
 

 

 

 

 

 

Establishment and characterization of a  

size-reduced, diabetic pig model by  

minipig crossbreeding 

 

 

 

 

 

 

 

von 

Natascha Bachmann 

  



 

 

Inaugural-Dissertation zur Erlangung der Doktorwürde 

der Tierärztlichen Fakultät  

der Ludwig-Maximilians-Universität München 

 

Establishment and characterization of a  

size-reduced, diabetic pig model by 

minipig crossbreeding 

 

 

 

von 

Natascha Bachmann 

aus 

Kant 

 

 

München, 2020 

 

 

 

 

 

 



Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen 

Fakultät 

 

 

 

der Ludwig-Maximilians-Universität München 

 

 

 

Lehrstuhl für Molekulare Tierzucht und Biotechnologie 

 

 

 

Arbeit angefertigt unter der Leitung von 

Univ.-Prof. Dr. Eckhard Wolf 

 

Mitbetreuung durch: 

Dr. Simone Renner 

  

 

 

 

 

 



Gedruckt mit der Genehmigung der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dekan: Univ.-Prof. Dr. Reinhard K.Straubinger, Ph.D. 

 

Berichterstatter: Univ.-Prof. Dr. Eckhard Wolf 

 

Korreferent: Priv.-Doz. Dr. Stefan Unterer 

 

 

 

 

 

Tag der Promotion: 25.07.2020 

 

 

 



 

 

 

 

 

 

 

 

Für meine Eltern 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS 

TABLE OF CONTENTS ....................................................................................................... VI 

INDEX OF ABBREVIATIONS ............................................................................................. X 

1 INTRODUCTION ........................................................................................................... 16 

2 REVIEW OF THE LITERATURE ............................................................................... 18 

2.1 Diabetes mellitus.......................................................................................................... 18 

2.1.1 Definition, history and status quo ...................................................................... 18 

2.1.2 Classification ..................................................................................................... 20 

2.1.2.1 Type 1 diabetes .................................................................................................. 21 
2.1.2.2 Type 2 diabetes .................................................................................................. 21 

2.1.2.3 Gestational diabetes mellitus ............................................................................. 22 

2.1.2.4 Specific types of diabetes due to other causes .................................................. 23 

2.1.3 Mutations in the insulin gene causing disorders of glucose homeostasis ......... 25 

2.2 Impact of insulin mutations on insulin biosynthesis, insulin bioactivity and insulin 

processing in pancreatic β-cells .................................................................................. 26 

2.2.1 INS-gene mutations affecting relevant steps of insulin biosynthesis ................ 26 

2.2.2 INS-gene mutations affecting insulin bioactivity .............................................. 29 

2.2.3 Consequences of INS-gene mutations on processes in the β-cell ...................... 29 

2.3 Animal models with insulin gene mutations ............................................................. 31 

2.3.1 Rodent models ................................................................................................... 32 

2.3.1.1 Ins2C96Y mutant (Akita) mouse model ............................................................... 33 

2.3.1.2 Munich Ins2C95S mouse model .......................................................................... 34 
2.3.1.3 Transgenic mouse expressing proinsulin-H34D ............................................... 35 

2.3.2 Porcine Models .................................................................................................. 36 

2.3.2.1 The INSC93S transgenic pig model ..................................................................... 37 
2.3.2.2 The INSC94Y transgenic domestic pig (DP) model ............................................. 38 

2.4 The minipig as an animal model for biomedical research ....................................... 40 

2.4.1 Crossbred minipig models ................................................................................. 40 

2.4.1.1 Sinclair miniature swine (Minnesota miniature) ............................................... 40 
2.4.1.2 Hanford miniature swine ................................................................................... 42 
2.4.1.3 Göttingen minipig .............................................................................................. 42 
2.4.1.4 Panepinto micropig ............................................................................................ 44 

2.4.2 Native minipig models ...................................................................................... 44 

2.4.2.1 Yucatan miniature swine and Micro-Yucatan miniature swine ........................ 44 

2.4.2.2 Chinese Guizhou minipig .................................................................................. 46 
2.4.2.3 Westran minipig ................................................................................................ 47 

2.4.2.4 Ossabaw minipig ............................................................................................... 47 

3 ANIMALS, MATERIALS AND METHODS............................................................... 50 

3.1 Animals......................................................................................................................... 50 

3.2 Materials ...................................................................................................................... 51 



3.2.1 Apparatuses ....................................................................................................... 51 

3.2.2 Consumables ..................................................................................................... 52 

3.2.3 Chemicals .......................................................................................................... 53 

3.2.4 Antibodies, drugs, enzymes, oligonucleotides, standards ................................. 55 

3.2.4.1 Antibodies ......................................................................................................... 55 
3.2.4.2 Drugs ................................................................................................................. 56 

3.2.4.3 Enzymes ............................................................................................................ 56 
3.2.4.4 Oligonucleotides ................................................................................................ 56 

3.2.5 Buffers, media and solutions ............................................................................. 56 

3.2.5.1 Buffers and solutions for electron microscopy .................................................. 56 
3.2.5.1.1 Soerensen´s phosphate buffer ................................................................................ 56 

3.2.5.1.2 Soerensen´s washing solution ............................................................................... 57 
3.2.5.1.3 Fixation solution for glycidether embedding ........................................................ 57 
3.2.5.1.4 Glycidether embedding mixture ............................................................................ 57 

3.2.5.1.5 Toluidine blue staining solution ............................................................................ 58 
3.2.5.1.6 Safranin O staining solution .................................................................................. 58 
3.2.5.1.7 Uranyl acetate contrasting solution ....................................................................... 58 
3.2.5.1.8 Lead acetate contrasting solution .......................................................................... 58 

3.2.5.2 Buffers for agarose gel electrophoresis ............................................................. 59 

3.2.5.2.1 TAE buffer (50x) ................................................................................................... 59 
3.2.5.2.2 TAE running buffer (1x) ....................................................................................... 59 
3.2.5.2.3 Loading buffer for DNA (6x) ................................................................................ 59 

3.2.5.3 Buffers and solutions for tissue preparation and immunhistochemical 

stainings ............................................................................................................. 59 

3.2.5.3.1 DAB solution ......................................................................................................... 59 
3.2.5.3.2 PBS ........................................................................................................................ 59 
3.2.5.3.3 TBS (10x) (pH 7.6) ............................................................................................... 59 

3.2.5.3.4 100 mM Tris/HCl (pH 8.5) .................................................................................... 60 

3.2.5.4 Solutions for hematoxylin and eosin staining ................................................... 60 

3.2.5.4.1 HCL-ethyl alcohol stock solution .......................................................................... 60 
3.2.5.4.2 HCL-ethyl alcohol working solution ..................................................................... 60 

3.2.5.4.3 1% eosin solution .................................................................................................. 60 

3.2.6 Kits .................................................................................................................... 60 

3.2.7 Other reagents .................................................................................................... 60 

3.2.8 DNA molecular weight markers ........................................................................ 61 

3.2.9 Software ............................................................................................................. 61 

3.3 Methods ........................................................................................................................ 61 

3.3.1 Generation of INSC94Y transgenic and non-transgenic MPHs ........................... 61 

3.3.2 Identification of INSC94Y transgenic and non-transgenic MPHs ........................ 61 

3.3.2.1 Isolation of genomic DNA from tail biopsy ...................................................... 61 

3.3.2.2 Polymerase chain reaction (PCR) ...................................................................... 62 
3.3.2.3 Agarose gel electrophoresis ............................................................................... 63 

3.3.3 Physiological characterization of INSC94Y transgenic and non-transgenic 

MPHs ................................................................................................................. 64 

3.3.3.1 Analyses of body weight gain and body measurements .................................... 64 
3.3.3.1.1 Body weight gain ................................................................................................... 64 
3.3.3.1.2 Growth parameters ................................................................................................ 64 
3.3.3.2 Body composition by Dual-energy X-ray absorptiometry (DXA) .................... 65 



3.3.3.3 Determination of blood parameters ................................................................... 66 
3.3.3.3.1 Blood glucose levels .............................................................................................. 66 

3.3.3.3.2 Clinical chemical parameters ................................................................................ 66 
3.3.3.3.3 Plasma insulin concentrations by radioimmunoassay (RIA) ................................ 66 
3.3.3.3.4 Plasma connecting peptide (C-peptide) concentrations by enzyme-linked 

immunosorbent assay (ELISA) ............................................................................. 67 

3.3.4 Morphological characterization of INSC94Y transgenic and non-transgenic 

MPHs ................................................................................................................. 67 

3.3.4.1 Necropsy ............................................................................................................ 67 
3.3.4.2 Absolute and relative organ weights ................................................................. 68 
3.3.4.3 Pancreas preparation and systematic random sampling .................................... 68 

3.3.4.4 Immunohistochemical staining of pancreatic tissue .......................................... 69 
3.3.4.5 Qualitative histological analyses of the endocrine pancreas ............................. 70 
3.3.4.6 Quantitative stereological analyses of the endocrine pancreas ......................... 71 
3.3.4.7 Examination of β-cell ultrastructural morphology by transmission electron 

microscopy (TEM) ............................................................................................ 72 
3.3.4.8 Qualitative histological evaluation of the kidneys ............................................ 73 
3.3.4.9 Qualitative histological evaluation of the eye lens ............................................ 73 

3.3.5 Statistics ............................................................................................................. 74 

4 RESULTS......................................................................................................................... 76 

4.1 Generation of INSC94Y transgenic and non-transgenic domestic pig-minipig 

hybrids (MPHs) ........................................................................................................... 76 

4.2 Genotyping by polymerase chain reaction (PCR) .................................................... 77 

4.3 Physiological characteristics of INSC94Y transgenic and non-transgenic domestic 

pig-minipig hybrids ..................................................................................................... 77 

4.3.1 Analyses of body weight gain and body measurements .................................... 77 

4.3.1.1 Body weight gain ............................................................................................... 77 
4.3.1.2 Growth parameters ............................................................................................ 79 

4.3.2 Body composition .............................................................................................. 85 

4.3.2.1 Bone mineral density ......................................................................................... 86 

4.3.2.2 Total tissue ........................................................................................................ 86 
4.3.2.3 Bone mineral content ......................................................................................... 87 
4.3.2.4 Fat mass ............................................................................................................. 88 
4.3.2.5 Lean mass .......................................................................................................... 90 
4.3.2.6 Gender-related differences in body composition of INSC94Y transgenic and non-

transgenic MPHs ............................................................................................... 92 
4.3.2.6.1 Total tissue ............................................................................................................ 92 
4.3.2.6.2 Fat mass ................................................................................................................. 93 
4.3.2.6.3 Lean mass .............................................................................................................. 94 

4.3.3 Blood parameters ............................................................................................... 95 

4.3.3.1 Blood glucose levels .......................................................................................... 95 
4.3.3.2 Plasma insulin concentration ............................................................................. 96 

4.3.3.3 Plasma levels of connecting peptide (C-peptide) .............................................. 96 
4.3.3.4 Clinical chemical parameters ............................................................................ 98 

4.4 Morphological analyses of the pancreas ................................................................. 100 

4.4.1 Absolute and relative pancreas weight ............................................................ 100 

4.4.2 Qualitative histological evaluation of the endocrine pancreas ........................ 101 



4.4.3 Quantitative stereological analyses of the endocrine pancreas ....................... 103 

4.4.4 Electron microscopic examination of β-cells .................................................. 107 

4.5 Evaluation of diabetes-related secondary alterations in organs ........................... 108 

4.5.1 Absolute and relative organ weights ............................................................... 108 

4.5.2 Absolute and relative organ weights of female INSC94Y transgenic MPHs and 

non-transgenic littermates. .............................................................................. 111 

4.5.3 Alterations of the kidneys ................................................................................ 112 

4.5.3.1 Absolute and relative organ weight of the kidneys ......................................... 112 
4.5.3.2 Histopathology of the kidneys ......................................................................... 113 

4.5.4 Alterations of the lens ...................................................................................... 115 

5 DISCUSSION ................................................................................................................ 116 

5.1 Principles and objectives .......................................................................................... 116 

5.2 Physiological characteristics of non-transgenic and INSC94Y transgenic domestic 

pig-minipig hybrids ................................................................................................... 116 

5.2.1 Altered blood parameters in non-transgenic and INSC94Y transgenic MPHs ... 116 

5.2.2 Growth retardation in non-transgenic and INSC94Y transgenic MPHs ............. 122 

5.2.3 Body composition of non-transgenic and INSC94Y transgenic MPHs .............. 126 

5.3 Morphological alterations in INSC94Y transgenic MPHs ........................................ 130 

5.3.1 Reduction of β-cell mass and rearrangement of pancreatic islets in INSC94Y 

transgenic MPHs ............................................................................................. 130 

5.3.2 Modified ultrastructural architecture of β-cells in INSC94Y transgenic MPHs . 133 

5.3.3 Diabetes-related secondary alterations in organs of INSC94Y transgenic 

MPHs ............................................................................................................... 136 

5.3.4 Conclusions and outlook ................................................................................. 138 

6 SUMMARY ................................................................................................................... 140 

7 ZUSAMMENFASSUNG .............................................................................................. 142 

8 INDEX OF FIGURES................................................................................................... 146 

9 INDEX OF TABLES..................................................................................................... 148 

10 REFERENCE LIST ...................................................................................................... 150 

11 ACKNOWLEDGEMENT ............................................................................................ 180 
 

  



INDEX OF ABBREVIATIONS 

ABCC8   ATP-binding cassette sub-family C member 8 gene 

ATF    activating transcription factor 

ATP    adenosine triphosphate 

ADA    American Diabetes Association 

AGEs   advanced glycation end products 

AR    aldose reductase 

BC    before Christ 

BMC    bone mineral content 

BMD    bone mineral density 

BMI    body mass index 

BS    body size 

BW    body weight 

Bip    binding immunoglobulin protein 

bZIP    basic domain/leucine zipper 

C/EBP    CCAAT/enhancer binding protein 

CHOP    C/EBP homologous protein 

C-peptide   connecting peptide 

CV    coefficient of variance 

DAB    3,3´diaminobenzidine tetrahydrochloride 

DCCT   Diabetes Control and Complications Trial 

DDSA   dodecenylsuccinic acid anhydride 

DNA    deoxyribonucleic acid 

DP    domestic pig 

DTT    1,4-dithiothreitol 



DXA    dual-energy x-ray absorptiometry 

EDTA   ethylenediaminetetraacetic acid  

e.g.    exempli gratia 

ELISA   enzyme-linked immunosorbent assay 

ENU    N-ethyl-N-nitrosourea 

ER    endoplasmic reticulum 

Ero1alpha   ER oxidoreductin-1alpha 

FBG    fasting blood glucose 

FPG    fasting plasma glucose 

FPI    fasting plasma insulin 

GCK    glucokinase gene 

GDM    gestational diabetes mellitus 

GFR    glomerular filtration rate 

GH    growth hormone 

GIP    glucose-dependent insulinotropic polypeptide 

GLP-1   glucagon-like peptide-1 

HbA1c   glycosylated hemoglobin 

hCG    human chorionic gonadotropin 

HDL    high-density lipoprotein 

HE    hematoxylin and eosin staining 

HEMA   2-hydroxyethyl methacrylate 

HLA    human leukocyte antigen 

HMGA1   high mobility group AT-hook 1 gene 

HNF    hepatocyte nuclear factor 

HOMA   homeostasis model assessment 



HRP    horseradish peroxidase 

HYMAI   hydatidiform mole associated and imprinted gene 

IDF    International Diabetes Federation 

i.e.    id est 

IFG    impaired fasting glucose 

IGF1    insulin-like growth factor 1 

IGT    impaired glucose tolerance 

INS    insulin gene 

INSR    insulin receptor gene 

IRE-1   inositol-requiring protein–1 

IUGR   intrauterine growth retardation 

IVGTT   intravenous glucose tolerance test 

KATP    ATP-sensitive potassium channel 

KCNJ11   potassium inwardly rectifying channel subfamily J member 11 gene 

LDLR   modified low-density lipoprotein receptor 

MHC    major histocompatibility complex 

MIDY   mutant INS gene induced diabetes of youth 

MMA   methyl methacrylate 

MNA    methylnadic anhydride 

MODY   maturity onset diabetes of the young 

MPH    domestic pig-minipig hybrid 

MRI    magnetic resonance imaging 

NASH   nonalcoholic steatohepatitis 

NDM    neonatal diabetes mellitus 

NIA    nicotinamide 



OGTT   oral glucose tolerance test 

PAN    pancreas 

PC    prohormone convertase 

PCDM   preconceptional diabetes mellitus 

PCR    polymerase chain reaction 

PEK-1   eukaryotic initiation factor 2 alpha kinase 

PERK   protein kinase r-like endoplasmic reticulum kinase 

PLAGL1   pleiomorphic adenoma gene-like 1 gene 

PMSF   phenylmethylsulfanylfluoride 

PMSG   pregnant mare serum gonadotropin 

PNDM   permanent neonatal diabetes mellitus 

RIA    radioimmunoassay 

ROI    region of interest 

ROS    reactive oxygen species 

SCNT   somatic cell nuclear transfer 

SEM    standard error of means 

SGLT2   sodium-glucose transport protein 2 

SP    signal peptide 

SPF    specific pathogen free 

SRP    signal recognition particle 

STZ    streptozotocin 

T1D    type 1 diabetes mellitus 

T2D    type 2 diabetes mellitus 

TBS    tris-buffered saline 

TEDDY   Environmental Determinants of Diabetes in the Young 



TEM    transmission electron microscope 

tg    transgenic 

TMB    tetramethylbenzidine 

TNDM   transient neonatal diabetes mellitus 

UKPDS   United Kingdom Prospective Diabetes Study 

UPR    unfolded protein response 

V    volume 

VSD    ventricular septal defect 

Vv    volume density 

WHO   World Health Organization 

wt    wild-type 

XBP-1   bZIP protein X-box binding protein 1 

  



 



Introduction 16 

1 INTRODUCTION 

Diabetes mellitus has reached epidemic extents worldwide (Zimmet 2017). The current global 

diabetes estimates exceeded all prior extrapolations, revealing that 463 million people were 

suffering from diabetes in 2019 with an expected increase of 25% and 51% for 2030 and 2045 

(Saeedi, Petersohn et al. 2019). The alarming prevalence shows the urgency to find new 

approaches to prevention and treatment of diabetes mellitus. Fundamental research in diabetes 

was predominantly conducted in animals especially in mice and rats (Aigner, Rathkolb et al. 

2008) but rodents have limitations in translational research. Therefore, more appropriate animal 

models for preclinical trials are needed that can mimic the human diabetic patient and are still 

feasible within limitations set by the laboratory or the project conditions. The pig is an 

auspicious large animal model for diabetes research. Unlike mice, pigs show a similar fat 

metabolism, β-cell architecture and β-cell content to humans. Moreover, their human-like size 

and physiology of their organs and their lifespan enable testing of β-cell replacement therapies 

and investigation of chronic hyperglycemia on different organs and organ crosstalk. Defined 

by their mode of disease onset, animal models can be divided in spontaneous or induced models 

(reviewed in (Brito-Casillas, Melian et al. 2016)). Recently, genetically-modified pig models 

have moved into focus, tailor-made they can resemble human disease mechanisms with great 

translational potential (Renner, Blutke et al. 2020). Existing genetically engineered diabetic pig 

models, like the INSC94Y transgenic domestic pig, have shown advantages compared to porcine 

diabetes models generated by other methods than genetic modification, i.e., pancreatectomy or 

chemical β-cell destruction. The method is non-invasive and the pigs develop a consistent overt 

diabetic phenotype, independent of other factors and lacking unintended side-effects due to diet, 

chemicals or drugs (Renner, Braun-Reichhart et al. 2013, Renner, Blutke et al. 2020).  

The aim of this study was the development and characterization of a size-reduced pig model 

expressing the well-known INSC94Y mutation to compare them to the INSC94Y transgenic 

domestic pig model. Crossbreeding of a minipig background caused the size reduction and 

enabled the use of the distinct advantages of a smaller pig strain. To optimize laboratory pig 

models they have to become as light and small as possible to facilitate daily handling, 

experimental procedures and to make them more cost-effective.  
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Nowadays, further long-scale, efficiency and safety studies are required for diabetes research 

to test new pharmacotherapies and to investigate their potential beneficial effect on pathological 

alterations in secondary organs associated with prolonged disease duration. Therefore, more 

suitable animal models are desired, combining a moderate body weight and size without lacking 

translational properties. 
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2 REVIEW OF THE LITERATURE 

2.1 Diabetes mellitus 

2.1.1 Definition, history and status quo 

Diabetes is a chronic metabolic disease of multifactorial origin (ADA 2020). Hyperglycemia, 

i.e., an increased blood glucose concentration is the hallmark of diabetes. High levels of blood 

glucose cause typical clinical symptoms as polydipsia, polyuria, and blurred vision. In severe 

cases hyperglycemia can lead to ketoacidosis or a non-ketotic hyperosmolar syndrome turning 

into a life-threatening state (IDF 2019). Diabetes can result in long-term damages in multiple 

organs due to microvascular complications like nephropathy, retinopathy and neuropathy and 

macrovascular complications including ischemic heart disease, stroke and peripheral vascular 

disease (Forouhi and Wareham 2014, IDF 2019). Undiagnosed or untreated diabetes increases 

the risk for these long-term effects and turns faster into a severe, health-threatening condition. 

Diabetes has a long history of awareness all over the world. Descriptions of symptoms and 

treatments have already been mentioned in Egyptian papyri dated back to 1500 before Christ 

(BC) (Lakhtakia 2013) as well as in ancient Chinese medical manuscripts (Karamanou, 

Protogerou et al. 2016). The Indian Surgeon Sushruta defined diabetes around 500 BC, using 

the name “Madhumeha” which means sweet urine disease, after he discovered the attraction of 

ants to the urine (Karamanou, Protogerou et al. 2016). Two hundred BC the ancient Hellenistic 

Demetrius of Apamea coined the word “diabetes” which indicates the excessive urination (Gale 

2014), a term his later colleague Aretaeus of Cappadocia used to give the first accurate 

description of the disease but falsely considered the stomach or the kidney as the underlying 

cause (Gale 2015). It took some more centuries to recognize that the sweetness derives from 

glucose and to discover the high glucose levels in the blood (inter alia, Chevreul, Dobson, 

Bernard, beginning-middle of 19th century) (Gale 2014). By the end of the same century, islets 

of Langerhans were characterized in the thesis of Paul Langerhans who underestimated the 

importance of his own discovery at that time (Gale 2015). Unintentionally, the first induced 

diabetes was described by Minkowski and von Mering after removal of the pancreas of a dog. 

In 1921 insulin was discovered by Banting et al. and soon thereafter in 1923 commercialized 

for the benefit of millions of lives (Karamanou, Protogerou et al. 2016).  

Thus, many milestones already have been set in the history of diabetes mellitus and nowadays 

various successful strategies exist to identify and treat the distinct types of this disease, based 

on results gathered from long-term studies as the Diabetes Control and Complications Trial 
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(DCCT) (Nathan, Genuth et al. 1993), United Kingdom Prospective Diabetes Study (UKPDS) 

(Turner, Holman et al. 1991) or The Environmental Determinants of Diabetes in the Young 

(TEDDY) (Krischer 2007). However, there is still no cure for diabetes available and it remains 

a worldwide problem. Whereas in the past diabetes prevalence increased parallel to improved 

living conditions and public wealth of industrial states, at present the diabetes burden increases 

most in emerging economies (Cho, Shaw et al. 2018, Saeedi, Petersohn et al. 2019). Within 

these countries the prevalence is lower in rural areas compared to urbanized areas where 

multiple ethnic groups have adopted to a less active, sedentary western lifestyle (IDF 2019, 

Saeedi, Petersohn et al. 2019). An inadequate education including unhealthy diets and 

insufficient exercise is culpable for highly increased obesity rates frequently associated with 

diabetes mellitus (Forouhi and Wareham 2014). The impact of a rising prevalence on low and 

middle-income countries is deeper than on wealthier nations with a functional healthcare. 

Patients from these affected regions have a higher risk to stay undiagnosed, fall ill earlier, have 

a more severe progression and finally die sooner (Cho, Shaw et al. 2018). Presently, Africa 

shows the highest proportion of early deaths (under 60 years of age) by far (73%), followed by 

Middle East/North Africa (53%) and South East Asia (52%) (IDF 2019). 

Currently, 463 million people are estimated suffering from diabetes worldwide (Saeedi, 

Petersohn et al. 2019). For 2045 an increase of 51% up to a total number of 700 million affected 

people is predicted (Saeedi, Petersohn et al. 2019). These numbers do still not include a further 

374 million people with impaired glucose tolerance (IGT), a condition which is thought to be a 

precursor of diabetes mellitus (Santaguida, Balion et al. 2005, Saeedi, Petersohn et al. 2019). A 

statistical estimation of the IDF on the prevalence of diabetes worldwide in 2019 (Figure 1 A) 

places the highest rates in the Western Pacific area with 35% (163 million) and South East Asia 

with 19% (88 million). In these areas, in particular China (116 million) and India (77 million) 

report an excessive number of people suffering from diabetes. In 2019 Europe made up for 13% 

(59 million) of the proportion of the global diabetic population, however with a decreasing 

global trend the prevalence for Europe in 2045 is estimated to be 10% with 68 million people 

being affected (Figure 1 B). In the next 25 years the main focus may drift to Africa and Middle 

East/North Africa trusting the current extrapolations from the IDF. In this time period the 

number of diabetic patients in these two regions may increase by 143% (47 million) and 96% 

(108 million), respectively. For 2019 globally estimated 4.2 million deaths (people aged 

between 20–79 years) and a healthcare expenditure of more than USD 845 billion were ascribed 

to diabetes (IDF 2019).  
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Figure 1: Diabetes worldwide and per region in 2019 and 2045.  

Global prevalence of diabetes in 2019 (A) and 2045 (B). Data and figures adapted from the 

International Diabetes Federation (IDF) Atlas 9th edition 2019 (IDF 2019). 

2.1.2 Classification  

The World Health Organization (WHO) has started to publish the first guidelines for a common 

nomenclature for the different types of diabetes mellitus in 1965, followed by a revision in the 

late 1970s and an update in 1997 by the American Diabetes Association (ADA). This latter 

update included the important correction in which insulin dependence is not a criterion for 

classification anymore. Nowadays three main types of diabetes mellitus, type 1 diabetes 
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mellitus (T1D), type 2 diabetes mellitus (T2D), gestational diabetes mellitus (GDM) and a 

fourth category, summarizing specific types of diabetes due to various other causes, are widely 

recognized (ADA 2020).  

2.1.2.1 Type 1 diabetes 

Type 1 diabetes (T1D) has a minor incidence of less than 10% of all diabetes cases (Roden 

2016) and occurs predominantly in young people with European descent (Gillespie 2006). T1D 

can be further divided into two subgroups, an immune-mediated form and a very rare idiopathic 

form (ADA 2020).  

A genetic susceptibility with a strong association to the human leukocyte antigen (HLA) and 

yet undefined environmental factors are related to T1D (Gillespie 2006, Rewers, Hyoty et al. 

2018). These various factors trigger the pathomechanism characterizing T1D: autoimmune 

pancreatic β-cell destruction that usually leads to an absolute insulin deficiency and finally to 

the onset of diabetes (Yoon and Jun 2005, Mujtaba, Fridell et al. 2015, Petersmann, Nauck et 

al. 2018). In most cases it is a cellular-mediated autoimmune destruction due to the presence of 

one or more types of auto-antibodies (ADA 2020).  

Due to the massive β-cell loss, insulin secretion is highly decreased. Therefore, patients with 

clinical type 1 diabetes are dependent on insulin therapy (Roden 2016). Nowadays there is still 

no cure for T1D. Clinical symptoms mostly occur when 80% of β-cell mass is lost (Gillespie 

2006). For this reasons the goal of diabetes research is to establish strategies to predict, prevent 

or reverse a manifestation of T1D.  

2.1.2.2 Type 2 diabetes 

Type 2 diabetes (T2D) is responsible for more than 90% of all diabetic cases and mostly occurs 

at an advanced age (Roden 2016, Petersmann, Nauck et al. 2018). The incidence is higher in 

some ethnical groups like African Americans, American Indians, Hispanics/Latinos and Asian 

Americans. The etiology is multifactorial. Factors as a high caloric diet, insufficient physical 

activity and a genetic predisposition foster the development of T2D. T2D is characterized by a 

combination of peripheral insulin resistance and dysfunction of β-cells (Kaneto 2015) leading 

to a relative insulin deficiency that causes hyperglycemia (Petersmann, Nauck et al. 2018). 

Before T2D manifests a condition named prediabetes is present. Prediabetes is characterized 

by blood glucose levels above the normal range but still below the thresholds diagnostic for 

diabetes and can be defined by the presence of impaired glucose tolerance (IGT) and/or 

impaired fasting glucose (IFG) and/or elevated glycosylated hemoglobin (HbA1c) (ADA 2020). 

The manifestation of T2D is gradual (Petersmann, Nauck et al. 2018) and functional impairment 
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exists long before first clinical signs are present (Roden 2016). Plasma insulin and C-peptide 

levels can be elevated at an earlier stage due to insulin resistance, before their concentrations 

decrease due to a secretion deficit (Petersmann, Nauck et al. 2018). Thus, for standard diagnosis 

elevated levels of: fasting plasma glucose (FPG) (≥126 mg/dl) or random plasma glucose (≥200 

mg/dl) or glucose tolerance (2-h plasma glucose ≥200 mg/dl) or glycosylated hemoglobin 

(HbA1c) (≥6.5%) are defined for diabetes (ADA 2020). There are different therapeutic options 

depending on the cause, the stage and the clinical manifestation of the disease. Therapeutic 

strategies begin with a change of the unhealthy lifestyle, followed by various antidiabetics to 

lower the blood glucose level which may be used in conjunction. They differ in their substance 

group and mode of action. For example, a class of drugs called sensitizers like metformin or 

pioglitazone lowers the insulin resistance of target organs (Erdmann, Dormandy et al. 2007, 

Eurich, McAlister et al. 2007). Another group are secretagogues, which increase the insulin 

secretion from the pancreas, e.g., sulfonylureas or meglitinides (Rendell, Glazer et al. 2003). A 

third group, α-glucosidase inhibitors, lowers the absorption of glucose from the gastrointestinal 

tract (Ji, Xiao et al. 2010). Another class of medications are incretin mimetics with the main 

task to stimulate insulin release like the intestinal peptides glucose-dependent insulinotropic 

polypeptide (also known as gastric inhibitory peptide) (GIP) and glucagon-like peptide-1 (GLP-

1) (Meier and Nauck 2005, Drucker and Nauck 2006). Another class of drugs are sodium-

glucose transport protein 2 (SGLT2) inhibitors also called gliflozin, they lower the blood sugar 

level by inhibiting the reabsorption of glucose in the renal tubules (Scheen 2014). Vanadium 

salts, in particular vanadyl sulfate are used as component of antidiabetic drugs and diet 

supplement. Vanadyl sulfate shows insulin-like effects and it is suggested that it improves 

insulin sensitivity (Crans, Schoeberl et al. 2011, Crans, Henry et al. 2019). The majority of 

antidiabetics are orally administrated. Medication of T2D can comprise a combination of drug 

therapy and insulin therapy choosing from a variety of rapid to long acting insulin, usually 

injected subcutaneously (Raskin, Rendell et al. 2001). To determine individualized therapies 

and to improve future classification schemes, a better characterization of the underlying β-cell 

disorder of T2D is required (Skyler, Bakris et al. 2017).  

2.1.2.3 Gestational diabetes mellitus 

Gestational diabetes mellitus (GDM) defines an impaired glucose tolerance leading to 

hyperglycemia, which primary manifests during the second or third trimester of pregnancy 

(ADA 2020) or according to other references, after the 19th week of pregnancy (Roden 2016). 

Parallel to T2D and obesity, GDM is on the rise (Alfadhli 2015) with highest prevalence in the 

south East Asia region (Cho, Shaw et al. 2018), GDM accounts with 75–90% for most of the 
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cases of hyperglycemia in pregnancy (Yuen, Saeedi et al. 2019). A diagnosis before the above 

mentioned stage in most of the cases indicates an undiagnosed pre-existing pregestational 

diabetes (mainly T2D). GDM usually manifests only during gestation and women completely 

regenerate after delivery but should be maintained well monitored during and after pregnancy 

due to an increased risk to develop T2D later in life (ADA 2020).  

The pathophysiology of GDM is still poorly understood. It is claimed that elevated 

concentrations of pregnancy hormones lead to decreased insulin sensitivity by disturbing the 

insulin receptor signaling beyond the normal extent as reduction of insulin sensitivity during 

pregnancy is part of the physiological adaption processes. Additionally, altered levels of 

cytokines support the development of insulin resistance and dysfunction of insulin secretion 

(Mao, Chen et al. 2017). 

2.1.2.4 Specific types of diabetes due to other causes 

Monogenic forms of diabetes and secondary diabetes constitute the two major groups of this 

section. Monogenic diabetes accounts for 1–5% of all diabetes cases (IDF 2019). Currently, 

more than 30 genes are associated to monogenic diabetes (Yang and Chan 2016) causing either 

β-cell dysfunction or severe insulin resistance, both resulting in hyperglycemia (Klupa, Skupien 

et al. 2012). The most common forms are maturity onset diabetes of the young (MODY) 

(Letourneau, Carmody et al. 2018) and neonatal diabetes mellitus (NDM). The underlying gene 

mutations affect either transcription factors or endocrine pancreas function (Yang and Chan 

2016). MODY and NDM are divided in subgroups based on the respective gene mutation. They 

differ in the age of onset, manner of inheritance and clinical phenotype (ADA 2020). Even the 

same MODY type can result in substantial differences in its clinical manifestation in individual 

patients. This heterogeneity is probably based on the mutations impact on protein function and 

modifying environmental factors (Fajans and Bell 2011). 

MODY was the first monogenic form of diabetes discovered. As the name indicates it is 

characterized by an onset at an early stage of life (<25 years) (ADA 2020). The mode of 

inheritance is autosomal dominant and up to date 14 genes have been identified which are 

classified as MODY type 1–14 (Flannick, Johansson et al. 2016). The most common types 

consist of mutations in genes expressed by the β-cells, as the glucokinase gene (GCK-

MODY/MODY2) and the transcription factor hepatocyte nuclear factor 1α gene (HNF1A-

MODY/MODY3). They account for 30–50% and 30–65% of all MODY types, respectively, 

followed by mutations in the hepatocyte nuclear factor 4α gene (HNF4A-MODY/MODY1) and 

the hepatocyte nuclear factor 1β gene (HNF1B-MODY/MODY5) with an incidence of 5–10% 



Review of the literature 24 

and <5% of all cases, respectively. The ten other genes associated with the remaining types 

account for approximately 20% of all MODY types, including insulin gene (INS)-MODY 

(MODY10), which is caused by variants of insulin gene mutations (reviewed in (Naylor, Knight 

Johnson et al. 1993, Liu, Sun et al. 2015)). The common types show a mild and stable fasting 

hyperglycemia. Usually patients either do not need therapy or respond well to low dose 

sulfonylureas (Shepherd, Pearson et al. 2003). 

In contrast to MODY, NDM occurs usually within the first six months of age and can be of 

transient (TNDM) or of permanent (PNDM) nature. Both forms are mostly inherited 

dominantly. TNDM patients can experience a total recovery during childhood but up to 50% of 

them show recurrence later in life, usually during adolescence (Greeley, Naylor et al. 2011). 

The most common reason for TNDM is an overexpression of paternally imprinted genes 

hydatidiform mole associated and imprinted gene (HYMAI) or pleiomorphic adenoma gene-like 

1 gene (PLAGL1) on chromosome 6q24 due to uniparental disomy (Mackay and Temple 2010) 

Approximately half of the cases of PNDM result from mutations in potassium inwardly 

rectifying channel subfamily J member 11 gene (KCNJ11) or ATP-binding cassette sub-family 

C member 8 gene (ABCC8). These genes encode for the two subunits of the ATP-sensitive 

potassium channel (KATP) in β-cells. The affected KATP channels are involved in the regulation 

of insulin secretion (Gloyn, Pearson et al. 2004). The second most common cause of PNDM 

are heterozygous mutations in the INS gene itself (Stoy, Edghill et al. 2007). The expression of 

a misfolded mutant proinsulin causes an insulin-deficient diabetes that can be diagnosed 

predominantly in the neonatal but definitely within the infancy phase (<1 year) and is therefore 

referred to as mutant INS gene induced diabetes of youth (MIDY) (Liu, Haataja et al. 2010, 

Stoy, Steiner et al. 2010, Wolf, Braun-Reichhart et al. 2014). The treatment for the majority of 

TNDM or PNDM cases consists of oral sulfonylureas or insulin injection (Pearson, Flechtner 

et al. 2006, Stoy, Greeley et al. 2008, Schimmel 2009). 

