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Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common primary central nervous system tumour. Despite extensive
therapy, GBM patients usually have poor prognosis with a median survival of 12–15 months. Novel molecular biomarkers that
can improve survival prediction and help with treatment strategies are still urgently required. Here we aimed to robustly identify a
gene signature panel for improved survival prediction in primary GBM patients. We identified 2166 differentially expressed
genes (DEGs) using meta-analysis of microarray datasets comprising of 955 samples (biggest primary GBM cohort for such
studies as per our knowledge) and 3368 DEGs from RNA-seq dataset with 165 samples. Based on the 1443 common DEGs,
using univariate Cox and least absolute shrinkage and selection operator (LASSO) with multivariate Cox regression, we iden-
tified a survival associated 4-gene signature panel including IGFBP2, PTPRN, STEAP2 and SLC39A10 and thereafter established
a risk score model that performed well in survival prediction. High-risk group patients had significantly poorer survival as
compared with those in the low-risk group (AUC = 0.766 for 1-year prediction). Multivariate analysis demonstrated that
predictive value of the 4-gene signature panel was independent of other clinical and pathological features and hence is a potential
prognostic biomarker. More importantly, we validated this signature in three independent GBM cohorts to test its generality. In
conclusion, our integrated analysis using meta-analysis approach maximizes the use of the available gene expression data and
robustly identified a 4-gene panel for predicting survival in primary GBM.
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Introduction

Globally, there were about 330000 incident cases of central
nervous system (CNS) cancers with a significant increase in
age-standardized incidence rate (17.3%) between 1990 and
2016. However, there was no significant change in age-

standardized death rate (2.2%) globally between 1990 and
2016 when about 227,000 deaths were reported due to CNS
cancers [1]. In particular, CNS cancer incidence was about
5053 in the UK in 2016 with a 21.6% change in age-
standardized incidence rates between 1990 and 2016 [1].
Among these cancers, brain tumour incidence rates in the
UK are expected to rise by 6% between 2014 and 2035 [2].
Glioblastoma multiforme (GBM), classified as a grade IV
glioma (a brain tumour sub-type) as per the World Health
Organization (WHO) classification is the most common and
aggressive primary CNS tumour [3, 4]. About 2500 new
GBM cases are diagnosed each year in England alone [5].
Currently, standard treatments for GBM include surgical re-
section followed by radiotherapy and adjuvant chemotherapy
[6]. Despite recent advances in treatment strategies, the medi-
an survival of GBM patients is still about 12–15 months
shorter than most of the other major cancers, e.g. breast cancer
[7]. The poor outcome for GBM patients is the worst 5-year
overall survival (OS) rate among all human cancers [8, 9].

Over the last decade, an increased focus has been on elu-
cidating the molecular pathogenesis of GBMby identifying its
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specific molecular signatures and pathways [10, 11]. Some of
these molecular genetic alterations, for example, isocitrate de-
hydrogenase 1 and 2 (IDH1/2) mutation and O6-
methylguanine-DNA methyltransferase (MGMT) promoter
methylation, have been recognized as more appropriate diag-
nostic and prognostic markers, respectively, in GBM than
histological appearance alone [11, 12]. However, given the
dismal prognosis of GBM, novel molecular signatures that
can improve survival prediction and treatment response to
better prognostic and therapeutic success are still urgently
required.

Recently, large amounts of high-throughput genomic data
generated using microarrays and next-generation sequencing
(NGS) techniques have been archived on public databases
such as Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/), ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/), The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov) and Chinese Glioma Genome Atlas
(CGGA, http://www.cgga.org.cn). These provide us the
opportunity and resources to explore, integrate and reanalyse
the already existing data for new biomarker discovery and
validation. In addition, previous studies have reported a
correlation between differentially expressed genes (DEGs),
microRNAs, long non-coding RNAs and differentially meth-
ylated genes and GBM prognosis and have indicated prognos-
tic value using bioinformatic analysis [13–23], but no consis-
tent model exists. For instance, Zuo et al. (2019) [15] and Cao
et al. (2019) [16] identified a panel of 6 and 4 genes, respec-
tively, for prognosis prediction with no genes in common.
Multiple studies have also focused on establishing solitary
gene-GBM relationship without considering the potential ad-
vantage of gene combination which may have limited prog-
nostic and predictive power [13, 14].

