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Summary. 

Centromeres and adjacent pericentric heterochromatin are sometimes 

defined as a chromocenter, due to their structural similarity with fused regions 

traditionally spotted on Drosophila polytene chromosomes. The architecture of 

the chromocenter has been extensively studied in mammals, Drosophila and 

other organisms. In this thesis, we contribute to this field using recently 

developed state of art methods: high-resolution STED microscopy and APEX2 

proximity labeling. We dissect the structures of individual centromeric protein 

domains, and find that they are separated on STED. Moreover, we perform the 

proximity labeling using APEX2 fusions with proteins that could be visually  

separated using high-resolution microscopy. We generate a molecular map of 

HMR, dCenpA and HP1a bound chromatin and suggest new players in 

centromere biology. Furthermore, our microscopy and proximity labeling results 

suggest that HMR forms a boundary between dCenpA and HP1a chromatin. 

 We also address the question of speciation, where the centromeric 

protein HMR has a role. Using proximity labeling, we find condensin and 

cohesin complexes in proximity to HMR and by the analysis of the ChIP-

sequencing data point to the molecular signs that HMR’s function in pure 

species as well as hybrids might be connected with chromosome cohesion and 

condensation. Furthermore, simulating the hybrid situation, we perform ChIP-

sequencing of the condensin subunit CAPH2 upon HMR+LHR overexpression, 

and find that the condensin binding to chromatin in these conditions is reduced.  
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Zusammenfassung. 

Chromosomale Centromere und das benachbarte perizentrische 

Heterochromatin werden aufgrund ihrer strukturellen Ähnlichkeit mit 

genomischen Bereichen, die ursprünglich auf Drosophila-Polytän-

Chromosomen entdeckt wurden, manchmal als Chromozentrum definiert. Die 

Architektur des Chromozentrums wurde sowohl in Säugetieren als auch in 

Insekten und Pflanzen ausführlich untersucht. In dieser Arbeit wurden 

neuartige Methoden wie hochauflösende STED-Mikroskopie und APEX2-

Proximity-Labeling  zur Aufklärung der Struktur des Chromozentrums 

verwendet. Wir haben die Strukturen einzelner sehr nahe zusammenliegender 

zentromerischer Proteindomänen untersucht, die wir mit Hilfe der STED 

Mikroskopie voneinander trennen konnten. Darüber hinaus führen wir eine 

sogenannte Proximity-Markierung mithilfe von APEX2-Fusionsproteinen um 

dadurch eine molekulare Karte von HMR-, dCenpA- und HP1a-gebundenem 

Chromatin zu erstellen. Dies führte zur Identifizierung neuer zentromerischer 

oder perizentromerischer Proteine. Darüber hinaus legen unsere Ergebnisse 

im Bezug auf Mikroskopie und Proximity-Markierung nahe, dass HMR eine 

Grenze zwischen dCenpA und HP1a-Chromatin bildet. 

         Wir beschäftigen uns auch mit der Frage der Artbildung, bei der das das 

Zentromer-bindende Protein HMR eine wichtige Rolle spielt. Mithilfe der 

Proximity-Markierung finden wir Condensin- und Cohesin-Komplexe in der 

Nähe von HMR.  Durch Analyse von ChIP-Sequenzierungsdaten fanden wir 

Hinweise dafür, dass die Funktion von HMR in reinen Spezies und Hybriden 

mit der Chromosomenkohäsion und -kondensation verbunden sein könnten. 

Weiterhin stellten wir durch Simulation der Hybridsituation durch 

Überexpression von HMR + LHR einer verringerte Chromatinbindung einer 

Condensinuntereinheit fest, was den Phänotyp in Hybriden Fliegen erklären 

könnte.  
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1 Introduction. 