Other forms of monogenic diabetes result from defects in insulin action. They cause severe 

insulin resistance and are associated with mutations in the insulin receptor gene (INSR) (Longo, 

Langley et al. 1992) or the high mobility group AT-hook 1 gene (HMGA1) that encodes for a 

transcription factor that binds the promoter of INSR gene (Foti, Chiefari et al. 2005). The genetic 

syndromes are referred to as type A insulin resistance (Musso, Cochran et al. 2004), Donohue 

syndrome (Donohue and Uchida 1954), Rabson-Mendenhall syndrome (Rabson and 

Mendenhall 1956) and lipoatrophic diabetes (Parker and Semple 2013). 

Secondary diabetes is another less common condition, whereby diabetes occurs as a 
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consequence of 

- diseases of the exocrine pancreas (e.g., pancreatitis, cystic fibrosis, traumata, pancreatectomy, 

neoplasms, hemochromatosis, fibrocalculous pancreopathy) 

- diseases of the endocrine system (e.g., Cushing syndrome, acromegaly, hyperthyreosis, 

pheochromocytoma, somatostatinoma, aldosteronoma, glucagonoma) 

- drug- or chemical-induced diabetes (e.g., glucocorticoids, neuroleptics, interferon alpha, 

pentamidine, vacor, niacin, thyroid hormones, diazoxide, thiazide, β agonists, phenytoin, 

treatment of HIV/AIDS, post transplantation diabetes mellitus) 

- infections (e.g., congenital rubella infection, cytomegalovirus) 

- rare forms of autoimmune-mediated diabetes (e.g., “Stiff-man” syndrome, Anti-insulin 

receptor antibodies) 

- other genetic syndromes (e.g., Down-, Klinefelter-, Turner-Syndrome).  

(Roden 2016, Petersmann, Nauck et al. 2018, ADA 2020). 

2.1.3 Mutations in the insulin gene causing disorders of glucose homeostasis 

More than 50 different mutations of the insulin gene have been identified as a reason for 

diabetes in the last decades. INS mutations can cause distinct metabolic consequences whereby 

the impact on glucose homeostasis varies in the associated pathomechanism, the severity and 

the phenotypic expression (Stoy 2014). Insulin gene mutations are predominantly associated 

with PNDM (Stoy, Steiner et al. 2010). To date, 26 different INS mutations are related to forms 

of MIDY, a rare syndrome of insulin-deficient diabetes with early onset  

(<1 year) (Liu, Haataja et al. 2010, Wolf, Braun-Reichhart et al. 2014). Other INS mutations 

are associated to types of MODY and idiopathic type 1 diabetes mellitus have a later onset and 

appear even more seldom (Edghill, Flanagan et al. 2008). Other rare disorders of glucose 

homeostasis induced by insulin gene mutations are hyperproinsulinemia and hyperinsulinemia, 

that only lead to a mild diabetes in adults when insulin resistance is additionally present (Stoy, 

Steiner et al. 2010). 

The next chapter will present and describe the distinct insulin gene mutations and their effects 

in detail. 
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2.2 Impact of insulin mutations on insulin biosynthesis, insulin bioactivity 

and insulin processing in pancreatic β-cells 

2.2.1 INS-gene mutations affecting relevant steps of insulin biosynthesis 

The biosynthesis of the proteohormone insulin takes place in the pancreatic β-cells with 

duration of 30–150 minutes for the termination of a mature and bioactive molecule (Alarcon, 

Leahy et al. 1995, Steiner, Park et al. 2009). One gene on chromosome 11 encodes for the 

human insulin mRNA, that is subsequently translated into the amino acid sequence of 

preproinsulin. The human insulin precursor contains 110 amino acids in a single chain, arranged 

as four functional domains, including signal peptide (SP), insulin B-chain, C-peptide and 

insulin A-chain (Steiner 2011). Preproinsulin is predominantly translocated across the 

endoplasmic reticulum (ER) by the signal recognition particle (SRP)-dependent co-translational 

or by the SRP-independent posttranslational route (Lakkaraju, Thankappan et al. 2012). While 

SRP interacts with the SP of preproinsulin and the SRP membrane receptor in targeting the 

novel molecule to the Sec61 translocon in the ER, SRP-independent translocation is still not 

fully understood but may work as a kind of backup mechanism for the translocation of small 

secretory proteins like preproinsulin (Lakkaraju, Thankappan et al. 2012, Johnson, Powis et al. 

2013). In the ER lumen, SP is processed by proteolytic cleavage forming proinsulin that 

undergoes oxidative folding (reviewed in (Liu, Wright et al. 2014)). Thereby three disulfide 

bonds are formed by connecting the cysteine residues A6–A11, A7–B7 and A20–B19, an 

essential step as it is suggested that impaired foldability of proinsulin has a selective effect on 

insulin evolution (Weiss 2009). In its stable tertiary structure, proinsulin exits from the ER and 

is delivered to the Golgi apparatus and subsequently collected into immature secretory granules. 

Proteolytic cleavage is processed by enzymatic co-action of prohormone convertases PC1/3 

and PC2 and carboxypeptidase E (Alarcon, Leahy et al. 1995, Steiner 2011). Finally, active 

insulin and C-peptide emerge and are concentrated in equal amounts in mature insulin secretory 

granules of the β-cell (Steiner, Park et al. 2009, Liu, Wright et al. 2014).  

Mutations of the insulin gene can affect any of the former described biosynthetic steps and 

therefore they can be assigned to four different groups: 

1) Insulin gene mutations affecting insulin gene transcription or translation 

So far, 12 recessively inherited INS-gene mutations were discovered (Garin, Edghill et al. 

2010). This group contains deletions within the INS promoter region or disruption of 

transcription factor binding sites resulting in a decreased insulin promoter activity of up to 90% 

(Garin, Edghill et al. 2010). The deletion (c.-366_-343del) eliminates so called elements C1 
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and E1, i.e., binding sites for transcription factors MAFA or NEUROD1, respectively. Further, 

the nonsense mutation c.-218A>C leads to the disruption of a binding site of the transcription 

enhancer element CRE3. Other nonsense mutations that cause an impaired transcription are c.-

331(C>G, C>A) and c.-332C>G (Garin, Edghill et al. 2010). The translational start site for 

preproinsulin is affected by the missense mutations c.3G>A, c.3G>T and a null mutation caused 

by a multiexon deletion, that besides exon 1 and 2 abolishes the majority of the coding region 

of the gene (Garin, Edghill et al. 2010). Another nonsense mutation (c.*59A>G) produces an 

instable mRNA that interferes with the translation process (Fred and Welsh 2009, Garin, 

Edghill et al. 2010).  

Recently a dominant mutation, c.212dupG in exon 3, was detected. This duplication mutation 

leads to a frameshift (Gly73fs) and consequently results in an impaired translation due to the 

loss of the original stop codon. The synthesised preproinsulin has a prolonged C-peptide by 

additional 27 amino acids (Xiao, Liu et al. 2019). 

2) Insulin gene mutations affecting endoplasmic reticulum targeting and translocation of 

preproinsulin are located at the signal peptide of the preproinsulin. The spectrum of the 

associated phenotypes ranges from mild maturity-onset (R6C, R6H) to severe early-onset forms 

of clinical diabetes (L13R, A24D) (reviewed in (Liu, Sun et al. 2015)). The heterozygous 

mutation A24D results in either an impaired cleavage of the signal peptide or produces an 

abnormal proinsulin (Stoy, Edghill et al. 2007, Liu, Lara-Lemus et al. 2012) with the 

consequence of misfolding in the ER, leading to β-cell failure (Guo, Xiong et al. 2014). The 

mutation L13R is located in the h-region of the signal peptide. It interferes with the hydrophobic 

property of this region by amino acid substitution and therefore affects ER targeting and 

translocation of preproinsulin, resulting in β-cell failure (Hussain, Mohd Ali et al. 2013). 

Mutations R6C and R6H lead to a loss of positive charge in the n-region of the signal peptide 

and thus complicate the entry of the precursor into the ER (Edghill, Flanagan et al. 2008, 

Boesgaard, Pruhova et al. 2010). 

3) Insulin gene mutations affecting the folding pathway of proinsulin in the ER represent the 

majority of all insulin gene mutations, accounting for more than 70% (reviewed in (Liu, Sun et 

al. 2015)). Proinsulin mutations provoke misfolding caused by distinct amino acid substitutions 

in different sites of the molecule and thus trigger a cascade of blocked ER export and 

accumulation of aberrant proinsulin leading to an ER response, β-cell apoptosis (Wang, 

Takeuchi et al. 1999, Zuber, Fan et al. 2004, Colombo, Porzio et al. 2008) and furthermore a 

decreased production and secretion of co-expressed wild-type insulin (Hodish, Liu et al. 2010). 
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These heterozygous missense mutations predominantly lead to the onset of MIDY with 

decreased insulin secretion and reduced β-cell mass (Stoy, Edghill et al. 2007, Liu, Haataja et 

al. 2010).  

Probably the best investigated mutation in this group is the INSC96Y mutation (Stoy, Edghill et 

al. 2007).The spontaneous C96Y mutation disrupts the interchain disulfide bond C31(B7)-

C96(A7) by substitution of a cysteine residue by a tyrosine residue at position 96 (Wang, 

Takeuchi et al. 1999). Another well-studied mutation belonging to this group is INS2C95S. The 

C95S mutation disrupts the intrachain disulfide bond C95(A6)-C100(A7) by cysteine exchange 

in amino acid position 95 (Herbach, Rathkolb et al. 2007).  

Additionally, there are 16 proinsulin mutations described generating unpaired cysteine residues 

by affecting either native cysteine or creating new cysteine residues. All unpaired cysteine 

mutations interfere with the maturation of disulfide bonds (Liu, Li et al. 2005). Furthermore, 

12 mutations cause misfolded proinsulin by non-cysteine amino acid exchanges, mainly located 

at the B-chain of the insulin. The pathomechanism of these mutations on proinsulin folding is 

still not fully understood but it is suggested that they all indirectly disturb maturation or pairing 

of disulfide bonds (Hua, Mayer et al. 2006, Liu, Wright et al. 2014). 

A novel heterozygous mutation c.125 T>G (p.Val42Gly) in exon 2 impairs the synthesis of 

insulin. The thymine-to-guanine substitution probably provokes proinsulin misfolding of the 

disulfide bond, resulting in NDM with low levels of insulin secretion (Sun, Du et al. 2018). 

4) Insulin gene mutations affecting trafficking and processing of proinsulin are located at the 

junction between the B-chain and the C-peptide, consisting of two arginine residues and the 

junction between the C-peptide and the A-chain, consisting of one lysine and one arginine 

residue (Stoy 2014). These junctions are the cleavage sites for proteolytic enzymes, i.e., 

prohormone convertase (PC)1/3 (B-chain/C-peptide) and PC2 (C-peptide/A-chain). 

Substitutions of the distinct amino acids at the cleavage sites lead to extremely varying 

phenotypes. For example, an exchange of arginine by cysteine located at the first junction (R55) 

results in a severe form of MODY (Stoy, Edghill et al. 2007, Colombo, Porzio et al. 2008), 

whereas substitutions of arginine by other amino acids (leucine, histidine, proline) at the second 

junction (R89) result in asymptomatic or mild forms of hyperproinsulinemia and glucose 

intolerance (Steiner, Tager et al. 1990). Patients affected by the latter mutations show high 

concentrations of proinsulin-like molecules due to an improper cleavage process (Stoy 2014). 

Another substitution of arginine by cysteine is located at the cleavage site (R89) leading to a 

severe form of MIDY. Due to proinsulin misfolding and retention in the ER no proinsulin-like 
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molecules are secreted. This suggests that pathomechanisms are not necessarily depending on 

the locus of the mutation (Colombo, Porzio et al. 2008). Another mutation (H34D) reforces this 

assumption. It affects the sorting of proinsulin and leads to hyperproinsulinemia due to secretion 

of unprocessed proinsulin by an unregulated pathway, but is located at the B-chain instead of 

one of the cleavage sites. Furthermore, studies on mutant H34D suggest that native proinsulin 

carries structural information that is relevant for the proper processing of the precursor in the 

β-cell (Chan, Seino et al. 1987). 

2.2.2 INS-gene mutations affecting insulin bioactivity 

There are three known rare missense mutations that cause insulinopathies, originating from a 

substitution of a single amino acid residue in the B- or A-chain: F48S, F49L, and V92L (Given, 

Mako et al. 1980). The resulting abnormal insulin is less efficient in binding to its corresponding 

insulin receptor due to reduced receptor affinity and therefore the bioactivity of mutant insulin 

varies from 14–0.2% compared to wild-type insulin (Assoian, Thomas et al. 1982). Another 

consequence of this reduction is an impaired physiological degradation of insulin that depends 

on receptor-mediated endocytosis (Steiner, Tager et al. 1990). The mutant insulin accumulates, 

leading to an elevated concentration in the circulation and an altered insulin-C-peptide ratio 

(Steiner, Tager et al. 1990). Phenotypic characteristics are glucose intolerance and 

hyperinsulinemia in patients but diabetes only arises in adults with concomitant insulin 

resistance (Stoy 2014). 

Besides the decreased insulin-receptor-binding potency, mutant proinsulin F48S shows an 

abnormal intracellular condition, caused by impaired disulfide pairing of B19–A20. The 

exchange of the phenylalanine residue at position 24 of the B-chain provokes instable side 

chains that result in insufficient disulfide bond (Hua, Mayer et al. 2006). Therefore, the 

mutation expresses an intermediate phenotype that is different from other mutants like F49L, 

V92L or the MIDY mutants. It combines impaired insulin-receptor-binding with other 

abnormalities like misfolding of proinsulin in the ER and ER stress response, a decreased 

secretion of mutant proinsulin and a negative interaction with co-expressed wild-type proinsulin 

(Liu, Hodish et al. 2010).  

2.2.3 Consequences of INS-gene mutations on processes in the β-cell 

The majority of the dominant INS-gene mutations described in 2.2.1 promote pathomechanisms 

that lead to β-cell failure, predominantly due to an ER stress response. Insulin mutations 

associated with MIDY express misfolded proinsulin that retains within the ER and leads to its 

dilation and impaired function. Such ER stress triggered by misfolded proinsulin is recognized 
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by ER-chaperones, e.g., binding immunoglobulin protein (Bip). Chaperones support the 

activation of the unfolded protein response (UPR) that consists of three known transmembrane 

proteins: the ribonuclease inositol-requiring protein–1 (IRE-1), the PERK kinase homologue 

PEK-1 and activating transcription factor–6 (ATF-6). These proteins in turn try to attenuate ER 

stress by rebalancing ER homeostasis (Henis-Korenblit, Zhang et al. 2010). Collectively, they 

serve as a stress receptor of the cell. They detect and subsequently transduce the ER stress signal 

to the nucleus and to the translational apparatus to adjust transcription and protein synthesis. 

Thereby translation of new arriving proteins decreases and due to increased lipid synthesis in 

the ER membrane an expansion of the ER is possible (Cox, Chapman et al. 1997). These 

mechanisms improve the capacity of the ER to process the misfolded proinsulin. Furthermore, 

the degradation of misfolded proinsulin increases by retro-translocation of abnormal proteins 

to the cytosol and due to autophagy by the lysosome (reviewed in (Ron and Walter 2007)). The 

translation of ER-resident chaperones increases as well, which enhances the UPR (Chang-Chen, 

Mullur et al. 2008). If these UPR initiated processes cannot alleviate ER stress, as a last step 

the UPR triggers a cascade ending in β-cell apoptosis (Eizirik, Cardozo et al. 2008). Besides 

ER stress, cytoplasmic stress induced by mutant preproinsulin is another pathomechanism 

promoting β-cell failure (Guo, Xiong et al. 2014). Untranslocated preproinsulin generated by 

mutant R6C/H accumulates intracellularly in a juxtanuclear compartment and thereby activates 

a cytosolic chaperon (HSP70) that provokes a cellular stress response (Kaganovich, Kopito et 

al. 2008). 

The accumulation of misfolded proinsulin in the ER results in an impaired insulin secretion 

before ER or cytoplasmic stress-mediated β-cell failure arises. Animal models, as the transgenic 

pig line expressing mutant insulin C94Y, showed that decreased plasma insulin concentrations 

and hyperglycemia precede the decrease of β-cell mass (Renner, Braun-Reichhart et al. 2013). 

This indicates that processing of native insulin is disturbed before it gets reduced by β-cell 

apoptosis. As the mutation is heterozygous, mutant as well as wild-type proinsulin is expressed, 

but not all wild-type proinsulin is processed to active insulin (Liu, Hodish et al. 2007). 

Furthermore, it has been proved in the Akita mutant mouse expressing INSC96Y that native 

proinsulin gets misfolded and sorted out like its mutant equivalent and this may be because of 

a direct interaction of mutant and co-expressed wild-type proinsulin (Liu, Hodish et al. 2007). 

A dominant-negative blockade of wild-type proinsulin by misfolded mutants is described due 

to intermolecular disulfide bonds build between the cysteine residues of both kinds of 

proinsulin. Thereby, wild-type proinsulin that forms such a disulfide-linked complex retains in 

the ER and cannot be exported (Hodish, Liu et al. 2010, Liu, Hodish et al. 2010). Furthermore, 
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this blockade is suggested to be dose-dependent and complies with the ratio of co-expressed 

mutant proinsulin to the wild-type proinsulin, as demonstrated in transgenic mice and pigs 

expressing C96Y and C49Y mutant proinsulin, respectively (Hodish, Absood et al. 2011, 

Renner, Braun-Reichhart et al. 2013). Recent studies have investigated that the effect between 

mutant and wild-type proinsulin might be even bidirectional. It is claimed that native proinsulin 

has a rescue effect on co-expressed mutant proinsulin by provision of ER oxidoreductin-1alpha 

(Ero1alpha). This protein normally supports native proinsulin to fold and exit the ER. Upon 

increased expression of Ero1alpha some mutant proteins can be directly rescued from 

misfolding and withhold in the ER. Besides the increase of exported proinsulin, Ero1alpha 

reduces ER stress and further β-cell failure by enhancing oxidative folding of proinsulin 

(Wright, Birk et al. 2013).  

2.3 Animal models with insulin gene mutations 

Since decades, a broad range of distinct animal models for diabetes research exists. In vivo 

studies contributed important results to understand the different pathomechanisms of this 

multifactorial disease and nowadays animal models are still indispensable for the establishment 

of efficient and safe novel pharmacotherapies, new surgical methods and various other 

scientific questions (Aigner, Klymiuk et al. 2010, Zhang, Wu et al. 2018, Cooper, Hara et al. 

2019). Nowadays, translational medicine has a particular importance, with the objective to 

translate results from basic research to clinical administration to provide successful treatments 

for patients (Aigner, Renner et al. 2010). Therefore, appropriate animal models are warranted 

that are based on well conducted preclinical research to reduce translational failure (Bolker 

2017, Leenaars, Kouwenaar et al. 2019). The range of animal models reaches from non-

mammalian models and rodent models to large animal, e.g., dog, pig or non-human primate 

models and therefore from low cost and high throughput towards high cost and improved 

translational value, respectively (reviewed in (Dalgaard 2015, Kleinert, Clemmensen et al. 

2018)). Currently, companion animals are also used more frequently as a resource for 

translational medicine, bridging the discoveries derived from laboratory animals to clinical 

applications (Kol, Arzi et al. 2015). Based on their etiology, laboratory animal models can be 

divided into spontaneous or induced models. Spontaneous animal models have been inbred in 

laboratories for many generations by selecting for desired phenotypic characteristics e.g., for 

hyperglycemia (Rees and Alcolado 2005). A major advantage compared to induced models is 

the assumption that they share pathomechanisms of the human disease more closely (Roep and 

Atkinson 2004, King 2012). Induced models are used more often in diabetes research due to 
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the fact that they are easier to generate than spontaneous models. These models have their focus 

more on the symptoms characteristic for diabetes like hyperglycemia but not on the underlying 

process of the disease itself (reviewed in (Brito-Casillas, Melian et al. 2016)). Induced models 

can be generated by surgical methods like partial or total pancreatectomy (Jawerbaum and 

White 2010) or by non-surgical methods. Non-surgical models can either be generated by the 

administration of toxic chemicals or drugs (i.e., alloxan, streptozotocin, vacor) (Rees and 

Alcolado 2005, Lenzen 2008), hypercaloric nutrition (Lai, Chandrasekera et al. 2014), viral 

infection (e.g., Coxsackie B virus) (Jun and Yoon 2001) or by genetic modification (Wolf, 

Braun-Reichhart et al. 2014). 

The following chapter will present the most relevant spontaneous or genetically modified 

rodent and pig models for diabetes research with mutations in the insulin gene. 

2.3.1 Rodent models 

Rodents, especially mice, still represent the leading animal model used for preclinical diabetes 

research. Besides the advantages shared with non-mammalian models, like low maintenance 

costs, a short and efficient reproductive cycle and the availability of different species and strains 

provided by various suppliers, mouse and rat models are more relevant to human physiology 

compared to non-mammalians (reviewed in (Kleinert, Clemmensen et al. 2018)). Rodent 

models are very valuable for basic research but their translational value, e.g., for the evaluation 

of efficacy and safety of novel therapeutic strategies targeting metabolic diseases is limited. 

However, the genome of the mouse is completely encoded and various tools and techniques are 

available for genetic manipulation and engineering of tailored models (Rees and Alcolado 

2005) that can represent characteristics of diabetes or its comorbidities and complications. 

Nevertheless, rodents show discrepancies to human physiology and anatomy that are relevant 

for diabetic studies, such as a different lipometabolism or pancreatic islet architecture (see 

chapter 2.3.1.1). An important difference to the genetic background of humans, in which one 

insulin gene (INS) exists, is the presence of two INS genes in mouse and rat (Ins1 and Ins2 

gene), probably evolved by retrotransposition (Deltour, Vandamme et al. 2004). Most rodent 

models used are inbred strains. This provides the advantage of a homogenous background with 

less variation between the individuals, allowing lower animal numbers but lacking the aspect 

of human heterogeneity (reviewed in (Brito-Casillas, Melian et al. 2016)). 
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The most common mouse models with insulin gene mutations are described in the following 

chapters. 

2.3.1.1 Ins2C96Y mutant (Akita) mouse model 

The nonobese Ins2C96Y mutant mouse model represents the best investigated insulin gene 

mutation. It derived from a C57BL/6 colony in Akita (Japan) (Yoshioka, Kayo et al. 1997) and 

contains an autosomal dominant spontaneous C96Y mutation in one of the two Ins2 alleles that 

exhibits a G → A transversion in exon 3. The consequence is the substitution of a cysteine 

residue by a tyrosine residue at position 96 of the Ins2 gene that leads to a disruption of a 

disulfide bond between the A and B chain and therefore to essential alterations in proinsulin 

folding in the ER (Wang, Takeuchi et al. 1999). The described mutation also exists in humans 

causing a permanent neonatal diabetes termed mutant INS gene induced diabetes of youth 

(MIDY) (Liu, Haataja et al. 2010) The mutation triggers the retention of misfolded proinsulin 

in the ER that leads to an ER stress response and subsequent β-cell loss (see chapter 2.2.1) and 

a dose-dependent blockade of co-expressed wild-type proinsulin by mutant proinsulin (see 

chapter 2.2.3). Heterozygous Akita mice developed severe clinical diabetes shortly after 

weaning (3–4 weeks), characterized by hypoinsulinemia, hyperglycemia, polyuria and 

polydipsia. The diabetic phenotype was more pronounced in male mice. The mean morning 

blood glucose level was 492 mg/dl in male diabetic mice and 245 mg/dl in female diabetic mice. 

Homozygous animals die in the perinatal period (Yoshioka, Kayo et al. 1997, Kayo and 

Koizumi 1998, Zhou, Pridgen et al. 2011). The Akita mouse is an excellent model to investigate 

pancreatic β-cell dysfunction and to find potential agents to mitigate ER stress (Chen, Zheng et 

al. 2011). Furthermore, microvascular and macrovascular diseases can be investigated. The 

Akita model resembles frequently observed microvascular complications, such as retinopathy 

(Barber, Antonetti et al. 2005), neuropathy (Choeiri, Hewitt et al. 2005), and nephropathy 

(Susztak, Raff et al. 2006). Macrovascular complications such as accelerated atherosclerosis 

and dilated cardiomyopathy are difficult to investigate in mouse models. Vascular and cardiac 

complications are very rare in mice as they lack an atherogenic lipoprotein profile due to their 

naturally efficient lipoprotein clearance (Breslow 1996). To induce atherosclerosis in mice, they 

need to be genetically modified (Hsueh, Abel et al. 2007). Nevertheless, Akita mice lacking the 

low-density lipoprotein receptor have been generated to study diabetic macrovascular disease 

(Zhou, Pridgen et al. 2011). Additionally, they are a good choice for β-cell replacement 

therapies (reviewed in (King 2012)). Ins2C96Y mice develop an insulin-dependent diabetes 

without the appearance of autoimmune components leading to β-cell destruction (Yoshioka, 

Kayo et al. 1997), thus they serve well to evaluate the reaction to pancreatic islet grafts without 
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the interference of pre-existing inflammatory processes due to β-cell autoantibodies. 

Furthermore, due to the spontaneous developed diabetes no interference of toxic side effects 

are expected, as it can occur in models using chemicals to induce a diabetic state (Mathews, 

Langley et al. 2002). 

2.3.1.2 Munich Ins2C95S mouse model 

This nonobese diabetic mouse model derived from the Munich ENU mouse mutagenesis project 

(Herbach, Rathkolb et al. 2007). The large-scale project used the alkylating agent N-ethyl-N-

nitrosourea (ENU) for random chemical mutagenesis in mice and screened subsequently for 

hyperglycemia, which served as the clinically relevant parameter for diabetes in this project 

(Aigner, Rathkolb et al. 2008). Thus, various novel mouse lines for diabetes research have been 

established resulting in a hyperglycemic phenotype. The Munich Ins2C95S mutant mouse model 

has the genetic background of the inbred strain C3HeB/FeJ. The C95S mutant exhibits a T → 

A transversion in the insulin 2 gene in exon 3, which disrupts the intrachain disulfide bond 

C95(A6)-C100(A7) by an amino acid exchange from cysteine to serine in position 95. 

Consequently, Ins2C95S mutants developed a diabetic phenotype (Herbach, Rathkolb et al. 

2007). The C95S mutation in the mouse homologue is similar to the human mutation in the 

insulin gene (C95Y) causing the MIDY syndrome (Stoy, Steiner et al. 2010). Herbach et al. 

described heterozygous Munich Ins2C95S mice of both genders presenting hyperglycemia at the 

age of one month. At three month of age, heterozygous male mutant mice showed decreased 

body weight compared to sex-matched control. Fasted and postprandial blood glucose levels as 

well as glucose tolerance in an oral glucose tolerance test (OGTT) were significantly elevated 

compared to controls, respectively. Blood glucose levels of male mutant mice were generally 

higher than levels of female mutants which showed only mild hyperglycemia. Ins2C95S mutants 

reached almost and. Serum insulin levels of male and female Ins2C95S mutants were reduced 10 

minutes after glucose challenge compared to their controls, respectively. The insulin tolerance 

test showed a decreased response of blood glucose levels 10 minutes after insulin injection in 

Ins2C95S mutant mice compared to wild-type mice. Accordingly, the homeostasis model 

assessment (HOMA) of β-cell function index was remarkably reduced and the HOMA insulin 

resistance index significantly increased in Ins2C95S mutant mice compared to controls. 

Additionally, pancreatic insulin content was decreased in both sexes of Ins2C95S mutant mice. 

These results were indicative for an impaired insulin secretion, disturbed β-cell function and 

insulin resistance in Munich Ins2C95S mutants. The appearance of exocrine pancreas and 

pancreas volume remained unchanged in six-month-old mutant mice compared to wild-type 

mice. Immunohistochemical staining showed alterations in the composition and organization 
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of pancreatic islets of Ins2C95S mutant mice, consisting of reduced and weaker insulin positive 

staining of β-cells and instead increased proportions of glucagon expressing α-cells in 

comparison to control mice. Munich Ins2C95S mutant males had significantly decreased 

calculated total volume of β-cells (-81%) and reduced volume density of β-cells compared to 

control. In contrast, volume density of α-cells in the islet was remarkably higher in mutant 

males compared to wild-type males. Munich Ins2C95S mutant females did not reveal remarkable 

changes in the calculated total volume and volume density of β-cells compared to sex-matched 

controls, but the volume density and total volume of α-cells in the islets of mutant females were 

significantly higher compared to wild-type females. Electron microscopic evaluation of β-cells 

showed ultrastructural alterations in heterozygous Munich Ins2C95S mutant mice, such as a 

dilated ER, mitochondrial swelling and a severe reduction of insulin secretory granules with 

dense cores and only a thin or missing surrounding halo. Ultrastructural changes in female 

Ins2C95S mutants were less pronounced. In homozygous Munich Ins2C95S mutants diabetes 

occurred earlier and more severe in male and female mice, revealing glycosuria, hyperglycemia 

and growth retardation. Homozygous mutant mice revealed random blood glucose levels of 400 

mg/dl for males and 394 mg/dl for female mutant mice at the age of three weeks. Male 

homozygous Ins2C95S mutants died earlier than females with a mean age of 46 days versus 52 

days, respectively (Herbach, Rathkolb et al. 2007). Therefore, the Munich mouse is another 

rodent model to investigate cellular defects, pathophysiology of β-cell dysfunction and β-cell 

death caused by ER stress (reviewed in (Liu, Sun et al. 2015)). 

2.3.1.3 Transgenic mouse expressing proinsulin-H34D 

Another transgenic mouse model is the H34D mutant mouse carrying a mutation that exhibits 

a C → G transversion in the codon for residue 10 of proinsulin leading to a replacement of the 

histidine residue for aspartic acid at position B10 (Gruppuso, Gorden et al. 1984, Chan, Seino 

et al. 1987, Carroll, Hammer et al. 1988). The substitution of the amino acid inhibits the 

association of (ASP10)proinsulin to hexamers in the presence of zinc (Blundell, Cutfield et al. 

1972). The region of the mutation is analogous to the coding region of a human insulin allele 

(Carroll, Hammer et al. 1988). In humans, proteolytic processing of mutant proinsulin to insulin 

is impaired and leads to hyperproinsulinemia and mild glucose intolerance (Gruppuso, Gorden 

et al. 1984). H34D transgenic mice were generated by deoxyribonucleic acid (DNA) 

microinjection (Brinster, Chen et al. 1985). For further evaluation mice containing about 100 

copies of the mutant gene were chosen. They showed normal blood glucose levels but increased 

levels of proinsulin compared to controls. About 65% of the proinsulin synthesized in H34D 

transgenic mice was of the mutant form (Carroll, Hammer et al. 1988). Besides normal mouse 
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proinsulin that was processed via a regulated secretory pathway, 15% of the mutant proinsulin 

was secreted via an unregulated pathway without being processed proteolytically and about 

20% of mutant proinsulin was degraded in the β-cells of the transgenic mice. These results 

indicated that selective secretion of (ASP10)proinsulin leads to hyperproinsulinemia (Carroll, 

Hammer et al. 1988). Furthermore, studies on mutant H34D suggest that native proinsulin 

carries structural information that is relevant for the proper sorting of proinsulin (Chan, Seino 

et al. 1987). 

2.3.2 Porcine Models  

Pigs are the most auspicious model to bridge the gap between preclinical and clinical studies 

for diabetes research (Larsen and Rolin 2004, Aigner, Renner et al. 2010). While basic 

preclinical trials can be implemented in non-mammalian or rodent models differences in 

anatomy, physiology and pharmacokinetics of these species aggravates further translational 

research (Bolker 2017). Pigs have explicit advantages compared to other rodent or nonrodent 

species due to their similarities to the human organism in term of anatomy, physiology, 

biochemistry, genetics, lifespan and size. Their cardiovascular system is almost identical to 

humans regarding the size, the distribution of the blood supply or the pattern in which collateral 

circulation develops after ischemia as well as a similar cardiac electrophysiology (reviewed in 

(Kassab and Fung 1994, Clauss, Bleyer et al. 2019)). Also the digestive tract and urinary system 

are comparable to humans (Laven, Orvieto et al. 2004, Smith and Swindle 2006). Thus, organ 

development and disease progression are considered to be very equal to humans as well. Most 

importantly for diabetic studies, morphology and functionality of the pancreas and its islets are 

very similar to humans (Lunney 2007, Swindle, Makin et al. 2012). Pigs show the same 

predisposition to certain metabolic disorders associated to diabetes, like obesity or metabolic 

syndrome for instance (Renner, Blutke et al. 2018). The size of pigs makes scanning or imaging 

of body structures, organs or vessels easier and surgical procedures can be performed using 

standard human equipment (Lunney 2007). These are important facts, as the pig is a promising 

donor for islet replacement therapies (Zhu, Zhang et al. 2018). Additionally, permanent 

cannulation of vessels is easier to perform and easier to maintain compared to rodents. The 

genome of swine has high sequence and chromosome structure homology with humans and due 

to its complete sequencing a wide range of tools can be used for genetic manipulation and 

analysis (Lunney 2007, Walters, Wolf et al. 2012). The porcine model fulfils most of the needed 

requirements for translational research, in particular genetically engineered pig models. In 

recent years the usage of genetically modified pigs for translational research has increased. 

These models aroused the interest by providing discoveries of human diseases and results for 
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appropriate treatments that could not be acquired by existing animal models (Walters, Wolf et 

al. 2012, Prather, Lorson et al. 2013). Distinct tailored pig models are available showing 

characteristics of diabetes comparable to humans (reviewed in (Wolf, Braun-Reichhart et al. 

2014, Renner, Blutke et al. 2020)). In contrast to non-human primates, pigs are easier to 

maintain and have higher fertility with a shorter reproductive cycle and a larger litter size. This 

facilitates multigenerational studies and using piglets from the same litter decreases the 

biological variance. To conclude, they are less cost intensive and do not raise the same public 

ethical concern when compared to primate or dog models. Additionally, there are more 

accredited laboratories and suppliers available for pigs than for primates, an important aspect 

that needs to be considered while planning a long-scale in vivo study. 

To date the following genetically engineered pig models with mutations in the insulin gene or 

insulin gene knockout are available and are described in the following chapters. 

2.3.2.1 The INSC93S transgenic pig model 

The INSC93S transgenic pig line corresponds to the Munich Ins2C95S mutant mouse model 

described in 2.3.1.2 and is similar to the human mutation INSC95Y that triggers the MIDY 

syndrome (Stoy, Steiner et al. 2010). The mutation in the pig exhibits a transition (T → A) and 

leads to an amino acid exchange (Cys → Ser) and subsequently to a disruption of the disulfide 

bond (A6–A11). In humans the mutation exhibits a different transition (G → A) and amino acid 

exchange (Cys → Tyr). As a consequence misfolded proinsulin gets retained in the ER, native 

insulin processing and secretion is impaired which initiates ER stress and finally β-cell death 

(Herbach, Rathkolb et al. 2007, Colombo, Porzio et al. 2008, Hodish, Liu et al. 2010). INSC93S 

transgenic pigs with a Landrace-Swabian Hall background were generated by SCNT and 

laparoscopic embryo transfer (Kurome, Kessler et al. 2015). At three to four months of age 

male and female INSC93S transgenic animals showed increased mean fasting blood glucose 

levels of 121 mg/dl and reduced glucose tolerance and insulin secretion compared to control 

animals (Renner, Martins et al. 2019). After reaching sexual maturity at seven months of age, 

transgenic animals showed decreased fasting plasma insulin levels in comparison to wild-type 

littermates. The reduction of glucose tolerance and insulin secretion in INSC93S transgenic pigs 

had deteriorated and was more pronounced in female pigs compared to age-matched males. 