To improve prognostic and predictive power, a number
of recent studies considered multiple mRNA expression
datasets and have identified panels of genes to predict
prognosis in GBM patients [15–21]. Despite this, these
studies have limited focus on a few datasets. Some studies
lacked validation of their panels or models in independent
cohorts, whereas there is no proper assessment of sensi-
tivity and specificity of the prognostic models in others.
Inclusion of more available datasets as well as application
of meta-analysis methods [24, 25] to increase the statisti-
cal power of studies as a result of larger sample size can
lead to a more robust selection of genes [26]. A robust
selection of genes has the potential to improve prognosis
prediction and treatment response in GBM. Moreover,
these studies are also constrained by small number of
normal samples. Furthermore, the majority of GBMs
(~90%) develop de novo, i.e. they are primary GBM,
and have worse prognosis than secondary GBMs which
progress from lower-grade astrocytomas [27]. Hence, con-
sidering them separately is important.

In this study, we aimed to robustly identify a gene signature
panel for improved survival prediction in primary GBM pa-
tients by conducting an integrated analysis on mRNA expres-
sion data available on public databases including TCGA,
GEO and ArrayExpress. Here, DEGs were discovered from
collected microarray datasets by using a novel meta-analysis
approach we proposed previously [24], while DEGs from
TCGA mRNA sequencing (RNA-seq) dataset were identified
by RNA-seq analysis. Based on the common DEGs between
microarray and RNA-seq datasets, prognosis-related genes
were screened by univariate Cox regression. Among these,
by using least absolute shrinkage and selection operator
(LASSO) approach with multivariate Cox [28], we identified
a survival associated 4-gene signature panel and established a
risk score model for survival prediction in primary GBM.
Moreover, we assessed the sensitivity and specificity of the
model using time-dependent receiver operating characteristic
(ROC) curves and validated this signature in three indepen-
dent primary GBM cohorts.

Results

Differential Expression of Genes in GBM

Meta-analysis identified 2166 DEGs (hereby called as meta-
DEGs) in GBM compared with normal brain tissues of which
707 were upregulated and 1459 downregulated. Similarly,
3368 genes were found to be DEGs (hereby called as RNA-
seq DEGs) in the TCGA RNA-seq dataset of which 1086 and
2282 were up- and down-regulated, respectively (Fig. 1a).
Between meta-DEGs and RNA-seq DEGs, 1443 DEGs
(66.62% of meta-DEGs and 42.84% of RNA-seq DEGs) were
common (Fig. 1b). Fisher’s exact test (P-value <2.2 × 10−16)
showed that the overlap was statistically significant. All ex-
cept three overlapped DEGs were regulated in the same direc-
tion (up or down) in both approaches suggesting that results
were consistent among different techniques (Fig. 1c).

Prognostic Gene Signature Identification for GBM

By applying univariate Cox regression, we evaluated each
common DEG for prognostic significance. Out of 1443 com-
mon DEGs (see supplementary file 1, Table S1), 123 were
found to be associated with overall survival (OS, Cox P-value
< 0.05). Thereafter, by using LASSO on these 123 genes, we
identified STEAP2 metalloreductase (STEAP2), insulin-like
growth factor binding protein 2 gene (IGFBP2), midkine
(MDK), protein tyrosine phosphatase receptor type N2
(PTPRN2), solute carrier family 43 member 3 (SLC43A3),
protein tyrosine phosphatase receptor type N (PTPRN), SIN-
HDAC complex associated factor (SINHCAF), methylenetet-
rahydrofolate dehydrogenase (NADP+dependent) 2,
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methenyltetrahydrofolate cyclohydrolase (MTHFD2),
granulin precursor (GRN), and solute carrier family 39 mem-
ber 10 (SLC39A10) as the top 10 survival-related genes. The
results were similar when LASSO was applied to all those
1443 common DEGs. However, only IGFBP2, PTPRN and
STEAP2 remained consistently significant (Cox P-value <
0.05) for OS after multivariate Cox regression analysis was
conducted on the top (5–10) survival-associated genes.

