapter to design a suitable model that is

generic, modular and extendible. As illustrated in Figure 5.8, the domain is envisaged

to encapsulate knowledge associated with two critical components; Mobile Device and

mHealth functions.

5.3 Purpose and Scope Definition 137

Domain of Discourse

mHealth Functions
Function

Type
Personalised
Component Logic

Hardware
Requirement

Software
Requirement

mHealth Functions
Function

Type
Personalised
Component Logic

Hardware
Requirement

Software
Requirement

Devices

Hardware Platform Characteri-
stics

Devices

Hardware Platform Characteri-
stics

Figure 5.8 Components of the domain of discourse

5.3 Purpose and Scope Definition 138

5.3.1 Ontology Objectives: Competency questions

The ontology objectives are represented as a series of competency questions that play a

crucial role in the ontology development life cycle. They represent a series of questions

that the ontology must be capable of answering to be competent at tackling the problem

it has set out to solve. They align development decisions with the scope, assist in quality

assurance of the content within the ontology and provide the basis for evaluation of the

knowledge contained within the ontology [155, 156]. The following questions represent a

series of competency questions that were established for the development of the PMAD

Ontology model. These will be used during the evaluation to determine the competence of

the knowledge encapsulated within the ontology.

Table 5.11 Competency questions

Competency Questions

CQ 1 Can the knowledge encoded within the ontology determine if a function

is capable of running on a patient’s device?

CQ 2 Can the knowledge encoded within the ontology determine the overall

feasibility of the personalised mHealth application?

CQ 3 Can the knowledge encoded within the ontology be operationalised to

build a personalised mHealth application?

CQ 4 Can the knowledge encoded within the ontology determine a suitable

API based upon the patient’s device?

5.4 Implementation: Capturing 139

5.4 Implementation: Capturing

The first phase of implementation focuses on capturing, organising and structuring terms to

provide an informal representation of the domain of discourse. It begins first discussing the

procedure of how knowledge regarding the domain was acquired. Followed detailed and

systematic overview of how various semantic models discussed in Section 5.1.2 was used

to organise and structure knowledge and how they addressed key semantic challenges and

assisted in identifying ontological components for the second phase of the implementation

activity. Also discussed in this section are the various constructs and how they are used

within the context of the PMAD Ontologyontology.

5.4.1 Knowledge Acquisition

A critical stage in the development of an ontology is linked to how the knowledge that

eventually is to be encapsulated in the ontology is captured. As highlighted in the previous

activity, the ontology aims to encapsulate knowledge associated with two areas: Mobile

devices and mHealth functions. Extracting and describing features from entities was a

critical but time-consuming activity. As any mistakes made during this process would

lead to inconsistencies in the knowledge encoded within the ontology. Therefore careful

consideration was taken when sourcing and extracting knowledge. Knowledge extracted

from a variety sources using a combination of automated and manual techniques, which

are described in detail in the subsequent sections.

5.4.1.1 Hardware

Chapter 2 discussed the significance of a users device in the development of a personalised

mHealth application. The device dictates the scope and limitations of the application

5.4 Implementation: Capturing 140

with regards to the platform, operating system and hardware that is available. Therefore,

modelling the hardware and software characteristics of a device is a critical component

of the PMAD Ontology model. The Android API guide [157] provides a comprehensive

documentation list of device features. It includes several categories of device features and a

description associated with each feature. This information was extracted and documented.

5.4.1.2 Mobile Device

There are also several Android devices listed in the use case scenarios. Features relating

to a specific physical device, such as Nexus 5 were extracted using the Android Debug

Bridge (ADB). The ADB is a command line interface between the host computer and

the Unix shell located on the device [158]. The ADB provides various actions such as

installing/debugging of applications, file transfer or even control the device remotely. The

commands adb shell getprop & adb shell pm list features return a list of all

the devices attributes and features respectively. Figure 5.9 shows a screenshot of some

attributes and features of a Nexus 53.

One issue relying solely on a single device for platform characteristics is that they are

representative of a single device. Static features of a device such as hardware do not change

over time and can be documented with relative ease. However, dynamic features such as

software can change over time, this can be problematic from a maintenance perspective. For

instance, the particular Nexus 5 device used during had the property ‘[ro.build.version.sdk:]

[23]’ this indicates that the device currently supports up to API Level 23. However, rather

than relying on a dynamic property, the static attribute ‘[ro.product.first_api_level]’ was

used since this property value the represents first API level the device was commercially

launched with and is not subjected to change [159]. Therefore, this property is considered

3An Android device manufactured by LG

5.4 Implementation: Capturing 141

as the minimum API level recommended for developing applications for this particular

device. This is discussed in further detail in the next section.

Figure 5.9 Screenshot of Nexus 5 properties provided by the Android Debug Bridge

Not all the information returned via the ADB required documenting. In fact, there

was a considerable amount of redundant information. Redundant properties such as

sys.boot_completed, ro.qti.sensors.game_rv and ro.bluetooth.request.master were not doc-

umented since they were either beyond the scope of the ontology or described specialised

properties associated with specific hardware or software features of the device. To assist in

later stages of capturing phase, concept maps were utilised to model features of mobile

devices used within the use case profiles. An excerpt of the from the Nexus 5 concept map

is presented in Figure 5.10.

Nexus5

AndroidLevel19

minimumApiRequirement

LG

hasManufacturer

FrontCamerahasFrontCamera FrontCamerahasFrontCamera

GsmhasGSM GsmhasGSM

GyroscopehasGyroscope GyroscopehasGyroscope

NfchasNfc NfchasNfc

AccelerometerhasAccelerometer AccelerometerhasAccelerometer

Figure 5.10 Excerpt from the Nexus 5 concept map

5.4 Implementation: Capturing 142

5.4.1.3 Android API

As discussed in Section 2.2.2.1, software development kits contain tools, resources and

API’s. The Application Programming Interface enables applications to interact with the

underlying features of the system. Knowledge surrounding Android API was sourced

directly from the official Android Developers documentation [160]. The API Level is

an integer value that represents a specific version of the framework API offered by the

Android Platform [161]. Updates to the framework API often introduces new functionality,

for example when new hardware is introduced into the Android Platform. A recent example

of is the introduction of fingerprint readers. The framework API is designed so that new

revisions of the framework remains compatible with earlier versions. At the time of writing

there were 20 iterations of the Android API, API Level 3 was the first publicly available

API and the latest being 234. Hence why we can assume that that the API Level that the

mobile device launched with is capable of supporting all of its features.

5.4.1.4 mHealth Functions

Chapter 2 highlighted the need for a suitable mechanism for modelling functions. Chapter 4

saw the creation of the mHealth Application Function Taxonomy. The taxonomy provided

an insight into the various types of health-related functions available within mHealth

applications. Which led to a discussion surrounding several observations made during the

analysis of the aforementioned functions. One observation, in particular, discussed the

composition of a function with regards to its functional requirements. As discussed in

Section 4.3.6, a function is composed of up to three parts: logic, personalised components

and dependencies. Figure 5.11 combines the functional requirements and the function

type to form the basis of a model that all functions within the use case scenarios will be

assessed against.
4Note API Level 20 is not included since this revision was introduced to support Android wear devices

5.4 Implementation: Capturing 143

Function Composition

Personalisation Component

Function Type

Dependencies

Function Logic

Personalisation Component

Function Type

Dependencies

Function Logic

Figure 5.11 Composition of a function

The use case scenarios named functions such as CallServiceProvider. To identify the

functional requirements of each of the named functions, required developing each of the

fucntions required by the use case scenarios. Development of the fucntions was done

using Android Studio, which is the official IDE (Integrated Development Environment) for

developing applications for the Android platform. Once again concept maps were utilised

to document these the functional requirements as shown in the example in Figure 5.12.

The following sections provide details of how knowledge associated with each component

was extracted.

Call Service
Provider

Make Call
LogicTelephony

Communication

Service Provider
Telephone

Number

hasFunctionLogic

hasPersonalisedComponent

hasFunctionType

requiresTelephony

Figure 5.12 CallServiceProvider function concept map

5.4 Implementation: Capturing 144

Function Type

The design and development of the mHealth Application Function Taxonomy analysed

numerous functions which led to the identification of 4 distinct types and multiple subtypes

of mHealth functions. These categories along with their definitions and classification

tool provide a standardised mechanism for categorising functions. Hence each function

modelled within the ontology will also be assigned a function type using the classification

tool and definitions provided in Section 4.4. For example, the call service provider function

would be classified as a communication function.

Function Logic

As discussed in Section 2.2.3.2, the service logic refers to the code that is necessary for a

particular function to operate. Figure 5.13 is a screenshot of the logic that is associated

with calling a service provider. From an ontological perspective, the ontology will not

model the logic so to speak, but rather acknowledge it as a concept since it will be the

responsibility of the framework to handle the logic. A concept that represents logic will

have a prefix the logic appended to the class name.

Figure 5.13 CallServiceProvider: Application logic example

5.4 Implementation: Capturing 145

Dependencies

As discussed in Section 4.3.6, many of the functions analysed depended on specific

hardware in order to function. When developing an Android application, if a function

requires access to specific hardware or software feature, the application must request

permission to use it. Requesting permissions is done by declaring the <uses-permission>

element in applications AndroidManifest.xml file. Figure 5.14 shows several examples

of various permission requests declared in Android- Manifest.xml.

Figure 5.14 Android manifest <uses-permission> example

Using the Android API documentation, each of permissions requests was documented and

can be mapped to specific features of a device since they imply the application requires

the use of a particular feature [162]. Using Figure 5.13 as an example, the permission

android.permission.CALL_PHONE implies that a device must have telephony hardware

in order for the call service provider function to operate. To demonstrate, the same applica-

tion was deployed onto two physical devices. Using the hasSystemFeature method from

the PackageManagerClass, we can determine programmatically if a specific feature, in

this case, telephony hardware, is present on the device. As can be seen in Figure 5.15a, if

the device has telephony hardware the value returned is true thus the call service provider

function could be implemented on this device. If telephony hardware is not present on the

5.4 Implementation: Capturing 146

device in the case of Figure 5.15b false is returned, meaning the device is not capable of

making or receiving calls.

(a) Nexus 5 (b) Nexus 7

Figure 5.15 Telephony feature demonstration

Personalised Component

As discussed in Section 4.3.6 the personalised component represents the specific feature or

features of a function that can be personalised. In relation to the function logic, certain

variables, or documents represent personalised components. In the example shown in

Figure 5.13, the string telephone number is an example of a personalised component of the

function caller service provider. URL, drug name and insulin bolus are other examples

of personalised components from other functions named in the use case profiles. These

components allow aspects of the functions to be tailored to the healthcare consumers

specific requirements. It is important here not to model ‘datatypes’ as this is a common

mistake made by ontology engineers [145]. The personalised components will be used

to form queries within the context of the PMAD Frameworkwere the description of the

personalised component from a data perspective will be stored in a database.

5.4 Implementation: Capturing 147

5.4.2 Building a Glossary of Terms

As discussed in Section 5.1.3, the meaning of a term can be interpreted differently de-

pending on a variety of factors. The creation of a glossary is the first step in controlling

the vocabulary and remove the potential for ambiguity. The purpose of the glossary is to

effectively communicate in a concise natural language the intended meaning of an entity

within the domain. Although this activity is presented as a singular process, populating

the glossary was completed naturally alongside the knowledge acquisition activity. As

discussed in Section 5.2.3.1, OWL entities such as classes and object properties have been

documented following strict naming conventions to help maintain consistency, alleviate

issues and enhance clarity. Each entry listed in the glossary contains the following infor-

mation: a unique URI (Uniform Resource Identifier), a concise description of the entity,

the type of OWL ontological component, as well as any acronyms and synonyms it is

associated with. The glossary consisted of over 200 entities. Table 5.12 is an excerpt from

the glossary of terms associated with the PMAD Ontology model.

This space has been intentionally left blank for presentation purposes

5.4
Im

plem
entation:C

apturing
148

Table 5.12 Examples of entities within the glossary of terms

Entity Name Description Type Acronyms Synonyms

...

Bluetooth Hardware component that provides blue-

tooth wireless communication capabilities

Class

Mobile Device A portable computing device, such as a

smartphone or tablet computer

Class

Application Programmable

Interface

Represents a set of functions and proce-

dures that allow the creation of applications

which access the features or data of an oper-

ating system, application, or other service.

Class API

hasMinimumApiRequirement describes the minimum API requirement of

a mobile device

Object Property -

Near Field Communication Hardware component that enables NFC

wireless communication

Class NFC

...

5.4 Implementation: Capturing 149

5.4.3 Building Concept Taxonomy

Using the semantic spectrum as a guide, the next logical step was to create a semi-formal

taxonomy. The glossary also played a vital role in this process as the concise definitions

of the concepts assisted in clustering concepts to create the hierarchy. The creation of

the concept taxonomy was a manual process that utilised a combination of top down and

bottom up development approaches, similar to that used in software engineering. The

combination of both approaches allowed the class hierarchy to occur naturally.

Top Down Approach

The top-down approach focused heavily on the creation of primitive skeleton discussed in

Section 5.2.3 and allows the creation of the high-level structure of the taxonomy that is

based upon the assumptions and pre-existing knowledge regarding the components of the

domain. In OWL, concepts within the taxonomy are referred to as things, hence the name

Thing is given to the root node of the taxonomy. A further three subclasses were added

to the taxonomy. The first two MobileDevice and Function represent the two main

components of the domain under consideration. As suggested by Rector (see Section 5.2.3)

, the hierarchy should be divided into two parts, making a clear distinction between the

primitive skeleton and the defined concepts. To distinguish between the two branches

a ‘holding class’ called ValuePartition was added to the taxonomy, which serves as

the root node of the primitive skeleton. A description of the ValuePartition class was

added to the glossary to maintain consistency. As stated in Section 5.3, the ontology

will encapsulate knowledge that is related to the use case scenarios, hence concepts

that belong to the ValuePartition represent self-standing concepts and should not be

considered as exhaustive of the entire domain. Self-standing concepts were extracted

from the glossary and organised into the x categories: Hardware, Manufacturer, Api,

FunctionType, PersonalisedComonent, function logic forming a taxonomy structure. The

5.4 Implementation: Capturing 150

knowledge collected from the ADB along with the Android API reference documentation

provided an exhaustive organised hierarchy of hardware features available to devices that

operate on the Android platform and Android API revisions. Hardware features could be

classified into one of 12 different classes such as Audio, Camera and Telephony. The

same hierarchy was from the documentation was replicated in the value partition.

5.4.3.1 Bottom Up

This is by no means the final structure of the taxonomy; its purpose is to enable defined

concepts described within the glossary to be organised by identifying facets from the

bottom up resulting in the creation of high level or more generalised concepts. The focus of

bottom-up approach was to further organise defined concepts such as devices and mHealth

functions based upon a specific shared characteristic to establish common more generalised

classes. This process identified a further 6 classes. Examples included functions that could

be organised into one of four distinct types as defined by the mHealth Application Function

Taxonomy , and types of mobile devices i.e Android and iOS. Once again new concepts

identified as a consequence of this process required updating the glossary to ensure that the

vocabulary is consistent and clearly defined. An overview of the high-level class hierarchy.

5.4.3.2 Class Hierarchy Taxonomy

The product of this phase created the structure of the class hierarchy in the form of a

taxonomy. The taxonomy serves as the backbone of the ontology and will be used as

testing criteria during the coding phase and evaluation of the ontology. For presentation

purposes and to avoid repetition the complete class hierarchy has been divided into sections

and is discussed in detail throughout Section 5.6.

5.4 Implementation: Capturing 151

5.4.4 Building the Relationship Dictionary

In OWL properties represent axioms and are used to define relationships. As discussed

earlier, there are two5 types of properties, Datatype properties and Object properties. Data

properties describe the relationship between an instance and a data values. Whereas

object properties describe the relationship between instances. Since there are no specific

individuals identified within this domain, the focus of this activity was on object properties.

Subject ObjectPredicate

Figure 5.16 Structure of a object property

Object properties describe the binary relationship between pairs of individuals. The pairs

consist of a subject and a object (also referred to as the filler) that are connected via a

predicate as shown in Figure 5.16. Each of the main branches in the primitive skeleton

has at least one association to an object property. These properties are then used to define

the conditions for membership of concepts belonging to the defined concept hierarchy, this

is discussed in further detail in Section 5.4.5. During the knowledge acquisition activity,

concept maps were developed that consisted of named entities within the domain. These

concept maps show the relationships between the subject such as Nexus5 and its features

(objects). Each of the concept maps was annotated with additional attributes such as

characteristics of the relationship, domain and range. These attributes are discussed in

detail in the subsections that follow.

5Technically there is a third type of property called Annotation properties, however, these are not used
to create axioms, these are used to add meta-data to entities

5.4 Implementation: Capturing 152

5.4.4.1 subProperties

Similar to classes, object properties in OWL can also be arranged in a tree structure

using the subPropertyOf construct [149]. From a description logic perspective, this

is referred to as a role hierarchy [139]. Consider the two properties hasHardware and

hasBluetooth. If hasBluetooth is a sub-property of hasHardware, the property exten-

sion6 of hasBluetooth should be a subset of the property extension of the parent property

hasHardware. This states that individuals described using the hasBluetooth property

are also members of the property extension hasHardware. The list below represents the

high-level branches of the object property hierarchy7.

• topObjectProperty

– hasHardware

– hasFunctionType

– hasFunctionLogic

– hasManufacturer

– hasPersonalisedComponent

– requiresHardware

5.4.4.2 Object Property Characteristics

In OWL, relationships between individuals can be enriched via the use of seven different

object property characteristics: Functional, Inverse-Functional, Transitive, Symmetric,

Asymmetric, Reflexive and Irreflexive [163]. Each of these object property characteristics

represents a distinctive type relationship that can exist between individuals. As mentioned

earlier the concept maps show the numerous relationships to other concepts8 that a named

6Defines the relationship between pairs of individuals
7note the topObjectProperty is a built-in object property in OWL that connects all possible pairs of

individuals, hence why it is the root of the hierarchy
8classes of individuals

5.4 Implementation: Capturing 153

concept has. After analysing each concept map, six out of the seven object property

characteristics were not required, since the type of relationships they represent are not

present within the domain. Therefore, they have been excluded from the discussions that

follow. It is worth noting, however, that an object property does not require a characteristic

to be specified.

Functional

Functional properties are often referred to as single value properties or features. With

regards to this ontology, functional properties formed some of the relationships. An object

property is considered functional if, for a given individual (A), there can be at most one

individual (B) that is related to it via the property. Figure 5.17 illustrates the characteristics

of a functional property. The solid lines represent the asserted relationship, whilst the

dotted lines show inferred relationships. However, if individual A has more than two or

more relationships to other individuals (B & C) via the same functional property then this

would infer that they are the same individual9.

AA
hasRelationship

hasRelationship

Implies they are
the same individual

BB

CC

Figure 5.17 Functional property

With regards to the PMAD Ontology model, an example of a functional property would

be hasMinimumApiRequirement. As this relationship is used to describe the minimum

API requirement of the mobile device. In this example, an individual that is a member of a

mobile device class can have at most one relationship with and an individual that belongs to
9unless explicitly stated otherwise, then the reasoner would flag the ontology has inconsistent

5.4 Implementation: Capturing 154

the Api class. This is due to the fact that a mobile device can at most have one relationship

with an API. Other examples of a functional property include hasFunctionLogic and

hasManufacturer.

5.4.4.3 Domain and Range

In addition to the object properties characteristics, object properties may also have a domain

and range specified. The domain and rage of an object property represent axioms that are

used by a reasoner to make inferences [139]. The domain and range of an object property

constrain the relationship between individuals belonging to the domain to individuals from

the range[149]. With respects to the modelling approach discussed earlier, the domain of

an object property should be a class from the defined hierarchy whereas the range should

be a specified as a self-standing class. To place this into context, using the earlier example

the object property hasHardware describes the relationship between individuals that are

members of a defined class MobileDevice (domain) to individuals that are members of the

Hardware class (range). Thus the domain and range of the hasHardware object property

can be set to the following:

• Object Property: hasHardware

– Domain: Mobile Device

– Range: Hardware

As a result of the restriction applied to the object property, a reasoner would infer any indi-

vidual that has the relationship hasHardware must also belong to the class MobileDevice.

Likewise, if requiresHardware object property has the domain set to Function and

the range to Hardware, this would infer that any individual that has the relationship

requiresHardware must also belong to the class Function.

5.4 Implementation: Capturing 155

It is important to note that particular care has to be taken when assigning restrictions to the

domain of an object property. As oversights can lead to incorrect inferences being made

by the reasoner. By assigning a domain restriction to an object property as seen in the

examples from the previous paragraph can result in adverse side effects when describing

more complex classes such as a mobile device that are defined using different object

properties. As discussed in Section 5.4.1, a mobile device in this domain is interpreted

as some ‘thing’ that is made up of hardware, has a manufacturer and has a minimum API

requirement. Now consider this, if a domain restriction MobileDevice were applied to

each of these properties and for the purpose of this demonstration; a class is defined using

only one of the properties 10. The class would be considered as a subclass of mobile device

which it is not within the context of the domain.

To avoid this complication, an alternative approach is to solely rely on necessary and

sufficient conditions (see Section 5.4.5.2 for more information) for determining if an

individual is a member of a specific class. This approach allows the conditions for

membership of classes to be described in significant amount of detail using several object

properties and enables the class hierarchy to be inferred and occur naturally based on the

necessary and sufficient conditions. However, adopting this approach also has its limitations

as it requires an ontology engineer to take precautions when defining classes particularly

and check that the inferred class hierarchy is what it is expected to be. Therefore, the

domain of each object property is left blank and only the range of the property is specified,

this allows the inferred hierarchy to be arranged based on the necessary and sufficient

conditions (seeSection 5.4.5.2), whilst also allowing the self-standing concepts to remain

as modular ‘building blocks’ to define concepts.

10only is used to represent a single object property and is not to be confused with the universal quantifier
(∀)

5.4 Implementation: Capturing 156

5.4.4.4 Relationship Dictionary

The product of this activity was the creation of the relationship dictionary. This document

organises the relationships in accordance with the position in the object property hierarchy

and describes the specific attributes of each relationship. This includes the name given to

the object property relationship, the characteristic of the relationship, domain and range.

An excerpt taken from the relationship dictionary is presented in Table 5.14.

Table 5.14 Excerpt From the relationship dictionary

Property Sub Property of Characteristic Domain Range

hasHardware topObjectProperty - - Hardware

hasAudio hasHardware - - Audio

hasLoudspeaker hasAudio Functional - Loudspeaker

hasMicrophone hasAudio Functional - Microphone

...

requiresHardware topObjectProperty - - Hardware

requiresAudio hasHardware - - Audio

requiresLoudspeaker requiresAudio Functional - Loudspeaker

requiresMicrophone requiresAudio Functional - Microphone

..

functionType topObjectProperty Functional - FunctionType

functionLogic topObjectProperty Functional - FunctionLogic

hasMinimumApiRequirement topObjectProperty Functional - Api

hasManufacturer topObjectProperty Functional - Manufacturer

requiresHardware topObjectProperty - - Hardware

...

5.4 Implementation: Capturing 157

5.4.5 Building and Documenting Class Expressions

Up until now all concepts within the glossary have only been expressed using natural

language. Although understandable by a human, a machine is unable to interpret the

knowledge encoded within the definition, thus is unable to make inferences and enforce

semantic constraints. Therefore, the final activity in the capturing phase was to create

and document formal class expressions in preparation for the coding phase. Class expres-

sions were formed by utilising the concept maps created towards the beginning of this

activity. However, the translation from a concept map to a class expression required an

understanding of the various class constructors that enforce specific constraints on a class.

5.4.5.1 Class Constraints

In OWL the class expressions are formed using various constructs, that combine to form

class axioms. Constructs are used to constrain the conditions for membership of a specific

class by enforcing constraints [164]. As illustrated in Figure 5.18 there are four ways in

which a class can be constrained: Class Identifier, Enumeration11, Property Restrictions

and Operators. Note, cardinality restrictions are discussed in this thesis for completeness

but are not utilised within the context of this work.

11Enumeration is used to specify the set of individuals that belong to a specific class. Although acknowl-
edged enumeration has been excluded from the discussion since there are no individuals specified within the
domain

5.4 Implementation: Capturing 158

Maximum
Cardinality

<

Equals
=

Class Building
Blocks

Value
Constraints

Cardinality
Constraints

Existential
Quantifier

$

Universal
Quantifier

"

Has Value
'

Minimum
Cardinality

Intersection

 Union

Complement
¬

Class Identifier Enumeration Property
Restrictions OperatorsClass Identifier Enumeration Property
Restrictions Operators

Figure 5.18 Class building blocks in OWL

5.4.5.1.1 Class Identifier

The most simple form of class description is simply the name given to the class [149].

The name given to a class is more formally referred to as a class identifier and should

clearly describe the types of individuals it aims to represent. For example, MobileDevice

represents a class of individuals that are mobile devices. The class identifier is unique in

the sense alone it is also a class axiom since it states the existence of a class, whereas the

remaining constructs describe an anonymous class12 or classes by placing constraints on

the class extension [149].

5.4.5.1.2 Property Restrictions

Property restrictions describe an anonymous class of individuals by placing constraints

on an object and or data property. Properties can be restricted either by using value or

cardinality constraints.

12An anonymous class represents a class of individuals that satisfy the restriction.

5.4 Implementation: Capturing 159

Value Constraints place restrictions on the relationship that the an individual participates

in. They either; specify the existence of at least one kind of relationship, or specify the

only kinds of relationships that can exist (if they exist), or specify the relationship of an

anonymous class of individuals to a specific individual [149].

• Existential Quantifier (∃) specifies the existence of at least one relationship along

a specified property between a class of individuals to an individual of a specific class.

In Protégé the construct some is used.

• Universal Quantifier (∀) also known as, "all values from" restrictions, describe

the relationship between a class of individuals, that via a given property only have

relationships along this property to individuals of a specific class. However universal

restrictions do not specify the existence of a relationship, they merely state if a

relationship exists for the given property then is must only be to individual that ar:e

members of a specific class, thus none is also valid. In Protégé a universal restriction

uses the only construct.

• Has Value (∋) describes an anonymous class of individuals that via a given property

is related to either a specific individual or data property. In Protégé the construct

value is used.

Cardinality Constraints restrict the potential number of relationships an individual can

participate in for a given property and exists in three forms: maximum cardinality, mini-

mum cardinality and equals [149].

• Maximum Cardinality (⩽) specifies for a given property the maximum number of

relationships that an individual can participate in for a given property. In Protégé the

construct max construct is used.

• Minimum Cardinality (<) specifies for a given property the minimum number

of relationships that an individual can participate in. In Protégé the construct min

construct is used.

5.4 Implementation: Capturing 160

• Equals (=) specifies for a given property exactly number of relationships that an

individual can participate in. In Protégé the construct min construct is used.

5.4.5.1.3 Operators

Operators are used to combine multiple sets of restrictions to form advanced class ex-

pressions. OWL is recognised to have three language constructs: intersection, union and

compliment [149].

• Intersection (⊓) as shown in Figure 5.19a, the intersection between ClassA and

ClassB represents an anonymous class of individuals that are members of both

ClassA and ClassB or equivalently members of ClassB and ClassA. Note an

intersection must contain at least two classes.

• Union (⊔) as shown in Figure 5.19b the union between ClassA and ClassB

represents an anonymous class of individuals that are members of ClassA or ClassB.

Note a union must contain at least two classes.

• Compliment (¬) describes an anonymous class of individuals that do not belong to

a specific class. For example ¬ ClassB, describes an anonymous class of indviduals

that are not members of ClassB as shown in Figure 5.19c.

5.4 Implementation: Capturing 161

Intersection between
Class A Class B

Class A Class BClass A Class B

(a) Intersection

Union between
Class A Class B

Class A Class BClass A Class B

(b) Union

Class BClass B Anonymous classAnonymous class

Compliment
¬ Class B

Compliment
¬ Class B

Anonymous class

Compliment
¬ Class B

(c) Compliment

Figure 5.19 Visual representation of operators in OWL: Intersection, Union & Compliment

5.4 Implementation: Capturing 162

5.4.5.2 Class Axioms

Class axioms are statements that are used to describe relationships between classes. For-

mally defining classes is a challenging task when developing an ontology and extreme

care has to be taken. As mentioned earlier, the simplest form of a class axiom is the class

identifier, as it states the existence of a concept. OWL also has an additional three types of

class axioms, these are subClassOf, equivalentTo and disjointWith. Class axioms

are utilised by a reasoner to make inferences and specify the necessary and necessary

sufficient conditions of class [149].

subClassOf

If C is defined as a subclass of D, then the set of individuals that are members of C must

be a subset of the individuals that are also members of D. The concept taxonomy created

in Section 5.4.3 illustrates the use of the subclass axiom to assert a hierarchy.

Condition

Condition

Condition

Condition

Condition

Condition

Implies

Necessary Conditions

NamedClass

Condition

Condition

Condition

Implies

Necessary Conditions

NamedClass

Figure 5.20 Necessary condition

The subClassOf construct is also used to describe primitive classes in OWL. A primitive

class is a concept that is described using only necessary conditions. A necessary condition

describes the conditions that an individual must satisfy in order to be a member of a named

class. However, if a random individual satisfies these conditions, we cannot say that it

is a member of this class since the conditions are not sufficient [164, 139]. This is as

indicated by the single direction arrow in Figure 5.20. Think of necessary conditions as

partial definitions of concepts that we are unable to define completely [139].

5.4 Implementation: Capturing 163

equivalentClass

For C to be considered as equivalent to D, every individual that is a member of C must

also be a member of D. It is worth noting that in an OWL ontology the equivalentClass

construct does not imply class equality13, but rather that the classes are equivalent in terms

of their class extension (conditions for membership) [149].

Condition

Condition

Condition

Condition

Condition

Condition

Implies

Necessary & Sufficient Condition

NamedClass

Condition

Condition

Condition

Implies

Necessary & Sufficient Condition

NamedClass

Figure 5.21 Necessary and sufficient condition -

The equivalentClass construct is used to express the conditions for membership of

a defined class. A defined class is expressed using necessary and sufficient conditions.

Necessary and sufficient conditions define the conditions that an individual must satisfy in

order to be a member of the named class. Moreover, if a random individual satisfies these

conditions then the individual must be a member of the named class, as symbolised by the

bi-directional arrow in Figure 5.21.

13Class equality means that the classes have the same intensional meaning or denote the same concept. In
OWL Class equality is expressed using the sameAs construct.

