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Abstract 
Predicting the responses of tree species to rapid environmental change requires an 

understanding of their ecology, reproductive strategy, population connectivity and levels of 

adaptive variation. This project examines these aspects for an understudied UK native tree 

genus Tilia L. Comparison of edaphic and physiographic variables indicated that Tilia 

cordata Mill. is more generalist than T. platyphyllos Scop., as well as preferring locations 

with higher potential incident solar radiation and greater levels of organic carbon content. 

Examination of fine-scale spatial genetic structure indicates that T. cordata has a mixed 

reproductive system with approximately half of all individuals within sampled populations 

being of clonal origin. The incidence of clonality was weakly negatively correlated to 

historic summer temperatures and positively so to the proportion of canopy trees within 

samples, suggesting both fertility limitations and time since disturbance affect vegetative 

growth in the species. Clonal reproduction is not expected to impact future outcrossing 

success due to the fine scale of its effects on spatial genetic structure, being much smaller 

than typical pollen movements associated with outcrossing. T. cordata populations exhibited 

weak clinal spatial genetic structure at coarser scales (tens of kilometres) across two 

locations, which likely reflect historic dispersal limitations across a contiguous landscape 

and effective pollen movement at scales less than two kilometres. Fragmentation has not yet 

eroded genetic variation except in the demes with the smallest size (not necessarily the most 

isolated), suggesting that larger fragments may ultimately suffer the same fate. Finally, low 

metabolic variation between UK populations of T. cordata despite contrasting 

environmental conditions during sampling indicates high levels of phenotypic plasticity, 

while variation in a functional trait and a group of unidentified metabolite concentrations 

suggest avenues for examining local adaptation in the future. 

Keywords 

Ecology; molecular ecology; Tilia; niche segregation; clonality; genetic variation; 

fragmentation; connectivity; metabolic variation; functional traits  
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1 Introduction 

1.1 Forest ecosystems 

Globally forest habitats are extremely important reservoirs of biodiversity, provide a 

multitude of ecosystem services essential to human wellbeing and are a central part of 

Earth’s biogeochemical systems (Shvidenko et al., 2005). Their biodiversity is extremely 

high, particularly in the tropics, and they provide a habitat for over half of all known 

terrestrial plant and animal species (Betts et al., 2017). They provide economic benefits in 

the form of wood and numerous other products, social benefits such as the provision of 

recreational opportunities and they are important to the conservation of soil and water 

resources (Hemery et al., 2010). For example a reduction in forest cover reduces water 

quality, and as most of the freshwater utilized by humans comes from forest catchments the 

maintenance of these ecosystems is critical; further, loss of tree cover increases the effects 

of related natural hazards such as soil erosion or the impact of floods and landslides (Kasran 

and Nik, 1994). They play a significant role in the global carbon cycle, containing 

approximately 50% of the world’s terrestrial organic carbon stocks; forests account for ~80% 

of terrestrial biomass (Shvidenko et al., 2005). As a result the total amount of carbon 

contained in forest vegetation alone (i.e. excluding soil) is approximately 359 x 109 tonnes 

(IPCC, 2000), which makes it important as a carbon sink to help mitigate anthropogenic 

climate change. 

Despite their importance, they are at risk due to a variety of factors. They are subject to 

pressure from habitat fragmentation, degradation and climatic change, which makes their 

future uncertain. For instance, the amount of tropical forest is declining rapidly due to 

deforestation for logging and conversion to agricultural land (DeFries et al., 2002; Lambin, 

Geist and Lepers, 2003). Other areas are faring better in this regard, with coverage of 

temperate and boreal forest ecosystems stable and in some areas increasing due to natural 

reforestation and expansion (Shvidenko and Nilsson, 2002). This does not mean that they 

are not at risk. European forests for example have lost 50-70% of their maximum total area 

achieved after the last glacial maximum, primarily during the Middle Ages, and as a result 

many forest ecosystems are highly fragmented. This has implications for population 

persistence due to a reduction in effective size, gene flow and the concomitant lowering of 

genetic diversity (Lande, 1988; Aguilar et al., 2008). Habitat degradation is also an issue, 

with other pressures such as atmospheric pollution and eutrophication impacting European 
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forests, affecting individual tree health (Nellemann and Thomsen, 2001; Shvidenko et al., 

2005; Michel and Seidling, 2016). Finally, the current rapid anthropogenic increases in 

atmospheric CO2 are resulting in environmental change at an unprecedented pace (Thomas 

et al., 2004; IPCC, 2007). This has already had both individual and ecosystem-wide effects 

on trees and tree communities such as increased mortality and lowered growth rates as a 

result of climate change impacts related to drought (Jump, Hunt and Peñuelas, 2006; Allen 

et al., 2010), as well as biome shifts (Peñuelas and Boada, 2003). Climate change impacts 

will be substantial and have been recognised as one of the largest forthcoming threats to 

biodiversity across most biomes (Shvidenko et al., 2005; Thuiller et al., 2005, 2008), but 

with significant uncertainty and complexity in both climatic and species’ response 

projections (Pressey et al., 2007). 

1.2 Threats to temperate forests from climate change 

As a result of human greenhouse gas emissions the climate is unequivocally warming, 

as evidenced by observations of global mean atmospheric and oceanic temperatures, 

widespread loss of ice and snow and a continual rise in sea levels (IPCC, 2007). Evidence 

from all continents and most oceans shows that regional climatic changes, particularly 

temperature increases, are already impacting upon natural systems globally (Parmesan and 

Yohe, 2003). Temperate forest ecosystems are no exception. Projected future impacts will 

be caused not just by increased temperature and CO2 concentration but also large-scale 

stochastic events (Hemery et al., 2010), as both abiotic and biotic disturbance regimes are 

altered by climate change (Lindner et al., 2010). 

The effects of increased temperature and elevated levels of atmospheric CO2 depend on 

location, primarily because of the current degree of water-limitation. Broadly speaking forest 

ecosystems in more northern and western areas of Europe with an oceanic climate could see 

increases in productivity, and will suffer impacts primarily as a result of alterations to 

disturbance regimes (Lindner et al., 2010). Continental and Mediterranean Europe forests 

will also be impacted by changes to disturbance but will also be affected by reduced summer 

precipitation and increased temperatures, which can decrease photosynthesis and lead to 

reduced plant growth and altered recruitment (Ogaya et al., 2003; Lloret, Penuelas and 

Estiarte, 2004). As mentioned, changes to disturbance regimes will affect forest ecosystems. 

The main abiotic disturbances in Europe are drought, flooding, wind and fire, and all of these 

may be affected by climate change, potentially occurring with increased frequency and 
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intensity (Flannigan, Stocks and Wotton, 2000; Bréda and Badeau, 2008). Biotic stresses are 

also likely to be altered via changes to the population dynamics and distributions of pests 

and pathogens (Hlásny and Turčáni, 2009). This may result in a higher incidence of pest or 

disease outbreaks due to temperature changes promoting multivoltinism in insect herbivores 

(Baier, Pennerstorfer and Schopf, 2007) or climate changes facilitating the spread of fungal 

pathogens (Desprez-Loustau et al., 2007). Pathogenicity of the latter and susceptibility to 

insect herbivory can also increase in drought-stressed trees (Desprez-Loustau et al., 2006), 

which highlights the fact that these impacts do not operate in isolation and interactions 

between them complicate future projections of responses. As such it is important to have as 

full an understanding of the species in question as possible (Rabasa et al., 2013). 

Historic management practices in European forests have broadly favoured a small set of 

trees with high economic value such as Picea abies (spruce), Fagus sylvatica (beech) and 

Quercus spp. (oaks) (Hemery et al., 2010). As a consequence these are well-studied with 

regard to potential impacts from climate change, and their vulnerability has been noted (e.g. 

Jump et al., 2006; Ogaya et al., 2003; Peñuelas and Boada, 2003; Rivas-Ubach et al., 2014). 

More scattered, less commercially important trees in European forests such as Fraxinus spp. 

(ashes), Ulmus spp. (elms) and Tilia spp. (limes) are relatively understudied and this lack of 

knowledge introduces considerable uncertainty in determining the impacts of climatic 

change (Hemery et al., 2010; De Jaegere, Hein and Claessens, 2016). To respond to 

environmental changes, species in general can either disperse to track shifting climatic 

envelopes or persist, adapting via phenotypic plasticity and/or evolutionary changes 

(Hamrick, 2004; Alfaro et al., 2014). There are various constraints on dispersal, as it requires 

sufficient space (both in terms of suitable physical areas and niche space in newly colonized 

habitats), and in a fragmented landscape such as that occupied by European forest 

ecosystems, habitat connectivity dictates the success or otherwise of seed or propagule 

movement (Sork and Smouse, 2006). Additionally given the unprecedented rate of current 

changes (Thomas et al., 2004), extremely high migration rates will be required, beyond that 

exhibited by post-glacial dispersals (Zhu, Woodall and Clark, 2012; Corlett and Westcott, 

2013). This makes local persistence the most realistic prospect for tree species. Evolutionary 

responses might not be possible given long generation times and the extreme rate of change 

(Christmas, Breed and Lowe, 2015). Natural selection also requires sufficient adaptive 

genetic variation to operate on, which could potentially be lacking in highly fragmented 

species such as the scattered examples given above (Hemery et al., 2010). Trees are sessile, 
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long-lived organism and because of this life strategy they typically possess high levels of 

phenotypic plasticity in order to weather short-term environmental fluctuations. Whether 

this is sufficient to enable persistence in areas that will be subject to the most change (i.e. 

boreal or Mediterranean regions in Europe) is likely to depend on the species on question 

(e.g. Attorre et al., 2011). 

1.3 The genus Tilia 

One of the widespread but scattered tree genera discussed above is Tilia L. It is a genus 

of 20-30 broadleaved temperate tree species (Pigott, 2012), four of which are native to 

Europe: Tilia cordata Mill., T. platyphyllos Scop., T. dasystyla Steven and T. tomentosa 

Moench. T. dasystyla and T. tomentosa have restricted distributions whileT. cordata and T. 

platyphyllos are more widespread. They possess broad but scattered distributions that are the 

product of postglacial dispersal followed by anthropogenic influences such as forest 

clearance and silvicultural practices favouring other taxa (Turner, 1962; Pigott and Huntley, 

1980; Pigott, 1991). As a consequence of these human influences both are now relatively 

rare and occur infrequently, but historically their abundance was much greater, to the extent 

of being co-dominant in the temperate primeval woodlands of central and eastern Europe 

(De Jaegere, Hein and Claessens, 2016). T. cordata was also widespread as far north as the 

Lake District in the UK prior to human influence (Pigott and Huntley, 1980). They are more 

common in areas with a continental rather than oceanic climate (Pigott, 1991). T. cordata 

occurs primarily at low altitudes in the UK (<200 m) but can occur at greater elevations in 

more southern locations such as Italy and the Caucasus (Pigott, 1991; Pigott and Pigott, 

1993). The northern limit of its range correlates broadly with the July isotherm for mean 

daily maximum temperature of 19 – 20 °C, while the southern and eastern limits are related 

to the isohyet of 500 – 550 mm mean annual rainfall. Summer drought is likely the 

determinant of its range limits in southern Europe (Pigott and Pigott, 1993). It occurs on a 

wide variety of soil types, typically slightly acidic to alkaline, while T. platyphyllos occurs 

primarily on basic soils overlaying limestone (Pigott, 1991). The latter occurs almost 

exclusively with T. cordata despite reports of it colonizing new areas (Pigott, 1981b), but 

whether the broad ecological preferences described in the literature translate into niche 

segregation where they occur in sympatry is unknown. 

T. cordata exhibits reduced fertility in marginal regions such as the north of England 

and Finland (Pigott, 1981a; Pigott and Huntley, 1981). At least partly because of this, it has 
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not recolonized secondary woodland within the UK; however large crops of fertile seed are 

set in more southern populations (Pigott, 1991). T. cordata has low dispersal ability relative 

to other tree species. Firstly, seed dispersal is wind-assisted but occurs over short distances, 

typically less than 100 m (Pigott, 1991), while successful pollination events have a maximum 

recorded distance of ~1666 m (Fromm, 2001). Based on these figures and palynological 

records of postglacial dispersal (low relative to other European tree species; Birks, 1989), T. 

cordata is likely a poor disperser (De Jaegere, Hein and Claessens, 2016). Whether dispersal 

limitations or changes in connectivity between fragmented habitats have resulted in reduced 

gene flow between woodland fragments is unclear. 

 Information regarding the breeding system in T. cordata is contradictory. At least 

some proportion of individuals are reported to be self-incompatible (Pigott and Huntley, 

1981), but a study using parentage analysis showed that all individuals were self-compatible 

but that selfed progeny have lower survivorship up to the fourth year than do outcrossed 

individuals (Fromm, 2001). The species is also partially clonal and vegetatively propagates, 

although the extent and arrangement of clones in natural populations has not been explored. 

Given that clonality has the potential to reduce future outcrossing success, lower genetic 

diversity and increase inbreeding (Charpentier, 2001; Vallejo-Marín, Dorken and Barrett, 

2010), and inversely to assist in population persistence under conditions unfavourable for 

sexual reproduction (Silvertown, 2008), this is an important area to address. Finally although 

many populations of tree species are locally adapted to regional environmental optima 

(Alfaro et al., 2014), is it unknown whether this is the case for T. cordata. Pigott (1991) 

reports that there is some evidence of variation in physiological attributes, but no provenance 

trials have been undertaken. How populations vary if at all across the range of the species is 

therefore unclear. 

Existing speculation about the responses of T. cordata populations to climate change 

are based primarily on its characteristics as described broadly in the literature (De Jaegere, 

Hein and Claessens, 2016), and as such considerable uncertainty remains (Hemery et al., 

2010). For instance it seems likely that populations in temperature-limited marginal regions 

may benefit from increased fertility due to greater warmth during flowering periods or seed 

development (Pigott, 1981a; Pigott and Huntley, 1981), but conversely these northern areas 

reportedly persist due to clonality alone (Pigott and Huntley, 1978). As such genotypic 

diversity may be reduced and therefore its vulnerability increased to any changes in the 

frequency, severity or character of plant pathogen or pest outbreaks (Lindner et al., 2010; 
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Barrett, 2015). At its southern range edge T. cordata bioclimatic envelope models predict 

both large reductions in area and an altitudinal shift in suitable habitat due to potential 

changes in summer precipitation by 2080 (Attorre et al., 2011), but this does not mean that 

individuals will actually be able to occupy these sites by that time. Many factors unexplored 

for the species will dictate its response and capacity to colonize new habitat: its ability to 

adapt to new conditions via plastic or evolutionary responses (Nicotra et al., 2010), 

reproduction and dispersal ability, competitive capacity, recruitment and growth (Pausas and 

Lavorel, 2003). Dispersal capacity, reproductive strategy/success and community 

interactions are especially relevant in a landscape context characterized by a high degree of 

fragmentation, which has the potential to reduce or prevent migration (Iverson, Schwartz 

and Prasad, 2004; Christmas, Breed and Lowe, 2015). Therefore, this study will examine 

aspects of T. cordata ecology, reproductive strategy, population connectivity and phenotypic 

plasticity identified earlier that are yet to be researched. 
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1.4 Research aims 

This thesis will focus primarily on examining ecological, genetic and metabolic variation in 

UK T. cordata individuals and populations in order to address some of the gaps in our 

knowledge that were identified above. Specifically, the aims of the study are: to more 

precisely describe the ecological requirements of the genus within the UK and make intra-

generic comparisons, in order to facilitate a better understanding of how coexistence occurs; 

to better understand the life history of the species with regard to vegetative propagation, by 

quantifying the extent and circumstances of clonal reproduction and how this varies; to 

determine whether fragmented T. cordata populations have suffered a reduction of gene flow 

between distinct woodland habitats and if so how this relates to the particular landscape 

context, and if differences in latitude change how demes respond to fragmentation; finally, 

to explore physiological variation in situ across the UK range of the species, exploring 

plasticity in response to environmental context and generating hypotheses regarding 

potential routes for examining local adaption. 

1.5 Thesis outline 

Chapter 2 examines how the UK native Tilia species, T. cordata and T. platyphyllos, 

segregate along a variety of physiographic and edaphic environmental axes when occurring 

in sympatry. 

Chapter 3 quantifies and describes the extent and character of clonal reproduction in T. 

cordata populations throughout its UK range, and relates this to possible correlates such as 

climate. 

Chapter 4 examines how fragmented demes of T. cordata differ with respect to neutral 

genetic variation, to infer the presence or absence of gene flow between them and any 

potential landscape constraints on the process. This chapter will also contrast the same 

between populations at distinct latitudes with subtly differing climates that potentially affect 

their fertility (and therefore turnover of individuals).  

Chapter 5 explores metabolic variation in T. cordata individuals collected in situ from semi-

natural habitats and contrasts this with neutral genetic and adaptive morphological variation. 

Chapter 6 will summarise the overall conclusions of the thesis, describe their implications 

for population persistence and suggest fruitful avenues for future research. 
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2 Segregation of Tilia cordata Mill. and T. platyphyllos Scop. 

(Malvaceae) along environmental gradients 
Published as: 

Barker, C., Ashton, M., & Ashton, P. A. (2015). Segregation of Tilia cordata and T. 

platyphyllos (Malvaceae) along environmental gradients. New Journal of Botany, 5 (3), pp. 

157–163. 

2.1 Abstract 

Closely related congeneric species living in sympatry raises the question of how they are 

separated along abiotic and biotic axes. Within northern Europe, Tilia cordata and Tilia 

platyphyllos are two such species. They are large, long-lived trees, often dominant members 

of their community, and frequently grow sympatrically. This study measured a series of 

edaphic and topographic variables across a number of sites and examined these via univariate 

and multivariate approaches to understand how the two species differed. This showed that 

T. cordata occupies soil with significantly greater organic carbon content and is present in 

areas with greater potential incident solar radiation. There was no significant difference 

between the two species across soil depths, acidity, moisture content or elevation above sea 

level. T. cordata is the more variable of the two species with regards to soil pH and soil 

moisture content. This is the first comprehensive account of these characters for the two 

species. The quantitative values obtained in this study are broadly commensurate with 

descriptive accounts from the literature. However, contrary to previous descriptions, no 

difference was observed in pH between the two species and soil nutrient levels were the 

inverse of those expected. This study presents potentially fruitful areas for examining 

potential niche separation between the two species alongside potential differences in litter 

leaf chemistry.   
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2.2 Introduction 

High numbers of plant species can coexist within communities, with species richness 

reaching highs of 89 per 1 m2 in temperate grassland, or 942 per 1×104 m2 in tropical 

rainforest (Wilson et al., 2012). What mechanisms are in operation to maintain these levels 

of diversity? One suggestion is provided by classical ecological theory: the competitive 

exclusion principle (Gause’s law), based on the Lotka-Volterra competition model (Gause, 

1934). That is, competition for finite resources forces coexisting species to occupy discrete 

niches in order to stably coexist. Defined by Hutchinson (1957) as an n-dimensional 

hypervolume in environmental space, the dimensions represent ecological variables along 

which a species can be positioned. Experimental determination of the existence of niche 

separation sensu Silvertown (2004) requires four tests: a greater impact of intraspecific 

competition than interspecific competition; segregation along an environmental axis; trade-

offs between traits on niche axes and niche shifts following experimental manipulation of 

competition. 

Animal communities can provide examples of the principle at work, often as a clear 

differentiation between species’ trophic niches (e.g. Ashrafi et al., 2011; Dammhahn et al., 

2013; Laakmann et al., 2009; Navarro et al., 2013). It has been more difficult to see how the 

concept of niche separation applies to plants, with the apparent commonality of resource 

requirements across species: all plants require light/water/CO2, NPK and a common set of 

micronutrients. Nevertheless, studies suggest that plants segregate along a variety of 

environmental niche axes. Niche separation of rooting depth occurs in desert and grassland 

plant communities (Mamolos, Elisseou and Veresoglou, 1995; Nobel, 1997), and arctic 

tundra plants adopt a variety of nitrogen uptake strategies, absorbing differing forms of N at 

different times and depths (Kielland, 1994; McKane et al., 2002). Plants in meadow 

communities segregate along niche axes of soil drying and soil waterlogging tolerance 

(Silvertown et al., 1999) while niche differentiation in shade tolerance plays a part in shaping 

community structure in both temperate and tropical forests (Kobe et al., 1995; Kobe, 1999). 

Plants may also be organised along micro-topographical gradients (e.g. valley bottom versus 

slope) in tropical rainforests (Wright, 2002).  

If the concept of niche separation has a role in the maintenance of plant community 

structure, the principle of competitive exclusion may be particularly relevant when 

examining closely related species whose shared phylogenetic history could indicate 
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overlapping resource requirements, although the extent and character of niche conservatism 

across closely related taxa is debated (Wiens and Graham, 2005). Niche characteristics 

demonstrate a phylogenetic signal in some cases (e.g. Ricklefs and Latham, 1992; cf. 

Cavender-Bares et al., 2004; Losos et al., 2003), and it has been demonstrated 

experimentally that species-interactions can increase with phylogenetic closeness (Burns 

and Strauss, 2011). Therefore for closely-related sympatric species, niche separation may be 

of paramount importance.  

Two such closely related sister species are the broadleaved deciduous trees Tilia 

cordata Miller and T. platyphyllos Scop. (McCarthy, 2012). Native to the UK, they occur 

throughout most of England, often in sympatry, almost exclusively in the case of the latter 

(Pigott, 1981b). English populations represent the northwest extreme of the species’ 

distributions (Figure 2.1b). While a broad overview of the ecological requirements of T. 

cordata can be obtained in the literature (Pigott and Huntley, 1978; Pigott, 1991; Pigott and 

Pigott, 1993), T. platyphyllos has received less attention (Pigott and Huntley, 1981; 

Sheykholeslami, Namiranian and Sagheb-Talebi, 2011). The bulk of the aforementioned 

work is primarily descriptive or observational, and no systematic study of ecological 

parameters exists. Also lacking is a contrast of the requirements of the species where they 

are growing sympatrically.  

This study addresses this gap by undertaking a comparison of environmental variables 

found within the native range of UK sympatric Tilia populations to identify any differences 

in species’ environmental preferences; the second test for identifying niche separation 

(segregation alone environmental axes) described previously (Silvertown, 2004). To achieve 

this we have chosen to measure and contrast edaphic and physiographic variables that are 

analogous to some of the potential axes of niche separation identified earlier, such as soil 

quality, moisture, and depth. Nutrient status such as nitrate and phosphate levels was 

considered for inclusion but as nutrient availability is correlated with soil acidity only the 

latter is measured here. They also include areas identified in the literature as differing 

between the species; T. cordata is described as occupying less basic and typically richer soils 

than T. platyphyllos (Pigott, 1981b, 1991), while the latter is reported as occurring primarily 

on steep slopes and cliffs (Pigott, 1981b). 
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2.3 Methods 

2.3.1 Field & laboratory work 

Sympatric populations of T. cordata and T. platyphyllos in the UK occur primarily along the 

Wales/England border, with additional sites in South Yorkshire, Derbyshire and 

Staffordshire (Pigott, 1981b, 1991). Sampling at 101 trees was conducted within this range 

across 11 semi-natural ancient woodland sites (Figure 2.1 & Table 2.1). Sites were chosen 

based on uniformity of substrate, all being present on thin limestone soils (rendzinas and 

calcareous brown earths) as well as being reported as containing sympatric populations. 

Roudsea Wood possesses T. cordata only and was included as a comparison. All sites 

sampled are coppiced with standards woodland. Sampling was undertaken between July 

2011 and October 2012 to record topographic (slope aspect, gradient, elevation above sea 

level) and edaphic characters (acidity, depth, moisture and organic carbon content). 

 

Figure 2.1: A) Map of Britain with open circles indicating mean coordinates for each 
population at the 11 sites visited. B) Map displaying the distribution of Tilia cordata and T. 
platyphyllos across Europe (EUFORGEN, 2009). T. cordata is represented by the solid red 
area while T. platyphyllos is represented by the hashed blue area. Inset square: area covered 
by map A. 
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Site Date 
Sampled 

n  

Latitude 

 

Longitude T. cordata T. platyphyllos 

Roudsea Wood, Cumbria July, 2011 15 0 54.23339 -3.025833 

Anston Stones Wood, Yorkshire August, 
2011 2 15 53.34426 -1.207147 

King's Wood, Yorkshire August, 
2011 0 18 53.39842 -1.181878 

Dumbleton Dingle, Worcestershire August, 
2011 7 2 52.33138 -2.438264 

Lady Park Wood, Gloucestershire August, 
2011 14 6 51.82497 -2.659069 

Earl's Hill Wood, Shropshire September, 
2011 0 6 52.63727 -2.869548 

Crew's Hill Wood,Worcestershire September, 
2011 6 12 52.35649 -2.692415 

Highbury Wood, Gloucestershire September, 
2011 15 0 52.17621 -3.341825 

Tick Wood, Shropshire September, 
2011 0 11 52.62624 -2.526978 

Knapp & Paper Mill, 
Worcestershire 

October, 
2011 11 6 52.36835 -2.708353 

Hinkley Wood, Staffordshire October, 
2012 12 3 53.05204 -1.80229 

Total samples   82 79     

Table 2.1: Sampling locations. Collection sites and abbreviations for the two Tilia species 
including sampling date, final sample numbers by species per site and mean coordinates of 
individuals sampled 

 

Leaf samples were collected from each tree and were later identified according to the 

Anderson morphological hybrid index approach (Anderson, 1949), after Pigott (1969), 

which scores individuals on a range of 0 - 20. Hybrid indices are a commonplace method for 

identifying sympatric plant species from populations presenting intermediate and varied 

morphology due to hybridisation (e.g. Gosler, 1990; Kiaer et al., 2007; Thórsson et al., 2007; 

Tovar-Sánchez and Oyama, 2004; Wigston, 1975). Leaf colours other than those described 

by Pigott were observed and therefore this character was ignored, giving a possible HI range 

of 0 – 18. Only trees which received a hybrid index score lower than six or higher than seven 

exclusive (T. cordata and T. platyphyllos respectively) were included in the analysis. 
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Intermediate individuals were not considered. The distinction between taxa is that made by 

Pigott (1969), based on the morphology of hybrid individuals of known status and typically 

corroborated with molecular identification based on microsatellite data (Phuekvilai, 2014). 