One-year-old INSC93S transgenic pigs showed a tendency of decreased volume density and total 

volume of β-cells in the pancreas compared to controls. None of the transgenic animals 

presented growth retardation (Renner, Martins et al. 2019). Furthermore, female INSC93S 

transgenic pigs were mated to evaluate the impact of maternal diabetes on glucose metabolism 

and the metabolome of the offspring at the day of birth. During the third trimester INSC93S 
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transgenic sows revealed mild fasting hyperglycemia, impaired glucose tolerance and insulin 

resistance compared to non-pregnant wild-type sows. Before first colostrum uptake, non-

transgenic neonatal offspring of hyperglycemic sows presented already impaired glucose 

tolerance and insulin resistance compared to wild-type piglets from normoglycemic sows. 

Additionally, targeted metabolomics showed changes in their profile (Renner, Martins et al. 

2019). The benefit of the INSC93S transgenic porcine model is that hyperglycemic effects can be 

evaluated without interfering influences of obesity, such as in diet-induced obese models 

(Thompson, Valleau et al. 2017). Furthermore, foetal maturation during pregnancy and maturity 

stage of piglets at birth is very similar to humans and is a good comparison to human offspring 

(Litten-Brown, Corson et al. 2010). 

2.3.2.2 The INSC94Y transgenic domestic pig (DP) model  

The INSC94Y transgenic line is the corresponding porcine model to the Akita mouse model 

described in 2.3.1.1. The porcine mutation INSC94Y is the homologue to the human mutation 

INSC96Y with the difference that the C-peptide is two amino acids shorter in the pig. The 

mutation contains a G → A transition in the INS gene that promotes a substitution of amino 

acids in position 94 and induces the disruption of a disulfide bond between the A and B chain. 

As in the Akita mouse model, the mutation leads to the production of misfolded proinsulin with 

the same pathological consequences for the β-cell (see chapter 2.2.1) that  may consist of the 

formation of molecular complexes containing co-expressed native and mutant proinsulin in the 

pig (see chapter 2.2.3) (Hodish, Liu et al. 2010, Renner, Braun-Reichhart et al. 2013). The pig 

line was generated by somatic cell nuclear transfer (SCNT) and embryo transfer (Klymiuk, 

Bocker et al. 2012), resulting in animals with a PNDM (Renner, Braun-Reichhart et al. 2013, 

Wolf, Braun-Reichhart et al. 2014). The INSC94Y transgenic DP model was characterized by 

Renner et al. (Renner, Braun-Reichhart et al. 2013); they exhibited a persistent diabetic 

phenotype comprising increased blood glucose levels shortly after birth compared to their wild-

type littermates, respectively. At this early stage INSC94Y transgenic piglets did not show 

reduced β-cell mass. Instead, an impaired insulin secretion due to the negative blockade of 

native proinsulin is assumed to be the initial reason for hyperglycemia in these first days of life. 

At 4.5 months of age INSC94Y transgenic pigs revealed significantly elevated mean fasting blood 

glucose levels of more than 300 mg/dl and remarkably lower fasting insulin levels compared to 

non-transgenic littermates. HOMA of β-cell function index was remarkably reduced and 

HOMA of insulin resistance index significantly increased, indicating reduced β-cell function 

and insulin resistance in INSC94Y transgenic pigs. Qualitative histological evaluation of 

endogenous pancreas of 4.5-month-old transgenic pigs showed alterations of the cell 
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composition with reduced and less intense immunostained insulin positive cells compared to 

control pigs. Quantitative histological analysis of 4.5-month-old INSC94Y transgenic pigs 

showed a decrease of the volume density and the total volume of β-cells and the total volume 

of β-cells related to body weight by 54%, 72% and 53% compared to controls, respectively. 

Electron microscopic evaluation of β-cells presented severely dilated ER of 4.5-month-old 

transgenic pigs compared to wild-type littermates (Renner, Braun-Reichhart et al. 2013). The 

development of a persistent clinical phenotype without major external interferences is an 

important advantage of genetically engineered diabetes models compared to other methods 

inducing the disease. Other methods are either more invasive, need repeated administration of 

chemicals or drugs or trigger adverse side effects like obesity that can have an interfering 

influence. Moreover, animals can respond differently to chemicals and drugs and can carry a 

predisposition for diabetes, which induces unwanted variability (Dufrane, van Steenberghe et 

al. 2006). In addition to its use for basic investigation of β-cell impairment and its consequences, 

this large animal model complements the rodent model regarding translational objectives. Islet 

transplantation is a promising approach for treating severe diabetes that is difficult to adjust 

with insulin treatment. This can be addressed using INSC94Y transgenic pigs for the preclinical 

assessment of immunosuppressants and to further evaluate suitability of e.g., transplantation 

devices (Sakata, Yoshimatsu et al. 2012). Questions of preconceptional diabetes mellitus 

(PCDM) and their effects on the descendants can be reasonably investigated since mating with 

INSC94Y transgenic sows makes a multigenerational study possible (Wolf, Braun-Reichhart et 

al. 2014). In 4.5-month-old INSC94Y transgenic animals diabetes-related secondary alterations, 

such as significant growth retardation with reduced body weight by 41% compared to the 

control animals were observed. Concordantly, most organ weights were proportionally reduced. 

Except the kidneys that revealed an increased relative organ weight and increased relative 

glomerular volume to body weight compared to wild-type littermates. However, there were 

neither histological alterations indicative for diabetic kidney disease in 4.5-month-old 

transgenic pigs or 1-year-old cloned transgenic pigs nor alterations indicative for diabetic 

neuropathy in 4.5-month-old transgenic pigs compared to wild-type littermates. In contrast, a 

progressive cataract was observed in INSC94Y transgenic animals starting at eight days of age 

(Renner, Braun-Reichhart et al. 2013). Long-scale studies could lead to the development of 

more secondary lesions. Also, a biobank was established (Munich MIDY Pig Biobank) 

containing a broad collection of paraffin, plastic and Epon-resin embedded or cryopreserved 

samples. The sample collection consists of tissue and body fluids of two-year-old female 

INSC94Y transgenic and non-transgenic animals (Blutke, Renner et al. 2017). In a current study, 

liver and blood samples from the Munich MIDY Pig Biobank were used for the first multi-
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omics study in a diabetic large animal model to investigate functional alterations of the liver 

(Backman, Flenkenthaler et al. 2019). Currently, more size-reduced pig models would be 

desirable in particular for testing of new developed pharmaceuticals and therefore novel 

genetically modified pigs with an INSC94Y mutation need to be reared. An example is the INSC94Y 

transgenic MPH model that was generated and is the subject of this investigation. Therefore, 

common minipig models that play a role in biomedical research are further described for 

comparison.  

2.4 The minipig as an animal model for biomedical research 

Since the 1940s pigs were more and more often used as a large animal model for biomedical 

research and soon scientists started to develop and establish pig lines smaller in size that were 

named minipigs. Apart from the reduced requirements of food and space, minipigs are much 

easier to handle, for example during transportation due to a lower body weight compared to 

DPs. Another advantage is the lower amount of test compound needed due to the lower body 

weight of minipigs which is of special value in early drug testing. As early development studies 

for new pharmaceuticals are often limited by the amount and cost of their drug prototype. One 

of the main breeding goals for all minipig lines was to generate a pig with a calm and docile 

character that is sociable towards conspecifics and tolerates manipulation by humans as stress 

free as possible.  

A broad variety of breeds were used to generate new minipig lines with specific properties. 

Therefore, crossbreeding of distinct existing minipig breeds with each other, with feral 

miniature pigs, domestic pigs or wild boars through numerous generations were performed. A 

few strains kept their native origin and are continuously used for preclinical studies without any 

hybridization as certain investigations need a small gene pool as objective criterion. 

The following overview contains the current minipig breeds used in biomedical research, 

introduced in chronological order according to their year of establishment and are grouped by 

crossbred or native origin. 

2.4.1 Crossbred minipig models 

2.4.1.1 Sinclair miniature swine (Minnesota miniature) 

The Sinclair miniature swine, one of the first minipig lines bred for biomedical research, was 

generated in 1949 by the Hormel Institute at the University of Minnesota (Dettmers and Rempel 

1968). The Sinclair minipig descended from four different feral and domestic pig lines that 

were crossbred over the decades; Guinea Hog, Catalina wild boar, Piney-Woods and Ras-n-
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lansa. Later on the breed was crossbred with Yorkshire as white skin is desired for numerous 

questions in biomedical research (Dettmers, Rempel et al. 1971). The Sinclair miniature swine 

represented a fundamental genetic background for the development of later minipig models 

(e.g., Göttingen minipig) (Glodek and Oldigs 1981). Currently, there is one population in the 

United States that is kept as outbred strain named Sinclair S-1 miniature swine (Sinclair-Bio-

Resources 2019). The phenotype shows a wide variety of hair coats, from single- to tricolored. 

Newborn piglets have a mean body weight of 590 gram. Adults gain a mean body weight of 

55–70 kilogram and have a medium body size compared to other minipigs. They are lighter and 

smaller than Westran (chapter 2.4.2.3), Hanford (chapter 2.4.1.2) or Yucatan (chapter 2.4.2.1) 

but heavier and larger than Göttingen minipigs (see chapter 2.4.1.3) (Ganderup, Harvey et al. 

2012). Males and females reach sexual maturity at an age of approximately three to four and 

four to five months, respectively. Sows have an average litter size of six piglets. The animals 

show a calm and social temper (Ganderup, Harvey et al. 2012, McAnulty 2012). In the past the 

Sinclair miniature swine was mainly used for human alcoholism studies (Preston, Tumbleson 

et al. 1972, Foudin, Tumbleson et al. 1984, Wood, Gorka et al. 1991). Nowadays this breed is 

further used as a model for diseases of various organ systems, especially for the cardiovascular 

system and its interaction with metabolic disorders like diabetes (reviewed in (Bellinger, 

Merricks et al. 2006)). Sinclair minipigs have been used to generate e.g., atherosclerotic swine 

models (Sinclair-Bio-Resources 2019). After a few weeks of feeding a high-fat, high-

cholesterol diet Sinclair piglets developed aortic strokes and after feeding the same diet for 

months atherosclerotic lesions leading to arterial occlusions were found in these minipigs. To 

accelerate the manifestation of atherosclerosis the arterial intima can be mechanically irritated, 

injured or metabolic disorders like diabetes can be induced in parallel (Sinclair-Bio-Resources 

2019). For atherogenic studies a diabetic state and associated obesity was induced and 

maintained in pigs by intravenous alloxan treatment (175 mg/kg) combined with a high-fat diet 

for about 12 weeks. Under this protocol Sinclair minipigs exhibited hyperglycemia, 

dyslipidemia and atherosclerotic alterations in peripheral vascular and coronary arteries, similar 

to humans (Dixon, Stoops et al. 1999, Roberts, Sturek et al. 2001). The Sinclair miniature pig 

is also a suitable large animal model for osteoporosis (Sinclair-Bio-Resources 2019). 

Ovariectomized minipigs fed a calcium-restricted diet revealed alterations in bone similar to 

those seen in patients of postmenopausal osteoporosis (Mosekilde, Weisbrode et al. 1993). 

Based on this protocol, Sinclair minipigs can be used for safety and efficacy studies of novel 

drug therapies, to analyse their effect on bone content and architecture (Borah, Dufresne et al. 

2002). Finally, Sinclair miniature pigs can exhibit a spontaneously cutaneous malignant 

melanoma very similar to human melanoma (Gomez-Raya, Amoss et al. 2009) and are therefore 
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an important source for dermatology and oncology research (Manning, Millikan et al. 1974, 

Misfeldt and Grimm 1994, Sinclair-Bio-Resources 2019).  

2.4.1.2 Hanford miniature swine 

In 1958 Hanford Laboratories in the United States developed the Hanford miniature swine by 

crossbreeding domestic Palouse sows with a Pitman-Moore boar. Later, feral Swamp pig was 

introduced for body size reduction followed by the incorporation of Yucatan miniature swine 

in the 1960s (Bustad and McClellan 1966). Since 2002 a closed herd of Hanford miniature 

swine is kept at Sinclair Bio Resources in Columbia (Sinclair-Bio-Resources 2019). 

Furthermore, Hanford minipigs served as background for the development of the later minipig 

models, such as FDA Hormel-Hanford or Munich minipig (McAnulty 2012). The newborn 

Hanford miniature swine has a mean body weight of 700 gram while the adult reaches a mean 

body weight of 80–95 kilogram and is therefore one of the largest minipig breeds, together with 

the Westran minipig (see chapter 2.4.2.3). Males and females reach sexual maturity within an 

age of approximately three to four and four to five months, respectively (Ganderup, Harvey et 

al. 2012). Their average litter size is 6.7 piglets (McAnulty 2012). The breed presents 

characteristics like a uniform white skin with a spare hair coat and low subcutaneous fat content 

compared to other minipig lines (McAnulty 2012). These features make them perfectly suitable 

for dermal studies (reviewed in (Stricker-Krongrad, Shoemake et al. 2017)), e.g., as transdermal 

drug delivery model (Panchagnula, Stemmer et al. 1997) and more frequently as a model for 

regulatory dermal toxicity studies (Stricker-Krongrad, Shoemake et al. 2016, Sinclair-Bio-

Resources 2019). The lower fat content makes the Hanford minipig also an attractive model for 

surgical investigations (Sinclair-Bio-Resources 2019). A unique advantage of Hanford 

minipigs over other minipig lines is the development of human-sized organs and structures 

(Friedman, Gaines et al. 1994, Swindle, Makin et al. 2012). The similar collateral blood flow 

and heart size to human made them a preferred model for cardiovascular disease (Marshall, 

Kott et al. 1977, Eisele, Griffey et al. 1993, Sinclair-Bio-Resources 2019). 

2.4.1.3 Göttingen minipig 

The Göttingen minipig was the first minipig line developed in Europe, in the University of 

Göttingen, Germany in the1960s (Kohn, Sharifi et al. 2007). Initially, it was a crossbred of 

Vietnamese Potbelly pig and Minnesota miniature swine with the objective of a high fertility 

rate and a docile behaviour. Later the German Landrace was introduced to obtain a uniform 

white skin color and thus a first population of a white strain of Göttingen minipigs was founded 

(Glodek and Oldigs 1981). Meanwhile, specific pathogen free (SPF) animals have become 
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available. In 1992 Ellegaard Denmark acquired the exclusive right to breed and sell Göttingen 

minipigs but a base population is kept in a farm near Göttingen where the genetic management 

for the whole breeding population is done. In the last decades Ellegaard expanded its 

distribution and signed into licensing agreements with other breeding facilities to ensure a 

worldwide availability. Since 2003 the minipigs are bred and distributed in the United States 

and since 2010 and 2013 they are available in Japan and Korea, respectively (EGM 2019). 

Newborn piglets have a mean body weight of 450 gram while adults reach a mean body weight 

of 30–40 kilogram. (Ganderup, Harvey et al. 2012) They are considered the smallest minipig 

breed, reaching an average body height of 44–48 cm (S.L.A-Research 2000, Swindle, Makin et 

al. 2012). Male and female Göttingen minipigs reach sexual maturity within an age of 

approximately three to four and four to five months, respectively. Sows have an average litter 

size of six and a half piglets (Ganderup, Harvey et al. 2012, McAnulty 2012). The Göttingen 

minipig can be used for a broad range of scientific questions and is therefore one of the most 

popular breeds in biomedical research and for regulatory toxicity testing (Swindle, Makin et al. 

2012). They are especially valuable for cardiovascular and diabetes studies (reviewed in 

(Bellinger, Merricks et al. 2006)). After administration of nicotinamide (NIA) and 

streptozotocin (STZ) or alloxan the Göttingen minipigs develop a reduced β-cell mass, impaired 

insulin secretion and hyperglycemia (Kjems, Kirby et al. 2001, Larsen, Rolin et al. 2007). Under 

a protocol of double low-dose administration of STZ (40 mg/kg) within an 11-day interval, 

minipigs showed diabetic characteristics including β-cell mass reduction and the presence of 

glutamic acid decarboxylase autoantibodies but without developing insulin autoantibodies 

(Rolandsson, Haney et al. 2002). To establish a model for type 2 diabetes or insulin resistance, 

Göttingen minipigs were fed a high-fat high-energy diet for three months (Larsen, Rolin et al. 

2002) with or without additional treatment with STZ alone (maximum of 125 mg/kg) and in 

combination of a pretreatment with NIA (maximum of 230 mg/kg) (Larsen, Wilken et al. 2002). 

In a different study a combined protocol of slow infusion of STZ (130 mg/kg) with a low-fat 

diet was used to induce hyperglycemia and reduce insulin secretion (Koopmans, Mroz et al. 

2006). Additionally, Göttingen minipigs are used to test novel drug therapies for diabetes 

(Ribel, Larsen et al. 2002, Knudsen 2010). When fed an obesity-inducing diet, Göttingen 

minipigs serve as a model for the metabolic syndrome (Johansen, Hansen et al. 2001, 

Christoffersen, Golozoubova et al. 2013, Pedersen, Ingerslev et al. 2013, Zhang and Lerman 

2016, Renner, Blutke et al. 2018). Furthermore, pancreatectomy can be performed in Göttingen 

minipigs to study new therapeutic drugs or the efficacy of medical devices for glucose 

monitoring (Strauss, Tiurbe et al. 2008). The Göttingen minipig is also an excellent model for 

oral surgery, e.g., for dental implantation healing (Coelho, Pippenger et al. 2018) Finally, the 
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uniform white skin color offers opportunities for dermatology and radiology research, which 

demand unpigmented animals for their studies (Mahl, Vogel et al. 2006). 

2.4.1.4 Panepinto micropig 

The Panepinto micropig was founded in the 1990s with the goal to use the breed for biomedical 

research as well as in petting zoos (McAnulty 2012). Selected pigs from the Micro-Yucatan 

line from a herd of the Colorado State University were crossbred with Vietnamese miniature 

pigs. After further steps of selective breeding for smaller size, the modern Panepinto micropig 

background consists of 90% Yucatan and 10% Vietnamese miniature pig (Schook and 

Tumbleson 2013). The micropigs have a grey to black skin color, large ears and wattles. The 

newborn piglet has a mean body weight of 500–800 g, while the adult reaches a mean body 

weight of 25–30 kilogram and is therefore smaller in body size than other mini- or micropigs. 

Animals become sexually mature with four to six months of age and the average number of 

piglets per litter is seven to eight (McAnulty 2012, Schook and Tumbleson 2013). The 

Panepinto miniature pig is only bred in the United States and is mainly used for cardiovascular 

or diabetes studies (McAnulty 2012, Gutierrez, Dicks et al. 2015). 

2.4.2 Native minipig models 

2.4.2.1 Yucatan miniature swine and Micro-Yucatan miniature swine 

The Yucatan miniature swine derived from 25 animals imported to the US from the Mexican 

Peninsula Yucatan in 1960 and was generated at Colorado State University (Panepinto and 

Phillips 1986). It has a native origin initially derived from one gene pool and is kept as an 

outbred strain for biomedical research. The average birth weight ranges from 500–900 gram 

and the adult body weight range is 70–80 kilogram. Yucatan minipigs have a medium body 

size, reaching an average body height of 57 cm and body length of 76 cm (Panepinto, Phillips 

et al. 1978). Thus, it is larger than the Göttingen (see chapter 2.4.1.3) or Sinclair (see chapter 

2.4.1.1) but smaller than the Hanford (see chapter 2.4.1.2) minipig. Males and females reach 

sexual maturity within an age of approximately three to four and four to five months, 

respectively. The average number of piglets per litter is six. Animals are slate-grey and hairless 

(Panepinto, Phillips et al. 1978, Ganderup, Harvey et al. 2012, McAnulty 2012). In the 1970s 

two lines were generated by selective breeding, “low K” with impaired glucose tolerance and 

“high K” with an enhanced glucose tolerance (Phillips, Panepinto et al. 1982). The impaired 

glucose tolerance in the “low K” line resulted from a decreased peripheral insulin level. The 

decrease of insulin concentrations was the consequence of reduced insulin secretion due to a 

modified pancreatic receptor or postreceptor response. Morphometric analysis of the pancreas 
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of pigs of this strain confirmed normal synthesis and storage of insulin and a normal number of 

islets and β-cells. Therefore, “low K” pigs were not able to secrete an appropriate insulin 

amount due to an insufficient glucose stimulus. The secretory response of insulin to a glucose 

stimulus was reduced compared to other secretagogues like isoproterenol (Phillips, Panepinto 

et al. 1982, Panepinto and Phillips 1986). Females revealed a propensity for obesity and 

developed diabetes with hyperglycemia and hyperinsulinemia during gestation and lactation. 

Until the 7th generation the characteristic of glucose intolerance got lost and the “low K” line is 

not available anymore (Hand, Surwit et al. 1987). Currently, the Yucatan minipig is used as a 

model for diabetes and dyslipidemia by inducing diabetes through STZ or alloxan and 

additionally obesity can be induced by feeding a high-fat diet. Besides hyperglycemia, these 

minipigs exhibited elevated cholesterol and triglyceride levels and obtained a normal to obese 

body shape. The acquired glycemic control and the body shape of these minipigs depended on 

the long-term insulin and food maintenance algorithm that was given to prevent diabetes-

induced body wasting (Boullion, Mokelke et al. 2003). Furthermore, alloxan-induced diabetic 

male Yucatan pigs fed an atherogenic diet developed atherosclerosis and altered collagen depots 

in arteries (Hill, Dixon et al. 2001). Alloxan-induced diabetic animals showed retinal capillary 

changes, therefore it is a useful model for diabetes-associated microvascular alterations 

(Hainsworth, Katz et al. 2002). The Yucatan minipig is also a common model for exercise 

physiology and its effect on vascular function or lipoproteins (Mokelke, Dietz et al. 2005, 

Richardson, Lai et al. 2009). Yucatan models with a modified low-density lipoprotein receptor 

(LDLR) gene were generated, exhibiting hypercholesterolemia and a progressive 

atherosclerosis with formation of macrovascular lesions, especially when fed a high-fat diet 

(Davis, Wang et al. 2014, Amuzie, Swart et al. 2016). Selective breeding brought forth a 

Yucatan model with ventricular septal defect (VSD) (Sinclair-Bio-Resources 2019). The defect 

is very similar to the most common form of VSD in humans and some pigs additionally 

developed pulmonary hypertension and a patent foramen ovale (Swindle, Thompson et al. 

1990). Furthermore, the Yucatan minipig is used in numerous fields of biomedical research, 

e.g., as a model of cystic fibrosis (Welsh, Rogers et al. 2009, Cooney, Abou Alaiwa et al. 2016), 

tumorigenesis (Sieren, Meyerholz et al. 2014) or neurological disorders (White, Swier et al. 

2018).  

The Micro-Yucatan miniature swine derived from the Yucatan miniature swine by introducing 

a small Yucatan boar into the Colorado State University breeding program. Subsequently, 

selective breeding for smaller than average size and weight was performed (Panepinto and 

Phillips 1981). In 1985 Charles River Laboratories established a Micro-Yucatan breeding 
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program and since 2002 Sinclair Bio Resources acquired the herd (McAnulty 2012, Sinclair-

Bio-Resources 2019). Micro-Yucatan pigs have similar characteristics compared to Yucatan 

minipigs. They are interchangeable and practically only differ in size, reaching a body weight 

of 55–70 kilogram (Ganderup, Harvey et al. 2012). Like Yucatan minipigs, Micro-Yucatans 

are a used as a model for cardiovascular diseases, obesity and diabetes (Lee, Xu et al. 2010, 

Sinclair-Bio-Resources 2019) and a special model exhibits as well VSD (Johnson, Fyfe et al. 

1993, Sinclair-Bio-Resources 2019, Sinclair-Bio-Resources 2019). It should be considered that 

variations in cardiovascular parameters exist between the Yucatan minipig and Micro-Yucatan 

(Smith, Spinale et al. 1990). As the Micro-Yucatans are also a useful model of human 

menopause they offer the opportunity to evaluate the effects on cardiovascular and reproductive 

tissues in sexually mature and in ovariectomized micropigs under postmenopausal oestrogen 

therapy (Goodrich, Clarkson et al. 2003).  

2.4.2.2 Chinese Guizhou minipig 

The Chinese Guizhou minipig is one of various minipig strains from China and is used for 

biomedical research since the 1990s. The genetic homozygosity and stable phenotype of this 

naturally evolved minipig can have significant benefits for biomedical researches (Min, Pan et 

al. 2014). Currently, they are used as a model for atherosclerosis, T2D or novel drug testing. 

When fed a high-fat high-sucrose diet this minipig breed developed a mild dyslipidemia with 

obesity, hyperglycemia, insulin resistance, impaired insulin secretion, reduced β-cell mass and 

atherosclerotic lesions in the aorta (Xi, Yin et al. 2004). By treating Chinese Guizhou minipigs 

fed a high-fat high-sucrose diet with a synthetic lipoprotein lipase activator, obesity was 

inhibited, insulin response and high-density lipoprotein (HDL) cholesterol were increased and 

total cholesterol was reduced (Yin, Liao et al. 2004). 
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2.4.2.3 Westran minipig 

The Westran strain is one of the minipig lines that is kept highly inbred. The poor gene diversity 

makes this strain especially interesting for transplantation research. Their well-characterized 

homozygous major histocompatibility complex (MHC) makes tolerance induction and 

immunosuppression easier compared to other strains (Lee, Simond et al. 2005). This enhances 

the use of inbred Westran pigs for xenotransplantation studies in which a low genetic variation 

is essential (Cooper, Gollackner et al. 2002, O'Connell, Hawthorne et al. 2005). The animals 

are descendants of feral pigs from Kangaroo Island, originated from just one breeding pair of 

pigs that were released on the Island in 1803. The Westran (Westmead Hospital transplantation) 

line was established in 1993 in the Westmead hospital in Sydney with the goal to generate 

potential donators for non-human organs and tissues (O'Connell, Hawthorne et al. 2005). 

Westran pigs appear white, partly with black spots. Newborn piglets have a mean body weight 

of 930 gram while adults gain a mean body weight of 80–93 kilogram and therefore reach a 

comparably large body size compared to other minipig lines. Animals become sexually mature 

with six to seven months of age and the average number of piglets per litter is 4.6 (O'Connell, 

Hawthorne et al. 2005, McAnulty 2012). As already mentioned, the biggest benefit of this pure 

blood strain is the maintenance of relevant characteristics in between the population like the 

same blood group type 0 or a similar MHC, providing a transplant model for allo- or 

xenotransplantation studies with improved rejection properties (Hawthorne, Cachia et al. 2000, 

Lee, Simond et al. 2005). Finally, Westran minipigs have also been used for pancreatic islet 

transplantation as a treatment strategy for T1D (Hawthorne, Simond et al. 2011).  

2.4.2.4 Ossabaw minipig 

Ossabaw minipigs have a unique genetic history. It is assumed that they originate from a 

Spanish strain brought to the US. Some of these animals escaped and lived isolated on the 

Ossabaw Island where they developed a “thrifty genotype„ due to the extreme conditions of the 

habitat with alternate periods of abundant food and starvation that provoked an adaptation of 

the lipometabolism (Dyson, Alloosh et al. 2006). The average body weight of a 10 to 12 

months-old Ossabaw minipig is 88 kilogram. It is a slow growing strain for the reason of lower 

plasma growth hormone in comparison to other strains (Kasser, Martin et al. 1981). When 

Ossabaw minipigs are fed ad libitum in captivity they acquire obesity, insulin resistance, 

glucose intolerance, hypertension and dyslipidemia. Consequently, an ad libitum diet increases 

the risk of developing T2D, metabolic syndrome and coronary heart disease (Dyson, Alloosh 

et al. 2006). Thus, this strain is an excellent model for these types of metabolic disorders and 

their consequences (Edwards, Alloosh et al. 2008, Pedersen, Ingerslev et al. 2013). Ossabaw 
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minipigs develop the above mentioned phenotype of metabolic syndrome within a shorter time 

period compared to other minipig strains, when fed a high-fat high-cholesterol diet and without 

the need of a chemical or surgical diabetes induction (Neeb, Edwards et al. 2010). When the 

Ossabaw minipig model of metabolic syndrome additionally was injected with Alloxan, even 

more severe coronary atherosclerosis was observed (Badin, Kole et al. 2018). Juvenile female 

Ossabaw pigs fed a western-style diet (high-fat, high-fructose and high-cholesterol) for 16 

weeks developed not only dyslipidemia, obesity and insulin resistance but also microbiota 

dysbiosis and nonalcoholic steatohepatitis (NASH) (Panasevich, Meers et al. 2018). In dietary 

restriction studies Ossabaw minipigs showed only a slight decrease in adipose tissue mass and 

no loss in muscle mass or amount of adipocytes (Etherton and Kris-Etherton 1980). 

Furthermore, this strain is used as experimental model for bladder dysfunctions (Mattern, Lloyd 

et al. 2007, Edwards, Alloosh et al. 2008). 
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3 ANIMALS, MATERIALS AND METHODS 

3.1 Animals 

All animals which were part of the present study were hemizygous female and male transgenic 

or non-transgenic domestic pig-minipig hybrids (MPHs) and age-matched female and male 

non-transgenic domestic pigs (DPs). MPHs were generated by mating transgenic German 

Landrace-Swabian-Hall crossbred sows expressing the mutant insulin (INS) C94Y with a black 

minipig boar. Animals were maintained under controlled species-appropriate conditions, i.e., 

small groups with their littermates. Pens were planar-fixed with straw bedding. Animals were 

fed once daily with an appropriate pig diet produced by the Livestock Centre of the Veterinary 

Faculty of the Ludwig-Maximilians-University displayed in Table 1. Water was offered ad 

libitum. To reduce animal distress to a minimum, all pigs were used to the staff and trained for 

the planned procedures. All animal experiments were performed in compliance with the 

German Animal Welfare Act and were approved by the local animal welfare authority 

(Regierung von Oberbayern, Munich, AZ 55.2-1-54-2532-163-2014 and 55.2-1-54-2532-70-

2012). 

Table 1: Composition of porcine diets used 

  

Ingredient                      
Laktationsfutter Sauen 

(lactating sows)

Ferkelkorn                            

(piglets 6.5 kg up to 40 kg)

MJ ME/kg  12.3 13

Dry matter % 88.9 89.4

Crude ash %  5.9 5.7

Crude protein %  19.1 19.4

Crude fiber % 6.6 5

Crude fat %  2.9 2.9

Starch % 38.5 41.4

Sugar %  3.8 2.7

Calcium %  0.71 0.82

Phosphorus %  0.48 0.52

Sodium %  0.16 0.22

Magnesium %  0.19 0.28

Potassium %  0.91 1.19

Copper %  0.0243 0.1574

Zinc %  0.12 0.129

Manganese %  0.072 0.065

ME= metabolizable energy; MJ= Mega joule; Indicated data refer to 1 kg food
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3.2 Materials 

3.2.1 Apparatuses 

Accu-jet® pro pipette controller     Brand, Wertheim, DE 

Agarose gel electrophoresis chamber    WG-Biotech, Ebersberg, DE 

Agarose gel electrophoresis chamber    OWL Inc., USA 

AU480 autoanalyzer      Beckman-Coulter, Krefeld, DE 

Benchtop 96 tube working rack     Stratagene, La Jolla, USA 

Electrophoresis Power Supply EPS 500/400  GE Healthcare GmbH, Munich, DE 

EM 10 transmission electron microscope   Carl Zeiss AG, Oberkochen, DE 

GE Lunar iDXA scanner      GE Healthcare GmbH, Solingen, DE 

Gel documentation system      Bio Rad, Munich, DE 

HM 315 microtome       Microm, Walldorf, DE 

HM 360 microtome       Microm, Walldorf, DE 

Incubator         Memmert, Schwabach, DE 

LB 2111 γ-counter       Berthold, Bad Wildbach, DE 

Microprocessor pH meter      WTW, Weilheim, DE 

Microscope digital camera (DP72, Olympus)  Olympus, Hamburg, DE 

Microwave        Siemens, Munich, DE 

MS1 minishaker        IKA, Staufen, DE 

Multipette® plus        Eppendorf, Hamburg, DE 

Object micrometer       Carl Zeiss AG, Oberkochen, DE 

Pipettes (1000 µl, 200 µl, 20 µl, 10 µl, 2 µl)   Gilson Inc, USA 

Precision® Xceed glucometer     Abbott, Wiesbaden, DE 

Reichert-Jung TM60 milling maschine  Leica Microsystems GmbH, Wetzlar, 

DE 

Reichert-Jung Ultracut E microtome   Leica Microsystems GmbH, Wetzlar, 

DE 

RH Basic heating plate with magnetic stirrer  IKA, Staufen, DE 

Scanning stage       Märzhäuser, Wetzlar, DE 

Shandon Citadel tissue processor 1000   Thermo Fisher Scientific, GmbH, 

Schwerte, DE 

Stemi SV11 stereomicroscope     Carl Zeiss AG, Oberkochen, DE 

Staining box according to Schifferdecker   Carl Roth GmbH & Co. KG, Karlsruhe, 

DE 
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Systemic microscope (BX41, Olympus)   Olympus, Hamburg, DE 

Thermomixer 5436       Eppendorf, Hamburg, DE 

Varioklav 400 autoclave   H + P Labortechnik, Oberschleißheim, 

DE 

WB 6 water bath        Firmengruppe Preiss-Daimler, DE 

Centrifuges: 

Biofuge pico        Heraeus, Munich, DE 

Megafuge 1.0 R        Heraeus, Munich, DE 

Rotanta 96         Hettich, Tuttlingen, DE 

Eppendorf centrifuge 5810R      Eppendorf, Hamburg, DE 

Eppendorf centrifuge 5430R      Eppendorf, Hamburg, DE 

Thermocycler: 

Biometra Uno Thermoblock      Biometra,Göttingen, DE 

Biometra T Professional      Biometra,Göttingen, DE 

Mastercycler® gradient      Eppendorf, Hamburg, DE 

Scales: 

Analytical balance       Sartorius, Göttingen, DE 

Bizerba (inclination scale)     August Sauter KG, Ebingen, DE 

F. Star 125 large animal scale    Meier-Brakenberg, Exertal, DE 

Kern EOB 15K5        Kern GmbH, Barlingen-Frommern, DE 

Mettler PM 6000       Mettler-Toledo GmbH, Gießen, DE 

3.2.2 Consumables 

Blood lancets        Henry Schein® Vet GmbH, Hamburg DE 

Cellstar® cell culture plates (12 well)    Greiner Bio-One GmbH, Solingen, DE 

Cover slips for histology   VWR International GmbH, Darmstadt, 

DE 

Culture tubes with caps (12 ml, 50 ml)   Falcon® Becton Dickinson, Heidelberg, 

DE 

Disposable plastic pipettes   Falcon®, Becton Dickinson, Heidelberg, 

DE 

DryEase® Mini cellophane   Life TechnologiesTM GmbH, 

Darmstadt,  DE 

1000 eco Lab pipette tips (200 µl, 1000 µl)  neoLAB® Migge Laborbedarf-Vertriebs   

GmbH, Heidelberg, DE 
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Freestyle Precision Xtra Plus     Abbott, Wiesbaden, DE 

blood glucose stripes 

Gelatine epon embedding capsules     Plano, DE 

Hypodermic needles (18 G/20 G)   Henry Schein® Vet GmbH, Hamburg, DE 

Latex Powder-Free sempercare gloves    Satra Technology Center, Nordhamshire 

Microscope slides Star Frost®     Engelbrecht, Edermünde, DE 

Monovette® blood collection system   Sarstedt, Nümbrecht, DE 

(Serum, EDTA) 

Multi Guard Barrier Tips SorensonTM Bioscience Inc., Utah,  

(10 µl, 20 µl, 200 µl, 1000 µl)  USA 

NexttecTM cleanColumns     Nexttec GmbH, Leverkusen, DE 

Parafilm®M   American Can Company, Greenwich, 

USA 

PCR reaction tubes (0.2 ml)      Braun, Wertheim, DE 

Quali-PCR tubes (0.2 ml) and capstrips    G. Kisker Biotech GbR, Steinfurt, DE 

Rotilabo® weighing bowls (20 ml, 330 ml)   Carl Roth GmbH & Co. KG, Karlsruhe, 

DE 

Safe-Lock 1.5 ml Eppendorf Tubes®    Eppendorf, Hamburg, DE 

Sempercare® nitrile gloves   Satra Technology Center, 

Northamptonshire, UK 

Single-use syringes (2.5 ml, 10 ml, 20 ml)   Henry Schein®Vet GmbH, Hamburg, DE 

Sterican® cannulas (18 G, 20 G)     B. Braun, Melsungen, DE 

Tissue culture dishes (60 x 15 mm)    Sarstedt, Nümbrecht, DE 

Uni-Link embedding cassettes     Engelbrecht, Edermünde, DE 

Vascocan® indwelling venous     B. Braun, Melsungen, DE 

catheters and stylets 

3.2.3 Chemicals 

Chemicals were used according to requirements such as safety, handling and analytical purity 

unless described otherwise. 