5.4 Implementation: Capturing 164

PrimitiveSkeleton

AndroidApiLevelIosLevel AndroidApiLevelIosLevel AndroidApiLevelIosLevel

Hardware ApiHardware ApiHardware Api

Figure 5.22 Excerpt from the primitive skeleton

MobileDevice ≡ ∃ hasHardware.Hardware ⊓ ∃ hasManufacturer.Manufactuer ⊓

∃ hasMinimumApiRequirement.Api ⊓ ∀ hasHardware.Hardware ⊓

∀ hasManufacturer.Manufactuer ⊓ ∀ hasMinimumApiRequirement.Api

AndroidDevice ≡ ∃ hasHardware.Hardware ⊓ ∃ hasManufacturer.Manufactuer ⊓

∃ hasMinimumApiRequirement.AndroidApiLevel ⊓

∀ hasHardware.Hardware ⊓ ∀ hasManufacturer.Manufactuer ⊓

∀ hasMinimumApiRequirement.AndroidApiLevel

Figure 5.23 Class definitions represented in description logic notation

5.4 Implementation: Capturing 165

Necessary and sufficient conditions are defined using class constructors and object proper-

ties that are constrained by concepts from the primitive skeleton. Figure 5.22 is an excerpt

from the primitive skeleton, Hardware, Api, IosApiLevel and AndroidApiLevel are

self standing concepts. Figure 5.23 shows how the primitive skeleton and property con-

straints are used to define two classes. The definition of the class MobileDevice implies

that, for a random individual to be a member of this class then it is necessary that it has:

• at least one relationship with an individual that is a member of the Hardware class and

• at least one relationship with an individual that is a member of the Manufacturer class and

• at least one relationship with an individual that is a member of the Api class and

• only has relationships with an individuals that is a members of the Hardware class and

• only has relationships with an individuals that is a members of the Manufacturer class and

• only has relationships with an individuals that is a members of the Api class

If all of these conditions are met, then the random individual must be a member of the

MobileDevice class. This definition utilises what is known as a closure axiom. Due

to OWL’s open world assumption, a mobile device may have other relationships that

we just don’t know. Therefore, it is also necessary to ‘close’ the class by stating these

relationships and only these relationships are necessary and sufficient to conclude that

a random individual is a member of the mobile device class. The closure of a class is

achieved via the combination of the existential (∃) and universal (∀) quantifiers on a given

property. The existential quantifier denotes the existence of a given relationship, whilst

the universal quantifier states the relationship can only be to the specified filler. This

guarantees that if a random individual that has the relationships stated above and only

those relationships then it must be a mobile device. Without the closure axiom (i.e without

properties constrained by the existential quantifier), the definition would be open and would

allow other random individuals that satisfy the conditions plus have other relationships to

be also classified as a mobile device.

5.4 Implementation: Capturing 166

An elegant product of necessary and sufficient conditions is that a reasoner can use them

to infer class hierarchy [164]. In the example above, a reasoner can infer that the class

AndroidDevice subsumes MobileDevice, since the necessary and sufficient conditions

of AndroidDevice are a subset of MobileDevice.

Necessary and sufficient conditions can also be used to define covering axioms. A covering

axiom describes an anonymous class that cannot contain any individuals from a class other

than the classes specified. Covering axioms are utilised throughout the value partition

hierarchy. For example, the class Monitoring utilises a covering axiom:

Monitoring ≡ Assessment ⊔ Tracking

Figure 5.24 Example of a covering axiom

In the example shown in Figure 5.24, the class Monitoring is ‘covered’ by the union

of Assessment and Tracking classes. All individuals in Monitoring must be members

from the Assessment or Tracking classes. And there are no other types of Monitoring.

disjointWith

For C to be considered disjoint from D, the intersection between the C and D must be

an empty set. The disjointWith class axiom is important in OWL as regardless of where

classes exist in the hierarchy, OWL assumes that classes overlap. This can in some cases

cause incorrect inferences made by the reasoner. Consider the following example, an

individual I cannot be both a member of the Function and Mobile Device classes. As

logically a mobile device cannot be a function. Likewise, a function cannot be a mobile

device. Without the disjointWith construct, a reasoner would allow I to be a member

of both classes. However, by asserting that these two classes are disjoint, prevents this

from happening, instead, a reasoner would infer that I cannot exist and would be assigned

5.4 Implementation: Capturing 167

membership to the ⊥ class, Nothing; which is an empty set. This indicates that there is

potentially an inconsistency within the ontology. The disjoint axiom is heavily utilised

throughout the ValuePartition hierarchy since it is a requirement of Rector’s modelling

approach that all self-standing concepts belonging to the primitive skeleton should be

disjoint from its siblings, as shown in Figure 5.25.

Monitoring

Assessment

Tracking

Assessment

Tracking

disjoint

Figure 5.25 Monitoring: Disjoint sibling classes

5.4.5.3 Concept Dictionary

The product of this activity was the creation of the Class Axiom Dictionary. The dictionary

contains information relating to the various class axioms discussed throughout this section

for each concept within the PMAD Ontology model. This document will be utilised during

the implementation and evaluation aspects of the ontology. Table 5.15 below is an excerpt

from the class axiom dictionary14.

14some information has been excluded for presentation purposes

5.4
Im

plem
entation:C

apturing
168

Table 5.15 Excerpt from the concept dictionary

Class Identifier subClassOf equivalentClass disjointWith

Hardware ValuePartition
Audio ⊔ Bluetooth ⊔ Camera ⊔ Fingerprint ⊔ Infrared ⊔
NFC ⊔ Sensor ⊔ Screen ⊔ Telephony ⊔ USB ⊔ WiFi

Api, Logic,

FunctionType,

Hardware,

Manufacturer, Per-

sonalisedComponent

MobileDevice Thing

∃hasHardware.Hardware ⊓
∃hasManufacturer.Manufactuer ⊓
∃hasMinimumApiRequirement.Api ⊓
∀hasHardware.Hardware ⊓
∀hasManufacturer.Manufactuer ⊓
∀hasMinimumApiRequirement.Api

Function

AndroidDevice MobileDevice

∃hasHardware.Hardware ⊓
∃hasManufacturer.Manufactuer ⊓
∃hasMinimumApiRequirement.AndroidApiLevel ⊓
∀hasHardware.Hardware ⊓
∀hasManufacturer.Manufactuer ⊓
∀hasMinimumApiRequirement.AndroidApiLevel

IosDevice

...

5.4 Implementation: Capturing 169

5.4.6 Capturing: Summary

To summarise, each activity in the capturing phase focused on documenting or modelling

vital components of the ontology. Combined these documents serve as the schematics

for the PMAD Ontology model. A summary of each document/model produced by each

activity is provided in Table 5.17 below.

Table 5.17 Summary of the design documentation produced during the capturing phase

Document Description Purpose

Glossary Document containing an unam-

biguous description of entities

within the domain

To facilitate the intended mean-

ing of entities within the domain.

Class Hierarchy Taxonomy that models the in-

tended hierarchical structure of

classes within the ontology

Will be used during the testing

and evaluation of the ontology to

determine if the correct hierarchy

has been inferred

Relationship Dictionary Document that describes the spe-

cific details of the relationships

present within the ontology

This document will be utilised

during the coding phase, specif-

ically during the creation of

object-properties activity.

Concept Dictionary Document that lists the class ax-

ioms for each class within the do-

main

This document will be utilised

during the coding phase, specifi-

cally during the definition of con-

cepts activity.

5.5 Implementation: Coding 170

5.5 Implementation: Coding

Up until now the knowledge regarding the domain has been defined, organised, structured

to form several key design documents: Glossary of terms, Class Hierarchy (Taxonomy),

Relationship Dictionary and Concept Dictionary. The objective of this stage is to encode

the knowledge contained within the design documents to create the ontology. The PMAD

Ontology model was encoded using the OWL ontology language using the ontology editor

Protégé 15. As shown in Figure 5.26, the coding process consisted of five manageable

activities that systematically constructed specific components the PMAD Ontology model.

Each of the activities is discussed in the subsequent sections.

Create Class
Hierarchy

Create Object
Properties

Add
Annotations to

Entities

Define
Concepts Run ReasonerCreate Class

Hierarchy
Create Object

Properties

Add
Annotations to

Entities

Define
Concepts Run Reasoner

Figure 5.26 Activities with the ‘Coding process’ of the ontology’s development

5.5.1 Create Class Hierarchy

The class hierarchy was built using the create class hierarchy tool built into Protégé to the

specification modelled in the taxonomy created in Section 5.4.3. Figure 5.27a, shows a

screenshot of how the class hierarchy is built using the create class hierarchy tool. Tabs

are used to indicate subclasses. The result produces the asserted hierarchy of the ontology.

Figure 5.27b shows a screenshot of the value partition hierarchy taken from the class

hierarchy viewer. At this stage in the ontology’s implementation, it was important to

ensure that the structure of the value partition hierarchy was correct, as mistakes here

would impact the knowledge encoded.

15Protégé 4.3 was used, that included the HermiT 1.3.8 reasoner

5.5 Implementation: Coding 171

5.5.2 Create Object Properties

Creating the object properties was completed in two stages. The first stage built the object

property hierarchy (as shown in Figure 5.28a) as documented in the relationship dictionary.

The second stage added the constraints and characteristics to each of the object properties.

The screenshot presented in Figure 5.28b shows the hasAccelerometer object property,

as can be seen, this object property is functional, a sub-property of hasSensor and has the

rage specified as Accelerometer.

5.5.2.1 Add Annotations to Entities

In OWL Annotation properties provide a mechanism for attaching metadata to entities

within the ontology. They are not used to assert or infer knowledge within the ontology.

For the sake of clarity and to assist throughout the coding and maintenance of the ontology.

It was decided that each entity within the ontology will be annotated with the annotation

property description. This annotation property will be used to provide the natural

language definition of the entity from the glossary as shown in Figure 5.29. The reasoning

behind this additional step is to further increase readability of the ontology and assist in

the description and definition of classes. But also be operationalised via the framework to

provide descriptions of components of the ontology to the user, for example, a description

of a function could provide more information to the user rather than just a class name.

5.5 Implementation: Coding 172

(a) Create class hierarchy tool in Protégé (b) Value partition hierarchy

Figure 5.27 The process of creating the Asserted class hierarchy in Protégé

(a) Object property hierarchy (b) Object property constraints and description

Figure 5.28 The process of creating Object properties In Protégé

Figure 5.29 The process of annotating entities in Protégé

5.5 Implementation: Coding 173

5.5.3 Defining Classes

The penultimate activity in the coding phase utilised the concept dictionary to add class

specific axioms: subclass of, disjoint with and equivalent class to the ontology.

5.5.3.1 Sub ClassOf Axiom

With regards to the subClassOf axiom, the creation of the class hierarchy auto-populated

this axiom. Again the defined concepts such as MobileDevice, Function etc., were

all placed as a subclass of Thing, as they will be placed into a inferred hierarchy via a

reasoner, once they have been defined using necessary and sufficient conditions.

5.5.3.2 DisjointWith Axiom

As stated earlier the disjoint with axiom was heavily utilised in the value partition hierarchy

as it was a requirement of Rector’s modelling approach. The disjointWith axiom was also

used in the defined concept hierarchy to prevent any individual from being a member of

both the MobileDevice and Function classes. Below is a screenshot showing multiple

uses of the disjointWith axiom.

Figure 5.30 Several uses of the disjoint class axiom in Protégé ontology editor

5.5 Implementation: Coding 174

5.5.3.3 Equivalent Class Axiom

As discussed in Section 5.4.5.2, the equivalent class axiom is used to specify the necessary

and sufficient conditions of a class. In Protégé class descriptions are presented using the

Manchester syntax, which is a user-friendly syntax used for descriptions [165]. Below

are several examples of necessary and sufficient conditions that were discussed earlier in

Section 5.4.5.2:

Figure 5.31 MobileDevice class: Necessary and sufficient conditions

Figure 5.32 AndroidDevice class: Necessary and sufficient conditions

Figure 5.33 Monitoring class: Covering axiom

5.5 Implementation: Coding 175

5.5.4 Running the Reasoner: Inferring Subsumption

The final activity in the coding process required running a reasoner. Although presented as

the last phase of the coding process the reasoner was utilised throughout the coding process

of the ontology. The role of the reasoner is discussed in further detail during the evaluation

of the ontology in Chapter 7. For now, the reasoner has organised the classes belonging

to the defined concept hierarchy, based upon their necessary and sufficient conditions.

Figure 5.34 shows a comparison between the asserted class hierarchy (Figure 5.34a) and

Inferred class hierarchy (Figure 5.34b) from the perspective of a MobileDevice class

using the OWL Viz plug-in available in Protégé .

(a) Asserted Hierarchy
(b) Inferred Hierarchy

Figure 5.34 Comparison between the Asserted Class hierarchy & Inferred Class hierarchy
in Protégé from the perspective of the ‘MobileDevice’ class

5.6 PMAD Ontology Overview 176

5.6 PMAD Ontology Overview

The objective of this section is to present the PMAD Ontology model as a completed

artefact. Summarised in Table 5.19 are various metrics reported by Protégé that describe

several aspects of the ontology. The PMAD Ontology created as part of this research

consists of a total of 600 axioms, 340 logical axioms, 140 classes, 63 object properties and

203 annotation properties axioms. Protégé determines the Description Logic (DL) expres-

sivity based upon the concept constructors, property (role) constructors and axioms used

to encode knowledge [139, 166, 167]. The ontology engineered as part of this research

has been characterised with a DL expressivity of ALCHF , in short, the ontology utilises

the base language constructs, which are extended via the use of complex concept negation,

property hierarchies and functional properties as discussed throughout Section 5.4. For

more information regarding the DL, expressivity see Appendix B.2. The remainder of this

section presents an overview of the ontology, beginning with the value partition hierarchy.

Table 5.19 PMAD metrics

Ontology Metrics

DL Expressivity ALCHF

Axioms Count 600

Logical Axiom Count 340

Classes Count 140

Object Properties Count 63

Disjoint Axiom Count 17

Annotation Properties Count 203

5.6 PMAD Ontology Overview 177

5.6.1 Value Partition Hierarchy

As discussed in Sections 5.2.3 and 5.4.3 the value partition represents self-standing con-

cepts, the building blocks of used to define concepts. As shown in Figure 5.35, the upper

level of the Value Partition hierarchy consists of 6 branches. Each branch is disjoint and

has its own hierarchy, each of which is discussed throughout sections that follow.

Figure 5.35 Upper level of the ValuePartition class hierarchy

5.6.1.1 Hardware

The hardware branch class represents self-standing concepts that depict the hardware

features of a mobile device. The Android reference documentation provided an exhaustive

list of hardware features of devices that operate within the Android platform. As shown in

Figure 5.36 the Hardware class has 12 subclasses: Audio,Bluetooth, Camera, Display,

FingerprintReader, Infrared, Location, Nfc, Sensor, Telephony, Usb and Wifi.

Classes such as Audio, Camera, Telephony and Sensor also contained several subclasses.

For example, the class Sensor for contains 13 distinct subclasses.

5.6 PMAD Ontology Overview 178

Figure 5.36 Hardware class hierarchy found within the ValuePartition hierarchy

5.6 PMAD Ontology Overview 179

5.6.1.2 Api

As described inSection 5.4.3, the Api class consists of the platform-specific API Levels.

During the time of development, the Android Platform has 20 revisions of the Android

API. an Excerpt from the API hierarchy is shown in Figure 5.37.

Figure 5.37 Excerpt of the API class hierarchy found within the ValuePartition hierarchy

5.6.1.3 FunctionType

As can be seen in Figure 5.38, FunctionType branch simply replicated the class hierarcy

estanblished in the mHealth Application Function Taxonomy, refer to Section 4.4 for more

information.

Figure 5.38 FunctionType class hierarchy found within the ValuePartition hierarchy

5.6 PMAD Ontology Overview 180

5.6.1.4 FunctionLogic

The service logic refers to the code that is necessary for a particular function to operate.

Each of the classes that belong to the FunctionLogic is representative of the logic

necessary for a particular function to operate. For each mHelath function required in the

use case scenarios required a function logic class. All function logic concepts have the

suffix ‘Logic’ appended to the end the class identifier for clarity. Figure 5.39 is a screenshot

taken of FunctionLogic hierarchy.

5.6.1.5 Manufacturer

As shown in Figure 5.40 represents device manufacturers. There were four manufacturers

within the use case scenarios: ‘Apple’, ‘Asus’, ‘LG’ ‘Samsung’.

5.6.1.6 PersonalisedComponent

The PersonalisedComponent class represents the element of the function that can be

tailored to the requirement of a healthcare consumer and had 14 subclasses.

5.6 PMAD Ontology Overview 181

Figure 5.39 Excerpt of the FunctionLogic class hierarchy found within the ValuePartition
hierarchy

Figure 5.40 Manufacturer class hierarchy found within the ValuePartition hierarchy

Figure 5.41 PersonalisedComponent class hierarchy found within the ValuePartition
hierarchy

5.6 PMAD Ontology Overview 182

5.6.2 Defined Concept Hierarchy

During the coding of the PMAD Ontology, defined concepts were not organised into any

sort of a hierarchy, this task was left to the reasoner. This was for several reasons. The use

of a reasoner, keeps the ontology in a logical, maintainable and modular state, promoting

the reuse of the ontology in other ontologies and or applications, this is particularly useful

as the ontology grows in size and complexity [149]. It also relieves the ontology engineer

from a task whilst reducing human errors [87]. Figure 5.42a, shows the asserted ‘defined

concept hierarchy’, notice that these classes are not arranged in any form of hierarchy.

Based upon the necessary and sufficient conditions subsumption was inferred producing

the hierarchy shown in Figure 5.42b. As can be seen the upper level of the ‘defined concept

hierarchy’ consists of two disjoint classes MobileDevice and Function.

(a) Asserted class hierarchy (b) Inferred class hierarchy

Figure 5.42 Defined concept hierarchy comparison

5.6 PMAD Ontology Overview 183

5.6.2.1 MobileDevice

The MobileDevice class refers to a portable computing device, such as a smartphone or

tablet computer. As can be seen in Figure 5.43, there are two subclasses AndroidDevice,

IosDevice16 which are disjoint since a mobile device can only operate on a single platform.

The use case scenarios used three devices: ‘Nexus5’ & ‘SamsungGalaxyS4’ are cellular

mobile devices, ‘Nexus7’ is tablet computer. Each of the devices are again disjoint and are

defined using values from the Manufacturer, Hardware and ApiLevel hierarchies.

Figure 5.43 Defined concept hierarchy: MobileDevice Class hierarchy

16iOS was included during the development of the ontology for evaluation purposes

5.6 PMAD Ontology Overview 184

5.6.2.2 Function

A Function in the context of this domain is defined as a service that is provided to a health-

care consumer. The use case profiles required a total of 22 functions categorised into one

of 4 disjoint function categories shown in Figure 5.44. Functions were described using the

values from the Hardware, FunctionType, FunctionLogic and PersonalisationComponent

classes.

As discussed in Section 4.3.6.1, mHealth functions from a personalisation perspective

existed in two forms: specialised and generalised. The majority of the functions required

in the use case scenarios were specialised functions, meaning the logic and personalisation

component was unique to that particular function. Whereas, generalised functions are

described as using the same logic but was made unique because of the personalisation

component. For example, LivingWithDiabetes and AboutServiceProvider were

defined almost semantically identical from an app development perspective, it was the

personalisation component ‘personalised’ the service it provided the user.

5.6 PMAD Ontology Overview 185

Figure 5.44 Defined concept hierarchy: Function class hierarchy

5.7 Summary 186

5.7 Summary

In summary, this chapter discusses the theoretical, design and development considerations

of the PMAD Ontology. The purpose of the ontology developed throughout this chapter

was to encapsulate knowledge associated with the development of personalised mHelath

applications; so, it can be operationalised and play an integral role within a framework

enabling healthcare professionals to create personalised applications to be used as part

of a patients care plan. The ontology was developed following the Skeletal Methodology

of Uschold and Grunninger and the design of the ontology was influenced by Gruber’s

ontology design criteria and Rector’s modelling approach.

Chapter 6

PMAD Framework

The motivation behind this chapter is to present and discuss the design considerations

of an ontology-driven framework. The PMAD Framework has been designed to enable

healthcare professionals to create personalised mHealth applications for healthcare con-

sumers. The chapter is structured in three parts, beginning with a discussion surrounding

the purpose, scope and design criteria. The second aspect discusses the creation of a

conceptual model and explores various factors that influenced the design of the PMAD

Framework. The final part presents an overview of the PMAD Framework and discusses

each component in detail.

6.1 Purpose, Scope and Design Influences 188

6.1 Purpose, Scope and Design Influences

As discussed in Chapter 2, developing personalised mHealth applications is not feasible

nor sustainable using traditional approaches to mobile application development. Existing

end-user programming solutions that enable people who do not possess the necessary,

skills, knowledge or familiarity of mobile application development to create, mobile

applications have several limitations such as the small number of general functions, focus

specifically on a particular aspect of healthcare or do not provide any mechanisms to

expand the functions they support. The purpose of the PMAD Frameworkis to provide an

on-demand service that enables healthcare professionals to create personalised mHealth

applications for healthcare consumers as part of the healthcare plan. It is not the intention

of this research to implement a fully operational platform, but rather a generic modular

high-level framework which represents the main architectural components and services of

such a system.

6.1.1 Design Criteria

As with other aspects of this research, it was important to establish a series of criteria

to be used to evaluate choices throughout the design of the framework. The following

design influences were inspirations taken from various worked cited and read during

the development of this research. They represent considerations from both the user and

systems perspectives.

• Simplicity: Healthcare professionals typically do not have the time or possess the

necessary domain expertise to develop personalised mHealth applications. Therefore,

the process of creating personalised mHealth applications should be intuitive and

clear to the user.

6.2 Building A Conceptual Design 189

• Transparency: Ties in with simplicity, the complexities of the inner mechanics

should remain hidden from the end user.

• Modularity: components of the framework should be follow a modular design

philosophy, dividing the system into smaller parts that can be independently created

and used in different systems.

6.2 Building A Conceptual Design

Prior to the design of the framework, it is important to have a clear understanding of how

the envisaged system will function [44, 168]. Budgen states that there are two possible

strategies that can be deployed when seeking components that make up the functionality

of a system [169]. Element first strategy, identifies the general needs of the problem and

then searches for a set of components that collectivity match the functionality, bringing

them together to form a system. Framework first strategy decomposes the problem into

fairly well-defined sub problems and then seeks a set of components that will fit the needs

of each sub problem. The development of the conceptual design combines both strategies

opportunistically as the design matured.

6.2.1 Use Case Modelling

The construction of the conceptual design began by identifying at a high level the main

functionality of the framework. In order to visualise the functionality of the framework

from a users’ perspective, a use case diagram was used. A use case diagram specifies

a set of interactions between actors and use-cases in order to achieve a particular goal

[112, 113]. Actors represent a person, organization, or external system that plays a role

in one or more interactions with a system, in this work actors represent users. A use case

6.2 Building A Conceptual Design 190

is presented as an oval and describes a sequence of actions that provide something of

quantifiable value to an actor, ie functionality of a system. Lines represent associations.

Finally, a system boundary defines the scope of the system, representing a collection

of functionality. Figure 6.1, represents a high-level abstract interpretation of the core

functionality of the framework. As can be seen there are three stakeholders; Healthcare

Professional, Healthcare Consumer and System Engineer. Healthcare Professionals (HCP),

are the primary users of the framework. A HCP will be involved in the creation of a

personalised mHealth application as well as view the data produced by the application.

Healthcare Consumers (HCC) are the secondary users. Although HCC won’t interact

directly with the system, they will interact with the applications created. System Engineers

(SE) are the tertiary users of the system and have the responsibility to maintain update and

further develop various components and services of the framework.

Maintains

Healthcare
Professional

Healthcare
Consumer

System
Engineer

Application

Uses
Application

functionality

Sends Data

Application

Uses
Application

functionality

Sends Data

Framework

View App
Data

Create App

Framework

View App
Data

Create App
<<include>>

Figure 6.1 High level use case scenario

6.2 Building A Conceptual Design 191

6.2.2 Development Process Considerations

The second phase analysed each of the end-user programming solutions discussed in

Section 2.3. Sommerville describes, with respects to traditional software engineering

processes1, four fundamental software engineering activities, that in some form, are way

present in all software engineering processes. Each activity is described briefly below

within in the context of mobile application development:

1. Specification: definition of the mobile applications functionality and constraints on

its operation.

2. Development: the design and coding of the mobile application defined in the

specification.

3. Validation: checks performed on the mobile application to ensure that it is to the

specification required.

4. Evolution: modifications to the mobile application.

One of the biggest challenges for this framework is ensuring that key activities associated

with the mobile application development process are streamlined and the complexities

remain transparent from the HCP. This is mainly for two reasons, the first is to dramatically

reduce the knowledge needed to build mHealth applications in order to not to overwhelm

the HCP. The second is to provide a sustainable method for developing personalised

mHealth applications. Using these four fundamental activities as a baseline, the devel-

opment process of each end-user programming solutions was modelled, analysed and

discussed below. Figure 6.2 shows the development process for each of the existing solu-

tions2. Each of the approaches shared similar characteristics. Each adopted a streamlined

1A software engineering process is a set of interrelated activities that result in the creation of a software
product

2Details of each activity relating to the specific platforms can be found in Section 2.3

6.2 Building A Conceptual Design 192

version of the engineering process; each relied on different implementations of graphical

user interfaces to ease aspects of the engineering process.

(a)

Selection

Design

Build

(b)

Start New

Content

Tiles

Settings

Finish

(c)

GUI Application
Designer

Auto
Generate Application

Scenario

Application Scenario
Player

Figure 6.2 Existing solutions development process:(a) Appy Pie, (b) Microsoft App Studio
and (c) Muss Platform

6.2.2.1 Validation

The purpose of the software validation activity is to determine if the application produced

is compliant with the requirements specification and expectations of the end user [170].

Although in some software engineering processes validation remains a single exclusive

entity, it is more common to see validation activities appear throughout the development

lifecycle. For a framework such as this, it is vital that it includes validation mechanisms

to review and inspect an application throughout key stages in the engineering process to

minimise the required.

6.2 Building A Conceptual Design 193

6.2.2.2 Specification

In a traditional setting, the specification aims to produce a mutually agreed upon document

that details the requirements of a mobile application between stakeholders and application

developers. It is described as the critical stage of the software process, throughout the

literature as errors at this stage inevitably lead to problems later on in development. As

emphasised throughout Chapter 2, HCP’s understand the requirements of the HCC but

lack the necessary skills, knowledge and familiarity associated with mobile application

development, meaning that are not in a position to determine the feasibility of the ap-

plication, with respect to its functionality and operating conditions. Existing solutions,

attempt to neutralise this issue by restricting the scope of the application to a predefined

set of rudimentary functions, that require ‘primitive’ (minimal) hardware for it to operate.

However, as witnessed during the creation of the mHealth Application Function Taxonomy,

mHealth functions exist in many forms, vary in complexity and even depend on the pres-

ence of specific hardware. Hence, one of the reasons for the creation PMAD Ontology. The

knowledge contained within the ontology will be used to determine, based on the HCC’s

device; the feasibility of the functionality required based upon the operating constraints

and recommend a suitable API. This not only simplifies the specification activity from

the perspective of a HCP, but also helps minimise the likelihood of errors later on in

development.

6.2.2.3 Design and Implementation

What is interesting is to see how each of the existing platforms tackle the ‘design’ and ‘im-

plementation’ activities and how they differ from traditional interpretations. In traditional

software engineering, the design activity can be summarised as a conceptual overview

of the structures that form the application [44, 171, 172]. The form and the extent of the

6.2 Building A Conceptual Design 194

design process can influence by the outputs from the specification activity and other factors

such as scale of the application, design practises and methods of implementation [172].

The implementation activity follows naturally after the design activity and is the process of

converting the conceptual interpretation of the application into an executable application.

With regards to the design of the application, each platform uses a controlled approach to

the design process. All platforms utilise a graphical user interface to guide users through

the design and implementation process, but tackle design from two different perspectives,

aesthetics and logic. Both Appy Pie and Microsoft App Studio focused mainly on the

aesthetics of the application allowing the end-user to customise various elements of the

mobile applications user interface such as colour, layout and position of UI elements. Both

these platforms used forms, wizards and validation when populating the necessary fields

required by the selected function, neither require the users. Once completed the platform

would then proceed to automatically build and compile the application. Whereas the MUSS

platform required healthcare professionals to use a visual programming language to design

the logic of a particular function. Based upon the results would generate XML that is then

interpreted by the ‘scenario player’ installed on the user’s device. Both approaches have

their advantages under different use cases. However, the main focus of this framework is to

enable HCP’s to create personalised mHealth applications for HCC, without the need for

intervention from application developers. HCP’s should be able to utilise their knowledge

of the HCC to personalise apps functions. Hence the second reason for the ontology. Based

upon the functions required during the specification activity, the knowledge contained

within the ontology will be used to generate forms consisting of fields that require the HCP

to populate. These fields will represent the personalisation component of each function

and will be validated prior to implementation. Leaving the system responsible for both the

aesthetics and implementation of the application.

6.2 Building A Conceptual Design 195

With regards to the mobile application architectural style, each of the end-user program-

ming solutions utilises a different application architectural styles. mHealth applications

developed using the MUSS platform utilise web applications. Mobile applications devel-

oped using Microsoft App Studio are native applications and Appy Pie utilises Hybrid

applications. Deciding which type of application architecture to use for this framework

required considering two aspects. The first considers the intended capabilities of the

application. From a functional perspective, the development of the mHealth Application

Function Taxonomy and PMAD Ontology shows there is a diverse range of health-related

functions available, many even required access to specific hardware to operate. This ruled

out the possibility for a complete web mobile application architecture since web applica-

tions have restricted performance and functionality, leaving to potential candidates Native

and Hybrid. The next factor to consider was from the perspective of the framework, which

application architecture would allow the most flexibility with regards to development. As

discussed in Section 2.2.2, native applications provide the richest and most compelling

experience for end-users since and excel in regards to raw performance and functionality

they support. They are built using platform-specific tools. Meaning from a development

perspective, for every platform the framework would have to handle both the UI and

functions independently. Whereas Hybrid applications, as shown in Figure 6.3, allow for

the amalgamation of both the native and web technologies allowing the reuse portions of

the code, specifically the UI for different mobile platforms. From the perspective of the

framework, this reduces development time and commitments. Therefore, the applications

created using this framework should utilise a Hybrid application architecture.