After collecting leaf samples, individual tree positions, elevations (ESL) and slope 

aspect (if trees were not on level ground) were recorded using a handheld GPS unit (Garmin 

eTrex Vista). Where appropriate, slope gradient was measured using an analogue clinometer. 

Given the circular nature of slope aspect (i.e. slopes with facings of 359° and 1° are similar 

with respect to light levels despite their numeric difference), an estimate of potential annual 

direct incident solar radiation (DIR) was calculated after McCune and Dylan (2002). DIR 

also incorporates latitude and slope gradient so these do not feature as separate factors in this 

analysis. 

Mean soil depth (SDE) taken from 4 evenly distributed points between 20 cm and 

200 cm from the base of the trunk. ‘Soil depth’ was taken to be the point at which a metal 

rod reached an obstruction on insertion into the ground. Beneath each individual, samples of 

the A-horizon were collected and bulked for subsequent analysis to determine those soil 

chemistry parameters which have been suggested to differ between the two species (Pigott, 

1991, 1981). Standard gravimetric techniques were applied to determine soil moisture 

content (θg) and soil organic content (SOC). Recording the mass of samples before and after 

storage in a drying cabinet at 110 °C for 12 h allowed determination of water mass present, 

while incineration in a muffle furnace at 450 °C for 4 h allowed for calculation of SOC (dry-

weight basis). Soil pH (pH) was measured with a pH meter using a 0.1M KCl solution.  

2.3.2 Data analysis 

All analysis was performed using the R software package, version 3.1.2 (R Core Team, 

2014). During the initial data exploration, most data were found to be non-normal with high 

skew. Typical data manipulation techniques such as log transformation did not resolve this 

issue and thus are not applied in the analysis presented. Therefore a nonparametric 

hypothesis test (Mann-Whitney U) was used to compare the distributions of ecological 

parameters between species. Dispersion was calculated using Qn in the R package 

robustbase (Rousseeuw et al., 2015). This is a robust estimator of standard deviation 

(Rousseeuw and Croux, 1993). Sampling accuracy of the observed medians was determined 

via a nonparametric bootstrap procedure (resampling with replacement; 104 repetitions) in 
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the R package boot (Canty and Ripley, 2015) which generated precise 95% confidence 

intervals using the bias-corrected and adjusted method.  

Multivariate analysis was undertaken using the ROBust method for Principal 

Components Analysis (ROBPCA) from the R package rrcov (Todorov and Filzmoser, 

2009) to explore potential differences between the two species due to the interaction of 

abiotic and edaphic variables. In contrast with standard principal components analysis, this 

approach reduces the influence of outlying data (Hubert, Rousseeuw and Vanden Branden, 

2005). Data was standardised to have zero-means and a standard deviation of 1 to account 

for the different units of measurement between parameters. 
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2.4 Results 

2.4.1 Comparison of observed ecological parameters 

T. cordata occurs on soils with significantly higher organic content (Figure 2.2D; T. cordata 

= 208.78 g kg-1; T. platyphyllos = 159.52 g kg-1) and in locations with significantly greater 

potential annual incident solar radiation (Figure 2.2E; T. cordata = 0.957 MJ cm-2 y-1; T. 

platyphyllos = 0.806 MJ cm-2 y-1). 

 
Figure 2.2: Box and whisker plots indicating median values and upper and lower quartiles 
for each ecological parameter by species. The thick black bar spanning the median indicates 
the 95% confidence interval for that statistic (see text for details). Extreme values in soil 
moisture and organic content percentages (>155 g kg-1 and >550 g kg-1 respectively) are not 
displayed for legibility’s sake (missing n = 6 and 8). Shown above each plot is the calculated 
Mann-Whitney U statistic for between-species comparison. Values in parentheses indicate 
the significance level (ns. = not significant at α = 0.05; ** = p < 0.01). A: distributions of 
soil depth surrounding individuals of both species. B: distributions of A-horizon soil acidity. 
C: distributions of A-horizon soil water content. D: distributions of A-horizon soil organic 
carbon content. E: distributions of elevation above sea level occupied by individuals of both 
species. F: potential levels of solar radiation received by locations occupied by individuals 
of both species, estimated following McCune and Dylan (2002). 

No significant difference in distributions was observed between the two species for SDE, 

pH, MPC or ESL (Figure 2.2A, B, C, E respectively). Levels of variation (calculated as Qn) 

are comparable for the two species across most variables but markedly larger in T. cordata 

for pH and θg (Table 2.2). Summary statistics for the measured ecological parameters are 

given in Table 2.2 as well as calculated Mann-Whitney U statistics and significance levels. 
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Table 2.2: Edaphic and physiographic parameters observed across populations of T. cordata 
and T. platyphyllos. Includes sample size, observed median (including bootstrapped 95% 
confidence intervals; see text for details), the Qn measure of dispersion (Rousseeuw and 
Croux, 1993), calculated Mann-Whitney U scores and significance levels (ns. = not 
significant at α = 0.05; ** = p < 0.01). Soil parameters: SDE = soil depth; pH = soil pH; θg 
= gravimetric soil moisture content; SOC = gravimetric soil organic content. Physiographic 
parameters: ESL = elevation above sea level; DIR = potential annual direct incident solar 
radiation. 

2.4.2 Multivariate analysis 

Only the first three principal components PC1, PC2 and PC3 are considered here as they 

collectively explain over 80% of the variance present in the data (49.5%, 22.3% and 16.4% 

respectively). See Table 2.3 for exact variable loadings for all three components. In a 

scatterplot of PC1 against PC2 individuals from both species form overlapping similarly 

shaped clusters (Figure 2.3a). The remaining pairwise scatterplots (Figure 2.3b, c) have 

similar patterns to each other, with two distinct species clusters which is driven primarily by 

differences in SOC (Table 2.3). Whether a tree is present in a sympatric or allopatric 

population does not appear to affect the clustering, with both categories being intermingled 

in all plots (Figure 2.3). 

Table 2.3: Variable loadings for the 
components of the PCA considered here. The 
first two parameters with the highest absolute 
influence are indicated by bold text. 

 

 

 

 Tilia cordata Tilia platyphyllos   

Variable Median Range Qn Median Range Qn U Significance 
SDE (m) 0.075-0.031

+0.008 0.02 - 0.40 0.054 0.068-0.014
+0.028 0.03 - 0.42 0.049 2281 ns. 

pH 5.59-0.50
+0.22 3.08 - 6.90 0.95 5.70-0.20

+0.10 3.60 - 7.34 0.65 2508 ns. 
θg  (g kg-1) 21.98-5.74

+5.16 
4.08 - 
290.53 17.53 19.54-3.49

+3.25 
1.85 - 
115.76 11.73 2011 ns. 

SOC (g kg-1) 208.78-22.55
+19.22 

64.74 - 
713.60 80.81 159.52-18.79

+20.48 
34.72 - 
785.23 77.53 3019 ** 

ESL (m) 157.90-9.76
+2.13 

7.00 - 
260.96 40.30 141.44-49.44

+10.56 
14.00 - 
248.66 36.99 3664 ns. 

DIR (MJ 
cm-2 y-1) 0.957-0.042

+0.081 
0.550 - 
1.527 0.230 0.806-0.016

+0.105 
0.558 - 
1.446 0.191 2780 ** 

Variable PC1 PC2 PC3 

SDE 0.468 -0.097 0.122 

pH 0.412 0.845 -0.244 

θg -0.052 0.222 -0.147 

SOC -0.080 -0.250 -0.944 

DIR -0.489 0.298 -0.048 

ESL -0.603 0.274 0.105 
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Figure 2.3: Pairwise biplots of the first three principal components (PC1, PC2, PC3) of the 
RObust Principal Components Analysis (ROBPCA). Circles indicate T. cordata individuals 
while triangles indicate T. platyphyllos. Open shapes indicate individuals sampled from a 
sympatric population of both species while closed shapes indicate individuals sampled from 
sites with only one species present (allopatric). 
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2.5 Discussion 

Evidence for difference in ecological preferences between T. cordata and T. platyphyllos 

was found from univariate pairwise comparisons and was also illustrated by ordination. 

Differences in soil organic carbon content and estimated insolation are statistically 

significant. Individuals clustering primarily by species rather than by site or presence of the 

other species on biplots of principal components from the ROBPCA supports the former, 

given the weighting of SOC in PC3. For parameters with no significant difference, T. 

cordata occupies soils with greater variability in acidity and moisture content than that of T. 

platyphyllos (Figure 2.2b, c; Table 2.2) and also displays more variation in position within 

the ordination (Figure 2.3). 

A qualitative description of the distribution of T. cordata with relation to soil 

classification does indeed suggest that it is present on soils that vary widely over the 

ecological parameters measured here (Pigott, 1991). Similarly a quantitative assessment of 

edaphic variables in T. cordata populations in northwest England is also in line with the 

observations presented here (Pigott and Huntley, 1978). There is less comparable data on 

ecological parameters associated with T. platyphyllos, but its distribution is more restricted 

and apparently tightly linked with soil characteristics and topography (Pigott, 1981b). 

Two explanations for the differences observed in estimated insolation between the 

species present themselves. Firstly, T. platyphyllos is most often found on steep slopes and 

cliffs (Pigott, 1981b; Sheykholeslami, Namiranian and Sagheb-Talebi, 2011), and given that 

the equation utilised to estimate potential insolation takes slope angle and aspect into account 

(McCune and Dylan, 2002), the difference between distributions of DIR values may be a 

result of this preference. Alternatively, it may be an indirect indication of a preference for 

higher light levels in T. cordata. It has been suggested that the former species is less shade-

tolerant than T. platyphyllos across both its UK and wider ranges, according to Ellenberg’s 

indicator values and related work (Ellenberg, 1988; Hill, Preston and Roy, 2004). DIR does 

not consider actual canopy transmission levels, surrounding topography or weather/climatic 

conditions (e.g. cloud cover), being only an estimate of insolation at a specific location on a 

particular topography. Hence this potential difference requires further investigation. Soil 

organic carbon content also differs significantly between the species. This result is expected 

given that T. cordata is noted to be characteristic of typically richer soils than T. platyphyllos 

(Pigott, 1981b, 1991). 
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Published literature also suggests that T. cordata generally occurs on less basic soils 

than T. platyphyllos (Pigott, 1981b, 1991), but no significant difference between soil pH was 

observed here. This is despite the observed range of pH for both species (excluding outliers 

according to box and whisker plots; Figure 2.2b) being in line with previous quantitative 

assessments of the species’ preferred edaphic properties (Pigott and Huntley, 1981; 

Sheykholeslami, Namiranian and Sagheb-Talebi, 2011). Therefore the lack of a statistically 

significant difference in observed soil acidities may be the result of the preferences of each 

species being overestimated previously. Alternatively this may be a result of most sampling 

locations in this study being areas with both species occurring in sympatry (Table 2.1). As 

the geographic distribution of T. platyphyllos is more restricted within northern Europe, the 

greater spread of T. cordata may mean it is free to occupy more acidic sites while the inverse 

would not be true. There is also the possibility that soil characteristics are affected by the 

species themselves rather than passively utilised. It has been reported that the litter of T. 

cordata generates rich soils (Pigott, 1989), but no basis for comparison with T. platyphyllos 

is available in the literature. Edaphic conditions can be influenced by differences in foliar 

chemistry (e.g. Finzi et al., 1998; Lovett et al., 2004) which may lead to positive feedback 

effects (Hobbie, 1992; Gómez-Aparicio and Canham, 2008) that could increase the fitness 

of conspecific individuals and affect community dynamics (Aponte et al., 2011), 2011).  

Observed differences between ecological preferences are not as distinctive as 

indicated by previous work. It may be the case that the separation between the species lies 

along unexamined resource or environmental axes. In particular no biotic factors were 

investigated here. As shade tolerance is reported as differing between the species (Ellenberg, 

1988; Hill, Preston and Roy, 2004), they may differ in their responses to competition for 

available light in forest communities, given that interspecific differences in juvenile 

mortality as a response to varying light levels are a component of temperate woodland 

community dynamics and structure (Kobe et al., 1995). There is also for potential for 

mycorrhizal communities to differ between congeneric species, such as that in Quercus 

(Morris et al., 2008), which in turn influence nutrient uptake. However this potential 

difference is unexplored in Tilia or in many other genera.  

Habitat preferences have been found to differ between congeneric tree species along 

some of the axes examined here, although similar studies are rare. Edaphic separation has 

been recorded between Quercus petraea and Q. robur (Bacilieri, Ducousso and Kremer, 

1995) and between the sympatric North American oak species, Q. virginiana and Q. 
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geminata (Cavender-Bares, Kitajima and Bazzaz, 2004), with the former also exhibiting 

more variation across edaphic factors (Cavender-Bares and Pahlich, 2009). Light levels 

separate Neolistea aciculata (Lauraceae) and N. sericea (Yamasaki, Yamada and Okuda, 

2013) and the tropical tree species Pterospermum diversifolium (Malvaceae) and P. 

javanicum (Yamada, Ngakan and Suzuki, 2006). Similarly the distributions of 

Dryobalanops aromatica (Dipterocarpaceae) and D. lanceolata are highly linked with 

contrasting preferences in soil physical structure and topographic variables such as slope 

steepness (Itoh et al., 2003), while Pourama bicolor and P. guianensis ssp. guianensis are 

found at lower elevations than their sympatric congenerics (Magård, 2002). 

The presence of the species on marginally different soils and in areas with differing light 

levels is an indication of segregation along niche axes, which is the third requirement 

suggested by Silvertown (2004) to determine the existence of niche separation.. Therefore 

these findings provide a possible approach to direct future studies of competitive exclusion 

within the genus.  
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3 Reproductive strategy of Tilia cordata Mill. across its UK 

range 
3.1 Introduction 

Although obligate asexual (clonal) reproduction is rare in angiosperms, facultative clonality 

is extremely common (Harper, 1977; Eckert, 2002; Barrett, 2015), particularly in perennial 

plants (Holsinger, 2000; Morris et al., 2014). Vegetative propagation (rather than apomictic 

seed production) is the most common form of clonality with an estimated ~80% of all 

angiosperm lineages possessing some means of reproducing in this manner (Klimeš et al., 

1997). In contrast to exclusively sexual reproduction, a mixed reproductive strategy provides 

several ecological benefits such as the ability of clones to forage for resources (light, 

nutrients, water) in patchy environments, lowered chance of death for a particular genotype 

due to spread mortality risks, the possibility of physiological integration and spatial division 

of labour (e.g. sharing of root systems) among shoots, etc. (Barrett, 2015). The relative 

emphasis on sexual versus asexual reproduction differs not just between but also within 

species (Silvertown, 2008), with different habitats favouring one reproductive mode over the 

other. For instance, in widely distributed species clonality is often more prevalent in 

marginal populations which are subject to less favourable environmental conditions 

(Brzosko et al., 2013). If these lead to a failure or a reduced frequency of sexual reproduction 

vegetative propagation can contribute to population persistence due to the longevity of clonal 

individuals (de Witte and Stöcklin, 2010; Barrett, 2015). 

Inversely clonality may also have negative consequences on individual fitness and 

population duration, depending on its frequency and arrangement. It necessarily reduces 

genotypic diversity, and if species are self-incompatible and the spatial arrangement of 

vegetative growth is aggregated, outcrossing success can be reduced (Charpentier, 2001; 

Vallejo-Marín, Dorken and Barrett, 2010). This can affect the viability of small populations 

due to lower sexual fecundity as a result of intraclone incompatibility (Nuortila, Tuomi and 

Laine, 2002; Honnay and Bossuyt, 2005). This process can ultimately lead to a complete 

failure of sexual reproduction and if any particular clonal lineage has a competitive 

advantage, monoclonal stands (Halkett, Simon and Balloux, 2005; Honnay and Bossuyt, 

2005). Reduced genotypic diversity and lack of sexual reproduction can affect future 

adaptive potential by lowering the efficiency of natural selection or increase the rate at which 
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deleterious alleles can accumulate, further decreasing reproductive capacity. Either of these 

factors could affect the likelihood of long-term population persistence (Holsinger, 2000). 

 Therefore knowledge of the frequency and spatial structure of clonality and the 

factors that drive reproductive strategy in any particular species is part of a full understanding 

of their ecology and population genetics, and insight into how and when a species undergoes 

vegetative reproduction is important in applications which rely on these areas. For instance, 

the balance of reproductive modes is an important predictor of migration potential (Morris 

et al., 2014) given the relative effectiveness of seed versus vegetative dispersal (Silvertown, 

2008), which makes an understanding of clonality potentially important information in the 

generation of species distribution models used to forecast responses to climatic change (as 

these can benefit from the inclusion of life-history traits, e.g. Matthews et al., 2011). 

Similarly as the impact of some plant pathogens is expected to increase (e.g. Phytophthora 

spp.) as a response to more favourable environmental conditions or an increased 

susceptibility of host species due to factors such as drought stress (Sturrock et al., 2011), 

and as biotic stress tolerance generally and pathogen resistance specifically are linked to 

genetic diversity (or the ability to generate novel genotypes via recombination), an 

understanding of clonality may be part of mitigating or reducing these impacts (Honnay and 

Bossuyt, 2005). Finally where genetic variation is at risk and the need for conservation has 

been realised, knowledge of this aspect of an organism’s life history is important in allowing 

biologists and foresters to choose appropriate management measures that best capture and 

maintain the species’ genetic variation (Namroud et al., 2005). 

An example of a partially clonal plant species is Tilia cordata (small leaved lime), 

an entomophilous canopy tree with a widespread but patchy distribution (Figure 3.1). It is 

an effective vegetative propagator, producing clonal individuals (‘ramets’, sensu Harper, 

1977; cf. ‘genets’, the clonal group as a whole) in a variety of ways. Shoots at the base of its 

trunk can develop into multiple stems and the connecting tissue can rot away, leading to 

separate individuals. These basal shoots can also root if they touch the ground, and fallen 

trees can produce multiple vertical shoots along their length which ultimately develop into 

new ramets (Pigott, 1991). Successful sexual reproduction in the species relies on critical 

temperatures being reached during both pollination (Pigott and Huntley, 1981) and seed 

development (Pigott, 1981a). The current extent of its range was established during the 

Holocene climatic optimum when summer temperatures were 1 – 2 °C higher than currently 

(Birks, 1989; Davis et al., 2003) and its fertility was presumably not an issue. The subsequent 
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temperature decline means that northern marginal populations rarely set fertile seed except 

during the warmest summers, due to either a failure of pollination (Pigott and Huntley, 1981) 

or of fruit development (Pigott, 1981a), in contrast to more southern populations which 

frequently produce viable fruits (Pigott, 1991). In concert with other potential factors such 

as herbivory (Pigott, 1991) this ultimately leads to infrequent sexual recruitment, which may 

promote vegetative reproduction, or at least increase its relative importance (Silvertown, 

2008). As a result clonal growth has been suggested as the reason for population persistence 

in marginal locations such as the north-west of England (Pigott and Huntley, 1978). Fertility 

is reported to be high in southern marginal populations (Pigott, 1991), where the constraint 

on its distribution is insufficient water (Pigott and Pigott, 1993; De Jaegere, Hein and 

Claessens, 2016). Large crops of fertile seed are reported at this southern limit (Pigott, 1991) 

but whether this results in successful regeneration is unclear. Despite the potential 

importance of vegetative propagation to the species the extent, character and structure of 

asexual reproduction for T. cordata have never been described, nor has its relationship with 

climate (or any other factors).  

Although not rare its genetic resources have been identified as at risk due to its poor 

dispersal ability relative to other tree species (De Jaegere, Hein and Claessens, 2016) and its 

often small and isolated populations (Hemery et al., 2010), with active genetic conservation 

measures already in place (Turok et al., 1996). In light of the potential effects of clonality 

described above, knowledge of the degree of clonality and how it varies across a species’ 

range or in response to different ecological constraints is a prerequisite to understanding its 

genetic structure and ecology and therefore to produce effective genetic conservation 

strategies (Barsoum, Muller and Skot, 2004; Namroud et al., 2005). These aspects have not 

yet been studied in T. cordata, and so this study is an examination of clonality within 22 

populations across the extent of its native UK range, with the aim of assessing both the 

frequency and arrangement of clonal individuals and their effect on spatial genetic structure 

(SGS). In addition the potential links between climate, individual density, demography and 

incidence of clonality are assessed. These factors are known to relate to the frequency of 

asexual reproduction in other species (e.g. Morris et al., 2014; Weed and Schwarzländer, 

2014). 
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3.2 Methods 

3.2.1 Sampling method and location 

Twenty-two populations of Tilia cordata across its UK range (Figure 3.1 & Table 3.1) were 

sampled to assess the degree, character and arrangement of clonality present and their fine-

scale SGS. All sites are semi-natural ancient woodland (i.e. continuously wooded since 1600 

CE) with similar management regimes (coppicing). Sites were chosen to cover a latitudinal 

gradient from close to the northern UK range edge (Figure 3.1) to as close as possible to the 

mainland Europe), and to avoid populations sympatric with the other UK native Tilia species 

(T. platyphyllos, large leaved lime). 
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Figure 3.1: geographic position of sampling sites (see Table 3.1 for key to numbers and exact 
location); the dashed red line indicates the approximate location of the northern range edge in 
the UK. 
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In each population a single 30 x 30 m quadrat (Arnaud-Haond, Duarte, et al., 2007) was 

randomly placed and all T. cordata individuals present were mapped using measuring tapes. 

Demography data was recorded by taking measurements of diameter at breast height (DBH) 

as well as position in canopy (understorey, canopy); where trees had multiple stems, the 

largest was measured. Understorey individuals with a DBH less than 0.1 m were considered 

saplings (no seedlings were observed). Leaf tissue from each was collected and dried for 

further laboratory analysis. Where samples were not available due to inaccessible leaves, the 

position of individuals was recorded regardless (81 n). A total of 647 individuals were 

sampled across all locations (Table 3.1). 

N
um

be
r 

Name Code n Ungenotyped 
n Latitude Longitude 

1 Roudsea Wood ROUDS 22 2 54.23 -3.02 
2 Eaves Wood EAVES 34 1 54.18 -2.81 
3 Bank Rough BANKR 13 1 53.29 -2.65 
4 College Wood COLLE 9 0 53.26 -0.32 
5 Hardy Gang HARDY 35 16 53.26 -0.36 
6 Ivy Wood IVYWD 70 5 53.25 -0.29 
7 Kirton Wood KIRTO 17 1 52.88 -0.54 
8 Swanton Novers SWNTN 54 2 52.84 0.98 
9 Hockering Wood HOCKE 19 4 52.69 1.06 

10 Collyweston Great Wood CLWGW 41 4 52.60 -0.52 
11 Ryton Wood RYTON 19 0 52.35 -1.44 
12 Shrawley Wood SHRAW 28 0 52.30 -2.29 
13 Groton Wood GROTN 48 6 52.05 0.88 
14 Bovingdon Hall BOVHL 49 4 51.92 0.56 
15 Garnetts Wood GARNE 40 2 51.84 0.37 
16 Webb's Wood WEBBS 43 19 51.57 -1.94 
17 Weston Big Wood WESTN 18 6 51.47 -2.78 
18 King's Wood KINGW 25 5 51.38 -2.79 
19 Cheddar Wood CHEDD 9 1 51.30 -2.79 
20 Asham Wood ASHAM 6 0 51.21 -2.42 
21 Langley Wood LNGLY 25 2 50.98 -1.68 
22 Queens Copse QUEEN 23 0 50.86 -1.94 

    Total: 647 81     
Table 3.1: Sampling site names, abbreviated codes, numbers and locations as well as the 
number of individuals collected and genotyped at each. Also provided is the number of trees 
present within quadrats that samples were unavailable for. 
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3.2.2 DNA extraction & genotyping 

Genomic DNA was extracted from 129 individuals using a high-salt CTAB procedure (Tel-

zur et al., 1999; Wong, Silvaraj and Phoon, 2014) as standard CTAB methods resulted in 

extractions of insufficient purity for downstream analysis. 40 mg of dried leaf tissue was 

homogenised using either a sterile mortar and pestle combined with acid-washed sand, or 

1.5 mm Zirconium beads (Sigma-Aldrich, Dorset, UK) in a vortex mixer at 3000 rpm for 3 

m. 1 ml of 2% CTAB extraction buffer (2% w/v CTAB, 3 M NaCl, 3% v/v ß-

mercaptoethanol, 4% w/v PVP-40, 100 mM Tris-HCl, 20 mM EDTA•Na2; pH 8.0) at 55 °C 

was added and then incubated at 55 °C for 1 h. A chloroform:isoamyl alcohol (24:1) wash 

was performed on the lysate. Further purification of the lysate was achieved by alcohol 

precipitation using 0.54 volumes isopropanol and 2.5 M ammonium acetate at -20 °C for 1 

h. The precipitate was washed using ethanol to remove residual salt, air-dried at 37 °C for 

20 m and then rehydrated in TE buffer (10 mM Tris-HCl, 1 mM EDTA•Na2; pH 8.0). 

DNA from the remaining samples was extracted using the ‘crude extract’ procedure 

in a KAPA3G Plant PCR Kit (KAPA Biosystems, London, UK). Briefly, a 6.35 mm circular 

leaf punch was taken from each sample and placed in 125 µl of extraction buffer (50 mM 

Tris-HCl, 0.1 mM EDTA•Na2, 2% v/v ß-mercaptoethanol, 1 mM TCEP) before being heated 

at 95 °C for 5 m. 