In order to robustly select a panel of genes among these top
10 genes, we fixed the top three IGFBP2, PTPRN and
STEAP2 and looked for others that significantly improved
survival prediction. After multivariate Cox regression was
conducted on these combinations, we assessed their perfor-
mance in survival prediction using the risk score model for
each combination and time-dependent ROC curves. Area
Under Curve (AUC) at 6 months and 1-year time points was
calculated. Finally, a 4-gene signature (IGFBP2, PTPRN,
STEAP2 and SLC39A10) that optimally predicted the OS of
GBM patients (Table 1) was identified where SLC39A10 had
negative effect while other three all had positive effects.

Risk Score Model Based on the 4-Gene Signature
Predicts Survival in TCGA GBM Cohort

To assess GBM prognosis based on the 4-gene signature, a
risk score model was established to compute risk scores (r) for
each patient using the following formula (Figure 2a):

r ¼ 0:323eIGFBP2 þ 0:226ePTPRN

þ 0:288eSTEAP2−0:385eSLC39A10

where egene is the expression value of a gene in TCGA GBM

cohort. Then, based on the median value of risk scores defined
by the above formula, the patients in TCGA GBM cohort
were divided into a low-risk (79 patients) and high-risk (79
patients) group. In the high-risk group, IGFBP2, PTPRN and
STEAP2 exhibited a higher expression than in the low-risk
group, whereas a lower expression was observed in the
high-risk group for SLC39A10 (Fig. 2b). Kaplan-Meier anal-
ysis with log-rank test revealed a shorter survival for patients
in the high-risk group than that of the low-risk group (P-value
< 0.0001, Fig. 2c) suggesting that there might be an adverse
association between OS and the risk scores.

Time-dependent ROC curves showed that the risk scores
were capable of predicting survival with high specificity and
sensitivity as seen in Fig. 3a and 3b. AUC for the 6 months
and 1-year survival prediction were 0.693 and 0.766. The
patient’s division into high- and low-risk groups was further
improved by using the optimal cut-off selected bymaximizing
the Youden’s index [29] in the ROC curve which in turn
optimizes sensitivity and specificity. For 6 months and 1-
year survival prediction, the cut-off was 2.27 and 2.36, respec-
tively. Survival curves constructed using Kaplan-Meier meth-
od with log-rank test further suggested a marked difference in
OS between the two risk groups (P-value < 0.0001) (Fig. 3c
and 3d).

Prognostic Gene Signature and Pathoclinical Factors
in TCGA GBM Cohort

Clinical and pathological factors (including age, gender, IDH
mutation status and MGMT methylation status) for which the
information was present were studied to assess if the prognos-
tic value of the 4-gene signature was independent of these
factors. By using univariate Cox regression analysis, IDHmu-
tation status (HR = 0.302, 95%CI: 0.123–0.744, P-value =
0.009), MGMT methylation status (HR = 0.553, 95%CI:
0.360–0.848, P-value = 0.007), and the prognostic
signature-based risk score (HR = 2.709, 95%CI: 2.004–
3.662, P-value < 0.001) were found to be significantly asso-
ciated with OS whereas age and gender (P-value > 0.05) were
not (see Table 2). Furthermore, multivariate Cox regression
analysis by considering IDH mutation status,MGMT methyl-
ation status and risk score as covariates showed that only risk

Table 1 Multivariate Cox regression analysis result for the four genes
of the prognostic signature.

Gene Coeff. (β) HR (95% CI.) P-value

IGFBP2 0.323 1.381 (1.189, 1.603) < 0.001

PTPRN 0.226 1.254 (1.096, 1.433) < 0.001

STEAP2 0.288 1.333 (1.095, 1.623) 0.004

SLC39A10 −0.385 0.681 (0.488, 0.949) 0.024

Fig. 1 Differentially expressed genes between GBM and normal brain
tissues. (a) Tabular diagram showing the number of up- and down-
regulated DEGs of GBM in meta-analysis for microarray data and
TCGA RNA-seq analysis. (b) Venn diagram representing the total

number of overlapped DEGs between the meta-analysis for microarray
data and TCGA RNA-seq analysis. (c) Number of up- and down-
regulated DEGs in the overlapped DEGs between the two DEGs list
(meta-analysis and TCGA RNA-seq analysis)
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score (HR = 2.410, 95% CI: 1.569-3.700, P-value < 0.001)
was significantly associated with patient prognosis (see
Table 2b). All these indicated that the 4-gene signature-based
risk score was an independent adverse prognostic factor.
Overall survival time was considered for both univariate and
multivariate Cox regression analysis for all the covariates.