6.2 Building A Conceptual Design 196

Hybrid Application

Web Component

Native Component

User Interface

Functions

Mobile OS

OS Native APIs

Device HardwareDevice Hardware

Mobile OS

OS Native APIs

Device Hardware

Figure 6.3 Overview of a hybrid mobile application architecture

6.2.2.4 Evolution

As to be expected, the evolution process occurs once the initial software product has been

delivered. Once a mobile application is created, it is natural for the initial requirements

to mature and evolve [44, 173]. The aim of the evolution process3, is responsible for

correcting faults, improving performance or adaptation of other attributes due to changes

brought about by the operating environment or user [174]. The ISO/IEC/IEEE interna-

tional standard categorises maintenance activities into four classes; adaptive, perfective,

corrective and preventive [173]. Each is summarised below:

• Adaptive maintenance: provides enhancements necessary to accommodate changes

in the environment in which a software product must operate.

• Perfective maintenance: provides enhancements for users brought about by new

user requirements.
3Also referred to as the maintenance process, throughout the literature

6.2 Building A Conceptual Design 197

• Corrective: the modification repairs the software product to satisfy requirements.

• Preventive: the modification of a software product after delivery to detect and

correct latent faults in the software product.

Numerous studies surrounding the software evolution process [175–178] have revealed

that user requirements are a core problem associated with software evolution and that

75% of all maintenance efforts are expended on adaptive and perfective maintenance

activities. As discussed in Chapter 2 healthcare is diverse, and as with software, the

healthcare requirements of a HCC can also change. Appy Pie and Microsoft App Studio

platforms both have mechanisms to maintain and evolve the applications created by the

platform. To maintain consistency with the user the platforms utilise the same design

and implementation activities to introduce new functions into the application. Therefore

it is critical that from a HCP perspective that the PMAD Framework also is capable of

handling changes to HCC’s personalised application.

6.2.3 System Related Considerations

As well as the considerations associated with the development of applications, there is also

another system related issues highlighted in Chapter 2 that were also considered, these

mainly focused around data and maintenance aspects.

6.2.3.1 Data

One of the fundamental problems with modern mHealth technologies is related to data [60].

At the consumer’s fingertips, a mobile application enables unique access to a diverse range

of tools, resources and utilities. Provisioned correctly they can provide for an efficient

mechanism for promoting long-term well-being and independence. A big part of this is

6.2 Building A Conceptual Design 198

due to the data that a mobile application can generate. However, data with respects to how

data is used and protected requires considering: security & privacy, interoperability and

how apps interface with the system.

Security and Privacy

Security, privacy and safeguarding of personal data are prominent concerns for the health-

care industry. Although mobile platforms may offer varying degrees of support for

safeguarding data, it is the responsibility of the developer for protecting data. In the case

of the framework, it is paramount that security, privacy and data management mechanisms

are present in both the framework and the applications it produces.

System Interoperability

As discussed in Section 2.2.2.1, one of the challenges with a framework such as this is

that healthcare services are heavily invested in their own IT systems. Data produced by

the mobile applications provide a valuable insight into the health status of the healthcare

consumer. However, this data to be effective in a clinical setting it has to be accessible.

Therefore It is critical that the framework is capable of interfacing with existing IT system.

6.2.3.2 Maintenance

As described earlier, maintenance and evolution is a major factor in the engineering process

and the framework is no exception. The field of mobile application development is a rapidly

developing area and for a framework such as this to be effective, there is a need to maintain

components such as the underpinning data sources, ontology and framework components.

6.2 Building A Conceptual Design 199

6.2.4 Conceptual Design

As a consequence of the observations made and the topics discussed earlier in this section,

a conceptual design of the framework was created. The conceptual design shown in

Figure 6.4 was based up similar principles of a UML activity diagram and captures the

activities and dynamic behaviour of the framework. As can be seen, the conceptual design

provides a comprehensive overview of the framework and identifies several characteristics,

including the sequence of activities, relationships between components & services and

required data sources. For illustration purposes components shown in Figure 6.4 have been

colour coded to represent different things: green - user interface, purple - business logic,

range - data/ information source interface, red - data/ Information source and Grey - cross

cutting service.

From a HCP’s perspective the personalised mHealth application creation process, shown

in green, follows a linear development process. Excluding the ‘Login’ activity which is

considered a generic activity, each of the remaining activities are envisaged to facilitate a

HCP throughout a specific phase of the personalised mHealth application process. These

activities will be represented as graphical user interfaces that will be designed to aid

guide and mask the underlying complexities of the system, reducing the need for mobile

application development domain expertise.

The objective of the first stage is to determine if the target device (HCC device) can

support the chosen functionality. From a HCP perspective the ‘Specification Builder’,

begins by selecting a target device followed by the required functions of the personalised

application. This information represents an app specification. As discussed in Chapter 2,

during this stage in the personalised mobile application development process a HCP

would not possess the necessary domain expertise to determine the feasibility of the

mobile application. To compensate for the missing domain expertise the framework will

6.2 Building A Conceptual Design 200

utilise the knowledge contained within the PMAD ontology developed in Chapter 5 to

determine if the functionality required can be successfully implemented based upon the

healthcare consumers mobile device. The ‘specification validation’ service is responsible

for translating the app specification into a series of description logic queries that will be

used to interrogate the PMAD ontology and based upon the knowledge returned determine

the feasibility of the personalised mHealth application. If the system concludes that the

requirements cannot be achieved under the current conditions the HCP professional is

prompted with a message detailing potential solutions to resolve the issue. Otherwise, the

HCP can proceed to the second phase, ‘App Personalisation’. The interaction between

the components mentioned in this paragraph form a vital feature of the framework and a

critical step towards achieving the overall aim of this research.

Since each application has the potential to be unique, the framework will be required to

dynamically generate forms that a HCP will have to complete in order to personalise the

application. This will be the responsibility of the ‘Personalised Form Generator’.

The generator will then push these forms to the ‘App Personalisation’ components that

will present the generated forms to the HCP. A wizard will the guide the HCP throughout

the personalisation process for each function. Once complete and the input from the HCP

has been validated, the complete app specification is then sent to the ‘App Factory’ to be

compiled. Leading to the final stage of the process app deployment, which will be the

responsibility of the ‘Deployment Dashboard’ to guide the HCP through the process of

deploying the personalised mHealth

Evidently, the conceptual design provided the schematic for a layered architecture of the

PMAD Framework which is discussed throughout Section 6.3.

6.2
B

uilding
A

C
onceptualD

esign
201

Login Request

Users

Database

Login Status

Login

Authent ication

Service

User DB

Interface

Send Functional

Spec

Validation Results

Specificat ion

Builder

Specificat ion

Validation

Service

Ontology Interface

Sends DL Query

Sends Results

Login

Success

Ontology

Information exchange

App

Personalisation

Upon Successful

validation

Deployment

Dashboard

Personalisation Form Generator

Send DL Query

PC Interface

Requests Form

Sends Request

Personalised

Component (PC)

Database

Pushes forms to UI

Information exchange

Send Results

Information exchange

Function Repo

Interface

Function

Repository

Information exchange

PRR Interface

Upon Successful

Build

Information exchange

Platform

Resources

Repository

(PRR)

Upon Successful

Validation

Send Spec to

App Factory

Requests Form

Sends Response

Requests Form

Sends Response

Figure 6.4 Conceptual design of the PMAD framework

6.3 PMAD Framework Architecture 202

6.3 PMAD Framework Architecture

As shown in Figure 6.5, the PMAD Framework is a multi-layer architecture that follows

Microsoft’s architectural design philosophy4 [179]. Each of the components and services

identified in the conceptual model was organised into one of four layers, Presentation,

Business and Data Access and Data Source. Each layer of the architecture represents

components and services that collectively share similar characteristics with regards to

their and functionality with the framework. Although the PMAD framework defines many

generic components such as those that belong in cross cutting services, data access and

data sources. As discussed in Section 6.2.4, the components that are of most significance

in achieving the overall of this research are those that provide the framework with its

unique capabilities and/or are related specifically to the development of personalised

mhealth applications. This includes components that are contained within the ‘Personalised

mHealth Application Builder’. The ‘Specification Validation Service’, ‘Personalised Form

Generator’, ‘App Factory’ and ‘App Data Process Service’ from the business layer. And

finally the ‘Mobile App Interface’ from the app service layer. The remainder of this section

discusses in detail each of the components that reside in each of the layers presented in

Figure 6.5.

4Note: architecture adopts names and definitions of layers and not the Microsoft specific technologies

6.3
PM

A
D

Fram
ew

ork
A

rchitecture
203

Cross Cutting Services

S
e

c
u
ri

ty

L
o

g
g

in
g

H
e
lp

V
a

lid
a
ti
o

n

Mobile

App

External Services

Service Provider System

Data Source Layer

Users

 DB

Function

Repository

Personalised

Component

Database

Platform

Resources

Repository

mHealth

App Data

Database

Ontology

Container

Data Source Layer

Users

 DB

Function

Repository

Personalised

Component

Database

Platform

Resources

Repository

mHealth

App Data

Database

Ontology

Container

Data Access Layer

User DB

Interface

Function

Repository

Interface

Service

Provider Agent

PCD

Interface

App Data DB

Interface
PRR Interface

Ontology

Interface

Data Access Layer

User DB

Interface

Function

Repository

Interface

Service

Provider Agent

PCD

Interface

App Data DB

Interface
PRR Interface

Ontology

Interface

Business Layer

App Data

Process Service

Specificat ion

Validation

Service

Personalisation

Form Generator
App Factory

UI Component

Manager

App Service Layer

Mobile App

Interface

Presentation Layer

Login View
System

Maintenance

Portal

App Data

Dashboard

Personalised mHealth Application Builder

App

Personalisation

Dashboard

Specificat ion

Builder

Deployment

Dashboard

ScratchScratch

Presentation Layer

Login View
System

Maintenance

Portal

App Data

Dashboard

Personalised mHealth Application Builder

App

Personalisation

Dashboard

Specificat ion

Builder

Deployment

Dashboard

Scratch

HCP SE HCC

Figure 6.5 PMAD Framework architecture

6.3 PMAD Framework Architecture 204

Presentation Layer:

The presentation layer contains the components and services that are responsible for

implementing and displaying the user’s interface and also managing user interactions. As

discussed in Section 6.2.4, the main objective of this layer is to house user interfaces that

are associated with phases of the personalised mHealth application development process

whilst keeping the internal mechanics of the framework transparent from the healthcare

professional. Therefore, it is vital that the user interfaces are designed to be clean and

simple to use.

• Login View - Logging into a system is an integral part of security procedures within

the PMAD Framework, prior to any interaction with the system. Both HCPs and

SEs will be required to authenticate their identity, with respects to the system prior

to any further interactions.

• App Builder - Is a collection of presentation layer components that collectively

enable a HCP to create a personalised mHealth application for a HCC. The app

builder consists of four components:

– Specification Builder - The specification builder is responsible for generating

the applications requirements specification. The user interface elements should

be populated/driven by entities contained within the ontology. The specification

builder should also implement sufficient client-side validation rules to ensure

that the data inputted is consistent and sufficient, prior to the system validating

the app specification.

– App Personalisation Dashboard - The App Personalisation Dashboard (APD)

is responsible for guiding the HCP through the personalisation aspect of the

application. The APD user interface should be dynamically generated based

upon the required functions of the application. Once again client-side validation

6.3 PMAD Framework Architecture 205

rules should also be implemented, to reduce the likelihood of errors occurring.

The product of this stage is the design specification of the app, which is then

sent to the ‘App Factory’ to be compiled.

– App Deployment - Once the application has been created by the system,

the App Deployment Dashboard will guide the HCP through the installation

process.

– Scratch Storage - Temporary storage area used to store transient data through-

out the app building process.

• App Data Dashboard

The App Data Dashboard (ADD), enables a Healthcare Professional to view and

retrieve data gathered by applications created the framework. The ADD should allow

the healthcare professional to search for a particular HCC and view the respective

data. The user interface should be dynamically generated based upon the type of

data generated by the application.

• System Maintenance Portal

Enables system engineers to maintain the components system.

Business Layer

Services belonging to the business layer represent the core functionality of the system and

are concerned with tasks such as retrieval, processing, transformation and management

of application or business data [179]. Here houses the frameworks logic that ultimately

removes the need for a healthcare professional to possess the domain expertise of a

mobile application developer. The main objective of components in this layer is to utilise

data in putted from the healthcare professional and received from the underlying data

and information sources to provide services that are consumed by components in the

presentation layer.

6.3 PMAD Framework Architecture 206

• User Interface Component Manager - Responsible for populating various user

interface elements with entities from the ontology.

• App Specification Validation Service - The App Specification Validation Services

(ASVS), is responsible for determining the feasibility of the app specification. This

requires managing, interpreting and processing interactions between the compo-

nents‘Specification Builder’ and the ‘Ontology Interface’.

• - Personalisation Form Generator - Responsible for dynamically generating the

necessary forms required by the App Personalisation Dashboard.

• App Factory - The App factory is responsible for interpreting the design specifica-

tion and compiling the application.

• App Data Service - Responsible for retrieving, managing and processing data from

mobile applications created by the framework.

App Service Layer

The app service layer consists of a single outward facing interface, that enables mobile

applications created by the framework to send data collected by functions to the system.

6.3 PMAD Framework Architecture 207

Data Access Layer

Components that reside in the data access Layer are interfaces designed to handle interac-

tions between the Business Layer services and the underlying Data Sources or External

Services. Components on this layer can be categorised in one of two categories.

• Data Access - provide functionality for accessing the data hosted within the system

boundaries.

– User Database Interface - handles interactions between the ‘User Database’

and business layer services

– Ontology Interface - handles interactions between the ‘Ontology Container’

and business layer services.

– Database (PCD) Interface - handles interactions between the ‘Personalised

Component Database’ and ‘Personalisation Form Generator’.

– Function Repository Interface - handles interactions between the ‘User

Database’ and ‘App Factory’.

– Platform Resources Repository(PRR) Interface - handles interactions be-

tween the ‘Platform Resources Repository’ and and ‘App Factory’.

– App Data Database Interface - handles interactions between the ‘Platform

Resources Repository’ and ‘App Data Process Service’.

• Service Agents - Are interfaces that handle and isolate the idiosyncrasies of external

systems [179].

– Service Provider Agent - The Service Provider Agent (SPA) is a configurable

bespoke interface to manage the communication and mapping of data between

the PMAD Framework and the existing system or systems in use by the service

provider.

6.3 PMAD Framework Architecture 208

Data Layer and External Services

The data layer represents data sources that are hosted within the boundaries of the frame-

work. Whereas external Services represent systems/services already in use by the health-

care service provider. Each data source is described below in Table 6.1.

Table 6.1 Description of data sources

Data Source Description

User Database Database consisting of users of the framework.

Ontology Container Contains the PMAD Ontology described in Section 5.6.

Personalised Component

Database
Database that describes (from a data perspective) each personalisation

components within the ontology.

Function Repository Centralised repository of functions supported by the framework.

Platform Resources

Repository
Centralised repository of mobile platform development resources.

App Data Database Centralised database of HCC data collected from applications created by

the framework

Cross Cutting Services

Cross cutting services represent common centralised functionality that have an effect on

the entire framework. These component support operations such as security, logging,

validation and help.

6.4 Summary 209

6.4 Summary

In summary, this chapter describes the final contribution of this thesis. The framework pre-

sented in this chapter describes the fundamental components an ontology-driven approach

to personalised mHealth application development. The PMAD Framework is designed to

utilise knowledge contained within the ontology to enable healthcare professionals to create

personalised mHealth applications on-demand for healthcare consumers. The framework

has also been extended incorporating additional components that address limitations of

existing end-user programming solutions, mainly extendibility and interoperability.

Chapter 7

Evaluation

The goal of the penultimate chapter of this thesis is to evaluate both the PMAD Ontol-

ogy and PMAD Framework and assess if they satisfy the requirements of their respective

objectives. The chapter begins with an overview of the evaluation process. It is worth

reiterating that the evaluation process does not include the consultation of healthcare

professionals, since the purpose of this research was to design a theoretical framework that

defined the main architectural components thus the evaluation is designed to evaluate the

potential pitfalls and consistency of the PMAD ontology model as well as competence

from an implementation perspective of both the PMAD ontology and PMAD framework.

Therefore, the evaluation of consists of three phases. The first two focuses specifically

on evaluating the PMAD Ontology from two perspectives. The first stage evaluates the

model using the OntOlogy Pitfall Scanner. The second evaluates the ‘consistency’ of the

ontology. The final phase evaluates the competence of both the PMAD Ontology and

PMAD Framework from an implementation perspective. This chapter concludes with

a summary of the key and influential evaluation components discussed throughout this

chapter.

7.1 Evaluating the Model 211

7.1 Evaluating the Model

OntOlogy Pitfall Scanner (OOPS!) is a web-based ontology evaluation tool created by

Villalon et-al for detecting common pitfalls in ontologies [144]. The OOPS! is a recent tool

developed based on a comprehensive assessment of ontology evaluation literature. Villalon

et-al identified a total of 41 common pitfalls, 38 of which can be detected automatically by

the OOPS! tool. Figure 7.1 shows an overview of the pitfall catalogue, full details of each

pitfall are documented here [145].

Figure 7.1 Overview of the OOPS! catalogue of pitfalls

Each pitfall within the catalogue has the following information: identifier, title, description,

elements affected and importance level. The first three are self-explanatory. The ‘elements

affected’ returns a list of affected elements associated with the particular pitfall. This

may include specific elements of the ontology i.e classes, object properties etc. or the

ontology its self. The ‘importance level’ categorises each potential pitfall into one of the

three categories below based upon the impact it may have on the ontology.

7.1 Evaluating the Model 212

• Critical: It is crucial to correct the pitfall. Otherwise, it could affect the ontology

consistency, reasoning and applicability, among others.

• Important: Although not critical for ontology’s function, it is important to correct

this type of pitfall.

• Minor: It does not represent a problem. However, correcting it makes the ontology

better organized and user friendly.

It is worth noting at this stage that not all pitfalls are applicable, as some of them depend

on the domain being modelled or the specific requirements or use case of the ontology

[180, 145]. For those pitfalls that can be detected automatically, their applicability as

criteria to evaluate the ontology is determined accordingly. The applicability of those

pitfalls that require manual intervention is discussed in the sections that follow.

This space has been intentionally left blank for presentation purposes

7.1 Evaluating the Model 213

7.1.1 Manual Intervention Pitfalls

Prior to uploading the PMAD Ontology to the OOPS! tool, It was worthwhile assessing

each of the manual pitfalls to determine if they are applicable or not. Table 7.1 summaries

the results associated with each pitfall. Further discussion and justification of the results

presented in the table below are discussed throughout the remainder of this section.

Table 7.1 Summary of the results for each for each pitfall that required manual intervention.

Pitfall ID Applicable Present

P01 Yes No

P09 Yes No

P14 Yes No

P15 No -

P16 Yes No

P18 Yes No

P23 Yes No

P01 Creating Ploysemous Elements

The first manual pitfall identifies ontology entities whose identifier has different inter-

pretations within the ontology but is used to denote more than once conceptual idea or

property [145]. This pitfall was acknowledged and was discussed in detail Section 5.1.3.

To prevent this from occurring involved careful considerations surrounding the entities

within the domain. Section 5.1.2 demonstrated how semantic models can be used as mech-

anisms to address various challenges. The creation of the glossary of terms as discussed in

Section 5.4.2 aimed to catalogue, control and remove the potential for ambiguity within

the vocabulary used. The glossary was a vital step in the development of the PMAD

Ontologyto prevent this pitfall being present. For further clarity and readability of the

7.1 Evaluating the Model 214

ontology, annotation properties were used to appended descriptions to entities. Therefore

this pitfall is not considered to be present in the PMAD Ontology.

P09 Missing domain information

Part of the information needed for modelling the intended domain is not included in

the ontology. This pitfall relates to the ‘completeness’ of the ontology and requires

considering 2 factors [145]. The first factor requires determining if the ontology meets its

intended purpose. As stated in Section 1.2, the objective of the ontology was to establish

a suitable model that encapsulates the necessary and sufficient knowledge. During the

initial conception of the ontology, the purpose and scope of the ontology were defined.

As part of this process, a series of competency questions were established. As explained

earlier the competency questions represent a series of questions that the ontology must be

capable of answering to be considered competent at tackling the problem it has set out to

solve. To assess if the ontology is competent at answering these questions a small-scale

implementation of the framework was developed. The outcome of the first influences the

second factor. If the ontology is not capable of answering the competency questions, what

knowledge can be / should be added to the ontology to make it more ‘complete’. Therefore

this pitfall is considered to be applicable to this work and is discussed in further detail in

Section 7.3.

P14 Misusing of the universal quantifier restriction:

This pitfall consists in using the universal restriction (∀) as the default qualifier instead of

the existential restriction (∃). A description of both universal and existential restrictions

and demonstration of their correct uses is discussed in detail in Section 5.4.5. Therefore,

the PMAD Ontology is considered not be associated with this particular pitfall.

P15 Using "some not" in place of "not some"

The pitfall consists in using a "some not" structure when a "not some" is required. This is

due to the miss-placement of the existential quantifier (∃) and the complement operator (

7.1 Evaluating the Model 215

¬) [145]. This issue pitfall is not applicable to this particular ontology as the complement

operator is not used to describe or define classes within the PMAD Ontology.

P16 Using a primitive class in place of a defined one

This pitfall implies creating a primitive class rather than a defined one in case automatic

classification of individuals is intended [145]. Again, this issue is not applicable to this

ontology. As discussed in Section 5.4.5.2 and Section 5.5.4, all classes that are not a

subclass of the ValuePartition are defined classes and are defined utilise necessary and

sufficient conditions, meaning that inferred hierarchy occurs naturally and the automatic

classification of individuals is feasible. Therefore, this pitfall is not present within the

PMAD Ontology.

P18 Over-specialising the domain or range

Villalon et al. describe this pitfall as defining a domain or range that is not general enough

for a property. This pitfall is applicable to the PMAD Ontology. However, a modelling

decision was made not to restrict the domain of the object property to a particular class, as

this can result in incorrect inferences made by the reasoner. Instead, a single restriction was

applied to the range of each object property. This enabled the hierarchy to be inferred based

on the necessary and sufficient conditions, as discussed in Section 5.4.4.3. Therefore, the

pitfall linked to the over-specialising of the domain or range of properties is not considered

to be present within the PMAD Ontology.

7.1 Evaluating the Model 216

P23 Duplicating a datatype already provided by the implementation language

This pitfall exists if a class and its corresponding individuals are created to represent

datatypes that already exist in the implementation language. Villalon et al. provide the

following example ‘An example of this type of pitfall is to create the relationship “isEco-

logical” between an instance of “Car” and the instance “Yes” or “No”, instead of creating

the attribute “isEcological” whose range is Boolean’ [180]. Again, this particular pitfall

was acknowledged during the knowledge extraction phase, see Section 5.4.1. Therefore,

this pitfall is applicable but is considered to be not present in the PMAD Ontology.

7.1.2 Automatic Pitfalls

The PMAD Ontologywas uploaded to the OOPS! pitfall scanner which returned an evalua-

tion report. A complete copy of the OOPS! evaluation report can be found at Appendix C.3.

Figure 7.2 provides a summary of the potential pitfalls that were identified by the OOPS!

tool. As can be seen, there are 3 minor and 3 important pitfalls each is discussed in detail

below.

Figure 7.2 OOPS! evaluation summary of results

7.1 Evaluating the Model 217

7.1.2.1 Minor Pitfalls

P04: Creating unconnected ontology elements

This pitfall identifies entities within the ontology that are isolated and have no relation

to the rest of the ontology. Of the 203 entities within the PMAD Ontology, one class,

ValuePartition was identified to have this pitfall. However, as stated during the on-

tology’s development, the ValuePartition serves a unique role within the ontology.

The ValuePartition class was added to the ontology as part of Rector’s modelling

approach and its sole purpose is used to partition primitive concepts from defined concepts.

From a modelling perspective helps increase the clarity of the ontology, maintains mod-

ularity and allows concepts to be defined in a significant amount of detail. Overall the

ValuePartition class is supposed to be isolated from other entities within the ontology

and therefore this pitfall can be regarded as a false positive.

P08: Missing Annotations

The missing annotation refers to an entity that fails to provide a human-readable annotation

attached to it. Although upon initial inspection the results seemed alarming, further

inspection revealed that each entity within the PMAD Ontology required both a ‘label’ and

‘comment’ annotation properties in order to not be associated with this particular pitfall.

Hence the surprisingly large number of entities associated with this pitfall. To put this into

perspective the results of this particular metric were processed and presented in Figure 7.3.

7.1 Evaluating the Model 218

Figure 7.3 P08: Missing Annotations: Graph to show a comparison of entities missing
description annotations vs those missing label annotations

Immediate attention was drawn to the 4 entities (Accelerometer, Communication, Inform

and requiresMicrophone) that are missing a ‘descriptive’ annotation property. As discussed

in Section 5.5.2.1, annotation properties were used to provide both ontology engineers and

users of the PMAD Framework with a concise and unambiguous description of entities

within the ontology and thus increasing the overall readability in the process. Therefore,

these oversights made during the implementation activity required addressing to maintain

consistency with the rest of the entities within the ontology. The hotfix was applied to the

ontology and the test for this pitfall was run again Figure 7.4. As can be seen in Figure 7.4,

all entities within the ontology now have a descriptive annotation property

With regards to the use of annotation properties for ‘labels’ of entities within the PMAD

Ontology. The readability of the ontology was considered very early on in its design

and development. The first activity in the development process identified and defined

several guidelines that included design criteria and naming conventions for entities within

7.1 Evaluating the Model 219

Figure 7.4 P08: Missing Annotations (test 2): Graph to show a comparison of entities
missing description annotations vs those missing label annotations

ontology. As shown during the first stage of the evaluation, all the identifiers for each of

the entities within the PMAD Ontology were named according to the rules specified in the

naming convention guidelines. In addition, the creation of the glossary of terms identified

a name for each entity, but also highlighted any acronyms and synonyms that were also

associated to it. The identifier of entities within ontology are considered to be axiomatic as

each entity was carefully reviewed. Furthermore, all entities are represented using natural

language. As a result, the entities missing ‘labels’ has been disregarded. Overall this pitfall

highlighted four oversights within the PMAD Ontologythat were immediately corrected,

therefore this particular pitfall is considered no longer present within the PMAD Ontology.

P13: Inverse relationships not explicitly declared

This pitfall is identified by OOPS! if there is any relationship 1 that do not have an inverse

relationship explicitly defined within the ontology. With regards to the PMAD Ontology,

this issue was briefly discussed in Section 5.4.4.2, the decision not to include an inverse

relationship was because there are no individuals modelled within the domain and including

1except those that are defined as symmetric

7.1 Evaluating the Model 220

inverse object properties for class definitions would not provide any further or substantial

knowledge to the ontology. Therefore this pitfall is considered not impact the PMAD

Ontology.

7.1.2.2 Important Pitfalls

P11: Missing Domain or Range in properties

Although highlighted as a pitfall, this is an expected consequence of a modelling decision.

As discussed earlier on in this chapter and in detail in Section 5.4.4.3, the decision not to

restrict the domain of an object property was to prevent incorrect inference being made

as a consequence of domain restriction, but rather rely solely on necessary and sufficient

conditions so that a reasoner could infer subsumption. As discussed earlier on in this

chapter, the inferred hierarchy produced by the reasoner matched its intended design.

Furthermore, each object property within the PMAD Ontology has a restriction placed on

the range as shown in Figure 7.5. Therefore, this pitfall can be considered as a false positive.

P24: Using recursive definitions

This pitfall was present within the PMAD Ontology, as there were two classes (ShoppingList

and MedicationTracker) that used its self in its own definition. In both cases, the class

was used as a property filler for the hasFunctionLogic object property. This was not

intentional. Again, this was a minor mistake made during implementation. This modelling

error was immediately corrected, to remove this pitfall from the ontology. As can be seen

in Figure 7.6, running an additional test for this particular pitfall shows that the pitfall is

no longer present within the PMAD Ontology.

7.1 Evaluating the Model 221

Figure 7.5 P11: Missing ‘Domain’ or ‘Range’ in properties

Figure 7.6 P24: second test result

7.1 Evaluating the Model 222

P41: No Licence declared

Although identified as important, this pitfall does not directly impact the model but rather

governs the use of it. Therefore, this pitfall was disregarded from the evaluation discussion.

7.1.3 Naming Convention Compliance

Section 5.2.3.1, naming convention rules were established at during the beginning of the

ontology’s development. This was for two reasons: to promote consistency across entities

within the ontology since OWL does not specify conventions and to improve overall clarity

& readability of the ontology. The following test procedure was conducted for each type

of the entity within PMAD Ontology.

Naming convention testing procedure:

1. Extract all <entity type> from ontology using the OWL API.

2. For each entity assess its compliance against the rules specified in the naming
convention guidelines.

3. Present and discuss results.

4. If necessary, apply hotfixes to ontology.

7.1.3.1 Results and Discussion: Naming Convention Compliance

The results from the naming convention compliance tests are discussed and presented

below.

• Classes: Protégé ontology metrics reported that there is a total of 138 classes within

the PMAD Ontology. The naming convention guidelines state that all classes within

the ontology must follow ‘CamelCase’ notation. As can be seen in Figure 7.7 all

classes within the ontology are compliant with the rule defined in Section 5.2.3.1.

7.1 Evaluating the Model 223

• Object Properties: Protégé ontology metrics reported that there are a total of 63

object properties within the PMAD Ontology. The naming convention guidelines

state that all classes within the ontology must follow ‘camelCase’ notation. As can

be seen in Figure 7.7 all object properties within the ontology are compliant with the

rule defined in Section 5.2.3.1.

• Annotation Properties: excluding the built-in annotation properties, there was only

one further annotation property (description) created during the development

of the ontology. As can be seen in Figure 7.7 all annotation properties within the

ontology are compliant with the rule defined in Section 5.2.3.1.