Samples were genotyped at 10 microsatellite loci (Table 3.2) using four multiplex 

PCR following Phuekvilai and Wolff (2013), with minor modifications. Loci were initially 

developed for T. platyphyllos and the selection here is based on cross-amplification success 

and polymorphism in T. cordata (Table 3.2). Amplification was carried out in 10 µl total 

volume containing either 1X KAPA Plant PCR Buffer (0.2 mM each dNTP, 1.5 mM Mg2+), 

0.1-0.2 µM primers, 0.5 mM TCEP, 0.5 U KAPA3G Plant DNA Polymerase or Bioline 

MyTaq Plant polymerase (Bioline Reagents Ltd., London, UK) and 1 µl of template (either 

a 1:20 dilution of CTAB-extracted DNA, or undiluted crude extract). Forward primers were 

tagged with the fluorescent dyes NED, VIC (Applied Biosystems, Warrington, UK), or 6-

FAM (Sigma-Aldrich, Dorset, UK). Dye colour and primer concentration can be found in 

Table 3.2. Thermal cycler conditions were as described previously (Phuekvilai and Wolff, 

2013). 

PCR product size was determined using capillary electrophoresis on an AB3500 

Genetic Analyzer (Applied Biosystems, Warrington, UK). Amplicons were diluted 1:10 
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with nuclease-free water and 1 µl was mixed with 8.9 µl Hi-Di formamide and 0.1 µl LIZ500 

size standard before running. Allele peaks were called automatically in GeneMapper 5.0 

(Applied Biosystems, Warrington, UK) and then checked manually for errors. 

Locus Multiplex 
Set 

Concentration / 
µM Dye 

Tc6 A 0.1 VIC 
Tc920 A 0.1 6-FAM 
Tc937 A 0.1 NED 
Tc4 B 0.2 VIC 
Tc943 B 0.2 6-FAM 
Tc11 C 0.1 NED 
Tc915 C 0.2 6-FAM 
Tc5 D 0.2 6-FAM 
Tc7 D 0.1 6-FAM 
Tc951 D 0.2 NED 

 
Table 3.2: Loci used, multiplex groupings, primer concentrations and tagged primer dyes 
(Phuekvilai and Wolff, 2013). 

To reduce the potential for human error in the binning process, the software 

TANDEM, version 1.07 (Matschiner and Salzburger, 2009) was utilised to produce integer 

allele sizes from the raw fragment size output produced by GeneMapper. 

3.2.3 Data analysis 

Unless stated otherwise, all analysis was undertaken in the R software package, version 3.3.3 

(R Core Team, 2016). 

3.2.4 Marker resolution 

To determine whether the markers used have sufficient resolution to successfully 

discriminate between individuals, a genotype accumulation curve was constructed using the 

R package poppr version 2.1.0 (Kamvar et al., 2015, 2014). This procedure randomly 

samples from 1 to n – 1 (where n = all loci) loci, repeated r times (r = 10 000) and records 

the number of unique multi-locus genotypes (MLG) observed. If the curve is asymptotic 

then the addition of more loci to the genotyping is unlikely to reveal many extra MLG and 

the resolution obtained is sufficient to determine clonal status. 

3.2.5 Clonal identification 

Following the recommendations of Arnaud-Haond et al. (2007), identification of clonal 

individuals was divided into two parts: firstly, removal of the possibility that individuals 
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share identical MLG as a result of chance recombination events, and secondly, confirming 

that dissimilar MLG actually belong to distinct genets. 

To determine whether replicate genotypes are the result of vegetative reproduction 

or distinct zygotes, the likelihood of re-encountering each MLG multiple times as a result of 

sexual reproduction based on the allele frequencies present in each population was estimated 

using poppr(psex). Where psex was below 0.01 (Arnaud-Haond, Migliaccio, et al., 2007), 

replicate MLG were considered to be ramets of the same genet and to have originated from 

vegetative reproduction. 

Ascertaining individuality in clonal plants using microsatellite markers is also 

complicated by somatic mutations (Klekowski, 2003), particularly in the case of long-lived 

species such as T. cordata (Pigott, 1991), and scoring errors (Douhovnikoff and Dodd, 2003; 

Meirmans and Van Tienderen, 2004). Somatic mutations can cause individuals which are 

actually the result of vegetative reproduction events from the same parent genet to appear 

genetically distinct. Similarly a large number of markers, PCR artefacts, the variability of 

capillary electrophoresis runs and human error can all introduce variation in observed 

genotypes between ramets. Either scenario can result in underestimating levels of clonality. 

To avoid this frequency plots of genetic distance (number of distinct alleles) between 

individuals for each population were examined for the presence of bimodal distributions with 

a peak at low but non-zero distances. Such a distribution would be characteristic of either 

scenario (Arnaud-Haond, Duarte, et al., 2007; Rozenfeld et al., 2007). However, if selfing 

rates are high or inbreeding common in small populations, then this could also produce very 

similar genotypes. To assess this alternative explanation for bimodal distributions, genetic 

distance frequency plots from 100 simulated sexual reproductive events (allowing for 

selfing) were generated with RClone and overlaid onto observed distances. 

In the presence of bimodal distributions, individuals sharing distinct but very similar 

genotypes were examined further to determine whether they were actually the result of clonal 

reproduction. Individuals differing by only one allele temporarily had the distinct locus 

removed and psex was recalculated. If the result was below the original threshold for clonal 

membership (0.01), the individuals were grouped into multi-locus lineages (MLL) and 

considered to be ramets of the same genet for the remainder of the analysis. This threshold 

of one allele was chosen as compromise between underestimation of clonal membership and 
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the reduction in resolution that results from effectively removing marker data (Schnittler and 

Eusemann, 2010). 

3.2.6 Incidence of clonality 

Incidence of clonality was assessed using a proportional measure of genotypic 

richness, R: 

𝑅𝑅 =
(𝐺𝐺 − 1)
(𝑁𝑁 − 1) 

Where G is the number of distinct genotypes (or MLL) and N the total number of individuals. 

This varies from 0 when all sampled individuals are identical to 1 when all observed 

genotypes are distinct (Dorken and Eckert, 2001). It is preferable to the often used measure 

of proportion distinguishable (G/N), which never reaches 0 even in monoclonal stands 

(Arnaud-Haond, Duarte, et al., 2007). To determine how equitable clonal reproduction in T. 

cordata is (i.e. whether many lineages reproduce vegetatively or production of clones is 

dominated by a few), evenness of MLL within sites was described by fitting inverse 

cumulative frequency data of membership of clonal group size classes to the Pareto 

distribution. The parameter β (-1 x regression slope) indicates how equitably clonal 

membership is distributed within the sampled population; a steep slope suggests that all 

ramets belong to similarly sized groups whereas a shallow slope represents a sample 

dominated by a small number of large genets (Arnaud-Haond, Duarte, et al., 2007; Ardehed 

et al., 2015; Jarni, Jakše and Brus, 2015). Other common measures of evenness (e.g. Pielou’s 

J; Pielou, 1975) are strongly correlated with R and so redundant (Arnaud-Haond, Duarte, et 

al., 2007). 

3.2.7 Spatial analyses 

Both the spatial arrangement of clonal lineages (the ‘clonal architecture’) and how genetic 

variation is positioned within space (spatial genetic structure) were examined.  

Spatial arrangement is described by three statistics: the maximum linear dimension 

of a MLL (dmax), the total area covered by a convex hull containing all ramets of a MLL 

(AMLL; Jarni et al., 2015) and an aggregation index (Ac) as described in Arnaud-Haond et al. 

(2007a). The aggregation index produces a value from 0 to 1, indicating that the probability 

of nearest-neighbour individuals being part of the same MLL does not differ from average 

or that they always share clonal group membership respectively. The statistical significance 

of the aggregation index was tested against the null hypothesis of a random distribution in 
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space by a permutation approach with 999 repetitions, where existing sample positions are 

randomly assigned to individuals using R package RClone, version 1.0 (Arnaud-Haond and 

Bailleul, 2015). For comparison of Dmax and AMLL between sites, normality of collected data 

was first assessed using Shapiro-Wilks tests. Thereafter nonparametric Kruskal-Wallis 

hypothesis tests were applied. Where these were significant a Bonferroni-corrected Dunn’s 

multiple comparison test was used to identify where the differences lay, due to the uneven 

sample sizes between groups (Dunn, 1964). 

 Spatial genetic structure (SGS) was examined for each population using the software 

SPAGeDi, version 1.5 (Hardy and Vekemans, 2002). In order to assess how clonality affects 

SGS, two levels of analyses were undertaken: ramet and among-genet. Ramet level analysis 

proceeded by estimating pairwise relatedness as the kinship coefficient Fij (Loiselle et al., 

1995) within the distance classes 0 - 8.64 m, 8.64 - 12.41 m, 12.41 - 15.84 m, 15.84 - 20.12 

m, and 20.12-31.40 m. These classes were chosen in order to maintain the most equitable 

distribution of pairs within groups. The mean kinship coefficient per class was plotted 

against distance class to produce spatial autocorrelograms. To assess statistical significance 

of SGS for each, spatial locations were permuted 10 000 times and mean Fij compared with 

the null hypothesis of no spatial arrangement of genotypes.  Among-genet level analysis 

proceeded identically with the exception that between-ramet kinship coefficient scores were 

not utilised to calculate mean Fij, therefore reducing the inflationary effects of clonality on 

SGS. Other approaches such as averaging ramet positions or using the central coordinates of 

MLL assume isotropic growth and a lack of disturbance, as well as not utilising all spatial 

information (Alberto et al., 2005). The point at which these two analyses intersect indicates 

the distance at which clonality ceases to affect SGS, or the ‘clonal subrange’ (Alberto et al., 

2005; Arnaud-Haond, Duarte, et al., 2007). 

To allow for simple comparisons of the degree of SGS with other work Sp was also 

calculated (Vekemans and Hardy, 2004), which is a ratio of the regression slope and average 

Fij at the first distance class to contain all possible pairwise comparisons. Contribution of 

clonality to this statistic (%clonal) was assessed by calculating the percentage of among-genet 

to ramet level Sp (Schueler, Tusch and Scholz, 2006). 

3.2.8 Relationship of levels of clonality with climatic or demographic variables 

To explore what if any variables are the best predictors of the level of clonality in a 

population, environmental and demographic variables were regressed against incidence of 



35 
 

clonality (as R). Although R is continuous it is effectively a proportion and so bounded to 

the unit interval [0, 1] which makes typical regression models such ordinary least squares 

(OLS) problematic as they may predict nonsensical values (i.e. >1, <0). The logit 

transformation is often used when modelling proportional data using OLS (Baum, 2008) - 

𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 �
𝑦𝑦

[1−𝑦𝑦]� – but this precludes interpretation of the response parameter on its original 

scale. Often proportional measures can also fail to meet all of the assumptions of OLS 

regression, particularly homoscedasticity, as they typically show less variation near to their 

boundaries. To avoid these issues beta regression can be used (Ferrari and Cribari-Neto, 

2004; Cribari-Neto and Zeileis, 2010). This is a derivative of generalized linear models 

(GLM) explicitly designed for use with proportional response data, where the dependent 

variable is defined in terms of the beta distribution by two parameters (mean µ, dispersion 

Φ). As in other GLM, additional flexibility is provided by the use of a link function between 

the response and independent variables. Fixed variance (Φ) models were applied in the R 

package betareg (Cribari-Neto and Zeileis, 2010), version 3.1. Since the question at hand 

is the strength of the relationship of particular explanatory variables to clonality, rather the 

generation of predictions per se, each of the following variables was used to generate 

separate regression models. 

3.2.8.1 Climate 

It has been suggested that the northernmost populations of T. cordata in the UK 

regenerate from seed extremely infrequently, and persist primarily due to clonal 

reproduction (Pigott and Huntley, 1978, 1980), possibly due to inadequate temperatures 

during flowering (Pigott and Huntley, 1981). This is in contrast to populations further from 

the northern range edge which more often set fertile seed (Pigott, 1991). Clonality should 

therefore increase alongside latitude and be negatively correlated with typical summer 

temperatures. To determine whether this was the case, a summary of local climate for each 

sampling location was generated from the WorldClim2 data set (Fick and Hijmans, 2017). 

This provided mean maximum July temperatures by day for each site for the period 1970 – 

2000. This was regressed against R using a log link function. 

3.2.8.2 Demography 

Clonality has been observed to be density-dependent in other plant species (e.g. Weed 

and Schwarzländer, 2014) and the balance between reproductive modes has been linked to 

disturbance (e.g. Cristóbal et al., 2014; Johansson and Lundh, 1988), the effects of which 
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are likely reflected in demography (i.e. more recent disturbance will reduce the proportion 

of mature individuals present). To assess whether there was any relationship between density 

and incidence of clonality in T. cordata also, individuals per square meter in each sample 

was regressed against R. As the demography varied between sampled populations, the 

proportion of mature canopy trees (relative to saplings or understorey individuals) was 

assessed as a predictor. Both models used a log-log link function. 
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3.3 Results 

3.3.1 Marker resolution and clonal identification 

The generated genotype accumulation curve plateaued with ~7 markers, indicating that the 

selected loci have sufficient resolution and the number of distinct genotypes has not been 

underestimated (Figure 3.2). A total of 393 distinct MLG were identified across all 647 

sampled individuals. All psex values for single and multiple re-encounters of replicate 

genotypes were below the chosen alpha of 0.01. 
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Figure 3.2: Genotype accumulation curve generated by randomly sampling from 1 to n – 1 
loci (n = 10) 10 000 times and recording the number of unique genotypes observed. 
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Seventeen out of 22 frequency distributions of pairwise allelic distance by site were 

bimodal, with the smaller peak occurring at low but non-null distances (1 – 3 distinct alleles; 

results not shown). Simulated sexual reproductive events generated frequency distributions 

that did not overlap these non-null peaks (e.g. Figure 3.3a, b; see Appendix I for all plots), 

except where sample sizes were very low (e.g. Figure 3.3c). These likely represent 

artificially deflated levels of genetic variation due to imposed inbreeding as a result of 

simulating reproductive events with so few individuals. After removing the single distinct 

locus for each putative MLL and recalculating psex, all values were below the original 

threshold of 0.01, lowering the total number of distinct lineages from 393 to 361.  

Figure 3.3: Examples of frequency distributions of pairwise genetic distance between 
individuals (as number of distinct alleles). Red bars are observed distances and translucent grey 
bars distances from 99 simulated sexual reproductive events (with selfing). The dashed line 
represents the threshold at which an individual was considered for inclusion in clonal lineage. 
A) and B) represent bimodal distributions at site 11 (Ryton Wood: RYTON) and site 1 (Roudsea 
Wood: ROUDS) respectively which suggest the occurrence of either somatic mutations in 
clonal individuals or genotyping error. C) is an example of small sample size creating overlap 
between simulated and actual genetic distance at site 19 (Cheddar Wood: CHEDD). 
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3.3.2 Clonal incidence & diversity 

Clonal reproduction occurred at all sites. The number of ramets (NR) within each genet 

was typically low with an overall median of two members and a maximum size of no greater 

than ten (Figure 3.4). In contrast to this large groups were found at Ivy Wood (NR = 3 – 22 

n). 

The proportion of non-clonal individuals (i.e. unique genotypes) R was typically 

around half of all trees sampled (mean = 0.57, standard deviation = 0.22). R ranged from 

0.195 at IVYWD to 0.825 at GARNE (Figure 3.5). 

  

Figure 3.4: The range of sizes of clonal groups (multi-locus lineages; MLL) observed across all sites. Black 
circles indicate the median size of MLL while error bars indicate minimum and maximum sizes while the red 
dashed line indicates the overall median. 
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Figure 3.5: Genotypic richness R (Dorken and Eckert, 2001) across all sites. A score of one 
indicates no clonal reproduction (all genotypes are unique) whereas zero would be a 
monoclonal site (all genotypes identical). Mean R is provided by the solid black line while 
the top and bottom dashed black lines indicate this figure plus or minus one standard 
deviation respectively. 

Inverse cumulative frequency plots (e.g. Figure 3.6A, B) of MLL group size 

membership show that clonal reproduction is not typically dominated by any particular 

lineage, with mean evenness high across sites (β = 1.09; Figure 3.6C). Evenness does vary 

between sites (standard deviation = 0.82), ranging from low (e.g. IVYWD β = 0.33) to 

extremely high (LNGLY β = 3.64). 
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Figure 3.6: Evenness of clonal reproduction across all sampled populations, as represented by the slope 
of a linear regression model (β) of log inverse cumulative frequency of multi-locus lineage (MLL) 
group size membership. A) An example of a shallow slope at IVYWD, indicating that clonal group 
membership is not equitable; asexual reproduction is dominated by a few large lineages. B) An example 
of a steep slope at LNGLY, showing that asexual reproduction is not dominated by any particular lineage 
(all clonal MLL contain only two members). C) The parameter β across all sampled populations. The 
solid line represents mean while the dotted lines represent this +/- standard deviation. 

C 



42 
 

 

3.3.3 Clonal architecture and spatial genetic structure 

Spatial dimensions of clonal groups were typically small but had a wide range in sizes overall 

(Figure 3.7). The maximum linear distance (Dmax) between ramets of the same genet ranged 

from 0.33 m (WEBBS) to 23.4 m (KIRTO) across all sites, with a median of 3.12 m. Due to 

low numbers of clonal groups differences in Dmax could not be compared statistically for four 

sites (ASHAM, COLLE, LNGLY, QUEEN). For the remaining sites, Dmax was not normally 

distributed at ten out of the 18 according to a Shapiro-Wilks test (results not shown). 

Dmax differed significantly across the aforementioned 18 sites according to a Kruskal-

Wallis test (H = 34.03; df. = 17; p < 0.01), but a post-hoc Bonferroni-corrected Dunn’s 

6
5

9

7

7

8
4 14

3

2

5 7

7

3
9 5 8

3

3

2

1

1

0

5

10

15

20

25

R
O

U
D

S
EA

VE
S

B
O

VH
L

C
LW

G
W

H
A

R
D

Y
IV

YW
D

K
IN

G
W

SW
N

TN
H

O
C

K
E

C
O

LL
E

R
YT

O
N

SH
R

A
W

G
A

R
N

E
B

A
N

K
R

G
R

O
TN

W
ES

TN
W

EB
B

S
K

IR
TO

C
H

ED
D

A
SH

A
M

LN
G

LY
Q

U
EE

N

M
ax

im
um

 d
is

ta
nc

e 
(D

m
ax

) /
 m

Sampled populations in decreasing latitude 
order

Maximum linear distance between 
members of the same clonal group
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the same clonal multi-locus lineage (MLL), Dmax. Filled circles indicate median Dmax while 
errors bars indicate its range. Numbers indicate how many clonal MLL were observed in that 
site while the dashed red line indicates overall median Dmax. 
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multiple comparison test did not find any significant difference in pairwise comparisons 

between sites suggesting that an unexamined factor other than population was responsible 

(results not shown). 

The area covered by each clonal group with more than two individuals (AMLL) was 

typically low with a median value across all sites of 2.90 m2, although the dispersion was 

high with a range of 0.02 m2 to 137.30 m2 due to several (spatially) large MLL at two sites 

(IVYWD and KIRTO). Only ten populations had at least three MLL with AMLL values (Figure 

3.8); of these two were not normally distributed according to a Shapiro-Wilks test (results 

not shown). A Kruskal-Wallis test indicated that clonal group area did not differ significantly 

between these ten sites (H = 13.47; df. = 9; p = 0.14). 
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Figure 3.8: The area occupied by clonal groups (AMLL) with more than two members.. Filled 
circles represent median AMLL for that site while error bars indicate the range of AMLL observed. 
The red dashed lines is the median AMLL for all sites combined while the numbers indicate the 
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 Aggregation of ramets within MLL was significant at sixteen out of 22 sites (Figure 

3.9) according to a permutation test and ranged from low (GARNE: Ac = 0.17; p < 0.05; 

Figure 3.9, Figure 3.10B) to high (IVYWD: Ac = 0.83; p < 0.05; Figure 3.9, Figure 3.10C). 

Where clonal MLL contained larger numbers of ramets they often formed exclusive groups 

not containing other genets (e.g. Figure 3.10C). More typically they were arranged in pairs, 

often close to non-clonal individuals (mean Ac = 0.42; e.g. Figure 3.10D). Another cause of 

more intermingled genets was ramets separated by unusually long distances (e.g. Figure 

3.10A). See Appendix II for the spatial arrangement of all sites. 

 

Figure 3.9: Aggregation of ramets (Ac) across all sites, which indicates how likely a ramet’s 
nearest neighbour is to be another ramet of the same genet. Yellow bars represent significant 
aggregation according to a permutation test (n = 999; p < 0.05). Grey bars were not 
significant (p > 0.05). The solid black line is mean Ac across all sites while the dashed black 
lines represent mean Ac +/- one standard deviation. 
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Figure 3.10: examples of the spatial arrangement of clonality at sampling sites. Unique genets are 
represented by hollow circles while clonal MLL groups are represented as filled squares of the same 
colour. Clonal multi-locus lineages (MLL) are contained within convex hulls described by dashed lines. 
Red hollow triangles represent individuals whose presence was recorded but not genotyped. The extent 
of aggregation Ac and its significance after 1 000 permutations are provided. DBH of each individual is 
indicated by the size of the shapes. A) CLWGW: this site has some of the largest distances between 
ramets of the same genet. B) GARNE: the site with lowest significant aggregation, Ac. C) IVYWD: this 
site has the largest MLL in both numbers and area covered as well as the highest Ac. D) GROTN: a 
typical site with close to average Ac and small MLL, in terms of both size and numbers. 
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Significant but weak SGS at both ramet and among-genet level (mean Sp = 0.12, 0.06 

respectively) was found in fifteen of 22 sites (Figure 3.11A), although two sites (ROUDS 

and WESTN) stood out as having markedly stronger structure than the others (Figure 3.11B, 

C). Three of the remaining populations had insufficient pairs within each distance class 

(<10) for analysis, and are not considered here. One population, EAVES, showed an overall 

positive relationship between pairwise kinship (as Fij) and distance (Figure 3.7, Figure 

3.11D), possibly as a result of several clones separated by large distances; calculating Sp is 

therefore inappropriate (Vekemans and Hardy, 2004). 

Clonality was typically the primary driver of SGS, explaining the majority of Sp 

(mean %clonal = 51.34 %, standard deviation = 17.61 %), although this ranged from 20.61 % 

at LNGLY to 87.41 % at IVYWD (Figure 3.11A). The effect of ramets on SGS was removed 

beyond a very fine scale, with mean kinship for both analyses becoming identical (the clonal 

subrange) at the 12.41 m distance class in most instances (Figure 3.11A). 
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Figure 3.11: Significant spatial genetic structure (SGS) in sampled populations and the contribution of clonality 
thereof. Pairwise relatedness (as kinship coefficient Fij; Loiselle et al., 1995) within distance classes was regressed 
against distance and the slope of this regression, b, is used to calculate the statistic Sp (−𝑏𝑏 �1 − 𝐹𝐹(1)� �⁄ , where 𝐹𝐹(1)�  
is the mean Fij in the first distance class to include all pairs (Vekemans and Hardy, 2004). High Sp indicates a 
sharp decline in relatedness between individuals (and therefore strong SGS). This analysis was performed between 
all ramets and also among genets only (i.e. discarding any kinship coefficients calculated between ramets of the 
same clone), in order to determine how much clonality contributes to SGS (Schueler, Tusch and Scholz, 2006). 
The scale of this contribution was assessed by determining the clonal subrange, the point at which these two 
analyses intersect (Alberto et al., 2005; Arnaud-Haond, Duarte, et al., 2007). A) Calculated Sp from regressions 
significant in both analyses (p < 0.05). Ramet-level Sp is indicated by the total height of the bars while among-
genet level Sp is represented by the height of the lower blue segments. Contribution of clonality to Sp (as %clonal) 
is indicated by the floating numbers while the clonal subrange is marked on the second vertical axis by the black 
crosses. B) An example of the spatial autocorrelograms used to quantify SGS; this site, WESTN, has the strongest 
observed structure. C) Another example, this time illustrating the weakest SGS at LNGLY. D) Finally, at one site 
(EAVES), kinship increased with distance due to large linear distances between ramets and therefore it was not 
appropriate to calculate Sp. 
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3.3.4 Relationship of clonality with climate and demography 

Both climate and demography were significant but weak predictors of the incidence of 

clonality (as R); there was no relationship between density of individuals in sample and 

clonality (Table 3.3).  

 
Predictor Estimate SE p 

lo
g(

µ)
 

Intercept -9.95 2.61 *** 

Mean maximum July 
temperature 0.48 0.13 *** 

Φ
 

Intercept 6.57 1.89 *** 

-lo
g(

-lo
g[

µ]
) 

Intercept 0.90 0.29 ** 

Density of individuals -10.26 7.23 ns. 

Φ
 

Intercept 4.78 1.32 *** 

-lo
g(

-lo
g[

µ]
) 

Intercept -0.37 0.32 ns. 

Proportion of mature 
individuals 1.28 0.44 * 

Φ
 

Intercept 5.97 1.68 *** 

Table 3.3: Link functions (left-hand column) and coefficients of beta regression models as 
well as their standard errors (SE) and statistical significance (*** = p < 0.001; ** = p < 0.01; 
* = p < 0.05; ns. = p > 0.05). 

Of the former two, typical July temperatures explained slightly more variance in R (pseudo-

R2: 0.17; Figure 3.12A) than the proportion of mature individuals (pseudo-R2: 0.10; Figure 

3.12C). 
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Figure 3.12: Scatter plots of predictors against incidence of clonality, R, and an estimate of 
how variance in the latter they explain. A) The relationship of summer temperatures over a 
period of 30 years (1970 – 2000) and clonality. Line of best fit is predicted values from the log 
link function. B) The relationship of individual density within each sampled quadrat and 
clonality. Line of best fit is predicted values from the log-log link function, -log(-log[µ]). C) 
The relationship of demography (as the proportion of sampled individuals that are mature 
canopy trees) and clonality. Line of best fit is predicted values from the log-log link function. 