Acetic acid (glacial acetic acid, Rotipuran®)   Carl Roth GmbH & Co KG, Karlsruhe, 

DE 

Acetone  neoLAB® Migge Laborbedarf-Vertriebs 

GmbH, Heidelberg, DE 

Agarose UltraPureTM Electrophoresis grade   InvitrogenTM, Karlsruhe, DE 

Benzoylperoxide  Merck KGaA, Darmstadt, DE 
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Bromophenolblue       Merck KGaA, Darmstadt, DE 

3,3´Diaminobenzidine tetrahydrochloride  KemEnTec, Copenhagen, Denmark 

(DAB) 

5,5´Diethylbarbituric acid sodium salt   Merck KGaA, Darmstadt, DE 

1,4-Dithiothreitol (DTT)   Biomol Feinchemikalien GmbH, 

Hamburg, DE 

Dodecenylsuccinic acid anhydride pract. (DDSA) Serva Electrophoresis GmbH, 

Heidelberg, DE 

Eosin  Merck KGaA, Darmstadt, DE 

Ethanol         Merck KGaA, Darmstadt, DE 

Ethidiumbromide (1 mg/ml)      Merck KGaA, Darmstadt, DE 

Ethylenediaminetetraacetic acid     Merck KGaA, Darmstadt, DE 

(EDTA, Titriplex®III) 

Ethylene glycol monobutyl ether     Merck KGaA, Darmstadt, DE 

Ethylmercury thiosalicylic acid sodium salt   Serva Electrophoresis GmbH, 

Heidelberg, DE 

Formaldehyde solution (Roti®-Histofix 4%)  Carl Roth GmbH & Co KG, Karlsruhe, 

DE 

Formaldehyde solution (Rotipuran® 37%)  Merck KGaA, Darmstadt, DE 

Glutaraldehyde   Serva Electrophoresis GmbH, 

Heidelberg, DE 

Glycerol (Rotipuran®)   Carl Roth GmbH & Co. KG, Karlsruhe, 

DE 

Glycidether 100   Serva Electrophoresis GmbH, 

Heidelberg, DE 

Hydrochloric acid (25%)   neoLAB® Migge Laborbedarf-Vertriebs 

GmbH, Heidelberg, DE 

Hydrogen peroxide (35%)  neoLAB® Migge Laborbedarf-Vertriebs 

GmbH, Heidelberg, DE 

2-Hydroxyethyl methacrylate Sigma-Aldrich Chemie GmbH, DE 

(HEMA)  

Lead nitrate solution, Pb(NO3)2 (1 M)    Merck KGaA, Darmstadt, DE 

Magnesium chloride       Qiagen GmbH, Hilden, DE 

Mayer`s Hemalum solution      Applichem GmbH, Darmstadt, DE 

Methyl methacrylate (MMA)     Sigma-Aldrich Chemie GmbH, DE 

Methylnadic anhydride (MNA)  Serva Electrophoresis GmbH, 

Heidelberg, DE 
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Monopotassium phosphate (KH2PO4)  neoLAB® Migge Laborbedarf-Vertriebs 

GmbH, Heidelberg, DE 

Osmium tetroxide (OsO4)      chemPUR®, Karlsruhe, DE 

Phenylmethylsulfanylfluoride (PMSF)   Sigma-Aldrich Chemie GmbH, DE 

Polyethylene glycol 400      Merck KGaA, Darmstadt, DE 

Phosphoric acid (H3PO4) (Emprove®)    Merck KGaA, Darmstadt, DE 

Potassium chloride       Merck KGaA, Darmstadt, DE 

Potassium hydrogen phosphate     Merck KGaA, Darmstadt, DE 

Potassium hydroxide pellets      Merck KGaA, Darmstadt, DE 

D(+)-saccharose   neoLAB® Migge Laborbedarf-Vertriebs 

GmbH, Heidelberg, DE 

Saccharose        Merck KGaA, Darmstadt, DE 

Safranin O   Chroma Technology GmbH, Olching, DE 

Sodium acetate (C2H3NaO2)     Merck KGaA, Darmstadt, DE 

Sodium carbonate (Suprapur®)     Merck KGaA, Darmstadt, DE 

Sodium chloride (Ensure®)      Merck K G aA, Darmstadt, DE 

Sodium citrate solution (1 M)     Merck KGaA, Darmstadt, DE 

Sodium hydroxide (NaOH)   VWR International GmbH, Darmstadt, 

DE 

Sodium hydroxide solution (2 M)   VWR International GmbH, Darmstadt, 

DE 

Sodium-orthovanadate (Na3VO4)     Sigma-Aldrich Chemie GmbH, DE 

Sodium phosphate dibasic dehydrate neoLAB® Migge GmbH, DE 

(Na2HPO4 x 2 H2O) 

2-Sodium tetraborate (Borax)     Merck KGaA, Darmstadt, DE 

2, 4, 6-Tris-(dimethylamino-Methyl)phenol Serva Electrophoresis GmbH,  

(DMP 30)  Heidelberg, DE 

Toluidine blue O Roth, DE 

Uranyl acetate        Merck KGaA, Darmstadt, DE 

Xylene         Applichem GmbH, Darmstadt, DE 

3.2.4 Antibodies, drugs, enzymes, oligonucleotides, standards 

3.2.4.1  Antibodies 

Polyclonal guinea pig anti-porcine insulin   Dako cytomation, Hamburg, DE 

Polyclonal rabbit anti-human glucagon    Dako cytomation, Hamburg, DE 
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HRP-conjugated rabbit anti-guinea pig IgG   Dako cytomation, Hamburg, DE 

HRP-conjugated goat anti-rabbit IgG   Dako cytomation, Hamburg, DE 

3.2.4.2 Drugs 

Altrenogest (Regumate®)      Serumwerke Bernburg, Bernburg, DE 

Azaperon (Stresnil®)       Janssen Pharmaceutica, Beerse, Belgium 

Human Chorionic Gonadotropin (hCG, Ovogest®)  Intervet, Unterschleißheim, DE 

Embutramide, Mebezonium iodide,    Intervet, Unterschleißheim, DE 

Tetracaine hydrochloride (T61®)  

Pregnant Mare Serum Gonadotropin   Intervet, Unterschleißheim, DE 

(PMSG, Intergonan®)    

Sodium chloride solution (0.9%)    B. Braun, Melsungen, DE 

Ketamine hydrochloride (Ursotamin®)    Serumwerke Bernburg, Bernburg, DE 

Xylazine (Xylazin 2%)      WDT, Garbsen, DE 

3.2.4.3 Enzymes 

Taq DNA Polymerase (5 U/ml)     Qiagen GmbH, Hilden, DE 

3.2.4.4 Oligonucleotides 

All oligonucleotides were designed manually and manufactured by Thermo Fisher 

Scientific, USA. 

ACTB (sense)  5 ´ TGGACTTCGAGCAGAGATGG 3´ 

ACTB (antisense)  5 ´ CACCGTGTTGGCGTAGAGG 3´ 

neoPf (sense)  5 ´ CAGCTGTGCTCGACGTTGTC 3´ 

neoSr (antisense)  5 ´ GAGTCAACTAGTCCTCAGAAGAACTCGTCAAG 3´ 

3.2.5 Buffers, media and solutions 

For preparation of buffers, media or solutions aqua bidestillata (aqua bidest.) was used as a 

solvent if not described otherwise. For this, water was deionized with a water purification 

system (EASYpure® II, pure Aqua, Schnaitsee, DE). 

3.2.5.1 Buffers and solutions for electron microscopy 

3.2.5.1.1 Soerensen´s phosphate buffer 

192 ml   Solution A 

808 ml   Solution B 
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3.2.5.1.1.1 Solution A 

4.5 g    KH2PO4 

ad 500 ml   Aqua bidest. 

3.2.5.1.1.2 Solution B 

11.9 g   Na2HPO4 x 2 H2O 

ad 1000 ml  Aqua bidest. 

3.2.5.1.2 Soerensen´s washing solution 

6.8 g    D(+)-saccharose 

100 ml   Soerensen´s phosphate buffer 

1%    Merthiolate solution 

3.2.5.1.2.1 Merthiolate solution 

1%    Ethylmercury thiosalicylic acid sodium salt 

3.2.5.1.3 Fixation solution for glycidether embedding 

6.84 g   D(+)-saccharose 

1 ml   Aqua bidest. 

2 ml    HCl, 0.1 M 

2 ml    Veronal-acetate buffer 

5 ml    2% Osmium tetroxide solution 

1g   Osmium tetroxide 

3.2.5.1.3.1 Veronal-acetate buffer 

1.5 g    5,5´Diethylbarbituric acid sodium salt 

1 g    Sodium acetate 

ad 50 ml   Aqua bidest.adjusted to pH 10.3 

3.2.5.1.4 Glycidether embedding mixture 

41.2 g  Solution A 

75 g    Solution B 

1.5 ml   2,4,6-Tris-(dimethylaminomethyl) phenol 

3.2.5.1.4.1 Solution A 

38.32 g   Glycidether 100 

45.30 g   2-Dodecenyl succinic acid anhydride 
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3.2.5.1.4.2 Solution B 

61.8 g   Glycidether 100 

56.34 g   Methyl nadic anhydride 

3.2.5.1.5 Toluidine blue staining solution 

1 g    2-Sodiumtetraborate (Borax) 

0.8 g    Toluidine blue O 

ad 100 ml   Aqua bidest. 

Borax was dissolved in aqua bidest, Toluidine blue O was added and afterwards the solution 

was stirred on a magnetic stirrer for two hours. Prior to use the staining solution was filtered. 

3.2.5.1.6 Safranin O staining solution 

1 g    2-Sodiumtetraborate (Borax) 

1 g    Safranin O 

40 g    Saccharose 

2–3 drops  Formaldehyde 37% 

ad 100 ml   Aqua bidest. 

After dissolving borax in aqua bidest., Safranin O and saccharose were added and the staining 

solution was stirred for two hours and stored at room temperature until further processing. Prior 

to use, 2–3 drops of formaldehyde (37%) were added and the solution was finally filtrated. 

3.2.5.1.7 Uranyl acetate contrasting solution 

1 g    Uranyl acetate 

ad 50 ml   Aqua bidest. 

Solution was carefully stirred and filtered prior to use. 

3.2.5.1.8 Lead acetate contrasting solution 

6 ml    Sodium citrate 

4 ml    Lead nitrate solution (1 M) 

8 ml    NaOH (1 M) 

ad 50 ml   Aqua bidest. 

Sodium citrate was dissolved in aqua bidest. while stirring. Then, lead nitrate solution was 

added dropwise followed by precipitation. NaOH was administered until the solution returned 

clear. Filtration was required before use. 
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3.2.5.2 Buffers for agarose gel electrophoresis 

3.2.5.2.1 TAE buffer (50x) 

242 g   Tris 

57.1 ml   Glacial acetic acid 

100 ml   EDTA 0.5 M (pH 8.0) 

ad 1000 ml  Aqua bidest. 

Buffer was diluted to single concentration with aqua bidest. prior to use. 

3.2.5.2.2 TAE running buffer (1x) 

20 ml   50 x TAE buffer 

ad 1000 ml  Aqua bidest. 

3.2.5.2.3 Loading buffer for DNA (6x) 

3 ml    Glycerol 

7 ml    Aqua bidest. 

Tip of a spatula  bromophenolblue 

Buffer was aliquoted and stored at 4°C until usage. 

3.2.5.3 Buffers and solutions for tissue preparation and immunhistochemical stainings 

3.2.5.3.1 DAB solution 

According to safety instructions, aliquotes were prepared by dissolving one tablet DAB in 10 

ml aqua bidest. Followed by filtration and storage at -20°C protected from light. Prior to use, 

aliquots were thawed in the dark and 2 µl H2O2 per 1 ml DAB solution was added. 

3.2.5.3.2 PBS 

0.25 g  Potassium hydrogen phosphate 

8.0 g   Sodium chloride 

1.46 g  Sodium phosphate dibasic dehydrate 

1 l    Aqua bidest. 

3.2.5.3.3 TBS (10x) (pH 7.6) 

90 g    NaCl 

60.5 g   Tris 

ad 1000 ml  Aqua bidest. 
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Concentrated stock buffer was autoclaved and diluted to single concentration with aqua bidest. 

prior to use. 

3.2.5.3.4 100 mM Tris/HCl (pH 8.5) 

100 mM   Tris 

Accurate adjustment of pH 8.5 is required for the desired staining intensity. 

3.2.5.4 Solutions for hematoxylin and eosin staining 

3.2.5.4.1 HCL-ethyl alcohol stock solution 

7000 ml  Alcohol 96% 

2500 ml  Aqua bidest. 

100 ml  Hydrochloric acid 25% 

3.2.5.4.2 HCL-ethyl alcohol working solution 

100 ml  HCL-ethyl alcohol stock solution 

100 ml  Alcohol 70% 

3.2.5.4.3 1% eosin solution 

10 g   Eosin 

1000 ml  Aqua bidest. 

1.5 ml  Glacial acetic acid 

Eosin was diluted in hot aqua bidest. and cooled down before glacial acetic acid was added. 

3.2.6 Kits 

NexttecTM Genomic DNA Isolation Kit    Nexttec GmbH, Leverkusen, DE 

Porcine C-peptide ELISA     Mercodia AB, Uppsala, Sweden 

Porcine Insulin Radioimmunoassay (RIA) Kit   MilliporeTM, Billerica, USA 

3.2.7 Other reagents 

Bode Sterilium® hand sanitizer     Bode Chemie, Hamburg, DE 

Goat serum        MP Biomedicals, Illkirch, France 

Histokitt         Engelbrecht, DE 

PCR buffer        Qiagen GmbH, Hilden, DE 

Porcine serum        MP Biomedicals, Illkirch, France 

Q-solution         Qiagen GmbH, Hilden, DE 
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Rabbit serum       MP Biomedicals, Illkirch, France 

Vet-Sept® solution (10%)      A. Albrecht, Aulendorf, DE 

3.2.8 DNA molecular weight markers  

Gene RulerTM (1kb DNA Ladder)    MBI Fermentas, St. Leon Roth, DE 

3.2.9 Software 

GE Lunar analysis software version 4.7e   GE Healthcare GmbH, Solingen, DE 

GraphPad Prism® version 5.0     GraphPad Software Inc., La Jolla, USA 

Microsoft Paint       Microsoft Corporation, Redmond, USA 

NewCASTTM stereology acquisition and    Visiopharm, Hoersholm, Denmark  

analyses system 

Olympus VisiomorphTM image analyses    Visiopharm, Hoersholm, Denmark 

SAS (version 8.2)       SAS Institut Inc., USA 

3.3 Methods 

3.3.1 Generation of INSC94Y transgenic and non-transgenic MPHs 

Previously, INSC94Y transgenic pigs were generated by somatic cell nuclear transfer (SCNT) on 

a DP background (Renner, 2013). For the generation of MPHs oestrus synchronized INSC94Y 

transgenic sows (#1605 and #1611) were artificially inseminated using semen of a non-

transgenic black minipig boar (#MP10). For oestrus synchronization altrenogest (Regumate®) 

was given orally for 17 days to the sows. Forty-eight hours post application of the last 

altrenogest portion, 750 IU of pregnant mare serum gonadotropin (PMSG, Intergonan®) were 

injected intramuscularly (i.m.) followed by an injection of 750 IU of human chorionic 

gonadotropin (hCG, Ovogest®, Intervet, Unterschleißheim, DE) i.m. 80 hours after PMSG 

administration (Kurome, Ueda et al. 2006). Twenty-four hours post hCG injection artificial 

insemination was performed on two consecutive days. 

3.3.2 Identification of INSC94Y transgenic and non-transgenic MPHs 

To discriminate INSC94Y transgenic piglets from wild-type animals, a genotype-specific PCR 

was performed on tissue samples from tail biopsies of each newborn piglet. 

Genotyping of INSC94Y transgenic MPHs and non-transgenic controls was kindly performed by 

Ana Sofia Martins (Chair for Molecular Animal Breeding and Biotechnology, LMU Munich). 

3.3.2.1 Isolation of genomic DNA from tail biopsy 

Tissue for DNA isolation was obtained from tail biopsies of newborn piglets and stored at -20°C 
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until further processing. A NexttecTM Genomic DNA Isolation Kit (Nexttec GmbH, Leverkusen, 

DE) was used for isolation of genomic DNA from tissue samples according to the 

manufacturer’s instruction. The different steps of the procedure were performed at room 

temperature unless stated otherwise. First, the tissue sample was minced and transferred into 

1.5 ml reaction tubes. Lysis buffer (containing 3 µl DTT) was added and the sample was 

incubated for tissue digestion overnight at 60°C. The next day DNA was purified by transferring 

120 µl of the lysate to NexttecTM Clean Columns followed by an incubation step of three 

minutes and subsequent centrifugation for one minute at 700 x g. The eluate including the 

purified DNA was either immediately used for genotyping PCR or stored at 4°C until further 

processing. 

3.3.2.2 Polymerase chain reaction (PCR) 

To identify INSC94Y transgenic pigs genotyping PCR was performed. As the neomycin 

resistance cassette was linked to the INSC94Y expression cassette, neomycin resistance cassette 

specific primers A and B were used as displayed in Table 2. 

To verify the integrity of genomic DNA the house-keeping gene β-actin (ACTB) was amplified 

additionally. Due to its constant expression at high levels in all relevant cell types, it was used 

as a loading control. For ACTB PCR specific primers C and D were used  

(Table 2). 

Table 2: Primers used for PCR 

Primer C ACTB  (sense) 5 -́TGGACTTCGAGCAGAGATGG-3´

Primer D ACTB  (antisense) 5 -́CACCGTGTTGGCGTAGAGG-3´

Primer Base sequence

Primer A neoPf (sense) 5 -́ CAGCTGTGCTCGACGTTGTC-3´

Primer B neoSr (antisense) 5 -́ GAGTCAACTAGTCCTCAGAAGAACTCGTCAAG-3´

 

All reaction components (Table 3) were set up in an area separate from that used for DNA 

preparation or further analyses of amplified DNA. Tips containing hydrophobic filters to 

minimize crosscontamination were used. After thawing all components were mixed (excluding 

template DNA) on ice in 0.2 ml reaction tubes to a total volume of 25 µl or 20 µl respectively. 

Finally, the template DNA was added and the composition was mixed gently by pipetting up 

and down. PCR tubes were kept on ice before being placed into the thermocycler.  
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Table 3: Reaction compositions for neoPf/neoSr and ACTB PCR 

2.5 µl 2 µl

2.5 µl 1.25 µl

2.5 µl 4 µl

0.4 µl 2 µl

0.4 µl 0.4 µl

0.2 µl 0.4 µl

15.5 µl 0.2 µl

1 µl 8.75 µl

1 µl

25 µl 20 µl

Aqua bidest.

Primer B (10 µM) Primer C (10 µM)

Q-solution (Qiagen)

dNTPs (2 mM)

Primer D (10 µM)

ACTB  sense/antisenseneo Pf/neo Sr

Taq DNA polymerase (5 U/µl)

Total volume

10 x PCR buffer (Qiagen)

MgCl2 (15 mM) (Qiagen)

dNTPs (2 mM)

Primer A (10 µM)

10 x PCR buffer (Qiagen)

MgCl2 (25 mM) (Qiagen)

DNA template Aqua bidest.

DNA template

Total volume

Taq DNA polymerase (5 U/µl)

 

The cycling program shown in Table 4 was used to perform PCR. 

Table 4:  Thermocycler conditions 

95°C 1 x

95°C

62°C

72°C

72°C 1 x

Program for Neo and ACTB PCR

35 xAnnealing 30 sec

Elongation 45 sec

Final Elongation 10 min.

Denaturation 4 min.

Denaturation 30 sec

 

To stop the reaction, the temperature of the thermocycler was cooled down to 4°C. After 

amplification the samples were stored overnight at 2–8°C or for longer storage at -20°C until 

further processing. To proof the validity of the processed PCR a positive and negative control 

were used, containing DNA from a previously genotyped INSC94Ytransgenic and non-transgenic 

pig respectively. Aqua bidest. served as non-template control. 

3.3.2.3 Agarose gel electrophoresis 

After the completion of the PCR program, amplified DNA fragments were separated by agarose 

gel electrophoresis which separates DNA fragments according to their size. For this reason a 

2% agarose solution was prepared with TAE buffer. The mixture was heated up by a microwave 

until the agarose was melted. Afterwards ethidium bromide (0.5 µg/ml) was added which 

intercalates into the DNA. Due to its fluorescent properties DNA strands can be visualized 

under UV-light. The gel mixture was filled into an electrophoresis chamber with a special comb. 

When the gel was hardened TAE running buffer was added to the chamber and the comb was 

removed. In the next step 6x DNA loading dye was added to PCR samples that afterwards were 

loaded into the gel slots, together with a DNA molecular weight standard (Gene RulerTM 1kb, 

MBI Fermentas, St. Leon Roth, DE) as a standard for fragment size. The electrophoresis 

chamber was connected to an anode and a cathode. Due to the negatively charged DNA, 
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fragments were moving through the gel towards the anode. Smaller ones moved faster than 

larger ones so that after a certain time DNA fragments differing in size were separated in the 

chamber and could be visualized by UV-light irradiation. 

3.3.3 Physiological characterization of INSC94Y transgenic and non-transgenic MPHs 

3.3.3.1 Analyses of body weight gain and body measurements 

3.3.3.1.1 Body weight gain 

Body weight of all INSC94Y transgenic MPHs, non-transgenic littermates as well as of age-

matched non-transgenic DPs was determined in regular intervals from the day of birth prior to 

colostrum uptake until day 178 of age. In addition, birth weight of wild-type DPs born to 

INSC94Y transgenic domestic sows was determined. Standard large animal scales (Kern, Meier-

Brakenberg, DE) were used with an inaccuracy of ± 5 gram up to a body weight of 10 kilogram 

and ± 100 gram for a body weight above 10 kilogram. 

3.3.3.1.2 Growth parameters 

Growth parameters of INSC94Y transgenic and non-transgenic MPHs and age-matched non-

transgenic DPs were measured in centimeters using a measuring tape, caliper or ruler. In total, 

five measurements starting with the day of birth and subsequently on day 14, 28, 63 and 153 

were performed. The following growth parameters were determined: occipito-nasal length, 

biparietal diameter, crown-rump length, height and width of the shoulder, circumference of the 

forearm, thorax, abdomen and shank as well as height and width of the hip. The landmarks of 

each parameter were kept constant during all measurements and were defined as shown in 

Table 5. 
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Table 5: Measurement of growth parameters 

Growth Parameter Landmarks Measuring tool

Occipito-nasal length Occiput at the base of the head – tip of the nose Measuring tape

Biparietal diameter At the level caudal of the eyes Caliper

Crown-rump length Base of the head (occiput) to base of the tail Measuring tape

Shoulder height

Highest point of the shoulders; animals ≤40 kg 

were in a hanging position; animals ≥40 kg were 

standing on the ground Ruler and rod

Shoulder width Widest point of shoulder (processus caracoideus) Caliper

Forearm circumference 2 cm above the carpal joint Measuring tape

Thorax circumference Right next to the front legs Measuring tape

Abdomen circumference At the level of the umbilicus Measuring tape

Shank circumference 2 cm above the tuberculum tarsi Measuring tape

Hip height

Highest point of the hipss; animals ≤40 kg were in 

a hanging position; animals ≥40 kg were standing 

on the ground Ruler and rod

Hip width Widest point of the hip (tuber coxae) Caliper  

3.3.3.2 Body composition by Dual-energy X-ray absorptiometry (DXA) 

Body composition of INSC94Y transgenic and non-transgenic MPHs as well as of age-matched 

wild-type DPs was analysed in duplicate at an age of six months by Dual-energy X-ray 

absorptiometry (DXA) using a GE Lunar iDXA scanner (GE Healthcare GmbH, Solingen, DE). 

Subsequently, the mean value of the respective data generated on these two measurements was 

calculated.  

DXA measurements were performed under anaesthesia. Anaesthesia was induced by 

intramuscular injection of azaperone (2 mg/kg BW) and ketamine hydrochloride (20 mg/kg 

BW) and maintained by intravenous application of ketamine hydrochloride (20 mg/kg BW) and 

xylazine (1 mg/kg BW) if necessary. Under anaesthesia, animals were positioned in prone 

position with the front legs outstretched in caudal direction for the scanning process. The whole 

body mode „adult normal“ was used and each animal was scanned from rostral to caudal 

direction. Data were generated and recorded with the GE Lunar analyses software (version 

4.7e). 

The principle of DXA measurements is based on the unequal absorption capacity for different 

body tissues scanned by two X-ray beams with different energy levels. On the basis of these 

differences, body composition can be determined. The following parameters were determined: 

total tissue corresponding to body weight, bone mineral content, fat mass and lean mass 

expressed in gram. The bone mineral density was expressed in g/cm². Additionally, the ratio of 

each parameter to total tissue was calculated in percent except for bone mineral density. 
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3.3.3.3 Determination of blood parameters 

3.3.3.3.1 Blood glucose levels 

To monitor glucose homeostasis of INSC94Y transgenic MPHs and their wild-type littermates, 

random blood glucose levels were determined in regular intervals starting at day four of age 

until five weeks of age, i.e., the time point of weaning. Thereafter, blood glucose levels were 

determined following an overnight fasting period of 18 hours until five months of age. 

For this, a superficial ear vein was punctured with a blood lancet to gain a little drop of blood 

which was immediately applied on a Precision Xtra Plus blood glucose test stripe (Abbott, 

Wiesbaden, DE) and examined using a FreeStyle Precision® Xceed glucometer (Abbott, 

Wiesbaden, DE). 

3.3.3.3.2 Clinical chemical parameters 

Clinical-chemical parameters of INSC94Y transgenic MPHs and wild-type littermates were 

determined from EDTA-plasma at seven (not fasted) and 180 days (fasted overnight) of age 

using an AU480 autoanalyzer (Beckman-Coulter, Krefeld, DE) and adapted reagent kits from 

Beckman-Coulter, Randox or Wako Chemicals. 

3.3.3.3.3 Plasma insulin concentrations by radioimmunoassay (RIA)  

To determine plasma insulin concentrations of INSC94Y transgenic MPHs and their non-

transgenic littermates, a commercial porcine insulin RIA kit (MilliporeTM, Billerica, USA) was 

used. Non-fasting blood samples of the two animal groups were taken on day seven of age and 

fasting (18-hour overnight fast) blood samples were collected at the age of 180 days. Blood was 

collected in EDTA monovettes and immediately stored on ice until centrifugation. Samples 

were centrifuged within 30 minutes after sampling (15 minutes, 1500 x g, 4°C) followed by 

plasma separation and storage at -80°C until usage. The radioimmunoassays were performed 

according to the manufacturer’s instructions. The assay is based on the competitive binding of 

radiolabeled insulin (tracer) and unlabeled insulin in a defined volume of the respective plasma 

sample to a limited and constant quantity of antibodies specific for porcine insulin. When the 

amount of labeled antigen decreases, thus the concentration of unlabeled antigen increases. For 

the labeling the radioisotope 125I was used. Accordingly, tracer, test sample and antibody were 

added to a special assay buffer. Mixture was vortexed and incubated overnight at 4°C. The next 

day antibody-bound tracer was precipitated and separated from unbound tracer by 

centrifugation. The supernatant was carefully decanted. Afterwards the amount of antibody-

bound tracer was determined with a γ-counter (Berthold, Bad Wildbach). All samples were 
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measured in duplicate. Only duplicates with a coefficient of variance (CV) less than 10% were 

accepted. 

3.3.3.3.4 Plasma connecting peptide (C-peptide) concentrations by enzyme-linked 

immunosorbent assay (ELISA) 

Non-fasting and fasting levels of plasma C-peptide concentrations were measured in the same 

animals and at the same points in time as for the determination of plasma insulin concentrations. 

Blood samples were collected and processed as described in 3.3.3.3.3. A commercially 

available ELISA kit (Mercodia AB, Uppsala, Sweden) for porcine C-peptide was used 

according to the manufacturer’s protocol. The procedure is based on the antigen-antibody 

reaction of two monoclonal antibodies which are directed against separate antigenic 

determinants on the C-peptide molecule. The second antibody is enzyme conjugated, leading 

to a concentration-dependent color change after substrate supplementation that can be measured 

by a spectrophotometer. Before starting the assay, all reagents and blood plasma samples were 

brought to room temperature. Enzyme conjugate solution (containing mouse monoclonal anti-

porcine C-peptide antibody II) and wash buffer were prepared according to the manufacturer’s 

instructions. The plasma sample was pipetted into a well of the precoated plate (precoated with 

mouse monoclonal anti-porcine C-peptide antibody I). Assay buffer was added to each well and 

incubated on a plate shaker (500 rpm) for two hours at room temperature. Afterwards the 

reaction volume was discarded by inverting the microplate and then each well was washed six 

times with wash buffer, removing liquids by tapping firmly several times against absorbent 

paper between each washing step. Subsequently, enzyme conjugate solution was added, 

incubated for one hour on a plate shaker and washed again six times with the same 

specifications as described before. Then, the substrate tetramethylbenzidine (TMB) was added 

and incubated for 15 minutes at room temperature. The reaction was stopped by addition of the 

stop solution (0.5 M H2SO4) that was mixed with TMB on a shaker for five seconds. Finally, 

the optical density was read spectrophotometrically (450 nm) and results were calculated by 

comparing to the calibrator curve which originates from five different standard C-peptide 

concentrations using cubic spline regression. 

3.3.4 Morphological characterization of INSC94Y transgenic and non-transgenic MPHs 

3.3.4.1 Necropsy 

Routine necropsy was performed on INSC94Y transgenic MPHs, wild-type littermates and age-

matched non-transgenic DPs at the end of the observation period, i.e., at an age of six months. 

Anaesthesia was induced by intramuscular injection of azaperone (2 mg/kg BW) and ketamine 
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hydrochloride (20 mg/kg BW) in the animals familiar surroundings followed by intravenous 

injection of T61 (1 ml/10 kg BW) for euthanasia. After confirmation of death, body cavities 

were opened and organs were quickly inspected in situ before removal in order to their 

sensitivity towards fast autolysis (Albl, Haesner et al. 2016). All organs were macroscopically 

evaluated and selected organs were weighed. 

3.3.4.2 Absolute and relative organ weights 

Immediately after death and evisceration of the animals, organs were prepared like described 

in 3.3.4.1. For heavy-weight tissues (>2.5 kilogram, e.g., liver), a digital scale (Mettler PM 

6000, Mettler-Toledo GmbH, Gießen, DE) with the measuring unit kilogram and an inaccuracy 

of +/-200 gram was used. The weighing of light-weight tissues (<2.5 kilogram, e.g., pancreas) 

was performed with an analogue scale (Bizerba, August Sauter KG, Ebingen, DE) with the 

measuring unit gram. For the kidneys, the cumulative weight of the left and the right kidney 

was recorded. The stomach was weighed after removal of its content. Additionally, organ 

weights relative to the individual body weight of each animal were calculated. 

3.3.4.3 Pancreas preparation and systematic random sampling 

Due to the rapid autolysis of pancreatic tissue, this organ was eviscerated as fast as possible 

like described above (see chapter 3.3.4.1) and fat, blood vessels and connective tissue were 

removed. After weighing, the pancreas was cut at the intersection between splenic and 

connective lobe and laid out lengthwise over the working table. The organ was cut into parallel, 

equidistant, approximately 0.5 cm thick slices that were tilted to their left side. To avoid any 

more tissue damage due to manipulation, pancreas slices were prefixed in 4% neutral buffered 

formalin overnight. For a volume-weighted systematic random sampling of pancreas tissue 

locations, the pancreas slices were laid on a plane surface and superimposed by a one cm² point-

counting grid (Blutke and Wanke 2018). The number of points that hit pancreatic tissue was 

counted. A tenth of the total number of hitting-points defined hereby the total sample number. 

The quotient of total number of hitting-points and total sample number was calculated and 

termed as (Y). A random number (X) between one and (Y) was chosen for the selection of 

sample collection sites. Pieces with a volume of 0.5 cm³ were collected systematically at the 

sites X, X+Y, X+2*Y, X+3*Y, … An example is shown in Table 6. 
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Table 6: Example for systematic random sampling of pancreatic tissue 

Total number of hitting points 250

Sample number (by definition 1/10 of total number of points hitting 

pancreas
25

Y (Quotient of total number of hitting-points and total sample number) 10

X (random number) 3

Sites for sample collection 3, 13, 23, 33, …, 243
 

Selected samples were placed pairwise with the right cutting surface facing downwards into 

embedding cassettes and were routinely processed for paraffin embedding. For histologic 

examination, 1.5 mm thick slices were cut using a HM 315 microtome (Microm, Walldorf, DE) 

and mounted on Star Frost® glass slides for immunohistochemistry. Finally, sections were dried 

in a 37°C warm incubator overnight or until immunohistochemical staining. 

For qualitative morphological evaluation of exocrine and endocrine pancreatic tissue a 

hematoxylin and eosin staining (HE) was performed from a subset of pancreatic sections. For 

this, sections were deparaffinized, rehydrated in a descending alcohol series and washed in 

distilled water as described in 3.3.4.4. Subsequently, sections were stained for four minutes in 

Mayer´s Hemalum solution. Then, slides were washed for four minutes under running warm 

tap water. For differentiation, sections were placed shortly in 0.5% HCL-ethyl alcohol before 

being washed again for four minutes under running warm tap water. Finally, sections were 

counterstained with 1% eosin for two minutes and afterwards dehydrated in an ascending 

alcohol series, cleared in Xylol and mounted as described in 3.3.4.4. 

3.3.4.4 Immunohistochemical staining of pancreatic tissue 

Immunohistochemical staining was performed for quantitative stereological analyses of 

pancreatic β- and α-cells of six-month-old INSC94Y transgenic and non-transgenic MPHs. 

Details of the different stainings are summarized in Table 7. 

To identify insulin containing β-cells or glucagon containing α-cells the indirect horseradish 

peroxidase (HRP) method was implemented, whereby the secondary antibody was HRP-

labelled and 3,3′-Diaminobenzidine (DAB) was used as substrate (chromogene). Slides were 

processed as follows. First, they were deparaffinized in xylene for at least 20 minutes, followed 

by rehydration in a descending alcohol series with a total incubation time of 1–2 minutes in 

each ethanol dilution (2 x 100%, 2 x 96%, 1 x 70%) and finally washed in distilled water. 

Endogenous peroxidase activity was blocked by incubation of the sections using 1% hydrogen 
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peroxide in distilled water for 15 minutes. Next, sections were washed in 1:10 diluted tris-

buffered saline (TBS, pH 7.4) for 10 minutes. To reduce non-specific binding, normal rabbit 

serum for β-cell staining and normal goat serum for α-cell staining in a dilution of 1:10 with 

TBS was applied on each section and incubated at room temperature for 30 minutes. 

