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Abstract 

Distinguising between natural forests from exotic tree plantations is essential to get an accurate picture of the world’s state of 

forests. Most exotic tree plantations support lower levels of biodiversity and have less potential for ecosystem services supply 

than natural native forests, and  differencing them is still a challenge using standard tools. We use a novel approach in south-

central of Chile to differentiate tree cover dynamics among natural forests and exotic tree plantations. Chile has one of the 
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world's most competitive forestry industry and the region is a global biodiversity hotspot. Our collaborative visual 

interpretation method combined a global database of tree cover change, remote sensing from high-resolution satellite images 

and expert knowledge. By distinguishing exotic tree plantation and natural forest loss, we fit spatially explicit models to 

estimate tree-cover loss across 64 millions of ha between 2000-2016. We were able to distinguish natural forests from exotic 

tree plantations with an overall accuracy of 99% and predicted forest loss. Total tree cover loss was continuous over time, 

and the disaggregation revealed that 1,549,909 ha of tree plantations were lost (mean = 96,869 ha/year), while 206,142 ha 

corresponded to natural forest loss (mean = 12,884 ha/year). Mostly of tree plantations lost returned to be plantation (51%). 

Natural forests were converted mainly (75%) to transitional land covers (e.g. shrubland, bare land, grassland), and an 

important proportion of these may finish as tree plantation. This replacement may undermine objectives of increased carbon 

storage and biodiversity. Tree planting as a solution has gained increased attention in recent years with ambitious 

commitments to mitigate the effects of climate change. However, negative outcomes for the environment could result if 

strategies incentivize the replacement of natural forests into other land covers. Initiatives to reduce carbon emissions should 

encourage differentiating natural forests from exotic tree plantations and pay more attention on protecting and managing 

sustainably the former. 

 

Keywords: remote sensing, augmented visual interpretation,  land use and land cover change, tree cover, forest plantation.  

1. Introduction 

Differentiating natural forests from exotic tree plantations 

at large scales represents a global relevant issue because 

different tree covers may produce disparate estimations of  

changes in local biodiversity and in relevant ecosystem 

services such as climate regulation, carbon storage, and water 

supply (Hall et al. 2012, Van Holt et al. 2012, Van Holt et al. 

2016, Viña et al. 2016, Lewis et al. 2019). However, this still 

constitutes a technical challenge for the remote-sensing 

communities (Zhao et al. 2016, Curtis et al. 2018).  

Evidence has demonstrated that exotic tree plantations are 

rather distinct from natural forests in their role in terms of 

biodiversity conservation, ecosystem services, and the social 

impacts that they provide (Reyes and Nelson 2014, Naudts et 

al. 2016, Jones et al. 2017, Martinez-Jauregui et al. 2018, 

Lewis et al. 2019). Therefore, these tree cover types need to 

be carefully differentiated, especially in areas with high 

conservation values, where it has many implications for 

biodiversity and human wellbeing (Newbold et al. 2016).  

Current policy discourses related to forest conservation, 

and particularly to restoration, use or imply the forest 

definition by the United National Food and Agricultural 

Organization (FAO), which aggregates natural forests and 

exotic tree plantations (FAO 2010). Under this definition, 

exotic tree plantations are under intensified forestry 

management and some authors point out that could be 

classified as “tree farms” (Van Holt and Putz 2017, Curtis et 

al. 2018). However, misclassification of natural forests and 

exotic tree plantations could bring misinterpretation in 

environmental policy and social impact evaluation (Van Holt 

and Putz 2017, Hua et al. 2018), as tree plantations are 

typically subjected to intensified forestry management 

practices that cause environmental impacts similar to those 

produced by intensive agriculture (Karp et al. 2012, Naudts et 

al. 2016, Lewis et al. 2019, Heilmayr et al. 2020, Osuri et al. 

2020). 

Under the FAO definition (FAO 2015), not all forests 

contribute to climate change mitigation (Naudts et al. 2016). 

Planting trees,  and particularly some conifer species for fast 

growth tree plantations, is not enough to stave off global 

warming (Lewis et al. 2019). Given the current global 

challenge of forest restoration (Chazdon and Brancalion 2019) 

it is paramount to accurately discriminate between natural 

forests and tree plantations. For instance, China reported a 

significant increase in forest cover in around 1.6% of its 

territory (Viña et al. 2016). However, native forests are not 

returning and this forest recovery was mostly due to exotic tree 

plantations (Van Holt and Putz 2017). Moreover, while net 

tree cover in southwestern China grew by 32% (2000–2015), 

this increase was mainly due to the conversion of croplands to 

tree plantations, but tree plantations also displaced native 

forests with a gross loss of 6.6% (Hua et al. 2018). 