A B 

C 
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3.4 Discussion 

 In this study it was observed that T. cordata is indeed partially clonal throughout its 

UK range, although the relative contribution of sexual versus asexual varies. Typically 

clonality was not dominant over recruitment from seed; on average of over half of all 

individuals were very likely the result of sexual reproduction. These levels of clonality are 

higher than the only previously reported figure. Logan et al. (2015) observed a lower 

incidence of clonality overall (R = 0.75), but this was a pooled figure from two species (both 

T. cordata and T. platyphyllos). Their study was also not designed to examine clonality, and 

as a consequence they used a sampling scheme which likely underestimated the incidence 

of vegetative reproduction, being both unstructured and not comprehensive, so this 

discrepancy is not unexpected. Clonality is also more common in T. cordata than in its North 

American congeneric, T. americana var. caroliniana (American basswood; Evans and 

Morris, 2016), which has higher genotypic richness (mean R = 0.86), although the lower 

bound of clonal incidence (R = 0.50) was very similar to the mean observed here. In 

comparison to other genera the amount of clonality was not unusual. The proportion of 

unique genotypes is very similar to those reported for a variety of tree species such as 

Populus euphratica (Euphrates poplar), Ulmus minor (field elm), and Quercus pyrenaica 

(Pyrenean oak; Buiteveld et al., 2016; Schnittler and Eusemann, 2010; Valbuena-Carabaña 

and Gil, 2017). 

Even the samples with the highest levels of clonality (e.g. EAVES, KIRTO, HOCKE, 

and IVYWD) were not exclusively clonal, with at least ~16 % of the sample composed of 

individuals that are the result of sexual reproduction. Similarly there were no samples with 

a total lack of clonal individuals, although some of the most southern sites came close (e.g. 

LNGLY, QUEEN). These extremes are distinctive by their maintenance of both modes of 

reproduction, as many partially clonal tree species have populations with either a complete 

absence of clonality or monoclonal stands (e.g. Buiteveld et al., 2016; Evans and Morris, 

2016; Fuentes-Utrilla et al., 2014; Morris et al., 2014), even when overall incidence is similar 

to that observed here. 

The size of clonal groups was small with a median number of two ramets per genet. 

As a result clonal reproduction was characterised by high evenness, with many lineages 

reproducing vegetatively. There were exceptions to this, such as the sites EAVES, KIRTO, 

HOCKE, and IVYWD, which had a greater than average proportion of clonal individuals. 

These possessed several lineages with disproportionately large groups, producing lower 
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measures of evenness. Taken together this means that levels of genotypic diversity can 

remain relatively high despite ubiquitous clonality, and even where incidence of asexual 

reproduction is more common, some genotypic diversity remains. Similar evenness or clonal 

diversity is often observed in other species, with most tree genets having low numbers of 

ramets and correspondingly high measures of equitability or diversity (e.g. Alfonso-Corrado 

et al., 2005; Fuentes-Utrilla et al., 2014; Suvanto and Latva-Karjanmaa, 2005), although 

monoclonal stands do occur (see above). 

 In spatial terms clonal groups were also typically small. As expected from the typical 

mode of vegetative propagation (shoots from the stem base; Pigott, 1991), the distances 

separating ramets were typically less than 10 m, with the median maximum distance (Dmax) 

between members of the same genet being just 3.2 m. Dmax was not totally homogenous 

however, with significant differences across all groups (although it is unclear where these 

differences lie); occasionally Dmax was greater than 20 m. As a result of the small group size 

and mostly low distances between ramets, genets did not occupy large areas (median AMLL = 

2.90 m2) and there was no significant difference between sites. This is in contrast with other 

species, except where clonal groups contained many members (e.g. IVYWD). For example, 

Populus alba (white poplar), Prunus avium (wild cherry) or Q. pyreniaca possess ramets 

that are separated by greater distances and occupy larger areas than those observed here 

(Dering, Chybicki and Rączka, 2015; Jarni, Jakše and Brus, 2015; Valbuena-Carabaña and 

Gil, 2017). This is not surprising: as is common in partially clonal tree species, these 

examples are capable of root suckering, which is a more effective method of vegetative 

dispersal given the larger distances between ramets reported in these examples. Other trees 

have ramets separated by distances that differ by orders of magnitude (hundreds or even 

thousands of metres), but these are typically riparian species due to their potential for long-

distance dispersal via water (e.g. Barsoum et al., 2004; Buiteveld et al., 2016). 

The low distances between ramets and the small size of clonal groups meant that the 

aggregation index (Ac) was significant at most sites, but not particularly high (mean Ac = 

0.42), meaning that the likelihood of a clone’s nearest neighbour being of the same genotype 

was less than 50 % on average. The exception to this was again the sites with a high incidence 

of clonality, where the large genets formed exclusive groups not usually containing unique 

individuals, increasing Ac. Despite the smaller size of clonal groups in lime this aggregation 

was similar to that of species with comparable levels of clonality such as U. minor or 

Athrotaxis cupressoides (pencil pine; Buiteveld et al., 2016; Worth et al., 2016). 
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 A significant decline in relatedness with increasing Euclidean distance was observed 

at thirteen of the sampled sites. A fourteenth site, EAVES, was observed to have the opposite 

relationship, probably as a result of the large linear distances between certain ramets of the 

same genet described above (elevating mean kinship within a particular higher distance 

class). This SGS was primarily influenced by clonality, with %clonal greater than 50 % in a 

majority of sites. This did not go lower than 20.61 % at LNGLY, where clonality was at its 

lowest incidence, indicating that vegetative propagation is important in generating very fine-

scale SGS in T. cordata. Despite this the small spatial scale of clonal groups means the 

influence of clonality on SGS disappears after a short distance, with the modal clonal 

subrange being the 12.43 m class. Most sites with significant SGS have similar Sp to other 

insect-pollinated tree species (Dering, Chybicki and Rączka, 2015), but those with strong 

structure (e.g. ROUDS, WESTN) have high values relative to other plant species in general 

(Vekemans and Hardy, 2004). 

 None of the examined variables (climate, density or demography) were particularly 

good predictors of the incidence of clonality observed. Asexual reproduction was not 

density-dependent as indicated by the nonsignificant regression model generated. There was 

a subtle trend for higher R values at decreasing latitudes, with mean maximum July 

temperatures negatively correlated with clonality as expected, but the relationship was weak 

(pseudo-R2 = 0.17). The proportion of mature canopy trees in the sample was also 

significantly related to R but this relationship was even weaker than summer temperatures 

(pseudo-R2 = 0.10). These results suggest that other, unexamined factors are also responsible 

for generating the observed patterns in incidence of clonality. That climate and demography 

are related to the proportion of clones in a population is not unexpected, given both the link 

between T. cordata fertility and temperature and the factors that affect clonality explored in 

other research. Trends in asexual reproduction related to climate have been observed in other 

species. For example, Fagus grandifolia (American beech) is more clonal at higher 

elevations and at more northern latitudes (Kitamura and Kawano, 2001; Morris et al., 2014), 

Populus tremula (European aspen) populations have greater genotypic diversity in southern 

versus northern Europe (Cristóbal et al., 2014), and the Banksia ionthocarpa subspecies 

which occupies more unfavourable habitats than its sister taxa is more clonal (Millar, Byrne 

and Coates, 2010). At the community level the proportion of species which participate in 

asexual reproduction is greater at higher latitudes (Ye et al., 2014, 2016). Similarly the 

incidence of clonality differs with the maturity of P. nigra (black poplar) groups, with ramets 
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more common in middle-aged stands (Barsoum, Muller and Skot, 2004), and mature stands 

of F. grandifolia are more clonal than immature stands (Morris et al., 2014). 

These results show that vegetative reproduction is indeed common in T. cordata, 

although its relative importance varies. The incidence of clonality shows a latitudinal trend 

with southern populations having proportionally fewer clones than more northern ones. This 

is as predicted by the link between temperature and pollination success/seed development, 

and the resulting difference in fertility between northern and southern populations. It does 

suggest that previous work (Pigott and Huntley, 1978) may have overestimated the 

importance of clonality for marginal populations by reporting that they persist entirely as a 

result of vegetative propagation, as there is still an appreciable fraction of individuals present 

that are likely derived from sexual reproduction (no totally clonal populations were 

observed). The weak relationship between clonal incidence and summer temperatures 

observed here reflects this. Whether the increased clonality in more northern populations 

represents a by-product of sexual failure or an actual shift in reproductive strategy by T. 

cordata as a response to unfavourable conditions (i.e. expending more energy in vegetative 

propagation rather than sexual reproduction) is unclear (Silvertown, 2008). Just as the most 

clonal populations never completely lose sexually derived individuals, the least clonal 

southern populations were always observed to retain some clonal trees (e.g. LNGLY, 

QUEEN). Whether this holds and clonality is ubiquitous across the entire range of T. 

cordata, or clonality disappears completely, is unknown. More central populations such as 

those in France have been reported to regenerate freely from seed, even colonizing new 

habitats such as abandoned pasture, something that is very uncommon in the UK (Pigott, 

1991). Similarly if asexual reproduction is a response to unfavourable conditions then the 

extent of clonality may also increase in marginal southern populations in the Mediterranean, 

although these are constrained by inadequate moisture rather than temperature. Fertility in 

these areas is reported to be high, but there no information on how successfully seedlings 

establish; vegetative propagation might again be a more successful strategy. 

The principle mechanism of vegetative propagation for T. cordata described 

previously explains the clonal architecture observed here, where ramets were typically 

separated by small distances (median Dmax = 3.12 m), usually less than 10 m, genets covered 

a small area, and as a result ramets are fairly aggregated. This is to be expected if most ramets 

are produced via basal shoots (rather than root suckers), and the longer distances sometimes 

observed are likely to be the result of layering from these shoots. The occasional relatively 
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large distances between clonal individuals that were observed are probably the result of 

treefall producing new ramets. This was observed during sampling, with a sprouting fallen 

tree being present at CLWGW. 

Where SGS was observed, clonality was usually responsible for the majority of it. 

This could be expected to have negative effects on population persistence (Vallejo-Marín, 

Dorken and Barrett, 2010), by producing neighbourhoods of closely related trees. This has 

the potential to reduce sexual reproductive success as selfed T. cordata progeny exhibit 

inbreeding depression, having higher mortality rates in their first four years of life than 

outcrossed seedlings (Fromm, 2001). However, even the highest clonal subrange observed 

(31.4 m at IVYWD) is much less than the average pollen transport distance reported (~79 m; 

Fromm, 2001). It seems unlikely then the effects of clonality on SGS will impact future 

reproductive success very much in T. cordata, especially since just under half of the 

populations sampled exhibited no significant SGS at all. 

Although climate explained the largest proportion of variance in incidence of 

clonality, the proportion of mature trees was quite similar. The relationship of demography 

with asexual reproduction suggests that at least part of the role of vegetative propagation in 

T. cordata is rapidly responding to disturbance. As all sampled populations are or have been 

subject to periodic coppicing, and since more recently coppiced locations will be 

characterised by proportionally younger demography (i.e. fewer matures trees), the 

proportion of canopy trees here probably reflects time since cutting. Coppicing is likely the 

highest intensity disturbance stands of T. cordata are subject to, with all trees within an area 

cut down to the base of the stem. In other species sprouting is often a response to disturbance 

and the intensity or frequency of this regime strongly affects the incidence of asexual 

reproduction (Diemer and Schmid, 2001; Morris, Small and Cruzan, 2004). For example, 

the frequency of and time since disturbance affects clone size in Q. chrysolepis (canyon oak; 

Montalvo et al., 1997) and the warmth and increased light levels provided by disruptions to 

the canopy promote root suckering in P. tremula (Johansson and Lundh, 1988; Cristóbal et 

al., 2014). More specifically coppicing promotes clonality in Q. pyrenaica (Valbuena-

Carabaña and Gil, 2017). As clonal groups of trees age, intra-clonal competition can result 

in self-thinning and a reduction in the size of the genets (Krasny and Johnson, 1992; Hartnett, 

1993; Rautiainen, Koivula and Hyvärinen, 2004), which would decrease clonal incidence 

and produce the pattern observed here. This could explain why posthoc testing failed to 
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locate the difference in clone dimensions (Dmax) between sites; it may lie between groups of 

sites that have been coppiced at similar times. 

Considering this and the spatially aggregated clonal architecture (relative to other 

tree species) described above, it is unlikely that clonality allows T. cordata ramets to 

maximise resource use in heterogeneous environments. It probably provides additional 

benefits however, such as lowering mortality risk for genets. The capacity for vegetative 

propagation in T. cordata stems is reported to not diminish with age (Pigott, 1991), which 

can be considerable (~300 y). This likely confers exceptional longevity on individual 

genotypes. Clonality may also facilitate resource sharing between ramets (Barrett, 2015), 

although it is unknown to what extent they stay connected after above-ground material has 

disappeared. Additionally as T. cordata is insect-pollinated the production of additional 

stems increases floral display size, which can enhance outcrossing success and therefore 

fitness (Vallejo-Marín, Dorken and Barrett, 2010; Barrett, 2015). If this is the case here then 

a small amount of clonality should be advantageous even in areas with favourable conditions 

for sexual reproduction, which would explain why many lineages within populations 

reproduce clonally (high clonal evenness), although it should be noted that if coppicing 

promotes vegetative propagation in most individuals then that could also produce high 

equitability. 

In summary, here the incidence, character and architecture of clonality in T. cordata 

across its UK range is described for the first time, as well as the effects of clonal individuals 

on SGS. As expected it is partially clonal throughout its UK range, although the incidence 

of clonality declines with latitude, potentially due to increased summer temperatures during 

flowering. The importance of vegetative growth in northern marginal populations may have 

been overestimated, although asexual reproduction is certainly more common there. These 

results suggest several avenues for further examining the role of asexual reproduction in T. 

cordata. Most obviously, it should be determined if the declining latitudinal trend in 

incidence of clonality continues into continental Europe, or if there is some level of clonality 

across the entire range. If southern marginal populations are included, this would indicate 

whether vegetative propagation is a more successful strategy when moisture regime is the 

limiting factor in T. cordata’s distribution. The role of asexual reproduction in responding 

to disturbance should be examined more closely by comparing incidence of clonality 

between populations with known differences in time since coppicing, controlling for the 

confounding influence of climate. Finally, the benefits (or disadvantages) of ramet 
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production should be explored. If clonality is a resource-sharing strategy in T. cordata then 

clonal individuals should share root systems, which can be determined via excavation work; 

if additional stems increase outcrossing success then clonal groups should have higher 

fecundity than unique individuals, which can be easily assessed by examining seeds (Pigott 

and Huntley, 1981). 
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4 Cryptic spatial genetic structure of a canopy tree (Tilia cordata) 

across a fragmented landscape 
4.1 Introduction 

Global terrestrial biodiversity is currently under threat due to anthropogenic disturbances 

such as habitat loss, degradation and fragmentation as well as rapid climatic change (Sala et 

al., 2000; Parmesan and Yohe, 2003). Small patch sizes as a result of fragmentation mean 

smaller populations and higher extinction risk due to environmental or demographic 

stochasticity (Shaffer, 1981; Lande, 1988), by eroding genetic diversity due to increased drift 

and an increase in isolation (Andrén, 1994; Aguilar et al., 2008). As well as increasing the 

effects of genetic drift lowered population size can lead to an increase in inbreeding and 

selfing (Schaal and Leverich, 1996; Young, Boyle and Brown, 1996). In the short term this 

leads to inbreeding depression via decreased heterozygosity and the expression of 

deleterious alleles, reducing individual fitness (Keller and Waller, 2002; Reed and 

Frankham, 2003). If fragments are sufficiently isolated by either distance or the landscape 

context then this loss of genetic variation cannot be alleviated by gene flow from other demes 

(Aguilar et al., 2008). In the long term, lowered genetic variation can limit a species’ 

potential for evolutionary responses to environmental change (Booy et al., 2000) which may 

be key to persistence in a changing climate (Christmas, Breed and Lowe, 2015). It is 

important therefore to conserve the genetic diversity of species at risk to loss of variation 

from anthropogenic influences (Reed and Frankham, 2003). 

Although most research examining the genetic structure of fragmented populations 

focuses on rare or endangered species (Honnay and Jacquemyn, 2007), common species are 

still susceptible to genetic erosion (e.g. Galeuchet et al., 2005; Hooftman et al., 2004; Lienert 

et al., 2002). However, the specific genetic response of any given species to habitat 

fragmentation depends on a variety of factors (Aguilar et al., 2008): the characteristics of 

the species such as life history traits, dispersal ability, mating system, longevity and its 

capacity for clonal growth, etc. as well as the particular landscape context. This makes 

responses to habitat fragmentation idiosyncratic and difficult to generalize about, although 

certain groups possess traits that should make their response more or less severe. For 

example, woody plant species have characteristics that can make them slow to respond 

(Honnay and Jacquemyn, 2007; Kramer et al., 2008; Vranckx et al., 2012). 
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Individual trees and shrubs can be extremely long-lived, especially those which are 

able to propagate vegetatively (Honnay and Bossuyt, 2005), which allows for population 

persistence even in the absence of sexual reproduction (Hamrick, 2004; Lowe et al., 2005). 

This means that for any particular landscape context, everything else being equal, woody 

plants will experience less drift than shorter lived species due longer generation times and 

lower turnover (Young, Boyle and Brown, 1996). They also typically possess high levels of 

phenotypic plasticity, allowing them to respond to adverse changes on a shorter timescale 

than an individual lifespan which may allow persistence even in very small or disturbed 

habitat fragments (Jump and Peñuelas, 2005). Finally their large size and correspondingly 

extensive pollen and seed production creates a high potential for gene flow which may 

counteract this loss of variation (Hamrick, 2004). 

Despite this there is increasing evidence that trees and shrubs are ultimately affected 

by fragmentation in the same way as other species (Vranckx et al., 2012). This has been 

demonstrated even in effective long-distance dispersers such as wind-pollinated species 

which might not be expected to suffer a reduction in gene flow, like beech (Fagus sylvatica; 

Jump and Peñuelas, 2006) and oaks (Quercus spp.; Knapp et al., 2001; Sork et al., 2002). 

Insect-pollinated species are particularly vulnerable as fragmentation also impacts pollinator 

behaviour, with pollinators typically staying within fragments (e.g. Didham et al., 1996; 

Goverde et al., 2002), as well reducing their population size which may limit pollen 

availability (Ashworth et al., 2004). How a species is responding or will respond to habitat 

loss and fragmentation is important to understand in order to effectively undertake 

conservation efforts that prevent genetic erosion. 

This need for genetic conservation has been recognised in Tilia cordata, a tree 

species which occupies particularly fragmented habitats. Although widespread across 

Europe, it has a patchy distribution. Formerly far more abundant and even a dominant 

species in central and Eastern European primeval woodland, it now often occupies small and 

isolated forest ecosystems (Pigott, 2012; De Jaegere, Hein and Claessens, 2016). This 

decline has been attributed to human clearance of woodland and a failure to recolonise 

secondary woodlands (Turner, 1962; Pigott, 1991). The lack of recolonization may be at 

least partly a result of low fertility, which is temperature-linked (Pigott, 1981a; Pigott and 

Huntley, 1981), or perhaps its low dispersal ability relative to other temperate canopy tree 

species (De Jaegere, Hein and Claessens, 2016). The current extent of its range was 

established during the Holocene climatic optimum when summer temperatures during the 
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critical periods of flowering and seed development were 1 – 2 °C higher than currently and 

its fertility was presumably not an issue (Birks, 1989; Davis et al., 2003). As fertility and 

therefore sexual recruitment may be linked to climate, populations at different latitudes may 

be responding to habitat fragmentation at different rates; more sexual reproduction means 

more recombination and a greater opportunity for drift to remove genetic diversity. 

 As a result of this reduction in its distribution and some of its particular 

characteristics, it is predicted to be subject to the erosion of variation described above and 

genetic conservation schemes have already been established (Turok et al., 1996). In order to 

do this effectively it is important to understand which areas are most at risk (Logan, 

Phuekvilai and Wolff, 2015). Despite this certain life history aspects of T. cordata suggest 

it will respond only slowly. It is consistently partially clonal throughout its UK range (see 

Chapter 3), meaning that individual genotypes can possess extreme longevity, preserving 

genetic variation over long timespans (Balloux, Lehmann and de Meeûs, 2003). On the other 

hand it is entomophilous and excessive or spatially aggregated clonal reproduction may 

promote selfing via competition with outcrossed pollen (Charpentier, 2001; Vallejo-Marín, 

Dorken and Barrett, 2010), adding to genetic diversity loss. This would make gene flow even 

more important to offset erosion of variation. 

It is unclear whether a reduction in gene flow between fragments has occurred. If it 

has then given sufficient time drift should differentiate these via loss of rare alleles, 

generating spatial genetic structure (SGS) correlated with the arrangement of woodland 

populations inhabit. Some aspects of the genetic structure of its fragmented demes have been 

examined, as well as pollen movement within a contiguous habitat (Fromm, 2001; Logan, 

Phuekvilai and Wolff, 2015). Genetic erosion has not yet occurred within T. cordata: Logan 

(2015) observed high diversity across the UK range of the species. Populations present SGS 

on a scale of hundreds of kilometres, but this likely represents historic dispersal limitations 

across a formerly far more contiguous habitat (isolation by distance), and is to be expected 

as maximum estimated pollen movement derived from parentage analysis is only ~1.7 km 

(Fromm, 2001). It is unclear if habitat loss and fragmentation has limited gene flow and 

caused populations to become differentiated at a finer scale more relevant to realistic pollen 

or seed dispersal distances. 

To assess this a different approach is required. Logan et al. (2015) considered each 

fragment to be distinct populations a priori and used these demes as the unit of study, but it 
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can be difficult to delineate what actually constitutes a distinct population (Manel et al., 

2003). By averaging genetic information over individuals, metrics of population 

differentiation based on allelic frequencies also suffer from a loss of resolution and are thus 

slow to respond to a reduction in gene flow (Kelly et al., 2010). In a species where the genetic 

response to fragmentation is likely to be delayed or slow for reasons outlined above, an 

individual-based sampling scheme and an analysis based on inter-individual genetic 

distances will have increased sensitivity, which is important in order to detect the likely 

subtle SGS generated by either a reduction in gene flow or isolation by distance (IBD; 

Prunier et al., 2013). If there has been a reduction in gene flow, it is also important to 

understand what, if any, factors promote or resist pollen or seed dispersal between fragments 

(Manel and Holderegger, 2013). Knowledge of this helps to ensure genetic conservation 

methods are effective by highlighting which populations are most at risk to genetic erosion. 

This study then has three objectives. Firstly, to examine the SGS of T. cordata demes 

using more sensitive methods and at a finer scale than previously, in order to assess its 

arrangement and infer how it relates to fragmentation (i.e. has there been a reduction in gene 

flow between distinct woodlands?). Secondly, to examine whether these patterns differ at 

differing latitudes. Finally, to assess whether certain habitats or land uses promote or reduce 

gene flow between fragments. 
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4.2 Methods 

4.2.1 Sampling strategy and locations 

Two complexes of ancient semi-natural woodland (ASNW) at contrasting latitudes within 

the United Kingdom were chosen for sampling: the remnants of Rockingham Forest (RF; 

Figure 4.1A) and Arnside & Silverdale AONB (AS; Figure 4.1B). ASNW has been 

consistently wooded since 1600 CE, i.e. before large-scale tree planting began, and therefore 

represent natural – albeit typically managed – populations. AS is close to the northern range 

edge of Tilia cordata in the UK and fragments here have increased levels of clonality relative 

to RF (see Chapter 3). Both areas possess woodland habitats of varying size and degree of 

isolation. An individual-based sampling scheme was used to maximise power to detect 

genetic structure due to the likely slow response of the species to fragmentation (Prunier et 

al., 2013). Fragments known to contain T. cordata were randomly sampled with leaf material 

collected from maximum of 40 individuals (Hale, Burg and Steeves, 2012), with the position 

of each plant recorded using a handheld GPS unit (Garmin, Southamptom, UK; various 

models). This material was taken and stored in silica gel for later laboratory analysis. A 

minimum distance of 10 m between samples was maintained to reduce the collection of 

clonal replicates. The aggregated distribution and differing abundance of individuals within 

fragments is reflected by the differences in sample size and density (Table 4.1). 
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 Figure 4.1: Position of sampled individuals within each landscape: A) the remnants of Rockingham 
Forest (RF), Northamptonshire, UK; B) Arnside and Silverdale AONB, Cumbria/Lancashire, UK. 
Within each the location of woodland fragments, roads and urban areas are marked. Dashed red ellipses 
provide a reference for the name of each sampled wood, where possible (black numbers; see Table 4.1 
for key). Coordinates are given as Ordnance Survey National Grid for ease of interpretation due to use 
of metres rather than degrees. “ASNW” is ancient semi-natural woodland, i.e. areas that have been 
continuously wooded since at least 1600 CE (before large-scale tree planting began). 
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Fragment name n Eastings Northings 

A
S 

1 Eaves Wood 40 347096.0 476128.5 
2 Bottoms Wood 35 346363.7 474716.1 
3 Grubbins Wood 35 344716.0 478102.9 
4 Cringlebarrow & Deepdale 25 349614.4 474914.3 
5 Underlaid Wood 23 348142.8 479020.7 
6 Heald Brow 12 346805.9 473688.6 
7 Scout Wood 10 346440.0 474666.9 
8 Gaitbarrows 8 347961.1 477148.4 
9 Clark's Lot 6 347033.9 474721.1 
10 Burton Well Wood 4 346983.5 475153.8 
11 Sharp's Lot 4 346597.8 474817.1 
12 Misc.* 1 347004.0 474564.5 
13 Misc.* 1 346697.1 474548.9 

   Total: 204 - - 

R
F 

1 Vigo Wood 40 501002.5 301933.1 
2 Collyweston Great Wood 27 500544.8 301169.9 
3 Easton Hornstocks 23 502756.5 300269.0 
4 Bedford Purlieus 20 504117.9 299394.8 
5 Wakerley Great Wood 9 496139.6 298526.4 
6 Old Sulehay 5 506012.1 298425.1 

  Total: 124 - - 
Table 4.1: Sampled fragment name, sample size n (after removal of suspected clonal 
individuals), and location. Rows marked with an asterisk represent two individuals in close 
proximity to other fragments that were opportunistically sampled. 