Multivariate analysis with IDH mutation status, MGMT
methylation status and risk status at different time points re-
vealed that IDHmutation status and risk status were associated
with OS (see Table 2b). Here, risk status refers to the risk group
a patient is classified in based on the cut-off. As IDH mutation
status was identified as OS-associated, the patients were strati-
fied based on this. In the TCGA GBM cohort, since there are

very small number of IDHmutant patients (9 in total), we only
considered IDH-wt patients for further stratification analysis to
reduce bias. The IDH-wt patients were sub-divided into high-
and low-risk groups using the optimal cut-off points. Risk score
and IDH-wt combined survival analysis showed that the IDH-
wt patients in high-risk group had considerably poor prognosis
than the low-risk IDH-wt patients (Fig. 4a and 4b).

Risk Score Model Validation in Independent Primary
GBM Cohorts

CGGA RNA-seq data including 84 primary GBM samples
and two microarray datasets, GSE16011 comprising of 155

Fig. 3 Survival prediction by the
4-gene prognostic signature. (a)–
(b) ROC curves for 6 months and
1 year survival prediction by the
four gene signature. Points
marked in black represent the op-
timal cut-off selected for dividing
patients into high and low risk
groups based on optimization of
sensitivity and specificity by
maximizing Youden’s index. (c)–
(d) Kaplan-Meier curves of over-
all survival of the high- and low-
risk groups based on optimal cut-
off for 6 months (2.27) and 1 year
(2.36), respectively

Fig. 2 Association between the 4-
gene signature and overall sur-
vival of GBM patients. (a) The
distribution of risk scores ordered
from low to high. (b) Heatmap
showing the expression of the
four prognostic genes. The ex-
pression change from left to right
corresponds to the risk score from
left to right. (c) Survival curves
using Kaplan-Meier analysis of
overall survival when patients are
divided into two risk groups
based onmedian of the risk scores
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primary GBM cases and GSE43378 (32 primary GBM cases)
were used for validation of the risk score model. The risk
scores were calculated using the same parameters (βk's) as that
of the TCGA GBM cohort. Patients were divided into differ-
ent risk groups based on the re-estimated cut-off points using
time-dependent ROC curve analysis at 6 months and 1 year
time points (CGGA: 2.42 and 2.50, GSE16011: 2.54 and 3.01
& GSE43378: 1.33 and 1.51). Performance of the risk scores
were then evaluated by Kaplan-Meier analysis. As shown in
Fig. 5a–5f, the risk model works well in predicting OS in both
GSE16011, GSE43378 and CGGA GBM cohorts and

suggested a significantly shorter survival for high-risk group
patients compared with that in the low-risk group (P-value =
0.00023, 0.0017 and 0.016, respectively, at 1 year).

Discussion

Several recent reports indicate a potential application of a gene
panel-derived risk model in predicting GBM prognosis. Zuo
et al. (2019) [15] highlighted the implications of a gene panel
as a prognostic predictor in GBM by establishing a six-gene

Table 2 Pathoclinical factors and
the risk score: (a) Univariate and
multivariate Cox regression anal-
ysis of pathoclinical factors and
the risk score for TCGA GBM
cohort. IDH status, MGMT status
and risk score were considered for
multivariate analysis. (b) IDH
status, MGMT status and risk sta-
tus at 6 months and 1 year* were
considered for multivariate anal-
ysis. For each of the features (0)
indicates reference subgroup and
(1) indicates the other subgroup

Features Descriptor No. of patients Univariate Cox analysis Multivariate Cox analysis

HR (95% CI.) P-
value

HR (95% CI.) P-
value

(a)

Age < 60 (0)

≥ 60 (1)

74

84

1.336

(0.940, 1.899)

0.106 NA NA

Gender Female (0)

Male (1)

55

103

0.999

(0.691, 1.447)

0.999 NA NA

IDH status Wild-type (0)

Mutant (1)

143

9

0.302

(0.123, 0.744)

0.009 0.526

(0.155, 1.785)

0.303

MGMT status Unmethylated (0)

Methylated (1)

67

56

0.553

(0.360, 0.848)

0.007 0.772

(0.488, 1.221)

0.268

Risk score NA NA 2.709

(2.004, 3.662)

< 0.001 2.410

(1.569, 3.700)

<0.001

(b).