The biggest effort to assess tree cover change is the global 

database developed by Hansen et al. (2013), who mapped 

annual global tree cover loss and gains from 2001 to 2018 

using Landsat satellite program. Based on this dataset,  several 

studies have assessed the global and local forest changes in a 

number of places/countries (Viña et al. 2016, Heilmayr et al. 

2016,  Potapov et al. 2017, Curtis et al. 2018, Hua et al. 2018). 

At a global scale, the main driver of  tree cover loss is 

associated to permanent land use change for commodity 

production like forestry and agriculture (Curtis et al. 2018). 

But not considering the natural or productive character of 

these forests can lead to a substantial misestimation of the 

natural forest loss (Tropek et al. 2014), compromising its 

value for local and global policy decisions.  

Identification of different types of forests using Hansen et 

al. (2013) dataset is mainly based on tree cover percentage 

(Tyukavina et al 2018) or in combination with forest height 
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maps derived from LIDAR images (Yu et al. 2020). However, 

those criteria do not differentiate natural forests from tree 

plantations. In this work, we use a novel approach to illustrate 

the importance of accurately discriminating natural forests 

from tree plantations when quantifying tree cover losses. We 

use a method  which can be applied to large-scale land cover 

monitoring. We use a collaborative augmented visual 

interpretation method that uses the Hansen et al. (2013) 

database, the Google Earth-Engine platform (GEE), high-

resolution satellite images, and expert knowledge through 

networking collaboration (Fig. 1). 

 

 
Figure 1. Workflow of the methodological framework. 

 

The method is tested in south-central Chile, which is one of 

the global leaders in pulp production from exotic tree 

plantations (Cubbage et al. 2007), and also classified as a 

global biodiversity hotspot (Mittermeier et al. 2004). This area 

harbors the last confined and endangered sclerophyllous and 

temperate forests of South America. Our method was applied  

for the period 2000 to 2016. We discuss the implications for 

global and large-scale tree cover monitoring, by providing an 

accurate, cost-efficient, and replicable tool, which can be 

useful for future biodiversity conservation and climate 

mitigation actions. 

2. Methods 

2.1 Study area 

The Chilean biodiversity hotspot, also called ‘‘Chilean 

winter rainfall–Valdivian forests’’ (25°–47°S) (Arroyo et al. 

2004) covers about 640,000 km2 (Fig. 2). It comprises half of 

the temperate forests in the southern hemisphere, but also 

suffers the greatest land-use-change pressure in the country 

due to the high concentration of economic activities in Chile 

(Miranda et al. 2017). This area comprises 79% of the 

country’s urban and industrial zones, 94% of its agriculture, 

and 98.7% of the total exotic tree plantation extent (mostly 

Pinus radiata and Eucalyptus spp.) (CONAF 2011). In this 

hotspot, natural forests cover approximately 9.5 millions of ha 

(Zhao et al. 2016), which are distributed mainly from 33°S 

southwards (Figure 2a). In the country the last official figure 

of exotic forest plantations is equivalent to 3.1 millions of ha 

(CONAF 2019).  

 

 

 
Figure 2. Map of A) the current distribution of natural forest 

and exotic tree plantations (Zhao et al. 2016), B) whole tree 

cover loss by Hansen et al. (2013) updated to 2016, and C) the 

distribution of sampling points on tree cover loss patches in 

the study area. Plots represent latitudinal and longitudinal 

density distribution of land cover-types in each map.   

 

2.2 Data source of tree cover loss  

We use the updated tree cover loss database developed by 

Hansen et al. (2013) (Available in 

https://glad.umd.edu/dataset). This global database has a high 

spatial resolution (30 m) annual tree cover change. We used 

the tree cover loss product (patches lost) for each year between 

2000 and 2016. We applied an image filtering technique to 

eliminate tree loss patches smaller than 0.27 ha, and the 8-cells 

neighbourhood rule (McGarigal et al. 2012). We use the 

defined forest loss as a “stand replacement disturbance” 

(Hansen et al. 2013), meaning the removal or mortality of all 

tree cover in a Landsat pixel with more than 50% of tree crown 

cover.  