 

4.2.2 Laboratory analysis 

In order to facilitate rapid genotyping, DNA from all samples was extracted using a ‘crude 

extract’ procedure described in a KAPA3G Plant PCR Kit (KAPA Biosystems, London, 

UK). Briefly, ~6 mm of leaf tissue was placed in 125 µl of an extraction buffer (50 mM Tris-

HCl, pH 8.0; 0.1 mM EDTA•Na2; 2% v/v ß-mercaptoethanol; 1 mM TCEP) and heated for 

5 m at 95 °C. This leaf extract was then used as a template in all following PCR. 

Samples were genotyped across 10 microsatellite loci following Phuekvilai and 

Wolff (2013) with minor modifications, using four multiplex reactions. The loci were 

initially identified in T. platyphyllos and the selection here is based on cross-amplification 

success and polymorphism in T. cordata (Table 4.2). Amplification was carried out in 10 µl 

volume using either a KAPA3G Plant PCR Kit or a Bioline MyTaq Plant-PCR Kit (Bioline 

Reagents Ltd., London, UK) as directed by the manufacturer, plus 0.5 mM TCEP. This 
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included 0.1-0.2 µM of each primer (Table 4.2) and 1 µl of template extract. Forward 

primers were fluorescently tagged (Table 4.2) with the dyes NED and VIC (Applied 

Biosystems, Warrington, UK) or 6-FAM (Sigma-Aldrich, Dorset, UK). 

 

Locus Multiplex 
Set 

Concentration 
µM Dye 

Tc6 A 0.1 VIC 
Tc920 A 0.1 6-FAM 
Tc937 A 0.1 NED 
Tc4 B 0.2 VIC 
Tc943 B 0.2 6-FAM 
Tc11 C 0.1 NED 
Tc915 C 0.2 6-FAM 
Tc5 D 0.2 6-FAM 
Tc7 D 0.1 6-FAM 
Tc951 D 0.2 NED 

Table 4.2: Loci used, their multiplex groupings, concentration in reactions and the 
fluorescent dye used as a tag on the forward primer. 

 

PCR product size was determined using capillary electrophoresis on an AB3500 

Genetic Analyzer (Applied Biosystems, Warrington, UK). Reactions were diluted 1:10 with 

nuclease-free water and 1 µl of this dilution mixed with 8.9 µl Hi-Di formamide and 0.1 µl 

LIZ500 size standard (Life Technologies, Warrington, UK) before running. Allele peaks 

were called automatically in GeneMapper 5.0 (Applied Biosystems, Warrington, UK) and 

checked manually for errors. Raw fragment data was binned to integer allele sizes using the 

software TANDEM (version 1.07) in order to maintain consistency by reducing the potential 

for human error (Matschiner and Salzburger, 2009). 
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4.2.3 Statistical analysis 

Unless stated otherwise all analysis was undertaken using the software R, version 3.3.3 (R 

Core Team, 2016). 

 

4.2.3.1 Detection and removal of clonal individuals 

The R package poppr version 2.3.0 was used to assess whether any individuals sampled 

were clonal replicates (Kamvar, Tabima and Grünwald, 2014; Kamvar, Brooks and 

Grünwald, 2015). Although the simplest method of identifying clonality is to check for the 

presence of repeated multilocus genotypes (MLG), this may over- or underestimate the 

number of clones sampled (Arnaud-Haond, Duarte, et al., 2007). If genetic diversity is low, 

levels of inbreeding high or selfing common, identical MLG may be produced via sexual 

reproduction. Inversely, somatic mutation in long-lived clonal individuals or genotyping 

error may create subtly different MLG across individuals that are the product of vegetative 

reproduction from the same parent genotype (Douhovnikoff and Dodd, 2003; Klekowski, 

2003; Meirmans and Van Tienderen, 2004). 

 To determine whether chance recombination events have produced identical MLG, 

the likelihood of re-encountering the genotypes as a result of sexual reproduction was 

calculated (psex; Parks and Werth, 1993). Where psex was less than 0.01 (Arnaud-Haond, 

Migliaccio, et al., 2007), repeated MLG were considered to be clones and all but one 

removed from the analysis randomly (AS: 10 n removed; RF: 1 n removed). 

 If either somatic mutations or genotyping error have occurred, frequency 

distributions of genetic distance between individuals should be bimodal, with an additional 

small peak at low but non-null distances generated by these processes (Arnaud-Haond, 

Duarte, et al., 2007; Rozenfeld et al., 2007). This was observed and so individuals differing 

by only one allele (Schnittler and Eusemann, 2010) temporarily had the distinct locus 

removed and their psex recalculated. Where psex < 0.01 individuals were also considered 

clones and all but one randomly removed (AS: 5 n removed). 

 

4.2.3.2 Genetic diversity and population structure 

 Departures from Hardy-Weinburg equilibrium at all loci were assessed across each 

landscape using a χ2-test with a Monte-Carlo permutation procedure (999 replicates) to 
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determine statistical significance in the R package pegas (Paradis, 2010), version 0.9. 

Linkage disequilibrium (LD) was assessed using a multilocus estimate of the relationship 

between loci, 𝑟𝑟d (Agapow and Burt, 2001). This is based on the index of association (IA; 

Brown et al., 1980) but standardized to take into account the number of markers sampled, 

allowing for comparisons to be made with other studies. Departure from linkage equilibrium 

was tested with a permutation approach in poppr by comparing observed 𝑟𝑟d with 999 

permuted datasets exhibiting the 𝑟𝑟D expected under a lack of association between loci. The 

presence of LD has been used as an indicator of clonality due to the linked fate of alleles 

during asexual reproduction (e.g. Goss et al., 2014; Guillemin et al., 2008). To assess 

whether the landscapes have responded differently to fragmentation, genetic variation across 

each was contrasted. Allelic richness for all loci (calculated in the R package 

PopGenReport; Adamack and Gruber, 2014) was compared using a Mann-Whitney U 

test (data were non-normal according to a Shapiro-Wilks test; results not shown). This 

measure standardizes the number of alleles to be independent of sample size, allowing for 

direct comparisons between different populations or studies (El Mousadik and Petit, 1996). 

Similarly observed heterozygosity (HO) was compared using a t-test. 

To assess whether individuals exhibited isolation by distance (IBD), the relationship 

of geographic location with genetic differentiation was assessed using distance-based 

redundancy analysis (dbRDA; Meirmans, 2015), implemented in the R package vegan 

(Oksanen et al., 2017), version 2.4-2. Unlike the Mantel test more often utilised this 

approach properly decomposes genetic variance (in other words, it provides a measure of 

how much variation is explained by explanatory variables, i.e. geographic location) as well 

as possessing increased statistical power (Legendre and Fortin, 2010). This is ideal where 

the structure may be weak as a result of slow response times. Distanced-based RDA requires 

the calculation of a pairwise genetic distance metric between individuals. Percentage 

dissimilarity of shared alleles (1 - DPS) was chosen due to its simplicity and acceptable 

accuracy (Bowcock et al., 1994; Shirk, Landguth and Cushman, 2017). 

 Although dbRDA or Mantel tests both identify whether IBD is present, neither is 

able to describe more complex, non-clinal structures that may result from a reduction in gene 

flow or other processes, nor give an indication as to the scale at which this structure is 

present. Mantel correlograms are one solution to the latter problem (Borcard and Legendre, 

2012) but they are difficult to interpret and their principle assumption (second-order 

stationarity, i.e. variance is same across the landscape – the structure can be described by 
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one function) is not guaranteed to be met in natural populations (Legendre and Legendre, 

1998). Bayesian clustering methods are also often used for the purpose of describing the 

arrangement of SGS (e.g. STRUCTURE, Geneland, etc.; Guillot, 2008; Pritchard et al., 

2000) but as they operate by assigning individuals to one of an arbitrary number of 

population clusters, they may not be suitable if population structure is clinal (as in IBD). 

Further they are model-based and their assumptions (typically that populations will be under 

Hardy-Weinburg and linkage equilibrium) will not necessarily be met in a partially clonal 

species such as T. cordata, given the linked fate of alleles when reproducing genotypes 

identically as touched on above. A method of extracting and describing spatially-structured 

genetic variation that is not subject to the same assumptions is spatial principal component 

analysis (sPCA; Jombart et al., 2008). This effectively summarises spatially autocorrelated 

allelic differences between individuals. Therefore in order to describe the arrangement of 

SGS across both landscapes sPCA was implemented using the R package adegenet 

(Jombart, 2008; Jombart and Ahmed, 2011), version 2.0.1. As maximum pollen transport 

distances have been estimated empirically using data from parentage analysis (Fromm, 

2001), a neighbourhood-by-distance connection network was used so that only individuals 

within a distance of 1666.4 m were considered neighbours. In AS, three positive axes were 

retained, while in RF only two positive axes were retained. These decisions were based on 

both variance explained and spatial autocorrelation of each relative to the others (Jombart et 

al., 2008), i.e. the composite eigenvalues were clearly distinct for these components. 

 

4.2.3.3 Relationship of landscape factors with population structure 

4.2.3.3.1 Assessment of relationship 

In addition to IBD, a wide variety of landscape factors can work in concert to 

generate spatially-structured genetic variation by resisting gene flow between fragmented 

habitats (e.g. Cushman et al., 2006). This relationship is often assessed using partial Mantel 

tests or similar to examine the correlation of pairwise individual or population genetic 

distance with pairwise landscape resistance values. This approach requires the generation of 

properly parameterised resistance surfaces that describe how various landscape variables 

restrict gene flow (and their weighting relative to each other), and errors in their creation can 

lead to misleading conclusions (Spear et al., 2010). To remove the need for this step, partial 

dbRDA was used assess the relationship of genetic distance to landscape variables across 

both areas. This is a constrained ordination technique and the multivariate analogue of 



68 
 

multiple regression (Legendre and Legendre, 1998), allowing for the use of raw data 

describing landscape variables hypothesised to affect gene flow. It allows for specification 

of conditioning variables whose effects are ‘partialled out’, i.e. the variance that is explained 

by these variables is specified separately in the model. In this instance, geographic location 

(as eastings and northings) were used as conditioning variables to control for the effects of 

spatial autocorrelation in genetic data generated by IBD, allowing the relationship of the 

landscape context and genetic distance alone to be considered. 

 

4.2.3.3.2 Initial validation 

Partial RDA can have elevated type I error rates (false positives) in individual-based 

studies due to spatial autocorrelation in landscape variables (Kierepka and Latch, 2015). To 

assess how likely erroneous conclusions were to be drawn, the error rate for this particular 

study was estimated using simulations in a similar manner to Kierepka and Latch (2016). 

Firstly, the software EASYPOP (Balloux, 2001) was used to generate 100 independent 

replicates of spatially-structured population genetics data that exhibited IBD but whose 

genetic structure was not influenced by landscape variables. These simulations included 

thirteen (AS) or six (RF) populations with a location provided by the mean location of actual 

sampled fragments (Table 4.3). 
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 Population X Y 

A
S 

1 1.68 1.14 

2 2.30 1.51 

3 2.35 1.06 

4 4.91 1.23 

5 2.43 2.48 

6 2.32 0.89 

7 3.17 3.51 

8 0.00 4.43 

9 2.02 0.88 

10 2.15 0.00 

11 1.76 1.00 

12 1.91 1.15 

13 3.47 5.26 

R
F 

1 7.98 0.97 

2 4.41 2.74 

3 6.62 1.84 

4 9.87 0.00 

5 4.86 3.51 

6 0.00 0.10 
Table 4.3: Location in kilometres of each population within all replicates of simulated data. 
Relative distance between simulated and actual fragments is the same. 

 

Each population consisted of 100 diploid hermaphroditic individuals with a clonal 

reproduction rate of 30% (see Chapter 3), a selfing rate of 30% (Fromm, 2001) and the 

same spatially explicit migration scheme throughout the simulation (mean dispersal 

distance: 79.8 m; ibid.). To ensure comparable levels of genetic diversity were generated, 10 

loci were specified with an initial 10 alleles each. The simulation was run for either 10 (AS) 

or 20 (RF) generations, with the difference in length due to presumed lower frequency of 

sexual reproduction within northern T. cordata populations (Pigott and Huntley, 1981; 

Pigott, 1991). Full parameters are given in Table 4.4. 
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Description Value 

Ploidy level Diploid 

Two sexes N 

Random mating N 

Proportion of clonal reproduction 0.3* 

Selfing rate 0.3† 

Number of populations 13 (AS) / 6 (RF) 

Same number of individuals per population Y 

Number of individuals 100 

Migration scheme does not change Y 

Migration model Spatial 

Proportion of migration 0.05 

Number of dimensions that define space 2 

Mean dispersal distance 0.0798 km† 

Number of loci 10 

Free recombination between loci Y 

All loci possess same mutation scheme Y 

Mutation rate 0.00005‡ 

Mutation model SMM 

Number of possible allelic states 10 

Initial variability Maximal 

Number of generations 10 (AS) / 20 (RF) 

Number of individuals in each sample 75 
Table 4.4: All parameters used to generate simulated data. The clonal proportion (*) is 
derived from (see Chapter 3). Selfing-rate and mean dispersal distance (†) are both taken 
from empirical estimates of pollen movement derived from parentage analysis (Fromm, 
2001). Mutation rate of T. cordata microsatellites (‡) is unknown and so a conservative value 
observed in another tree species was used (Provan et al., 1999). 

Once complete, a total of 75 n per population were retained, clonal individuals 

removed, and further randomly subsampled to match their respective fragments (Table 4.1). 

Individuals were randomly assigned a position from the actual samples within said 

fragments. Presence of IBD across all 100 simulated replicates in each landscape was 

verified using dbRDA (AS: median R2 = 0.02, all p < 0.01; RF: median R2 = 0.03, all p < 

0.01). 
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The relationship of landscape variables to each of the simulated datasets was then 

examined using the final partial dbRDA models described above. The proportion of false 

positives (i.e. detection of a relationship between landscape factors and genetic distance 

where none could exist) was recorded to determine type I error rate. A high rate (greater than 

5 %) suggested that spatial autocorrelation remained despite conditioning out the effects of 

geographic location (Kierepka and Latch, 2016). To avoid reaching erroneous conclusions, 

the sampling density was reduced before assessing the relationship of landscape variables to 

genetic distance. Individuals were randomly removed until no overlap between sampling 

radii occurred. The produced subsets at AS and RF containing 31 and 25 n respectively. 

Only these subsets were used in the final model. 

 

4.2.3.3.3 Choice of landscape variables 

As an entomophilous plant species, gene flow in T. cordata could be affected twice 

by landscape factors: once by influences on seed dispersal and then again by changes to 

pollinator abundance and behaviour, and these factors may be different (Holderegger et al., 

2010). Both processes were therefore considered when assessing which variables might 

influence genetic structure. A total of four topographical and three land use/cover variables 

considered likely to affect gene flow were derived from a variety of sources (Table 4.5) 

using the software QGIS, version 2.18.11 (QGIS Development Team, 2016). These data 

were sampled in a 79 m radius around each individual (average estimated pollen movement 

distance; Fromm, 2001) using the R package raster (Hijmans, 2016). This produced a 

data table with seven total explanatory variables describing the topography or land cover 

around each individual which could be regressed against inter-individual genetic distance 

using geographic location (X/Y) as conditioning variables to control for the effects of IBD. 
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Variable Description Summary 
statistic Data source(s) Stage of 

effect Potential effect 

Altitude Terrain altitude in meters Mean OS Terrain 5 DTM* Seed Changes in prevailing winds 

Slope Terrain slope in degrees Mean OS Terrain 5 DTM* Pollen Increasing slope may increase 
Bombus nest abundance 

cos(Aspect) Cosine of aspect Mean OS Terrain 5 DTM* Seed/Pollen 
Changes in prevailing winds; 
certain UK Bombus spp. prefer 
north-facing banks as nest sites 

sin(Aspect) Sine of aspect Mean OS Terrain 5 DTM* Seed Changes in prevailing winds 

Urban 
Percent of sampling radius 
occupied by roads or 
buildings 

Percent 
cover OS Open Map Local† Pollen 

Urban gardens promote Bombus 
nest abundance; paved areas may 
discourage Bombus movement 

Woodland Percent of sampling radius 
occupied by woodland 

Percent 
cover 

OS Open Map Local†, OS 
VectorMap Local‡, Natural 

England Priority Habitat 
Inventory§ 

Pollen 
Bombus abundance has been 
observed to be negatively 
correlated with forest cover 

Open 

Percent of sampling radius 
occupied by open habitats 
with high nesting or floristic 
value 

Percent 
cover 

OS VectorMap Local‡, 
Natural England Priority 

Habitat Inventory§ 
Pollen 

Bombus abundance is correlated 
with either floristic abundance or 
richness; some spp. prefer to nest 
in tussocky habitats 

Table 4.5: The landscape variables chosen and their sources, as well as stage at which they are hypothesised to affect gene flow and how. *: 
Ordnance Survey (GB) (2016). †: Ordnance Survey (GB) (2016b). ‡: Ordnance Survey (GB) (2017). §: Natural England (2016).
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 T. cordata seeds are wind-dispersed and typically fall within 100 m of the parent tree 

(Pigott, 1991). Topography affects prevailing winds and even low hills can affect airflow 

within and above the canopy (Belcher, Finnigan and Harman, 2008; Lapworth and 

McGregor, 2008). It is therefore important to consider terrain in the analysis (Trakhtenbrot, 

Katul and Nathan, 2014). Three of four topographic variables were chosen for this reason: 

average altitude in metres and two aspect variables. Given the circular nature of aspect (i.e. 

359° is likely to be ecologically almost identical to 0° and yet is numerically distinct), it was 

decomposed into two variables: sin(aspect) and cos(aspect) (Legendre and Legendre, 1998). 

 The remaining variables (one topographic and five land cover/use) were all chosen 

due to presumed effects on gene flow via influences on pollinator abundance or movement. 

T. cordata flowers are visited by a diverse array of insects both diurnal and nocturnal, 

including but not limited to hoverflies (Syrphidae) and bumblebees (Bombus spp.) which are 

abundant during the day and a variety of moth species during the night (Pigott, 1991). This 

diversity of potential pollinators is undoubtedly reflected in a diversity of potential landscape 

influences on gene flow, making it necessary for practical reasons to focus on only the most 

important taxa to T. cordata. Bombus spp. are major pollinators of a variety of plant families, 

including the Malvaceae so it is likely that bumblebees are influential in this specific case as 

well (Corbet, Williams and Osborne, 1991). A variety of Bombus species (B. lucorum, B. 

pratorum, B. pascuorum, etc.) are reported as common visitors to T. cordata and its flowers 

are a major pollen source for B. lucorum (Free, 1970; Corbet, Unwin and Prŷr‐Jones, 1979; 

Pigott, 1991). The genus is also relatively well-studied and therefore only landscape factors 

likely to affect bumblebee abundance or behaviour are considered here. 

 Land use or habitat which promotes or discourages Bombus nesting and therefore 

abundance were included as explanatory variables. B. lucorum and B. lapidarius queens are 

associated with habitats containing banks due to a preference for subterranean nest sites 

(Kells and Goulson, 2003) and thus average terrain slope in degrees within each buffer was 

included. Similarly, UK Bombus species prefer north-facing banks with loose soil for nests 

(Alford, 1975). Other Bombus species that visit T. cordata (B. pascuorum and B. hortorum) 

prefer nesting in habitats containing tussock-forming grasses (Kells and Goulson, 2003) and 

so a composite variable describing the coverage of open, semi-natural habitats such as 

calcareous grassland was created (Table 4.5); percent cover of these within each buffer was 

included. Paved areas such as roads negatively impact nesting density in B. vosnesenskii (Jha 

and Kremen, 2013) but conversely urban gardens have higher Bombus nest density than 
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woodland or grassland in the UK (Osborne et al., 2008), and therefore percent cover of urban 

areas (either roads or buildings) was included in the model. 

 Finally, habitats which affect the abundance of Bombus individuals were included as 

explanatory variables. Both floral abundance (Bennett et al., 2014; Grundel et al., 2010) and 

diversity (Ghazoul, 2006; Jha and Kremen, 2013) have been suggested as important to bee 

abundance. The open semi-natural areas described above are expected to have a high 

availability of flowers during the flowering period of T. cordata. Canopy cover has been 

negatively correlated with bee abundance (Grundel et al., 2010) and so the percent cover of 

wooded areas in each buffer was also included.  

To avoid collinearity in the explanatory variables, two steps were taken. Firstly a 

pairwise correlation matrix was calculated for each landscape; where the Pearson’s 

correlation coefficient had an absolute value greater than 0.7, one of the variables was 

removed from the analysis based on ease of interpretation (AS: only altitude and slope, latter 

retained; RF: none). Secondly, the remaining variables were used in an initial partial dbRDA 

model (conditioned by geographic location to remove effects of IBD) and from this, a 

variance inflation factor (VIF) for each was calculated in vegan. All VIF were less than 

five in both instances, indicating low levels of collinearity. These initial models were tested 

for significance using a permutational approach (999 permutations; Legendre et al., 2011). 
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4.3 Results 

4.3.1 Genetic diversity and structure 

Overall genetic diversity was quite high in both landscapes. Sampled loci had high 

polymorphism at both locations with an average of 10.3 alleles per locus (Figure 4.2) and a 

Mann-Whitney U test found no significant difference in allelic richness (RS) between them 

(U = 52, n = 10, p = 0.92). Heterozygosity was reasonably high overall (Figure 4.3), with 

over 50% of individuals heterozygous at most loci in both AS (mean HO = 0.61) and RF 

(mean HO = 0.63). There was no significant difference in HO between sites (t = 0.31, df = 

18, p = 0.88). There is a deficiency of heterozygotes at AS (Figure 4.3A), with a paired t-

test finding a significant difference between observed and expected heterozygosity (t = 4.89, 

df = 9, p < 0.001), but not at RF (t = 2.05, df = 9, p = 0.07; Figure 4.3B). 

 

  

Genetic diversity observed in both landscapes 

A B 

# 

Figure 4.2: Polymorphism and allelic richness for each locus in both landscapes. 
Polymorphism (solid blue bars, primary axis) is the number of alleles at each locus, while allelic 
richness (RS) is a rarefied measure of the same (El Mousadik and Petit, 1996) that is independent 
of sample size (dashed bars, secondary axis), allowing landscapes to be compared.  
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Similarly when considering each landscape as a single population most loci were not 

in Hardy-Weinburg equilibrium according to a χ2-test (Table 4.6), except for Tc5 at RF (χ2 

= 35.87, df = 55, p = 0.87) and Tc915 (χ2 = 287.66, df = 190, p = 0.14). Both locations had 

significant linkage disequilibrium (AS: 𝑟𝑟d = 0.04, n = 204, p < 0.01; RF: 𝑟𝑟d = 0.05, n = 124, 

p < 0.01). 

  

Figure 4.3: heterozygosity for each locus in both landscapes. The observed heterozygosity 
(HO) of loci is indicated by the solid blue bar and the expected amount under Hardy-Weinberg 
equilibrium (HE) by the solid orange bar. Results of a paired t-test for differences between HO  
and HE are given for each location. 

A B 

Heterozygosity across all loci at both landscapes 

Observed heterozygosity (HO) Expected heterozygosity (HE) 
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 AS RF 
  χ2 df p χ2 df p 

Tc11 938.41 36 *** 685.35 28 *** 
Tc4 115.86 55 *** 195.96 66 *** 
Tc5 253.93 78 *** 35.87 55 ns. 
Tc6 270.48 55 * 76.36 66 *** 
Tc7 270.40 28 *** 256.03 45 *** 

Tc915 544.94 136 *** 287.66 190 ns. 
Tc920 274.21 66 *** 203.49 55 ** 
Tc937 773.48 66 *** 158.82 28 ** 
Tc943 25.35 6 *** 40.90 6 ** 
Tc951 239.38 15 *** 145.92 21 ** 

Table 4.6: Results of a χ2 test to determine departures from Hardy-Weinberg equilibria for 
all loci when considering each landscape as a distinct population. Arnside and Silverdale 
(AS) is in the left column and Rockingham Forest (RF) the right. Significance is indicated 
by asterisks or letters (* = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns. = p > 0.05). 

 

Geographic location was significantly related to genetic distance in both AS (R2
adj = 

0.01; F = 2.24, df = 2, p < 0.001) and RF (R2
adj = 0.04; F = 3.44, df = 2, p < 0.01) according 

to dbRDA, indicating the presence of weak IBD given the low R2
adj values (i.e. only a low 

proportion of variation in genetic distance was explained by position). 

Spatial PCA of both AS and RF samples supported the detection of IBD above. The 

SGS was broadly arranged as southwest-northeast or northwest-southeast clines of 

differentiation respectively (Figure 4.4), with the exception of the two most distant 

fragments in both instances (AS: Grubbins Wood, Deepdale & Cringlebarrow; RF: 

Wakerley Great Wood, Old Sulehay), which appeared distinct. The latter two locations also 

represent the smallest demes in RF, and while Old Sulehay is the second most isolated 

fragment it is only marginally more distant (2.13 km) from its nearest neighbour than other 

examples (e.g. Bedford Purlieus to Easton Hornstocks, 1.62 km). 
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Figure 4.4: ‘Colour plots’ of the lagged scores (smoothed versions of the principal components scores created by 
replacing the original values with means of nearest neighbour scores; Jombart et al., 2008) from spatial principal 
components analysis (sPCA) of the allele frequency data across each landscape (AS, top; RF, bottom). To 
illustrate the spatially autocorrelated genetic structure, the shading of each individual point is generated by 
assigning the red/green/blue bands that define colours in computer graphics according to the lagged score of the 
first three principal components. Where only two components were retained (RF), the final band is set to a 
constant value. In both instances the SGS is clinal, suggesting it is generated by dispersal limitations (IBD). 