Figure 7.7 Naming convention compliance results: classes, object-properties and
annotation-properties

7.1 Evaluating the Model 224

7.1.4 Model Synopsis

The PMAD Ontology was evaluated using a combination of manual and automated tech-

niques to evaluate the presence of potential common pitfalls within the model. To sum-

marise five2 out of the seven pitfalls that required manual intervention was considered

applicable but not present within the ontology. Furthermore, the OOPS! identified the

presence of six potential pitfalls. As discussed PO4, P11 and P13 were to be expected, the

presence of these pitfalls was detected due to modelling choices described in Sections 5.2.3,

5.4.4.2 and 5.4.4.3 respectively. Therefore, are they are not considered as pitfalls, but

rather as consequences of modelling choices. However, PO8 and P24 identified a total of 6

minor errors. These errors were the result of oversights during implementation and were

immediately rectified. P41 was disregarded as a pitfall as it does not have an impact the

model but governs the use of it. The final test revealed that all entities within PMAD On-

tology were compliant with the naming convention guideline established in Section 5.2.3.1.

Overall, for the reasons discussed above, the PMAD Ontology model is considered to

be free from all pitfalls (manually and automatic) that can be identified by the OntOlogy

Pitfall Scanner, except those highlighted as consequence of modelling decisions.

2There were six pitfalls. However, as discussed pitfall P09 required further testing, see Section 7.4

7.2 Evaluating Consistency 225

7.2 Evaluating Consistency

Throughout the design aspect of the ontology, several terms have been used to describe

specific inferences that a reasoner can make as a consequence of the knowledge described

within the ontology. Realistically the correctness of the ontology was continuously assessed

throughout the implementation activity, as helped isolate smaller errors as they occurred

rather than trying to unravel them at the end. The reasoner used to during the development

and evaluation of the ontology was HermiT, more information about the HermiT can be

found in Section 5.1.5.2. With respect to the TBox (T), there are four main reasoning

tasks associated with a reasoner. These are satisfiability, subsumption, equivalence and

disjoint [139, 181, 182]. Each task is described below. Note, in OWL the class Nothing

represents an empty set.

• Satisfiability: C is deemed satisfiable with respect to T if there exists a interpretation

of T such that the interpretation of C is an non-empty set; otherwise C is unsatisfiable.

In other words, satisfiability checks definitions to determine if they make sense or

whether they are contradictory of the axioms contained within the ontology.

• Subsumption: C is subsumed by D if the interpretation of C is a subset of the

interpretation of D with respect to T . To put another way subsumption determines

whether a class subsumes another in accordance to their generality to form a taxon-

omy.

• Equivalence: C and D are considered equivalent with respect of T if the interpreta-

tion of C and the interpretation of D are equal.

• Disjointness: C and D are disjoint with respect to T if the intersection of their

interpretation results in an empty set.

7.2 Evaluating Consistency 226

As shown below, each of these reasoning tasks can be reduced to concept subsumption

[139]. Let C and D represent concepts (classes).

C is unsatisfiable ↔ C is subsumed by ⊥
C and D are equivalent ↔ C is subsumed by D and D is subsumed by C

C and D are disjoint ↔ C and D is subsumed by ⊥

It is from this perspective, that the correctness of the knowledge encoded within the PMAD

Ontology will be assessed. The ontology will be considered correct, if and only if the

ontology passes each of the tests that follow. Note, equivalence has been excluded from

these tests as there are no classes within the ontology that are semantically equivalent to

one another.

7.2.1 Satisfiability

As mentioned earlier, testing the satisfiability of the PMAD Ontologywas a continuous

activity throughout implementation. Regarding the design of the ontology If a class is

deemed unsatisfiable, the class is subsumed by the classNothing and the Protégé ontology

editor highlights the entity in red as demonstrated in Figure 7.8.

Figure 7.8 Demonstration of an inconsistent class in Protégé

There were some instances throughout the development of the PMAD Ontologythat a

class would be deemed unsatisfiable. These were not due to the design of the ontology,

7.2 Evaluating Consistency 227

but rather an impact of user error. These instances often occurred during the definition of

larger classes and were caused by relying on the auto-complete feature built into Protégé

’s class expression editor. These minor setbacks were quickly addressed using Protégé ’s

built-in inference explanation tool.

With regards to the initial version of the ontology, the HermiT reasoner determined no

classes were contradictive of the axioms contained within the PMAD Ontology. To verify

this claim, the description logic query ‘Nothing’ was executed. As presented in Figure 7.9,

the result shows that there are no classes equivalent to the class Nothing.

Figure 7.9 Satisfiability verification using a description logic query

7.2 Evaluating Consistency 228

7.2.2 Subsumption

As discussed in Section 5.5.4, based upon the necessary and sufficient conditions the

HermiT reasoner created the inferred hierarchy. Although the knowledge encoded within

the ontology is satisfiable. It was also important to check whether the inferred class

hierarchy was also correct3. Protégé conveniently presents the classification results in

a simple list. This list contains a total of 32 inferred axioms as a consequence of the

necessary and sufficient conditions of the defined classes. This list represents the inferred

hierarchical structure of the ontology and can be processed against the model created

during the capturing phase.

Figure 7.10 Protégé classification results using the HermiT reasoner

3The value partition hierarchy was auto-generated and its structure is not impacted by the reasoner. The
structure of the value partition was tested and verified to be correct during implementations as discussed in
Section 5.5.1

7.2 Evaluating Consistency 229

Elements within both lists were compared using a simple python script that determined

two potential outcomes: True or False. True indicates that the axiom is present in both lists,

whereas False indicates there is an error present in the inferred hierarchy. The ontology

with respects to subsumption will be considered correct, if all results are returned by the

script are ‘True’. As this indicates that the class hierarchy has been inferred correctly.

For presentation purposes, the complete listing of the results has been omitted from this

section but can be found at Appendix C.1. Figure 7.11 is a summary of the results. As can

be seen, all the classification axioms present within the inferred hierarchy, therefore the

PMAD Ontology is considered to be complete from a subsumption perspective.

Figure 7.11 Bar chart to show the results from the class hierarchy checks

7.2 Evaluating Consistency 230

7.2.3 Disjointness

Currently, testing of the correctness of the PMAD Ontology has shown that the knowledge

encoded is satisfiable and that subsumption has been inferred correctly. The final tests aim

to demonstrate the presence of the disjoint axioms. During the design of the ontology, sev-

eral classes utilised the ‘DisjointWith’ axiom. To demonstrate the presence of the disjoint

axioms, description logic queries were used. As stated at the beginning of this section,

the disjointness between two or more classes can be reduced by concept subsumption, by

checking if the intersection between them results in them begin subsumed by the Nothing.

Essentially the description logic query creates an anonymous class that consists of the class

under review and the intersection4 between the classes that it was designed to be disjoint

with. An example of the description logic query used to test the presence of the disjointwith

axiom between Function and MobileDevice classes is shown in Figure 7.12. Each test

has two potential outcomes as shown in Table 7.4. The ontology will be considered correct

if all the tests yield a pass result.

Again, for presentation purposes, the complete listing of the results has been omitted from

this section, but details for each of the 96 tests and results can be found at Appendix C.2.

Figure 7.13 provides a summary of the results. As can be seen, each of the queries yields

successful results (pass), therefore the PMAD Ontology is considered to be complete from

a disjoint axiom perspective.

Table 7.4 Disjoint: description logic query outcomes

Outcome Description DL Result

Pass The use of the disjoint axiom is present. Anonymous class is subsumed by Nothing

Fail The use of the disjoint axiom is not present. Anonymous class is not subsumed by
Nothing

4The intersection between classes uses the and operator

7.2 Evaluating Consistency 231

Figure 7.12 Testing disjointness using description logic queries

Figure 7.13 Disjoint test results

7.2 Evaluating Consistency 232

7.2.4 Consistency Synopsis

The correctness of the ontology has been evaluated from three perspectives. Testing the

satisfiability of the ontology deemed that all concepts defined within it were satisfiable

based upon the axioms contained within the ontology. The second test subsumption

determined that the inferred class hierarchy created by the HermiT reasoner matched the

model of the class hierarchy created during the design of the ontology. The final test

provided evidence of the presence of the disjoint axioms within the ontology. Overall, the

outcome of each test described in this section collectively provided sufficient evidence to

suggest that the knowledge contained within the ontology has been modelled correctly.

7.3 Evaluating Competence 233

7.3 Evaluating Competence

As the name of this section suggests the final phase in the evaluation aims to determine if

both the PMAD Ontology and PMAD Framework are competent in solving the problems

they are designed to address. As stated in Chapter 1, the overall aim of this research

is to produce an ontology-driven framework that enables healthcare professionals to

develop personalised mHealth applications, without the need for intervention from mobile

application developers. From the ontology’s perspective, a series of competency questions

were established during the initial stages of the ontology’s development. As explained in

Section 5.3.1 they represent questions that the ontology must be capable of answering to in

order to be considered competent. It is these questions (see, Table 5.11) that will serve as

the competency criteria for the ontology. Where as the framework provides the facility to

personalise mHealth applications. As discussed in Sections 2.3.2 and 4.3.6, personalisation

of a mHealth applications in the context of this work consists of two elements: the first

element focuses on the selection of functionality required by the healthcare consumer and

the second on the tailoring of the chosen functions to the requirements of the healthcare

consumer. Although the framework presented in this thesis is conceptual, core components

can be implemented that integrate the ontology and simulating the key functionality

of the framework. Enabling the competence of both the PMAD Ontology and PMAD

Framework. For clarity, the application is referred to from this point forward as the PMADs

(Personalised Mobile Application Development simulation). The remainder of this section

provides an overview of PMAD’s, evaluation procedure followed by a discussion of the

results.

7.3 Evaluating Competence 234

7.3.1 PMADs Overview

PMADs was implemented using the Java programming language and utilised the OWL

API to interface with the PMAD Ontology. PMAD’s aim is to simulate some of the

functionality from the specification builder and the app personalisation activities discussed

in Sections 6.2.4 and 6.3. As shown in Figure 7.14, PMAD’s consists of a simple user

interface that is driven by entities contained within the ontology. The user is required to

select a Mobile Device and chose the required mHealth Functions from the list pro-

vided. PMAD’s will then utilise the knowledge contained within the ontology to determine

the feasibility of the mHealth application based upon the selected Mobile Device. Note,

the PMAD’s will not create a fully operational mobile application but rather produce a

design specification report (DSR) for the intended mHealth application. An example of a

DSR is shown in Figure 7.14. The information returned by the DSR coincidences with

overall aim of this research and the competency questions presented in Section 5.3.1.

Figure 7.14 Screenshot showing PMADs and DSR example

7.3 Evaluating Competence 235

The information contained in the DSR is summarised below:

• About Device: Details of the Healthcare consumers device which includes:

– Mobile Device: The selected mobile device of the HCC from the use case.

– Recommended API Level: The minimum API Level of the mobile device.

• Application Specification: Details of the personalised mHealth application, that includes:

– Application Feasibility: The overall feasibility of the personalised mHealth applica-

tion:

* Pass: The mobile device selected is capable of supporting the all of the functions.

* Fail: The mobile device selected is capable of supporting some or none of the

functions.

– mHealth Functions and Personalised Components: A list of required functions and

their personalised components (if available).

– Feasibility Checks and Results: Provides details of the feasibility checks performed

and their results.

7.3 Evaluating Competence 236

7.3.2 Competence: Evaluation Procedure

In order to evaluate the competence of the PMAD ontology and framework, required using

the use case scenarios created during the development of the taxonomy. Each use case

scenario is subjected to the same evaluation procedure described below:

1. Manually evaluate the feasibility of the personalised mHealth application (this will

serve as the expected result).

2. Using PMADs...

(a) Select the HCC <mobile device> from use case scenario.

(b) Select <mHealth functions> required by the HCC from the scenario.

(c) Press ‘Generate DSR’ button.

(d) Archive DSR.

3. Evaluate results.

7.3 Evaluating Competence 237

7.3.3 Results

Using the data collected from the previous section, this section presents a discussion of the

competence of both the ontology and framework.

Technical Feasibility

There are two competency questions that are related to technical feasibility of the PMAD

framework. The first competency question (CQ1) focuses on determining the individual

feasibility of each function required by the personalised mHealth application documented

in each of the use case scenarios. From the perspective of a healthcare professional,

the ‘Specification Builder’ in PMADs requires the selection of the healthcare consumers

mobile device and the required mHealth functions. Whilst remaining transparent to the

HCP, PMADs determines the feasibility of each mHealth function by extracting and

parsing the functions class definition identifying if the particular function has specific

hardware requirements. If hardware requirements are identified, a description logic query

is automatically generated based on how they are represented in the class definition. For

example Figure 7.15a shows two different examples of differing description logic queries.

The function CallServiceProvider requires the presence of ‘Telephony’ hardware in

the healthcare consumers mobile device. Therefore, the query generated reflects the single

hardware requirements. Whereas in the case of the function AboutServiceProvider

which requires a mobile device to either have ‘Telephony’ or ‘Wifi’ (or both) hardware in

order for it to be feasible, the description logic query generated reflects this. Fundamentally

the description logic query asks the ontology if there is a mobile device present within the

ontology that has possessed the hardware required by the function. This returns a list of

mobile devices classes presents within the ontology that satisfy the query, which is checked

to see if the healthcare consumers mobile device is present in the list. If the mobile device

appears in this list, we can assume that the mobile device is capable of supporting that

7.3 Evaluating Competence 238

particular function. If it is not in the list, then the assumption is made that the healthcare

consumer’s mobile device is not capable of supporting that particular function. The result

is then stored and the process repeated for the remaining functions.

The second competency question (CQ 2) requires utilising the outcome from the first

(CQ 1) to assess the overall feasibility of the personalised mHealth application. The

results stored in the list is then checked by the PMADs. If all the functions are capable of

being supported by the healthcare consumers device, the personalised mHealth application

specification passes the application feasibility, as shown in Figure 7.15a. However, if a

function is not capable of being supported by the healthcare consumers mobile device,

a flag is triggered which changes the feasibility of the personalised mHealth application

specification to fail as shown in Figure 7.15b.

With regards to the use case scenarios, the manual feasibility result was compared to that

provided by PMADs. The comparison shows that the knowledge contained is capable of

being operationalised to determine both the feasibility of all the functions required and the

overall application feasibility. Thus satisfying the requirements of competency questions

CQ 1 and CQ 2. From a personalisation perspective, these two competency questions also

demonstrate the first element of personalisation (selection of specific functions) in the

context of this work.

7.3
E

valuating
C

om
petence

239

(a) Paul: Use case scenario (Pass) (b) Emma: Use case scenario (Fail)

Figure 7.15 DSR examples

7.3 Evaluating Competence 240

Application Development

Competency questions CQ 3 and CQ 4 focus specifically on development choices relating

to the personalisation process. In order to answer this CQ 3 requires identifying the

‘personalised components’ of the selected functions. This is achieved in PMADs by again

extracting the class definition and parsing it to identify the personalised components of

each function selected and exporting them in the DSR as shown in Figure 7.15. As shown

in the Figure 6.4, this process from occurs from a healthcare professionals perspective

during the transition between the ‘Specification Builder’ and ‘App Personalisation’. In the

context of the framework, the personalised components extracted from the class definitions

are utilised by the ‘Personalisation Form Generator’ to generate the series of forms that the

healthcare professional will complete to in order to personalise the mHealth functions for

the healthcare consumer. Therefore demonstrating the second element of personalisation,

the tailoring of mHealth functions.

The final competency question (CQ 4) asks if the PMAD Ontology is capable of providing

a suitable API based upon the healthcare consumers device. In PMADs this process

remains transparent to the healthcare professional. Again, the class definition for the

mobile device is extracted, parsed and interpreted to identify the mobile devices minimum

API requirement.

The class identified, along with the completed forms are then utilised by the ‘App Factory’

component within the business layer of the framework to compile the personalised mHealth

application.

7.3 Evaluating Competence 241

7.3.4 Competency Synopsis

To summarise the objective of this phase of the evaluation was to determine if both the

ontology and the framework are competent in addressing the tasks/problems they are

designed to address. Evaluation of the competence both the ontology and framework

utilised the 5 use case scenarios and the Personalised Mobile Application Development

simulation (PMADs). Although the entire framework is not fully operational in PMADs,

the evaluation concluded that the knowledge contained within the ontology is capable

of providing answers to the competency questions defined in Section 5.3.1 and that the

framework is capable of utilising the knowledge to in theory create mHealth applications

that contain mHealth functions specifically chosen and tailored for an individual healthcare

consumer. Overall, the PMAD Ontology and PMAD Frameworkare considered competent

in the tasks they are designed to address within the scope of this research.

7.4 Evaluation Summary 242

7.4 Evaluation Summary

In summary, this chapter presents the evaluation of both the PMAD Ontology and PMAD

Framework. The ontology was evaluated from three perspectives, model, consistency and

competence. For the reasons discussed in Sections 7.1.4, 7.2.4 and 7.3.4, the:

• PMAD Ontology

– Is considered to be: free from all pitfalls (manually and automatic) that can

be identified by the OntOlogy Pitfall Scanner, expect those highlighted as

consequence of modelling decisions.

– The knowledge encoded within the ontology is consistent.

– When utilised in PMADs is capable of addressing the competency questions,

defined in Section 5.3.1.

• PMAD Framework

– Although conceptual, PMADs demonstrated that the framework has the nec-

essary capabilities to achieve the personalisation of mHealth applications as

intended by this research.

Overall, the evaluation of both the PMAD Ontology and PMAD Framework have provided

sufficient evidence that satisfies the requirements of objectives (c) and (d) of this research.

Chapter 8

Conclusion

The final chapter in this thesis seeks to discuss this works contributions, achievements,

limitations, recommendations for future work and is followed by a brief critical evaluation

of the research undertaken.

8.1 Contributions and Achievements

As stated in Section 1.2, the major contribution of this research set out to develop an

extensible ontology-driven framework that enables healthcare professionals to create per-

sonalised mHealth applications for healthcare consumers, without the need for intervention

from mobile application developers.

This was achieved by exploring the challenges and issues surrounding the development of

personalised mHealth applications, existing approaches and related works. The outcome

being the literature review presented in Chapter 2. The literature review identified a series

of signposts of the work required to achieve the aim and of this research. These signposts

were formed on the basis of ideas, challenges and issues that are present and considered

8.1 Contributions and Achievements 244

significant within the literature. Each, influenced the design and development of the three

main contributions of this work. Fulfilment of the aim was achieved via the combination

of contributions described below:

1. Completion of the second objective produced the mHealth Application Function

Taxonomy. As discussed in Section 4.4, the taxonomy serves as a classification tool

capable of categorising health-related functions in mobile health care applications

designed for healthcare consumers. The taxonomy was developed as part of this

research was the product of a systematic exploration and analysis of health-related

functions and created to gain an understanding of the type of health functions

available and the distinct attributes that make them unique. As a result of observations

made during the development led to the design of several use case scenarios and the

generic function model that is used throughout the design and development of the

PMAD Ontology and PMAD Framework. Outside of the boundaries of this research,

the taxonomy also can be utilised from a practical standpoint during the development

of a mHealth application. The taxonomy along with the classification tool can

also utilise by mobile application developers to identify the types of healthcare-

related functions required for a specific application during the design phase since

the taxonomy is based on the principles of a functional hierarchy diagram.

2. As shown in Chapter 7, the PMAD Ontology is a critical aspect of this work

and is the driving force within the PMAD Framework, that enables healthcare

professionals to create personalised mHealth applications for healthcare consumers

without the domain expertise of mobile application developers. As demonstrated in

the evaluation, knowledge encapsulated within the ontology has been successfully

operationalised, enabling key development decisions to be answered automatically

such as: determining the feasibility of a personalised mHealth application, selection

of a suitable API and identification of the personalised components of a mHealth

8.2 Limitations & Recommendations for Future Work 245

function. Thus, removing the complexities of personalised mobile application

development from the healthcare professional. Following the procedures described

throughout Chapter 5 the ontology can be extended to include, new mobile device,

functions, hardware, mobile platforms and thus satisfy the requirements of objective

(c).

3. The final contribution made by this work is the PMAD Framework. The framework

presented in this thesis defines a multilayer high-level architecture that follows Mi-

crosoft’s architectural design philosophy. It describes the fundamental components,

services and data sources that collectively provide the functionality that enables

healthcare professionals to create a personalised mHealth application for healthcare

consumers. The framework is designed to tackle key issues and challenges that were

discussed throughout this thesis. Although conceptual, the core components of the

framework were implemented simulating key functionality.

8.2 Limitations & Recommendations for Future Work

Throughout the development of this research, there have been several occasions were

interesting questions, thoughts and ideas came to mind that lay outside of the scope and

focus of this particular research. Moreover, the limitations of this research also provide

opportunities for future work. Highlighted below are some of these areas:

• mHealth Application Function Taxonomy

– Evolution: The Taxonomy has been designed with evolution in mind, ensuring

it is still applicable and represents current themes within the domain, its vital

that the new information is introduced periodically to advance, refine and

introduce new classes in the taxonomy.

8.2 Limitations & Recommendations for Future Work 246

• PMAD Ontology

– Inclusion of more elaborate knowledge to the ontology: The PMAD Ontol-

ogy in its current form contains sufficient knowledge to answer the competency

questions, defined in Section 5.3.1. Expanding the knowledge contained within

the ontology could further improve the reasoning capabilities of the ontology

and add new capabilities to the framework.

– Inclusion of medical devices and sensors: With the increasing availability of

medical sensors and rise in popularity of wearable computing devices knowl-

edge surrounding these devices could be added in future revisions of the

ontology to broaden the scope and possibilities of potential functions and

applications.

• PMAD Framework

– Machine Learning: Machine Learning was briefly discussed in Chapter 2 and

has become a trending topic of research within recent literature. Although out

of the scope of the work described in this thesis, the questions of ‘can/how ma-

chine learning be utilised to further assist healthcare professionals throughout

the personalised mobile healthcare application development process?’

– Work towards implementation: One of the limitations of this research is that

the many of the components described within the framework are conceptual.

Although implementations of core components that related to the interfacing

and utilisation of the knowledge encapsulated within the ontology were demon-

strated in the development of PMADs, there is still further work required to

take the concept to an operational service.

8.3 Critical Evaluation 247

• Apply approach to personalisation of mobile applications in other domains

Reflecting upon the outcome of this work, the approach to personalisation of mobile

applications described in this thesis, in theory, could be applied to other domains such

as education. Following the same process of, developing a taxonomy of functions

relating to the domain, addition of the functions relating to the domain to the ontology

and finally modification of components and services within the framework to support

the creation of mobile applications relating to the new domain.

8.3 Critical Evaluation

With regards to the aim of this research, the three main contributions that were produced

were sufficient at addressing the challenges and issues they intended to solve. Each of

the contributions were a response to challenges extracted from literature and personal

experiences of working on projects relating to software and mobile application development

within the healthcare industry. Each contribution was reinforced and governed by the

signposts defined in Table 2.5. The signposts provided a suitable mechanism to help

direct and prevent divergence, ensuring decisions made during the development of each

contribution remained in line with the overall aim and scope of this research.

What was interesting however, was reflecting on how this research was originally envisaged

and how its direction and overall outcome was influenced by the works reviewed and

analysed. The entire research was a continuous learning curve from start to finish not

only from a theoretical and practical standpoint but also from an interpersonal standpoint

too. Towards the beginning expectations, tangents and fuzzy scope made it difficult to

really focus on fulfilling the aim. But as new knowledge was acquired, and various skills

developed, the picture became clearer. This experience at the beginning of the research

process was a vital learning experience. New knowledge, discussions and experiences no

8.3 Critical Evaluation 248

doubt influenced the final products of this research, but some provided a different outlook

on aspects of this work. As discussed in Section 8.2, some highlighted areas of work that

could either have; been improved if time was not a factor or identified potential areas of

future work to progress this work further. What is key to take away from this is that even

if the limitations discussed in the previous section were addressed, the same conclusions

would have been reached. However, they would have improved the quality or applicability

of the contributions made in this work.

References

[1] Mckinsey & Company; GSMA, “mHealth: A new vision for healthcare,” Mckinsey &
Company, pp. 1–20, 2010.

[2] K. Arning and M. Ziefle, “Different perspectives on technology acceptance: The role of
technology type and age,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5889 LNCS, pp.
20–41, 2009.

[3] C. Free, G. Phillips, L. Felix, L. Galli, V. Patel, and P. Edwards, “The effectiveness of M-
health technologies for improving health and health services: a systematic review protocol,”
BMC Research Notes, vol. 3, no. 1, p. 250, 2010.

[4] J. Cruickshank, G. Beer, and E. Winpenny, “Healthcare without Walls: A Framework for
Delivering Telehealth at Scale,” 2020Health, Tech. Rep. November, 2010.

[5] R. S. Istepanian, S. Laxminarayan, and C. Pattichis, M-Health: Emerging Mobile Health
Systems, 1st ed., R. S. Istepanian, S. Laxminarayan, and C. Pattichis, Eds. Springer, 2010.
[Online]. Available: http://dx.doi.org/10.1007/b137697

[6] R. Snyderman and C. D. Drake, “Personalized Health Care: Unlocking the potential of
genmoic and precision medicine,” The Journal of Precision Medicine, 2016.

[7] EGAN, “Personalised Healthcare Frequently Asked Questions.” [Online]. Available:
http://www.geneticalliance.org.uk/docs/egan{_}personalisedhealthcare.pdf

[8] Society for Public Health Education, Health Promotion Programs: from theory to practice,
D. Fertman, Carl; Allensworth, Ed. Toronto: John Wiley and Sons, 2010.

[9] S. C. Wangberg, “Personalized Technology for Supporting Health Behaviors,” 2013 Ieee
4Th International Conference on Cognitive Infocommunications (Coginfocom), pp. 339–344,
2013.

[10] M. E. Cupples, A. McKnight, C. O’Neill, and C. Normand, “The effect of personal
health education on the quality of life of patients with angina in general practice,”
Health Education Journal, vol. 55, no. 1, pp. 75–83, mar 1996. [Online]. Available:
http://hej.sagepub.com/content/55/1/75.abstract

[11] Y. Y. Shieh, F. Y. Tsai, A. Anavim, M. D. Wang, and C.-M. C. Lin, “Mobile
Healthcare: Opportunities and Challenges,” International Conference on the Management
of Mobile Business (ICMB 2007), vol. i, no. Icmb, pp. 50–50, 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4278593

[12] R.-l. P. H. Care, G. S. Ginsburg, J. Staples, and A. P. Abernethy, “Academic Medical Centers
: Ripe for Raid-Learning Personalized Health Care,” Science Translational Medicine, vol. 3,
no. 101, pp. 1–4, 2011.

http://dx.doi.org/10.1007/b137697
http://www.geneticalliance.org.uk/docs/egan{_}personalisedhealthcare.pdf
http://hej.sagepub.com/content/55/1/75.abstract
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4278593

References 250

[13] M. Lee, B. Kang, D. Han, S. Jung, and C. Cho, “A platform for personalized mobile u-health
application design and development,” 2008 10th IEEE Intl. Conf. on e-Health Networking,
Applications and Service, HEALTHCOM 2008, pp. 221–226, 2008.

[14] D. Martín, D. López-de Ipiña, A. Alzua-Sorzabal, C. L. Lamsfus, and E. Torres-Manzanera,
“A methodology and a web platform for the collaborative development of context-aware
systems,” Sensors (Switzerland), vol. 13, no. 5, pp. 6032–6053, 2013.

[15] M. Alloghani, A. Hussain, D. Ai-jumeily, P. Fergus, O. Abuelma, and H. Hamden, “A Mobile
Health Monitoring Application for Obesity Management and Control Using the,” 2016 Sixth
International Conference on Digital Information Processing and Communications (ICDIPC),
pp. 19–24, 2016.

[16] S. Akter and P. Ray, “mHealth - an Ultimate Platform to Serve the Unserved.” Yearbook of
medical informatics, no. November, pp. 94–100, 2010.

[17] AppyPie, “About Us | Appy Pie,” 2015. [Online]. Available: http://www.appypie.com/
about-us

[18] MIT, “MIT App Inventor | Explore MIT App Inventor,” 2015. [Online]. Available:
http://appinventor.mit.edu/explore/

[19] Microsoft, “Windows App Studio–Free Tool to create apps in Windows Stores|Microsoft,”
2015. [Online]. Available: http://appstudio.windows.com/en-us

[20] S. Myneni, M. Amith, Y. Geng, and C. Tao, “Towards an Ontology-driven Framework to
Enable Development of Personalized mHealth Solutions for Cancer Survivors ’ Engagement
in Healthy Living,” 2015.

[21] K. L. Skillen, L. Chen, C. D. Nugent, M. P. Donnelly, and I. Solheim, “A
user profile ontology based approach for assisting people with dementia in mobile
environments.” Conference proceedings : ... Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine
and Biology Society. Conference, vol. 2012, pp. 6390–3, 2012. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/23367391

[22] K. L. Skillen, L. Chen, C. D. Nugent, M. P. Donnelly, W. Burns, and I. Solheim, “Ontological
user modelling and semantic rule-based reasoning for personalisation of Help-On-Demand
services in pervasive environments,” Future Generation Computer Systems, vol. 34, pp.
97–109, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.future.2013.10.027

[23] Vital Wave Consulting, “mHealth for Development: The Opportunity of Mobile
Technology for Healthcare in the Developing World,” United Nations Foundation and
Vodafone Foundation Technology Partnership, Tech. Rep. 1, 2009. [Online]. Available:
http://www.globalproblems-globalsolutions-files.org/

[24] S. Laxminarayan and R. S. Istepanian, “UNWIRED E-MED: the next generation of wire-
less and internet telemedicine systems.” IEEE transactions on information technology in
biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society, vol. 4,
no. 3, pp. 189–193, 2000.

[25] R. S. H. Istepanaian and Y.-T. Zhang, “Guest editorial. Introduction to the special section: 4G
Health–the long-term evolution of m-Health.” IEEE transactions on information technology
in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society,
vol. 16, no. 1, pp. 1–5, 2012.

[26] M. N. Kamel Boulos, S. Wheeler, C. Tavares, and R. Jones, “How smartphones are changing
the face of mobile and participatory healthcare: an overview, with example from eCAALYX.”
Biomedical engineering online, vol. 10, no. 1, p. 24, apr 2011.

http://www.appypie.com/about-us
http://www.appypie.com/about-us
http://appinventor.mit.edu/explore/
http://appstudio.windows.com/en-us
http://www.ncbi.nlm.nih.gov/pubmed/23367391
http://dx.doi.org/10.1016/j.future.2013.10.027
http://www.globalproblems-globalsolutions-files.org/

References 251

[27] M. Ebling and J. Kannry, “Healthcare,” Pervasive Computing, pp. 14–17, 2012.