Afterwards, serum was dripped off and the primary antibody diluted in TBS was applied and 

incubated at room temperature for one hour followed by a TBS washing step. Subsequently, 

the secondary antibody diluted in TBS and additionally containing 5% pig serum was applied 

and incubated as well at room temperature for one hour followed by a TBS washing step. Then, 

DAB (incubation time five minutes) was applied on each slide. DAB was activated by adding 

2 µl 30% hydrogen peroxide per one milliliter DAB. After incubation with DAB, slides were 

washed shortly in distilled water and then for 5 minutes in tap water. For counterstaining 

Mayer´s Hemalum solution was prepared (1:10 with distilled water) and slides were incubated 

for 1–2 minutes. Then slides were washed again in distilled water and for five minutes under 

running tap water. Finally, slides were placed in distilled water and dehydrated in an ascending 

alcohol series (1 x 70%, 2 x 96%, 2 x 100%) with an incubation time of 1–2 minutes per ethanol 

dilution, followed by clearing in xylene and mounting using histokitt and cover slips. 

Table 7: Antibodies for immunohistochemical stainings 

Antigen Dilution Dilution ChromogenPrimary Antibody Secondary Antibody

1:100

1:100

DAB

DAB

Rabbit-Anti-Guinea      

Pig HRP-conjugated

Goat-Anti-Rabbit       

HRP-conjugated

Insulin

Glucagon

Polyclonal Guinea Pig 

Anti-Porcine Insulin

Polyclonal Rabbit Anti-

Human Glucagon

1:1000

1:300

 

3.3.4.5 Qualitative histological analyses of the endocrine pancreas 

For a qualitative evaluation of the endocrine pancreas, namely β- and α-cells, representative 

micrographs of immunhistochemically-stained pancreatic sections of paraffin embedded tissue 

samples of INSC94Y transgenic animals and their wild-type littermates were selected and 

displayed with an Olympus VisiomorphTM image analyses system (Visiopharm, Hoersholm, 

Denmark) coupled to a systemic light microscope (BX41, Olympus, Hamburg, DE) and a 

digital microscope camera (DP72, Olympus, Hamburg, DE). The stereology module was driven 

by newCAST™ (Visiopharm, Hoersholm, Denmark). Slides were scanned for cells of interest 

using a joystick controlled rotating object scanning stage (Märzhäuser, Wetzlar, DE). To show 

the magnification-dependent size of the image, an object micrometer (Carl Zeiss, Oberkochen, 

DE) was photographed at the same magnification, respectively. 
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3.3.4.6 Quantitative stereological analyses of the endocrine pancreas 

Quantitative-stereological analyses were carried out using the computer-assisted stereology 

module, microscope and video camera as described in 3.3.4.5 Point-counting measurements 

were performed in immunhistochemically-stained pancreatic sections (either stained with an 

anti-insulin or anti-glucagon antibody as described in 3.3.4.4) of paraffin embedded tissue 

samples of INSC94Y transgenic and non-transgenic littermates. While opening the software, the 

system automatically calibrated itself. After mounting the slides on the object stage the region 

of interest (ROI), i.e., the section profile of the tissue on each section was determined. For this, 

magnification 1.25 x was chosen at the microscope and *Lens Control* was chosen at the 

screen. Then, *Mask Properties* was selected on the program and the outline of pancreatic 

tissue on every single section, i.e., the ROI was manually surrounded with the cursor, as 

precisely as possible. When all ROIs were defined, the objective was changed to magnification 

40 x before the fields of view (sampling positions) were sampled by selecting *Setup Meander 

Sampling*. The section area fraction to be analysed was set on 20%.The number of sampling 

positions per section was dependent on the ROI size of each section. Two different layers of 

virtual point-counting grids (R) were used and simultaneously placed above all sampled fields 

of view. The first grid (setting 8x8/1x1) yielded 64 possible hitting points (R1) and the second 

one (setting 10x10/6x6) yielded 3600 possible hitting points (R2). All hitting points were 

allocated in equal distances respectively. The setup was consistent for all measurements. After 

confirming setup configuration, the program led through all randomly sampled positions. Per 

field of view, points hitting pancreatic tissue using R1 and points hitting 

immunohistochemically insulin-positive or glucagon-positive section profiles of β-, 

respectively of α-cells using R2 were counted. Subsequently, the number of points hitting 

pancreatic tissue by R1 per field of view was multiplied by the factor of 56.25, which is the 

quotient of 3600 divided by 64. This multiplication allows estimating the total number of points 

hitting pancreatic tissue in the examined section field when using R2 and is required for further 

calculations. All hitting points and their conversions were recorded in an excel sheet for further 

calculations. 

The volume of the pancreas (V(Pan)) before embedding was calculated by the quotient of the 

pancreas weight and the specific weight of the pig pancreas (1.07 g/cm³) (Renner, Fehlings et 

al. 2010) determined by the submersion method (Albl, Haesner et al. 2016, Blutke and Wanke 

2018). The volume density of β- or α-cells in the pancreas (Vv(β-cells/Pan); Vv(α-cells/Pan)) was 

calculated by dividing the total number of points hitting the target-cell population by the total 

number of points hitting pancreatic tissue. The product of (Vv(β-cells/Pan)) or (Vv(α-cells/Pan)) and 
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(V(Pan)) yielded the total volume of β- or α-cells in the pancreas (β/α-cell mass, i.e., V(β-cells, Pan); 

V(α-cells, Pan)). Additionally, the volume of β and α-cells in the pancreas in relation to the 

respective body weight of the animals was calculated (V(β-cells, Pan)/BW; V(α-cells, Pan)/BW). 

3.3.4.7 Examination of β-cell ultrastructural morphology by transmission electron 

microscopy (TEM) 

Ultrastructural morphology of pancreatic β-cells of six-month-old INSC94Y transgenic and non-

transgenic MPHs was examined using an EM 10 transmission electron microscope (Carl Zeiss 

AG, Oberkochen, DE). For this, pieces of approximately one mm³ were collected from the 

pancreas by systematic random sampling (Albl, Haesner et al. 2016, Blutke and Wanke 2018). 

For fixation and structural preservation samples were immersed in 6.25% glutaraldehyde in 

Sorensen’s phosphate buffer (pH 7.4) for 24 hours at 8°C (Herbach, 2007). To remove surplus 

glutaraldehyde after fixation, all samples were rinsed in Sorensen’s washing solution at least 

three times and afterwards post-fixed in an osmium tetroxide fixation solution for two hours at 

4°C, before rinsed another time in Sorensen’s washing solution. Afterwards, the tissue samples 

were prepared for embedding in a glycidyl ether mixture. For this, samples were dehydrated in 

an ascending acetone series (50%, 2 x 70%, 2 x 90%, 10 minutes per dilution; 3 x 100%, 20 

minutes per dilution) at 4°C and then incubated for one hour at room temperature in a solution 

containing 100% acetone and glycidyl ether-embedding mixture in equal parts. Subsequently, 

incubation in undiluted glycidyl ether-embedding mixture (twice for 30 minutes at room 

temperature) and final embedding in the same glycidyl ether-embedding mixture in gelatine 

capsules was performed. For polymerization, capsules were incubated at 60°C for at least 48 

hours. After embedding, the sample blocks were trimmed using a TM60 milling machine (Leica 

Microsystems GmbH, Wetzlar, DE) and semi-thin sections (0.5 μm nominal section thickness) 

were prepared using a Reichert-Jung Ultracut E microtome (Leica Microsystems GmbH, 

Wetzlar, DE). Finally, sections were transferred to microscope slides by a drop of water, dried 

at 60°C and fixated over a flame. 
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To identify pancreatic islets within the semi-thin sections, staining with toluidine blue was 

performed. For this, slides were stained with toluidine blue staining solution for 15 seconds at 

55°C on a heating plate, rinsed with aqua bidest. and dried. Then slides were counterstained for 

15 seconds using a safranin staining solution, rinsed and dried again. Finally, sections were 

mounted using histofluid mounting medium. Using a light microscope islets were located in the 

semi-thin sections and marked by drawing an outline of each piece of tissue and plotting the 

position of the “target-islet” on it. Based on these marked outlines, ultra-thin sections (70–80 

nm) were cut just at these previously marked localizations, also using a Reichert-Jung Ultracut 

E microtome. These sections were then mounted on copper rings for negative staining with 

uranyl acetate and lead citrate according to the method of Reynolds (Reynolds 1963).  

The evaluation of electron micrographs was kindly performed in cooperation with Dr. Elisabeth 

Kemter (Chair for Molecular Animal Breeding and Biotechnology).  

3.3.4.8 Qualitative histological evaluation of the kidneys 

At routine necropsy of INSC94Y transgenic and non-transgenic MPHs (see chapter 3.3.4.1), both 

kidneys were extracted, weighed, decapsulated and then fixed in 4% phosphate buffered 

formaldehyde for 24 hours. Kidney tissue locations were collected systematically and selected 

samples were routinely processed for paraffin embedding. Afterwards, sections of 

approximately 1.5 µm thickness were prepared with a HM 360 rotary microtome (Microm, 

Walldorf) and transferred on microscope slides before dried overnight at 37°C in an incubator. 

For HE staining, slides were routinely processed as described in 3.3.4.3. Qualitative histological 

analysis of the kidney tissue was performed using the same equipment as previously described 

in 3.3.4.5. Histopathological evaluation was performed in cooperation with Priv.-Doz. Dr. 

Andreas Parzefall, Institute of Veterinary Pathology, Ludwig-Maximilians-University, 

Munich.  

3.3.4.9 Qualitative histological evaluation of the eye lens 

During routine necropsy of INSC94Y transgenic and non-transgenic MPHs (see chapter 3.3.4.1) 

whole eye globes were dissected and fixated in Davidson's solution for a maximum of 24 hours. 

After fixation eye globes were cut longitudinally and routinely processed for paraffin 

embedding and HE staining as described in chapter 3.3.4.3. Qualitative histological 

examination of the lens was performed with the same equipment as previously described in 

chapter 3.3.4.5. 

https://www2.vetmed.ucdavis.edu/courses/vet_eyes/eye_path/epath_davidsons.html
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3.3.5 Statistics 

All data are presented as means ± standard error of means (SEM). Body weight gain and blood 

glucose concentrations were statistically evaluated by analysis of variance (ANOVA, Linear 

Mixed Models; SAS 8.2; Procedure MIXED), taking the fixed effects of Genotype (DP wt vs. 

MPH wt or MPH wt vs. MPH tg), Age and the interaction Genotype*Age as well as the random 

effect of Animal into account. Growth and clinical chemical parameters, concentrations of 

insulin and connecting peptide, body composition and organ weights were evaluated by the 

General Linear Model (GLM) procedure (SAS 8.2) including the fixed effects of Genotype (DP 

wt vs. MPH wt or MPH wt vs. MPH tg) and Age as well as the interaction Genotype x Age. 

For the parameters of body composition the fixed effects of Sex (female vs. male) and the 

interaction Genotype*Sex were also taken into account. Statistical significance of parameters 

evaluated by quantitative-stereological analyses was tested using an unpaired, two-tailed Mann-

Whitney-U test. P values less than 0.05 were considered significant. 
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4 RESULTS 

4.1 Generation of INSC94Y transgenic and non-transgenic domestic pig-

minipig hybrids (MPHs) 

For the generation of MPHs, two INSC94Y transgenic domestic pig (DP) sows (ID#1605/1611) 

were artificially inseminated on two consecutive days with semen from a non-transgenic black 

minipig boar. 

INSC94Y transgenic pigs on a DP background have been previously generated and characterized 

at the Chair for Molecular Animal Breeding and Biotechnology (Ludwig Maximilians 

University Munich) (Renner, 2013). Founder boars expressing the mutant insulin C94Y were 

generated using somatic cell nuclear transfer according to (Kurome, Ueda et al. 2006).  

Details of the mating and delivery management of MPHs are indicated in the Table 8: 

Table 8: Crossbreeding of INSC94Y transgenic domestic sows and a wild-type founder boar 

#1605 #MP10 25.02.2015 17.06.2015 19.06.2015 11 1 1

#1611 #MP10 26.02.2015 18.06.2015 19.06.2015 9 1 0

ID=identifier 

Mummy Stillborn

Wild type 

minipig sire 

ID

Transgenic            

domestic 

dam ID

Litter size   

total

Delivery    

date
Induction

Mating   

date

 

Prior to artificial insemination recipient gilts were estrus synchronized according to Kurome et 

al. 2015. Delivery was induced by a Prostaglandin F2α analogue (Estrumate®) two days prior 

to the calculated delivery date. Both dams delivered at the same day, following a normal 

gestation period (114/115 days). The total litter size of dam #1605 contained eleven piglets, 

including one stillborn and one mummy. Dam #1611 gave birth to nine piglets in total, 

including one stillborn. 

The inheritance of the INSC94Y transgene to the offspring is displayed in Table 9: 

Table 9: Inheritance of the INSC94Y transgene 

Dam Genotype %

ID ID Live piglets m (wt) m (tg) f (wt) f (tg) wt tg

#1605 #4136-4144 9 1 2 3 3 44.4 55.6

#1611 #4251-4258 8 4 1 2 1 75 25

Offspring

ID= identifier  

The litter with the piglets #4136–4144 contained four wild-type and five transgenic animals. 

Two piglets died within the first (#4137) and the third week (#4138) of life respectively. 
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Offspring #4251–4258 consisted of six wild-type and two transgenic piglets. Two piglets died 

within the first (#4251) and second week (#4252) after birth respectively. 

4.2 Genotyping by polymerase chain reaction (PCR) 

To identify which of the individuals of both litters had integrated the mutant INSC94Y transgene 

into their genome, transgene-specific PCR on genomic DNA isolated from tail biopsies of the 

neonatal piglets was performed. Proof for the INSC94Y transgene integration was the presence of 

a 500 bp band, this was detected in the transgenic MPHs whereas wild-type littermates did not 

show any bands.  

As a loading control, ACTB specific primers were used to amplify a 330 bp fragment. A visible 

band assured DNA integrity for each animal analysed. 

4.3 Physiological characteristics of INSC94Y transgenic and non-transgenic 

domestic pig-minipig hybrids 

4.3.1 Analyses of body weight gain and body measurements 

4.3.1.1 Body weight gain 

Body weight gain of INSC94Y transgenic MPHs (n=6), non-transgenic MPH littermates (n=7) 

and age-matched wild-type domestic pigs (DP) (n=5) and birth weight of wild-type MPHs 

(n=10) and wild-type DPs (n=31) born to INSC94Y transgenic DP sows are displayed in  

Figure 2. The body weight (BW) was determined at regular intervals to estimate the impact on 

weight gain by crossing in minipigs into a domestic pig line and additionally to evaluate the 

effect of the expression of the mutant insulin C94Y on body weight gain in the MPHs starting 

from the day of birth prior to first colostrum uptake until six months of age. 

Non-transgenic MPHs and non-transgenic DPs grew up matchable until week five of age 

(Figure 2 A). Starting at six weeks of age MPHs showed a significantly reduced body weight 

(6 ± 0.5 vs. 9.9 ± 0.8 kg; p<0.05). With increasing age, the differences in body weight gain 

increased. BW of wild-type MPHs was reduced by 39% compared to wild-type DPs at the age 

of six months (Figure 2 D, left picture).   
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INSC94Y transgenic MPHs showed significant body weight reduction starting at 11 weeks of age 

(Figure 2 B) in comparison to wild-type littermates (12 ± 0.3 vs. 16 ± 1.2 kg; p<0.01). With an 

age of six months INSC94Y transgenic MPHs reached a body weight reduction of 55% compared 

to non-transgenic littermates (Figure 2 D, right picture).  

Wild-type MPHs showed a significantly reduced birth weight compared to wild-type DPs 

(0.828 ± 0.06 vs. 1.168 ± 0.05 kg; p<0.001) that were also born to INSC94Y transgenic DP sows 

like wild-type MPHs (Figure 2 C). The separately evaluated birth weight also contained wild-

type MPHs (n=10) that died within the first week of life and consequently were excluded from 

the long-term evaluation (from birth up to six months of age) of BW gain of wild-type MPHs 

(n=7) versus wild-type DPs from non-transgenic sows. 
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Figure 2: Body weight gain of INSC94Y transgenic and non-transgenic MPHs 

and age-matched wild-type DPs 

(A, B) Body weight gain of wild-type MPHs (wt) vs. age-matched wild-type DPs (wt) (A) 

and of INSC94Y transgenic MPHs (tg) vs. non-transgenic MPHs (wt) (B) from birth up to six 

months of age. Birth weight of wild-type MPHs (wt) vs. wild-type DPs (wt) both from an 

INSC94Y transgenic DP sow (C) and body weight at six months of wild-type MPHs (wt) vs. 

age-matched wild-type DPs (wt) (D); Data are indicated as means ± SEM; *: p<0.05; **: 

p<0.01; ***: p<0.001 vs. controls; n: number of animals investigated. 

4.3.1.2 Growth parameters 

Additionally to the body weight gain displayed in Figure 2, selected growth parameters of 

INSC94Y transgenic MPHs (n=6), non-transgenic littermates (n=7) and of age-matched DPs 

(n=5) were evaluated to investigate the effect of minipig crossbreeding and of the expression 

of the mutant insulin C94Y on body shape. 
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Therefore, the following parameters were determined at regular intervals from birth until day 

153 of age for each animal: occipito-nasal length, biparietal diameter, crown-rump length, 

height and width of the shoulder, circumference of the forearm, the thorax, the abdomen and 

the shank, as well as height and width of the hip.  

Comparing wild-type MPHs and age-matched DPs, DPs revealed differences in body size 

starting at birth and getting more pronounced with increasing age (Figure 3 A-K, left side). At 

the latest time point measured (day 153 of age) DPs showed a significantly increased occipito-

nasal length of 17% (30.8 ± 0.4 vs. 26.4 ± 1 cm; p<0.001), biparietal diameter was increased 

by 18% (12.8 ± 0.4 vs. 10.8 ± 0.3 cm; p<0.001), crown-rump length by 29% (116.4 ± 3.2 vs. 

90.3 ± 1.6 cm; p<0.001), shoulder height by 34% (63.4 ± 1.3 vs. 47.3 ± 1.2 cm; p<0.001), 

shoulder width by 16% (25.0 ± 0.3 vs. 21.6 ± 0.5 cm; p<0.001), forearm circumference by 27% 

(23.6 ± 0.2 vs. 18.6 ± 0.9 cm; p<0.001), thoracic circumference by 12% (94.6 ± 0.9 vs. 84.7 ± 

2.2 cm; p<0.001) abdominal circumference by 8% (107 ± 2.3 vs. 99.2 ± 2.1 cm; p<0.001), hip 

height by 28% (66 ± 1.1 vs. 51.4 ± 0.8 cm; p<0.001), hip width by 19% (21 ± 0.7 vs. 17.6 ± 0.5 

cm; p<0.001) and shank circumference by 18% (25.8 ± 0.4 vs. 21.8 ± 0.8 cm; p<0.001) 

compared to wild-type MPHs. Several growth parameters of wild-type DPs were already 

significantly increased at the day of birth compared to parameters of the non-transgenic MPHs 

like shoulder height by 29% (19 ± 0.5 vs. 14.7 ± 0.4 cm; p<0.01) and hip height by 27% (18.7 

± 0.7 vs. 14.7 ± 0.5 cm; p<0.05). Representive pictures of wild-type DPs and MPHs are 

presented in Figure 4. 

The comparison of the same growth parameters between INSC94Y transgenic MPHs and wild-

type littermates mainly showed significantly altered values on day 153 of age (Figure 3 A-K, 

right side). On this last time point of measurement INSC94Y transgenic MPHs displayed 

significantly reduced mean values of all parameters compared to their non-transgenic 

littermates: occipito-nasal length was decreased by 18% (21.8 ± 0.4 vs. 26.4 ± 1 cm; p<0.001), 

biparietal diameter by 12% (9.5 ± 0.2 vs. 10.8 ± 0.3 cm; p<0.001), crown-rump length by 19% 

(73.3 ± 1.9 vs. 90.3 ± 1.6 cm; p<0.001), shoulder height by 20% (38 ± 0.7 vs. 47.3 ± 1.2 cm; 

p<0.001), shoulder width by 29% (15.3 ± 0.7 vs. 21.6 ± 0.5 cm; p<0.001), forearm 

circumference by 20% (14.9 ± 0.7 vs. 18.6 ± 0.9 cm; p<0.001), thoracic circumference by 21% 

(67.3 ± 1.9 vs. 84.7 ± 2.2 cm; p<0.001), abdominal circumference by 16% (83.5 ± 1.9 vs. 99.2 

± 2.1 cm; p<0.001), hip height by 16% (43.4 ± 1.2 vs. 51.4 ± 0.8 cm; p<0.001), hip width by 

29% (12.5 ± 0.3 vs. 17.6 ± 0.5 cm; p<0.001) and shank circumference by 20% (17.4 ± 0.5 vs. 

21.8 ± 0.8 cm; p<0.001). 
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Figure 3: Growth parameters of INSC94Y transgenic MPHs, wild-type littermates 

and age-matched wild-type DPs 

Occipito-nasal length (A), biparietal diameter (B), crown-rump length (C), shoulder height 

(D), shoulder width (E), forearm circumference (F), thoracic circumference (G), abdominal 

circumference (H), hip height (I), hip width (J) and shank circumference (K) of wild-type 

DPs (wt) compared to age-matched wild-type MPHs (wt) (left side) and of INSC94Y 

transgenic MPHs (tg) vs. non-transgenic MPHs (wt) (right side). (A-K) All parameters 

were determined from birth up to 153 days of age. Data are indicated as means ± SEM; *: 

p<0.05; **: p<0.01; ***: p<0.001 vs. controls; n: number of animals investigated. 
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Figure 4: Representative pictures of six-month-old male and female non-transgenic MPHs 

and age-matched DPs. 

Male (A) and female (B) wild-type MPHs (wt) (left side) and DPs (wt) (right side)  

4.3.2 Body composition 

Body composition of INSC94Y transgenic (n=6) and non-transgenic MPHs (n=7) and non-

transgenic DPs (n=5) was determined once at the age of six months by Dual-energy X-ray 

absorptiometry (DXA) to analyse the effect of crossing in minipig as well as the effect of the 

expression of the mutant insulin C94Y. Parameters that were measured are as follows: bone 

mineral density expressed in g/cm², total tissue, bone mineral content, fat mass and lean mass 

respectively expressed in kilogram. Additionally, the proportion of each parameter to total 

tissue was calculated in percent except for bone mineral density (Figure 5–Figure 9). 

Furthermore, possible gender-related differences in body composition were evaluated  

(Figure 10–Figure 12). 
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4.3.2.1 Bone mineral density 

Mean bone mineral density was equal in six-month-old wild-type MPHs and DPs (1.1 ± 0.04 

vs. 1.1 ± 0.04 g/cm²; p=0.99, Figure 5 A). However, INSC94Y transgenic MPHs revealed a 

significantly reduced bone mineral density (-27%) compared to non-transgenic littermates (0.8 

± 0.07 vs. 1.1 ± 0.1 g/cm²; p<0.001, Figure 5 B). 

 

Figure 5: Bone mineral density of six-month-old INSC94Y transgenic and non-transgenic MPHs 

and age-matched wild-type DPs evaluated by DXA. 

(A, B): Bone mineral density of six-month-old wild-type MPHs (wt) vs. age-matched wild-

type DPs (wt) (A) and of INSC94Y transgenic MPHs (tg) vs. non-transgenic MPHs (wt) (B). 

Data are indicated as means ± SEM; ***: p<0.001 vs. controls; n: number of animals 

investigated. 

4.3.2.2 Total tissue 

Mean total tissue of six-month-old non-transgenic MPHs showed a significant reduction of 39% 

compared to age-matched wild-type DPs (58.8 ± 2.2 vs. 95.8 ± 3.7 kg; p<0.001,  

Figure 6 A). The mean total tissue of INSC94Y transgenic MPHs was significantly decreased by 

55% in comparison to non-transgenic littermates (26.4 ± 3.9 vs. 58.8 ± 5.7 kg; p<0.001,  

Figure 6 B). 
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Figure 6: Total tissue of six-month-old INSC94Y transgenic and non-transgenic MPHs 

and age-matched wild-type DPs evaluated by DXA. 

(A, B): Mean total tissue of six-month-old wild-type MPHs (wt) vs. age-matched wild-type 

DPs (wt) (A) and of INSC94Y transgenic MPHs (tg) vs. non-transgenic MPHs (wt) (B). Data 

are indicated as means ± SEM; ***: p<0.001 vs. controls; n: number of animals 

investigated. 

4.3.2.3 Bone mineral content 

Total bone mineral content of non-transgenic MPHs was reduced by 38% compared to non-

transgenic DPs at an age of six months (1.3 ± 0.06 vs. 2.1 ± 0.1 kg; p<0.001, Figure 7 A, left 

panel). For the same animals, the proportion of bone mineral content to total tissue was equal 

(2.2 ± 0.07 vs. 2.2 ± 0.04 %; p=0.96, Figure 7 A, right panel). 

In six-month-old INSC94Y transgenic MPHs bone mineral content was significantly decreased 

by 46% compared to wild-type littermates (0.7 ± 0.1 vs. 1.3 ± 0.2 kg; p<0.001, Figure 7 B, left 

panel). However, a significant increase of bone mineral content/total tissue ratio (+14%) was 

detected for transgenic MPHs in comparison to non-transgenic MPHs at six months of age (2.5 

± 0.2 vs. 2.2 ± 0.2 %; p<0.01, Figure 7 B, right panel). 
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Figure 7: Bone mineral content of six-month-old INSC94Y transgenic and non-transgenic MPHs 

and age-matched wild-type DPs evaluated by DXA. 

(A, B): Bone mineral content in kilogram (left panels) and bone mineral content related to 

total tissue in % (right panels) of six-month-old wild-type MPHs (wt) vs. age-matched 

wild-type DPs (wt) (A) and of INSC94Y transgenic MPHs (tg) vs. non-transgenic MPHs (wt) 

(B). Data are indicated as means ± SEM; **: p<0.01; ***: p<0.001 vs. controls; n: number 

of animals investigated. 

4.3.2.4 Fat mass 

Total fat mass was slightly decreased in six-month-old wild-type MPHs compared to wild-type 

DPs (9.9 ± 1.8 vs. 11.1 ± 0.9 kg; p=0.60, Figure 8 A, left panel). However, the proportion of 

body fat to total tissue turned out to be decreased by 31% in non-transgenic DPs in comparison 

to non-transgenic MPHs (11.6 ± 0.7 vs. 16.7 ± 2.6 %; p=0.14) (Figure 8 A, right panel).  
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compared to non-transgenic littermates (1.7 ± 0.2 vs. 9.9 ± 4.6 kg; p<0.001, Figure 8 B, left 

panel). Fat mass in relation to total tissue turned out to be decreased by 60% in INSC94Y 

transgenic MPHs compared to wild-type littermates (6.6 ± 1.1 vs. 16.7 ± 7 %; p<0.001, Figure 

8 B, right panel). 

 

Figure 8: Fat mass of six-month-old INSC94Y transgenic and non-transgenic MPHs 

and age-matched wild-type DPs evaluated by DXA. 

(A, B): Fat mass in kilogram (left panels) and fat mass related to total tissue in % ( right 

panels) of six-month-old wild-type MPHs (wt) vs. age-matched wild-type DPs (wt) (A) and 

of INSC94Y transgenic MPHs (tg) vs. non-transgenic MPHs (wt) (B) at six months of age. 

Data are indicated as means ± SEM; ***: p<0.001 vs. controls; n: number of animals 

investigated. 
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4.3.2.5 Lean mass 

Total lean mass was significantly reduced by 42% in wild-type MPHs compared to control DPs 

(47.6 ± 1.9 vs. 82.5 ± 2.9 kg; p<0.001, Figure 9 A, left panel). The proportion of total lean 

mass to total tissue was decreased by 6% in non-transgenic MPHs compared to wild-type DPs 

at six months of age (81.1 ± 2.6 vs. 86.2 ± 0.7 %; p=0.13, Figure 9 A, right panel).  

Measurement of total lean mass in INSC94Y transgenic MPHs revealed a significant decrease by 

50% (24.0 ± 3.4 vs. 47.6 ± 5.1 kg; p<0.001, Figure 9 B, left panel) while the lean mass/total 

tissue ratio was increased by 12% (91 ± 0.9 vs. 81.1 ± 6.8 %; p<0.001, Figure 9 B, right panel) 

in six-month-old INSC94Y transgenic MPHs compared to non-transgenic littermates. 
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Figure 9: Lean mass of six-month-old INSC94Y transgenic and non-transgenic MPHs 

and age-matched wild-type DPs evaluated by DXA. 

(A, B): Lean mass in kilogram (left panels) and lean mass related to total tissue in % (right 

panels) of six-month-old wild-type MPHs (wt) vs. age-matched wild-type DPs (wt) (A) and 

of INSC94Y transgenic MPHs (tg) vs. wild-type MPHs (wt) (B) at six months of age. Data 

are indicated as means ± SEM; ***: p<0.001 vs. controls; n: number of animals 

investigated. 
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4.3.2.6 Gender-related differences in body composition of INSC94Y transgenic and 

non-transgenic MPHs 

4.3.2.6.1 Total tissue 

The total tissue of six-month-old male (n=4) and female (n=3) wild-type MPHs revealed similar 

values compared to each other (58.8 ± 2.7 vs. 58.9 ± 3.2 kg; p=0.97), as well as male (n=2) and 

female (n=4) INSC94Y transgenic MPHs in comparison to each other (26.8 ± 3.9 vs. 26.2 ± 2.7 

kg; p=0.89, Figure 10). However, the comparison of both genders of wild-type MPHs with the 

respective gender of their transgenic littermates showed a significant decrease of the total tissue 

of male and female transgenic MPHs (males: -54% (26.8 ± 3.9 vs. 58.8 ± 2.7 kg; p<0.001); 

females: -56% (26.2 ± 2.7 vs. 58.9 ± 3.2 kg; p<0.001), Figure 10, see also chapter 4.3.2.2) 

 

Figure 10: Total tissue of six-month-old male and female INSC94Y transgenic 

and non-transgenic MPHs evaluated by DXA. 

Mean total tissue of male and female wild-type MPHs (wt) vs. male and female INSC94Y 

transgenic MPHs (tg) at six months of age. Data are indicated as means ± SEM; ***: 

p<0.001 vs. controls; n: number of animals investigated. 
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4.3.2.6.2 Fat mass 

Total fat mass displayed (Figure 11 A) was significantly increased by 112% (14.2 ± 1.1 vs. 6.7 

± 1.0 kg; p<0.001) in six-month-old female wild-type MPHs in comparison to male pigs of the 

same genotype. However, total fat mass of female animals of the transgenic group compared to 

male animals of the same genotype was just slightly elevated by 27% (1.9 ± 1.0 vs. 1.5 ± 1.4 

kg; p=0.8). Total fat mass measured in male and female six-month-old INSC94Y transgenic 

MPHs was significantly reduced in comparison to the respective genders of the non-transgenic 

MPHs (males: -78% (1.5 ± 1.4 vs. 6.7 ± 1.0 kg; p<0.05); females: -87% (1.9 ± 1.0 vs. 14.2 ± 

1.1 kg; p<0.001, see also chapter 4.3.2.4). 

The mean fat mass/total tissue ratio determined in percent (Figure 11 B) was significantly 

increased by 109% in six-month-old female wild-type MPHs in comparison to the male pigs of 

the same genotype (23.8 ± 1 vs. 11.4 ± 0.9 %; p<0.001) and was marginally elevated by 33% 

in female compared to male transgenic MPHs (7.2 ± 0.9 vs. 5.4 ± 1.3 %; p=0.3). The fat 

mass/total tissue ratio measured in male and female six-month-old INSC94Y transgenic animals 

in comparison to the respective genders of wild-type MPHs was significantly reduced by -53% 

in males (5.4 ± 1.3 vs. 11.4 ± 0.9 %; p<0.01) and with a decrease of -70% even more pronounced 

in females (7.2 ± 0.9 vs. 23.8 ± 1 %; p<0.001, see also chapter 4.3.2.4). 

 

Figure 11: Fat mass of male and female six-month-old INSC94Y transgenic 

and non-transgenic MPHs evaluated by DXA. 

(A, B): Fat mass in kilogram (A) and related to total tissue in % (B) of male and female 

six-month-old wild-type MPHs (wt) vs. male and female INSC94Y transgenic MPHs (tg). 

Data are indicated as means ± SEM; *: p<0.05; **: p<0.01; ***: p<0.001 vs. controls; n: 

number of animals investigated. 
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4.3.2.6.3 Lean mass 

Total lean mass in six-month-old male wild-type MPHs was significantly increased by 16% 

compared to female wild-type littermates (50.6 ± 1.9 vs. 43.5 ± 2.2 kg; p<0.05). However, total 

lean mass in male INSC94Y transgenic MPHs revealed only a slight elevation by 4% in 

comparison to female littermates of the same genotype ( 24.7 ± 2.6 vs. 23.7 ± 1.9 kg; p= 0.76). 

The total lean mass of male and female non-transgenic MPHs reached a significant increase 

compared to INSC94Y transgenic animals of the respective gender at an age of six months (males: 

+105% (50.6 ± 1.9 vs. 24.7 ± 2.6 kg; p<0.001); females: +84% (43.5 ± 2.2 vs. 23.7 ± 1.9 kg; 

p<0.001), Figure 12 A, see also chapter 4.3.2.5).  

The ratio of lean mass/total tissue was significantly elevated by 16% in male compared to 

female wild-type MPHs (86.2 ± 0.9 vs. 74.2 ± 1 %; p<0.001) and slightly increased by 2% in 

male compared to female INSC94Y transgenic MPHs (91.9 ± 1.3 vs. 90.5 ± 0.9 %; p=0.36). The 

lean mass/total tissue ratio measured in male and female wild-type MPHs was significantly 

reduced compared to INSC94Y transgenic MPHs of the respective gender (males: -6% (86.2 ± 

0.9 vs. 91.9 ± 1.3 %; p<0.01; females: -18% (74.2 ± 1 vs. 90.5 ± 0.9 %; p<0.001),  

Figure 12 B, see also chapter 4.3.2.5) 

 

Figure 12: Lean mass of male and female six-month-old INSC94Y transgenic 

and non-transgenic MPHs evaluated by DXA. 

(A, B): Lean mass in kilogram (A) and lean mass to total tissue ratio in % (B) of male and 

female six-month-old wild-type MPHs (wt) vs. male and female INSC94Y transgenic MPHs 

(tg). Data are indicated as means ± SEM; *: p<0.05; **: p<0.01; ***: p<0.001 vs. controls; 

n: number of animals investigated. 
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4.3.3 Blood parameters 

To evaluate a possible impact of minipig crossbreeding on relevant blood parameters, blood 

glucose, plasma insulin and C-peptide concentrations and clinical chemical parameters were 

determined in INSC94Y transgenic MPHs and non-transgenic littermates in regular intervals from 

birth up to 180 days of age. Animals were unfasted until day 40 of age. Afterwards all animals 

were fasted overnight prior to blood sampling starting at day 41 of age. 

4.3.3.1 Blood glucose levels 

Random blood glucose levels were determined at four and seven days of age followed by 7-

day-intervals until day 153 of age. Later on in intervals of one to three weeks until the age of 

five months. On day four of age, mean blood glucose levels of animals from both groups (MPH 

tg, n=6 vs. MPH wt, n=7) were not significantly different (185 ± 17.4 vs. 182 ± 32.1 mg/dl; 

p=0.9). At the second time of blood glucose determination, i.e., on day seven of age, transgenic 

MPHs revealed significantly higher mean blood glucose concentrations than non-transgenic 

littermates (226 ± 20 vs. 134 ± 11.7 mg/dl; p<0.001) that increased up to 306 ± 29.3 vs. 74 ± 

9.6 mg/dl (p<0.001) at day 153 of age (Figure 13). 

 

Figure 13: Blood glucose concentrations of INSC94Y transgenic MPHs 

and non-transgenic littermates. 