 

2.3 The collaborative survey 

We performed a random sampling through a survey to 

differentiate tree cover loss between natural forest and exotic 

tree plantation, and identify the contributors of change (i.e. the 

land cover type after forest loss), for the whole period. The 

A) B) C) 
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sampling considered a total of 2,623 points in patches of tree 

cover loss (Fig. 1c). To get a representative sample of each 

loss patch, five points were randomly distributed in each 

accumulated forest loss patch for the whole period which was 

constrained to the patch size (minimum distance among 

sample points was 30 m). Therefore a total of 1,219 patches 

were sampled. 

The total sample points were distributed between ten local 

experts who were selected given their expertise on remote 

sensing and on land use/land cover monitoring. Each expert 

received a minimum of 250 sample points and all instructions 

and files to undertake the survey.  

Based on their experience each local expert identified at 

each sample point the land-cover type prior to tree cover loss 

(i.e. natural forest and tree plantation), but was not possible to 

distinguish the species of origin. After that, at the same sample 

point, the expert identified the land-cover type in the last year 

of the period (2016), among the following options: natural 

forest, exotic tree plantation, cropland, grassland, settlement, 

wetland, shrubland, bare land, and other land (Appendix 1). 

Local experts also identified errors associated to no presence 

of tree cover loss in Hansen et al. (2013) database, and all 

these points were discarded from the final analysis and the 

spatial and temporal variations of cover loss. 

We tested the sensitivity of our results to assess the 

variation of land cover identification according to thesample 

size (Appendix 3). Furthermore, we assessed the accuracy of 

the local experts to differentiate between “natural forest” and 

“tree plantation”. We collected a total of 450 independent 

points from fieldwork on natural forest and tree plantation. We 

randomly selected 100 of these field points (50% of each land 

cover). All local experts received the same sample points and 

identified the land-cover type on each one. We compared the 

relationship between known reference data (field points) and 

the results of the local expert identification for accuracy 

estimation. Adittionally, we measured agreement among 

experts using Fleiss’ kappa (K), which measures reliability 

among a group of experts. We calculated K using the R 

software package irr (Gamer et al. 2014). 

The survey was designed through Augmented Visual 

Interpretation and implemented in “Open Foris Collect” 

software (http://www.openforis.org/tools/collect.html) (Bey 

et al. 2016). This platform is open source and provides a 

flexible solution for data management, allowing full 

customization of survey structure, variables, and data checks. 

To apply the survey, we used “Collect Earth”, which is a free 

and open source tool for land monitoring that uses Google 

Earth and Google Earth Engine, and was developed by FAO 

(Bey et al. 2016). For land cover identification of each local 

expert we mostly used historical Google Earth images but in 

years with no availability of these images we used Landsat 

images.  

 

 

2.4 Natural forest and tree plantation losses estimation 

We estimated the tree cover loss area in the whole hotspot 

distinguishing between tree plantation and natural forest loss 

for the entire period using boosted regression trees (BRT). For 

the training data set we use one sample per patch (discarding 

all duplicate samples in a patch) which is equivalent to a total 

of 1,219 samples. Then, on that way the samples are relatively 

spatially independent. The decision trees were generated first 

by linking the potential explanatory variables to the response 

variables. As response variable we used the binary variable of 

forest loss (natural forest = 1, and tree plantation = 0). We 

specified three parameters to fit the model: tree complexity 

(5), learning.rate (0.01), and bag fraction (0.8). We 

constructed a set of environmental variables maps as 

explanatory variables from spatially-explicit data on 

geography, landscape characteristics, and tree cover loss patch 

metrics (Appendix 2). The  environmental explanatory 

variables were: latitude, longitude, elevation, slope, distance 

to cities, distance to villages, distance to roads, and different 

patch-lost metrics (year loss, area, perimeter, area/perimeter, 

and perimeter/area). We thus examined the correlation matrix 

of all these explanatory variables and excluded those that were 

highly correlated (|r|>0.6) to avoid multicollinearity.  

This technique generates many regression trees that are 

combined into one ultimate regression tree model, boosting 

the ultimate model’s accuracy and predictive performance  

(Elith et al. 2008). After training the model, a validation 

accuracy score estimates the performance of the model on an 

independent dataset (20%). When the dataset of observations 

are divided into k disjoint subsamples (or folds), then is taken 

a group as a hold out or test dataset  and the remaining groups 

as a training dataset, this procedure is known as K-Fold Cross-

Validation. In our study, we adopted the latter procedure (with 

K=5) to validate, to avoid overfitting and to estimate the 

average classification. Then, the majority of model predictions 

were applied across all study area. 