[28] P. Yu, M. X. Wu, H. Yu, and G. Q. Xiao, “The challenges for the adoption
of m-health,” 2006 IEEE International Conference on Service Operations and
Logistics, and Informatics, SOLI 2006, pp. 181–186, jun 2006. [Online]. Available:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4125574

[29] Oxford Dictionaries, “Personalize - definition of personalize in English from the Oxford
Dictionaries,” 2014. [Online]. Available: https://en.oxforddictionaries.com/definition/
personalize

[30] D. Grigg-saito, S. Och, S. Liang, R. Toof, and L. Silka, “Health Promotion Practice,” in
Images of Heatlh, 2nd ed., O. et Al., Ed. Toronto: Canadian Scholars Pres, 2008, pp. 3–30.

[31] A. S. M. Mosa, I. Yoo, and L. Sheets, “A Systematic Review of Healthcare Applications for
Smartphones,” BMC Medical Informatics and Decision Making, vol. 12, no. 1, p. 67, 2012.
[Online]. Available: BMCMedicalInformaticsandDecisionMaking

[32] P. Nicole, H. Castañeda, M. Nichter, S. Wind, L. Carruth, and M. Muramoto, “Lay Health
Influencers: How They Tailor Brief Tobacco Cessation Interventions,” Health Education
and Behavior, vol. 29, no. 6, pp. 997–1003, 2012.

[33] R. Snyderman, “Personalized health care: From theory to practice,” Biotechnology Journal,
vol. 7, no. 8, pp. 973–979, 2012.

[34] A. Coulter, S. Roberts, and A. Dixon, “Delivering better services for people with long-term
conditions- The King’s Fund,” no. October, pp. 1–28, 2013.

[35] S. Y. Ho and S. B. Bull, “User’s adoption of mobile services: Preference and location
personalization,” Proceeding - 5th International Conference on Computer Sciences and
Convergence Information Technology, ICCIT 2010, pp. 314–319, 2010.

[36] J. Blom, “Personalization - A Taxonomy,” Chi 2000, no. April, pp. 1–2, 2000.

[37] K. Henricksen and J. Indulska, “Personalising context-aware applications,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 3762 LNCS, pp. 122–131, 2005.

[38] I. Jorstad and T. Van Do, “Service personalisation in mobile heterogeneous environments,”
Proceedings of the Advanced International Conference on Telecommunications and Interna-
tional Conference on Internet and Web Applications and Services, AICT/ICIW’06, vol. 2006,
p. 70, 2006.

[39] Android Open Source Project, “Android Overview | Open Handset Alliance,” 2013. [Online].
Available: http://www.openhandsetalliance.com/android{_}overview.html

[40] Deloitte, “The UK Cut: Game of Phones,” Mobile Consumer 2015, pp. 1–69, 2015. [Online].
Available: https://www.deloitte.co.uk/mobileuk/assets/pdf/Deloitte-Mobile-Consumer-2015.
pdf

[41] Ofcom, “The Communications Market Report,” Ofcom, London, Tech. Rep.,
2015. [Online]. Available: http://stakeholders.ofcom.org.uk/binaries/research/cmr/cmr15/
CMR{_}UK{_}2015.pdf

[42] I. Sommerville, Software Engineering, 5th ed., 1995.

[43] IEEE, “INTERNATIONAL STANDARD ISO / IEC / IEEE Systems and software
engineering — engineering,” pp. 1–94, 2011. [Online]. Available: http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp={&}arnumber=6146379{&}isnumber=6146378

[44] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2011.

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4125574
https://en.oxforddictionaries.com/definition/personalize
https://en.oxforddictionaries.com/definition/personalize
BMC Medical Informatics and Decision Making
http://www.openhandsetalliance.com/android{_}overview.html
https://www.deloitte.co.uk/mobileuk/assets/pdf/Deloitte-Mobile-Consumer-2015.pdf
https://www.deloitte.co.uk/mobileuk/assets/pdf/Deloitte-Mobile-Consumer-2015.pdf
http://stakeholders.ofcom.org.uk/binaries/research/cmr/cmr15/CMR{_}UK{_}2015.pdf
http://stakeholders.ofcom.org.uk/binaries/research/cmr/cmr15/CMR{_}UK{_}2015.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=6146379{&}isnumber=6146378
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=6146379{&}isnumber=6146378

References 252

[45] D. Campbell, E. G. Pereira, and G. McDowell, “Ontology driven framework for personal
mhealth application development,” in Proceedings - 2014 8th International Conference on
Next Generation Mobile Applications, Services and Technologies, NGMAST 2014, 2014, pp.
320–325.

[46] M. Olff, “Mobile mental health: A challenging research agenda,” European Journal of
Psychotraumatology, vol. 6, pp. 1–8, 2015.

[47] H. K. Flora, X. Wang, and S. V. Chande, “An Investigation on the Characteristics of
Mobile Applications: A Survey Study,” I.J. Information Technology and Computer Science
Information Technology and Computer Science, vol. 11, no. 11, pp. 21–27, 2014.

[48] G. Forman and J. Zahorjan, “The challenges of mobile computing,” Computer, vol. 27,
no. 4, pp. 38–47, apr 1994. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=274999

[49] A. K. Gupta, “Challenges of Mobile Computing,” in 2nd National Conference on Challenges
& Opportunities in Information Technology (COIT-2008) RIMT-IET, Roorkee, 2008, pp.
86–90.

[50] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing resource-poor mobile
devices with powerful clouds: Architectures, challenges, and applications,” IEEE Wireless
Communications, vol. 20, no. 3, pp. 14–21, 2013.

[51] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real Challenges in Mobile App Develop-
ment,” 2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, pp. 15–24, 2013.

[52] K. R. S. Patch, J. W. Spellman, and K. I. A. Wahlbin, “Mobile Accessibility: How WCAG
2.0 and Other W3C / WAI Guidelines Apply to Mobile,” Working Draft, no. February, pp.
1–14, 2015. [Online]. Available: https://www.w3.org/TR/mobile-accessibility-mapping/

[53] Android, “Android 5.1 APIs | Android Developers,” 2015. [Online]. Available:
http://developer.android.com/about/versions/android-5.1.html

[54] Kantar, “Market share held by the leading smartphone operating systems in Great Britain
from January 2013 to March 2016,” 2016. [Online]. Available: http://www.statista.com/
statistics/274119/market-share-held-by-smartphone-os-in-great-britain/

[55] Salesforce, “Native, HTML5, or Hybrid: Understanding Your Mo-
bile Application Development Options - developer.force.com,” 2016. [Online].
Available: https://developer.salesforce.com/page/Native,{_}HTML5,{_}or{_}Hybrid:
{_}Understanding{_}Your{_}Mobile{_}Application{_}Development{_}Options

[56] P. Smutný, “Mobile development tools and cross-platform solutions,” Proceedings of the
2012 13th International Carpathian Control Conference, ICCC 2012, pp. 653–656, 2012.

[57] R. Solutions, “How to Choose the Right Architecture For Your Mobile Application Rapid-
Value Mobile Applications can Sell Products & Services , Raise Productivity , and Increase
Awareness of Your Brand,” Tech. Rep., 2012.

[58] B. Raluca, “Mobile Web Apps vs . Mobile Native Apps : How to Make the Right Choice,”
p. 13, 2013.

[59] P. Gokhale and S. Singh, “Multi-platform strategies, approaches and challenges for
developing mobile applications,” 2014 International Conference on Circuits, Systems,
Communication and Information Technology Applications (CSCITA), pp. 289–293,
2014. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6839274

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=274999
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=274999
https://www.w3.org/TR/mobile-accessibility-mapping/
http://developer.android.com/about/versions/android-5.1.html
http://www.statista.com/statistics/274119/market-share-held-by-smartphone-os-in-great-britain/
http://www.statista.com/statistics/274119/market-share-held-by-smartphone-os-in-great-britain/
https://developer.salesforce.com/page/Native,{_}HTML5,{_}or{_}Hybrid:{_}Understanding{_}Your{_}Mobile{_}Application{_}Development{_}Options
https://developer.salesforce.com/page/Native,{_}HTML5,{_}or{_}Hybrid:{_}Understanding{_}Your{_}Mobile{_}Application{_}Development{_}Options
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6839274
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6839274

References 253

[60] F. Vergari, S. Bartolini, F. Spadini, A. . D’Elia, G. Zamagni, L. Roffia, and
T. Cinotti, “A Smart Space application to dynamically relate medical and environmental
information,” Design, Automation & Test in Europe Conference & Exhibition (DATE),2010,
vol. 86, no. 10, pp. 1542–1547, 2010. [Online]. Available: http://ieeexplore.ieee.org/
search/srchabstract.jsp?tp={&}arnumber=5457056{&}openedRefinements=*{&}filter=
AND(NOT(4283010803)){&}searchField=Search+All{&}queryText=A+Smart+Space+
Application+to+Dynamically+Relate+Medical+and+Environmental+Information

[61] Infosys, “M-Health: Challenges, benefits, and keys to successful implementation,” Tech.
Rep. 0, 2008.

[62] M. Plachkinova and S. Andrés, “A Taxonomy of mHealth Apps – Security and Privacy
Concerns,” 2015 48th Hawaii International Conference on System Sciences, vol. 48, no.
June 2013, pp. 3187–3196, 2015.

[63] Accenture, “Mobile Application Development : Challenges and Best Practices An increasing
number of both mobile devices and potential applications are forcing,” Tech. Rep., 2012.

[64] M. A. Ben Yahmed, M. A. Bounenni, Z. Chelly, and A. Jlassi, “A new mobile health
application for an ubiquitous information system,” Proceedings of 2013 6th Joint IFIP
Wireless and Mobile Networking Conference, WMNC 2013, 2013.

[65] A. Dzhagaryan, A. Milenković, and M. Burtscher, “Energy Efficiency of Lossless Data
Compression on a Mobile Device: An Experimental Evaluation,” Tech. Rep., 2013.

[66] G. Deepak and B. Pradeep, “Challenging Issues and Limitations of Mobile Computing,”
Int. J. Computer Technology & . . . , vol. 3, no. 1, pp. 177–181, 2012. [Online]. Available:
http://core.kmi.open.ac.uk/download/pdf/1133485.pdf

[67] I. Jorstad, D. V. Thanh, and S. Dustdar, “Personalisation of Next Generation Mobile
Services,” pp. 927–941, 2006. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.141.1246

[68] I. Jørstad, D. V. Thanh, and S. Dustdar, “Towards Service Continuity for Generic Mo-
bile Services,” IFIP International Conference on Intelligence in Communication Systems
(INTELLCOMM 04), 2004.

[69] B. Schmidt-Belz, A. Nick, S. Poslad, and A. Zipf, “Personalized and location-
based mobile tourism services,” Workshop on “Mobile Tourism Support Systems” in
conjunction with Mobile HCI, p. 14, 2002. [Online]. Available: http://195.130.87.21:
8080/dspace/handle/123456789/622

[70] C. Fredrich, H. Kuijs, and C. Reich, “An Ontology for User Profile Modeling in the Field
of Ambient Assisted Living,” SERVICE COMPUTATION 2014, The Sixth International
Conferences on Advanced Service Computing, vol. 5, pp. 24–31, 2014.

[71] B. Holtkamp, R. Gartmann, and Y. Han, “FLAME2008 - Personalized Web services for the
olympic games in 2008 in Beijing,” in Proceedings of eChallenges 2003, Bologna, 2003.

[72] N. Weibenberg and F. Isst, “Using ontologies in personalized mobile applications,”
Proceedings of the 12th annual ACM international workshop on Geographic
information systems GIS 04, no. 01, pp. 2–11, 2004. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1032222.1032225

[73] D. Brickley and L. Miller, “The FOAF Project,” 2015. [Online]. Available:
http://www.foaf-project.org/

[74] H. information and management systems society, “HIMSS Patient en-
gagement framework,” p. 4, 2014. [Online]. Available: http://www.himss.
org/himss-patient-engagement-frameworkhttp://himss.files.cms-plus.com/HIMSSorg/
NEHCLibrary/HIMSS{_}Foundation{_}Patient{_}Engagement{_}Framework.pdf

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp={&}arnumber=5457056{&}openedRefinements=*{&}filter=AND(NOT(4283010803)){&}searchField=Search+All{&}queryText=A+Smart+Space+Application+to+Dynamically+Relate+Medical+and+Environmental+Information
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp={&}arnumber=5457056{&}openedRefinements=*{&}filter=AND(NOT(4283010803)){&}searchField=Search+All{&}queryText=A+Smart+Space+Application+to+Dynamically+Relate+Medical+and+Environmental+Information
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp={&}arnumber=5457056{&}openedRefinements=*{&}filter=AND(NOT(4283010803)){&}searchField=Search+All{&}queryText=A+Smart+Space+Application+to+Dynamically+Relate+Medical+and+Environmental+Information
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp={&}arnumber=5457056{&}openedRefinements=*{&}filter=AND(NOT(4283010803)){&}searchField=Search+All{&}queryText=A+Smart+Space+Application+to+Dynamically+Relate+Medical+and+Environmental+Information
http://core.kmi.open.ac.uk/download/pdf/1133485.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.1246
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.1246
http://195.130.87.21:8080/dspace/handle/123456789/622
http://195.130.87.21:8080/dspace/handle/123456789/622
http://portal.acm.org/citation.cfm?doid=1032222.1032225
http://portal.acm.org/citation.cfm?doid=1032222.1032225
http://www.foaf-project.org/
http://www.himss.org/himss-patient-engagement-framework http://himss.files.cms-plus.com/HIMSSorg/NEHCLibrary/HIMSS{_}Foundation{_}Patient{_}Engagement{_}Framework.pdf
http://www.himss.org/himss-patient-engagement-framework http://himss.files.cms-plus.com/HIMSSorg/NEHCLibrary/HIMSS{_}Foundation{_}Patient{_}Engagement{_}Framework.pdf
http://www.himss.org/himss-patient-engagement-framework http://himss.files.cms-plus.com/HIMSSorg/NEHCLibrary/HIMSS{_}Foundation{_}Patient{_}Engagement{_}Framework.pdf

References 254

[75] D. C. Mohr, S. M. Schueller, E. Montague, M. N. Burns, and P. Rashidi, “The behavioral
intervention technology model: An integrated conceptual and technological framework for
ehealth and mhealth interventions,” Journal of Medical Internet Research, vol. 16, no. 6,
2014.

[76] M. Sutterer, O. Droegehorn, and K. David, “UPOS: User profile ontology with situation-
dependent preferences support,” Proceedings of the 1st International Conference on Ad-
vances in Computer-Human Interaction, ACHI 2008, pp. 230–235, 2008.

[77] D. Heckmann, T. Schwartz, B. Brandherm, M. Schmitz, and M. von Wilamowitz-
Moellendorff, “Gumo - The General User Model Ontology,” Proceedings of {UM} 2005:
10th {I}nternational {C}onference on {U}ser modeling, vol. 3538, pp. 428–432, 2005.

[78] E. Toch, Y. Wang, and L. F. Cranor, “Personalization and privacy: A survey of privacy
risks and remedies in personalization-based systems,” User Modeling and User-Adapted
Interaction, vol. 22, no. 1-2, pp. 203–220, 2012.

[79] J. Kay, B. Kummerfeld, and P. Lauder, “Personis: a server for user models,” Adaptive
Hypermedia and Adaptive Web-Based Systems, vol. 2347, pp. 203–212, 2002. [Online].
Available: http://www.springerlink.com/index/2L54YRGC0P8N2D5G.pdf

[80] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-platform mobile development
tools,” 2012 16th International Conference on Intelligence in Next Generation Networks,
ICIN 2012, pp. 179–186, 2012.

[81] Gartner, “Gartner Says Demand for Enterprise Mobile Apps Will Outstrip Available
Development Capacity Five to One,” 2015. [Online]. Available: http://www.gartner.com/
newsroom/id/3076817

[82] C. LeRouge and J. Ma, “User Profiles and Personas in Consumer Health Technologies,” 2010
43rd Hawaii International Conference on System Sciences, no. June, pp. 1–10, 2010. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5428383{%}5Cnhttp:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5428383

[83] R. Nickerson, J. Muntermann, U. Varshney, H. Isaac, and H. I. Taxonomy Devel-,
“Taxonomy Development In Information Systems: Developing A Taxonomy Of Mobile
Applications,” HAL ID: halshs-00375103, vol. HAL ID:, 2009. [Online]. Available:
https://halshs.archives-ouvertes.fr/halshs-00375103

[84] P. Olla and C. Shimskey, “mHealth taxonomy: a literature survey of mobile health applica-
tions,” Health and Technology, vol. 4, no. 4, pp. 299–308, 2015.

[85] K. D. Bailey, Typologies and taxonomies: an introduction to classification techniques, 1994,
no. 07.

[86] Y. Kwang Hooi, M. F. Hassan, A. I. B. Z. Abidin, N. I. B. Arshad, and A. M. Shariff,
“A Generic Ontology Methodology and Factors to Address Design Consistency,” IT
Convergence and Security (ICITCS), 2015 5th International Conference on, pp. 1–5, 2015.
[Online]. Available: http://ieeexplore.ieee.org/ielx7/7287494/7292885/07292919.pdf?tp=
{&}arnumber=7292919{&}isnumber=7292885

[87] R. Hoekstra, “Ontology Representation, Design patterns and ontologies that make sense,”
Frontiers in Artificial Intelligence and Applications, vol. 197, no. 1, pp. 1–236, 2009.

[88] M. Uschold, M. Gruninger, M. Uschold, and M. Gruninger, “Ontologies : Principles ,
Methods and Applications,” Knowledge Engineering Review, vol. 11, no. 2, pp. 93–136,
1996.

[89] M. Uschold, “Building Ontologies : Towards a Uni ed Methodology,” no. September, 1996.

http://www.springerlink.com/index/2L54YRGC0P8N2D5G.pdf
http://www.gartner.com/newsroom/id/3076817
http://www.gartner.com/newsroom/id/3076817
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5428383{%}5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5428383
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5428383{%}5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5428383
https://halshs.archives-ouvertes.fr/halshs-00375103
http://ieeexplore.ieee.org/ielx7/7287494/7292885/07292919.pdf?tp={&}arnumber=7292919{&}isnumber=7292885
http://ieeexplore.ieee.org/ielx7/7287494/7292885/07292919.pdf?tp={&}arnumber=7292919{&}isnumber=7292885

References 255

[90] F. M. Gruninger M., “Methodology for the design and evaluation of ontologies, in: Workshop
on Basic Ontological Issues in Knowledge Sharing, Montreal.” 1995.

[91] M. F. López, A. Gómez-Pérez, J. P. Sierra, and A. P. Sierra, “Building a chemical ontology
using methontology and the ontology design environment,” IEEE Intelligent Systems and
Their Applications, vol. 14, no. 1, pp. 37–46, 1999.

[92] M. Fernández-López and A. Gómez-Pérez, “Overview and analysis of methodologies for
building ontologies,” The Knowledge Engineering Review, vol. 17, no. 2, pp. 129–156, 2002.

[93] N. Dahlem, J. G. J. Guo, a. Hahn, and M. Reinel, “Towards an User-Friendly Ontology
Design Methodology,” 2009 International Conference on Interoperability for Enterprise
Software and Applications China, pp. 180–186, 2009.

[94] A. F. Sawsaa, Ontological Engineering approach of developing ontology of information
science, 1st ed. Huddersfield: Anchor Academic Publishing, 2015.

[95] D. Vrandecic, “Ontology Evaluation,” Ph.D. dissertation, Karlsruher Instituts fur Technolo-
gie, 2010.

[96] R. Shearer, B. Motik, and I. Horrocks, “HermiT: a highly-efficient OWL reasoner,” p. 10,
2008.

[97] ISO, IEC, and IEEE, “Systems and software engineering - System life cycle processes,” ISO;
IEC; IEEE, Tech. Rep., 2015.

[98] U. Flick, An Introduction to Qualitatative, 4th ed. London: Sage, 2009.

[99] D. Platter, “Welcome UML web site,” 2008. [Online]. Available: http://www.uml.org/

[100] Microsoft, “UML Activity Diagrams: Reference,” 2013. [Online]. Available:
https://msdn.microsoft.com/en-us/library/dd409360.aspx

[101] J. Garland and R. Anthony, “UML Quick Tour,” in Large-scale Software Architecture A
Practical Guide Using UML, 2003, ch. 5 UML Quic, pp. 69–86.

[102] Developers Android, “Android, the world’s most popular mobile platform,” pp. 3–5, 2014.
[Online]. Available: https://developer.android.com/about/android.html

[103] T. Gruber, “Toward principles for the design of ontologies used for knowledge sharing,”
International Journal of Human-Computer Studies, vol. 43, no. 5-6, pp. 907–928, 1993.
[Online]. Available: http://dx.doi.org/10.1006/ijhc.1995.1081

[104] W. Hesse, “Ontologies in the Software Engineering process,” 2nd GI-/GMDS-Workshop on
Enterprise Application Integration (EAI’05), vol. 141, pp. 3–15, 2005.

[105] T. S. Dillon, E. Chang, and P. Wongthongthain, “Ontology-based software engineering-
software engineering 2.0,” Aswec 2008: 19Th Australian Software Engineering Conference,
Proceedings, pp. 13–23, 2008.

[106] Y. He, J. Zhang, L. Q. Yue, Z. M. Li, and L. J. Tang, “Based on ontology methodology
to model and evaluate System of Systems (SoS),” Proceedings of the 9th International
Conference on System of Systems Engineering: The Socio-Technical Perspective, SoSE 2014,
no. 3, pp. 101–106, 2014.

[107] G. K. Saha, “Web ontology language (OWL) and semantic web,” Ubiquity, vol. 2007, no.
September, pp. 1–1, 2007. [Online]. Available: https://www.w3.org/TR/owl-features/http:
//portal.acm.org/citation.cfm?doid=1295289.1295290

[108] T. Saito and J. Sadoshima, “The Protégé Project: A Look Back and a Look Forward,” vol.
116, no. 8, pp. 1477–1490, 2016.

http://www.uml.org/
https://msdn.microsoft.com/en-us/library/dd409360.aspx
https://developer.android.com/about/android.html
http://dx.doi.org/10.1006/ijhc.1995.1081
https://www.w3.org/TR/owl-features/ http://portal.acm.org/citation.cfm?doid=1295289.1295290
https://www.w3.org/TR/owl-features/ http://portal.acm.org/citation.cfm?doid=1295289.1295290

References 256

[109] I. Palmisano, “OWL API,” Oxford, 2014. [Online]. Available: http://sourceforge.net/
projects/owlapi/files/OWLAPI(forOWL2.0)/4.0.0/

[110] O. Corcho, M. Fernández-López, A. Gómez-Pérez, and A. López-Cima, “Building legal
ontologies with METHONTOLOGY and WebODE,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 3369 LNAI, pp. 142–157, 2005.

[111] J. D. Novak and a. J. Cañas, “The Theory Underlying Concept Maps
and How to Construct and Use Them,” IHMC CmapTools, pp. 1–36,
2008. [Online]. Available: http://www.ode.state.or.us/teachlearn/subjects/science/
resources/msef2010-theory{_}underlying{_}concept{_}maps.pdf{%}5Cnpapers:
//dee23da0-e34b-4588-b624-f878b46d7b3d/Paper/p348

[112] C. Britton and J. Doake, Object-Oriented Systems Development: A gentle introduction,
D. Hatter, Ed. London: McGraw Hill Publishing, 2000.

[113] M. Prestley, Practical Object-Oriented Design With UML, 2nd ed., A. Waller, Ed. London:
McGraw Hill Publishing, 2000.

[114] ISO, “Information technology — Software product quality,” Iso/Iec Fdis 9126-1, vol. 2000,
pp. 1–26, 2000. [Online]. Available: http://www.cse.unsw.edu.au/{~}cs3710/PMmaterials/
Resources/9126-1Standard.pdf

[115] J. O.Grady, System Requirements Analysis, 2nd ed., ser. Elsevier insights. Elsevier Science,
2013. [Online]. Available: https://books.google.co.uk/books?id=o8kIR7lvrRQC

[116] M. Pincher, “A guide to developing taxonomies for effective data man-
agement,” 2010. [Online]. Available: http://www.computerweekly.com/feature/
A-guide-to-developing-taxonomies-for-effective-data-management

[117] PyData Development Team, “Python Data Analysis Library — Pandas,” 2012. [Online].
Available: http://pandas.pydata.org/index.htmlhttp://pandas.pydata.org/

[118] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking: Bringing
Order to the Web,” World Wide Web Internet And Web Information Systems, vol. 54, no.
1999-66, pp. 1–17, 1998.

[119] N. Effingham, An Introduction to Ontology. Birmingham: Polity Press, 2013.

[120] F. Ruiz and J. Hilera, Ontologies for Software Engineering and Software
Technology, 2006. [Online]. Available: http://link.springer.com/chapter/10.1007/
3-540-34518-3{_}2{%}5Cnhttp://link.springer.com/10.1007/3-540-34518-3

[121] A. Madche, H.-P. Schnurr, S. Staab, and R. Studer, “Representation Language-Neutral Mod-
eling of Ontologies,” Modelle und Modellierungssprachen in Informatik und Wirtschaftsin-
formatik : Beitrge des Workshops, pp. 129–142, 2000.

[122] A. Gómez-Pérez, M. Fernández-López, O. Corcho, and a. Gomez-Perez, Ontological
Engeenering, 2004. [Online]. Available: http://delicias.dia.fi.upm.es/wiki/images/a/aa/1.
{_}Intro-Sweb.pdf{%}5Cnhttp://books.google.com/books?id=UjS0N1W7GSEC

[123] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowledge
Acquisition, vol. 5, no. 2, pp. 199–220, 1993. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S1042814383710083

[124] X. Ma, C. Wu, E. J. M. Carranza, E. M. Schetselaar, F. D. van der Meer, G. Liu, X. Wang, and
X. Zhang, “Development of a controlled vocabulary for semantic interoperability of mineral
exploration geodata for mining projects,” Computers and Geosciences, vol. 36, no. 12, pp.
1512–1522, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.cageo.2010.05.014

http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/4.0.0/
http://sourceforge.net/projects/owlapi/files/OWL API (for OWL 2.0)/4.0.0/
http://www.ode.state.or.us/teachlearn/subjects/science/resources/msef2010-theory{_}underlying{_}concept{_}maps.pdf{%}5Cnpapers://dee23da0-e34b-4588-b624-f878b46d7b3d/Paper/p348
http://www.ode.state.or.us/teachlearn/subjects/science/resources/msef2010-theory{_}underlying{_}concept{_}maps.pdf{%}5Cnpapers://dee23da0-e34b-4588-b624-f878b46d7b3d/Paper/p348
http://www.ode.state.or.us/teachlearn/subjects/science/resources/msef2010-theory{_}underlying{_}concept{_}maps.pdf{%}5Cnpapers://dee23da0-e34b-4588-b624-f878b46d7b3d/Paper/p348
http://www.cse.unsw.edu.au/{~}cs3710/PMmaterials/Resources/9126-1 Standard.pdf
http://www.cse.unsw.edu.au/{~}cs3710/PMmaterials/Resources/9126-1 Standard.pdf
https://books.google.co.uk/books?id=o8kIR7lvrRQC
http://www.computerweekly.com/feature/A-guide-to-developing-taxonomies-for-effective-data-management
http://www.computerweekly.com/feature/A-guide-to-developing-taxonomies-for-effective-data-management
http://pandas.pydata.org/index.html http://pandas.pydata.org/
http://link.springer.com/chapter/10.1007/3-540-34518-3{_}2{%}5Cnhttp://link.springer.com/10.1007/3-540-34518-3
http://link.springer.com/chapter/10.1007/3-540-34518-3{_}2{%}5Cnhttp://link.springer.com/10.1007/3-540-34518-3
http://delicias.dia.fi.upm.es/wiki/images/a/aa/1.{_}Intro-Sweb.pdf{%}5Cnhttp://books.google.com/books?id=UjS0N1W7GSEC
http://delicias.dia.fi.upm.es/wiki/images/a/aa/1.{_}Intro-Sweb.pdf{%}5Cnhttp://books.google.com/books?id=UjS0N1W7GSEC
http://linkinghub.elsevier.com/retrieve/pii/S1042814383710083
http://linkinghub.elsevier.com/retrieve/pii/S1042814383710083
http://dx.doi.org/10.1016/j.cageo.2010.05.014

References 257

[125] D. L. McGuinness, O. Come, I. Dieter, J. Hendler, and H. Lieberman, “Ontologies come of
age: The web ’ s growing needs,” Spinning the Semantic Web: Bringing the World Wide Web
to Its Full Potential, pp. 1–13, 2005.

[126] M. Daconta, L. Obrst, and K. Smith, “Understanding Taxonomies,” in The Semantic Web.
Indianapolis: Wiley Technology Publishing, 2003, ch. 7, pp. 145–180.

[127] L. Obrst, H. Liu, R. Wray, and L. Wilson, “Ontologies for semantically interoperable
electronic commerce,” IFIP Advances in Information and Communication Technology, vol.
108, pp. 325–333, 2003.

[128] R. Poli, M. Healy, and A. Kameas, Theory and Applications of Ontology: Computer
Applications, ser. Theory and applications of ontology : [2]. Springer Netherlands, 2010.
[Online]. Available: https://books.google.co.uk/books?id=lQS6Abf9wzwC

[129] J. F. Sowa, “Ontology, metadata, and semiotics,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 1867, 2000, pp. 55–81. [Online]. Available: http:
//www.jfsowa.com/ontology/ontometa.htm

[130] C. K. Ogden and I. A. Richards, The Meaning of Meaning: A Study of the
Influence of Language Upon Thought and of the Science of Symbolism. Supplementary
Essays by B. Malinowski and F.G. Crookshank. Harcourt, 1923. [Online]. Available:
https://books.google.co.uk/books?id=i3MIAQAAIAAJ

[131] N. Guarino and D. Oberle, “What Is an Ontology?” Tech. Rep., 2009. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-92673-3

[132] F. Probst, “Investigating the Applicability of DOLCE as Foundation for Service
Descriptions,” W3C Workshop on Frameworks for Semantics in Web Services, no. October,
pp. 1–5, 2005. [Online]. Available: ftp://ftp-sop.inria.fr/acacia/W3CAtelierWS/papers/
PositionPaperProbst.pdf

[133] M. Daconta, L. Obrst, and K. Smith, The Semantic Web: a guide to the future
of XML, Web services, and knowledge management. Wiley, 2009. [Online]. Avail-
able: http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:the+semantic+
web+a+guide+to+the+future+of+xml,+web+services,+and+knowledge+management{#}0

[134] N. Guarino, “Formal Ontology and Information Systems,” Proceedings of the first
international conference, no. June, pp. 3–15, 1998. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.1776{&}rep=rep1{&}type=pdf

[135] J. Davies, R. Studer, and P. Warren, Semantic Web Technologies trends and research in
ontology based systems. Chichester: Wiley, 2006.