Significantly elevated blood glucose levels could be detected in INSC94Y transgenic MPHs 

(tg) compared to non-transgenic littermates (wt) within the observation period starting from 

day four until day 153 of age. Data are indicated as means ± SEM; **: p<0.01; ***: 

p<0.001 vs. controls; n: number of animals investigated. 
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4.3.3.2 Plasma insulin concentration 

Random plasma insulin concentrations were determined on day seven and fasting plasma 

insulin concentrations were measured on day 180 of age (Figure 14). On day seven wild-type 

MPHs (n=3–7, 14.5 ± 4.1 vs. 7.2 ± 3.6 µU/ml, p=0.15) as well as transgenic MPHs (n=5–6, 4.6 

± 1.7 vs. 2.6 ± 0.6 µU/ml, p=0.85) displayed higher mean insulin concentrations compared to 

the levels on day 180, respectively. Plasma insulin levels of wild-type MPHs revealed 

significantly higher concentrations in comparison to INSC94Y transgenic MPHs on day seven 

(14.5 ± 4.1 vs. 4.6 ± 1.7 µU/ml, p<0.05) and as a trend on day 180 of age (7.2 ± 3.6 vs. 2.6 ± 

0.6 µU/ml, p=0.67).  

 

Figure 14: Plasma insulin levels of INSC94Y transgenic MPHs and non-transgenic littermates. 

Higher mean plasma insulin levels could be detected in non-transgenic MPHs (wt) in 

comparison to INSC94Y transgenic MPHs (tg) within the observation time, i.e., on day seven 

and day 180 of age. Data are indicated as means ± SEM; *: p<0.05 vs. controls; n: number 

of animals investigated. 

4.3.3.3 Plasma levels of connecting peptide (C-peptide) 

Plasma C-peptide levels were determined at the same points in time and under the same 

conditions as plasma insulin concentrations (Figure 15). Mean C-peptide concentrations of 

INSC94Y transgenic MPHs (n=5–6) were significantly decreased compared to wild-type MPHs 

(n=3–7) at day seven (22.1 ± 6.1 vs. 85.8 ± 24.9 pmol/L, p<0.05) and day 180 of age (32 ± 6.3 

vs. 75.5 ± 43.5 pmol/L, p<0.05). Seven-day-old non-transgenic MPHs revealed higher C-

peptide concentrations compared to 180-day-old animals (85.8 ± 24.9 vs. 75.5 ± 43.5 pmol/L, 

p=0.75). INSC94Y transgenic MPHs revealed higher concentrations of C-peptide at day 180 

compared to day seven (32 ± 6.3 vs. 22.1 ± 6.1 pmol/L, p=0.73). 
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Figure 15: Plasma levels of connecting peptide of INSC94Y transgenic MPHs 

and non-transgenic littermates. 

INSC94Y transgenic MPHs (tg) revealed significantly lower connecting peptide 

concentrations than non-transgenic MPHs (wt) within the observation period (day seven 

and 180 of age). Data are indicated as means ± SEM; *: p<0.05 vs. controls; n: number of 

animals investigated. 
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4.3.3.4 Clinical chemical parameters 

Clinical chemical parameters were determined on day seven (not fasted) and on day 180 of age 

(fasted) (Figure 16). Mean triglyceride and cholesterol concentrations of wild-type MPHs 

(n=3–8) were significantly decreased on day 180 in comparison to day seven (27.4 ± 3.8 vs. 

54.3 ± 4.3 mg/dl; p=<0.05, triglycerides), (89.5 ± 5 vs. 207.3 ± 14.5 mg/dl; p=<0.001, 

cholesterol). A remarkable increase on day 180 compared to day seven was determined for 

albumin (3.6 ± 0.2 vs. 2.6 ± 0.1 g/dl; p=<0.001), total protein (6.9 ± 0.2 vs. 5.8 ± 0.2 g/dl; 

p=<0.01), creatinine (0.96 ± 0.18 vs. 0.46 ± 0.02 mg/dl; p=<0.001) and urea (33.5 ± 4.7 vs. 20.6 

± 2.5 mg/dl; p=<0.05) concentrations of wild-type MPHs.  

In INSC94Y transgenic MPHs (n=5–6) a significant decrease on day 180 in comparison to day 

seven was observed for the plasma cholesterol concentration (67.5 ± 5.1 vs. 181.7 ± 10.8 181.7 

± 10.8 mg/dl; p=<0.001). Other clinical chemical parameters were significantly increased in 

transgenic MPHs on day 180 compared to day seven: albumin (3.3 ± 0.1 vs. 2.4 ± 0.1 g/dl; 

p=<0.001), total protein (6.6 ± 0.2 vs. 5.7 ± 0.2 g/dl; p=<0.01) and urea (49 ± 4.4 vs. 24.2 ± 3.3 

mg/dl; p=<0.001). Triglyceride and creatinine levels were not remarkably altered in INSC94Y 

transgenic MPHs, comparing day 180 with day seven of age (55.7 ± 9.3 vs. 54.5 ± 5.5 mg/dl; 

p=0.89, triglyceride), (0.53 ± 0.03 vs. 0.42 ± 0.01 mg/dl; p=0.13, creatinine). 

On day 180 mean triglyceride levels were significantly higher in INSC94Y transgenic MPHs 

compared to non-transgenic littermates (55.7 ± 9.3 vs. 27.4 ± 3.8 mg/dl; p=<0.05). Creatinine 

concentration were significantly decreased in INSC94Y transgenic MPHs (0.53 ± 0.03 vs. 0.96 ± 

0.18 mg/dl; p=<0.001) while mean plasma urea concentration were significantly increased (49 

± 4.4 vs. 33.5 ± 4.7 mg/dl; p=<0.001) on day 180 of age. None of the other clinical chemical 

parameters (cholesterol, albumin, total protein) were significantly altered on day seven or day 

180 in INSC94Y transgenic MPHs. 
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Figure 16: Clinical chemical parameters of INSC94Y transgenic MPHs 

and non-transgenic littermates. 

Plasma triglyceride (A), cholesterol (B), albumin (C), total protein (D), creatinine (E) and 

urea (F) concentrations of INSC94Y transgenic MPHs (tg) vs. non-transgenic littermates (wt) 

(A-F) All parameters were determined once at seven days and 180 days of age. Data are 

indicated as means ± SEM; *: p<0.05; **: p<0.01; ***: p<0.001 vs. controls; n: number of 

animals investigated.  
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4.4 Morphological analyses of the pancreas 

Reduced β-cell mass is a hallmark of clinical diabetes. An altered islet composition can be the 

consequence of the expression of the mutant insulin C94Y. Therefore paraffin sections from 

pancreata of INSC94Y transgenic and non-transgenic MPH pigs were prepared for qualitative 

histological and quantitative stereological analyses of β- and α-cells in the endocrine pancreas. 

Additionally, ultrathin sections were processed for electron microscopy to investigate 

ultrastructural changes of the β-cell. 

4.4.1 Absolute and relative pancreas weight 

At necropsy of INSC94Y transgenic MPHs and non-transgenic littermates at an age of six months, 

pancreas was dissected and weighed. Absolute pancreas weight of INSC94Y transgenic pigs was 

significantly decreased by 32% (60.17 ± 4.18 vs. 88.67 ± 5.55 g; p<0.01,  

Figure 17 A). However, the relative pancreas weight of INSC94Y transgenic pigs revealed a 

significant increase of 60% (0.24 ± 0.02 vs. 0.15 ± 0.01 %/BW; p<0.05, Figure 17 B) compared 

to wild-type littermates. 

 

Figure 17: Absolute and relative pancreas weight of six-month–old INSC94Y transgenic 

and non-transgenic MPHs. 

(A, B): Transgenic MPHs (tg) revealed lower absolute pancreas weight as non-transgenic 

controls (wt) (A). Significantly higher relative pancreas weight was detected in INSC94Y 

transgenic MPHs compared to their wild-type littermates (B). Data are indicated as means 

± SEM; *: p<0.05; **: p<0.01; vs. controls; n: number of animals investigated. 
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4.4.2 Qualitative histological evaluation of the endocrine pancreas 

Wild-type MPHs displayed species-specific β-cell formations: islet section profiles differed in 

shape and size, almost round to oval with an uneven contour, mostly in a range of 25–100 µm 

in diameter (Figure 18 B, left side). The distribution of the islet section profiles was irregular 

within the exocrine pancreatic tissue (Figure 18 A, left side).  

Sporadically isolated β-cells, i.e., small β-cell cluster of one to five cell section profiles, were 

detected in the sections of the INSC94Y transgenic MPHs and wild-type littermates. Compared 

to islet section profiles from non-transgenic MPHs, striking histological alterations were 

observed in islet section profiles of INSC94Y transgenic MPHs. The observed islet section 

profiles were generally smaller, they mostly showed an irregular contour, leading to an 

amorphous appearance. Less insulin positive cell section profiles could be observed within the 

islet section profiles indicative of β-cell loss (Figure 18 B, right side). The distribution of islet 

section profiles within the exocrine pancreatic tissue was irregular but islet section profiles were 

observed less frequently in INSC94Y transgenic MPHs (Figure 18 A, right side) compared to the 

wild-type MPHs. 
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Figure 18: Immunohistochemistry for insulin containing β-cells in pancreatic tissue of six-

month-old INSC94Y transgenic MPHs and wild-type littermates. 

(A, B): Immunohistochemistry for insulin containing cells of wild-type MPHs (wt, left 

side) and INSC94Y transgenic littermates (tg, right side). 

Furthermore, wild-type MPHs displayed species-specific α-cell distribution within the islet 

section profiles. α-cell section profiles were detected in the center but also in the periphery of 

the islet section profiles, rarely forming an (un-)complete ring. Minor small fractions of α-cells, 

i.e., isolated α-cell section profiles sporadically appeared in the adjacent exocrine tissue section 

profiles (Figure 19 A and B, left side).  

α-cell section profiles appeared predominant and organized in clusters within islet section 

profiles of INSC94Y transgenic MPHs. (Figure 19 A and B, right side).  
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Figure 19: Immunohistochemistry for glucagon containing α-cells in pancreatic tissue of six-

month-old INSC94Y transgenic MPHs and wild-type littermates. 

(A, B): Immunohistochemistry for glucagon containing cells of wild-type MPHs (wt, left 

side) and INSC94Y transgenic littermates (tg, right side). 

4.4.3 Quantitative stereological analyses of the endocrine pancreas 

In addition to qualitative analyses of pancreatic sections from six-month-old INSC94Y transgenic 

(n=6) and non-transgenic (n=3) MPHs, quantitative stereological analyses were performed. 

Results from quantitative-stereological analyses confirmed the results from qualitative 

histological evaluation. The volume density of β-cells in the pancreas (Vv (β-cells/Pan)) of INSC94Y 

transgenic MPHs was significantly lower by 79% compared to wild-type littermates (0.13 ± 

0.02 vs. 0.61 ± 0.15 %; p<0.05, Figure 20 A). Accordingly, the total β-cell volume (V (β-cells, 

Pan)) of INSC94Y transgenic MPHs was significantly lower by 85% compared to wild-type 

littermates (75.07 ± 13.77 vs. 515.5 ± 146.7 mm3, p<0.05, Figure 20 B).  
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Likewise, the total β-cell volume to body weight ratio (V (β-cells, Pan)/BW) of INSC94Y transgenic 

MPHs was significantly lower by 69% in comparison to their wild-type littermates (2.81 ± 0.44 

vs. 8.68  ± 2.38 mm3/kg, p<0.05, Figure 21) 

 

Figure 20: Quantitative stereological analyses of β-cells in the pancreas in six-month-old INSC94Y 

transgenic MPHs and wild-type littermates 

(A): The volume density of β-cells in the pancreas (Vv (β-cells/Pan)) was significantly lower  

(-79%) in INSC94Y transgenic MPHs (tg) compared to their non-transgenic littermates 

(wt).(B): The total volume of β-cells in the pancreas (V (β-cells, Pan)) was significantly lower  

(-85%) in INSC94Y transgenic MPHs (tg) compared to non-transgenic littermates (wt). Data 

are indicated as means ± SEM; *: p<0.05 vs. controls; n: number of animals investigated. 

 

Figure 21: Total β-cell volume related to body weight in six-month-old INSC94Y 

transgenic MPHs and wild-type littermates 

The total β-cell volume in the pancreas in relation to body weight (mm3/kg) of the animals 

was significantly lower (-69%) in INSC94Y transgenic (tg) MPHs compared to the wild-type 

littermates (wt). Data are indicated as means ± SEM; *: p<0.05 vs. controls; n: number of 

animals investigated.  
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The volume density of α-cells in the pancreas (Vv (α-cells/Pan)) of INSC94Y transgenic MPHs was 

lower by 30% compared to wild-type littermates (0.058 ± 0.004 vs. 0.083 ± 0.019 %; p=0.16, 

Figure 22 A), whereas the total α-cell volume (V (α-cells, Pan)) of INSC94Y transgenic MPHs was 

significantly lower by 57% in comparison to wild-type littermates (31.84 ± 1.77 vs. 73.68  ± 

20.94 mm3, p<0.05, Figure 22 B).  

However, the total α-cell volume to body weight ratio (V (α-cells, Pan)/BW) of INSC94Y transgenic 

MPHs was similar compared to their wild-type littermates (1.23 ± 0.07 vs. 1.27 ± 0.38 mm3/kg, 

p= 0.55, Figure 23) 

 

Figure 22: Quantitative stereological analyses of α-cells in the pancreas in six-month-old INSC94Y 

transgenic MPHs and wild-type littermates. 

(A): The volume density of α-cells in the pancreas (Vv (α-cells/Pan)) was lower (-30%) in 

INSC94Y transgenic MPHs (tg) compared to their non-transgenic littermates (wt). (B): The 

total α-cell volume in the pancreas (V (α-cells, Pan)) was significantly lower (-57%) in INSC94Y 

transgenic MPHs (tg) compared to non-transgenic littermates (wt). Data are indicated as 

means ± SEM; *: p<0.05 vs. controls; n: number of animals investigated. 
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Figure 23: Total α-cell volume related to body weight in six-month-old INSC94Y 

transgenic MPHs and non-transgenic littermates. 

The total α-cell volume in the pancreas in relation to body weight (mm3/kg) of the animals 

was not altered in INSC94Y transgenic MPHs (tg) compared to wild-type littermates (wt). 

Data are indicated as means ± SEM; n: number of animals investigated. 

  

0.0

0.5

1.0

1.5

2.0
MPH wt (n=3)
MPH tg (n=6)

p=0.55

6 months

V
(

-c
e
ll

s
,P

a
n

)/
B

W
(m

m
³/

k
g

)



Results 107 

4.4.4 Electron microscopic examination of β-cells 

Ultrastructure of β-cells from six-month-old INSC94Y transgenic MPHs and non-transgenic 

littermates were analysed by a transmission electron microscope. The chosen electron 

micrographs present intracellular structures of β-cells of a wild-type MPH (Figure 24 A) and 

an INSC94Y transgenic littermate (Figure 24 B). Beta-cells of healthy non-transgenic MPHs 

displayed a high amount of secretory insulin vesicles containing insulin and its pre-stages. 

Insulin vesicles are characterized by a round shape and are differed in size with an electron 

dense and irregular formed crystalline core surrounded by an electron lucent bright halo. β-cells 

of INSC94Ytransgenic MPHs showed alterations compared to their wild-type littermates. An 

untypical enlargement of the endoplasmic reticulum was notable, detectable at the cross-

sectional areas of the organelle. In addition, insulin vesicles were highly reduced in number but 

still roundly shaped. However, the content seemed less concentrated and differently arranged, 

such that less halo inside the vesicle was visible. 

 
β: insulin vesicle of a β-cell; ER: endoplasmic reticulum; ER*: cross-sectional areas of enlarged ER; N: 

nucleus; Nc: nucleolus 

Figure 24: Representative transmission electron micrographs of β-cells from a six-month-old 

INSC94Y transgenic MPH and a wild-type littermate 

(A): Beta-cell of a non-transgenic MPHs (wt) showed insulin containing vesicles (β) in a 

high quantity and abundant rough endoplasmic reticulum. (B): INSC94Y transgenic MPHs 

(tg) revealed β-cells with a severely dilated endoplasmic reticulum (ER*) and a low 

amount of insulin vesicles. 
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4.5 Evaluation of diabetes-related secondary alterations in organs 

4.5.1 Absolute and relative organ weights 

The comparison of mean absolute and relative (% of body weight) organ weights of six-month-

old non-transgenic MPHs (n=3) and DPs (n=5) is summarized in Table 10. Results of mean 

absolute and relative organ weights of six-month-old INSC94Y transgenic (n=6) and non-

transgenic (n=3) littermates are summarized in Table 11. 

Significantly reduced mean absolute weights of the majority of organs were detected in wild-

type MPHs compared to wild-type DPs. Absolute kidney weight (cumulatively calculated from 

the weights of both kidneys) and liver weight was reduced by 48% and by 51% respectively, 

and for the absolute heart weight a reduction of 58% could be detected. Only the spleen reached 

a larger decrease (-71%) while lower reductions could be detected for pancreas (-36%), lung (-

30%), brain (-26%) and stomach (-7%). 

Further, INSC94Y transgenic MPHs showed a significant reduction of mean absolute weights of 

most organs when compared to their non-transgenic littermates. Absolute organ weights of 

pancreas and liver were significantly decreased by 32% and 35% respectively while more 

pronounced reductions could be detected for the absolute weight of the stomach (-45%) and 

especially for the spleen (-73%). Lower reductions of absolute organ weights were found for 

the kidneys (-21%) and for the brain (-8%). 

A significant reduction of the mean relative weight of the spleen by 53% was detected for wild-

type MPHs compared to the wild-type DPs. Also, a decrease of the mean relative weight of 

kidneys, liver and heart by 16%, 18% and 32% could be detected respectively. In contrast, 

relative pancreas, brain, lung and stomach weight was increased by 4%, 18%, 21% and 53% 

respectively in non-transgenic MPHs compared to DPs. 

For INSC94Y transgenic MPHs, the brain revealed the largest increase of mean relative organ 

weight (+123%). Also, a significant increase of the mean relative weight was detected for the 

kidneys by 88%, the pancreas by 60%, the liver by 52% and the heart by 50%. Reduction of 

relative organ weight could be recorded for spleen (-34%) and carcass (-23%) comparing 

INSC94Y transgenic with non-transgenic MPHs. 
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Table 10: Absolute and relative organ weights of six-month-old wild-type MPHs 

and wild-type DPs 

Absolute organ weights (g)   Relative organ weights (% BW) 

Organ Genotype Mean SEM P-value   Mean SEM P-value 

liver 
wt MPH 1373.33 49.10 

***   
2.39 0.30 

0.1141 
wt DP 2784.00 91.30 2.92 0.14 

kidneys  

(cumulative) 

wt MPH 247.00 18.90 
***   

0.42 0.02 
0.1195 

wt DP 476.20 23.38 0.50 0.03 

pancreas 
wt MPH 88.67 5.55 

**   
0.15 0.01 

0.7716 
wt DP 139.60 9.11 0.15 0.01 

spleen 
wt MPH 223.33 29.06 

***   
0.38 0.05 

** 
wt DP 776.00 60.13 0.81 0.05 

heart 
wt MPH 153.33 45.31 

**   
0.26 0.07 

0.0835 
wt DP 360.80 14.24 0.38 0.02 

lung 
wt MPH 570.00 152.07 

0.0949   
1.03 0.35 

0.5181 
wt DP 816.40 42.01 0.85 0.03 

stomach          

(without content) 

wt MPH 685.00 101.53 
0.5043   

1.19 0.25 
0.0665 

wt DP 742.00 23.05 0.78 0.03 

brain 
wt MPH 77.00 3.51 

***   
0.13 0.01 

0.0733 
wt DP 104.40 2.25 0.11 0.00 

carcass 
wt MPH 46766.67 5112.19 

**   
79.09 1.13 

0.0928 
wt DP 72620.00 4316.41 75.55 1.17 

wt MPH: n=3 / wt DP: n=5; wt: wild-type; MPH: minipig hybrid; DP: domestic pig; n: number of investigated 

animals; BW: body weight; SEM: standard error of mean; p-value: level of significance **: p<0.01; ***: p<0.001. 
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Table 11: Absolute and relative organ weights of six-month-old INSC94Y transgenic MPHs 

and wild-type littermates 

Absolute organ weight (g)   Relative organ weight (% BW) 

Organ Genotype Mean SEM P-value   Mean SEM P-value 

liver 
wt 1373.33 49.10 

 **   
2.39 0.30 

 * 
tg 900.17 72.68 3.62 0.20 

kidneys  

(cumulative) 

wt 247.00 18.90 
*    

0.42 0.02 
 *** 

tg 195.00 9.22 0.79 0.03 

pancreas 
wt 88.67 5.55 

**   
0.15 0.01 

 * 
tg 60.17 4.18 0.24 0.02 

spleen 
wt 223.33 29.06 

***   
0.38 0.05 

 * 
tg 61.17 5.33 0.25 0.03 

heart 
wt 153.33 45.31 

0.1279    
0.26 0.07 

 * 
tg 98.17 8.11 0.39 0.02 

lung 
wt 570.00 152.07 

0.1737    
1.03 0.35 

 0.172 
tg 386.17 47.45 1.54 0.17 

stomach          

(without content) 

wt 685.00 101.53 
**   

1.19 0.25 
 0.1307 

tg 377.50 24.28 1.53 0.07 

brain 
wt 77.00 3.51 

 0.0919   
0.13 0.01 

 *** 
tg 70.67 1.56 0.29 0.02 

carcass 
wt 46766.67 5112.19 

 ***   
79.09 1.13 

 *** 
tg 15133.33 1002.22 61.01 1.65 

wt MPH: n=3 / tg MPH: n=6; wt: wild-type; tg: transgenic; MPH: minipig hybrid; n: number of investigated 

animals; BW: body weight; SEM: standard error of mean; p-value: level of significance *: p<0.05; **: p<0.01; 

***: p<0.001. 
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4.5.2 Absolute and relative organ weights of female INSC94Y transgenic MPHs 

and non-transgenic littermates. 

Due to the fact that the group of non-transgenic MPHs consisted only of female pigs, an 

additional analysis of absolute and relative (% of body weight) organ weights was performed 

only taking female INSC94Y transgenic and non-transgenic MPHs into account (Table 12). 

Female INSC94Y transgenic MPHs (n=4) showed a significant reduction of absolute weights of 

numerous organs in comparison to female non-transgenic littermates (n=3). Absolute organ 

weight of liver and pancreas were significantly decreased by 28% while more pronounced 

reductions could be detected in the absolute carcass weight (-68%), the absolute stomach weight 

(-42%) and especially the absolute spleen weight (-70%). Not significant or lower reductions 

of absolute organ weights were found for heart and lung with -27% and -36% respectively, 

followed by absolute kidney weight with -18% and absolute brain weight with -7% 

In contrast to absolute organ weights relative organ weights of INSC94Y transgenic female MPHs 

were predominantly increased compared to non-transgenic littermates. Relative pancreas 

weight was significantly increased by 40%. The relative liver and kdiney weight showed a more 

pronounced increase with 40% and 48% respectively. An even more significant elevation was 

detected for the relative brain weight with 53%. A lower relative organ weight increase was 

reached by the stomach with 24%, the heart with 32% and the lung with 37%. 

However, relative spleen and carcass weight were reduced by 29% and 25% respectively. 
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Table 12: Absolute and relative organ weights of six-month-old female INSC94Y transgenic 

MPHs and non-transgenic littermates. 

Absolute organ weight (g)   Relative organ weight (%BW) 

Organ Genotype Mean SEM P-value   Mean SEM P-value 

liver 
Female wt 1373.33 49.10 

**   
2.39 0.30 

** 
Female tg 983.50 57.37 3.99 0.18 

kidneys  

(cumulative) 

Female wt 247.00 18.90 
0.06   

0.42 0.02 
** 

Female tg 203.75 7.18 0.81 0.05 

pancreas 
Female wt 88.67 5.55 

*   
0.15 0.01 

* 
Female tg 63.75 4.77 0.25 0.02 

spleen 
Female wt 223.33 29.06 

**   
0.38 0.05 

0.1251 
Female tg 66.25 6.25 0.27 0.04 

heart 
Female wt 153.33 45.31 

0.2007   
0.26 0.07 

0.0996 
Female tg 97.00 4.26 0.38 0.02 

lung 
Female wt 570.00 152.07 

0.2678   
1.03 0.35 

0.1287 
Female tg 410.50 11.60 1.64 0.14 

stomach          

(without content) 

Female wt 685.00 101.53 
*   

1.19 0.25 
0.1736 

Female tg 396.25 17.49 1.57 0.10 

brain 
Female wt 77.00 3.51 

0.2179   
0.13 0.01 

*** 
Female tg 71.25 2.39 0.28 0.01 

carcass 
Female wt 46766.67 5112.19 

***   
79.09 1.13 

*** 
Female tg 15050.00 1050.00 59.28 1.88 

wt MPH: n=3 / tg MPH: n=4; tg: transgenic; wt: wild-type; MPH: domestic pig-minipig hybrid; DP: n: number of 

investigated animals; BW: body weight; SEM: standard error of mean; p-value: level of significance *: p<0.05; 

**: p<0.01; ***: p<0.001. 

4.5.3 Alterations of the kidneys 

In order to evaluate the influence of the expression of the mutant insulin C94Y in the kidneys 

of six-month-old transgenic MPHs compared to their non-transgenic littermates, the parameter 

absolute and relative kidney weight was used for interpretation (see chapter 4.5.1) and 

histopathological examination was performed.  

4.5.3.1 Absolute and relative organ weight of the kidneys 

In contrast to the mean absolute weights of organs like liver, pancreas or spleen of INSC94Y 

transgenic MPHs that revealed reductions of more than 30%, the mean absolute weight for the 

kidneys, cumulatively calculated from the weights of both kidneys, decreased only by 20% 
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compared to their non-transgenic littermates (195 ± 9.22 vs. 247 ± 18.90 g p<0.05, Figure 25 

A). However, the relative weight of the kidneys reached a significant elevation of more than 

46% (0.79 ± 0.03 vs. 0.42 ± 0.02 g p<0.05) which was a higher rate as detected for the other 

organs in comparison to wild-type littermates, excluding the brain (Figure 25 B). 

 

Figure 25: Mean absolute and relative kidney weight of six-month–old INSC94Y transgenic MPHs 

and non-transgenic littermates. 

(A, B): Mean absolute (A) and mean relative (B) kidney weight of INSC94Y transgenic 

MPHs (tg) and non-transgenic littermates (wt). Data are indicated as means ± SEM; *: 

p<0.05; ***: p<0.001; vs. controls; n: number of animals investigated. 

4.5.3.2 Histopathology of the kidneys 

Histopathological analyses of the kidneys from INSC94Y transgenic MPHs and non-transgenic 

littermates with an age of six months, was performed in hematoxylin and eosin (HE) stained 

sections of paraffin-embedded tissue samples. The representative micrographs show the 

appearance of glomeruli and tubular structures of INSC94Y transgenic MPHs (Figure 26 B) and 

wild-type littermates (Figure 26 A). Generally, sections of INSC94Y transgenic pigs did not 

reveal histopathological alterations pointing towards diabetic glomerulosclerosis. Three out of 

six diabetic pigs and one out of three non-diabetic pigs, revealed paucifocal glomerular 

mesangial hypercellularity. An additional diabetic pig showed a slight focal interstitial non-

purulent nephritis.  
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Figure 26: Representative micrographs of histological sections from the kidney of six-month-old 

INSC94Y transgenic MPHs and non-transgenic littermates. 

(A, B): Micrographs (inset) of an HE staining of renal cortical tissue of a non-transgenic 

(A) and INSC94Y transgenic MPH (B). 
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4.5.4 Alterations of the lens 

After necropsy of six-month-old INSC94Y transgenic and non-transgenic MPHs, eye globes were 

dissected, fixated and cut into slices followed by paraffin embedding and H.E. staining for 

histopathological evaluation regarding diabetes-associated cataract. The chosen micrographs 

represent alterations of the lenses of diabetic MPHs (Figure 27 B) compared to wild-type 

littermates (Figure 27 A). In INSC94Y transgenic MPHs multifocal hydropic degeneration, 

swelling and disarray of the lens fibres were detected. The lenticular cortex evolved cyst-like 

cavities and multifocal morgagnian globes were detected. Wild-type littermates did not reveal 

any evidence of lens alterations.  

 
C: cyst-like cavity; s: swelling of the lens fibres; Mg: morgagnian globe 

Figure 27: Representative micrographs of histological sections of the lens of six-month-old 

INSC94Y transgenic MPHs and non-transgenic littermates. 

(A, B): HE stained sections of INSC94Y transgenic MPHs (tg) showed alterations of the lens 

structure (B) compared to their wild-type littermates (wt) (A).  
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5 DISCUSSION 

5.1 Principles and objectives 

The aim of the present study was the development and characterization of a size-reduced 

porcine model for permanent neonatal diabetes mellitus (PNDM). Experimental animals were 

non-transgenic domestic pig-minipig hybrids (MPHs) and INSC94Y transgenic MPHs expressing 

mutant insulin C94Y that were generated by crossbreeding of genetically modified INSC94Y 

domestic pig (DP) sows (Renner, Braun-Reichhart et al. 2013) with a non-transgenic minipig 

boar. Firstly, phenotypic characteristics of non-transgenic MPHs were evaluated in comparison 

to age-matched wild-type DPs to identify differences of the minipig crossbreed compared to 

the pure DP breed (German Landrace-Swabian Hall background). Secondly, phenotypic 

characteristics of INSC94Y transgenic MPHs were evaluated and compared to non-transgenic 

littermates to specify phenotypic correlates of the INSC94Y transgene compared to the INSC94Y 

transgenic DP model. The INSC96Y mutation in humans causes mutant INS gene induced 

diabetes of youth (MIDY) a form of human PNDM and is homologues to the INS gene mutation 

in mice (Ins2C96Y) and in transgenic DPs (INSC94Y) (Yoshioka, Kayo et al. 1997, Stoy, Edghill 

et al. 2007, Renner, Braun-Reichhart et al. 2013).  

5.2 Physiological characteristics of non-transgenic and INSC94Y transgenic 

domestic pig-minipig hybrids 

5.2.1 Altered blood parameters in non-transgenic and INSC94Y transgenic MPHs 

Pig blood parameters can vary depending on multiple factors such as breed, diet, gender, age 

and body weight (BW) or the analytical method and instrument used. PNDM in swine is caused 

by the expression of the INSC94Y mutation (Renner, Braun-Reichhart et al. 2013), leading to a 

decreased insulin secretion and subsequently increased blood glucose levels. To investigate the 

impact of minipig crossbreeding on blood glucose, plasma insulin, C-peptide and other selected 

chemical parameters, their levels were determined in non-transgenic MPHs and INSC94Y 

transgenic littermates.  

INSC94Y transgenic and non-transgenic MPHs had similar non-fasting blood glucose levels four 

days after birth (185 vs. 182 mg/dl; p=0.9) before it started to increase to a hyperglycemic state 

(>200 mg/dl) in INSC94Y transgenic MPHs but decreased in non-transgenic MPHs within the 

next ten days. Since then, INSC94Y transgenic MPHs showed significantly higher blood glucose 

levels both non-fasting and fasting compared to their non-transgenic littermates, starting from 
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day seven of age (non-fasting, 226 vs. 134 mg/dl; p<0.001) until the end of the observation 

period at 153 days of age (fasting, 306 vs. 74 mg/dl; p<0.001). After the initial elevation the 

blood glucose levels of INSC94Y transgenic MPHs slightly decreased and at the age of 56 days 

animals started to reveal again fasting blood glucose (FBG) levels (212 mg/dl) indicative for a 

derailed glucose metabolism. FBG further increased when animals grew older with the highest 

value (347 mg/dl) reached at day 112 of age. In contrast, FBG levels of wild-type MPHs were 

in a much lower range within the observation period, showing a mean value of 60 mg/dl from 

day 41 to day 153 of age while the highest value reached was 79 mg/dl at day 56 of age. Starting 

at day 112 of age FBG of wild-type MPHs showed a slight tendency to increase with age. The 

results of INSC94Y transgenic MPHs were in line with the range of FBG with >200 mg/dl for 

minipigs considered diabetic in studies using chemical induction (Roberts, Sturek et al. 2001, 

Stanley, Dore et al. 2001, Hara, Lin et al. 2008). Accordingly, the FBG levels of non-transgenic 

MPH littermates were within the reference range of 50–80 mg/dl reported for normoglycemic 

minipigs, even though a high variance needs to be considered (Larsen, Rolin et al. 2001, 

Roberts, Sturek et al. 2001, McAnulty 2012). Besides possible reasons like diet, breed, gender, 

fasting time or the analysis protocol, blood glucose concentration in minipigs is affected by age 

and BW (Larsen, Rolin et al. 2001). Blood glucose is increasing with advanced age and BW 

gain, due to a slight loss of insulin sensitivity and consequently deceleration of glucose 

clearance as also described in humans (Rosenthal, Doberne et al. 1982, Rowe, Minaker et al. 

1983, Ahren and Pacini 1998). Other animal models expressing insulin mutants like the 

Ins2C96Y Akita mouse, the Munich Ins2C95S mutant mouse and the INSC94Y transgenic DP model 

share the hyperglycemic findings observed in INSC94Y transgenic MPHs and therefore confirm 

the diabetogenic effect of a mutant insulin gene affecting one of the three disulfide bonds 

(Yoshioka, Kayo et al. 1997, Herbach, Rathkolb et al. 2007, Renner, Braun-Reichhart et al. 

2013). However, INSC94Y transgenic and non-transgenic DPs showed higher FBG levels 

compared to INSC94Y transgenic and non-transgenic MPHs reaching 415 and 84 mg/dl at day 

115 of age, respectively (Renner, Braun-Reichhart et al. 2013). DPs are known to have a higher 

FBG level compared to minipigs. The reference range for normoglycemic DPs is between 70–

115 mg/dl, compliant to human levels (Barb, Cox et al. 1992, Ramsay and White 2000, Renner, 

Braun-Reichhart et al. 2013). In humans, a range of 70–99 mg/dl is defined as normal fasting 

plasma glucose (FPG), a range of 100–125 mg/dl is defined as impaired fasting glucose for 

patients considered prediabetic and a cut-off of ≥126 mg/dl FPG for patients considered diabetic 

according to the American Diabetes Association (ADA) (ADA 2020). The WHO defined its 

cut-off for normal FPG at <110 mg/dl, though the stricter cut-off is preferred by recent 

investigations (Raizes, Elkana et al. 2016). In case of monogenic diabetes, young and non-obese 
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children are considered affected when showing a mild fasting hyperglycemia of 100–150 mg/dl 

according to ADA (ADA 2020). Further test methods used to diagnose diabetes in humans like 

the 2-h plasma glucose value after an oral glucose load (oral glucose tolerance test) could be 

further investigated in the INSC94Y transgenic and non-transgenic MPHs to evaluate the 

remaining capability of glucose-stimulated insulin secretion. Though glucose gavage should be 

limited to the first days of life in pigs to avoid the risk of a hyperglycemic crisis. Tests based 

on HbA1c criteria are not advisable neither in minipigs nor domestic pigs, as their erythrocytes 

are impermeable to glucose (Higgins, Garlick et al. 1982). 

A disturbed glycemic control due to an insulin mutation is referred to as MIDY, resulting from 

expression of a misfolded mutant proinsulin that is retained within the endoplasmic reticulum 

(ER) of β-cells leading to reduced secretion of insulin and hypoinsulinemia (Liu, Hodish et al. 

2010). Plasma insulin concentrations of INSC94Y transgenic MPHs were reduced and are 

probably accountable for early hyperglycemia. Already seven days after birth, transgenic MPHs 

showed a significantly lower level of mean plasma insulin compared to their control littermates 

(4.6 µU/ml vs. 14.5 µU/ml). Random plasma insulin concentrations on day seven showed 

higher values for transgenic (4.6 µU/ml) and non-transgenic (14.5 µU/ml) MPHs compared to 

the determinations at day 180, due to the fact that piglets were still with the sow at that age and 

therefore not fasted. At 180 days of age mean fasting plasma insulin (FPI) concentration of 

INSC94Y transgenic MPHs was lower compared to non-transgenic littermates but not 

significantly altered (2.6 µU/ml vs. 7.2 µU/ml), probably due to the low number of animals in 

the wild-type group (n=3) and the high variance of FPI in both groups at day 180. However, 

the values of the control animals were within the reference range for normal FPI known for 

minipigs (between 3–14 µU/ml) (Hara, Lin et al. 2008, Li, Yin et al. 2010). The tendency of 

reduced FPI in INSC94Y transgenic MPHs compared to the non-transgenic littermates were in 

concordance with the results described for the INSC94Y transgenic DP model. Transgenic DPs 

revealed even significantly lower FPI levels compared to their non-transgenic littermates (2 ± 

vs. 5.1 ± µU/ml) (Renner, Braun-Reichhart et al. 2013). Just like FPG, the FPI in minipigs is 

known to be lower compared to domestic pigs and humans (Barb, Cox et al. 1992, Ramsay and 

White 2000, Larsen, Rolin et al. 2001). However, four and a half-month-old INSC94Y transgenic 

DPs showed slightly lower FPI concentrations in the transgenic as well as in the wild-type group 

in comparison to six-month-old INSC94Y transgenic and non-transgenic MPHs, respectively. 