Lagged scores from all retained sPCA components 
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4.3.2 Relationship of genetic distance with landscape variables 

Genetic distance between individuals was unrelated to the examined landscape context, with 

no significant relationship between selected variables and genetic distance found at either 

AS (R2
adj = 0.01, F = 1.04, df. = 7, p = 0.384) or RF (R2

adj = 0.05, F = 1.24, df. = 5, p = 

0.134). The largest proportion of the variance in genetic distance was unexplained by the 

model (AS = 0.669; RF = 0.623). Percent cover of urban areas in AS and average cos 

(Aspect) in RF constituted the largest proportion of constrained variance respectively. The 

remaining variables differed in their contributions between landscapes. In all instances the 

conditioned-out effects of geographic location explained a larger proportion of variance than 

any given landscape variable. 

  C
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A
S 

Urban 0.048 0.282 
Slope 0.040 0.290 

sin(Aspect) 0.036 0.295 
Woodland 0.035 0.296 

Altitude 0.032 0.298 
cos(Aspect) 0.023 0.308 

Open 0.021 0.309 
 Full model 0.232 0.099 

R
F 

cos(Aspect) 0.069 0.308 
Urban 0.069 0.309 
Slope 0.060 0.317 

sin(Aspect) 0.042 0.336 
Woodland 0.039 0.338 

 Full model 0.248 0.129 
 

Table 4.7: Proportion of variance explained (constrained) by partial dbRDA model, and the 
proportion of this explained by specific landscape variables as well as that ‘partialled’ 
(conditioned) out by geographic location. Unconstrained variance (AS = 0.669; RF = 0.623) 
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4.4 Discussion 

Habitat fragmentation and the resulting small population sizes and isolation can erode 

genetic variation, which has implications for population persistence (Booy et al., 2000; 

Christmas, Breed and Lowe, 2015). It has been recognised that T. cordata possesses 

characteristics which put it at risk of this (Turok et al., 1996; De Jaegere, Hein and Claessens, 

2016). This process is likely to affect populations at different latitudes to a greater or lesser 

degree, given that the amount of sexual recruitment varies with climate (see Chapter 3). 

Previous work has found no evidence of genetic erosion but did observe significant but weak 

population differentiation between demes (Logan, Phuekvilai and Wolff, 2015). How this 

relates to fragmentation is unclear given the coarse scale of sampling (i.e. much larger than 

expected seed or pollen dispersal distances). This study examines how genetic variation is 

arranged in two landscapes at contrasting latitudes with different levels of sexual recruitment 

and how this relates to landscape factors. 

Genetic diversity (both polymorphism and heterozygosity) was reasonably high and 

very similar to previously reported results for T. cordata (Logan, Phuekvilai and Wolff, 

2015), as expected, given that high levels of genetic variation are characteristic of tree 

species in general (Hamrick, 2004; Petit and Hampe, 2006). Specifically, heterozygosity was 

similar to other self-compatible woody plants (e.g. Noreen and Webb, 2013; Thakur et al., 

2016; Zong et al., 2015), but lower than in primarily outcrossing wind-pollinated species 

(e.g. Cottrell et al., 2003; Jump and Peñuelas, 2006; Rasmussen et al., 2010). Polymorphism 

is more difficult to compare given its dependence on both mutation rate and sample size, 

both of which are specific to loci or particular studies respectively (Anmarkrud et al., 2008), 

but where standardized allelic richness has been reported for other tree species the values 

observed here are similar (Dubreuil et al., 2010). 

Although genetic diversity was relatively high, there was a deficiency of 

heterozygotes at AS, but not in the most southern landscape, RF. There are several plausible 

explanations for this, none of which are mutually exclusive: technical difficulties, population 

substructure and increased inbreeding. A common problem when using microsatellite 

markers is the presence of null alleles (mutations in primer binding sites that prevent PCR 

amplification), but if this has occurred then homozygous null individuals should occur (Rico 

et al., 2017), which was not observed. More likely the difference is the result of either 

increased inbreeding/selfing or population substructure. The former may be occurring at 

elevated levels in at least two fragments at AS due to a higher incidence of clonality (see 
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Chapter 3, and also note that proportionally more clones were removed during analysis 

here). Clonal reproduction is important in generating very fine-scale SGS (see Chapter 3), 

and the production of neighbourhoods of very closely related or identical individuals can 

increase inbreeding and selfing (Vallejo-Marín, Dorken and Barrett, 2010). This seems less 

likely than population substructure due to the potential for effective pollen transport within 

sites, with the mean distance for pollen movement being several times the maximum scale 

at which clonality affects SGS (Fromm, 2001). 

Taken as a whole most markers at both landscapes are not in Hardy-Weinberg 

equilibrium (HWE). As with heterozygosity the most likely explanation for this is a 

departure from panmixia resulting in population substructure together with clonal 

reproduction. Larger populations are more likely to exhibit population substructure and 

when considering these subdivisions as one unit, the Wahlund effect leads to reduced 

heterozygosity and departures from HWE (e.g. Rasmussen et al., 2010). Clonality can also 

directly lead to departures from HWE due to the linked fate of alleles when generating 

replicate genotypes, which is illustrated by significant linkage disequilibrium in both 

landscapes, a pattern typical of clonally reproducing organisms (Guillemin et al., 2008; Goss 

et al., 2014). The fact that aside from a slight heterozygote deficiency at AS both landscapes 

had similar levels of genetic variation is unexpected given differences in the incidence of 

clonality (see Chapter 3), which imply differences in fertility levels. The increased amount 

of clonal reproduction at AS may not distinct enough to result in an appreciable difference 

in recombination and thus drift experienced at RF. Alternatively, since populations in RF 

still possess notable amounts of clonality, this may have reduced the impact of drift, 

preserving rare alleles (de Meeûs, Prugnolle and Agnew, 2007). 

Spatial genetic structure was found in both landscapes. Genetic distance was 

significantly related to geographic location, indicating the presence of dispersal limitations 

(IBD). This contradicts a previous finding of no IBD detectable in the species (Logan, 

Phuekvilai and Wolff, 2015). The latter is a surprising result given the much coarser scale 

(hundreds of kilometres) in comparison with previously reported maximum pollen dispersal 

distances (Fromm, 2001). This is likely a result of the increased sensitivity of individual-

based analyses utilized here (Prunier et al., 2013). An exploratory ordination technique 

(sPCA) also illustrated the presence of clinal SGS, with differentiation of individuals 

increasing with geographic distance, supporting the conclusion of IBD. There was no 

apparent relationship between the observed SGS and the arrangement of woodland 
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fragments across both landscapes, except that the smallest and most isolated locations were 

the most distinct (although the southeastern-most deme at RF, Old Sulehay, is not 

particularly isolated). Genetic distance was also not related to topography or land cover/use. 

These patterns of SGS seem a more likely cause for the departures from HWE (via 

generation of population substructure) than clonality, given that previous work examining 

vegetative propagation specifically or population genetics generally within smaller, partially 

clonal populations do not find HWE departures (Morris et al., 2014; Logan, Phuekvilai and 

Wolff, 2015). Similar results – clinal ‘core’ populations, distinct outliers – have been 

observed in other taxa using sPCA (Favre-Bac et al., 2015). 

Taken together these results suggest two possible explanations: that there is no 

response to fragmentation in T. cordata due to the lag time likely inherent in such a process 

(insufficient time has passed for genetic erosion to occur), or that there is no response 

because gene flow between fragments is sufficient to offset genetic drift. The clinal structure 

observed should occur in both of these instances, but in the former scenario it reflects historic 

dispersal limitations over a contiguous landscape while in the latter it is a result of current 

dispersal limits. There is no way to definitively separate the two here as the maximum pollen 

transport distance observed from successful pollination events is in principal sufficient to 

connect most of the fragments within this study (Fromm, 2001). In either instance however 

the nature of the SGS – with genetic distance being only weakly correlated with geographic 

location – suggests effective dispersal on a scale of one to two kilometres, with distinct 

individuals occurring where separated from other woodland fragments by larger distances 

(e.g. Grubbins Wood, Cringlebarrow & Deepdale, Underlaid Wood, Figure 4.1a; Wakerley 

Great Wood, Figure 4.1b). Although location explains the distinctiveness of these 

individuals, one of the most clearly differentiated fragments at RF (Old Sulehay) is not very 

much further from its nearest neighbour than other, less obviously different fragments. What 

makes this wood distinct is the small number of T. cordata individuals present. A smaller 

population is subject to an increased susceptibility to drift and elevated levels of inbreeding 

(Vranckx et al., 2014), either of which would result in a more differentiated fragment. 

Therefore even if we consider the SGS to mostly reflect historic dispersal limitations, the 

smallest or most isolated fragments at least have responded to fragmentation. This justifies 

the continuing preservation of genetic resources via conservation measures, and additionally 

suggests populations that might be most at risk via their isolation or size. 
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Whether the most closely linked areas will respond similarly in the long-term is 

unclear given the difficulty of separating historic from current patterns. However 

entomophilous tree species respond more strongly to fragmentation than anemophilous ones 

(Vranckx et al., 2012; Breed et al., 2015). Considering that widespread wind-pollinated 

species which are far more effective dispersers than T. cordata (De Jaegere, Hein and 

Claessens, 2016) have already responded to habitat fragmentation (e.g. Dubreuil et al., 2010; 

Jump and Peñuelas, 2006), it seems unlikely that they will escape genetic erosion in the long-

term, but how long that will be real terms is unclear. Based on historical map data the 

woodlands at RF have been separate for at least 129 y (Ordnance Survey (GB), 1888), and 

even longer at AS (Ordnance Survey (GB), 1848, 1862). Given this and the reproductive and 

life history traits of T. cordata, the lag time from fragmentation to response is clearly 

considerable, for several reasons. An appreciable fraction of the populations will be clonal 

replicates (see Chapter 3), which has the potential to bestow extreme longevity on 

vegetatively propagating genotypes (Honnay and Bossuyt, 2005; de Witte and Stöcklin, 

2010). Individual stems are also long-lived (300 y) and possess low or at least inconsistent 

fertility at this point in its range (Pigott, 1991), meaning that generation times are long and 

there is low overall turnover. Genetic drift is therefore likely to be slow to act, even without 

any gene flow between fragments. As the connectivity between fragmented habitats is often 

modified by the characteristics of the intervening landscape (e.g. Hirao and Kudo, 2004; 

Trénel et al., 2008), the fact that there was no observed relationship between genetic distance 

and any of the examined landscape variables also supports an interpretation of the SGS as 

reflecting historical circumstance. 

This study highlights the utility of individual-based population genetics studies to 

detect weak SGS via multiple methods where previously none was reported (Prunier et al., 

2013; Logan, Phuekvilai and Wolff, 2015). Although the results likely represent historical 

processes, meaning that the sampled T. cordata populations have not for the most part 

responded to habitat fragmentation, the distinctiveness of small or isolated locations shows 

that this is still likely to occur in more populations given sufficient time. This supports the 

continuation of genetic resource conservation efforts and illustrates which areas are most in 

danger of genetic erosion. It also suggests additional fruitful avenues of research relating to 

responses to fragmentation in T. cordata. Firstly if infrequent recruitment as a result of low 

or inconsistent fertility has increased the lag time in response to fragmentation then more 

central populations which regenerate freely should examined for signs of genetic erosion 
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using a similar approach (such as those in France; Pigott, 1991). Secondly, if the SGS of 

larger or more connected populations reflects historic patterns but they will ultimately 

respond to fragmentation, then more recent recruitment may be less genetically diverse than 

older cohorts as has been observed elsewhere (Vranckx et al., 2012). Therefore a 

comparative study exploring differences in genetic diversity between juvenile and mature 

individuals would help to illustrate whether this interpretation is correct. Finally, plants can 

respond to habitat fragmentation twice, via restriction of both pollen movement and seed 

dispersal, and this should be explored for T. cordata in order to better understand the main 

factors affecting connectivity between fragments. The relative influence of pollen versus 

seed-mediated gene flow can be inferred via comparison of differentiation exhibited by bi- 

versus uni-parentally molecular markers (Oddou-Muratorio et al., 2001), such as nuclear and 

chloroplast microsatellites (Provan, Powell and Hollingsworth, 2001). 
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5 Exploring metabolic variation in natural populations of a 

temperate canopy tree, Tilia cordata 

5.1 Introduction 

The current rapid increase in atmospheric CO2 concentration driven primarily human activity 

is driving climatic changes at an unprecedented rate (IPCC, 2007), causing climatic zones to 

shift polewards or upwards altitudinally. Population persistence for organisms will therefore 

require either dispersal to track suitable areas, evolutionary adaptation to altered conditions 

or sufficient phenotypic plasticity to withstand them (Aitken et al., 2008; Christmas, Breed 

and Lowe, 2015), although these responses are not mutually exclusive (Nicotra et al., 2010). 

The extremely rapid speed of these changes likely outstrips the ability of some organisms to 

respond to them (Root et al., 2003). 

In the past range shifts have been a common response to climatic change in plant 

species, as indicated by paleo-ecological studies (Pardi and Smith, 2012), but this was not 

universal and some taxa failed to keep up with shifting climatic envelopes after the last 

glacial maximum (Normand et al., 2011). Similarly although many species have moved 

recently in response to current changes (Parmesan and Yohe, 2003; Chen et al., 2011), it is 

likely that the rate of change underway outstrips the dispersal ability of many others (Loarie 

et al., 2009; Corlett and Westcott, 2013). For example, some contemporary plant populations 

have tracked recent warming only partly or not at all (Bertrand et al., 2011; Chen et al., 

2011; Zhu, Woodall and Clark, 2012; Gray and Hamann, 2013). Even given sufficient 

potential for dispersal, there needs be both available space as well as suitable niche space 

within new locations and this depends on the communities present at or co-migrating to any 

destination (Christmas, Breed and Lowe, 2015). The degree to which the landscapes 

inhabited by species resist dispersal will also affect the success of range shifts, an important 

consideration given the degree of habitat fragmentation experienced by many species 

(Pearson and Dawson, 2005; Kremer et al., 2012). Finally, sufficient time is also required, 

and this is dictated by the speed of environmental change and the species’ life history and 

ecology, i.e. generation time, time to maturity and individual or propagule dispersal distance 

(Corlett and Westcott, 2013).  

Taken together these constraints make range shifts an unlikely or at least insufficient 

response for many taxa (Aitken et al., 2008). If dispersal is not an option then populations 
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must possess sufficient phenotypic plasticity to weather changes in the short term and 

enough adaptive variation to allow for evolutionary responses in the long term (Bradshaw, 

2006; Jump, Marchant and Peñuelas, 2009). These processes are not separate, as the ability 

of individuals to sense environmental cues and generate phenotypic changes is ultimately 

under genetic control. Plasticity can therefore buffer against rapid change but may also assist 

in rapid evolutionary adaptation via selection for stronger plastic responses (Lande, 2009; 

Chevin, Lande and Mace, 2010; Nicotra et al., 2010). Given this some tree species might be 

well-placed to respond rapidly to environmental change. In many instances they are locally 

adapted already (Alberto et al., 2013), meaning they have high among-population adaptive 

variation. Given their large size they also possess typically high fecundity and gene flow 

which may allow for the movement of suitably adapted alleles from elsewhere in their range 

to the necessary populations (Petit and Hampe, 2006; Kremer et al., 2012). As they are 

sessile, long-lived organisms, they also possess high levels of phenotypic plasticity to act as 

buffer against change (or even as the material for change as described above; Alberto et al., 

2013; Nicotra et al., 2010).  

Evolutionary responses to environmental change require the presence of sufficient 

adaptive variation within a species. Local adaptation is less likely in species with small or 

fragmented ranges, as selection is less efficient due to the increased effects of drift on any 

given locus (Leimu and Fischer, 2008). Although the presence of local adaptation is well-

established in many economically important species given their long history of study in this 

regard (Alberto et al., 2013), for less commercially relevant taxa the status of adaptive 

variation within populations is unknown. For example, Tilia cordata is a widespread 

temperate canopy tree that possesses a fragmented distribution, often occurring in small and 

isolated populations. Although it possesses fairly high levels of neutral genetic variation, 

and low levels of genetic differentiation (see Chapter 4; Logan et al., 2015), these cannot 

be used as evidence of either the presence of adaptive variation or a lack of local adaptation 

respectively, as neutral and adaptive variation are only weakly related (Reed and Frankham, 

2001; Mittell, Nakagawa and Hadfield, 2015). Therefore the level of adaptive variation 

within the species is unknown and it is unclear whether it will be able to make evolutionary 

responses to changing environmental conditions. It is a poor disperser relative to other 

species based on postglacial migration rates (De Jaegere, Hein and Claessens, 2016), which 

may have been overestimated regardless (McLachlan, Clark and Manos, 2005). It also 

possesses low or at least intermittent fertility in many parts of its range, rarely colonizing 
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secondary woodlands (Pigott, 1991), and when combined with frequent clonal reproduction 

this likely results in a low turnover of individuals (see Chapter 3). Movement of 

populations, colonization of new areas or evolutionary responses can therefore all be 

expected to be slow, which suggests that phenotypic plasticity will be important in buffering 

against rapid environmental changes. 

Rapid responses may be particularly important at lower latitude range margins (Sánchez-

Salguero et al., 2017). Being limited by colder temperatures (Pigott, 1981a; Pigott and 

Huntley, 1981) northern populations could benefit from climatic change (although altered 

disturbance regimes could still have a negative impact; De Jaegere et al., 2016; Lindner et 

al., 2010), while southern marginal populations face increased risk. Inadequate moisture 

regimes limit its distribution at this range edge, and in areas with annual precipitation of 

around 500 mm or less, T. cordata only survives in shaded or north-facing areas with a 

greater availability of water (Pigott and Pigott, 1993). Given the significant reductions in 

precipitation that are projected for the Mediterranean (Jacob et al., 2014), declines in 

abundance and local extinctions have been predicted in Italian populations (Attorre et al., 

2011). Furthermore although northern range-edge populations have the potential to benefit 

from adaptive gene flow from lower latitude locations that are locally adapted to warmer 

conditions (assisted or otherwise), the inverse is not true (Hampe and Petit, 2005).  

As increased tree mortality due to drought or heat stress has already been observed in 

forest ecosystems globally (Allen et al., 2010) it is important to understand both how T. 

cordata will respond to environmental changes in the short-term (via phenotypic plasticity), 

and to assess the likelihood of evolutionary change in threatened populations. Knowledge of 

these processes should suggest the necessity of conservation measures such as facilitated 

migration (Aitken et al., 2008). Reciprocal transplant or common garden experiments that 

examine the genetic basis of phenotypic traits such as specific leaf area (e.g. Ramírez-

Valiente et al., 2010; Scheepens et al., 2010) are a common method of establishing the 

presence of local adaptation in plant species (‘provenance trials’), and therefore the existence 

of adaptive variation among populations (Alberto et al., 2013). Gene sequencing or 

population genomics techniques can also indicate the presence of local selection (Oleksyk, 

Smith and O’Brien, 2010). Either approach, while effective, requires significant investments 

of time and money and are therefore typically restricted to commercially important groups 

such as conifers (e.g. Picea, Pinus; Kujala and Savolainen, 2012; Mimura and Aitken, 2010; 

Palmé et al., 2009). Gene sequencing requires foreknowledge of the traits of interest and 
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genomics does not necessarily lend itself to understanding the actual functional distinction 

between populations, especially in non-model organisms, as gene homology is not 

necessarily a good guide for gene function (Fiehn, 2002). 

Metabolomics or metabolic phenotyping is a promising and complimentary approach. It 

is the qualitative or quantitative study of all low molecular weight (less than one kDa) 

compounds within a sample, such as sugars or amino acids (Kosmides et al., 2013). As some 

of these metabolites represent the end-products of cellular regulatory processes, their levels 

can represent the ultimate response of biological systems to genetic or environmental 

changes (Fiehn, 2002). Consequently it has been used to understand plant-environment 

interactions (e.g. Rivas-Ubach et al., 2014; Sardans et al., 2014), as well as to detect 

signatures of local adaptation in natural populations (Davey et al., 2008; Kunin et al., 2009; 

Field and Lake, 2011). It may be useful tool to examine both of these aspects in lime, because 

it allows for an exploratory approach which has the scope to uncover unexpected 

relationships or metabolite responses (Bundy, Davey and Viant, 2009). When the particular 

trait(s) of interest are not known, as is the case here, an examination of a wide array of 

metabolite concentrations can be used, an approach called metabolic fingerprinting (Halket 

et al., 2005). In order to assess the presence of local adaptation both field-based provenance 

trials and metabolomics approaches require the removal of confounding environmental 

variables that affect phenotypes via plastic responses, by equalising it during development 

or acclimatizing samples to homogeneous conditions (Kim and Verpoorte, 2010; Field and 

Lake, 2011). 

Unfortunately T. cordata is not a particularly experimentally tractable species, given its 

intermittent fertility and involved germination (Pigott and Huntley, 1981; Pigott, 1991; 

Gosling, 2007), which makes common garden, reciprocal transplant or glasshouse 

approaches difficult. Despite this an exploratory approach characterizing metabolic variation 

in situ within and between populations using metabolomic techniques may have utility in a 

hypothesis-generating role (Bundy, Davey and Viant, 2009), and would also be totally novel. 

As the scale at which metabolic variation was detectable in previous work is large (hundreds 

of kilometres), an appreciable geographic range will need to be sampled (Kunin et al., 2009). 

To provide additional information, neutral genetic and adaptive morphological variation can 

also be assessed. Stochastic processes such as drift affect both neutral and functional genetic 

variation (Linhart and Grant, 1996). Therefore if differences in metabolite fingerprints are 

observed and they have a genetic basis, but differentiation across selectively neutral 
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molecular markers is not found then this would suggest deterministic processes are 

responsible in generating the former pattern (i.e. local selection). Additionally the 

metabolome is the product of many factors, including daily fluctuating metabolic processes 

and the current environmental context (Gibon et al., 2006; Jones et al., 2013). As a result it 

is a ‘snapshot’ of processes occurring at a variety of temporal scales (Brunetti et al., 2013). 

In contrast with this a functional trait such as specific leaf area (SLA), although exhibiting 

diurnal variation, is largely influenced by climatic conditions (Poorter et al., 2009). As a 

result it potentially integrates information on environmental processes operating over longer 

timescales. SLA is an indicator of plant strategy in distinct environments, varying with 

factors such as resource availability (e.g. water, nutrients) or climate (Lavorel and Garnier, 

2002; Cornelissen et al., 2003), and has been shown to be adaptive and exhibit inter-

population variation (Ramírez-Valiente et al., 2010). It will therefore also be contrasted 

across populations of T. cordata. 

In summary this study has two objectives: to explore if samples collected in situ from 

natural populations and metabolically fingerprinted vary within and between populations, 

and in what way, which has not yet been attempted, and in doing so, explore how metabolic 

variation across different populations and conditions relates to relevant ‘metadata’ (both 

environmental context and methodological information), to allow for both speculation on 

the plastic capacity of the species and potentially to identify avenues for further research into 

local adaptation in the species. 
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5.2 Methods 

5.2.1 Sampling strategy and locations 

As previous metabolomics studies examining variation between populations found local 

adaptation only at large, regional scales, six populations of T. cordata spread across its UK 

range were sampled in order to explore metabolic differences between them (Figure 5.1). 

To minimize variation in environmental conditions, the context within sites was standardized 

as far as possible. East-facing trees that receive similar insolation were located, and the 

specific individuals to be sampled chosen randomly. To reduce differences in ontogeny 

sampling dates (as day length) were kept as similar as practicably possible. From each tree 

four branches spread across the canopy that received full sunlight were collected. Branches 

with obvious signs of pathogen damage or herbivory such as galls were avoided. The 

terminal leaves of these were cored, pooled and placed in dry-shippers charged with liquid 

nitrogen in order to quench metabolism and eliminate enzymatic activity. Cores were stored 

in the laboratory at -80 °C. In order to examine whether SLA differed between sites, the 

fourth and fifth leaves of each sampled branch were removed. These were placed in a plastic 

bag containing moistened tissue to avoid moisture loss and stored at 4 °C until measurement. 
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Figure 5.1: The geographic location of all sampling sites along with the number of samples 
per population. Open circles indicate the mean position of samples, while boxes connected 
by a dotted line to these indicate the respective name, sample size (in brackets), and 
abbreviation used for each. Coloured bars indicate the colour used to refer to each site in all 
further figures. 

To explore the contribution of sampling methods and laboratory procedures to the 

metabolic variation, relevant ‘metadata’ during both collection and analysis of each sample 

was recorded (Goodacre et al., 2007). As metabolite concentrations can show temporal 

variability (Gibon et al., 2006), time of day was noted and converted to hours since dawn 

based on latitude and date using R software maptools, version 0.8-41 (Bivand and Lewin-

Koh, 2017). Other factors likely to affect primary metabolism via changes to photosynthetic 

rate or transpiration were also measured: wind speed and ambient temperature were recorded 

with a handheld anemometer; relative humidity was noted with a handheld hygrometer; 

finally, the current amount of photosynthetically active radiation (PAR) reaching each 

sample was recorded using a handheld photometer. 

5.2.2 Metabolite extraction 

 The four leaf cores from each individual were split into pairs and extracted, run and 

analysed separately as biological replicates, to allow for an assessment of the variability 
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within individuals. Metabolites were extracted using a similar procedure to Davey et al. 