[136] D. Kalibatiene, “Perspectives in Business Informatics Research,” vol. 261, no. January 2011,
2011. [Online]. Available: http://link.springer.com/10.1007/978-3-319-45321-7

[137] V. Maniraj and D. Sivakumar, “Ontology Languages - A Review,” International Journal of
Computer Theory and Engineering, 2010, vol. 2, no. 6, pp. 1793–8201, 2010.

[138] OWL Working Group, “OWL - Semantic Web Standards,” 2012. [Online]. Available:
https://www.w3.org/OWL/https://www.w3.org/2001/sw/wiki/OWL

[139] C. D. Baader Franz and P. F. McGuinness, Deborah L, Nardi Daniele, Patel-Schneider, The
Description Logic Handbook, 2nd ed., Cambridge, 2007.

[140] M. Horridge and S. Bechhofer, “The OWLAPI: A Java API for OWL ontologies,” Semantic
Web, vol. 2, no. 1, pp. 11–21, 2011.

https://books.google.co.uk/books?id=lQS6Abf9wzwC
http://www.jfsowa.com/ontology/ontometa.htm
http://www.jfsowa.com/ontology/ontometa.htm
https://books.google.co.uk/books?id=i3MIAQAAIAAJ
http://link.springer.com/10.1007/978-3-540-92673-3
ftp://ftp-sop.inria.fr/acacia/W3CAtelierWS/papers/PositionPaperProbst.pdf
ftp://ftp-sop.inria.fr/acacia/W3CAtelierWS/papers/PositionPaperProbst.pdf
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:the+semantic+web+a+guide+to+the+future+of+xml,+web+services,+and+knowledge+management{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:the+semantic+web+a+guide+to+the+future+of+xml,+web+services,+and+knowledge+management{#}0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.1776{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.1776{&}rep=rep1{&}type=pdf
http://link.springer.com/10.1007/978-3-319-45321-7
https://www.w3.org/OWL/ https://www.w3.org/2001/sw/wiki/OWL

References 258

[141] I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen, “From SHIQ and RDF to OWL:
The making of a Web Ontology Language,” Web Semantics, vol. 1, no. 1, pp. 7–26, 2003.

[142] F. v. H. Deborah L. McGuinness, “Owl web ontology language overview,” W3C
recommendation 10.2004-03, vol. 2004, no. February, pp. 1–12, 2004. [Online]. Available:
https://www.w3.org/TR/owl-features/

[143] O. Dameron, D. L. Rubin, and M. a. Musen, “Challenges in converting frame-based ontology
into OWL: the Foundational Model of Anatomy case-study.” AMIA ... Annual Symposium
proceedings / AMIA Symposium. AMIA Symposium, vol. 1, pp. 181–185, 2005.

[144] M. Poveda-Villalón, M. Carmen Suárez-Figueroa, M. Ángel García-Delgado, and A. Gómez-
Pérez, “OOPS! (OntOlogy Pitfall Scanner!): supporting ontology evaluation on-line,” Unde-
fined, vol. 1, pp. 1–5, 2009.

[145] “OOPS! - OntOlogy Pitfall Scanner! - Pitfall Catalogue,” 2015. [Online]. Available:
http://oops.linkeddata.es/catalogue.jsp

[146] Oracle, “Oracle | Integrated Cloud Applications and Platform Services,” 2014. [Online].
Available: https://www.oracle.com/index.htmlhttp://www.oracle.com/index.html

[147] Quality Open Software, “Simple Logging Facade for Java (SLF4J).” [Online]. Available:
http://www.slf4j.org/

[148] I. Palmisano, “jFact DL Reasoner,” 2015. [Online]. Available: http://jfact.sourceforge.net/

[149] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein, “OWL Web Ontology Language Reference,” 2009.
[Online]. Available: https://www.w3.org/TR/owl-ref/

[150] B. Rodriguez-Castro and H. Glaser, “Whose “Fault” Is This? Untangling Domain
Concepts in an Ontology of Resilient Computing ,” Fast Abstracts at the 7th
European Dependable Computing Conference (EDCC-7), 2008. [Online]. Available:
http://eprints.ecs.soton.ac.uk/15408/

[151] C. Welty and N. Guarino, “Supporting ontological analysis of taxonomic relationships,”
Data and Knowledge Engineering, vol. 39, no. 1, pp. 51–74, 2001.

[152] A. Rector, “Modularisation of domain ontologies implemented in description
logics and related formalisms including OWL,” Proceedings of the international
conference on Knowledge capture - K-CAP ’03, p. 121, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=945645.945664

[153] ——, “Normalisation of ontology implementations: Towards modularity, re-use, and main-
tainability,” Multi-Agent Systems, 2002.

[154] J. Malone and H. Parkinson, “Reference and Application Ontologies,”
\url{http://ontogenesis.knowledgeblog.org/295}, 2010. [Online]. Available: http:
//ontogenesis.knowledgeblog.org/295

[155] M. Gruninger and M. S. Fox, “The Role of Competency Questions in Enterprise Engineering,”
IFIP WG5 - 7 Workshop on Benchmarking - Theory and Practice, pp. 1–17, 1994. [Online].
Available: http://www.eil.utoronto.ca/enterprise-modelling/papers/benchIFIP94.pdf

[156] C. Bezerra, F. Freitas, and F. Santana, “Evaluating ontologies with Competency Questions,”
Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology - Workshops, WI-IATW 2013, vol. 3, no. November, pp.
284–285, 2013.

[157] Android Developers, “<uses-feature>,” 2015. [Online]. Available: https://developer.android.
com/guide/topics/manifest/uses-feature-element.html

https://www.w3.org/TR/owl-features/
http://oops.linkeddata.es/catalogue.jsp
https://www.oracle.com/index.html http://www.oracle.com/index.html
http://www.slf4j.org/
http://jfact.sourceforge.net/
https://www.w3.org/TR/owl-ref/
http://eprints.ecs.soton.ac.uk/15408/
http://dl.acm.org/citation.cfm?id=945645.945664
http://ontogenesis.knowledgeblog.org/295
http://ontogenesis.knowledgeblog.org/295
http://www.eil.utoronto.ca/enterprise-modelling/papers/benchIFIP94.pdf
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html

References 259

[158] Android Developer, “Android Debug Bridge.” [Online]. Available: https://developer.android.
com/studio/command-line/adb.html

[159] Android Developers, “Setting up CTS | Android Open Source Project.” [Online]. Available:
https://source.android.com/compatibility/cts/setup

[160] Android Developers;, “Codenames, Tags, and Build Numbers | Android Open Source
Project,” 2015. [Online]. Available: https://source.android.com/source/build-numbers

[161] Android Developers, “Manifest.permission_group | Android Developers.” [Online].
Available: https://developer.android.com/guide/topics/manifest/uses-sdk-element.html

[162] ——, “Manifest.permission_group | Android Developers.” [Online]. Available: https:
//developer.android.com/reference/android/Manifest.permission{_}group.html{#}PHONE

[163] W3C, “OWL 2 Web Ontology Language Primer,” 2007. [Online]. Available:
https://www.w3.org/2007/OWL/wiki/Primer

[164] M. Horridge, “A Practical Guide To Building OWL Ontologies Using Protégè 4 and CO-ODE
Tools Edition 1.3,” Matrix, pp. 0–107, 2011. [Online]. Available: http://owl.cs.manchester.
ac.uk/tutorials/protegeowltutorial/resources/ProtegeOWLTutorialP4{_}v1{_}3.pdf

[165] M. Horridge and P. F. Patel-Schneider, “OWL 2 Web Ontology Language: Manchester
Syntax,” 2008.

[166] C. Paz-trillo, J. Riani, M. Ribeiro, L. N. D. Barros, and
R. Wassermann, “Classifying Ontologies,” pp. 1–12. [Online]. Avail-
able: http://www.cecm.usp.br/{~}marciomr/publicacoes/WontoGeral.pdf{%}5Cnhttps:
//www.researchgate.net/publication/221336546{_}Classifying{_}Ontologies

[167] M. Horridge, “Justification based explanation in ontologies,” Ph.D. dissertation, University
of Manchester, 2011.

[168] H. Fan, F. K. Hussain, M. Younas, and O. K. Hussain, “An integrated personalization
framework for SaaS-based cloud services,” Future Generation Computer Systems, vol. 53,
pp. 157–173, 2015.

[169] D. Budgen, “Component-Based Design,” in Software Design, 2nd ed. Tottenham: Perason,
2003, ch. Component, pp. 401–418.

[170] ISO/IEC/IEEE 29119-4, Software and systems engineering — Software testing — Part 4:
Test Techniques, 2015.

[171] A. Eliëns, Principles of Object Orientated Development, 2nd ed. Addison-Wesley, 200.

[172] D. Budgen, Software Design, 2nd ed. Pearson, 2003.

[173] ISO;IEEE;IEC, “INTERNATIONAL STANDARD ISO / IEC Software Engineering —
Software Life,” ISO; IEEE; IEC, Tech. Rep., 2006.

[174] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution,” Proceedings of the
conference on The future of Software engineering - ICSE ’00, pp. 73–87, 2000. [Online].
Available: http://portal.acm.org/citation.cfm?doid=336512.336534

[175] J. T. Nosek and P. Palvia, “Software Maintenance Management: Changes in the Last
Decade,” Journal of Software Maintenance, vol. 2, no. 3, pp. 157–174, sep 1990. [Online].
Available: http://dx.doi.org/10.1002/smr.4360020303

[176] B. P. Lientz and E. B. Swanson, “Problems in Application Software Maintenance,”
Commun. ACM, vol. 24, no. 11, pp. 763–769, nov 1981. [Online]. Available:
http://doi.acm.org/10.1145/358790.358796

https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://source.android.com/compatibility/cts/setup
https://source.android.com/source/build-numbers
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/reference/android/Manifest.permission{_}group.html{#}PHONE
https://developer.android.com/reference/android/Manifest.permission{_}group.html{#}PHONE
https://www.w3.org/2007/OWL/wiki/Primer
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/resources/ProtegeOWLTutorialP4{_}v1{_}3.pdf
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/resources/ProtegeOWLTutorialP4{_}v1{_}3.pdf
http://www.cecm.usp.br/{~}marciomr/publicacoes/WontoGeral.pdf{%}5Cnhttps://www.researchgate.net/publication/221336546{_}Classifying{_}Ontologies
http://www.cecm.usp.br/{~}marciomr/publicacoes/WontoGeral.pdf{%}5Cnhttps://www.researchgate.net/publication/221336546{_}Classifying{_}Ontologies
http://portal.acm.org/citation.cfm?doid=336512.336534
http://dx.doi.org/10.1002/smr.4360020303
http://doi.acm.org/10.1145/358790.358796

References 260

[177] J. Martin and C. L. McClure, Software Maintenance: The Problems and Its Solutions.
Prentice Hall Professional Technical Reference, 1983.

[178] H. van Vliet, Software Engineering: Principles and Practice, 3rd ed. Wiley Publishing,
2008.

[179] Microsoft Corporation, Microsoft Application Architecture Guide, 2nd ed. Microsoft
Corporation, 2009. [Online]. Available: http://www.microsoft.com/en-us/download/details.
aspx?id=16236

[180] M. Poveda-villalón and M. C. Suárez-figueroa, “OOPS ! – OntOlogy Pitfalls Scanner
!” OOPS! – OntOlogy Pitfalls Scanner!. Monografía (Informe Técnico). Facultad de
Informática (UPM), Madrid., 2012.

[181] B. Glimm, I. Horrocks, B. Motik, and G. Stoilos, “Optimising ontology classification,” Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 6496 LNCS, no. PART 1, pp. 225–240, 2010.

[182] N. Matentzoglu, B. Parsia, and U. Sattler, “OWL Reasoning: Subsumption Test Hardness
and Modularity,” Journal of Automated Reasoning, pp. 1–35, 2017.

[183] M. Krötzsch, F. Simancik, and I. Horrocks, “A Description Logic Primer,” no. June, pp.
1–17, 2012. [Online]. Available: http://arxiv.org/abs/1201.4089

http://www.microsoft.com/en-us/download/details.aspx?id=16236
http://www.microsoft.com/en-us/download/details.aspx?id=16236
http://arxiv.org/abs/1201.4089

Appendix A

Taxonomy appendices

A collection of appendices associated with the development of the taxonomy

A.1 Taxonomy analysis: Frequency analysis Python script 262

A.1 Taxonomy analysis: Frequency analysis Python script

Python script to perform frequency analysis on article dataset.

1 import csv
2 from collections import Counter
3 import pandas as pd
4
5 files = [’papers ’,’apps ’]
6
7 for csvfile in files:
8 codesraw = []
9 codefix =[]

10 flist = []
11 clist= []
12
13 with open(csvfile+’.csv ’) as file:
14 reader = csv.reader(file)
15 next(reader)
16 for row in reader:
17 temp = str(row [1])
18 temp = temp.strip()
19 codesraw.append(temp)
20
21 series = Counter(codesraw)
22 series.keys()
23
24 for key , freq in series.items ():
25 flist.append(int(freq))
26 clist.append(str(key))
27
28 data = {’code ’: clist , ’freq ’: flist}
29
30 df = pd.DataFrame(data=data)
31 df.sort_values(by=’freq ’,ascending=1, inplace=True)
32 df.to_csv(’processed ’+ csvfile+’.csv ’)
33 print(df.describe ())

A.2 Taxonomy analysis: Concept maps 263

A.2 Taxonomy analysis: Concept maps

A series of concept maps representing set A - D respectively.

monitoring

assessment

recording

synonym-ofsynonym-of

tracking

synonym-of

synonym-of

synonym-of

synonym-of

verb-of

noun-of

verb-of

noun-of

detection

analysis

self-recordinganalyse

track

extension-of

example-of

noun-of

verb-of

monitor

record

noun-of verb-ofnoun-of verb-of

synonym-ofsynonym-of synonym-ofsynonym-of

example-of

self-monitoring

remote-
monitoring

extension-of

extension-of

monitoring-
medication

remote-
acquisition

physical-parameter-
acquisition

tracker

example-of

example-of

example-of

example-of

synonym-of

synonym-of

synonym-of

synonym-of

verb-ofnoun-of verb-ofnoun-of

diagnosis

diagnosing

diagnose

noun-of

verb-of

verb-of

example-of

example-of

precise-diagnosis

examination

example-of

Figure A.1 Set A Concept Map

A.2 Taxonomy analysis: Concept maps 264

manageself-manage extension-of

managementmanagement

noun-of verb-ofnoun-of verb-of

reservationreservationcalendar plan

example-ofexample-of example-of example-ofexample-of example-of

reservationcalendar plan

example-ofexample-of example-of

same-as same-assame-as same-as same-as same-assame-as same-as

reminders

decision-supportdecision-support

managermanager

reminderreminder

notifications notify

example-of

example-of

example-of

example-of

noun-of

verb-of

noun-of

verb-of

decision-support

manager

reminder

notifications notify

example-of

example-of

example-of

example-of

noun-of

verb-of

health-managementhealth-management

disease-managementdisease-management

self-management extension-of

extension-of

extension-ofhealth-management

disease-management

self-management extension-of

extension-of

extension-of

Figure A.2 Set B Concept Map

communication

social-network

email

messaging communicate

instant-message

call

social-media

example-of
example-of

example-of

example-of

same-as

same-as

same-as

same-as

example-ofexample-of

example-of

example-of
noun-of

verb-of

noun-of

verb-of

Figure A.3 Set C Concept Map

A.2 Taxonomy analysis: Concept maps 265

information inform

education

example-of

educate

noun-of

verb-of

noun-of

verb-of

noun-of

verb-of

noun-of

verb-of

synonym-of synonym-of

news

advise

example-of

example-of

example-of

example-of

news

advise

example-of

example-of

Figure A.4 Set D Concept Map

A.3 Taxonomy analysis: PageRank Python script 266

A.3 Taxonomy analysis: PageRank Python script

Python script developed to perform PageRank.

1 import numpy as np
2 import pandas as pd
3 import plotly.plotly as py
4 import plotly.graph_objs as go
5 import math
6
7 name = ’Set A’
8 csv = ’setA.csv ’
9 dfcolumns = []

10 pagerankvalues = []
11 dfdata = []
12 counter = 0
13 countls = []
14 epsilon = 0.01
15 dampeningfactor = 0.8
16
17 def __euclideanNorm(series):
18 return math.sqrt(series.dot(series))
19
20 def buildMatrixFromCSV(CSVfile):
21 mdf = pd.read_csv(CSVfile , header=None)
22 matrixdf = mdf.as_matrix ()
23 return matrixdf
24
25 # Matrix M
26 M = buildMatrixFromCSV(CSVfile=csv)
27
28 # Number of nodes in map
29 nodecount = len(M)
30
31 # intial node values
32 r0 = np.array ([1 / nodecount] * nodecount)
33
34 # beta * M
35 M = dampeningfactor * M
36
37 # Auto populates a matrix [N] with the (1-beta)(1/ nodecount)
38 N = [[(1 / nodecount) * (1 - dampeningfactor)
39 for y in range(nodecount)] for x in range(nodecount)]
40
41 # A (Matrix R + Matrix N)
42 A = M + N
43
44 #Appends PR(v_1) to the PageRank List
45 pagerankvalues.append(r0)
46
47 while (True):
48 countls.append(counter)

A.3 Taxonomy analysis: PageRank Python script 267

49 tempPageRank = A.dot(pagerankvalues[counter])
50 delta = tempPageRank - pagerankvalues[counter]
51 pagerankvalues.append(tempPageRank)
52 counter += 1
53 if __euclideanNorm(delta) < epsilon:
54 countls.append(counter)
55 break
56
57 countdf = pd.pandas.DataFrame(data=countls , columns=[’Index ’])
58 vectordf = pd.pandas.DataFrame(data=pagerankvalues , columns=dfcolumns)
59 dataframe = pd.concat ([countdf , vectordf], axis =1)
60
61
62 dataframe.to_csv(’PageRank ’+name+’.csv ’)
63 print(dataframe)
64
65 # Automation of Scatter plot
66 axisX = dict(
67 showgrid=True ,
68 zeroline=False ,
69 showline=True ,
70 tick0=0,
71 dtick=1,
72 showticklabels=True ,
73 title=’Iteration ’,
74 range=[0, counter]
75)
76 axisY = dict(
77 showgrid=True ,
78 zeroline=False ,
79 tick0=0,
80 dtick =0.1,
81 showline=True ,
82 title=’PageRank ’,
83 range=[0, 1]
84)
85
86 layout = go.Layout(
87 title=name ,
88 xaxis=axisX ,
89 yaxis=axisY
90)
91
92 graphdata = [] #List containing the graphs data
93
94 for col in dataframe:
95 if ’Index ’ not in col:
96 trace = go.Scatter(
97 name=col ,
98 mode=’lines+markers ’,
99 x=dataframe[’Index ’],

100 y=dataframe[col],
101)

A.3 Taxonomy analysis: PageRank Python script 268

102 graphdata.append(trace)
103
104 # create figure and export
105 fig = go.Figure(layout=layout , data=graphdata)
106 py.image.save_as(fig , filename=name + ’.png ’)

A.4 Taxonomy analysis: Function categorisation 269

A.4 Taxonomy analysis: Function categorisation

Table containing the a list of functions, description and assigned category.

A.4 Taxonomy analysis: Function categorisation 270

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
A2 Measuere Blood Glucose The user has the ability to see previous

glucose measurements and enter new
related data. The user is required to
select time, units of measurements,
reception place and annotation as well
as if the measurement is taken before
or after a meal.

Monitoring

View Blood Glucose
Recordings

The user has the ability to see previous
glucose measurements and enter new
related data.

Inform

Injected doses The user can see/provide information
regarding type, dose, type of insulin,
reception place and time.

Monitoring

Insulin Pump The user can see/provide information
regarding the used insulin pump, and
the basal insulin.

Monitoring

Meal – Drink The user can see/provide information
regarding the meal and included grams
of carbohydrates. Furthermore, the user
can select if it was before or after
insulin intake and or physical activity.

Monitoring

Exercise The user can see/provide information
regarding their physical activity (Type,
starting time, duration and impact)

Monitoring

Daily Treatment Total daily insulin and glucose
information is provided to the user after
statistical analysis. Results are provided
in tables and graphs.

Inform

Calendar The user can see/provide notes on
special events during their everyday life
and set reminders. Additionally, the
user can send the data generated to the
PMU (server) for the access by the
health care provider.

Management

Symptom Checker Not available Unknown Lack of context
Drug/ Treatment
Information

Not available Unknown Lack of context

First Aid essentials Not available Unknown Lack of context
Conditions Not available Unknown Lack of context
Local Health listings Not available Unknown Lack of context
Diet tracker Provides the user with calorie

breakdowns per meal
Monitoring

Weight tracker Generates a 2d weight chart Monitoring
Work out tracker Displays the number of calories burned

during a workout
Monitoring

Medication tracker Not available Unknown Lack of context
Blood sugar level
monitoring

Not available Unknown Lack of context

Glucose tracker Not available Unknown Lack of context
Activity tracker Not available Unknown Lack of context
Water consumption
tracker

Not available Unknown Lack of context

Weight Tracker Not available Unknown Lack of context

A3

A.4 Taxonomy analysis: Function categorisation 271

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
A4 Sensing A PPG sensor attached to ta mobile

phone via Bluetooth gathers the user’s
heartbeat information.

Monitoring

Questionnaire Function to gather and record
information regarding the user’s
symptoms.

Monitoring

Data Processing Analyses the user’s bio metric
information, results from questionnaire
and calculates a stress index measure.

Monitoring

Disease Treatment Based upon the results from data
processing this function recommends a
suitable stress solving programme to
the user.

Inform

Heart monitoring Measures the users heart rate, identifies
the resting heart rate (Max – Min and
Standard deviation).

Monitoring

Physical Activity Identifies if the user is Walking or
Running.

Monitoring

Posture Identifies if the user is standing or lying
down

Monitoring

Alerts If an alert is triggered the function
identifies the type and explanation of
the abnormal situation and reports it to
the clinician.

Monitoring

A7 Health monitoring Not Available Unknown Lack of context
Appointment Reservation Not Available Unknown Lack of context

Historical Graphs Not Available Unknown Lack of context
Suggested diet plans Not Available Unknown Lack of context
Directions Not Available Unknown Lack of context
Emergency Alarm Not Available Unknown Lack of context
Tag scanning Not Available Unknown Lack of context

A10

Location Uses GPS to find the users current
location

Monitoring

Call Calls the patients primary doctor or
emergency service.

Communication

Search Locate nearby trained LE therapists Inform
Volume change tracking Allows user to track limb volume

changes over long periods of time,
results are shown in the format of a line
graph

Monitoring

Symptom Report Function that allows the user to self-
record symptoms. The user can choose
from 19 options.

Monitoring

Alerts User can set reminders for upcoming
appointments and or goals such as
weight.

Management

Resources Provides the user with basic information
regarding LE, it aims to educate patients
with fundamental information,
statistics, websites and articles to
increase awareness.

Inform

A11

A9

A6

Data acquisition Retrieves data from the patients
monitoring device, for example blood
pressure or glucose level.

Monitoring

Alert The application identifies abnormal
heart behaviour and issues an alert.
Once an alert is raised the applications

Monitoring

A.4 Taxonomy analysis: Function categorisation 272

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
A13 Peak detection Detects the R-peak for rhythm

assessment

Monitoring

Quality assessment Monitoring

Rhythm assessment Monitoring

User feedback Returns the signal quality index (SQI)

and heart rate to the user

Inform

A14 Patient diary This function allows the user to record

their own test results

Monitoring

A15 Clock Daily medication clock that represents

24 hours of the day showing the

patients medication schedule.

Management

Chart Presents the user with details regarding

medication that was taken correctly or

not taken at all and estimated blood

plasma concentration

Management

Simulation Provides a simulation of the impact of

medication adherence/no adherence to

the user.

Inform

Alert Messaging A message is sent using SMS once an

alert is detected. The Alert message is

states the location, time and pattern of

the wandering episode will be sent to

the caregivers or attending physicians.

Monitoring

Location tracking Scans and obtains the RSSI values from

4 access points alongside the

acceleration and orientation signals

from the mobile devices on-board

sensors

Monitoring

Wandering Detection The algorithm analyses and the location

tracking data to detect and classify

wandering patterns in real time

Monitoring

A17 Diabetes Diary (type 1

and 2)

Type 1: Includes everything from Type 2

but also includes easy recording of

insulin injections, insulin calculator,

nutrition and options for commenting.

Type 2: Is composed of a tailored step

counter, eating habit registration,

educational system with practical tips.

Blood Glucose (type 1 and

2)

Transferring reading automatically from

a BG monitor

Monitoring

SMS Education (type 1

and 2)

User receives educational information

relating to their specific type of diabetes

Inform

Food Picture Diary Provides the user with the facility to

take a picture of their current meal and

append data such as Blood glucose

measurements and insulin correction

dosage.

Monitoring

Physical activity

monitoring

Records number of steps a user takes Monitoring

Nutrition Information Provides the user with food specific

information including alternatives

suggestions, nutritional information and

preparation.

Inform

A16

Monitoring

A.4 Taxonomy analysis: Function categorisation 273

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
AQHI Forecast Reports the daily Air Quality Health

Index information to the user.
Inform

Breathing Test Used to enter the Peak Flow data Monitoring
Today’s Symptoms Enables the user to record daily

symptoms
Monitoring

Your Current Zone Calculated based on the uses symptoms
and peak flow inputs

Monitoring

Your Asthma Plan Users can view of their complete action
plan

Management

Breathing Test Graphs Provides the user with a summary of
their peak expiratory flow values

Monitoring

A19 Electronic medication
Blister

 To track objectively the dosage and
timing of the medication intake using
electronic blisters via NFC. Recording
the position, timestamp and dosage of
the medication.

Monitoring

Exercise tracking Allows the user to record length of
exercise, Heart rate, Calories burnt,
Speed, distance altitude and distance

Monitoring

Weight monitoring Allows the user to track their weight,
BMI and if the reading is before or after
a meal.

Monitoring

Food Intake Food diary Monitoring
Blood pressure
monitoring

Records the users systolic max, diastolic
max, systolic and diastolic values.

Monitoring

Blood Glucose monitoring Record the mmol/L classification (Low,
normal, high) and if the insulin
correction dose was take before or after
meal

Monitoring

Cholesterol monitoring Monitors user cholesterol Monitoring
Temperature monitoring Records the users temperature Monitoring
Reparation monitoring Monitors the users breathing Monitoring
Bowl Movement
monitoring

Allows the user to track their bowl
movements

Monitoring

Heart rate monitoring Tracks the users heart rate Monitoring
A21 BMI Calculate the users BMI Management

Eye Test Series of changing eye charts randomly
appear for testing the users visual
acuity. User is required to follow an
onscreen target until the user makes a
mistake. The eye sight index is
calculated using the Chinese national
standard GB11533-2011

Monitoring

Colour Discrimination Provides the user with 24 pictures each
with 5 options. The functionality can
detect, fake, red, green and total colour
blindness based on the user’s
selections.

Monitoring

Hearing Assessment The functionality plays a series of sound
frequencies. The user is then required
to input if the sound could be heard or
not.

Monitoring

ECG Examination Records the users Systolic and diastolic
values and display it in a graphical
format

Monitoring

Height and weight Records the users height and weight Monitoring
Blood pressure Records the users heart rate and display

it in a graphical format
Monitoring

Blood Glucose Test Records the users Systolic and diastolic
values and display it in a graphical
format

Monitoring

A20

A18

A.4 Taxonomy analysis: Function categorisation 274

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
Voice Check Records the users voice to be assessed

by a physician
Monitoring

Heart sound Records the users heart beat to be
assessed by a physician

Monitoring

Tongue Check Allows the user to take a picture of their
tongue using the camera to be assessed
by a physician

Monitoring

Face record Allows the user to take a picture of their
face using the camera to be assessed by
a physician

Monitoring

Examination Report All examination results are added to a
report which is stored to be assessed by
a physician.

Communication

Creates user profile Creates user profile: requests the user
to input D.O.B, height, weight, goals.

Management

Personal Calorie
Calculator

Personal Calorie Calculator: calculates
and records daily calorie intake based
on user’s height and weight

Monitoring

Social Interaction Social Interaction: Allows users to
communicate with other users of the
application for support.

Communication

Weight Loss Graph Weight Loss Graph: Presents the users
weight loss in a line graph.

Inform

Badges Badges: monitors user progress an
displays user milestones and
achievements

Management

B2 Q&A Asks the user a series of simple
questions, based on the response
provides advice.

Inform

Provides Information Provides the user with advice, tips,
guidance, facts, telephone numbers
and links to websites

Inform

 I.C.E contacts Allows the user to input a series of in
case of emergency contacts

Communication

Jargon Buster Describes keywords used
throughout the application

Inform

Healthcare Service
Locater

Using GPS locates nearby
healthcare services

Inform

Pill Manager Allows the user to input the pill
name, frequency and notes. There is
also an option to add alert to pill
tracker.

Management

Pill Tracker Reminds user to take pill at a specified
time

Management

Medication Manager Medication Manager: Allows the
user to input their medication
(dosage and frequency, times)

Management

Medication Reminder Triggers medication reminders
notifying the user to take specific
medication and correct dosage at
predetermined times throughout the
day.

Management

Medication History Medication History: Allows the user
to record the medication they taken

Inform

Prescription Reminder Notifies the user when to
order/collect their prescription.

Management

Contact List User can input a useful telephone
number such as local Pharmacy

Management

B3

B1

A.4 Taxonomy analysis: Function categorisation 275

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
B4 Diabetes Information Provides the user with various

information regarding diabetes.
Inform

Annual Review Tracker Annual Review Tracker: Allows the
user to keep track of annual reviews
or important test results

Management

Recipes Provides the user with a series of
recipes for Breakfast, Lunch,
Evening meal and puddings.

Inform

Meal Mixer Randomly generates
recommendations for healthy
balanced meals for breakfast, lunch
and evening meaning allowing user
to create a shopping list

Inform

Shopping List Provides a detailed list of all the
necessary ingredients required to
make the provided recipes.