The slightly younger age of DPs compared to MPHs at the time of blood sampling might have 

had an influence on the lower FPI levels in INSC94Y transgenic and non-transgenic DPs. With 

increasing age and BW a combined elevation of blood glucose and consequently plasma insulin 
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is suggested in pigs as well as in humans (Rosenthal, Doberne et al. 1982, Larsen, Rolin et al. 

2001). The measurments of plasma insulin were not always correlative to plasma C-peptide 

concentrations, determined from the same blood sample per pig at day seven and day 180 of 

age, respectively. C-peptide is a part of proinsulin and is released in parallel and equal amounts 

to insulin from secretory granules of the β-cell into the blood, after the transformation of 

proinsulin to insulin. Therefore, plasma C-peptide concentrations correlate to plasma insulin 

concentrations. In accordance with lower FPI levels lower random and fasting plasma C-peptide 

levels were observed in INSC94Y transgenic MPHs compared to control littermates at both points 

in time, as well as the tendency of lower C-peptide concentrations in wild-type MPHs on day 

180 compared to day seven of age. Opposed to insulin measurements in transgenic MPHs 

(insulin values were lower at day 180 compared to day seven) a higher concentration of plasma 

C-peptide was seen at day 180 (fasted) compared to day seven (non-fasted) in these animals. 

Probably, this discrepancy also resulted from the high variance of FPI and C-peptide within the 

respective group. Furthermore, the longer half-life of the plasma concentration of C-peptide 

might result in uncorrelated measurements of FPI and C-peptide. However, the majority of 

diabetic minipig models successfully achieved reduction of FPI due to chemical induction. 

Hereby, the destruction of β-cells has a direct, dose-dependent impact on FPI concentrations 

(Stanley, Hall et al. 1997, Larsen, Wilken et al. 2002). In case of diabetes induced by the 

expression of mutant insulin, it is hypothesized that the lack of insulin initially derives from 

impaired trafficking or secretion of proinsulin prior to absolute insulin deficiency due to β-cell 

apoptosis as a consequence of ER stress response (Liu, Haataja et al. 2010). This 

pathomechanism was demonstrated in the INSC94Y transgenic DP model (Renner, Braun-

Reichhart et al. 2013) and is considered the same in INSC94Y transgenic MPHs. To confirm that 

initial insulin deficiency precedes β-cell loss also in INSC94Y transgenic MPHs, pancreata of 

neonates should be examined by quantitative-stereological analysis in parallel to further insulin 

measurements.  

Effects of domestic pig-minipig crossbreeding and expression of mutant insulin on glucose 

homeostasis and insulin secretion were displayed by this size-reduced INSC94Y porcine model. 

On the one hand, relevant blood parameters of wild-type littermates were more consistent with 

the reference ranges for minipigs than with those of domestic pigs, reflecting the impact of 

minipig background. On the other hand, INSC94Y transgenic MPHs revealed hyperglycemia and 

hypoinsulinemia, as a consequence of the expression of mutant insulin, to consider them 

clinically diabetic compared to their control littermates and in accordance to existing references 

for minipigs. The early manifestation of a constant hyperglycemia and hypoinsulinemia within 
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a few weeks of life in INSC94Y transgenic MPHs is therefore compliant with the clinical 

characteristics defined for PNDM in humans (Stoy, Edghill et al. 2007, Klupa, Skupien et al. 

2012). However, since there is no population statistics of swine available and the current 

reference ranges are based on individual investigations instead, pigs in diabetes research should 

be considered diabetic when relevant blood parameters are remarkably altered compared to an 

appropriate control and fit in an existing reference range from a diabetic population of the breed. 

Due to the high metabolic resemblance between human and pigs, it is possible to compare to 

human criteria, but the lower levels of blood glucose, plasma insulin and C-peptide in minipigs 

have to be taken into account. 

Clinical chemical parameters of interest were evaluated in INSC94Y transgenic and non-

transgenic MPHs. Besides on blood glucose insulin has a strong impact on blood lipids, as 

dyslipidemia is associated with type 1 diabetes (T1D) and type 2 diabetes (T2D) (Biesenbach 

1989, Filippatos, Tsimihodimos et al. 2017). Blood lipid abnormalities in diabetes are generally 

defined by hypertriglyceridemia and can be accompanied by low levels of high-density 

lipoprotein cholesterol and high levels of low-density lipoprotein cholesterol, but the alterations 

of cholesterol patterns can vary (Gerrity, Natarajan et al. 2001). Different types of diabetes can 

all result in hypertriglyceridemia but insulin deficiency or insulin resistance and the chronic 

oversupply of blood glucose affect the fat metabolism in different ways (Reaven and Greenfield 

1981, Filippatos, Tsimihodimos et al. 2017). The pathogenesis based on insulin deficiency leads 

to a diminished degradation of triglyceride-containing lipoproteins due to a reduced activity of 

the lipoprotein lipase. This can be enhanced by increased free fatty acid concentrations in the 

blood due to the reduced lipolysis-inhibiting effect of insulin. In contrast, the crucial pathogenic 

factor of impaired insulin sensitivity and subsequent hyperinsulinemia is the increased secretion 

of triglyceride-containing lipoproteins due to elevated free fatty acid levels (Reaven and 

Greenfield 1981, Biesenbach 1989, Keller, Golay et al. 1990). INSC94Y transgenic MPHs 

showed significantly higher mean fasted triglyceride levels compared to control littermates 

(55.7 mg/dl vs. 27.4 mg/dl, p<0.05) at day 180 of age. Mean fasted total cholesterol levels of 

INSC94Y transgenic MPHs were slightly but not significantly lower compared to non-transgenic 

littermates (67.5 vs. 89.5 mg/dl, p=0.32). In the Yucatan and Ossabaw minipig breed, the 

defined reference range was 19–39 mg/dl for normal triglyceride concentrations, whereas diet-

induced obese pigs that were considered hypertriglyceridemic reached triglyceride levels of 41–

106 mg/dl (Boullion, Mokelke et al. 2003, Neeb, Edwards et al. 2010). The concentration for 

normal cholesterol of these minipigs was 51–157 mg/dl, in contrast an elevation within a range 

of 280–479 mg/dl was observed in the diet-induced obese groups (Boullion, Mokelke et al. 
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2003, Mokelke, Dietz et al. 2005, Neeb, Edwards et al. 2010). In line with these previous 

investigations was the observation that insulin deficiency due to the expression of the mutant 

insulin affected the lipid metabolism of INSC94Y transgenic MPHs by increasing the triglyceride 

concentrations, while those of control littermates remained normal. Reduced insulin levels 

decreasing the activity of lipoprotein lipase are probably the main reason for 

hypertriglyceridemia in these pigs. An impact on total cholesterol levels could not be detected 

in INSC94Y transgenic MPHs. Moreover, hypercholesterolemia is not that common in diabetic 

subjects suffering from insulin deficiency as hypertriglyceridemia and low high-density 

lipoprotein cholesterol (Biesenbach 1989, Hirano 2018).  

Furthermore, INSC94Y transgenic MPHs showed significantly reduced mean fasted creatinine 

concentrations compared to non-transgenic littermates (0.53 mg/dl vs. 0.96 mg/dl, p<0.001) at 

day 180 of age. A reference range of blood creatinine for miniature swine at a similar age was 

defined to be 0.98–1.05 mg/dl (Garthoff, Henderson et al. 2002). The blood concentration of 

creatinine is predominantly used to screen earliest stages of diabetic nephropathy by indirect 

determination of glomerular filtration rate (GFR) or creatinine clearance (Chantler, Garnett et 

al. 1969, Rehling, Moller et al. 1984). Recently it is suggested that low blood creatinine 

concentration is also an early predictor of diabetes risk in humans (Hu, Nakagawa et al. 2019). 

The blood level of creatinine is directly proportional to the muscle mass since creatinine is the 

metabolite of creatine phosphate in the muscle (Heymsfield, Arteaga et al. 1983, Baxmann, 

Ahmed et al. 2008). Muscle tissue is one of the major targets for insulin activity (glucose uptake 

and oxidation, glycogen synthesis) and inversely insulin has an anabolic effect on muscle 

development (Menon and Sperling 1996, Zierath, Krook et al. 2000). A reduced muscle mass 

could accelerate or even cause an insulin resistance (Srikanthan, Hevener et al. 2010) while a 

decreased insulin concentration can impair muscle growth (Menon and Sperling 1996). The 

significantly lower creatinine concentrations of INSC94Y transgenic MPHs compared to wild-

type MPHs might be associated to a diminished muscle development due to an insufficient 

insulin supply. This assumption is supported by the observed growth retardation in INSC94Y 

transgenic MPHs. Forearm and shank circumference of INSC94Y transgenic MPHs were 

remarkably reduced in comparison to non-transgenic littermates, indicative for poor muscle 

mass (see chapter 5.2.2). However, relative lean mass evaluated by Dual-energy X-ray 

absorptiometry (DXA) was significantly higher in INSC94Y transgenic MPHs compared to wild-

type littermates (see chapter 5.2.3). Though, the lean mass measured consisted of more than 

muscle tissue (e.g., skin and connective tissue) and is therefore not a direct parameter for muscle 

mass. 
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Furthermore, mean fasted urea concentrations of INSC94Y transgenic MPHs were remarkably 

higher than those of control littermates (49 vs. 33.5 mg/dl, p<0.05) at day 180 of age. A 

reference range for blood urea in miniature swine at a similar age was defined to be 6.8–10.3 

mg/dl (Garthoff, Henderson et al. 2002). Thus, transgenic and non-transgenic MPHs inclined 

to have higher urea levels than normal. Urea is used as a marker of GFR but it is less specific 

than creatinine. An elevated urea concentration can be associated with many factors 

independent of renal failure, like high protein diet, hypovolemia, excessive tissue breakdown 

or gastrointestinal hemorrhage that makes it a less reliable marker of GFR (Traynor, Mactier et 

al. 2006). Therefore, the elevated urea concentration of INSC94Y transgenic and non-transgenic 

MPHs compared to the reference range may result from other reasons than a decreased GFR. 

Further evaluation of the kidneys revealed neither any findings verifying for kidney failure (see 

chapter 5.3.3).  

5.2.2 Growth retardation in non-transgenic and INSC94Y transgenic MPHs  

Growth retardation was observed in INSC94Y transgenic and non-transgenic MPHs within the 

observation period of six months. Wild-type MPHs gained significant lower BW than wild-type 

DPs starting from week six of age, resulting in a mean BW of 58 kilogram at the age of six 

months, which was 39% lower compared to age-matched DPs with a mean BW of 95 kilogram. 

Apart from that, a significant lower birth weight was observed for wild-type MPHs compared 

to a group of wild-type DPs (0.828 ± 0.06 vs. 1.168 ± 0.05 kg; p<0.001) that were also 

descendants of INSC94Y transgenic domestic sows. The fact that the compared wild-type MPH 

and wild-type DP piglets came from a similar maternal background enhances the outcome of 

the altered birth weight. INSC94Y transgenic domestic sows were diabetic and tended to be 

smaller and to weigh less than wild-type domestic sows, therefore the comparison of non-

transgenic MPHs and DPs all born to INSC94Y transgenic domestic sows is more accurate. 

Nevertheless, the determination of birth weight and body weight gain within six months showed 

both a strong impact on the BW due to crossbreeding minipig with a domestic pig line. 

However, it has to be considered that in addition to the genetic background of a foetus, length 

and capacity of the uterus have a major impact on foetal development (McCance and 

Widdowson 1974, Rothschild, Messer et al. 2000). A greater uterine space has a positive effect 

on foetal length and weight. The bigger the organ is, the larger foetuses it can obtain (Chen and 

Dziuk 1993). Also, the total number of foetuses itself determines inversely the size of each 

individual within the litter (Litten-Brown, Corson et al. 2010). Domestic sows used for 

laboratory purposes tend to have an average litter size of 12–14 piglets (Rutherford, Robson et 

al. 2009, Rutherford, Piastowska-Ciesielska et al. 2014), whereas the average litter size of 
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Göttingen minipig sows is six and a half piglets (Ganderup, Harvey et al. 2012, McAnulty 

2012). The two INSC94Y transgenic domestic dams delivered a litter of nine and eleven MPH 

piglets, respectively. For the generation of INSC94Y transgenic and non-transgenic MPHs, 

INSC94Y transgenic domestic sows with a German Landrace-Swabian Hall background were 

crossbred with a non-transgenic black minipig boar. For this reason, the uterus of the INSC94Y 

transgenic domestic sow had an above-average size for the low number of size-reduced minipig 

crossbred foetuses it contained. Thus, proportionally more uterine space was offered for the 

development of INSC94Y MPH foetuses, which could enable an above-average growth compared 

to minipig foetuses born from a minipig sow. This assumption could contribute to the fact that 

no significantly lower birth weight was detected in wild-type MPHs compared to wild-type DPs 

from a non-transgenic sow. The achieved BW of the wild-type minipig crossbred pigs at six 

months of age is comparable to the BW gained by other minipig breeds like the Yucatan 

miniature swine at 12 months of age or fully grown Micro-Yucatan miniature swine and Sinclair 

miniature swine at 24 months of age for example (Ganderup, Harvey et al. 2012, Kim, Song et 

al. 2015). 

The transgenic group of MPHs exhibited impaired BW gain starting from 11 weeks of age 

compared to non-transgenic MPHs. The reduction of BW gain was progressive with increasing 

age of the animals. The growth retardation led to a mean BW of 26 kilogram of INSC94Y 

transgenic MPHs, a 55% lower BW compared to their wild-type littermates at the end of the 

observation period, i.e., at an age of six months. Lower BW was also observed in other animal 

models, expressing an equivalent mutant insulin gene or transgene. INSC94Y transgenic DPs for 

example started to exhibit lower BW rates after two months of age and revealed a decrease of 

41% of BW at an age of four and a half months compared to non-transgenic littermates (Renner, 

Braun-Reichhart et al. 2013). These results imply a major impact of insufficient insulin 

secretion on BW gain of INSC94Y transgenic MPHs similar to INSC94Y transgenic DPs. Due to 

the age difference of the animals and the fact that impaired insulin secretion increased with age 

the alteration of BW was more pronounced in six-month-old INSC94Y transgenic MPHs (-55%) 

than in 4.5-month-old INSC94Y transgenic DPs (-41%) compared to their wild-type littermates, 

respectively. Concordant with the reduced BW were the values measured for the absolute organ 

weights that showed a proportional decrease, comparing wild-type MPHs to wild-type DPs and 

transgenic MPHs to non-transgenic littermates. None of the relative organ weights (% of BW) 

of wild-type MPHs was significantly altered compared to age-matched wild-type DPs, except 

for the spleen that showed a distinctive lower weight in non-transgenic MPHs. In contrast, the 

relative weight of most organs of INSC94Y transgenic MPHs was increased in comparison to 
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control littermates. 

Besides body and organ weights, relevant growth parameters of INSC94Y transgenic and non-

transgenic MPHs were measured to evaluate the body size (BS) and body shape and 

characteristics of growth retardation. Wild-type MPHs were already born with a significant 

reduction of 23% in shoulder height (14.7 ± 0.4 vs. 19 ± 0.5 cm, p<0.01) and of 21% in hip 

height (14.7 ± 0.5 vs. 18.7 ± 0.7 cm, p<0.05) and at the age of five months all growth parameters 

measured were significantly reduced (-7% to -25% dependent on the growth parameter) 

compared to wild-type DPs (occipito-nasal length: 26.4 ± 1 vs. 30.8 ± 0.4 cm; biparietal 

diameter: 10.8 ± 0.3 vs. 12.8 ± 0.4 cm; crown-rump length: 90.3 ± 1.6 vs. 116.4 ± 3.2 cm; 

shoulder height: 47.3 ± 1.2 vs. 63.4 ± 1.3 cm; shoulder width: 21.6 ± 0.5 vs. 25 ± 0.3 cm; 

forearm circumference: 18.6 ± 0.9 vs. 23.6 ± 0.2 cm; thoracic circumference: 84.7 ± 2.2 vs. 

94.6 ± 0.9 cm; abdominal circumference: 99.2 ± 2.1 vs. 107 ± 2.3 cm; shank circumference: 

21.8 ± 0.8 vs. 25.8 ± 0.4 cm; hip height: 51.4 ± 0.8 vs. 66 ± 1.1 cm; hip width: 17.6 ± 0.5 vs. 

21 ± 0.7 cm; p<0.001, respectively). Thus, the lower BS correlated with the lower BW gained 

of wild-type MPHs in the observation period of five months, except for the first five weeks of 

life where shoulder and hip height were already lower but no significant reduction in BW was 

observed in wild-type MPHs compared to wild-type DPs. Fattening pigs generally tend to have 

the lowest BW gain in the first seven weeks of life in relation to the weight gain of their 

remaining growth phase (Kohn, Sharifi et al. 2007). Important aspects to consider when 

comparing the growth of pigs on a domestic background with pigs on a minipig background are 

the differences in growth patterns defined by breeding goals. While fattening pigs have a more 

sigmoid growth curve, minipigs generally tend to have a linear growth curve in the first six 

months of life (Kohn, Sharifi et al. 2007). In line with these growth patterns, significant 

alterations of the BW occurred in age-matched wild-type DPs and MPHs starting from week 

six of life. In other words, MPHs have a more constant and slower growth pattern then DPs that 

can be beneficial for laboratory purposes. Young MPHs can enter the laboratory with a lower 

initial BW and BS, maintain a slower BW gain during growth and obtain a lower final BW and 

BS compared to DPs of the same age. Besides the easier handling and manipulation of a smaller 

pig in the laboratory, one of the main advantages of a lower BW is the reduced amount (i.e., 

lower cost) of a compound required for preclinical studies, e.g., for the development of new 

pharmaceuticals. In addition, the slower growth pattern and the estimated final BW of wild-

type MPHs corresponded more to the growth pattern and BW of adult humans in comparison 

to that of DPs, which adds to the translational benefits of MPHs. 

The comparison of the same growth parameters between INSC94Y transgenic MPHs and wild-
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type littermates showed similar initial growth characteristics at birth but at an age of five months 

significant retardation of growth (-12% to -29% dependent on the growth parameter) was 

detected in transgenic MPHs (occipito-nasal length: 21.8 ± 0.4 vs. 26.4 ± 1 cm; biparietal 

diameter: 9.5 ± 0.2 vs.10.8 ± 0.3 cm; crown-rump length: 73.3 ± 1.9 vs. 90.3 ± 1.6 cm; shoulder 

height: 38 ± 0.7 vs. 47.3 ± 1.2 cm; shoulder width: 15.3 ± 0.7 vs. 21.6 ± 0.5 cm; forearm 

circumference: 14.9 ± 0.7 vs. 18.6 ± 0.9 cm; thoracic circumference: 67.3 ± 1.9 vs. 84.7 ± 2.2 

cm; abdominal circumference: 83.5 ± 1.9 vs. 99.2 ± 2.1 cm; shank circumference: 17.4 ± 0.5 

vs. 21.8 ± 0.8 cm; hip height: 43.4 ± 1.2 vs. 51.4 ± 0.8 cm; hip width: 12.5 ± 0.3 vs. 17.6 ± 0.5 

cm; p<0.001, respectively). In a study of human neonatal diabetes mellitus (NDM) investigating 

a large cohort of patients, newborns presented intrauterine growth retardation (IUGR) and 

reduced birth weight due to insufficient insulin supply in up to 74% of the cases with transient 

neonatal diabetes mellitus (TNDM) and 36% of the cases with PNDM (Metz, Cave et al. 2002). 

Due to the notable difference of apparent IUGR between these two forms of NDM it is implied 

that the appearance of IUGR has to be based on a distinct pathomechanism. IUGR in infants 

with NDM shows the important role of insulin as foetal growth factor and the point of time of 

its absence being a key element (Cave, Polak et al. 2000). In patients with TNDM β-cell failure 

manifests already in the late foetal or early postnatal period, whereas in the majority of PNDM 

cases impaired β-cell function occurs after birth (Metz, Cave et al. 2002, Polak and Cave 2007, 

Stoy, Edghill et al. 2007). When comparing the prenatal consequences of NDM of humans with 

other species like the pig, it needs to be considered that the peak of foetal growth rate is reached 

at different gestational ages. For humans foetal growth achieves its maximum between gestation 

weeks 30–36, in contrast to pigs where foetal growth starts to accelerate around birth (Litten-

Brown, Corson et al. 2010). Birth weight and size, BW gain and growth rate of newborn INSC94Y 

transgenic MPHs compared to non-transgenic littermates were not significantly but just slightly 

lower at or immediately after birth, i.e., no apparent IUGR was present in newborn INSC94Y 

transgenic MPHs. This indicates that foetal and newborn transgenic MPHs developed a less 

severe or slower impairment of insulin secretion or dysfunction of β-cells due to mutant INSC94Y 

compared to infants with neonatal diabetes mellitus. The non-significant retardation in birth 

weight and size of newborn INSC94Y transgenic MPHs suggest that the degree of intrauterine 

insulin deficiency was not sufficient to provoke IUGR as assumed for the majority of infants 

suffering from PNDM. However, as already mentioned length and capacity of the uterus of a 

sow have a positive effect on foetal growth that could maybe mask a slightly underlying growth 

restriction due to insufficient prenatal insulin supply (McCance and Widdowson 1974, 

Rothschild, Messer et al. 2000).  
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Besides being a pivotal foetal growth factor, insulin is a key hormone for many anabolic 

processes. It regulates the metabolism of carbohydrates, fats and proteins in target organs like 

liver, muscle or adipose tissue (Menon and Sperling 1996). Additionally to the growth hormone 

(GH), insulin stimulates the synthesis of insulin-like growth factor I (IGF1) to control the 

anabolic processes in different body compartments and therefore insulin also has an impact on 

the GH/IGF1 axis (Laron 2004). Insulin, GH and IGF1 are anabolic agents, which collectively 

are responsible for the induction of bone growth and bone formation and the maintenance of 

bone mass (Thrailkill, Lumpkin et al. 2005, Trobec, von Haehling et al. 2011). Adolescent 

diabetic patients are known to have an impaired linear bone growth and a decreased growth 

velocity due to the lack of insulin. The bones of these patients tend to be smaller, particularly 

when hypoinsulinemia has already occurred during childhood (Sellmeyer, Civitelli et al. 2016). 

This clinical feature in humans is consistent with the results obtained by growth evaluation at a 

state of puberty in INSC94Y transgenic MPHs. All INSC94Y transgenic animals showed 

remarkably altered growth parameters at the age of five months compared to their non-

transgenic littermates. Also, all wild-type MPHs obtained size-reduced growth parameters 

compared to wild-type DPs. Thus, the observed growth retardation in non-transgenic and 

transgenic MPHs can be explained by the minipig background and the expression of mutant 

INS. 

5.2.3 Body composition of non-transgenic and INSC94Y transgenic MPHs 

Besides other anabolic factors, insulin does not only regulate growth formation and growth 

velocity of the organism, but has also a crucial role when it comes to the composition of body 

tissues and its maintenance. Hence, whole body composition was analysed at the age of six 

months by Dual-energy X-ray absorptiometry (DXA). When correcting for the significant 

difference in total tissue (corresponding to reduced BW shown in 5.2.2) no significant 

differences could be detected by comparing the mean values of bone mineral density (BMD), 

relative bone mineral content (BMC), relative fat mass and relative lean mass in wild-type 

MPHs and wild-type DPs. However, tendencies of increased relative fat mass and reduced 

relative lean mass in non-transgenic MPHs compared to DPs were observed. In contrast, the 

INSC94Y transgenic MPHs revealed significantly decreased mean values of total tissue (-55%) 

(corresponding to reduced BW shown in 5.2.2) with reduced relative fat mass (-83%) and 

increased relative lean mass (+12%) compared to their control littermates. This could indicate 

a superior influence of the absence of insulin on adipose tissue rather than on other body tissues 

like muscle for example. A high sensitivity of the lipometabolism with increased lipolysis is 

also observed in humans with hypoinsulinemia and weight loss is a main characteristic for 
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diabetes associated with insulin deficiency (Nurjhan, Consoli et al. 1992, Camastra, Vitali et al. 

2017). The anti-lipolytic effect of insulin demonstrates the importance of this hormone besides 

its pivotal role for the glucose metabolism. Insulin diminishes the release of glycerol or fatty 

acids and thereby inhibits the action of lipolytic hormones like adrenaline or 

adrenocorticotropic hormone (Touabi and Jeanrenaud 1970). Inversely, enhanced lipolysis can 

be expected in an organism lacking insulin, as demonstrated by INSC94Y transgenic MPHs. The 

determination of lipolysis measured as the percentage change in glycerol rate, is even used to 

characterize the effect of insulin using novel protocols (Herring, Shojaee-Moradie et al. 2015).  

However, gender-related differences were detected in fat and lean mass (related to total tissue) 

within the group of non-transgenic MPHs. Male wild-type MPHs showed significantly higher 

lean mass (+16%) compared to female wild-type MPHs, whereas females revealed a markedly 

higher fat mass (+112%) compared to males. No significant differences in relative fat and lean 

mass were detected between male and female wild-type DPs or between male and female 

INSC94Y transgenic MPHs. This, however, could result from the low number of animals in the 

groups consisting of only three female and two male wild-type DPs and only four female and 

two male INSC94Y transgenic MPHs, respectively. In general, male DPs also tend to have a lower 

relative fat mass and higher relative lean mass compared to female DPs when fed the same diet 

as detected in wild-type MPHs. The non-significant differences in fat and lean mass of male 

and female INSC94Y transgenic MPHs may also be attributable to an enhanced lipolysis in both 

genders due to an insufficient insulin supply, as described before. However, the gender-related 

results of relative fat and lean mass of non-transgenic MPHs were concordant with the 

differences described by Christoffersen et al. (Christoffersen, Grand et al. 2007, Christoffersen, 

Golozoubova et al. 2013). By comparing male and female Göttingen minipigs they suggested 

a higher probability for females to become obese and to develop metabolic syndrome-related 

parameters due to a gender-related hormonal profile. They hypothesized that testosterone and 

estradiol can have a protective influence, by preventing overeating and the likelihood for the 

development of obesity in males. (Christoffersen, Golozoubova et al. 2013). When feeding a 

high-energy diet to Göttingen minipigs of both genders under the same conditions, notably 

higher levels of testosterone and estradiol were found in prepubertal and sexually mature male 

minipigs compared to females. Minipig sows tend to be more obese, insulin resistant and were 

achieving a more severe atherogenic plasma profile (composed of high plasma triglyceride and 

high-density lipoprotein cholesterol levels) in comparison to the minipig boars (Clapper, Clark 

et al. 2000, Christoffersen, Grand et al. 2007). A gender-related difference in estradiol 

concentrations was also observed in a study with exercised adult Yucatan minipigs. Female 
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Yucatan minipigs obtained lower estradiol concentrations than males that could not be 

influenced by treadmill training (Laughlin, Welshons et al. 2003). In accordance with these 

previous observations, especially female INSC94Y transgenic MPHs may be a suitable animal 

model for obesity-related diabetes or metabolic syndrome. Sex hormones have an impact on 

the development of obesity and metabolic syndromes in pigs as well as in humans (Kautzky-

Willer, Harreiter et al. 2016). However, it must be noted that there is a discrepancy concerning 

the sex hormone balance between pigs and humans. Male pigs achieve higher estradiol levels, 

while female pigs have lower estradiol levels compared to humans in a similar developmental 

stage (Laughlin, Welshons et al. 2003, Christoffersen, Golozoubova et al. 2013). Therefore, 

gender-related differences in the sex hormone pattern cannot be translated that easily from pig 

to human. 

Other body tissues probably facing an impact of the expression of the mutant INSC94Y are BMD 

and BMC. Osteopenia and osteoporosis are bone disorders associated with reduced bone quality 

and are frequent comorbidities of diabetes and related to insulin deficiency (Schwartz 2003). 

The underlying pathophysiology of reduced bone quality and bone fracture risk in diabetes 

patients is complex, differs between the different types of diabetes and is still not fully 

understood. For example, BMD is only decreased in T1D but increased in T2D patients 

compared to subjects without diabetes which probably is related to a compensatory effect due 

to a higher body mass index (BMI) in T2D patients. However, it is suggested that an increased 

risk of bone fractures exists in patients with T1D as well as with T2D, though the risk is higher 

in T1D and remains controversial in T2D (reviewed in (Vestergaard 2007)). It is assumed that 

the fracture risk increases through an elevated risk of falls due to diabetic complications but 

that the often increased BMI in T2D patients could be protective and reduce the risk of fractures 

by increasing BMD. In contrast, T2D patients with a high BMI have also an increased traumatic 

load in case of a fall due to a heavy BW which increases the risk of bone fractures (De Laet, 

Kanis et al. 2005). Decreased BMD is an indirect indicator and predictor of osteoporosis. 

Hypoinsulinemia is known to affect bone mineralization and results in reduced BMD and 

reduced bone strength, leading among other factors to an elevated risk of bone fractures and an 

impaired bone healing (Thrailkill, Lumpkin et al. 2005, Sellmeyer, Civitelli et al. 2016). The 

absence of an insulin stimulus also diminishes the synthesis of IGF1 and alters the GH/IGF1 

axis (see chapter 5.2.2) which has consequences on bone remodeling (Moyer-Mileur, Slater et 

al. 2008). Reduced blood serum levels of IGF1, alkaline phosphatase and osteocalcin were 

measured in diabetic humans and rodents with lower BMD and attributed to a decreased 

osteoblastic function (Kemink, Hermus et al. 2000, Sellmeyer, Civitelli et al. 2016). Besides 
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this indirect influence of insulin on bone remodeling, also hypoinsulinemia and hyperglycemia 

may have a direct impact on bone cells expressing insulin receptors. Osteocytes, osteoblasts 

and osteoclasts are stimulated by insulin secretion, resulting in a positive bone formation and 

physiological bone turnover (Fulzele, Riddle et al. 2010). Inversely, hypoinsulinemia or insulin 

resistance diminishes the activity of bone cells (Lecka-Czernik, Stechschulte et al. 2015). It is 

hypothesized that hyperglycemia also directly affects the function of osteoclasts through 

increased expression of sclerostin which attenuates bone formation (Pacicca, Brown et al. 

2019). Another influence on BMD may result from microvasculopathies like peripheral 

nephropathy, peripheral vascular disease, retinopathy and neuropathy, all of them known 

comorbidity of diabetes mellitus (reviewed in (Hofbauer, Brueck et al. 2007)). A similar 

pathomechanism that is responsible for these microvasculopathies may also underlie the 

changes observed in trabecular microarchitecture (i.e., reduced BMD) of T1D patients. 

(Abdalrahaman, McComb et al. 2015, Shanbhogue, Hansen et al. 2015). However, INSC94Y 

transgenic MPHs revealed a significant reduction of 27% in BMD but an increase of 14% in 

BMC (related to total tissue) compared to wild-type littermates, respectively. It should be 

mentioned that a minor discrepancy in the accuracy of the measurement of BMD could exist. 

To calculate true BMD, mass should be divided by volume. Using DXA imaging mass has to 

be divided by area due to the missing depth value. Such measurement inaccuracy, however, 

should not have a relevant influence on the results. The calculation of relative BMC depended 

on the total tissue of the animals that was significantly reduced in transgenic MPHs compared 

to control. Reduced insulin secretion seemed to have a greater impact on soft tissue such as fat 

and muscle compared to BMC. Therefore, relative BMC was higher in transgenic MPHs 

compared to non-transgenic MPHs. Nevertheless, this transgenic porcine model acquiring 

lower BMD likely recapitulates the alterations of bone mineralization due to the absence of 

insulin as observed in diabetic humans. An interesting complement to BMD measurements by 

DXA would be the determination of bone formation markers like serum osteocalcin (Starup-

Linde, Eriksen et al. 2014) to support the outcome of the DXA measurement and to evaluate 

possible influences on osteocalcin levels like a reduced insulin concentration. Osteocalcin is an 

indicator for osteoblast number and maturation (Lee, Sowa et al. 2007) and its serum level is 

also associated to different metabolic parameters (e.g., fasting glucose, fat mass, BMI) 

including insulin concentration, possibly with a bi-directional influence on each other 

(reviewed in (Pramojanee, Phimphilai et al. 2014, Starup-Linde and Vestergaard 2016)). A 

decrease in serum osteocalcin levels going along with a decrease of serum insulin levels and 

BMD could be expected in transgenic MPHs as described in diabetic rodent models (Botolin 

and McCabe 2007). Studies in diabetic humans showed a relation between reduced osteocalcin 
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serum levels and reduced BMD but could not detect a correlation between osteocalcin and 

BMD. However, the patients in these studies possibly did not suffer severe enough 

hypoinsulinemia (Gunczler, Lanes et al. 1998, Kemink, Hermus et al. 2000, Lumachi, Camozzi 

et al. 2009). In addition to the sensitivity of BMD to insulin deficiency in INSC94Y transgenic 

MPHs, minipigs have further important traits of bone architecture and regeneration that are 

similar to humans, most importantly a cancellous and cortical bone with a well-established 

Haversian system and a comparable remodeling bone turnover (Martinez-Gonzalez, Cano-

Sanchez et al. 2005). The porcine Haversian system presents a bone structural unit after 

completion of bone remodeling based on bone multicellular units as described in humans 

(Mosekilde, Weisbrode et al. 1993, Kalu 1999, Martinez-Gonzalez, Cano-Sanchez et al. 2005). 

Another attribute is the similar BW of a minipig compared to the BW of an adult human (see 

chapter 5.2.2) and therefore bones of minipigs tend to have a similar degree of mechanical stress 

compared to humans (Mosekilde, Weisbrode et al. 1993). Generally, an animal model with a 

non-seasonal cyclic oestrus similar to women (Kalu 1999) and a small average litter size of six 

piglets (McAnulty 2012) may also be preferable as it is more comparable to human 

reproduction. Indeed, predominantly uniparous animal species like cows, sheep or non-human 

primates would even be closer to human characteristics (Kalu 1999). It is suggested that 

multiparity and lactation are positively linked to bone regeneration (Bowman and Miller 2001). 

Pigs and rodents are multiparous (Howard, Chakraborty et al. 1982) and therefore could have 

an innate higher potential for remodeling bone (Nespolo 2007). Moreover, rodents have a 

higher birth rate and lactation frequency than pigs and humans, therefore they are capable of 

regenerating lost bone mass due to calcium deprivation in a shorter time (Osterloh and Kelly 

1999). Another advantage of pigs compared to other species is that they are omnivorous like 

humans and gastrointestinal physiology is similar to humans providing similar nutrients and 

minerals to be used for bone metabolism (Reinwald and Burr 2008). However, it should be 

noted that minipigs tend to have a denser trabecular architecture and higher bone mass 

compared to humans (Kalu 1999). 

5.3 Morphological alterations in INSC94Y transgenic MPHs  

5.3.1 Reduction of β-cell mass and rearrangement of pancreatic islets in INSC94Y 

transgenic MPHs 

Reduced functional β-cell mass is a hallmark of diabetes mellitus and its preliminary stages. 

The expression of mutant insulin provokes an altered islet composition of the endocrine 

pancreas due to β-cell apoptosis as detected in other animal models (Yoshioka, Kayo et al. 1997, 
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Herbach, Rathkolb et al. 2007, Renner, Braun-Reichhart et al. 2013). The loss of β-cells is a 

crucial factor for the persistence of impaired insulin secretion. Therefore, β- and α-cell section 

profiles of pancreas tissue from INSC94Y transgenic and non-transgenic MPHs were evaluated 

by qualitative histological and quantitative stereological analyses using paraffin sections. 