IDH status Wild-type (0) 143 0.302

(0.123, 0.744)

0.009 0.245

(0.075, 0.795)

0.019

Mutant (1) 9 0.250*

(0.077, 0.813)

0.021*

MGMT status Unmethylated (0) 67 0.553

(0.360, 0.848)

0.007 0.737

(0.468, 1.159)

0.186

Methylated (1) 56 0.703*

(0.449, 1.102)

0.124*

Risk stat.

(6 mon.)

Low (0)

High (1)

95

63

2.487

(1.735, 3.566)

< 0.001 2.074

(1.337, 3.217)

0.001

Risk stat.

(1-year)

Low (0)

High (1)

91

67

2.383

(1.665, 3.411)

< 0.001 1.931

(1.252, 2.978)

0.003

Fig. 4 Kaplan-Meier analysis of
overall survival of IDH-wt GBM
patients in TCGA GBM cohort.
(a) High- and low-risk groups
based on optimal cut-off for 6
months (2.27) and (b) 1 year
(2.36), respectively
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Fig. 5 Kaplan-Meier analyses of the four-gene panel in validation
datasets. (a)–(b) For the GSE16011 dataset with optimal cut-off points
estimated at 6 months (2.54) and 1 year (3.01) time points, respectively.
(c)–(d) For the CGGA RNA-seq dataset with optimal cut-off points

estimated at 6 months (2.42) and 1 year (2.50). (e)–(f) For the
GSE43378 dataset with optimal cut-off points estimated at 6 months
(1.33) and 1 year (1.51)
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signature risk score model using RNA-seq data from TCGA
and CGGA databases but lacked an independent validation of
the prognostic signature model. Cao et al. (2019) [16] demon-
strated that a 4-gene signature-derived risk score model can
predict prognosis and treatment response in GBM patients by
conducting a combination analysis on GBM mRNA expres-
sion data from two GEO datasets and TCGA, but the sensi-
tivity and specificity of the gene panel in survival prediction
were not reported. Yin et al. (2019) [17] identified a 5-gene
signature for prognosis prediction in GBM using TCGA
RNA-seq cohort and a dataset from GEO database
(GSE7696). However, the sensitivity and specificity were
assessed using time-independent ROC curves in which the
event (disease) status and marker value were considered fixed
over time for an individual. In practice, both the disease status
and marker value change over time. Moreover, the validation
carried out in this study could not be claimed as an indepen-
dent validation because the TCGA cohort used for validation
contained all the samples from TCGA RNA-seq training
cohort.

In our study, by integrating multiple gene expression
datasets generated by different techniques, i.e. microarray
and NGS, and conducting meta-analysis and RNA-seq analy-
sis, we identified four important DEGs, namely, IGFBP2,
PTPRN, STEAP2 and SLC39A10 in primary GBM which
were also significantly associated to OS. IGFBP2 was up-
regulated and inversely correlated with OS indicating it may
act as an oncogene. SLC39A10 which was down-regulated
and positively associated with OS may act as a tumour sup-
pressor gene in GBM. However, PTPRN and STEAP2 were
down-regulated and inversely correlated with OS. The risk-
score model based on this 4-gene signature performs well in
survival prediction for the TCGA GBM cohort and in three
independent validation cohorts. Our 4-gene signature-derived
risk score model performed better (AUC = 0.766 for 1-year
prediction) at classifying the patients into high- and low-risk
groups than the 6-gene signature derived and 5-gene signa-
ture-derived risk model described in Zuo et al. (2019) [15]
(AUC = 0.699 and 0.718 for CGGA and TCGA for 1-year
prediction) and Yin et al. (2019) [17] (AUC = 0.708), respec-
tively. It also performed better than the integrated classifier
reported in Cheng et al. (2019) [18] (AUC = 0.734 for 1 year).