Management

Favourite Recipes Favourite Recipes: Allows user to
save their favourite recipes

Management

Share with Friends Allows the user to share recipes with
friends via social media

Communication

Healthy Eating
Information

Provides Information: provides the
user with cooking tips, healthy food
options

Inform

B6 Timer Displays how long the user has left
during the exercise session

Management

Personal Coach Pre-recorded exercise sessions to
act as a personal coach and records
progress

Monitoring

Weekly Progress Shows the user progress through a
9-week exercise programme

Inform

Feedback Diary Allows the user rate how they feel
after each exercise session.

Monitoring

Exercise Information Provides educational information
such as tips and advice for new
runners

Inform

Record Blood Pressure Records Blood Pressure*: Allows the
user to record their Blood pressure
and notes such as activity

Monitoring

Reminders Reminders: Reminds the user to
take their blood pressure

Management

View Results View results: User can view their
blood pressure recordings in 30, 60,
90 days’ intervals or all.

Inform

Create User Profile Create user profile: Requests the
user to input, DOB, gender and
blood pressure goals (Systolic and
Diastolic)

Management

B8 Create Personal Profile Requests the number of cigarettes
the user smokes per day, time of first
cigarette and notification preference

Management

Progress Notifications Presents the user with
achievements, progress towards
goals or current savings

Inform

Savings Calculator Calculates the user’s estimated
savings to date, per month and
annually.

Management

Badges Badges are used to track users
progress and key milestones

Monitoring

Personal Motivations Creates personal motivations that
are used to motivate the user

Management

Tips for success Provides information on how to
handle cravings, distraction
techniques

Inform

B7

B5

A.4 Taxonomy analysis: Function categorisation 276

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
Additional resources Provides links to additional

resources and helpful information
Inform

Period Tracker Records the date the mensuration
cycle starts

Monitoring

Add Notes Enables the user to record: intimacy,
symptoms, moods, weight and
temperature

Monitoring

Calendar Displays a prediction of the month
including, mensuration, ovulation
and fertile window

Management

Logs and Charts Provides the user logs and graphs
relating to the user’s menstruation
cycle

Inform

B10 Step counter Tracks number of steps taken Monitoring

Monitor blood glucose* Monitor blood glucose Monitoring

Monitor blood pressure* User can record the systolic and

diastolic values, pulse rate (BPM)

[requires compatible hardware/ or

manually entered]

Monitoring

Track hours slept* Tracks the number of hours slept Monitoring

Track water intake Tracks the number of glasses

(manually)against a pre-determined

target

Monitoring

Track caffeine intake Tracks the number of cups against a pre-

determined target

Monitoring

Monitor Sp02* Monitor Oxygen saturation Monitoring

Monitor weight* Monitor weight Monitoring

Calculate BMI Calculates the users current BMI Management

Create User profile Includes name, gender, height, weight,

activity level, personal bests, weekly

summary and program history

Unknown

Exercise regimes Various exercise regimes (10+) utilises

various sensors including the

accelerometer to track users steps, pace

and distance traversed during the

exercise programme

Monitoring

Track food User can manually record their food

intake for meals throughout the day to

calculate their calorie intake based on a

target

Monitoring

Challenge friends** Set challenges for friends and view

leader boards

Unknown Locked Premium Feature

Discover Provides the user with various health

related news articles from various

sources

Inform

 Sleep analysis* Monitors the users sleep using a 3rd
party sensor or built in microphone
and accelerometer

Monitoring

View Trends** Locked Premium Feature Unknown Locked Premium Feature

View Sleep Phases Shows an analysis of the users
sleep cycle and transitions from the
different phases

Inform

Alarm clock Allows the user to set a time to be
woken from sleep, the function
determines the optimal time based
on the user’s current sleep phase.

Management

Set-Goals** Allows the user to set seep goals Unknown Locked Premium Feature

B11

B9

A.4 Taxonomy analysis: Function categorisation 277

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
B12 Activity Generator Requests the user to input various data

such as Play location (Indoor / Outdoor)
and how many are taking part. The
function will provide a user with a list of
recommendations. Once selected the
user is presented with information
regarding the activity such as how to
play, where to play, tips for adults and
what you will need.

Management

Share shares recommended activities through
social media

Communication

Favourites Stores a list of favourite activities Management
About Meningitis Provides information about

meningitis
Inform

Sign and Symptom Signs and Symptoms: information
reading the signs and symptoms of
meningitis

Inform

Call NHS Direct Allows the user to call... NHS direct
(England/Wales and Scotland),
ambulance

Communication

Call Ambulance Allows the user to call an ambulance Communication

Search for GP Opens a link to the NHS choices
'Find services page'

Inform

Find nearest A&E Opens a link to the NHS choices
'Find services page'

Inform

Quiz Assess the user’s knowledge of
meningitis and provides key
information relating to the question

Inform

Email Sends an email to contacts to
promote the application

Communication

Social Media Directs the user to the Meningitis
now support groups on social media

Communication

B14 Symptom Assessment User responds to questions regarding
the children’s symptoms and provides
recommendations of actions

Inform

Locate NHS Trust Enables the user to locate a NHS trust
or emergency service

Inform

Contact NHS Trust User can contact a service provider Communication
Rate Your Mood Select current mood by selecting 1 of six

the on screen emoticons and add a
comments

Monitoring

Mood Diary User selects from an influence from a
predefined list. The user can also
append comments (details) regarding
their current mood

Monitoring

Tips Tips on how to maintain your mood Inform
24/7 Help and Support Provides the users with contact

information to websites and 24/7
hotlines.

Inform

Personalised Triggers Based upon the data entered in the
mood diary, the application prompts
the user with tips on how to improve or
maintain their current mood.

Management

B15

B13

A.4 Taxonomy analysis: Function categorisation 278

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
B16 My Wellbeing User tracks; their current mood by

choosing from a predefined selection of

icons, Things they are looking forward

too, things they have achieved, things

they are grateful for. Events can be

added to a calendar for motivation or to

improve the user’s current mood.

Monitoring

Help with Stress Provides interactive information

regarding stress, how it can affect the

body and how to manage it and contact

information.

Inform

Help with Anxiety Provides interactive information

regarding anxiety how it can affect the

body and how to manage it and contact

information.

Inform

Help with depression Provides interactive information

regarding depression how it can affect

the body and how to manage it and

contact information

Inform

Help in a mental crisis Provides contact information for mental

health services.

Inform

Relax User can choose from 3 audio

relaxation (breathing) exercises

Management

Play Game The game snake is used as a distraction

technique to improve the user’s mood.
when feeling anxious

Management

Share User can share achievements, things

they are grateful for with friends on

social media

Communication

Step Tracker Records the steps the user takes,

including GPS to track distance

Monitoring

Weight Tracker Allows the user to monitor weight Monitoring

Set Goals Unlock achievements and milestones as

a reward to motivate the user to

maintain a healthy lifestyle

Management

View Records View previous recorded historical data Inform

View Trends View current average steps and

distances

Inform

Explore Join support groups to collaboratively

work together to achieve a collaborative

goal / achievement

Communication

Socialise Share progress goals and thoughts with

other users of the pacer app

Communication

B18 Symptom Checker User selects the part of the body that is

affected. Then proceeds to answer

questions regarding their symptoms to

diagnose a potential condition/s

Monitoring

Conditions Learn from medically reviewed content

about the conditions that are effecting

you and their potential cause

Inform

Drugs and Treatment Search an extensive data base of drugs

and treatment (overview, dosages, uses,

side effects, warnings)

Inform

First Aid Essentials Handy guide for administering first aid

for minor and major medical

emergencies.

Inform

Get Directions Locate nearest healthcare service

provider

Inform

Email Me Email content to your personal email for

review later

Communication

B17

A.4 Taxonomy analysis: Function categorisation 279

SOURCE ID FUNCTION NAME DESCRIPTION CATEGORY NOTES
Email Friends Email content to a friend/s email for

review later
Communication

Pregnancy Information Provides the user with daily blogs and
pregnancy information.

Inform

Personal Diary Allows the user to record Thoughts,
feeling and movements

Monitoring

Weight Log Keep track of weight gain over the
course of the pregnancy

Monitoring

Doctor visit Log Tool to keep a record appointment Monitoring
Diet, Exercise and
Labour information

Provide the user with information
regarding healthy diet, safe exercises
and what to expect during labour.

Inform

Kick Counter Record the number of 'kicks' from the
baby.

Monitoring

Contraction Timer Allows the user to monitor frequency
and length of contractions

Monitoring

Shopping List Create and manage a shopping list Management
B20 Track Exercise Allows the user to track distance, pace,

steps calories burned, heart rate during
exercise

Monitoring

Track Heart Rate Allows the user to record resting and
working heart rate

Monitoring

View Trends Allows the user to view weekly, monthly
and yearly trends.

Inform

Challenges Unlock achievements and work towards
milestones, to further motivate the
user. The user may also define custom
challenges to create competition
between friends that also used the
application

Management

Monitor Weight Allows the user to manually input their
weight and view progress over time.

Monitoring

Monitor H20 Intake Allows the user to manually input their
H20 Intake and view progress over time.

Monitoring

B19

A.5 Taxonomy testing: Test dataset 280

A.5 Taxonomy testing: Test dataset

Test data and classification results used to evaluate the taxonomy.
Taxonomy:	Testing	Data	
	

1	
	

T1	 Title	 One	You	Easy	Meals	

Description	 Our	free	Easy	Meals	app	is	a	great	way	to	eat	foods	that	are	healthier	for	you.	You’ll	find	delicious,	
easy	meal	ideas	to	get	you	going	if	you’re	ever	short	of	inspiration.	
	
One	You	is	here	to	help	you	live	more	healthily	and	make	the	changes	that	matter.	Sometimes	it’s	
hard	to	know	what	to	prepare,	or	think	of	new	meal	ideas.	Remembering	ingredients	and	keeping	
track	of	calories	can	be	a	hassle.		

Available	from	 Google	Play	

Platform	 Android	

Version	 5.0.0	

Developer	 Public	Health	England	

Function	 Function	Description	 Type	

Meal	Ideas	

Allows	the	user	to	search	for	meal	ideas	for	breakfast,	lunch,	evening	meal	
and	puddings.		Each	meal	is	presents	an	image	to	the	user	along	with	an	
overview,	ingredients	and	how	to	prepare.	The	user	also	has	the	option	to	
add	ingredients	to	a	shopping	cart	or	add	as	a	favourite		

Management	

Favourites	 Stores	the	user’s	favourite	meals	for	easy	and	convenient	access.	 Management	

Shopping	List	
The	user	is	required	to	add	to	a	shopping	list	a	meal	from	the	meal	ideas	or	
meal	mixer	function.	This	function	then	manages	the	users	shopping	list	
breaking	down	each	meal	and	into	its	required	ingredients.			

Management	

Meal	Mixer	 Randomly	chooses	a	meal	for	breakfast,	lunch	and	dinner.	The	user	also	has	
the	option	to	add	ingredients	to	a	shopping	cart	or	add	as	a	favourite.	 Management	

Be	Food	Smart	 Provides	the	user	with	educational	information	based	around	a	healthy	
diet.	

Educational	

Seasonal	Tips	
Based	on	the	current	month,	this	function	recommends	fruit	and	
vegetables	and	meals.	 Management	

Cooking	Tips	 Provides	educational	cooking	information	to	the	user	 Instructional	

Cooking	Terms	 Provides	the	user	with	a	list	of	terms	and	descriptions	of	commonly	used	
cooking	terms	

Educational	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

A.5 Taxonomy testing: Test dataset 281
Taxonomy:	Testing	Data	
	

2	
	

T2	 Title	 NHS	Child	Health	

Description	 Looking	after	your	child’s	health,	an	NHS	guide	for	parents	and	carers	of	children	aged	0-5	years.	
	
Developed	by	hospital	specialists,	doctors,	health	visitors	and	pharmacists	this	app	will	give	you	
lots	of	useful	hints	and	tips	from	experts	in	child	health	from	everything	from	oral	health,	upset	
tummies	and	diarrhoea	to	advice	on	bumps	and	bruises.	
	
This	app	is	intended	to	help	you	know	what	to	do,	and	where	to	go,	when	you	are	looking	after	an	
unwell	child.	
	

Available	from	 Google	Play	

Platform	 Android	

Version	 1.0.0	

Developer	 Indigo	Multimedia	Ltd	

Function	 Function	Description	 Type	

Body	Area	
Allows	the	user	to	select	an	area	of	the	body	(head,	chest	stomach	and	
bottom),	that	prompts	a	list	of	symptoms	relating	to	that	area.	It	then	
directs	the	user	to	advisory	information	relating	to	the	symptom.	

Informative	

NHS	Services	
Provides	a	list	of	various	types	NHS	services	to	the	user.	The	user	is	
required	to	select	an	option	from	a	list,	then	function	then	provides	an	
overview	of	the	service	and	locates	the	nearest	one	to	the	user.			

Informative	

Looking	after	your	child	 Provides	the	user	with	various	advisory	information	regarding	‘looking	after	
your	child’.	Examples	include:	Oral	health,	sun	safety	and	immunisations.	

Advisory	

The	first	few	months	
Provides	the	user	with	various	advisory	information	regarding	‘The	first	few	
months’.	Examples	include:	Crying,	teething	and	feeding.	 Advisory	

Childhood	illnesses	 Provides	the	user	with	various	advisory	information	regarding	common	
‘childhood	illnesses’.	Examples	include:	Asthma,	constipation,	and	rashes.	 Advisory	

Accidents	and	
prevention	

Provides	the	user	with	various	advisory	information	regarding	‘accidents	
and	prevention’.	Examples	include:	Bumps	and	bruises,	burns	and	scalds	
and	choking.	

Advisory	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	 	

A.5 Taxonomy testing: Test dataset 282
Taxonomy:	Testing	Data	
	

3	
	

T3	 Title	 Symptomate	Symptom	Checker	

Description	
Symptomate	is	an	innovative	symptom	checker	designed	by	doctors	that	will	help	you	find	out	
more	about	your	symptoms.	Just	enter	basic	information	about	your	health	complaints	and	
receive	a	list	of	potential	diagnoses.	

Available	from	 Google	Play	/	App	store	

Platform	 Android	/	iOS	

Version	 1.2	

Developer	 Infermedica	

Function	 Function	Description	 Type	

Diagnose	Symptom	 Presents	the	users	with	various	questions	relating	to	their	illness	to	
perform	a	diagnosis	 Assessment	

Results	Details	
Provides	the	user	with	an	explanation	of	the	potential	illnesses	and	
recommends	the	type	of	doctor	you	should	consult	regarding	your	
symptoms	

Informative	

	 	 	

	 	 	

	 	 	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	 	

A.5 Taxonomy testing: Test dataset 283
Taxonomy:	Testing	Data	
	

4	
	

T4	 Title	 NHS	GO	

Description	
NHS	Go	is	a	new	initiative	enabling	young	people	to	have	greater	access	to	medical	information.	
Users	can	read	health	related	articles,	search	for	nearby	services,	and	find	out	more	information	
regarding	their	rights	as	an	NHS	customer.	

Available	from	 Google	Play		

Platform	 Android	

Version	 1.5	

Developer	 Soho	Strategy	

Function	 Function	Description	 Type	

Health	A-Z		
Provides	a	complete	list	that	includes	educational	resources	for	all	the	
topics	below			 Educational	

Young	People	Health	
Targeted	educational	resources	relating	to	young	people’s	health.	Areas	
include,	registering	with	your	GP,	Ramadan,	Teens	(boys/girls).	

Educational	

Depression	and	Anxiety	 Provides	various	educational	resources	relating	to	Depression	and	Anxiety.	
Educational	

Sleep	 Provides	various	educational	resource	relating	to	sleep.	
Educational	

Sex	and	relationships	 Provides	various	educational	resource	relating	to	Sex	and	relationships.	
Educational	

LGBT	 Provides	various	educational	resource	relating	to	LGBT.	
Educational	

Puberty	 Provides	various	educational	resource	relating	to	Puberty.	
Educational	

Eating	healthily	and	
exercise	

Provides	various	educational	resource	relating	to	Eating	healthily	and	
exercise	

Educational	

Smoking,	drugs	and	
alcohol	

Provides	various	educational	resource	relating	to	Smoking,	drugs	and	
alcohol	

Educational	

Long	term	conditions	 Provides	various	educational	resource	relating	to	Long	term	conditions	
Educational	

Allergies,	colds,	flu	and	
pains	

Provides	various	educational	resource	relating	to	Allergies,	colds,	flu	and	
pains	

Educational	

Family	health	 Provides	various	educational	resource	relating	to	Family	health	
Educational	

Locate	local	NHS	services	

Based	upon	the	user’s	location,	the	function	presents	on	a	map	all	the	
surrounding	NHS	services	to	the	user.	Services	include	GP	practices,	A&E,	
clinics,	dentists	and	mental	health	trusts.	The	user	can	select	a	service	and	
the	function	will	provide	information	such	as	address,	contact	information	
and	referral	type.	

Informative	

Rights	 Provides	the	user	with	a	link	to	their	rights	under	the	NHS.	 Informative	

Make	a	complaint	 Provides	the	user	with	informative	information	regarding	the	correct	
procedure	of	making	a	complaint.	 Informative	

Help		 Provides	the	user	with	information	regarding	the	NHS	non-emergency	
number	111.	

Informative	

Notes	

	

	

A.5 Taxonomy testing: Test dataset 284
Taxonomy:	Testing	Data	
	

5	
	

T5	 Title	 Specsavers	Hearing	Check	

Description	 The	Specsavers	Hearing	Check	App	will	quickly	determine	your	level	of	hearing	loss	and	whether	
you	would	benefit	from	a	full	free	hearing	test	in	store.	

Available	from	 Google	Play		

Platform	 Android		

Version	 4.0.50	

Developer	 Specsavers	Opticians	

Function	 Function	Description	 Type	

Take	a	Hearing	Test	

Guides	the	user	through	a	hearing	test	assessment,	the	user	is	required	to	
listen	to	a	sample	conversation	and	respond	to	four	tests	by	adjusting	a	
slider.	Based	on	the	users	input	the	function	determines	the	potential	level	
of	hearing	loss	(Normal,	slight	loss,	medium	loss	and	significant	loss)	

Assessment	

Contact	your	local	
Specsavers	

Based	upon	the	user’s	location	the	function	provides	details	of	surrounding	
Specsavers	Stores	 Informative	

Book	an	appoint	 Allows	the	user	to	schedule	an	appointment		 Management	

Learn	more	about	
hearing	loss	

Provides	various	information	that	informs	the	user	regarding	topic	such	as	
hearing	loss,	tell-tale	signs	and	hearing	aids	 Educational	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	 	

A.5 Taxonomy testing: Test dataset 285
Taxonomy:	Testing	Data	
	

6	
	

T6	 Title	 Diabetes	in	Check:	Blood	Glucose	&	Carb	Tracker	

Description	
The	most	comprehensive	type	2	diabetes	app	on	the	market,	designed	by	a	Certified	Diabetes	
Educator.	You’ll	get	all	the	tools	plus	the	most	up-to-date	information	you	need	to	control	and	
manage	your	condition	every	day.	

Available	from	 App	store	

Platform	 iOS	

Version	 3.4.2	

Developer	 Everyday	Health	inc	

Function	 Function	Description	 Type	

Blood	Glucose	Tracking	
Allows	the	user	to	store	their	blood	glucose	level	throughout	the	day.	The	
user	is	required	to	select	what	time	the	reading	and	the	current	blood	
glucose	reading	is.		

Tracker	

Medication	Tracking	
Allows	the	user	to	track	their	medication	throughout	the	day.	The	user	is	
required	to	input	select	from	a	list	the	time	of	day,	the	type	of	medication	
and	dosage.		

Tracker	

Carbohydrate	Tracking	
Allows	the	user	to	keep	track	of	the	carbohydrate	intake	throughout	the	
day.	The	user	Is	required	to	scan	the	barcode	of	the	product	and	the	
function	extracts	the	carbohydrate	and	records	it.		

Tracker	

Exercise	Tracker	
Allows	the	user	to	keep	track	of	their	exercise.	The	user	is	required	to	select	
a	type	of	exercises	from	a	list	and	input	the	length	of	the	exercise.		 Tracker	

Weight	Tracker	 Allows	the	user	to	track	their	weight.	The	user	is	required	to	input	their	
current	weight	

Tracker	

Create	User	Profile	
Allows	the	user	to	create	a	user	profile	that	includes	their:	name,	age,	
height,	weight,	type	of	diabetes,	email	address.	 Management	

Articles	 Provides	various	educational	information	relating	to	diabetes:	Living	with	
diabetes,	blood	sugar	control,	managing	weight	&	food	and	fitness	

Educational	

Food	Guide	
the	user	can	search	from	a	list	of	recipes	for	meals	throughout	the	day.	It	
provides	an	overview	of	the	meal,	nutritional	information	and	instructions	
on	how	to	make	it.	

Instructional	

Community		
Allows	users	of	the	Application	to	post	personal	questions,	share	success	
stories	and	find	support	from	people	with	diabetes	 Communication	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

A.5 Taxonomy testing: Test dataset 286
Taxonomy:	Testing	Data	
	

7	
	

T7	 Title	 Weight	Loss	Tracker,	BMI	

Description	

The	APP	provides	you	with	a	detailed	body	weight	diary	including	graphical	statistics	on	your	body	
weight	improvements.	When	updating	your	body	weight,	the	APP	will	track	and	comment	on	your	
achievements	and	continuously	encourage	you	to	improve.	With	the	BMI	calculator	you	can	easily	
calculate	your	BMI	and	find	out	from	graphical	interpretations	whether	you	are	overweight,	
underweight	or	have	normal	weight.		

Available	from	 Google	Play	/	App	store	

Platform	 Android	/	iOS	

Version	 1.2	

Developer	 aktiWir	GmbH	

Function	 Function	Description	 Type	

BMI	Calculator	 Allows	the	user	to	calculate	their	BMI	and	stores	the	result	
The	user	is	required	to	input:	their	weight	and	height.	 Assessment	

User	Profile	 The	user	is	required	to	configure	a	user	profile	that	includes,	Unit	(Kg/lb),	
Gender,	Weight	and	Height.	 Management	

Protocol		 Provides	the	user	with	overview	of	their	weight	in	graphical	format		 Statistical	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	 	

A.5 Taxonomy testing: Test dataset 287
Taxonomy:	Testing	Data	
	

8	
	

T8	 Title	 Stress	Check	

Description	

Stress	Check	is	a	tool	developed	by	psychologists	with	expertise	in	stress	management	and	
workplace	performance.	The	Stress	Check	assessment	will	provide	you	with	an	overall	stress	score	
that	describes	your	current	level	of	stress.	After	receiving	your	overall	score,	you	can	deepen	your	
insight	by	examining	the	specific	areas	your	stress	is	affecting	you.		

Available	from	 Google	Play	/	App	store	

Platform	 Android	/	iOS	

Version	 2.0.0	

Developer	 AIIR	Consulting	LLC	

Function	 Function	Description	 Type	

Stress	Test	
Assesses	the	level	of	stress	the	user	is	currently	under.	The	user	is	required	
to	answer	a	series	of	questions;	their	answers	determine	the	‘Level’	of	
stress	they	are	currently	experiencing	

Assessment	

Tracker	 Allows	the	user	to	view	their	progress		 Statistical		

Stress	Tools	 Provides	the	user	with	information	(meditation	and	office	yoga)	to	help	
reduce	the	level	of	stress.		 Advisory	

Stress	University	 Provides	the	user	with	various	informative	articles	regarding	stress	 Informative	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	 	

A.5 Taxonomy testing: Test dataset 288
Taxonomy:	Testing	Data	
	

9	
	

T9	 Title	 Young	Epilepsy	

Description	
Free,	interactive	and	personalised	app	created	by	Young	Epilepsy	especially	for	young	people	with	
epilepsy,	and	parents	or	carers	of	a	child	with	epilepsy.	This	app	is	multipurpose	with	an	up-to-
date	information	portal,	video	and	diary	that	helps	track	and	manage	seizures	and	symptoms.		

Available	from	 App	store	

Platform	 iOS	

Version	 1.8.0	

Developer	 THE	NATIONAL	CENTRE	FOR	YOUNG	PEOPLE	WITH	EPILEPSY	

Function	 Function	Description	 Type	

Create	a	user	profile		 Allows	the	user	to	create	a	profile	that	contains	their	personal	information,	
condition,	medication	and	emergency	details.	 Management	

Call	helpline	 Allows	the	user	to	call	a	helpline	 Communication	

First	aid	 Provides	the	user	with	advice	information	regarding	first	aid	 Advisory	

Video	a	seizure	 Allows	the	user	to	record	a	seizure	 Tracker	

Learn*	 Provides	the	user	with	various	educational	information	relating	to	epilepsy		 Educational	

Diary	 Allows	the	user	to	monitor	their	epilepsy	seizures	and	track	elements	such	
as	the	time	of	day	they	occurred,	triggers,	duration.	 Tracker	

View	Diary	 Allows	the	user	to	view	their	diary	 Informative	

Notes	

Learn	functionality	–	contains	various	educational	information	such	as:	what	is	epilepsy,	seizures,	first	aid,	medication,	living	
with	epilepsy,	epilepsy	and	alcohol,	bullying,	relationships,	services	available,	depression.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

A.5 Taxonomy testing: Test dataset 289
Taxonomy:	Testing	Data	
	

10	
	

T10	 Title	 My	Last	Cigarette	-	Stop	Smoking,	Stay	Quit	

Description	 Quit	smoking	and	stay	quit	with	new	My	Last	Cigarette™	for	iOS,	the	original	quit	smoking	
software.	Since	1999	My	Last	Cigarette	has	successfully	helped	1000s	of	ex	smokers	stay	quit.	If	
you	are	serious	about	staying	quit	then	this	app	could	make	all	the	difference!	

Available	from	 App	store	

Platform	 iOS	

Version	 3.07	

Developer	 Mastersoft	Ltd	

Function	 Function	Description	 Type	

	Daily	Pic	 Presents	the	user	with	educational	information	including	images	of	the	
effects	of	smoking	 Informative	

Savings	calculator	 Presents	the	user	with	an	chart	with	an	estimation	of	their	potential	
savings	(per	day,	per	month	and	per	annum).		 Statistical	

Fatality	counter	 Presents	the	user	with	a	counter	showing	the	number	of	deaths	caused	by	
smoking	related	illnesses.	 Statistical	

Daily	Tracker		 Allows	the	user	to	track	throughout	the	day	the	number	of:	cravings,	
cigarette	smoked,	cigarette	not	smoked	as	well	as	some	notes.	 Tracker	

Notes	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

Appendix B

Ontology appendices

A collection of appendices that are associated with the development of the PMAD
Ontology model.

B.1 Android overview 291

B.1 Android overview

Major Android operating systems, including versions and API level extracted from [53]12.

Codename Version API Level

Marshmallow 6 23

Lollipop
5.1 22

5 21

KitKat 4.4 - 4.4.4 19

Jelly Bean

4.3.x 18

4.2.x 17

4.1.x 16

Ice Cream Sandwich
4.0.3 - 4.0.4 15

4.0.1 - 4.0.2 14

Honeycomb

3.2.x 13

3.1 12

3 11

Gingerbread
2.3.3 - 2.3.7 10

2.3 - 2.3.2 9

Froyo 2.2.x 8

Eclair

2.1 7

2.0.1 6

2 5

Donut 1.6 4

Cupcake 1.5 3

1Android 1 and Android 1.1 was never released to the public therefore was excluded from the table
2API Level 20 was not included in the table as this API revision introduced support for Android Wear

devices

B.2 PMAD Ontology description logic expressivity 292

B.2 PMAD Ontology description logic expressivity

The table below breaks down the Description Logic expressivity of PMAD Ontology.

Dl Expressivity Name Description

AL Attributive Language

This is the base language which supports the use of the
following constructors [183]: Atomic negation(¬),
Concept Intersection(⊓), Universal Restriction (∀) and
Existential Quantifier (∃).

C
Complex Concept

Negation

Is an extension of the base language which supports the
use of the full existential quantification and the union (⊔
) constructors [139]

H Role Hierarchy
Is an extension of the base language that supports role
(property) subsumption axiom, i.e one role subsumes
another [139, 166]

F Functional Role
Is an extension of the base language that supports
functional properties, i.e states that for a given individual,
a role can have no more than one value.

Appendix C

Evaluation

A collection of appendices that are associated with the Evaluation of the PMAD
Ontology and PMAD Framework.

C.1 Subsumption check results 294

C.1 Subsumption check results

Presented in the table below are the results yielded from checking the inferred class
hierarchy against the expected class hierarchy.

Classification Axiom Present
AboutServiceProvider SubClassOf InformFunction True

AndroidDevice SubClassOf MobileDevice True

Appointments SubClassOf ManagementFunction True

CallServiceProvider SubClassOf CommunicationFunction True

CarePlanOverview SubClassOf InformFunction True

ChildrensActivityGenerator SubClassOf ManagementFunction True

CommunicationFunction SubClassOf Function True

ComplicationsWithDiabetes SubClassOf InformFunction True

ExerciseDiary SubClassOf MonitoringFunction True

ExerciseInstructions SubClassOf InformFunction True

HealthyMealRecipes SubClassOf ManagementFunction True

HealthySnackMixer SubClassOf ManagementFunction True

HeartAttackAssessment SubClassOf MonitoringFunction True

HeartRateMonitoring SubClassOf MonitoringFunction True

ImportanceOfHealthyEating SubClassOf InformFunction True

InformFunction SubClassOf Function True

IosDevice SubClassOf MobileDevice True

LivingWithDiabetes SubClassOf InformFunction True

ManagementFunction SubClassOf Function True

MealMixer SubClassOf ManagementFunction True

MedicationInformation SubClassOf InformFunction True

MedicationReminder SubClassOf ManagementFunction True

MedicationTracker SubClassOf MonitoringFunction True

MonitoringFunction SubClassOf Function True

Nexus5 SubClassOf AndroidDevice True

Nexus7 SubClassOf AndroidDevice True

PainDiary SubClassOf MonitoringFunction True

PersonalisedMealPlan SubClassOf ManagementFunction True

PresentHealthRelatedInformation SubClassOf InformFunction True

SamsungGalaxyS4 SubClassOf AndroidDevice True

ShoppingList SubClassOf ManagementFunction True

StepTracker SubClassOf MonitoringFunction True

C.2 Disjoint test data and results

Presented in the table below are the results yielded from checking the presence of the
disjointwith axiom.