We calculated usual measures of model performance as the 

Area under the ROC curve (AUC), the correlation between the 

observed and predicted values, sensibility and sensitivity 

(Shabani et al. 2016). Sensitivity is the percentage of positive 

observations that are correctly classified whereas sensibility is 

the percentage of negative observations that are correctly 

identified. AUC assess the overall accuracy of the classifier’s 

performance. AUC value near 0.5 means that the predictive 

ability of the model is completely random and a value of 1.0 

represents a perfect prediction without misclassification. 

We assessed the uncertainty of the model estimations 

across the latitudinal gradient of the study area. The model 

estimates the relative influence of each explanatory variable. 

We thus chose those explanatory variables with ≥8% of 

influence in BTR models (a strong relationship with the 

response variable). The influence was based on the number of 
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times a variable was selected for splitting, weighted by the 

squared improvement to the model as a result of each split, 

and averaged over all trees (Elith et al. 2008). We fitted the 

model using the dismo package implemented in R (R 

Development Core Team 2016). 

3. Results 

Total tree cover loss in the entire Chilean biodiversity 

hotspot for the period 2000-2016 was 1,756,052 ha (109,753 

ha/year in average). Overall, there was a continuous increment 

in tree cover loss during the whole period, ranging from 

approximately 70,000 ha/year in 2001 to 160,000 ha/year in 

2016 (Fig.2b and Fig. 3). The main contributors of change (i.e. 

the land-cover types after tree cover loss) were tree plantation 

(44%), bare land (36%), and shrubland (11%). 

 

 
Figure 3. Annual tree cover loss in the Chilean hotspot 

according to Hansen et al. (2013) updated database. 

 

3.1 Land cover classification accuracy assessment  

The global assessment of local experts showed high 

accuracy values for differentiation between natural forest and 

exotic tree plantation, as well as for the other land covers. 

Mean global accuracy from the independent field samples 

applied to the 10 local experts was 99% (natural forest and 

exotic tree plantation rised 99% and 98% respectively). This 

result was consistent with Fleiss’ Kappa analysis  where K = 

0.95. Sensitivity analysis showed that the influence of sample 

size variation on land-cover type identification prior and after 

the tree cover loss decreases as sample size increases 

(Appendix 3).  

 

3.2 Tree cover losses 

Based on the sampling, most of tree cover loss turned to 

exotic tree plantations in the whole time period (2000-2016), 

explaining 85% of the tree patches lost, while only 15% of the 

samples were natural forests loss. These tree plantations lost 

mostly returned to be plantation (51%), even in some cases 

they were changed to  bare land (38%), grassland (5%), 

shrubland (5%), and other land-cover types (1%). On the 

contrary, natural forests were converted mainly to shrubland 

(40%), bare land (27%), grassland (11%), cropland (10%), 

tree plantation (7%), and other land covers (5%) (see examples 

in Appendix 4).  

Total tree cover loss was mostly concentrated in the north-

central area of the hotspot (the peak at 37°S) (Fig. 4). 

However, there was a skewed longitudinal pattern towards the 

coastal range, which is consistent with the peak of spatial 

distribution of tree plantation (Fig. 2). Natural forest loss was 

more scattered throughout the region in most time periods, 

though it was  more evident further south. 

 

 
Figure 4. Map of sample points by type of tree cover loss and 

period (red points = tree plantation, green points = natural 

forest). 

 

Overall, tree plantation and natural forest showed an 

increasing pattern of tree cover loss during the whole period 

(Fig. 4, Appendix 5). Tree plantation clear cutting was 

relatively constant until the period 2012-2013. However, from 

the period 2014-2015 onwards it increased substantially. 

Natural forest loss remained relatively constant with minor 

fluctuations until 2010, then increased, first steadily, and after 

2013-14 more sharply (Appendix 5).  

 

3.3 Disaggregating tree cover losses  

Our model to predict disaggregated tree cover loss in the 

whole study area obtained high accuracy under different 

indicators (Table 1). It is especially relevant the high AUC 

using train and cross-validation data. Model performance 

results were consistent due to the high values of correlation, 

sensibility and sensitivity, the last ones over 85%. 

 

Table 1. Model performance statistics for boosted regression 

tree model of disaggregated tree forest loss prediction. s.e.= 

standard error for cross-validation. 