Of the four genes identified in our prognostic panel,
IGFBP2, located on the human chromosome 2 (2q35), is a
member of the insulin-like growth factor binding protein fam-
ily and has established roles in GBM. It has been increasingly
recognized as a glioma oncogene and a therapeutic target [30,
31]. Overexpression of IGFBP2 has been found to promote
GBM cell migration and invasion and contributes to glioma
progression, recurrence, and poor survival in GBM [31].
Holmes et al. (2012) [31] demonstrated that IGFBP2 expres-
sion is closely linked to genes in the integrin and integrin-
linked kinase and that these genes are associated with

prognosis. Moreover, Liu et al. (2019) [30] established that
IGFBP2 promotes vasculogenic mimicry (VM) formation in
glioma cells via regulating CD144 and MMP2 expression.
VM has been considered as one of the reasons that GBM
becomes resistant to anti-VEGF therapy [30]. Our study con-
firmed significant up-regulation of IGFBP2 and predicted a
poor outcome for patients as shown in previous studies [17,
31–33], thus providingmore evidence for further research into
its functional roles during GBM progression. PTPRN is also
located on the human chromosome 2 (2q35) but is interesting-
ly down-regulated in GBM tissue and was associated with
poor prognosis as the expression increased. Recent reports
have also found that a higher expression of PTPRN in GBM
tissues is associated with a shorter survival of GBM patients
albeit it being down-regulated which was in line with our
finding [14, 17, 34]. In oncogenesis, Xu et al. (2016) [35]
showed that a high expression of PTPRN is associated to
tumour growth and proliferation in small cell lung cancer
(SCLC). The study further demonstrated that PTPRN is a
target of the miR-342 and that miR-342 mimics suppressed
the expression of PTPRNwhich lead to substantial decrease in
SCLC growth. However, the expression level of both miR-
342-3p (previously known as miR-342) and PTPRN has been
reported to be decreased in GBM samples [36, 37], thus
warranting future elucidation of other molecular mechanisms
involved in PTPRN expression and its role in GBM growth
and progression. STEAP2 is located on chromosome 7q21.13
close to STEAP1 and STEAP4 genes and plays a role in iron
and copper reduction [38]. Its role has been confirmed in
prostate and breast cancer in previous studies [39, 40] but
has not been studied in GBM. STEAP2 expression has been
found to be significantly increased in prostate cancer, and its
knockdown reduced the invasive potential of prostate cancer
cells [41]. On the other hand, it is down-regulated in breast
cancer tissues, and its low expression was associated with
malignant phenotype and poor prognosis [40]. In our study,
STEAP2 was significantly down-regulated in GBM tissues
and inversely associated with survival. Moreover, STEAP2
down-regulation could promote cell proliferation and invasion
by activating the PI3K/AKT/mTOR signalling pathway
which is also an activated pathway involved in GBM tumor-
igenesis [40, 42]. This indicates a new research objective for
future studies exploring the role of STEAP2 in GBM growth,
progression and prognosis. SLC39A10 is located on chromo-
some 2q32.3, and the encoded protein belongs to a subfamily
of proteins that show structural characteristics of zinc trans-
porters [43]. High expression levels of SLC39A10 have been
reported to be correlated with invasive behaviour by stimulat-
ing cell migration in breast cancer cells [44]. Similar observa-
tions have been made in the case of colorectal cancer [45] and
renal cell carcinoma [46]. Cao et al. (2019) [16] demonstrated
that SLC39A10 was down-regulated in GBM tissues and pos-
itively associated with survival which is consistent with our
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finding in this study, but its role in GBM progression is poorly
understood and requires further exploration in future studies.

A limitation of this study is that in some datasets used for
meta-analysis, epilepsy and white matter samples have been
deemed as control samples in order to have a considerable num-
ber of control samples as compared with the number of tumour
samples. The relatively small number of control samples might
lead to missing out some potential DEGs. Nevertheless, our
meta-analysis will outperform individual microarray studies.
Another limitation is that the independent validation is
constrained by availability of very few primary GBM datasets
that have large sample size (> 50). Nonetheless, our results were
validated in the two of the largest independent dataset (to our
knowledge) available. For validation datasets, patients were di-
vided into different risk groups based on the re-estimated cut-off.
Ideally, the same cut-off for both the discovery and validation
datasets should be used, but given the difference in expression
values for genes across different datasets generated using differ-
ent platforms, re-estimation of the cut-off is needed. Furthermore,
the role and function of the identified genes in GBM prognosis
should be further elucidated in wet-lab experiments.

To summarize, the biological functions and molecular
mechanisms in oncogenesis involving the four genes identi-
fied have provided hints towards understanding their roles in
GBM progression and prognostic and treatment significance
of the derived risk score. Moreover, future experimental work
is needed to better understand their roles and functions in
GBM. The 4-gene panel has promising practical value in the
treatment of primary GBM apart from being robust for
predicting the survival in primary GBM. In future integrated
analysis, we propose to understand the practical value in sur-
vival prediction by combining this gene signature with clinical
risk factors and other prognostic indices by applying machine
learning techniques.