C.2 Disjoint test data and results 295

Class Disjoint With Present

Accelerometer
AmbientTemperature, Barometer, Compass, Gyroscope,
HeartRateMonitor, Hifi, LightSensor, ProximitySensor,
RealitiveHumiditySensor, StepCounter, StepDetector

True

Advisory Educational, Informative, Instructional, Statistical True

AmbientTemperature
AccelerometerBarometer, Compass, Gyroscope,
HeartRateMonitor, Hifi, LightSensor, ProximitySensor,
RealitiveHumiditySensor, StepCounter, StepDetector

True

AndroidApi IosApi True

AndroidApiLevel10

AndroidApiLevel11, AndroidApiLevel12,
AndroidApiLevel13, AndroidApiLevel14,
AndroidApiLevel15, AndroidApiLevel16,
AndroidApiLevel17, AndroidApiLevel18,
AndroidApiLevel19, AndroidApiLevel21,
AndroidApiLevel22, AndroidApiLevel23,
AndroidApiLevel3, AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel11

AndroidApiLevel10AndroidApiLevel12,
AndroidApiLevel13, AndroidApiLevel14,
AndroidApiLevel15, AndroidApiLevel16,
AndroidApiLevel17, AndroidApiLevel18,
AndroidApiLevel19, AndroidApiLevel21,
AndroidApiLevel22, AndroidApiLevel23,
AndroidApiLevel3, AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel12

AndroidApiLevel10,
AndroidApiLevel11AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

C.2 Disjoint test data and results 296

AndroidApiLevel13

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12AndroidApiLevel14,
AndroidApiLevel15, AndroidApiLevel16,
AndroidApiLevel17, AndroidApiLevel18,
AndroidApiLevel19, AndroidApiLevel21,
AndroidApiLevel22, AndroidApiLevel23,
AndroidApiLevel3, AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel14

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12,
AndroidApiLevel13AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

AndroidApiLevel15

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14AndroidApiLevel16,
AndroidApiLevel17, AndroidApiLevel18,
AndroidApiLevel19, AndroidApiLevel21,
AndroidApiLevel22, AndroidApiLevel23,
AndroidApiLevel3, AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel16

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14,
AndroidApiLevel15AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

C.2 Disjoint test data and results 297

AndroidApiLevel17

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16AndroidApiLevel18,
AndroidApiLevel19, AndroidApiLevel21,
AndroidApiLevel22, AndroidApiLevel23,
AndroidApiLevel3, AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel18

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16,
AndroidApiLevel17AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

AndroidApiLevel19

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18AndroidApiLevel21,
AndroidApiLevel22, AndroidApiLevel23,
AndroidApiLevel3, AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel21

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18,
AndroidApiLevel19AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

C.2 Disjoint test data and results 298

AndroidApiLevel22

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21AndroidApiLevel23,
AndroidApiLevel3, AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel23

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21,
AndroidApiLevel22AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

AndroidApiLevel3

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23AndroidApiLevel4,
AndroidApiLevel5, AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel4

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23,
AndroidApiLevel3AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

C.2 Disjoint test data and results 299

AndroidApiLevel5

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4AndroidApiLevel6,
AndroidApiLevel7, AndroidApiLevel8,
AndroidApiLevel9

True

AndroidApiLevel6

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4,
AndroidApiLevel5AndroidApiLevel7,
AndroidApiLevel8, AndroidApiLevel9

True

AndroidApiLevel7

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6AndroidApiLevel8, AndroidApiLevel9

True

AndroidApiLevel8

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7AndroidApiLevel9

True

C.2 Disjoint test data and results 300

AndroidApiLevel9

AndroidApiLevel10, AndroidApiLevel11,
AndroidApiLevel12, AndroidApiLevel13,
AndroidApiLevel14, AndroidApiLevel15,
AndroidApiLevel16, AndroidApiLevel17,
AndroidApiLevel18, AndroidApiLevel19,
AndroidApiLevel21, AndroidApiLevel22,
AndroidApiLevel23, AndroidApiLevel3,
AndroidApiLevel4, AndroidApiLevel5,
AndroidApiLevel6, AndroidApiLevel7,
AndroidApiLevel8

True

AndroidDevice IosDevice True

Api
FunctionLogic, FunctionType, Hardware, Manufacturer,
PersonalisedComponent

True

Apple Asus, LG, Samsung True

AppointmentScheduleLogic

ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

Assessment Tracking True

Asus AppleLG, Samsung, LG True

Audio
Bluetooth, Camera, Display, FingerprintReader, Infrared,
Location, Nfc, Sensor, Telephony, Usb, Wifi

True

Barometer

Accelerometer, AmbientTemperatureCompass,
Gyroscope, HeartRateMonitor, Hifi, LightSensor,
ProximitySensor, RealitiveHumiditySensor, StepCounter,
StepDetector

True

Bluetooth
AudioCamera, Display, FingerprintReader, Infrared,
Location, Nfc, Sensor, Telephony, Usb, Wifi

True

Camera
Audio, BluetoothDisplay, FingerprintReader, Infrared,
Location, Nfc, Sensor, Telephony, Usb, Wifi

True

Cdma Gsm True

ChildrenActivityGeneratorLogic

AppointmentScheduleLogicExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

Communication Inform, Management, Monitoring True

C.2 Disjoint test data and results 301

CommunicationFunction
InformFunction, ManagementFunction,
MonitoringFunction

True

Compass

Accelerometer, AmbientTemperature,
BarometerGyroscope, HeartRateMonitor, Hifi,
LightSensor, ProximitySensor, RealitiveHumiditySensor,
StepCounter, StepDetector

True

Display
Audio, Bluetooth, CameraFingerprintReader, Infrared,
Location, Nfc, Sensor, Telephony, Usb, Wifi

True

Educational AdvisoryInformative, Instructional, Statistical True

ExerciseDiaryLogic

AppointmentScheduleLogic, ChildrenActivityGenerator-
LogicHealthySnackMixerLogic,
HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

FingerprintReader
Audio, Bluetooth, Camera, DisplayInfrared, Location,
Nfc, Sensor, Telephony, Usb, Wifi

True

Function MobileDevice True

FunctionLogic
ApiFunctionType, Hardware, Manufacturer,
PersonalisedComponent

True

FunctionType
Api, FunctionLogicHardware, Manufacturer,
PersonalisedComponent

True

Gsm Cdma True

Gyroscope

Accelerometer, AmbientTemperature, Barometer,
CompassHeartRateMonitor, Hifi, LightSensor,
ProximitySensor, RealitiveHumiditySensor, StepCounter,
StepDetector

True

Hardware
Api, FunctionLogic, FunctionTypeManufacturer,
PersonalisedComponent

True

HealthySnackMixerLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic,
ExerciseDiaryLogicHeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

C.2 Disjoint test data and results 302

HeartAttackAssessmentLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogicHeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

HeartRateMonitor
Accelerometer, AmbientTemperature, Barometer,
Compass, GyroscopeHifi, LightSensor, ProximitySensor,
RealitiveHumiditySensor, StepCounter, StepDetector

True

HeartRateMonitoringLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessment-
LogicIngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

Hifi

Accelerometer, AmbientTemperature, Barometer,
Compass, Gyroscope, HeartRateMonitorLightSensor,
ProximitySensor, RealitiveHumiditySensor, StepCounter,
StepDetector

True

Inform CommunicationManagement, Monitoring True

Informative Advisory, EducationalInstructional, Statistical True

InformFunction
CommunicationFunctionManagementFunction,
MonitoringFunction

True

Infrared
Audio, Bluetooth, Camera, Display,
FingerprintReaderLocation, Nfc, Sensor, Telephony, Usb,
Wifi

True

IngredientsShoppingListLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogicMakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

Instructional Advisory, Educational, InformativeStatistical True

IosApi AndroidApi True

IosDevice AndroidDevice True

LG Apple, Asus, Samsung True

C.2 Disjoint test data and results 303

LightSensor

Accelerometer, AmbientTemperature, Barometer,
Compass, Gyroscope, HeartRateMonitor,
HifiProximitySensor, RealitiveHumiditySensor,
StepCounter, StepDetector

True

Location
Audio, Bluetooth, Camera, Display, FingerprintReader,
InfraredNfc, Sensor, Telephony, Usb, Wifi

True

Loudspeaker Microphone True

MakeCallLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogicMealMixerLogic,
MealPlanLogic, MedicationReminderLogic,
MedicationTrackerLogic, PainDiaryLogic,
PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

Management Communication, InformMonitoring True

ManagementFunction
CommunicationFunction,
InformFunctionMonitoringFunction

True

Manufacturer
Api, FunctionLogic, FunctionType,
HardwarePersonalisedComponent

True

MealMixerLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic,
MakeCallLogicMealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

MealPlanLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogicMedicationReminderLogic,
MedicationTrackerLogic, PainDiaryLogic,
PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

C.2 Disjoint test data and results 304

MedicationReminderLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic,
MealPlanLogicMedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

MedicationTrackerLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogicPainDiaryLogic,
PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

Microphone Loudspeaker True

MobileDevice Function True

Monitoring Communication, Inform, Management True

MonitoringFunction
CommunicationFunction, InformFunction,
ManagementFunction

True

Nfc
Audio, Bluetooth, Camera, Display, FingerprintReader,
Infrared, LocationSensor, Telephony, Usb, Wifi

True

PainDiaryLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogicP-
resentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic,
StepTrackerLogic

True

PersonalisedComponent
Api, FunctionLogic, FunctionType, Hardware,
Manufacturer

True

C.2 Disjoint test data and results 305

PresentOffilineInformationLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogicPresentWebBasedInformationLogic,
RecipesLogic, StepTrackerLogic

True

PresentWebBasedInformationLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic,
PresentOffilineInformationLogicRecipesLogic,
StepTrackerLogic

True

ProximitySensor

Accelerometer, AmbientTemperature, Barometer,
Compass, Gyroscope, HeartRateMonitor, Hifi,
LightSensorRealitiveHumiditySensor, StepCounter,
StepDetector

True

RealitiveHumiditySensor
Accelerometer, AmbientTemperature, Barometer,
Compass, Gyroscope, HeartRateMonitor, Hifi,
LightSensor, ProximitySensorStepCounter, StepDetector

True

RecipesLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogicStepTrackerLogic

True

Samsung Apple, Asus, LG,LG True

Sensor
Audio, Bluetooth, Camera, Display, FingerprintReader,
Infrared, Location, NfcTelephony, Usb, Wifi

True

Statistical Advisory, Educational, Informative, Instructional True

StepCounter

Accelerometer, AmbientTemperature, Barometer,
Compass, Gyroscope, HeartRateMonitor, Hifi,
LightSensor, ProximitySensor,
RealitiveHumiditySensorStepDetector

True

StepDetector

Accelerometer, AmbientTemperature, Barometer,
Compass, Gyroscope, HeartRateMonitor, Hifi,
LightSensor, ProximitySensor, RealitiveHumiditySensor,
StepCounter

True

C.2 Disjoint test data and results 306

StepTrackerLogic

AppointmentScheduleLogic,
ChildrenActivityGeneratorLogic, ExerciseDiaryLogic,
HealthySnackMixerLogic, HeartAttackAssessmentLogic,
HeartRateMonitoringLogic,
IngredientsShoppingListLogic, MakeCallLogic,
MealMixerLogic, MealPlanLogic,
MedicationReminderLogic, MedicationTrackerLogic,
PainDiaryLogic, PresentOffilineInformationLogic,
PresentWebBasedInformationLogic, RecipesLogic

True

Telephony
Audio, Bluetooth, Camera, Display, FingerprintReader,
Infrared, Location, Nfc, SensorUsb, Wifi

True

Tracking Assessment True

Usb
Audio, Bluetooth, Camera, Display, FingerprintReader,
Infrared, Location, Nfc, Sensor, TelephonyWifi

True

Wifi
Audio, Bluetooth, Camera, Display, FingerprintReader,
Infrared, Location, Nfc, Sensor, Telephony, Usb

True

C.3 OOPS! validation results 307

C.3 OOPS! validation results

Presented below is a screen shot of the OOPS! evaluation report for the PMAD Ontology.

	
Results for P04: Creating unconnected ontology elements.1 case | Minor
Ontology elements (classes, object properties and datatype properties) are created isolated, with no relation
to the rest of the ontology.

• This pitfall appears in the following elements:
› http://www.edgehill.ac.uk/dc/phd/ontology#ValuePartition

	
	
	

Results for P24: Using recursive definitions.2 cases | Important
An ontology element (a class, an object property or a datatype property) is used in its own definition. Some
examples of this would be: (a) the definition of a class as the enumeration of several classes including itself;
(b) the appearance of a class within its owl:equivalentClass or rdfs:subClassOf axioms; (c) the appearance
of an object property in its rdfs:domain or range rdfs:range definitions; or (d) the appearance of a datatype
property in its rdfs:domain definition.

• This pitfall appears in the following elements:
› http://www.edgehill.ac.uk/dc/phd/ontology#ShoppingList
› http://www.edgehill.ac.uk/dc/phd/ontology#MedicationTracker
	
	

Results for P41: No license declared.ontology* | Important
The ontology metadata omits information about the license that applies to the ontology.

*This pitfall applies to the ontology in general instead of specific elements.
	
	
	 	

C.3 OOPS! validation results 308

Results for P08: Missing annotations.203 cases | Minor
This pitfall consists in creating an ontology element and failing to provide human readable annotations attached to it.
Consequently, ontology elements lack annotation properties that label them (e.g. rdfs:label, lemon:LexicalEntry,
skos:prefLabel or skos:altLabel) or that define them (e.g. rdfs:comment or dc:description). This pitfall is related to the
guidelines provided in [5].

• The following elements have neither rdfs:label or rdfs:comment (nor skos:definition) defined:
› http://www.edgehill.ac.uk/dc/phd/ontology#Accelerometer
› http://www.edgehill.ac.uk/dc/phd/ontology#Communication
› http://www.edgehill.ac.uk/dc/phd/ontology#Inform
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresMicrophone

• The following elements have no rdfs:label defined:
› http://www.edgehill.ac.uk/dc/phd/ontology#LivingWithDiabetesInformation
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel6
› http://www.edgehill.ac.uk/dc/phd/ontology#Appointments
› http://www.edgehill.ac.uk/dc/phd/ontology#ValuePartition
› http://www.edgehill.ac.uk/dc/phd/ontology#Compass
› http://www.edgehill.ac.uk/dc/phd/ontology#RearCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#Usb
› http://www.edgehill.ac.uk/dc/phd/ontology#ExerciseInstructions
› http://www.edgehill.ac.uk/dc/phd/ontology#Infrared
› http://www.edgehill.ac.uk/dc/phd/ontology#PainDiaryLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#MedicationInformation
› http://www.edgehill.ac.uk/dc/phd/ontology#Wifi
› http://www.edgehill.ac.uk/dc/phd/ontology#ChildrensActivityGenerator
› http://www.edgehill.ac.uk/dc/phd/ontology#DrugFrequency
› http://www.edgehill.ac.uk/dc/phd/ontology#Advisory
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel7
› http://www.edgehill.ac.uk/dc/phd/ontology#Tracking
› http://www.edgehill.ac.uk/dc/phd/ontology#Nexus5
› http://www.edgehill.ac.uk/dc/phd/ontology#MedicationTracker
› http://www.edgehill.ac.uk/dc/phd/ontology#HealthyMealRecipes
› http://www.edgehill.ac.uk/dc/phd/ontology#CommunicationFunction
› http://www.edgehill.ac.uk/dc/phd/ontology#Cdma
› http://www.edgehill.ac.uk/dc/phd/ontology#StepTrackerLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#HealthySnackMixer
› http://www.edgehill.ac.uk/dc/phd/ontology#AboutServiceProvider
› http://www.edgehill.ac.uk/dc/phd/ontology#ComplicationsWithDiabetes
› http://www.edgehill.ac.uk/dc/phd/ontology#IosApi
› http://www.edgehill.ac.uk/dc/phd/ontology#ExerciseDiaryLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#IosDevice
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel3
› http://www.edgehill.ac.uk/dc/phd/ontology#Telephony
› http://www.edgehill.ac.uk/dc/phd/ontology#Instructional
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel10
› http://www.edgehill.ac.uk/dc/phd/ontology#Informative
› http://www.edgehill.ac.uk/dc/phd/ontology#SamsungGlaxayS4
› http://www.edgehill.ac.uk/dc/phd/ontology#HeartRateMonitoring
› http://www.edgehill.ac.uk/dc/phd/ontology#MealPlan
› http://www.edgehill.ac.uk/dc/phd/ontology#StepCounter
› http://www.edgehill.ac.uk/dc/phd/ontology#HeartRateMonitor
› http://www.edgehill.ac.uk/dc/phd/ontology#StepTracker
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel9
› http://www.edgehill.ac.uk/dc/phd/ontology#Nexus7
› http://www.edgehill.ac.uk/dc/phd/ontology#RecipesLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#Asus
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel21
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel16
› http://www.edgehill.ac.uk/dc/phd/ontology#LG
› http://www.edgehill.ac.uk/dc/phd/ontology#Management
› http://www.edgehill.ac.uk/dc/phd/ontology#Hifi
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidDevice
› http://www.edgehill.ac.uk/dc/phd/ontology#PersonalisedMealPlan
› http://www.edgehill.ac.uk/dc/phd/ontology#Hardware
› http://www.edgehill.ac.uk/dc/phd/ontology#HeartRateMonitoringLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel8
› http://www.edgehill.ac.uk/dc/phd/ontology#MonitoringFunction
› http://www.edgehill.ac.uk/dc/phd/ontology#Statistical
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel15
› http://www.edgehill.ac.uk/dc/phd/ontology#Monitoring
› http://www.edgehill.ac.uk/dc/phd/ontology#Gsm
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel12
› http://www.edgehill.ac.uk/dc/phd/ontology#PatientCarePlan

C.3 OOPS! validation results 309

› http://www.edgehill.ac.uk/dc/phd/ontology#Api
› http://www.edgehill.ac.uk/dc/phd/ontology#FunctionLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#ExercisePlan
› http://www.edgehill.ac.uk/dc/phd/ontology#MobileDevice
› http://www.edgehill.ac.uk/dc/phd/ontology#ChildrenActivityGeneratorLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#ManagementFunction
› http://www.edgehill.ac.uk/dc/phd/ontology#LightSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#StepDetector
› http://www.edgehill.ac.uk/dc/phd/ontology#PersonalisedComponent
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel11
› http://www.edgehill.ac.uk/dc/phd/ontology#MedicationReminderLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel23
› http://www.edgehill.ac.uk/dc/phd/ontology#DrugInformation
› http://www.edgehill.ac.uk/dc/phd/ontology#Loudspeaker
› http://www.edgehill.ac.uk/dc/phd/ontology#MakeCallLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#LivingWithDiabetes
› http://www.edgehill.ac.uk/dc/phd/ontology#MealMixer
› http://www.edgehill.ac.uk/dc/phd/ontology#HealthySnackMixerLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#FingerprintReader
› http://www.edgehill.ac.uk/dc/phd/ontology#CarePlanOverview
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel22
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel17
› http://www.edgehill.ac.uk/dc/phd/ontology#IngredientsShoppingListLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#Apple
› http://www.edgehill.ac.uk/dc/phd/ontology#Samsung
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel18
› http://www.edgehill.ac.uk/dc/phd/ontology#DrugDosage
› http://www.edgehill.ac.uk/dc/phd/ontology#ShoppingList
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel13
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel5
› http://www.edgehill.ac.uk/dc/phd/ontology#Gyroscope
› http://www.edgehill.ac.uk/dc/phd/ontology#Sensor
› http://www.edgehill.ac.uk/dc/phd/ontology#Barometer
› http://www.edgehill.ac.uk/dc/phd/ontology#RealitiveHumiditySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#Educational
› http://www.edgehill.ac.uk/dc/phd/ontology#ServiceProviderTelephoneNumber
› http://www.edgehill.ac.uk/dc/phd/ontology#Manufacturer
› http://www.edgehill.ac.uk/dc/phd/ontology#HeartAttackAssessment
› http://www.edgehill.ac.uk/dc/phd/ontology#FrontCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#FunctionType
› http://www.edgehill.ac.uk/dc/phd/ontology#ServiceProviderInformation
› http://www.edgehill.ac.uk/dc/phd/ontology#ImportanceOfHealthyEating
› http://www.edgehill.ac.uk/dc/phd/ontology#PainDiary
› http://www.edgehill.ac.uk/dc/phd/ontology#Drug
› http://www.edgehill.ac.uk/dc/phd/ontology#AppointmentSchedule
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel14
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel4
› http://www.edgehill.ac.uk/dc/phd/ontology#CallServiceProvider
› http://www.edgehill.ac.uk/dc/phd/ontology#Assessment
› http://www.edgehill.ac.uk/dc/phd/ontology#Bluetooth
› http://www.edgehill.ac.uk/dc/phd/ontology#Location
› http://www.edgehill.ac.uk/dc/phd/ontology#HeartAttackAssessmentLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#Audio
› http://www.edgehill.ac.uk/dc/phd/ontology#Display
› http://www.edgehill.ac.uk/dc/phd/ontology#Microphone
› http://www.edgehill.ac.uk/dc/phd/ontology#HealthyEatingInformation
› http://www.edgehill.ac.uk/dc/phd/ontology#Camera
› http://www.edgehill.ac.uk/dc/phd/ontology#PresentOffilineInformationLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#InformFunction
› http://www.edgehill.ac.uk/dc/phd/ontology#Nfc
› http://www.edgehill.ac.uk/dc/phd/ontology#MedicationReminder
› http://www.edgehill.ac.uk/dc/phd/ontology#AppointmentScheduleLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#MedicationTrackerLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApi
› http://www.edgehill.ac.uk/dc/phd/ontology#ComplicationsWithDiabetesInformation
› http://www.edgehill.ac.uk/dc/phd/ontology#PresentWebBasedInformationLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#MealMixerLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#AmbientTemperature
› http://www.edgehill.ac.uk/dc/phd/ontology#Function
› http://www.edgehill.ac.uk/dc/phd/ontology#MealPlanLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#Gps
› http://www.edgehill.ac.uk/dc/phd/ontology#ProximitySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#ExerciseDiary
› http://www.edgehill.ac.uk/dc/phd/ontology#AndroidApiLevel19
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHardware

C.3 OOPS! validation results 310

› http://www.edgehill.ac.uk/dc/phd/ontology#hasMinimumApiRequirement
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFunctionLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresProximitySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasMicrophone
› http://www.edgehill.ac.uk/dc/phd/ontology#hasTelephony
› http://www.edgehill.ac.uk/dc/phd/ontology#hasWifi
› http://www.edgehill.ac.uk/dc/phd/ontology#hasInfrared
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresRealitiveHumiditySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasProximitySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasStepDetector
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHifi
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAccelerometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHardware
› http://www.edgehill.ac.uk/dc/phd/ontology#hasBarometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCompass
› http://www.edgehill.ac.uk/dc/phd/ontology#hasBluetooth
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGps
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresFingerprintReader
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresCompass
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAudio
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAmbientTemperature
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLightSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAccelerometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasPersonalisedComponent
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLoudspeaker
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHifi
› http://www.edgehill.ac.uk/dc/phd/ontology#hasNfc
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresBluetooth
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLightSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresUsb
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGyroscope
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresGyroscope
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresBarometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasUsb
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHeartRateMonitor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasStepCounter
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFunctionType
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresTelephony
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAudio
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCdma
› http://www.edgehill.ac.uk/dc/phd/ontology#hasDisplay
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGsm
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLocation
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresStepCounter
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLoudspeaker
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresWifi
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresInfrared
› http://www.edgehill.ac.uk/dc/phd/ontology#hasRealativeHumiditySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFrontCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAmbientTemperatureSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasManufacturer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFingerPrintReader
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLocation
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresStepDetector
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresNfc
› http://www.edgehill.ac.uk/dc/phd/ontology#hasRearCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHeartRateMonitor
	
	

C.3 OOPS! validation results 311

	
Results for P11: Missing domain or range in properties.63 cases | Important
Object and/or datatype properties without domain or range (or none of them) are included in the ontology.

• This pitfall appears in the following elements:
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHeartRateMonitor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasRearCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresNfc
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresStepDetector
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLocation
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFingerPrintReader
› http://www.edgehill.ac.uk/dc/phd/ontology#hasManufacturer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAmbientTemperatureSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFrontCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#hasSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasRealativeHumiditySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresInfrared
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresWifi
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLoudspeaker
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresStepCounter
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLocation
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGsm
› http://www.edgehill.ac.uk/dc/phd/ontology#hasDisplay
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCdma
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAudio
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresTelephony
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresMicrophone
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFunctionType
› http://www.edgehill.ac.uk/dc/phd/ontology#hasStepCounter
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHeartRateMonitor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasUsb
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresBarometer
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresGyroscope
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGyroscope
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresUsb
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLightSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresBluetooth
› http://www.edgehill.ac.uk/dc/phd/ontology#hasNfc
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHifi
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLoudspeaker
› http://www.edgehill.ac.uk/dc/phd/ontology#hasPersonalisedComponent
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAccelerometer
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLightSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAmbientTemperature
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAudio
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresCompass
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresFingerprintReader
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGps
› http://www.edgehill.ac.uk/dc/phd/ontology#hasBluetooth
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCompass
› http://www.edgehill.ac.uk/dc/phd/ontology#hasBarometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHardware
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAccelerometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHifi
› http://www.edgehill.ac.uk/dc/phd/ontology#hasStepDetector
› http://www.edgehill.ac.uk/dc/phd/ontology#hasProximitySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresRealitiveHumiditySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasInfrared
› http://www.edgehill.ac.uk/dc/phd/ontology#hasWifi
› http://www.edgehill.ac.uk/dc/phd/ontology#hasTelephony
› http://www.edgehill.ac.uk/dc/phd/ontology#hasMicrophone
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresProximitySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFunctionLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#hasMinimumApiRequirement
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHardware

C.3 OOPS! validation results 312

	
Results for P13: Inverse relationships not explicitly declared.63 cases | Minor
This pitfall appears when any relationship (except for those that are defined as symmetric properties using
owl:SymmetricProperty) does not have an inverse relationship (owl:inverseOf) defined within the ontology.

• This pitfall appears in the following elements:
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHardware
› http://www.edgehill.ac.uk/dc/phd/ontology#hasMinimumApiRequirement
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFunctionLogic
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresProximitySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasMicrophone
› http://www.edgehill.ac.uk/dc/phd/ontology#hasTelephony
› http://www.edgehill.ac.uk/dc/phd/ontology#hasWifi
› http://www.edgehill.ac.uk/dc/phd/ontology#hasInfrared
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresRealitiveHumiditySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasProximitySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasStepDetector
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHifi
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAccelerometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHardware
› http://www.edgehill.ac.uk/dc/phd/ontology#hasBarometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCompass
› http://www.edgehill.ac.uk/dc/phd/ontology#hasBluetooth
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGps
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresFingerprintReader
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresCompass
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAudio
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAmbientTemperature
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLightSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAccelerometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasPersonalisedComponent
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLoudspeaker
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHifi
› http://www.edgehill.ac.uk/dc/phd/ontology#hasNfc
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresBluetooth
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLightSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresUsb
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGyroscope
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresGyroscope
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresBarometer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasUsb
› http://www.edgehill.ac.uk/dc/phd/ontology#hasHeartRateMonitor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasStepCounter
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFunctionType
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresMicrophone
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresTelephony
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresAudio
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCdma
› http://www.edgehill.ac.uk/dc/phd/ontology#hasDisplay
› http://www.edgehill.ac.uk/dc/phd/ontology#hasGsm
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresLocation
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresStepCounter
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLoudspeaker
› http://www.edgehill.ac.uk/dc/phd/ontology#hasCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresWifi
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresInfrared
› http://www.edgehill.ac.uk/dc/phd/ontology#hasRealativeHumiditySensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFrontCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#hasAmbientTemperatureSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#hasManufacturer
› http://www.edgehill.ac.uk/dc/phd/ontology#hasFingerPrintReader
› http://www.edgehill.ac.uk/dc/phd/ontology#hasLocation
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresStepDetector
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresNfc
› http://www.edgehill.ac.uk/dc/phd/ontology#hasRearCamera
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresSensor
› http://www.edgehill.ac.uk/dc/phd/ontology#requiresHeartRateMonitor

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Aim and Objectives
	1.3 Research Scope
	1.4 Original Contributions to Knowledge
	1.5 Thesis Structure

	2 Background and Literature Review
	2.1 Mobile Healthcare
	2.2 Personalisation
	2.3 Discussion
	2.4 Summary

	3 Research & Development Methodologies
	3.1 Research Design
	3.2 Taxonomy
	3.3 Ontology
	3.4 Framework
	3.5 Tools and Techniques
	3.6 Summary

	4 mHealth Application Function Taxonomy
	4.1 Method Overview
	4.2 Taxonomy Scope
	4.3 Analysis
	4.4 mHealth Application Function Taxonomy
	4.5 Testing and Evaluation
	4.6 Summary

	5 PMAD Ontology
	5.1 Ontology Theory
	5.2 Establishing Guidelines
	5.3 Purpose and Scope Definition
	5.4 Implementation: Capturing
	5.5 Implementation: Coding
	5.6 PMAD Ontology Overview
	5.7 Summary

	6 PMAD Framework
	6.1 Purpose, Scope and Design Influences
	6.2 Building A Conceptual Design
	6.3 PMAD Framework Architecture
	6.4 Summary

	7 Evaluation
	7.1 Evaluating the Model
	7.2 Evaluating Consistency
	7.3 Evaluating Competence
	7.4 Evaluation Summary

	8 Conclusion
	8.1 Contributions and Achievements
	8.2 Limitations & Recommendations for Future Work
	8.3 Critical Evaluation

	References
	Appendix A Taxonomy appendices
	A.1 Taxonomy analysis: Frequency analysis Python script
	A.2 Taxonomy analysis: Concept maps
	A.3 Taxonomy analysis: PageRank Python script
	A.4 Taxonomy analysis: Function categorisation
	A.5 Taxonomy testing: Test dataset

	Appendix B Ontology appendices
	B.1 Android overview
	B.2 PMAD Ontology description logic expressivity

	Appendix C Evaluation
	C.1 Subsumption check results
	C.2 Disjoint test data and results
	C.3 OOPS! validation results