(2008). Each leaf pair was weighed, ground in a mortar and pestle with sterile sand and then 

transferred to a 2 ml microcentrifuge tube. 40 µl mg-1 leaf tissue of a solvent mixture 

containing methanol, chloroform and water (MeOH/CHCl3/H2O, 2.5:1:1) was added, 

vortexed to mix and then left on ice for 30 min. Tubes were then centrifuged at 16 000 x g 

for 2 m and the supernatant transferred to a fresh 15 ml centrifuge tube and stored on ice. A 

solvent mixture (MeOH/CHCl3, 1:1) was added to the pellet (20 µl mg-1), vortexed to mix 

and the tube stored on ice for a further 30 min. This was then centrifuged as before and the 

supernatant transferred to the 15 ml tube. This extract was separated into nonpolar, CHCl3 

and aqueous MeOH:H2O phases by the addition of distilled H2O at 4 °C (10 µl mg-1) and 

centrifugation at 16 000 x g for 1 m. 300 µl of the polar phase was transferred to glass vials 

and stored at -80 °C until analysis. Both solvent mixtures were chilled to -20 °C before use, 

and the extraction procedure was undertaken in small, randomly chosen groups (two to three 

pairs) in a randomized order. These sequences were also retained as metadata to assess if the 

handling of samples induced any of the observed variation between samples. ‘Extraction 

blanks’ were generated by repeating this procedure three times without any leaf material. 

5.2.3 Metabolite fingerprinting 

Despite the –omics suffix, no current metabolomics data collection techniques 

provide information on all metabolites present within a sample due to the wide array of 

compounds produced by the plant kingdom and their physical differences (i.e. polarity). 

Estimates put the total number at 90 000 - 200 000 (Fiehn, Kloska and Altmann, 2001; 

Peñuelas and Sardans, 2009) and typically only a subset of these compounds are analysed 

(Brunetti et al., 2013). Therefore, for reasons of time and expense only the polar metabolites 

present in the aqueous phase were examined. Metabolic fingerprints were generated using a 

Synapt G2 (Waters Ltd., Elstree, UK) matrix-assisted laser desorption/ionization time-of-

flight mass-spectrometer (MALDI-TOF MS) in both positive and negative ion modes. 

Samples were combined 1:1 with a 5 mg ml-1 α-Cyano-4-hydroxycinnamic acid (CHCA) 

matrix and ionized with a solid-state Nd:YAG UV laser (355 nm). Spectra were collected in 

the mass range of 100 – 800 Da at a rate of one spectrum s-1 (1 s scan time, 0.02 s inter-scan 

delay). In positive mode, the mass spectrometer operated with an accelerating voltage of 10 

V, an 11 V hexapole bias and an aperture voltage of 7 V. Negative mode settings were 

identical except for lower hexapole bias and aperture voltage (10 V and 5 V respectively). 
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5.2.4 Metabolite data pre-processing 

Raw spectra of mass/charge ratios were processed as described in Overy et al. (2005). 

Putative identification of metabolites was made based on comparison of detected masses 

with the KEGG database (Kanehisa Laboratories, 2017). Spectra were rounded into 0.2 Da 

bins and the relative abundance of each used to produce profiles of percent total positive and 

negative ion content for each replicate (%TIC). 

5.2.5 Assessment of neutral genetic variation 

For comparison of potentially adaptive variation and neutral genetic variation all 

individuals were genotyped across 10 microsatellite loci using the ‘crude extract’ procedure 

described previously (see Chapters 3 & 4). Allele frequencies at these loci are in Hardy-

Weinberg equilibrium in a variety of populations of T. cordata (Logan, Phuekvilai and 

Wolff, 2015). These markers are therefore not expected to be under selective pressure. 

5.2.6 Collection of functional trait data 

Specific leaf area (SLA) was recorded following Cornelissen et al. (2003). One-sided 

leaf area was measured using an AM350 Area Meter (ADC BioScientific Ltd., Hoddesdon, 

UK), and then leaves were oven-dried at 80 °C for 48 h and weighed individually. SLA was 

calculated for each individual as the mean of each of its leaves’ area divided by their mass 

(10 n for each tree). 

5.2.7 Data exploration and analysis 

All data analysis was undertaken in the R software package, version 3.3.3 (R Core Team, 

2016). 

5.2.7.1 Data pre-treatment 

Metabolite concentrations can differ by orders of magnitude across a dataset and yet these 

differences do not necessarily correspond to their biological importance. For example, the 

average concentration of a signalling molecule is likely to be much lower than a ubiquitous 

compound involved in primary metabolism such as ATP (van den Berg et al., 2006). Scaling 

the data can help focus on biologically relevant variation by adjusting for these fold changes 

between different metabolites, by converting it into differences relative to a scaling factor. 

Pareto-scaling (division of each variable by the square root of its standard deviation) was 

applied to both positive and negative %TIC datasets here, as it reduces the relative 

importance of large values but keeps the structure of the data relatively intact (van den Berg 
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et al., 2006; Yang et al., 2015). To avoid generation of nonsensical data, several invariant 

bins with a standard deviation of zero had to be removed prior to scaling (Table 5.1). Finally, 

before analysis, the bins representing the CHCA matrix used in the ionization process were 

removed from both datasets (Table 5.1). These signals are also detected by the instrument 

and can obscure biological information (Worley and Powers, 2013). 

Table 5.1: Data bins removed from each 
metabolite concentration (percent total ion 
content, %TIC) dataset prior to analysis and the 
rationale behind removal. 

 

 

 

 

 

 

 

5.2.7.2 Multivariate data exploration 

Due to its sensitivity and large mass-range, TOF mass spectrometry generates large 

datasets with many collinear variables, making it necessary to use multivariate analyses that 

can handle this collinearity (Worley and Powers, 2013). The use of ordination methods such 

as principal components analysis (PCA) or partial least squares-discriminant analysis (PLS-

DA) can mitigate the problem of high dimensionality by effectively summarising the dataset. 

PCA produces orthogonal variables (components), linear combinations of the original 

variables that describe the axes of greatest variation through the original data, providing an 

informative summary of structures present. This approach is useful in exploratory studies 

where differences between groups are unknown or unpredictable as they are here (Worley 

and Powers, 2013). Therefore PCA was applied to both positive and negative %TIC datasets 

using the R package vegan, version 2.4-2 (Oksanen et al., 2017). This was performed both 

with and without extraction blanks in order to assess whether the procedure to assess the 

level of variation induced by technical issues such as instrumental noise. If these ‘samples’ 

are not distinct from actual metabolite profiles, then a large amount of the variation has been 
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generated by the procedures used (van den Berg et al., 2006). To explore whether 

environmental context or laboratory methods were related to observed variation in 

metabolite concentrations, all metadata were used to colour-code plots displaying the first 

two principal components of each. 

As PCA summarises the axes of greatest variation through the data, it only reveals 

group structure when within-group variation is less than between-group variation (Kosmides 

et al., 2013). In contrast PLS-DA reduces the dimensionality of the data by producing latent 

variables that are linear combinations of the original variables that maximise covariance 

between response and class membership data (here site of origin). In other words, the lower 

dimensional space created is primarily formed by the predictive components of the data 

(Barker and Rayens, 2003; Worley and Powers, 2013). Due to this approach it can also 

fortuitously find separation between groups where none exists, and so should be used in 

concert with PCA to guide interpretation (Worley and Powers, 2013). Therefore PLS-DA 

was also applied to both positive and negative %TIC datasets using the R package 

mixOmics, version 6.2.0 (Le Cao et al., 2017). An assessment of how well these models 

discriminate between groups was performed using leave-one-out cross-validation 

(LOOCV), which generates new PLS-DA models excluding one observation across all 

observations, and uses these to predict class membership for each excluded observation 

(Hastie, Tibshirani and Friedman, 2001). This allows for the calculation of error rates, i.e. 

what proportion of individuals are misclassified. 

Finally, the genetic data was explored in a comparable way. As population genetics 

studies typically have higher sample sizes than used here, the relationship of genetic distance 

(1 – percentage shared alleles [DPS]; Bowcock et al., 1994) with geographic location was 

assessed using distance-based redundancy analysis (dbRDA) as in Chapter 4 (Legendre and 

Fortin, 2010; Meirmans, 2015). If sufficient numbers of individuals have been genotyped 

then the populations can be expected to exhibit isolation-by-distance (IBD) as observed 

previously, given the spatial scale of the study. PCA was then applied to allele frequency 

data for comparison with the ordinations of metabolite concentration. 

5.2.7.3 Functional trait variation 

To compare SLA between sites, normality and homoscedasticity of collected data was 

first assessed using Shapiro-Wilks and Bartlett tests respectively (Bartlett, 1937). While this 

indicated that data were normal, groups were significantly heteroscedastic. Therefore a 
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nonparametric Kruskal-Wallis hypothesis test was applied. If this is significant a Bonferroni-

corrected Dunn’s multiple comparison test will be used to identify where the differences lie, 

due to the uneven sample sizes between groups (Dunn, 1964). 
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5.3 Results 

Both positive and negative mode TOF mass spectrometry revealed variation in metabolite 

concentrations across sites, as illustrated by averaged %TIC within each molecular mass bin 

(Figure 5.2). 

Figure 5.2: Site-wide means of percent total ion content (%TIC) for each mass bin across all individuals and 
biological replicates within each site. Left-hand charts contains %TIC for metabolites detected in positive mode 
while charts on the right contain %TIC for those detected in negative mode. Site codes are given on the right:. 
BOVHL (light blue): Bovingdon Hall; CLWGW (dark blue): Collyweston Great Wood; HARDY (light 
green): Hardy Gang; HNTCP (dark green): Huntage Copse; ROUDS (pink): Roudsea Wood; SWNTN (red): 
Swanton Novers. 

n = 8 n = 8 

n = 6 n = 6 

n = 16 

n = 12 

n = 20 

n = 20 

n = 16 
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Multivariate analyses show that actual variation between sites is low, however, except 

for that of the extraction blanks, which appear distinct from all other samples (results not 

shown). The first two components of PCA of both datasets summarise an acceptable 

proportion of the variation in %TIC between samples (positive: 28.65%; negative: 38.39%), 

given the extremely high dimensionality of the data (3493 and 3499 variables respectively). 

These two axes of greatest variation through the positive dataset reveal little variation 

between sites, as illustrated by the large amount of overlap in an ordination of the first two 

principal components (PC1/PC2), and although many individuals are similar to others from 

the same location (Figure 5.3A). 
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Figure 5.3: A) Principal components 
analysis (PCA) of percent total ion content 
(%TIC) in all samples. Only the first two 
components (PC1/PC2) are shown. The 
filled circles indicate the scores received by 
each sample; colour indicates site of origin. 
Inset bottom left and right: variable 
loadings for this ordination, which illustrate 
the most influential mass bins in the 
analysis. For the sake of clarity only the ten 
highest absolute loadings for each 
component are labelled with their 
respective mass bin size. 

B) To illustrate intra-individual variation, 
the same ordination as above is provided, 
but with biological replicates connected by 
a coloured line. 

A 

B 
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The same technique reveals two obvious structures in the negative dataset however: all 

sites bar ROUDS contain individuals that receive similar scores along PC1 and appear 

together in a separate cluster, while the remaining individuals primarily differ by scores 

received on PC2 (Figure 5.4A). In particular the sites ROUDS and SWNTN show the 

greatest variation along this axis, and several individuals from each are distinct from the 

other groups as a result. Scores received by biological replicates in both ordinations reveal 

that there is heterogeneity in intra-individual variation. Metabolite profiles within some 

samples are very similar, causing them to cluster tightly with the other from the same 

individual. Equally some biological replicates are quite distinct as indicated by large 

distances between them in PCA of both positive and negative %TIC (Figure 5.3B, Figure 

5.4B). 
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Figure 5.4: A) Principal components 
analysis (PCA) of negative percent total ion 
content (%TIC) in all samples. Only the 
first two components (PC1/PC2) are 
shown. The filled circles indicate the scores 
received by each sample; colour indicates 
site of origin. Inset top and bottom right: 
variable loadings for this ordination, which 
illustrate the most influential mass bins in 
the analysis. For the sake of clarity only the 
ten highest absolute loadings for each 
component are labelled with their 
respective mass bin size. 

B) To illustrate intra-individual variation, 
the same ordination as above is provided, 
but with biological replicates connected by 
a coloured line. 

A 

B 
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Each principal component is composed of contributions from all mass bins, but the 

relative importance of each varies. Due to the extreme number of variables within the data 

only the ten highest loadings for each component of both ordinations are provided. The mass 

bins with the highest contributions to principal components derived from positive %TIC 

profiles range from 184 to 632.2 Da (Table 5.2), and many are strongly correlated with each 

other as indicated by the narrow angle between loading arrows (Figure 5.3A, inset bottom 

left and right). The ten highest ranked loadings from the negative ordination covered a 

similar but slightly narrower range (192.4 – 590.4 Da), and the majority of important bins 

are between 254.4 and 324.6 Da (Table 5.3). Comparisons of detected metabolite masses 

with the KEGG database suggest many potential candidates for the identity of compounds 

in the positive %TIC profiles (see Appendix III for an unbridged list of the ten highest 

ranking loadings). In most bins there was no clear pattern to the putative identifications, with 

metabolites involved in a wide array of metabolic pathways (Table 5.2), but size matches in 

bins 381 (PC1: 2nd, PC2: 3rd) and 365.2 (PC2: 7th) were primarily oligosaccharides. There 

were far fewer matches for the negative profiles, but two mass bins did result in putative 

identifications (Table 5.3). 

  



103 
 

M
od

e 

 C
om

po
ne

nt
 

 M
as

s B
in

 

 R
an

k 

 L
oa

di
ng

 

Putative identification 

 A
m

in
o 

ac
id

 m
et

ab
ol

ism
 

 S
yn

th
es

is
 o

f s
ec

on
da

ry
 m

et
ab

ol
ite

s 

 C
el

l s
ig

na
lli

ng
 

 C
el

l m
em

br
an

e 
m

et
ab

ol
is

m
 

 C
ar

bo
hy

dr
at

e 
m

et
ab

ol
is

m
 

 C
itr

ic
 a

ci
d 

cy
cl

e 

 P
ur

in
e 

m
et

ab
ol

ism
 

 P
yr

im
id

in
e 

m
et

ab
ol

is
m

 

Po
sit

iv
e 

PC
1 

285 1 -0.42 Various (10) ✓ ✓ ✓ ✓ ✓ ✓   

381 2 0.29 
Oligosaccharides; galactinol; panthetheine 4'-

PO4 
✓ ✓ ✓ ✓ ✓ ✓   

266 3 0.26 Amino acids (3), nucleosides (2) ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

447.2 4 -0.24 Various (10) ✓ ✓ ✓ ✓ ✓ ✓   

593.2 5 -0.22 -         

615.2 6 -0.20 -         

222 7 0.20 Amino acids (5), amino sugars (3) ✓ ✓ ✓ ✓ ✓ ✓   

286 8 -0.18 Pyridoxal-PO4; pyrodoxine-PO4; linamarin ✓ ✓ ✓ ✓ ✓ ✓   

594.2 9 -0.14 -         

447 10 -0.13 CDP-ethanolamine; Khellol glucoside    ✓     

PC
2 

266 1 -0.27 Amino acids (3), nucleosides (2) ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

631.2 2 -0.25 Diosmin; reserpine         

381 3 0.22 
Oligosaccharides; galactinol; panthetheine 4'-

PO4 
✓ ✓ ✓ ✓ ✓ ✓   

222 4 -0.22 Amino acids (5), amino sugars (3) ✓ ✓ ✓ ✓ ✓ ✓   

285 5 -0.20 Various (10) ✓ ✓ ✓ ✓ ✓ ✓   

417 6 0.19 -         

365.2 7 0.16 
Oligosaccharides; XMP; GA44; galactinol; 

ajmaline 
✓ ✓ ✓ ✓ ✓ ✓ ✓  

631 8 -0.15 -         

411 9 -0.15 2'-Deoxyuridine 5'-diphosphate        ✓ 

184 10 0.12 Amino acids (4); selenophosphate ✓ ✓ ✓ ✓ ✓ ✓   

Table 5.2: Ten highest absolute loadings for each principal component derived from positive percent total ion 
content (%TIC). Where possible putative identifications from the KEGG database (Kanehisa Laboratories, 
2017) along with their respective metabolic pathways. 
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N
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PC
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268.4 1 -0.32 -                 

282.4 2 -0.27 -                 

267.4 3 -0.19 -                 

264.6 4 0.17 -                 

292.6 5 0.16 -                 

324.6 6 0.15 -                 

576.4 7 -0.15 
Phosphoribosyl-formimino-AICAR-

phosphate ✓ ✓             

192.4 8 -0.14 -                 

283.4 9 -0.13 -                 

269.4 10 -0.13 Estrone     ✓           

PC
2 

282.4 1 -0.46 -                 

192.6 2 -0.24 -                 

576.4 3 -0.21 
Phosphoribosyl-formimino-AICAR-

phosphate ✓ ✓             

268.4 4 -0.20 -                 

300.4 5 0.14 -                 

284.4 6 0.13 -                 

242.4 7 0.13 -                 

254.4 8 0.11 -                 

577.4 9 -0.11 -                 

590.4 10 -0.11 -                 

Table 5.3: Ten highest absolute loadings for each principal component derived from 
negative percent total ion content (%TIC). Where possible putative identifications from the 
KEGG database (Kanehisa Laboratories, 2017) along with their respective metabolic 
pathways. 

 

Supervised ordinations of positive and negative %TIC profiles had similar patterns to 

the unsupervised PCA. The two latent variables (LV1/LV2) of PLS-DA of the positive 

dataset illustrate the lack of variation between sites, with distinctly overlapping groups 

(Figure 5.5A). A similar structure is present in the PLS-DA of negative %TIC to the PCA 

of the same. Most individuals vary along one direction, with the sites ROUDS and SWNTN 

exhibiting the most variation and the former group the most distinct (but still overlapping). 

As before there is an additional cluster in an orthogonal direction containing outliers from 

all sites bar ROUDS. However, both patterns here are rotated approximately 45° relative to 
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the PCA of the same data, i.e. individuals are differentiated along both latent variables rather 

than each component being responsible for one axis of separation (Figure 5.6A). Despite 

these obvious patterns neither dataset effectively distinguished between sites. Based on 

leave-on-out cross-validation, overall error rates for both PLS-DA models were high (>60%; 

Figure 5.7). 

  



106 
 

 

Figure 5.5: A) Partial least squares-
discriminant analysis (PLS-DA) of 
Pareto-scaled positive total ion 
content (%TIC) of samples. Only two 
latent variables were generated for 
this model. 

B) The most influential mass bins 
within the analysis are illustrated by 
the variable loadings for the PLS-DA 
model. For the sake of clarity only the 
ten highest absolute loadings for each 
latent variable are labelled. 

A 

B 
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Figure 5.6: A) Partial least squares-
discriminant analysis (PLS-DA) of 
Pareto-scaled negative total ion 
content (%TIC) of samples. Only two 
latent variables were generated for 
this model. 

B) The most influential mass bins 
within the analysis are illustrated by 
the variable loadings for the PLS-DA 
model. For the sake of clarity only the 
ten highest absolute loadings for each 
latent variable are labelled. 

A 

B 
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As with PCA, the latent variables of PLS-DA are composed of contributions from all 

mass bins, and the contribution of the latter to each varies. Due to the extreme number of 

variables within each dataset only the ten highest loadings for each axis are provided. The 

mass bins with the highest contributions to the latent variables derived from positive %TIC 

profiles range from 184 to 647.2 Da, a very similar range to high ranking loadings in the 

equivalent PCA (184 to 632.2 Da). Here as there many are strongly correlated with each 

other, as indicated by their proximity (Figure 5.5B). The most important mass bins to PLS-

DA of negative %TIC profiles range from 192.6 – 592.4 Da, also a very similar to result to 

that of PCA on the same data (192.4 – 590.4 Da). There was a comparable pattern in the 

masses of important variables, with the majority of high ranking bins being between 242.4 

and 300.4 Da. Overall, the supervised ordinations do not provide any more information than 

the unsupervised examples. Given the considerable overlap in high ranking variables and the 

similar patterns observed, they appear to be summarising the same patterns of variation 

between individuals. Taken together with the lack of or weakness of group structure and the 

resulting high classification error rates, no putative identifications of metabolites are given 

Figure 5.7: Overall error rate (i.e. what proportion of individuals are misclassified across 
all groups) of the partial least square-discriminant analysis (PLS-DA) models for both 
positive and negative %TIC. 
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for PLS-DA for the sake of brevity. Similarly no comparison between supervised ordinations 

and recorded metadata will be made. 

Comparison of recorded metadata with PCA ordinations derived from both positive and 

negative %TIC revealed few apparent relationships. Wind speed (Figure 5.8), hours since 

dawn, time of year (Figure 5.9), order of extraction on the bench and the time spent in 

storage before analysis (Figure 5.10) varied independently of all axes examined. There is a 

potential relationship between relative humidity and temperature and the scores received in 

both ordinations (Figure 5.8, Figure 5.11). However by comparison with group membership 

it is apparent that these patterns in fact represent site of origin (i.e. individuals sampled at 

the same time in the same environmental context share similar metadata), rather than the 

variance summarised by the axis in question (cf. Figure 5.3A, Figure 5.4A, and 

BOVHL/ROUDS individuals respectively). Only the amount of photosynthetically active 

radiation (PAR) recorded appears related to the variance summarised by the first component 

of the ordination derived from positive %TIC across groups. 
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Figure 5.8: Principal components analysis of Pareto-scaled positive and negative 
percent total ion content (%TIC), coded by metadata indicating the environmental 
context at time of sampling. Individuals are represented by filled circles whose colour 
indicates the relative humidity while the size of these circles reflects the recorded wind 
speed. 
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Figure 5.9: Principal components analysis of Pareto-scaled positive and negative percent 
total ion content (%TIC), coded by temporal metadata. Individuals are represented by 
filled circles whose colour indicates the time of the day (as hours of daylight since dawn) 
they were sampled. The size of these circles reflects the sampling date (as day length). 
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Figure 5.10: Principal components analysis of Pareto-scaled positive and negative percent 
total ion content (%TIC), coded by metadata describing laboratory procedure. Individuals 
are represented by filled circles whose colour indicates the order in which samples were 
processed on the bench, while the size of these circles reflects the overall order of metabolite 
extraction.  
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Figure 5.11: Principal components analysis of Pareto-scaled positive and negative percent 
total ion content (%TIC), coded by metadata indicating the environmental context at time of 
sampling. Individuals are represented by filled circles whose colour indicates the ambient 
air temperature while the size of these circles reflects the amount of photosynthetically active 
radiation potentially received. 

An examination of neutral genetic variation produced broadly similar results to that of 

metabolic variation, with differentiation between groups being low. Genetic distance 

(proportion of shared alleles) was however significantly but weakly related to geographic 

distance between individuals (R2 = 0.054; F = 2.25, df. = 1, p = 0.013), indicating the 

occurrence of isolation by distance. Low differentiation is reflected in a principal 

components analysis of allele frequencies which exhibits no group structure (Figure 5.12). 
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In contrast to positive %TIC profiles and neutral genetic variation the measured functional 

trait was distinct between certain locations. SLA was significantly different between sites 

according to a Kruskal-Wallis test (H = 19.384, df. = 5, p < 0.01). A Bonferroni-corrected 

Dunn’s test for multiple comparisons indicated that this result was generated by significantly 

different median SLA at ROUDS versus all other sites bar HARDY ( 

Table 5.4). Variation in SLA was also lower in ROUDS than at other locations (Figure 

5.13). 

Figure 5.12: Principal components analysis (PCA) of microsatellite allele frequency data 
for all sampled individuals. Only the first two components (PC1/PC2) are shown. Filled 
coloured circles represent the scores received by each individual for each of these axes. 
Site groups are surrounded by a convex hull (dashed line). 
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BOVHL CLWGW HARDY HNTCP ROUDS 

CLWGW 
-0.66 

- - - - 
1.00 

HARDY 
0.90 1.56 

- - - 
1.00 0.90 

HNTCP 
-0.13 0.59 -1.18 

- - 
1.00 1.00 1.00 

ROUDS 
2.79 3.27 2.32 3.36 

- 
0.04 0.01 0.15 0.01 

SWNTN 
1.43 2.04 0.61 1.79 -1.81 

1.00 0.31 1.00 0.55 0.53 

 

Table 5.4: Results of a Bonferroni-corrected Dunn’s multiple comparison test of specific 
leaf area between all pairwise combinations of sites. White cells contain the test statistic for 
that comparison, z, while the grey values are calculated p values. Statistically significant 
comparisons (p < 0.05) are indicated by green cells. 
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Figure 5.13: Box-and-whisker plot of specific leaf area (SLA: one-sided leaf area / leaf dry 
mass) for all sampled individuals across all sites. 
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5.4 Discussion 

Metabolomics approaches have been used to detect the signatures of local adaption to 

distinct selective pressures as well as elucidate plant-environment interactions (Davey et al., 

2008; Bundy, Davey and Viant, 2009; Brunetti et al., 2013), both of which have implications 

for population persistence in response to rapid environmental change (Jump, Marchant and 

Peñuelas, 2009; Alfaro et al., 2014). Here for the first time an exploratory approach to 

characterizing in situ metabolic and morphological variation within and between populations 

was used. This variation was also contrasted with neutral genetic variation derived from 

microsatellite markers. 

Metabolic fingerprints derived from leaf material collected and fixed in situ from 

individuals in six populations of T. cordata across its UK range were broadly similar despite 

contrasting environmental conditions during sampling. Both unsupervised (PCA) and 

supervised (PLS-DA) ordinations revealed little group structure, illustrating that most of the 

variation in metabolite concentrations summarised by these techniques occurred across 

rather than between populations. These analyses reasonably summarised datasets with 

extremely high dimensionality (~3500 variables), reducing them down to two variables 

which described an appreciable amount of the variance in the overall datasets. Populations 

exhibited considerable overlap and this was reflected in the high overall error rates in the 

classification performed by PLS-DA (>60%). 