Sections of pancreatic tissue from six-month-old INSC94Y transgenic MPHs and non-transgenic 

littermates were immunohistochemically stained for insulin containing β-cells and for glucagon 

containing α-cells, respectively. Wild-type MPHs revealed numerous islet section profiles of 

different sizes and shapes mainly consisting of insulin positive cells as well as isolated small β-

cell cluster section profiles. Glucagon staining showed α-cells located in the centre but also in 

the periphery of the islet section profiles. In contrast, islet section profiles of INSC94Y transgenic 

MPHs seemed to be reduced in number, smaller in size with less amounts of insulin (i.e., 

reduced staining intensity) inside the β-cells. Glucagon positive areas appeared predominant 

and α-cells were organized in clusters. These qualitative observations suggest a decrease of β-

cells in the pancreas and a consequent change in islet architecture of INSC94Y transgenic MPHs 

compared to the wild-type controls. These observations were in line with the results obtained 

from quantitative stereological evaluation. The volume density of β-cells in the pancreas (Vv (β-

cells/Pan)), the total β-cell volume (V (β-cells, Pan)) and the total β-cell volume to BW ratio (V (β-cells, 

Pan)/BW) of INSC94Y transgenic MPHs were lower by 79%, 85% and 69% in comparison to wild-

type littermates, respectively. Concerning the severe reduction of insulin-positive area 

described above, the glucagon-positive area presented a greater proportion of the islet instead. 

The volume density of α-cells in the pancreas (Vv (α-cells/Pan)) and the total α -cell volume to BW 

ratio (V (α-cells, Pan)/BW) of INSC94Y transgenic and non-transgenic MPHs showed no significant 

difference, respectively. Instead, the total α-cell volume (V (α-cells, Pan)) of the transgenic animals 

was reduced by 57% when compared to wild-type littermates. However, this was likely the 

result of a significantly decreased body weight associated with a reduced absolute pancreas 

weight in INSC94Y transgenic MPHs compared to non-transgenic littermates (see chapter 5.2.2). 

Quantitative-stereological analyses of the pancreas in the INSC94Y transgenic pig model on a DP 

background showed significant but less severe alterations compared to INSC94Y transgenic 

MPHs. The volume density of β-cells in the pancreas of INSC94Y transgenic DPs was diminished 

by 54%, the total β-cell volume was decreased by 72% and the total β-cell volume related to 

BW was reduced by 53% at an age of four and a half months compared to wild-type littermates, 

respectively (Renner, Braun-Reichhart et al. 2013). The lower reductions of β-cell mass may 

be explained by the younger age of INSC94Y transgenic DPs (4.5 months) compared to six-

month-old INSC94Y transgenic MPHs at the time of necropsy. Reduction of β-cell mass as a 
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consequence of β-cell apoptosis is progressive with increasing age. Analogous to INSC94Y 

transgenic MPHs the total α-cell volume related to BW was unaltered in INSC94Y transgenic DPs 

compared to control littermates (Renner, Braun-Reichhart et al. 2013). In addition, the results 

described by Renner et al. for the volume density of β-cells in the pancreas (Vv (β-cells/Pan)) and 

the total β-cell volume (V (β-cells, Pan)) were higher in wild-type DPs compared to wild-type MPHs 

of this study (Renner, Braun-Reichhart et al. 2013). This is in line with the fact that domestic 

races like German Landrace are known to have a greater amount of endocrine tissue relative to 

the pancreas compared to minipig races like Göttingen minipig (Ulrichs, Bosss et al. 1995, 

Larsen, Rolin et al. 2003).  

Similar alterations of β- and α-cell mass were detected in other animal models with insulin 

mutations. Seven and a half-month-old male Ins2C96Y Akita mice showed a severe decrease of 

90% in volume density of β-cells and an increase in the volume density of α-cells compared to 

their controls (Yoshioka, Kayo et al. 1997). Six-month-old male Munich Ins2C95S mutant mice 

revealed a reduction of 81% for the calculated total β-cell volume in comparison to non-

transgenic controls (with similar pancreas volume between the groups) and increased volume 

density and total volume of α-cells in male and female Munich Ins2C95S mutant mice compared 

to their controls (Herbach, Rathkolb et al. 2007). 

It was shown that the content of β-cells in the endocrine pancreatic tissue of minipig and 

domestic pig breeds is with 60–80% in the same range as for human (Larsen, Rolin et al. 2003, 

Renner, Dobenecker et al. 2016). Actually, more recent studies even claim a lower content with 

an average of only 50–55% of β-cells in human and comparatively 75–77% in mice (Cabrera, 

Berman et al. 2006, Rorsman and Ashcroft 2018). A notable difference is that the total β-cell 

volume to BW ratio was shown to be higher (1.5-fold) for the minipig in comparison to human, 

that could indicate a higher insulin secretory capacity of minipig (Maclean and Ogilvie 1955, 

Larsen, Rolin et al. 2003). 

However, comparable data on β-cell mass in humans are rare due to the restricted number of 

available sample specimen. Currently, measurements can only be done after necropsy, and 

therefore β-cell mass is estimated indirectly by the evaluation of β-cell function as a 

replacement marker (Larsen, Rolin et al. 2007). However, nowadays it is known that these 

parameters do not evolve parallel to each other during the development of diabetes. Thus, it 

cannot be traced back from one to the other but rather depend on the state and the type of the 

disease, respectively. In recent years, the spectrum of suitable modern in vitro and in vivo 

techniques to determine human β-cell mass and function has risen constantly (Chen, Cohrs et 
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al. 2017). Especially non-invasive in-vivo determination of β-cell mass in humans is of major 

interest for early detection and prevention of diabetes and its pre-stages. It is assumed that 

impaired glucose tolerance occurs in humans when 50% of β-cell mass is destroyed and a 

reduction of more than 80% leads to the onset of diabetes (Larsen, Rolin et al. 2007). Recent 

studies demonstrated that these are just relative values as remaining β-cell mass and function at 

the onset of diabetes are also influenced by other factors such as age (Barker, Lauria et al. 2014) 

or a chronic inflammatory state (Leete, Willcox et al. 2016).  

The relative pancreas weight of INSC94Y transgenic MPHs compared to wild-type MPHs was 

significantly elevated (+60%) while the total β-cell volume in the pancreas per se and in relation 

to BW were tremendously reduced. In humans, islets account only for 1–2% of pancreas 

volume, but the destruction of these endocrine cells comes along with atrophy of the exocrine 

pancreas (Williams, Thrower et al. 2012, Rorsman and Ashcroft 2018). Reasons for the atrophy 

of the exocrine pancreas in T1D might be the reduced trophic effect of insulin and the ongoing 

inflammatory processes linked to insulitis (Henderson, Daniel et al. 1981, Nakanishi, 

Kobayashi et al. 1993). However, using magnetic resonance imaging (MRI) in humans, a 

reduction of pancreatic volume of 48% was detected for patients with T1D (Williams, Chau et 

al. 2007) but less severe for patients with T2D or monogenic diabetes, although these 

tremendous decreases developed over several years (≥10 years). Further, patients of T1D that 

were just recently diagnosed showed a less severe reduction of relative pancreatic volume of 

only 26% (Williams, Thrower et al. 2012). Nevertheless, MRI results may still have a higher 

inaccuracy compared to quantitative stereological measurements or a simple characterization 

by determination of the organ weight. Unlike the increased relative pancreas weight, the 

absolute pancreas weight of INSC94Y transgenic MPHs was decreased by 32% in comparison to 

non-transgenic littermates at an age of six months. Hence, it can be assumed that mutant insulin 

C94Y in transgenic MPHs had an impact on both, pancreas weight and BW. 

5.3.2 Modified ultrastructural architecture of β-cells in INSC94Y transgenic MPHs 

The insulin mutation C94Y leads to the expression of misfolded proinsulin that retains within 

the ER and leads to its dilation and impaired function. Misfolded insulin accumulation in the 

ER leads to ER-stress, disturbed insulin production, further expansion of the ER and finally β-

cell apoptosis. Ultrastructural morphology of pancreatic β-cells was examined by transmission 

electron microscopy to evaluate alterations of cellular structures.  

Ultrathin sections of pancreata of six-month-old INSC94Y transgenic and non-transgenic MPHs 

were investigated. Sections of wild-type controls presented a high concentration of insulin 
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containing vesicles in the cytoplasm, roundly shaped and differing in size with a dense and 

irregular formed core surrounded by a bright halo. In contrast, sections of transgenic MPHs 

showed a diminished amount of vesicles that appeared smaller inside the cell. Cores were partly 

electron lucent and had a narrow halo. This suggests that β-cells of INSC94Y transgenic MPHs 

contained a reduced number of insulin-filled vesicles compared to non-transgenic controls. 

Another microscopic dissimilarity between the β-cells of INSC94Y transgenic and non-transgenic 

MPHs was the enlargement of the ER observed in transgenic MPHs, noticeable as a dilatation 

at the cross-sectional areas of the ER in the β-cells. Enlarged ER in the cytoplasm is indicative 

for ER stress in the β-cells of INSC94Y transgenic MPHs. ER stress initiates different signalling 

pathways, cumulatively called the unfolded protein response (UPR). The retention of unfolded 

proinsulin in the ER lumen creates stress. Subsequently, UPR is activated by an intracellular 

stress signal transduction in the ER as a safety mechanism of the β-cell (reviewed in (Ron and 

Walter 2007)). The key mechanisms of the UPR aim to attenuate the ER load and to remodel 

the secretory apparatus of the cell by decreased translation of new preproinsulin, increased 

degradation of misfolded proinsulin and activation of more ER-resident chaperones. These 

mechanisms are predominantly regulated through at least three ER transmembrane proteins: the 

ribonuclease inositol-requiring protein-1 (IRE-1), the PERK kinase homologue PEK-1 and 

activating transcription factor-6 (ATF-6) (Henis-Korenblit, Zhang et al. 2010). The visible 

expansion of the ER that was detected in the β-cells of INSC94Y transgenic MPHs is probably 

part of the ER stress response, as a further mechanism to improve the capacity of the ER to 

process the retained misfolded mutant proinsulin (Cox, Chapman et al. 1997). Overwhelming 

cell stress can ultimately induce β-cell death through different apoptotic pathways and would 

explain the striking loss of β-cells detected by quantitative-stereological analyses and 

ultrastructural changes observed by electron microscopy in INSC94Y transgenic MPHs and are 

also in accordance with the reduced insulin secretion detected in these animals (see chapter 

5.2.1). 

Correspondingly, reduction of insulin granules and alterations of the ER structure within the β-

cells were observed in other animal models with insulin mutation. Despite an irregular shaped 

core of β-cells in swine and roundly shaped core of β-cells in mice, ultrastructure of β-cells and 

characteristics of insulin containing vesicles were found similar in swine and mice (round 

vesicles with a dense core and a wide and lucent halo) (Kayo and Koizumi 1998, Herbach, 

Rathkolb et al. 2007, Renner, Braun-Reichhart et al. 2013). Electron microscopy in INSC94Y 

transgenic DPs showed a reduced amount of insulin granules at the age of four and a half months 

compared to wild-type littermates. Enlargement of the ER was already detected to a small extent 
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at the age of eight days and prior to β-cell mass reduction in these pigs. In four and a half-

month-old INSC94Y transgenic DPs ER revealed severe dilation in comparison to wild-type 

controls, respectively (Renner, Braun-Reichhart et al. 2013). Homozygous Akita mice also 

showed a reduced number and a smaller appearance of insulin granules after a few weeks of 

postnatal life (Kayo and Koizumi 1998) and almost no granules were left or seemed immature 

in β-cells of heterozygous Munich Ins2C95S mutant mice compared to wild-types, respectively 

(Herbach, Rathkolb et al. 2007). Both Akita and Munich Ins2C95S mutant mice showed enlarged 

ER and furthermore mitochondria were dilated or started to denature. However, mitochondrial 

alterations were not observed in INSC94Y transgenic DPs and MPHs. Other typical signs like 

chromatin condensation, nuclear fragmentation or apoptotic body formation were not found, 

although their presence is not required to prove β-cell apoptosis (Herrera, Harlan et al. 2000). 

Actually, their occurrence depends on the apoptotic pathway activated (Herrera, Harlan et al. 

2000). Besides β-cell death due to mutant proinsulin-mediated ER stress response as assumed 

in INSC94Y transgenic MPHs, it is suggested that ER stress-triggered apoptotic pathways can be 

activated by cholesterol accumulation and obesity, a state involved in the development of T2D 

(Ozcan, Cao et al. 2004, Marchetti, Bugliani et al. 2007). Another induction of β-cell apoptosis 

can be cytokine-mediated and contributes to the damage of β-cells in T1D in humans (Cardozo, 

Ortis et al. 2005, Marhfour, Lopez et al. 2012). Besides electron microscopy to visualize 

characteristics of apoptosis or ER alterations in β-cells, the determination of ER stress marker 

expression by antibody immunostaining intensity or Western blot are valid methods for 

quantitative and qualitative analysis of ER stress response. Relevant markers for ER stress, e.g., 

C/EBP homologous protein (CHOP), immunoglobulin heavy chain (BIP) and X-box binding 

protein 1 (XBP-1) are the downstream components of different ER transmembrane proteins 

(Bertolotti, Zhang et al. 2000, Yang, Diiorio et al. 2013). Further investigation of ER stress 

markers in INSC94Y transgenic MPHs could be informative about signalling pathways activated 

by UPR due to the expression of mutant proinsulin compared to humans and further clarify the 

role of β-cell apoptosis as pathophysiological basis and as a therapy target for diabetes disease. 

Diabetic β-cell apoptosis is multifactorial and yet insufficiently understood. Besides ER or 

cytoplasmic stress-mediated β-cell death, several processes including inflammation, DNA 

damage or accumulation of micro-RNAs are suggested to contribute to the demise of pancreatic 

β-cells and are currently under investigation (Robertson, Harmon et al. 2004, Halban, Polonsky 

et al. 2014, Belgardt, Ahmed et al. 2015). Another reason to elucidate β-cell apoptosis and 

counter-regulatory mechanisms is its importance for allogenic islet transplantation, a promising 

treatment for T1D (Sakata, Yoshimatsu et al. 2012, Sakata, Yoshimatsu et al. 2018). Pancreatic 

tissue is highly sensitive and the explanted organ has a short durability compared to other 
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abdominal organs. Major problems of many islet transplantation methods are severe tissue 

damage of the transplant and subsequent graft loss (reviewed in (Sakata, Yoshimatsu et al. 

2018)). A promising implantation site for pancreatic islets is the spleen, which is rich of 

mesenchymal stem cells that can contribute to the repair of implanted damaged tissue (reviewed 

in (Limana, Germani et al. 2005, Sakata, Yoshimatsu et al. 2018)).  

5.3.3 Diabetes-related secondary alterations in organs of INSC94Y transgenic MPHs 

Diabetes is a complex metabolic disorder that not only causes derailed blood glucose but can 

lead to secondary alterations in other organs of the body. Secondary alterations can occur when 

there is a persistent elevation of glucose concentration in the blood that starts to affect blood 

vessels and organ tissues but the exact triggers of diabetes-related secondary alterations are still 

poorly understood (Camera, Hopps et al. 2007). Prolonged disease duration is a crucial factor 

as most, but not all secondary lesions only appear after years of exposure to hyperglycemia. 

Atherosclerotic changes lead to macroangiopathies including cardio- and cerebrovascular 

diseases such as myocardial infarction and stroke. Alterations in the small vessels accompanied 

by disturbed blood flow and increased vascular permeability result in microangiopathies like 

nephro-, neuro- and retinopathies. Lesions within the cell membrane of the lens cause 

cataractogenesis. Since hyperglycemia is seen as a relevant trigger for diabetic secondary 

diseases (Brownlee 2001), kidney and lens of INSC94Y transgenic and non-transgenic MPHs 

were examined to evaluate the diabetic effect of the mutant insulin C94Y. Additionally, organ 

weights were evaluated. 

In non-transgenic MPHs all absolute organ weights were significantly reduced compared to 

wild-type DPs, besides of lung and stomach weight that was just slightly but not significantly 

decreased. The reduced absolute organ weight correlated with the lower BW in wild-type 

MPHs. Relative organ weights of non-transgenic MPHs did not reveal significant alterations, 

except of the spleen with a reduced weight of 53% in comparison to wild-type DPs. This 

discrepancy in weight likely results from different blood volumes that retained in the spleen 

after bleeding.  

The absolute organ weights of INSC94Y transgenic MPHs were all proportionally decreased for 

at least 30% (except of the kidneys and the brain) compared to control littermates due to general 

growth retardation as a consequence of impaired insulin secretion. Relative organ weights of 

INSC94Y transgenic MPHs showed an increase of more than 30% except of the relative weight 

of the spleen and the carcass which were diminished compared to non-transgenic MPHs. The 

kidneys showed the most pronounced alteration of relative organ weight with an increase of 
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88%. These results could indicate a renal hypertrophy or hypercellularity in INSC94Y transgenic 

MPHs. In humans, renal hypertrophy is one of the first structural alterations within the course 

of diabetic nephropathy. About 20–40% of patients with T1D or T2D develop diabetic 

nephropathy usually within 10–15 years of disease duration (Molitch, DeFronzo et al. 2004). 

There are characteristic changes that can be expected in a diabetic nephropathy at the 

histological level. Thickening of the glomerular basement membrane and an expansion of the 

mesangial matrix including the formation of nodular or diffuse glomerulosclerotic alterations 

were already described in 1936 by Kimmelstiel and Wilson (Kimmelstiel and Wilson 1936). 

Furthermore thickening of the intima and hyalinosis of arteries and arterioles, tubular atrophy 

and interstitial fibrosis are common histological changes that can be detected by a light 

microscope (Amann and Benz 2013). Therefore, histopathological analyses of the kidneys from 

INSC94Y transgenic MPHs and non-transgenic littermates at an age of six months were 

performed using a light microscope. The majority of the sections analysed did not reveal any 

histopathological alterations. Occasionally, single altered glomerular mesangia characterized 

by slight hypercellularity were detected in transgenic as well as in non-transgenic MPHs. These 

sporadic pathological findings do not verify a diabetes-associated kidney disease. Kidney 

alterations may not be expected within this short observation period of six months, whereas in 

humans it can take years until remarkable changes appear. In accordance with the results of 

INSC94Y transgenic MPHs, the INSC94Y transgenic DP line did neither show any 

histopathological findings nor clinical symptoms of renal damage like albuminuria, which 

could indicate diabetic nephropathy in an observation period of two years (Renner, Braun-

Reichhart et al. 2013, Blutke, Renner et al. 2017). Distinct lines of Akita Ins2C96Y mutant mice 

showed glomerular hypertrophy, but just in some of them additional pathological alterations 

like an increase of mesangial matrix were detected (Gurley, Mach et al. 2010). This indicates 

additional triggering factors that may or may not be involved depending on the genetic 

background. 

Diabetic patients have a probability of 66% to develop a cataract (Raman, Pal et al. 2010) which 

is recognized as one of the earliest secondary complications of diabetes mellitus (Stefek 2011). 

Cataract development is associated with chronic hyperglycemia inducing ER stress and 

subsequently activating the UPR in lenticular cells (Ikesugi, Yamamoto et al. 2006). For these 

reasons, eye globes of six-month-old INSC94Y transgenic and non-transgenic MPHs were 

histopathologically evaluated for diabetes-associated cataract. In transgenic MPHs multifocal 

hydropic degeneration, swelling and disarray of the lenticular fibres were detected. Hydropic 

degeneration of the lens is associated with an increased activity of the polyol pathway and the 
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excess production of advanced glycation end products (AGE) in the eye lens (Brownlee 1995). 

Transformation from glucose to sorbitol and fructose that is catalysed by aldose reductase (AR) 

and the non-enzymatic reaction of glucose with lipids or proteins to AGEs lead to the 

accumulation of these metabolites and initiates intracellular osmotic stress (Reddy, Giridharan 

et al. 2012). Besides non-enzymatic protein glycation and osmotic stress, oxidative stress is 

another main factor in cataract development and can be detected in lenticular cells (Spector 

1995). Together, these factors trigger the UPR and furthermore reactive oxygen species (ROS) 

and cell apoptosis emerge and result in cataract formation (Lee and Chung 1999, Mulhern, 

Madson et al. 2006). The lenticular cortex of INSC94Y transgenic MPHs developed cyst-like 

cavities and multifocal eosinophilic globules were detected. These globules are probably 

accumulations of protein released from the destruction of cortical cell walls, named morgagnian 

globules, and are characteristic for cataract (Aliancy and Mamalis 1995). These structural 

changes repeal the even architecture of the lens tissue. In contrast, the wild-type littermates 

showed a smooth arrangement of lenticular fibres in parallel lines. No alteration of the lens was 

detected in this control group. Based on these findings, it can be claimed that a diabetic 

cataractogenesis was present in INSC94Y transgenic MPHs. These findings in the lens are 

consistent with a progressive diabetic cataract observed in INSC94Y transgenic DPs (Renner, 

Braun-Reichhart et al. 2013). A cataract appears as a turbidity of the lens and leads to a decrease 

of visual acuity. Dissected lenses of 8-day-old INSC94Y transgenic DP piglets, slightly 

magnificated by a light microscope, showed already a lack of transparency at the edges of the 

lens which was reversible to some degree in transgenic littermates treated with exogenous 

insulin. In addition, lenses of four and a half-month-old INSC94Y transgenic DPs appeared 

completely tarnished, demonstrating a diabetes-induced progressive cataractogenesis (Renner, 

Braun-Reichhart et al. 2013) Similar results were found in rat models (Sai Varsha, Raman et al. 

2014) but not in mice, which are known to have lower levels of AR in their lenses and for this 

reason normally do not develop a diabetic cataract (Lee, Chung et al. 1995). 

5.3.4 Conclusions and outlook 

INSC94Y non-transgenic MPHs show a remarkable lower BW and BS due to minipig 

crossbreeding. Moreover, INSC94Y transgenic MPHs exhibit a severe growth retardation and 

alteration in body composition concerning fat and lean mass due to the expression of mutant 

INS. Like INSC94Y transgenic DPs, INSC94Y transgenic MPHs develop a progressive diabetic 

phenotype. Also, the impaired glycemic control likely is initially provoked by disturbed 

trafficking or secretion of proinsulin until the retention of misfolded mutant proinsulin in the 

ER induces apoptosis of insulin producing β-cells. This accelerating ER stress response leads 
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to a significant reduction of the total β-cell volume and consequently to an insufficient insulin 

supply in INSC94Y transgenic MPHs with advanced age. A diabetic cataract manifests in the 

lenses of INSC94Y transgenic MPHs. However, diabetes-related secondary alterations in the 

kidneys are not observed until the age of six months. Nevertheless, the aim to create a size-

reduced swine model expressing the C94Y mutant insulin that reflects phenotypic findings and 

basic disease mechanisms of the previously well investigated INSC94Y transgenic DP model and 

the Ins2C96Y mouse model was achieved. The results of INSC94Y transgenic MPHs complements 

previously captured data of the INSC94Y transgenic DP model and clinical and diagnostic 

findings in swine resemble the features found in humans with PNDM. Therefore, the INSC94Y 

transgenic MPH is a powerful translational model with the benefit of BW and BS of a smaller 

pig breed which is more similar to human dimensions. The reduced BW is providing a particular 

advantage regarding compound-related costs for the development of new drug treatments. 

Moreover, the decreased BS is an important attribute for long-scale or multigenerational studies 

in terms of easier handling of fully grown pigs and minimised maintenance costs. More long-

term studies are necessary to investigate diabetes-related secondary alterations in organs like 

kidneys, nerves or arterial vessels that occur in humans after several years of suffering from 

diabetes but are not present in up to two-year-old INSC94Y transgenic pigs yet. The Munich 

MIDY Pig Biobank contains a high number of tissue samples and body fluids of two-year-old 

female INSC94Y transgenic pigs so far but can benefit from additional samples from other age 

groups or other genetic backgrounds as the INSC94Y transgenic MPH model. The size-reduced 

INSC94Y transgenic MPH is also an appropriate model for questions of preconceptional diabetes 

mellitus or gestational diabetes mellitus, where multigenerational investigation is indispensable 

to evaluate intrauterine effects of maternal diabetes or later consequences on offspring. One of 

the promising approaches to treat severe diabetes is islet transplantation. Investigations in this 

field can be perfectly addressed using INSC94Y transgenic MPHs, serving as recipients of 

transplants. The BS of these pigs enables the use of standard surgical methods. For this, imaging 

diagnostics of current human medicine, new surgical techniques or image analysis can be tested. 

Moreover, the possibility of qualitative histological and quantitative stereological analyses of 

pancreatic tissue enables a detailed evaluation of islet grafts. 
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6 SUMMARY 

Establishment and characterization of a size-reduced, diabetic pig model by 

minipig crossbreeding 

In the last two decades many new mutations in the human insulin gene have been discovered 

and are accountable for a variety of forms of monogenic diabetes. The mutations are located at 

different regions within the insulin gene and have different effects on the individual steps of 

insulin biosynthesis in pancreatic β-cells. The majority of insulin mutations cause a misfolding 

of proinsulin that retains in the endoplasmic reticulum of the cell and can subsequently lead to 

different forms of non-autoimmune permanent neonatal diabetes mellitus. Probably the best 

investigated mutation in this group is the human INSC96Y mutation, which is analogous to the 

Ins2C96Y mutant mouse model as well as to the INSC94Y transgenic domestic pig (DP) model. In 

mice, pigs and humans, this mutation results in a diabetic phenotype named MIDY (mutant INS 

gene induced diabetes of youth) that can be diagnosed predominantly within the first weeks of 

life by an impaired insulin supply and subsequent hyperglycemia. The Ins2C96Y mutant mouse 

model already elucidated underlying pathomechanisms of the disease but rodents have 

limitations in translational research. To establish a size-reduced porcine model for preclinical 

trials, INSC94Y transgenic domestic pig-minipig hybrids (MPHs) were generated that mimic 

diabetic conditions in humans and correspond to the INSC94Y mutation of the previously 

established transgenic DP model. Therefore, physiological (body weight gain, growth 

parameters, body composition, absolute and relative organ weight and blood parameters) and 

morphological (volume density, total volume and total volume to BW ratio of β- and α-cells 

within the pancreas and ultrastructure of β-cells) parameters of INSC94Y transgenic MPHs and 

non-transgenic littermates were analysed in regular intervals up to an age of six months. Age-

matched wild-type domestic pigs served as controls to evaluate differences related to the genetic 

background but not the expression of the mutant insulin C94Y.  

Non-transgenic MPHs showed already at birth a reduced BW and body height and at the age of 

six months a remarkable reduction of BW, body length and body height by 39%, 22% and 25% 

compared to age-matched DPs, respectively. INSC94Y transgenic MPHs showed a significant 

reduction in BW starting from eleven weeks of age and after six months they reached a 

reduction of BW, body length and body height by 55%, 19% and 20% compared to non-

transgenic littermates, respectively. Moreover, body composition of six-month-old pigs was 

determined by Dual-energy X-ray Absorptiometry. Non-transgenic MPHs and DPs showed 

comparable results with a tendency of increased fat mass in MPHs. In contrast, INSC94Y 
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transgenic MPHs showed a 60% decreased relative fat mass (p<0.001), a 12% increased relative 

lean mass (p<0.001) and 27% reduced bone mineral density (p<0.001) compared to non-

transgenic littermates. Fasted blood glucose and plasma insulin levels of non-transgenic MPHs 

matched reference ranges defined for normoglycemic minipigs, that on average are lower than 

for DPs. INSC94Y transgenic MPHs revealed a hyperglycemic status and reduced insulin 

secretion within the first week of life. Clinical chemical parameters of six-month-old INSC94Y 

transgenic MPHs showed a hypertriglyceridemia and a significantly reduced creatinine level in 

comparison to non-transgenic controls. Quantitative-stereological analyses of pancreatic tissue 

of INSC94Y transgenic MPHs showed a 69% reduction of the total β-cell volume related to BW 

(p<0.05), though the relative pancreas weight of these pigs was increased by 60% (p<0.05) 

compared to non-transgenic littermates. Pancreatic islets of INSC94Y transgenic MPHs appeared 

to be smaller and with an altered architecture as a consequence of massive β-cell loss. 

Ultrastructural evaluation of β-cells from INSC94Y transgenic MPHs by electron microscopy of 

β-cells of INSC94Y transgenic MPHs showed a reduced appearance of insulin containing vesicles 

and an enlargement of the endoplasmic reticulum. Although relative kidney weight was 

significantly increased in INSC94Y transgenic MPHs, histological analyses of renal tissue of six-

month-old INSC94Y transgenic MPHs did not verify a diabetic nephropathy. However, the 

animals developed a diabetic cataract within six months of life. In summary, crossbreeding of 

minipig into the pre-existing INSC94Y transgenic DP model was successful. The obtained results 

verify a consistent diabetic phenotype of INSC94Y transgenic MPHs and a substantial BW and 

growth reduction of non-transgenic MPHs. Besides an easier handling of the animals, lowered 

BW has a great economic benefit. This is particularly true for testing of novel compounds. 

Further, a size-reduced porcine model is more suitable for long-term studies, e.g., to 

complement the evaluation on pathological alterations in secondary organs associated with 

prolonged disease duration or to facilitate multigenerational studies.  
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7 ZUSAMMENFASSUNG 

Etablierung und Charakterisierung eines größenreduzierten, diabetischen 

Schweinemodels durch die Einkreuzung einer Minipiglinie 

In den letzten zwei Jahrzehnten wurden viele neue Mutationen im humanen Insulingen 

entdeckt, die für eine Vielzahl von Formen des monogenen Diabetes verantwortlich sind. Die 

Mutationen befinden sich in verschiedenen Regionen innerhalb des Insulingens und zeigen 

unterschiedliche Auswirkungen auf die einzelnen Schritte der Insulinbiosynthese in den β-

Zellen des Pankreas. Die Mehrheit der Insulinmutationen bewirkt eine Fehlfaltung von 

Proinsulin, welches sich im endoplasmatischen Retikulum der Zelle ansammelt und 

nachfolgend zu verschiedenen Formen von nicht-autoimmunem permanenten neonatalen 

Diabetes mellitus führen kann. Die wohl am besten untersuchte Mutation dieser Gruppe ist die 

humane INSC96Y Mutation, welche analog ist zu der Ins2C96Y Mutation im Akita Mausmodell 

sowie zu der INSC94Y Mutation im transgenen Hausschweinemodell. In Mäusen, Schweinen und 

Menschen führt diese Mutation zu einem diabetischen Phänotyp, der sich MIDY (mutant INS 

gene induced diabetes of youth) nennt und oft bereits in den ersten Lebenswochen durch eine 

gestörte Insulinversorgung mit nachfolgender Hyperglykämie diagnostizierbar ist. Durch das 

mutante Ins2C96Y Akita Mausmodell konnten bereits wichtige zugrundeliegende 

Pathomechanismen der Krankheit erläutert werden. Nagermodelle weisen jedoch bestimmte 

Limitierungen im Hinblick auf die translationale Forschung auf. Um ein größenreduziertes 

Schweinemodel für präklinische Studien zu etablieren, das den diabetischen Zustand im 

Menschen wiederspiegelt und die Mutation des zuvor etablierten INSC94Y transgenen 

Hausschweinemodels trägt, wurden INSC94Y transgene Hausschwein-Minipig Hybriden 

(MPHs) generiert. Dazu wurden physiologische (Körpergewichtszunahme, 

Wachstumsparameter, Körperzusammensetzung, absolute und relative Organgewicht und 

Blutparameter) und morphologische (Volumendichte, Gesamtvolumen und Gesamtvolumen 

bezogen auf das Körpergewicht von β- und α-Zellen im Pankreas und die Ultrastruktur von β-

Zellen) Merkmale von INSC94Y transgenen MPHs und ihren nicht-transgenen Wurfgeschwistern 

in regelmäßigen Intervallen bis zu einem Alter von sechs Monaten ausgewertet. Wildtyp 

Hausschweine im gleichen Alter dienten als Kontrolle um Unterschiede bezogen auf den 

genetischen Hintergrund und nicht auf die Expression der Insulinmutante C94Y evaluieren zu 

können. 

Die nicht-transgenen MPHs zeigten bei Geburt ein reduziertes Körpergewicht und eine 

reduzierte Körperhöhe. Im Alter von sechs Monaten erreichten sie eine Reduktion von 
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Körpergewicht, Körperlänge und Körperhöhe von jeweils 39%, 22% und 25% im Vergleich zu 

Hausschweinen des gleichen Alters. Die INSC94Y transgenen MPHs zeigten ab Woche elf nach 

der Geburt eine signifikante Gewichtsabnahme und erreichten sechs Monaten post partum eine 

Reduktion von Körpergewicht, Körperlänge und Körperhöhe von jeweils 55%, 19% und 20% 

verglichen mit ihren nicht-transgenen Wurfgeschwistern. Darüber hinaus wurde die 

Körperzusammensetzung der sechs Monate alten Schweine mittels Dual-Röntgen-

Absorptiometrie ermittelt. Hierbei wiesen die nicht-transgenen MPHs vergleichbare Werte zu 

den Hausschweinen auf mit einer tendenziell erhöhten Fettmasse bei den MPHs. Im Gegensatz 

dazu zeigten INSC94Y transgene MPHs eine 60% geringere relative Fettmasse (p<0.001), eine 

um 12% erhöhte relative Magermasse (p<0.001) und eine um 27% verringerte 

Knochenmineraldichte (p<0.001) im Vergleich zu den nicht-transgenen Wurfgeschwistern. Die 

gefasteten Blutglukose- und Plasmainsulinwerte nicht-transgener MPHs entsprachen den 

Referenzwerten von normoglykämischen Minipigs, die durchschnittlich niedriger sind als bei 

Hausschweinen. INSC94Y transgene MPHs zeigten einen hyperglykämischen Zustand und eine 

reduzierte Insulinsekretion innerhalb der ersten Lebenswoche. Klinisch-chemische Parameter 

von sechs Monate alten INSC94Y transgenen MPHs zeigten eine Hypertriglyceridämie und 

signifikant reduzierte Kreatininwerte im Vergleich zu den nicht-transgenen Wurfgeschwistern. 

Quantitativ-stereologische Auswertungen des Pankreasgewebes von sechs Monate alten 

INSC94Y transgenen MPHs zeigten eine körpergewichtsbezogene Abnahme des Gesamt-β-

Zellvolumens von 69% (p<0.05), wobei das körpergewichtsbezogene Pankreasgewicht dieser 

Schweine gegenüber den Kontrolltieren um 60% (p<0.05) erhöht war. Die Langerhansschen 

Inseln der INSC94Y transgenen MPHs erschienen kleiner und als Konsequenz des massiven β-

Zell Verlusts zeigten sie eine veränderte Architektur. Die Ultrastruktur der β-Zellen von 

INSC94Y transgenen MPHs zeigte bei der elektronenmikroskopischen Untersuchung ein 

verringertes Vorkommen von insulingefüllten Vesikeln und ein dilatiertes endoplasmatisches 

Retikulum. Obwohl das körpergewichtsbezogene Nierengewicht hochgradig erhöht war 

erbrachte eine histologische Untersuchung des Nierengewebes von sechs Monate alten INSC94Y 

transgenen MPHs keinen Hinweis auf eine diabetische Nephropathie. Jedoch entwickelten die 

Tiere innerhalb von sechs Monaten einen diabetesbedingten Katarakt. Zusammenfassend kann 

man sagen, dass die Einkreuzung einer Minipiglinie in das bereits bestehende INSC94Y transgene 

Hausschweinemodell erfolgreich war. Die erhobenen Befunde bestätigten einen konstanten 

diabetischen Phänotyp der INSC94Y transgenen MPHs und eine erhebliche Gewichts- und 

Größenreduktion der nicht-transgenen MPHs. Neben einer einfacheren Handhabung der Tiere 

bringt ein verringertes Körpergewicht auch einen großen ökonomischen Vorteil mit sich. Vor 

allem bei der Testung von neuen Wirkstoffen ist dies ausschlaggebend. Außerdem bietet sich 
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ein kleineres Schweinemodell vor allem für Langzeitstudien an um die Untersuchung 

diabetischer Langzeitfolgen zu komplementieren oder um generationsübergreifende 

Studiendesigns besser umsetzen zu können.  
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