1.1 Chromatin. 

DNA molecules, packed together with different RNAs and proteins in the 

nucleus and mitochondria, are called chromatin. In higher eukaryotes the 

prominent structural feature of nuclear chromatin are the nucleosomes, around 

which DNA is packed as a string around the beads. Nucleosomes are octamers, 

consisting of histone proteins: two molecules of histone H3, two of H4, two of 

H2A and two of H2B. The nucleosome is organized in a way, that an H3-H4 

tetramer is held between two dimers of H2A-H2B. 146 base pairs of DNA are 

wrapped around one nucleosome (Luger et al., 1997). Histone tails can be 

modified, and mark different chromatin states (Filion et al., 2010). Also histones 

in nucleosomes can be substituted by the respective histone variants, which 

are encoded by the separate genes (Franklin and Zweidler, 1977).  

Lots of proteins with different functions are a part of chromatin. “Reader” 

proteins can recognize histone marks, “writers” can deposit them and “erasers” 

can remove them (reviewed in (Cosgrove, 2012)). Chromatin remodelers move 

nucleosomes back and forth on DNA. Transcription, DNA damage and 

replication proteins are responsible for respective processes in the nucleus. 

Chromatin also contains a lot of small and large non-coding RNAs. 

Those can play a structural role (Schubert et al., 2012) or be a part of active 

chromatin complexes (Akhtar et al., 2000; Franke and Baker, 1999). 

2 meters of DNA are tightly packed in a several µm nucleus. Apart from 

compaction on the nucleosome level, DNA is organized into the higher-order 

structure of loops kilobases-megabases in size, packed into globules. The most 

known type of these globules are called topologically associated domains, or 

TADs (Dixon et al., 2012; Nora et al., 2012; Rao et al., 2014). 

 

1.2 Nuclear domains and their features. 

Linear chromatin domains are stretches of specific DNA composition, 

DNA modification or/and protein composition along the DNA (reviewed in 

(Bickmore and van Steensel, 2013)). Active and inactive protein linear domains 
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tend to cluster with domains of the same activity in 3D (reviewed in (Bickmore 

and van Steensel, 2013)), and some major proteins, which shape a subset of 

these domains, are predominantly focused together in one or several places in 

the nucleus, which can be visualised by immunofluorescence staining. Also, a 

considerable number of protein linear domains 10-500 kb long were shown to 

make separate clusters in the nucleus by FISH in Drosophila Kc167 cells 

(Boettiger et al., 2016).  Different linear domains were shown to correlate with 

separate domains in 3D (Sexton et al., 2012).  

Chromosomal domains are compartments within one chromosome, 

while nuclear domains are compartments within the nucleus, which comprise 

one or several chromosomal domains. For example, chromosomal territories, 

including the X-chromosome territory (Straub et al., 2005) and the 4th 

chromosome territory in Drosophila melanogaster (Larsson et al., 2001; Riddle 

et al., 2012), contain only one chromosome, while pericentromeric chromatin 

from all chromosomes is clustered into one or several constitutive 

heterochromatin domains in the interphase nucleus (Brown, 1996; Chiolo et al., 

2011; Eissenberg and Reuter, 2009). Similarly, the centromeres from different 

chromosomes are clustered together into several foci near the nucleoli 

(Imakaev et al., 2012; Padeken et al., 2013; Wiblin et al., 2005). Together, 

centromeres and pericentric heterochromatin often coalesce into one or several 

intranuclear domains, named chromocenters (Fig. 1.1). 

 
Fig. 1.1. Centromeres and pericentric heterochromatin often coalesce into chromocenter in 

interphase cells. Figure concept from (Jagannathan et al., 2018). 
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 The nucleus is structurally and functionally divided. Compartments in the 

nucleus, which could be distinguished by immunofluorescence staining of 

specific proteins, perform distinct, still sometimes overlapping functions. 

Nucleoli serve several activities, including being a place for ribosomal genes’ 

transcription and ribosome assembly (reviewed in (Pederson, 2011)). 