Indicator Training Cross-

validation 

s.e. 

AUC 0.98 0.96 0.02 

Correlation 0.94 0.87 0.02 

Sensibility (%) 98 92 1.84 
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Sensitivity (%) 97 85 1.71 

 

Our initial model was reduced to five main explanatory 

variables (Appendix 6), with far latitude the most influencing 

variable (73%). Other relevant variables were longitude 

(10%), elevation (9%), perimeter/area relationship (4%), and 

distance to cities (4%).  

The disaggregation of total tree cover loss in the study area 

revealed that from the total 1,756,052 ha, 1,549,909 ha 

corresponded to tree plantation loss (mean =  96,869 ha/year), 

while 206,142 ha corresponded to natural forest loss (mean = 

12,884 ha/year). The spatial pattern of disaggregated tree 

cover loss predictions (Fig. 5) showed the same pattern of the 

sample points, which also indicated the consistence of our 

results. Uncertainty of estimations across the whole latitudinal 

range of the study area showed low error. Higher error are 

located in the southern area, however the maximum error 

remains being lower than 10% (Appendix 7). 

 

 
Figure 5. Map of spatial predictions of tree cover loss 

disaggregated by forest plantation and natural forest. 

 

4. Discussion 

4.1. Natural forest and tree plantations losses  

We present an application to test disaggregation of tree 

cover loss into natural forests and tree plantations in a 

representative place, where forestry is a relevant economic 

activity. Chile is one of the top ten countries in the world in 

terms of land dedicated to forestry based on exotic tree 

plantations and the fifth in the Americas (Cubbage et al. 

2007), with 3.2 million ha (CONAF 2019). Moreover, forestry 

has been estimated as the main driver of tree cover loss. In 

particular, in Europe, North America, Russia/China/South 

Asia, and Australia/Oceania it represents 99%, 56%, 41%, and 

29% of tree cover loss respectively (Van Holt et al. 2016, 

Curtis et al. 2018).  

We differentiated tree-cover loss among natural forest and 

exotic tree plantation with high accuracy. This is not an easy 

task, especially at large scales given the difficulties of remote 

sensing techniques and data. The main reason of that is 

because tree plantations are easily visible on the satellite 

images given its homogeneous structure (Wang and Huang 

2012, Van Holt et al. 2016) which local experts are able to 

identify. Our method takes advantage of freely available data 

and  remote sensing techniques combined with expert local 

knowledge that have the potential to reproduce the analysis for 

any region in the world. Moreover, our results illustrate well 

the advantages of combining remote-sense measurements and 

expert knowledge than to use remote-sense technology alone 

(Cayuela et al. 2006, El Hajj et al. 2009, Huang and Jia 2012, 

Mialhe et al. 2015). In this sense, we provide transparent, 

comprehensive,  confident and a cost-efficient data-set given 

its several advantages of this approach as stability, 

replicability, easy to share, testable and low cost.   

Based on the sampling, e also found that the most important 

contributor of whole tree cover loss is tree plantation, which 

account for 44% of total tree cover loss. When we separate the 

tree cover loss, more than 50% of tree plantation loss finished 

as tree plantation at the end of our assessment period, and this 

pattern is consistent with last global assessment (Curtis et al. 

2018). After tree cover loss some land cover types are 

transitional (i.e. bare land and grassland), but usually and in 

particular in Chile these land cover types represent a stage in 

the intensive harvesting activities of the tree plantation 

dynamic (Aguayo et al. 2009, Patterson and Hoalst-Pullen 

2011). Therefore, it would be likely that most tree plantation 

remain over time with the same land use type. Also is 

important to highlight that the main drivers of forest 

plantations loss can be associated to both harvesting and fires 

which we have not differentiated. Further research is needed 

about this topic and especially about the underlying causes of 

tree plantation and natural forest loss given that both are 

related to different dynamics of change. 

Natural forest loss continues to be an importanr concern  in 

one of the most endangered areas worldwide, where our 

results show that approximately 13,000 ha/year are replaced 

by shrublands, bare lands, grasslands, croplands, and exotic 

tree plantations. This result contradicts some research pointing 

out that the expansion of planted forests has the potential to 

reduce pressure on natural forests (Köhlin and Parks 2001, 

Kauppi et al. 2006). Other studies support our findings and 

shows that exotic tree plantation expansion has resulted in a 

contraction of natural forests (Heilmayr 2014, Sloan and Sayer 
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2015, Van Holt et al. 2016, Miranda et al. 2017, Hua et al. 