In conclusion, our integrated analysis using meta-analysis
approach and two different gene expression techniques max-
imizes the use of the available gene expression data and ro-
bustly identified a 4-gene panel for predicting survival in pri-
mary GBM. Multivariate analysis demonstrated that the pre-
dictive value of the gene panel-derived risk score was inde-
pendent of other clinical and pathological features. Hence, the
4-gene panel is a potential prognostic biomarker of primary
GBM. Moreover, our findings provide new insights into
GBM pathogenesis and prognosis and necessitate future
studies.

Methods

Gene Expression Data Collection

As for the discovery datasets, public databases GEO (https://
www.ncbi.nlm.nih.gov/geo/), TCGA (https://portal.gdc.

cancer.gov/) and arrayExpress (https://www.ebi.ac.uk/
arrayexpress/) were searched for all primary GBM-related
mRNA expression studies of human brain tissue. Studies were
selected for analysis if they: (a) used clinically diagnosed
adult primary GBM patients and (b) had at least three control
and three tumour samples in their study cohort. Only one
biological sample was used for a certain patient in case there
were replicates or multiple samples from the same patient.
Using our search and selection criteria, we found eight micro-
array gene expression data sets (GSE4290, GSE12657,
GSE13276, GSE19728, GSE90886, GSE108474,
GSE116520 and TCGA microarray) with a total of 955 (865
case and 90 control) samples as well as the TCGA RNA-seq
dataset with 160 GBM and 5 control samples (Table 3). Seven
of the eight microarray datasets were Affymetrix chip gener-
ated, whereas one was Illumina chip produced. Corresponding
clinical information was also downloaded for these selected
studies.

Data Pre-processing

For the identified microarray datasets, raw CEL and non-
normalized expression files were obtained for the
Affymetrix platforms and Illumina HumanHT-12 V4.0 ex-
pression beadchip platform generated data, respectively.
Each dataset was prepared individually for the meta-analysis
starting with removal of outlier samples using box and density
plots. Data acquisition and pre-processing were done accord-
ing to the framework prescribed in Ramasamy et al. (2008)
[47]. The datasets were then normalized using the Robust
Multi-array Average (RMA) approach [48]. Annotation of
the probesets to Entrez Gene IDs and gene symbols was car-
ried out using the manufacturer supplied annotation files. The
probesets that did not map to any Entrez Gene ID were re-
moved. Probesets that mapped to multiple genes were re-
moved as well. For genes that matched to more than one
probesets, the one with the largest absolute estimated effect
size was kept [24]. To remove low expression data noise, a
two-step filtering was applied to each dataset. First, a pre-
filtering was done using the present/absent call (affy
MAS5.0 algorithm) such that the probesets that are present
in at least 10% of the samples are kept. For the perfect-
match arrays only, probesets with average expression level
less than three were discarded. Second, we removed the bot-
tom 5% of average expression values across samples for each
dataset. Additionally, for GSE108474 and TCGA microarray
dataset, batch-effect correction was applied using the ComBat
function in R (sva, version: 3.32.1) as they comprise of a
collection of data generated at various centres.

For GBM RNA-seq data, raw counts were downloaded
from TCGA database and were annotated by mapping
Ensembl IDs to Entrez Gene IDs and gene symbols
(org.Hs.eg.db package in R, version 3.8.2). We filtered out
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the one with no Entrez ID and in the case of multiple
matchings, we selected the one with highest aggregated count.
Counts per million (CPM) filtering were used to reduce the
number of low expressed transcripts [49]. We removed a tran-
script if five or more samples had less than 0.85 CPM for that
transcript. This is analogous to removing any transcripts with
less than 40 mapped reads across all samples. The remaining
transcripts were then normalized using the trimmed mean of
M values (TMM) normalizationmethod and common and tag-
wise dispersion were estimated. The edgeR package in R [50]
was used for RNA-seq analysis.

Differential Expression Analysis

We explored DEGs in both microarray and RNA-seq datasets
separately.