Heterochromatin mainly represses transcription of some genes and 

transposable elements, promotes the expression of a subset of genes within 

the compartment and contributes to the centromere stability (reviewed in 

(Allshire and Madhani, 2018)). Centromeres serve as a site for kinetochore 

assembly and subsequent attachment of microtubules to chromosomes during 

mitosis (reviewed in (Muller and Almouzni, 2017)). Inactive female X-

chromosome in mammals, male X-chromosome in Drosophila and both X-s in 

Caenorhabditis elegans hermaphrodites are regulated chromosome-wide to 

promote the accurate expression level of X-chromosomal genes (reviewed in 

(Disteche, 2012; Straub and Becker, 2007)). Nuclear speckles in mammalian 

cells ensure correct splicing of the processed mRNA (reviewed in (Spector and 

Lamond, 2011)). Cajal bodies contribute to snRNP maturation (reviewed in 

(Morris, 2008)). The prominent function of the promyelocytic leukaemia (PML) 

bodies in mammalian cells is still unclear (reviewed in (Lallemand-Breitenbach 

and de The, 2010)). Polycomb proteins, which repress transcription of 

developmental genes, are clustered in the nucleus in so-called Polycomb 

bodies (reviewed in (Pirrotta and Li, 2012)). RNA polymerase II (PolII) clusters 

in foci called transcription factories, which by number are far behind the number 

of PolII occupied genes (reviewed in (Eskiw et al., 2010)).  

 The domain structure is hierarchical. For example, interphase 

chromosome territories contain smaller units of DNA organisation – DNA 

domains of different sizes, including well-known topologically associated 

domains (TADs) (Dixon et al., 2012; Nora et al., 2012; Rao et al., 2014).  TADs, 

in turn, contain sub-TADs, loops and insulation neighbourhoods (reviewed in 

(Dixon et al., 2016)). One of the models, which our genome folding on kb-mb 

scale follows, is a model of the fractal globule, where smaller domains gradually 

interact to fold into higher and higher order structures (Lieberman-Aiden et al., 

2009). Heterochromatic protein 1a (HP1a) heterochromatin contains a network 

of sub-domains (Swenson et al., 2016). All linear domains in Drosophila Kc167 
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cells can be classified into 5 chromatin states according to their protein 

composition (Filion et al., 2010), while another model in S2 cells, which is based 

on histone modification patterns, proposes 9 states (Kharchenko et al., 2011). 

Interestingly, 8 of these states are “sub-states” of the previous 5-state model 

(reviewed in (Bickmore and van Steensel, 2013)). 

 The architecture of at least some domains is dynamic. HP1a 

heterochromatin in Drosophila S2 cells forms from one to three domains, 

depending on the cell cycle stage (Chiolo et al., 2011). Sub-domains within 

HP1a heterochromatin in the same cells display different staining pattern 

throughout the cell cycle (Swenson et al., 2016). TADs disappear during mitosis 

and form again in the interphase (Gibcus et al., 2018; Naumova et al., 2013). 

One more example comes from the fact, that linear lamina-associated domains 

and nucleoli-associated domains in Drosophila cells overlap, and the same 

linear domains contact either the nucleoli or the nuclear lamina throughout cell 

divisions (Kind et al., 2013).  

	

1.3 Centromeres in interphase and mitosis. 

The centromere was initially identified as a place on the chromosome in 

mitosis where microtubules attach to promote chromosomal segregation. With 

the discovery of the centromere-specific histone variant Cenp-A (CID/dCenpA 

(centromere identifier, Drosophila centromere protein A) in Drosophila, CenH3 

in yeast and HCP-3 in C. elegans) and its immunofluorescence it turned out 

that the same centromeric domain is also preserved in the interphase 

(Earnshaw et al., 1986; Palmer et al., 1987). Later on 16 centromeric proteins 

in mammalian cells, which associate with centromeres throughout the cell 

cycle, were discovered by Cenp-A affinity purification and named the 

constitutive centromere-associated network (CCAN) (Foltz et al., 2006; Izuta et 

al., 2006; Obuse et al., 2004) (Fig. 1.2). Affinity purification of Drosophila CID 

chromatin did not reveal proteins specifically associated with centromeres 

(except the known centromeric proteins Cenp-C (centromere protein C) and 

Cal1 (chromosome alignment defect 1)), but 10 proteins were associated both 

with centromeres (overlapping with centromeric domains recognisable by 

immunofluorescence) and the other parts of the nucleus in either interphase or 
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mitosis (Barth et al., 2014). The almost absence of CCAN-like CID interactors 

in Drosophila implies that many of the fly centromeric proteins might share 

centromeric and non-centromeric functions and belong to several chromatin 

domains. Not mutually exclusively, CCAN of Drosophila could have, if any, 

weak or transient interaction with CID. 