Despite this two patterns were observed in ordinations of negatively charged metabolite 

concentrations. Firstly a small group of individuals were distinct from the main cluster, but 

this outlying group was mostly unrelated to site of origin, containing members of all 

populations bar ROUDS. The most important metabolites involved in the generation of this 

structure were in the 242.4 to 300.4 Da mass range. Secondly individuals from both SWNTN 

and ROUDS exhibited a greater amount of variability in a subset of all metabolites, which 

was observed in both supervised and unsupervised ordinations (Figure 5.4A, Figure 5.6A). 

The same methods applied to positively charged metabolite concentrations did not reveal 

any patterns at all, either in the arrangement of individuals within ordinations or in the 

variable loadings. Unsupervised ordinations did reveal heterogeneity in intra-individual 

variation however. Many biological replicates were clustered tightly, but others appeared 

quite distinct as indicated by the length of the connecting lines in Figure 5.3B and Figure 

5.4B. 
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Putative identifications of metabolites were made based on their detected masses. 

Searches of the KEGG database provided many candidates for the most important positive 

%TIC mass bins, but only two for those of negative %TIC. Broadly speaking there was no 

pattern to the former identifications, with a variety of compounds involved in many different 

metabolic processes being returned, although the majority of proposed substances within bin 

381 (ranked 2nd and 3rd respectively in PC1 and PC2 from PCA of positive %TIC) were 

potentially oligosaccharides such as sucrose. These loadings are positive, and so individuals 

with higher scores along these axes possess higher concentrations of simple carbohydrates. 

All of the potential identifications made for positive %TIC bins should be interpreted with 

caution due to the nature of the ionization process used. More specifically the charged 

metabolites detected during MALDI-TOF spectrometry are composed of the compound 

itself (M) and the addition or removal other ions (H+, Na+, K+). Positively charged ions can 

take the form of [M+H]+, [M+Na]+ or [M+K]+, while negatively charged ions are only 

formed via the removal of a proton ([M-H]-). Therefore the mass of positive metabolites 

generated via MALDI is more variable than that of negatively charged (i.e. the mass of M 

+1, +23, or +39 Da versus the mass of M – 1 Da), which generates a wider range of putative 

identifications when matching detected masses with databases of biological compounds.  

In contrast there was a distinct pattern to most loadings of negative %TIC ordinations, 

as indicated by the fairly narrow mass range of the highest ranking bins. Unfortunately given 

the greater precision of detected masses for these metabolites few candidate compounds 

were returned from the KEGG database. Only the bins 576.4 and 269.4 resulted in matches, 

with phosophoribosyl-formimino-AICAR-phosphate (PRFAR) and estrone respectively 

being suggested. PRFAR is in intermediate in histidine biosynthesis, and histidine, being a 

proteinogenic amino acid, is involved in many aspects of plant metabolism (Stepansky and 

Leustek, 2006). Estrone is an exclusively mammalian hormone and so this identification is 

likely in error (Kuhl, 2005), but many plant compounds in the flavonoid group have similar 

molecular weights and structures (e.g. isoflavones; Coward et al., 1993). It is possible that 

the patterns present in both PCA and PLS-DA of negative %TIC are created primarily by 

differences in concentration of this class of secondary metabolites, several of which have 

already been observed in the species previously (Negri, Santi and Tabach, 2013). These 

compounds also often occur in leaf material as glycosides (i.e. with the addition of a sugar 

molecule), bringing their molecular weight into the 500 – 600 Da range which is in line with 

the more massive high ranking bins. If concentrations of secondary metabolites are indeed 
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generating these structures then the lack of putative identifications is not surprising, since 

although primary metabolites are often conserved between taxa and are therefore easily 

identified, the majority of secondary products are genus or even species specific (Macel, van 

dam and Keurentjes, 2010). Whatever their identity, most of the highest ranking loadings 

are negative, and so individuals scoring highly along both axes have lower concentrations of 

these compounds. 

Both PCA and PLS-DA approaches produced equivalent results with similar variable 

loadings, and therefore metadata was not compared with the supervised ordinations for the 

sake of brevity. Comparison of recorded metadata with the output of both PCA suggested 

that relative humidity and temperature at the time of sampling may have been related to 

metabolite concentrations, but by cross-referencing group identity with these apparent 

patterns it becomes clear that they reflect similarity due to spatial and temporal proximity. 

In other words, individuals from the same site possess similar environmental metadata, but 

not other individuals with similar metabolic fingerprints, indicating that neither of these two 

factors were responsible. Similarly neither wind speed nor time of sampling (either time of 

day or year) appeared related to the variation summarised by PCA. More importantly none 

of the laboratory metadata was related either, which alongside distinct extraction blanks 

illustrates that the results reflect actual variation in metabolic status at the time of sampling 

rather than induced variation as a result of technical issues (van den Berg et al., 2006). 

However, incident PAR appeared related to the first principal component derived from 

positive %TIC, which is not unexpected given that this is a key determinant of 

photosynthetic rate (Hopkins, 1995). It could be argued that the lack of a link between 

temperature and PC1 (and therefore oligosaccharide concentration) does not support this 

interpretation, since carbon fixation is an enzymatic reaction and therefore its rate (and the 

generation of carbohydrates) is partially dependent on temperature. However the rate of CO2 

fixation reaches a plateau before dropping off and so all sampled individuals may be within 

the optimum temperature range for the species (Hew, Krotkov and Canvin, 1969; Sage and 

Kubien, 2007). Both the lack of an obvious relationship between metadata and metabolite 

concentrations and the diversity of metabolic roles played by flavonoids (Hernández et al., 

2009) make it difficult to comment on what other external environmental factors might be 

driving the variation summarised by ordinations of negative %TIC. For example variation 

in flavonoid concentration can be caused by an array of processes including biotic and abiotic 

stressors such as temperature, herbivory, plant-pathogen interactions, drought, nutrient 
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deprivation, etc. (Dixon and Paiva, 1995; Winkel-Shirley, 2001, 2002; Sampaio, Edrada-

Ebel and Da Costa, 2016). Generally speaking metabolic fingerprints are the result of a dense 

network of biosynthesis routes (Benning and Stitt, 2004) and so the plastic portion of the 

variance examined here is likely generated by a variety of environmental factors. 

Non-metabolic data returned mixed results. Allele frequencies produced similar patterns 

to metabolite concentrations, i.e. no group structure, indicating low differentiation between 

populations (little between-site variation). Inter-individual distance was however weakly 

related to geographic location, indicating the presence of weak IBD. This is in line with 

previously observed results (see Chapter 4, Logan et al., 2015), which shows that the sample 

size was sufficient to detect genetic structure. Conversely, leaf morphology was distinct 

between sites, with SLA lower at ROUDS than all other more southerly sites bar HARDY. 

Along with BOVHL it is also possesses low variability relative to the other groups. ROUDS 

experiences the lowest average temperature while BOVHL experiences both the highest 

average temperature and the lowest level of precipitation of all sampled sites (Met Office, 

2017). Since both temperature and moisture regime affect SLA, these results are consistent 

with observations that abiotic filtering is stronger in certain environments. For instance lower 

leaf area per unit mass as well as reduced variability in the same has been observed along 

both latitudinal and altitudinal gradients of temperature (Li, Suzuki and Hara, 1998; 

Scheepens, Frei and Stöcklin, 2010; Hulshof et al., 2013), as well as in response to reduced 

precipitation (Poorter et al., 2009; Robson et al., 2012). In adverse growing conditions or a 

less productive environment, lower SLA can provide a fitness advantage (Poorter et al., 

2009). 

Whether differences in SLA and variation in (potential) secondary metabolite 

concentrations represent responses to local selection or phenotypic plasticity cannot be 

determined here. Both however have been observed to be components of local adaptation in 

other tree species. For instance more drought-tolerant Fagus sylvatica individuals in Spanish 

populations had higher flavonoid concentrations than more northern populations when 

grown in a common garden setting (Aranda et al., 2017), and similarly differentiation in 

SLA was linked to drought-tolerance in populations of Quercus suber (Ramírez-Valiente et 

al., 2010). Temperature has also been observed to be a cause of local selective differences 

that generate metabolic differentiation between populations, e.g. changes in nitrogen 

metabolism in Arabidopsis lyrata along a latitudinal gradient (Davey et al., 2008). Stochastic 

processes (e.g. genetic drift, founder effect) can also cause chemical differentiation (Linhart 
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and Grant, 1996), but these should affect neutral genetic variation too. Given the low genetic 

differentiation observed, any of the observed differences between populations (variation in 

flavonoid concentration, SLA changes) can be expected to be the result of local selective 

pressures provided they have a genetic basis. 

This study shows that metabolite profiles derived from samples collected in situ from 

natural populations have potential in a hypothesis generating role, as does non-targeted 

metabolite profiling generally (Macel, van dam and Keurentjes, 2010). Although not 

evidence of local adaptation the results here suggest fruitful avenues for exploring local 

adaptation in the future. For instance, now that a functional trait difference between 

populations has been established, it should be examined further, to determine if it has a 

genetic basis, by either common garden or glasshouse experiments or more realistically, 

given the potential logistical difficulties of such an approach in T. cordata, a targeted genetic 

study (e.g. sequencing of homologous genes linked to SLA in other species; ter Steege et al., 

2005; Yin et al., 1999). Similarly further chemical analysis of the variable unidentified 

metabolites generating the structure in negative %TIC, with a view to elucidating the cause 

of such variation and ultimately assessing the presence of a genetic basis if necessary. The 

partially clonal nature of the species may also represent a way to explore the genetic basis 

of both SLA and metabolic differences by comparing intra- and inter-clonal variation in 

homogenous environments. These results also illustrate the high level plasticity of T. 

cordata, as it was able to maintain very similar metabolic profiles within distinct 

environmental settings. Even if the distinctions made between populations here do not reflect 

the presence of adaptive variation, this phenotypic plasticity may assist population 

persistence in the future (Aitken et al., 2008; Lande, 2009; Nicotra et al., 2010). 
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6 Conclusions 
The aims of this study were to examine ecological, genetic and metabolic variation in UK T. 

cordata individuals or populations in order to answer questions or generate hypotheses 

regarding intra-generic competition, reproductive strategy, responses to habitat 

fragmentation and phenotypic plasticity, and provide suggestions as to how these results 

relate to population persistence in response to rapid environmental change. The key findings 

support an ecological distinction between T. cordata and its sympatric congeneric T. 

platyphyllos, illustrate that clonal reproduction is ubiquitous and correlated weakly with 

climate and demography, show that populations have likely not responded to habitat 

fragmentation and finally suggest that the species is highly plastic due to individuals 

possessing consistent metabolic fingerprints despite environmental variation. 

 

6.1 Segregation of Tilia cordata Mill. and T. platyphyllos Scop. (Malvaceae) along 

environmental gradients 

Based on broad descriptions within the literature, T. cordata and T. platyphyllos were 

expected to possess distinct ecological requirements, both edaphic and topographical. The 

former should also exhibit greater variation in examined parameters as is reflected in its 

greater abundance and wider distribution. The results obtained were in general agreement 

with these expectations, as T. cordata was found to occupy more fertile soils and areas with 

higher potential insolation, and also to exhibit greater variation in most characteristics. In 

contrast to previous descriptions no difference in soil acidity was observed. Other examined 

variables such as soil depth or moisture were not distinct between the species. Due to the 

method used to calculate potential insolation (McCune, 2007), differences in preferred light 

levels may actually reflect distinct topographical preferences, as T. platyphyllos is noted to 

typically occupy steep slopes or cliffs. Overall the segregation along the niche axes 

examined here was not as great as expected given previous descriptions of ecological 

preferences, but the species may differ along unexamined axes or at other points in their life 

cycle (e.g. juvenile mortality differences in response to light levels). The results suggest 

approaches to direct future studies of competitive exclusion within the genus. 
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6.2 Reproductive strategy of Tilia cordata Mill. across its UK range 

Data show that T. cordata has mixed reproductive modes across its UK range but that the 

relative contribution of sexual versus asexual recruitment varies. Neither monoclonal stands 

nor a total lack of clones was ever observed, which contrasts with studies of other partially 

clonal tree species for unknown reasons. Despite this distinction levels of clonality were 

fairly typical for a canopy tree. Based on previous descriptions of clonality within the 

species, the most northern populations had proportionally fewer clones than expected; in 

these locations vegetative propagation has been suggested as the reason for population 

persistence, and yet young individuals with distinct genotypes were observed. This suggests 

that sexual recruitment in marginal locations is more common than previously thought. 

Clonality was also not typically dominated by any one lineage. Clonal groups were also 

mostly small in terms of both number of members and spatial size which is expected given 

that basal shoots are the principle method of vegetative propagation, although occasional 

relatively long-distance dispersal events were inferred based on the distances separating 

genetically identical individuals. As a result of the low group size clonality did not generate 

excessive amounts of spatial genetic structure and is not expected to affect outcrossing 

success via competition with foreign pollen. Similarly, even though asexual reproduction 

was ubiquitous genotypic richness was still appreciable even in the most marginal 

populations. 

There was a weak relationship between both climate and demography and the incidence 

of clonality observed in samples, meaning that the proportion of individuals that are likely 

to be the result of sexual reproduction was negatively correlated with latitude and the 

proportion of mature trees. The link with climate was not as strong as expected given the 

role of summer temperatures in limiting T. cordata fertility, and so the failure of sexual 

recruitment alone is not the only factor that promotes vegetative propagation in the species. 

Specifically the link with demography suggests it has a role as a rapid response to 

disturbance (here coppicing), as has been observed in other species. This aspect should be 

explored further by directly comparing time since coppicing with incidence of clonality. 

More southern locations including marginal Mediterranean populations should also be 

examined to determine if the identified trend in declining clonal incidence continues.  
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6.3 Cryptic spatial genetic structure of a canopy tree (Tilia cordata) across a 

fragmented landscape 

The results of this study confirm that despite significant fragmentation, populations of T. 

cordata have not suffered from genetic erosion and maintain high levels of genetic diversity, 

as has been observed previously. Populations closer to the northern range edge of the species 

did not have reduced variation compared to those in a more southern location, despite 

elevated levels of clonality in the former. At a landscape scale (5 – 10 km) population 

substructure in T. cordata demes as a result of dispersal limitations was evident. The pattern 

of isolation by distance (IBD) was also reflected in a weak association between genetic 

distance and geographic location, as well as in clinal structures produced by exploratory 

ordination methods. This finding contradicts a previous observation of no IBD in UK T. 

cordata populations (Logan, Phuekvilai and Wolff, 2015), a fact which illustrates the 

increased power of the individual-based approach used here compared to population-based 

schemes. 

Broadly speaking these structures were not related to the pattern of habitat fragmentation 

observed, i.e. there was low differentiation between woodland fragments for the most part. 

Similarly there was no relationship between the landscape context (e.g. surrounding land 

use) and genetic distance. Several of the smallest or most spatially isolated fragments 

however were more genetically distinct than other demes. It was inferred that the former 

pattern likely reflects historic processes operating over a formerly contiguous landscape 

rather than contemporary dispersal limits. Although separating these two explanations 

definitively is not possible here, T. cordata genotypes should possess extreme longevity due 

to long individual lifespans and the common occurrence of vegetative propagation. 

Combined with intermittent fertility the turnover within populations is likely to be extremely 

low and as a result, even in the absence of any gene flow, drift should be slow to act. Further 

the weak relationship between structure and location and the lack of a relationship between 

landscape context and individual differentiation also suggest that it has not responded to a 

reduction in population size and gene flow, except in the locations with the lowest numbers 

of individuals. 

This latter point suggests that this genetic erosion may still occur in more populations 

given sufficient time. This supports the continuation of genetic resource conservation efforts 

and highlights which locations are most in danger of genetic erosion. Further research in 
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areas with higher rates of sexual recruitment or comparisons of genetic diversity between 

distinct cohorts could both help elucidate the response of the species to fragmentation. The 

relative importance of seed versus pollen mediated gene flow should also be examined to 

identify the routes by which connectivity occurs which may inform landscape conservation 

measures. 

6.4 Exploring metabolic variation in natural populations of a temperate canopy tree, 

Tilia cordata 

Metabolic fingerprints obtained from T. cordata leaves collected and fixed in a natural 

context exhibited greater variability within rather than between populations, producing 

results that showed little group structure. The most variable metabolites were diverse and 

involved in a variety of biochemical pathways based on the putative identifications made. 

There was little apparent correlation between the environmental context at the time of 

sampling and the aforementioned variation with the exception of light level, perhaps as a 

result of differences in photosynthetic activity, an inference based on differences in 

oligosaccharide concentrations. Importantly the same applied to laboratory metadata 

indicating that recorded fingerprints reflected actual metabolic status at the time of sampling. 

The similarity of data across sites despite differences in environmental factors suggests that 

T. cordata possesses high levels of phenotypic plasticity. 

 Although sites were metabolically similar overall two locations exhibited greater 

variability in concentrations of a group of unidentified compounds, potentially flavonoids 

based on their molecular masses. One of these locations was the most northern population 

sampled, Roudsea Wood, and individuals here also had significantly different specific leaf 

area to all other more southern sites, bar one (the second most northern site, Hardy Gang). 

Whether these morphological and metabolic differences reflect genetic differentiation or 

phenotypic plasticity cannot be determined here. If the former is responsible then local 

adaptation to more marginal conditions is likely responsible due to the similarity of neutral 

genetic variation observed between sites. More specifically, stochastic processes such as 

drift can also generate biochemical differences between populations, but these will also 

affect selectively neutral variation, producing separation between populations which was not 

observed in the microsatellite marker data. These results suggest that a future direction is to 

examine in a targeted fashion the presence of local adaptation in the species, and they also 
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demonstrate that metabolite profiles derived from samples collected in situ in natural 

populations have potential in a hypothesis generating role. 

6.5 Recommendations for future research 

• Niche separation between Tilia congenerics is not confirmed; if competitive 

exclusion promotes coexistence between T. cordata and T. platyphyllos then further 

tests can be made, such a detecting niche shifts when species occur in sympatry.  

• A fuller understanding of the balance between reproductive modes across the entire 

range of T. cordata should be obtained; does the latitudinal trend in declining 

incidence of clonality continue into continental Europe to the point at which there 

are totally sexual populations, or is there some level of clonality across the entire 

range? Similarly, does clonality become a more optimal strategy in populations 

which are marginal for different reasons to those in the UK, such as Italian locations 

which are moisture limited? 

• Further research into the role of asexual reproduction in T. cordata; it may be a 

response to disturbance and this could be examined more closely by comparing 

incidence of clonality between populations with distinct disturbance regimes. 

• The benefits (or disadvantages) of clonal reproduction should be explored, such as 

increases or decreases in outcrossing success via enlarged floral displays. 

• The possibility of significant lag time from fragmentation to genetic erosion should 

be examined by contrasting genetic diversity and its relationship with landscape 

context in populations with likely higher turnover such as those in more continental 

regions. If the process of genetic erosion is occurring this could also be detected by 

contrasting diversity between mature and juvenile cohorts of individuals. 

• If any response to fragmentation is detected in larger populations then knowledge of 

the constraints on connectivity is important, but this is complicated by the fact that 

plants can respond twice via restriction of both pollen movement and seed dispersal. 

The relative influence of each may be inferred via comparison of differentiation 

exhibited by bi- versus uni-parentally molecular markers. 

• The genetic basis of the morphological functional trait difference observed in T. 

cordata populations should be determined, most practically by a targeted genetic 

study (e.g. sequencing of homologous genes linked to SLA in other species). Other 

approaches such as common garden or reciprocal transplants are likely to be 

impractical given intermittent fertility of the species in the examined locations. 
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• Identification of the most variable unidentified metabolites should be made so that 

ultimately the cause of said variation and the presence of a genetic basis if necessary 

can be determined. 

• The genetic basis of both SLA and metabolic differences may also be explored by 

exploiting the partially clonal nature of the species to examine and compare the intra- 

and inter-clonal variation of these aspects. 

 

6.6 Concluding remarks 

This study expands our knowledge of T. cordata ecology, reproductive strategy, population 

connectivity and variation. The findings have implications for population persistence and 

the application of effective genetic conservation methods. Firstly although clonality is 

ubiquitous, even the most marginal UK populations still possess an appreciable level of 

genetic diversity, and the typically small size and scale of clonal groups should not reduce 

outcrossing success or increase levels of inbreeding. Therefore asexual reproduction is not 

expected to have a negative impact on population persistence in the future, and may even 

enhance it if sexual reproduction fails due to unfavourable climatic changes. Secondly this 

confirms that small populations are particularly vulnerable to genetic erosion even in 

marginal locations with low turnover and supports the continued conservation of genetic 

resources. Secondly the phenotypic plasticity observed will likely be important in population 

persistence although whether it is sufficient to provide the capacity to weather the potential 

changes in marginal southern populations is unclear. Finally, the variation in a functional 

trait and certain metabolite concentrations hint at the possibility of local adaptation which 

may help in longer term. 
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Appendices 

Appendix I: distributions of inter-individual genetic distance 
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Appendix I: Frequency distributions of pairwise genetic distance between individuals (as 
number of distinct alleles). Red bars are observed distances and translucent grey bars 
distances from 99 simulated sexual reproductive events (with selfing). The dashed line 
represents the threshold at which an individual was considered for inclusion in clonal 
lineage. 
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Appendix II: spatial arrangement of clonality 
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Appendix II: the spatial arrangement of clonality at sampling sites. Unique genets are 
represented by hollow circles while clonal MLL groups are represented as filled squares of the 
same colour. Clonal MLL are contained within convex hulls described by dashed lines. Red 
triangles represent individuals whose presence was recorded but not genotyped. The extent of 
aggregation Ac and its significance after 1 000 permutations are provided. DBH of each 
individual is indicated by the size of the shapes. 
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Appendix III: putative identifications for the ten highest absolute ranking mass bins in 

principal components analysis 

Detection 
mode Component Mass bin Ranking Loading Metabolite 

Negative 

PC1 

268.4 1 -0.32 
 

282.4 2 -0.27 
 

267.4 3 -0.19 
 

264.6 4 0.17 
 

292.6 5 0.16 
 

324.6 6 0.15 
 

576.4 7 -0.15 Phosphoribosyl-formimino-
AICAR-phosphate 

192.4 8 -0.14 
 

283.4 9 -0.13 
 

269.4 10 -0.13 Estrone 

PC2 

282.4 1 -0.46 
 

192.6 2 -0.24 
 

576.4 3 -0.21 Phosphoribosyl-formimino-
AICAR-phosphate 

268.4 4 -0.20 
 

300.4 5 0.14 
 

284.4 6 0.13 
 

242.4 7 0.13 
 

254.4 8 0.11 
 

577.4 9 -0.11 
 

590.4 10 -0.11 
 

Positive PC1 

285 1 -0.42 

Delta3-Isopentenyl diphosphate 
Delta2-Isopentenyl diphosphate 
Isopimpinellin 
Pimpinellin 
D-Mannitol 1-phosphate 
Decursinol 
Marmesin 
Acacetin 
Xanthosine 
Octopine 

381 2 0.29 

Trehalose 
alpha-D-glucopyranose 
Nigerose 
Sucrose 
Laminaribiose 
Rutinose 
Maltose 
Melebiose 
Sophorose 
Pantetheine 4'-phosphate 
Cellobiose 
Epimelibiose 
Galactinol 
Gentiobiose 
Isomaltose 

266 3 0.26 alpha-D-Glutamyl phosphate 
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Detection 
mode Component Mass bin Ranking Loading Metabolite 

Positive 

PC1 

266 3 0.26 

L-Glutamate 5-phosphate 
L-Arogenate 
Deoxycytidine (dC) 
Cytidine (C) 

447.2 4 -0.24 

Ginkgolide A 
Nodakenin 
Adifoline 
Rutarin 
Bleekerine 
Vernoflexuoside 
6,8-Diprenylnarigenin 
Abyssinone V 
Cascarillin 
Dimethamine 

593.2 5 -0.22 
 

615.2 6 -0.20 
 

222 7 0.20 

O-Phospho-L-homoserine 
Isowillardiine 
Willardiine 
L-Normetanephrine 
L-Histidinol phosphate 
N-acetyl-D-galactosamine 
N-acetyl-D-glucosamine 
N-acetyl-D-mannosamine 

286 8 -0.18 

Pyridoxal phosphate 
Pyridoxine phosphate 
Linamarin 

594.2 9 -0.14 
 

447 10 -0.13 
CDP-ethanolamine 
Khellol glucoside 

PC2 

266 1 -0.27 See above (repeated) 
631.2 2 -0.25 Diosmin 

Reserpine 
381 3 0.22 See above (repeated) 
222 4 -0.22 See above (repeated) 
285 5 -0.20 See above (repeated) 
417 6 0.19  

365.2 7 0.16 

Trehalose 
alpha-D-glucopyranose 
Nigerose 
Sucrose 
Laminaribiose 
Rutinose 
Maltose 
Melebiose 
Sophorose 
Cellobiose 
Epimelibiose 
Galactinol 
Gentiobiose 
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Detection 
mode Component Mass bin Ranking Loading Metabolite 

Positive PC2 

365.2 7 0.16 

Isomaltose 
Ajmaline 

Gibberellin A44 

Xanthosine 5'-phosphate (XMP) 

631 8 -0.15 
 

411 9 -0.15 2'-Deoxyuridine 5'-diphosphate 
(dUDP) 

184 10 0.12 

Selenophosphate 
L-2-aminoadipic acid 
O-Acetyl-L-homoserine 
2-Ketoglutaramate 
L-Normetanephrine 

 

Appendix III: Unabridged putative identifications for the ten highest ranking loadings of 
both components of both principal components analyses (using both positive and negative 
%TIC). The identity of the compounds given are derived from matching observed masses 
with the KEGG database (Kanehisa Laboratories, 2017). Blank cells indicate that no match 
was found. 
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