Meta-analysis for Microarray Studies

Differential expression analysis for all the microarray data sets
was performed using the novel meta-analysis method de-
scribed in Li et al. (2015) [24] and implemented as
metaUnion package in R (accessed from https://github.com/
chingtoe365/metaUnion). Using this method, a combined
effect size across studies was computed to identify DEGs
assuming normality of the data. We used this approach over
the other existing ones [51] because this method accounts for
the combined gene sets from all studies included in the meta-
analysis. The DEGs between control and tumour samples

were selected based on ∑
n

i¼1
jlog2 FCij=n > 1 and Bonferroni

P-value < 0.05 criteria where n denotes the number of datasets
in which a particular gene was present. However, we only
consider a gene as DEG for our final analysis if it was
present in at least two datasets included in the meta-analysis
to improve the robustness.

DEGs from RNA-seq Data

Once the transcripts were normalized and both common
and tag-wise dispersion estimated, a negative binomial
generalized log-linear model was fitted to the read counts
using the glmFit function in R under the edgeR package.
DEGs were then selected based on |log2FC| > 1 and
Bonferroni P-value < 0.05 criteria. To obtain the final
expression level for each gene, we computed the tran-
scripts per million (TPM) values as log2(TPM + 1). A
constant factor one was added to account for genes with
zero read count in some cases [17].

Common DEGs and Survival Analysis

To search for robust DEGs related to GBM, we selected
the DEGs that are common in the two DEG lists obtain-
ed from microarray meta-analysis and RNA-seq analy-
sis. A two-tailed Fisher’s exact test was used to deter-
mine the significance of overlap between these two
DEG lists. We also checked for consistency of our re-
sults by comparing what percentage of DEGs was reg-
ulated in the same direction in the two lists. Next, to
evaluate the association of common DEGs with OS, we
first conducted univariate Cox proportional hazard re-
gression analysis for each of them in the TCGA GBM
(RNA-seq) cohort. The proportional hazard assumption
was also checked and found to be appropriate in our
case. Second, for the significant genes (Cox P-value <
0.05) from the univariate analysis, we used LASSO
with multivariate Cox proportional hazards model to
robustly and optimally select a panel of genes which
were key DEGs associated with OS [28] (Fig. 6b).
Pathoclinical features were also assessed for association
with the overall survival using the univariate and mul-
tivariate Cox regression model. The workflow and
schematics of our study are shown in Fig. 6.

Table 3 Information about
microarray-generated datasets
and number of samples included
in our meta-analysis

Datasets Platform name Platform
ID

Case Control Total

GSE2490 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 81 23* 104

GSE19728 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 5 4 9

GSE108474 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 220 28 248

GSE12657 Affymetrix Human U95 Version 2 Array GPL8300 7 5 12

GSE13276 Affymetrix Human Genome U133A Array GPL96 5 3** 8

TCGA Affymetrix Human Genome U133A Array GPL96 521 10 531

GSE90886 Affymetrix Human Gene Expression Array (Prime
View)

GPL15207 9 9* 18

GSE116520 Illumina HumanHT-12 V4.0 expression beadchip GPL10558 17 8 25

*Epilepsy, **White matter
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Risk Score Model

Based on the selected survival associated gene signature, we
established a risk score (r) model [15–17] for prognosis, i.e.

r ¼ ∑
m

k¼1
βk � ek

where m is the total number of genes in the selected gene
signature and βk and ek are the multivariate Cox regression
coefficient and expression value of the kth gene in the signa-
ture respectively. r was computed for each patient using the
above formula, and patients were divided into low-risk and
high-risk groups. The split into these two risk groups was first
based on the median of risk scores and then optimized by
choosing the optimal cut-off determined by time-dependent
ROC curve analysis using Youden’s index [29]. Kaplan-
Meier method with log-rank test was used to analyse survival
differences and plot the survival curves for these two risk

groups.

Risk Score Model Validation

For validation purposes, three independent primary GBM
gene expression datasets (microarray and RNA-seq) with sur-
vival information were downloaded from GEO database
(GSE16011, GSE43378) and the CGGA (http://www.cgga.
org.cn/), respectively. These datasets were processed by the
same workflow as the one used for discovery datasets
described above. We used the same βk’s as the one for
TCGA GBM cohort for constructing the risk score model
for these datasets. Time-dependent ROC curves and Kaplan-
Meier method were used to validate the prognostic value of
the 4-gene signature for primary GBM patients.
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was carried out for each possible
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