 Centromeric chromatin can occupy a different portion of the 

chromosome depending on the organism. In budding yeast, the centromere is 

represented by a single nucleosome containing CenH3 positioned on a 

particular DNA sequence. In mammals, fission yeast and Drosophila CenH3 

nucleosomes are positioned within a restricted region of DNA, which contains 

a lot of repetitive sequences (reviewed in (Muller and Almouzni, 2017; Steiner 

and Henikoff, 2015; Talbert et al., 2018)). In C. elegans, some insects and some 

plants cenH3 nucleosomes are distributed throughout the chromosomes, 

forming so-called holocentromeres. Interestingly, despite differences in the 

architecture of centromeric domain, on transmission electron microscopy, 

principles of kinetochore architecture are similar between mono- and 

holocentric organisms (reviewed in (Maddox et al., 2004)). 

 Centromeres contain a lot of proteins, and, to our knowledge, one major 

complex protein pathway-network has so far been studied to be important for 

centromeric architecture. It includes Cenp-A histone variant, which was shown 

to be essential for the recruitment of several other centromeric proteins and 

eventually for the formation of kinetochore. Cenp-A is incorporated into 

nucleosomes by the dedicated chaperone (Holiday junction recognition protein 

(HJURP) in mammals and Cal1 in Drosophila). Over 30 known proteins and 

their modifications are involved in maintaining the proper Cenp-A level at 

centromeres and/or supporting the kinetochore architecture, and some of the 

proteins share non-centromeric functions (reviewed in (Muller and Almouzni, 

2017)). In Drosophila, recruitment of CID to an ectopic site on the chromosome 

leads to the formation of the ectopic centromere and the functional kinetochore, 

which contains at least some of canonical kinetochore proteins (Heun et al., 

2006; Mendiburo et al., 2011). In mammalian cells the Cenp-A induction is not 

sufficient for the ectopic centromere and kinetochore formation (Lacoste et al., 

2014). A pathway important not for centromere architecture, but organisation in 

Drosophila, includes Nlp (nucleoplasmin-like protein), Modulo and CTCF 
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(CCCTC-binding factor) proteins, which are necessary for centromere 

clustering. All three proteins interact with CID (Padeken et al., 2013). 

	

1.4 Pericentric heterochromatin in interphase and mitosis. 

Pericentric chromatin is marked by a network of heterochromatic 

proteins, including HP1a, and their interactors. Around 50 proteins have been 

found to localise to pericentromeres in mammals (reviewed in (Fodor et al., 

2010), (Saksouk et al., 2015)), and around 390 gene loci have been found to 

be involved in position effect variegation and heterochromatin stability in 

Drosophila genetic screens (considering that one of the five known 

heterochromatic pathways-networks refers to pericentric heterochromatin) 

(reviewed in (Fodor et al., 2010)). This suggests that pericentric 

heterochromatin is a more complex structure than a centromere or that it is 

studied much better. 

In Drosophila HP3 (LHR, lethal hybrid rescue), HP4, HP5 and HP6 

(heterochromatic proteins 3, 4, 5, 6) are targeted to heterochromatin by HP1a 

(Greil et al., 2007). HP1a anchors on H3K9me3 nucleosomes with its 

chromodomain and dimerizes with its chromoshadow domain, bringing the 

nucleosomes closer together (Canzio et al., 2011), reviewed in (Eissenberg and 

Elgin, 2014) (Fig. 1.2). H3K9me3, in turn, is deposited by a heterochromatic 

methyltransferase Su(var)3-9 (suppressor of variegation 3-9), and in 

Drosophila HP1a and Su(var)3-9 localisation to the chromocenter is mutually 

dependent (reviewed in (Schotta et al., 2002)). This is an essential pathway-

network for heterochromatin architecture. Tethering of HP1a to an ectopic locus 

in Drosophila can create a silenced locus, although independent on Su(var)3-9 

dosage (Li et al., 2003). Except the essential H3K9me3 other histone 

modifications (e.g. H4K20me3 (Schotta et al., 2004)), as well as DNA 

methylation, are found at heterochromatin and some of these hallmarks were 

shown to be molecularly linked to the H3K9me3 pathway-network (see below). 