2018) and can potentially increase deforestation in certain 

regions (Pirard et al. 2016). After natural forest loss, 

transitional land cover types (e.g. shrubland, bare land, 

grassland) can be found which will finish as permanent ones 

(e.g. agricultural crops, tree plantation). These transitional 

land cover types account for more than 75% of natural forest 

loss. An important proportion of these may finish as tree 

plantation as illustrated by several examples (Austin et al. 

2019, Altamirano et al. 2016, Patterson and Hoalst-Pullen 

2011, Aguayo et al. 2009). 

 

4.2. Implications for public policies on forest management 

and restoration 

Inconsistences in terms of the information and applied 

monitoring methods are recognized by FAO for national forest 

monitoring systems (MacDicken 2015). This is particularly 

important in Chile, where the Global Forest Resources 

Assessment (FRA) report indicated a net increase of natural 

primary forests from 4,631,000 (1990) to 5,355,000 ha (2015), 

and other natural regenerated forest from 8,925,000 to 

9,336,000 ha (FAO 2014). Our results highlight the 

implications of information misinterpretation, and represent 

an opportunity for local, but also global policies related to 

forest management and conservation and large-scale forest 

monitoring.  

Increasing the world's forest cover have been settled as the 

most important goal for fighting against and adapting to 

climate change (Chazdon 2014, Bastin et al. 2019, Lewis et 

al. 2019, Carey 2020). But the current forest restoration 

strategies at landscape scales (and even larger), including 

different activities (e.g., from strict restoration to monoculture 

of tree plantations), may have different impacts on 

biodiversity, carbon, water, and eventually on human 

wellbeing (Chazdon and Brancalion 2019, Lewis et al. 2019). 

Therefore, negative outcomes for the environment could result 

if strategies incentivize exotic tree plantations establishment. 

In this context, differentiating the cover dynamics of natural 

forests and exotic tree plantations is highly relevant.  

Current sectorial policies supporting forest restoration 

ignore the links between biodiversity, water, soil retention and 

timber-production (Latawiec et al. 2015). With so many 

multiple benefits, regrowing forests would be seen as a means 

for achieving goals related to sustainability and human 

livelihoods (Chazdon et al. 2017). But to achieve this, new 

forest visions should be encouraged based on a more 

comprehensive understanding of the ecological landscape 

impacts of managing natural forest and tree plantations, and 

eventually built a better base for developing more efficient 

economic compensating mechanism to ensure the multiple 

functions and benefits these tree covers may provide (Chazdon 

and Brancalion 2019).  

Our results can be useful to build capacity for land 

monitoring and to improve our collective understanding of 

forest loss dynamics at global scale, and even more it can be 

expanded to other conflicts of land use and land cover change. 

For instance, it could be used to check FAO statistics in places 

where we are unsure or/and accessibility is limited. Currently, 

forest certification covers an important area of world managed 

forests and tree plantations (FSC 2018) but it requires accurate 

monitoring systems. The current climate change crisis and the 

related forestry agendas (e.g., REDD+ and Aichi Targets for 

2020) require critical revision in global policy discussions, 

and at the same time an accurate and specific land monitoring 

system which can help to prevent the growing problem of 

green grabbing in land use (e.g., Zhao et al. 2014, Scheidel 

and Work 2018).  

Chile has currently proposed its goal of National 

Determined Contribution (NDC) to face the climate crisis, but 

the current proposal for reducing greenhouse gas emissions 

inadequately addresses forest management mainly through 

tree plantations (Chazdon and Brancalion 2019, Duran and 

Barbosa 2019, Rudel et al. 2019). The proposal considers to 

plant 200,000 ha of forests mainly oriented to tree plantations 

(approximately 130,000 ha). Tree plantation is not a 

permanent land cover as our results demonstrate, and this has  

serious implications for climatic goals given  harvested 

systems, and carbon loss sequestered. Additionally, this target 

results clearly insufficient to counterbalance the forest loss 

area reported in this study. Initiatives to reduce carbon 

emissions should encourage differentiating natural forests 

from exotic tree plantations and pay more attention on 

protecting and managing sustainably the former. To advance 

towards a global monitoring system, effectively differentiate 

global tree cover loss should be an urgent goal as a climate 

change mitigation action and to face the current environmental 

global challenges. 
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