H3K9me3 remains at heterochromatin during the cell cycle, while HP1a (and 

HP1β) is ejected from nucleosomes in mitosis because H3 in addition to 

methylation becomes phosphorylated (Fischle et al., 2005). 
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 Notably, pericentric chromatin is not flanking centromeres in holocentric 

organisms (Garrigues et al., 2015). In budding yeast, heterochromatin lacks 

H3K9 methylation and is defined by hypoacetylated histones (reviewed in 

(Saksouk et al., 2015)). 

 
Fig. 1.2. Basic molecular signs of centromeres and pericentric heterochromatin. CCAN – 
centromere associated protein network – is anchored on Cenp-A and Cenp-C rich chromatin 
at centromeres. HP1a compacts pericentric heterochromatin via H3K9me3.	

	

1.5 Differences between centromeric and pericentromeric 

chromatins. 

Centromeres and pericentromeric heterochromatin contain different 

types of chromatin, and (see above) different pathways contribute to the 

integrity of the domains. 

 Core centromeres contain “mixed” type of chromatin, in contrast to silent 

heterochromatin. In the pioneering study of human cells’ and Drosophila mitotic 

spreads, centromeric chromatin turned out to be devoid of classical 

heterochromatic histone marks H3K9me2/3, of classical active marks (histones 

at centromeres were hypoacetylated), but contained the “poised” histone mark 

H3K4me2, typically found at promoters and transcribed genomic regions 

(Sullivan and Karpen, 2004). Following studies in chicken and human cells 

were sometimes controversial and difficult to interpret, but overall more 

active/”poised” than silent marks were detected. H4K5Ac, H4K12Ac, 

H3K36me2/3, H4K20me1, H3K4me1/2, H3K9me3, H3K27me1/2/3 were found 

at centromeres, although the first two marks only at pre-nucleosomal Cenp-A-

H4-HJURP complex (Bailey et al., 2016; Bergmann et al., 2011; Hori et al., 
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2014; Shang et al., 2016). Also H2AZ histone variant, a hallmark of active 

chromatin, was found at human centromeres (Greaves et al., 2006). 

Interestingly, in Drosophila cells proteins, which interact with CID, are often 

excluded from DAPI-dense regions. Moreover, there are no proteins that would 

interact with CID and localize exclusively to DAPI-dense regions or DAPI-dense 

regions and centromeres (Barth et al., 2014). HP1a pericentric chromatin, in 

contrast, contains classical heterochromatic histone marks H3K9me1/2/3 and 

H4K20me2/3, as well as less studied in context of heterochromatin H3K27me1 

and H3K64me3 (reviewed in (Saksouk et al., 2015)). In addition, 

heterochromatic histones are hypoacetylated (reviewed in (Saksouk et al., 

2015)). Drosophila HP1a has no centromeric interactors typical for the 

interphase core centromeres (Alekseyenko et al., 2014; Swenson et al., 2016).  

 Centromeres are transcribed: in Drosophila and human cells RNA PolII 

localises to centromeres, and transcription is necessary for Cenp-A 

incorporation (Bobkov et al., 2018; Chan et al., 2012; Quenet and Dalal, 2014). 

In Xenopus, centromeric transcripts are required for localization and activation 

of a kinetochore part, called chromosomal passenger complex (CPC) (Blower, 

2004). Heterochromatin is transcribed only partially, with large repetitive 

regions being deliberately silenced, and RNA PolII on immunofluorescence of 

Drosophila cells is excluded from DAPI-dense regions (Bobkov et al., 2018). 

	

1.6 Crosstalk and similarities between centromeric and 

pericentromeric chromatins. 

In humans, mouse and Drosophila, centromeres and heterochromatin 

are assembled on different, although sometimes overlapping, DNA sequences. 

Centromeres need heterochromatin, but only at certain positioning and/or time 

point. Heterochromatin bordering is necessary for centromere formation: 

centromeres are embedded into heterochromatin and when overexpressed, 

Drosophila CID localises to heterochromatin boundaries (Olszak et al., 2011). 

Moreover, a part of heterochromatin (HP1a and HP1b proteins) is a part of 

centromeres in mitosis (Hayakawa et al., 2003; Minc et al., 1999). Accordingly, 

Drosophila and human HP1a have mitotic centromeric interactors: inner 



	 21 

centromeric protein Incenp and/or borealin (Ainsztein et al., 1998; Alekseyenko 

et al., 2014). In fission yeast, HP1a (Swi6) together with RNAi system that 

establishes heterochromatin is necessary for Cenp-A incorporation and 

kinetochore assembly (Folco et al., 2008). Functionally, both centromeres and 

heterochromatin are essential for proper mitosis (see below). 

  In Drosophila, speciation proteins HMR (hybrid male rescue) and LHR 

in cells and imaginal discs localise close to centromeres, and in cells HMR 

localises to a border between centromeres and heterochromatin (Thomae et 

al., 2013), (this study). This near-centromeric localisation in cells is dependent 

on Cenp-C (this study). However, in larval brains HMR and LHR localise to 

heterochromatin (Blum et al., 2017). Both proteins interact with HP1a (Satyaki 

et al., 2014; Thomae et al., 2013). Thus, the same proteins can localise mostly 

either to the centromeres or heterochromatin depending on the tissue or the 

cell cycle stage.  

On the other hand, centromeres and heterochromatin contain different 

types of chromatin (see above) and spreading of H3K9me3 heterochromatin 

into the centromere is deleterious for centromere architecture and function 

(reviewed in (Ohzeki et al., 2016)). Human centromere contains 

acetyltransferase KAT7/HBO1/MYST2, which prevents it (Ohzeki et al., 2016). 

Reversibly, overexpression of Cenp-A leads to decreased H3K9me2 levels at 

heterochromatin (Lam et al., 2006). 

1.7 Centromeric and pericentromeric chromatins are 

important in cell division. 

Cell division (mitosis or meiosis) is an important stage of the cell cycle, 

when the chromosomes condense and the bulks of sister chromatids segregate 

to different poles of the dividing cell, followed by the cytokinesis (division of the 

cytoplasm). Mitosis consists of prophase, metaphase, anaphase and 

telophase. 

 Since the centromere is important for the kinetochore formation, and 

heterochromatin is important for the centromere architecture and the 

chromosome condensation, a fraction of centromeric, heterochromatic or 

bordering centromere (this study) proteins are required for proper cell division. 
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Changing levels of these proteins or their modifications can result in different 

types of mitotic defects, such as lagging and broken chromosomes, anaphase 

bridges, formation of micronuclei, or disorganised anaphases (Barth et al., 

2014; Blum et al., 2017; Goutte-Gattat et al., 2013; Heun et al., 2006; Regnier 

et al., 2005; Thomae et al., 2013).  

	

1.8 Centromeric and pericentromeric chromatins in 

speciation. 

	 Speciation results from reproductive isolation of species. This 

reproductive isolation can be a result of prezygotic (for example, geographical) 

or postzygotic barriers. In case of the latter hybrids from sibling species cannot 

develop due to genetic incompatibility of maternal and paternal genomes. 

Several genes in flies and mice responsible for reproductive isolation have 

been described. One of the best studied cases of reproductive isolation are the 

crosses between D. melanogaster mothers flies and Drosophila simulans 

fathers flies, which result in infertile female and lethal male progeny. The 

progeny becomes viable and partially fertile with crosses after knockout of Hmr 

gene in D. melanogaster (Hutter and Ashburner, 1987), Lhr gene in D. simulans 

(Brideau et al., 2006), or GST-containing FLYWCH zinc-finger protein (gfzf) 

gene in D. simulans (Phadnis et al., 2015). The current model of this case of 

hybrid incompatibility comes from evidence, that Hmr and Lhr genes encode 

for two centromeric proteins, which expression level differs between two 

species. HMR is expressed higher in D. melanogaster, LHR – in D. simulans, 

and hybrids have elevated expression of both proteins. The overexpressed 

protein complex mislocalizes from centromeres, and gains additional binding 

sites all over the genome (Thomae et al., 2013).  

The exact function of the HMR/LHR complex is still unknown, but the 

phenotypes observed in dying hybrid males resemble defects in cell cycle 

checkpoints and possibly chromosome condensation (Blum et al., 2017; Bolkan 

et al., 2007; Orr et al., 1997). The phenotypes observed in Hmr mutant flies are 

transposon deregulation and problems with sister chromatid cohesion (Blum et 

al., 2017).	
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	 Many gene products responsible for speciation bind to chromatin, and 

many of them localize to centromeres or pericentric heterochromatin. These 

include HMR, LHR and GFZF proteins (Barth et al., 2014; Thomae et al., 2013), 

responsible for hybrid lethality/sterility in the cross between D. melanogaster 

males and D. simulans females. Interestingly, the reverse cross between D. 

melanogaster and D. simulans depends on so-called zhr locus, which is 

basically a pericentric block of 359 repeats (Ferree and Barbash, 2009).  

 In crosses between D. simulans and Drosophila mauritiana, OdsH 

protein from D. mauritiana binds to D. simulans Y-chromosome and acts as a 

male sterilizing factor (Bayes and Malik, 2009). Since chromocenters are 

subject to rapid evolution (reviewed in (Sawamura, 2012)), most probably many 

other so far unknown speciation proteins bind to centromeres or pericentric 

heterochromatin. Thus, this evolutionarily dynamic intranuclear domain plays 

an important role in the formation of species. 

 

1.9 Methods to study proteomic composition of nuclear 

domains. 

To gain insights into the biology and function of chromatin domains, we 

need to study their proteomic composition. Immunoprecipitation (IP) coupled to 

mass spectrometry has been long the only method to do it. Cenp-A, CID and 

HP1a immunoprecipitation has gained significant insights into the proteomic 

composition of centromeric and pericentromeric heterochromatin in humans, 

mouse and/or Drosophila (Alekseyenko et al., 2014; Barth et al., 2014; Obuse 

et al., 2004; Swenson et al., 2016; Zaidan et al., 2018). 

 In recent years proximity labelling methods have appeared, which use 

Escherichia coli biotin ligase BirA (Branon et al., 2017; Roux et al., 2012), 

soybean ascorbate peroxidase APEX or its improved version APEX2 (Lam et 

al., 2015; Rhee et al., 2013) to biotinylate proteins around the bait in the cell. 

Proximity proteomics with BirA-dCas9 (Schmidtmann et al., 2016), APEX-

dCas9 (Gao et al., 2018) and APEX fused to chromatin proteins (this study) has 

been successfully applied to capturing proteomes of neighbouring domains of 
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centromeric and pericentromeric chromatin, or domains of centromeric and 

telomeric chromatin. 

 Both approaches of proximity labelling and immunoprecipitation have 

positive sides and drawbacks, and both provide valuable information about the 

domain proteomic composition, although seek to answer different questions: 

affinity purification targets strong affinity interactions of the protein of interest, 

while proximity labelling captures both strong and weak/transient interactions, 

as well as proteins not interacting but residing in proximity to the bait  (Fig. 1.3). 

Also, proximity labelling can reveal a proteomic snapshot of the compartments, 

difficult to purify with fractionation (for example, chromocenter). 

	
Fig. 1.3. Affinity IP-MS captures strong protein interactions, while pulldown after proximity 
biotinylation captures proteins in proximity to the bait. The bait is depicted in brown, interactors 
of the bait – in violet, proteins in proximity – in green, biotin tags (B) – in red.	
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1.10 Thesis aims. 

	 Two main aims of the thesis were approached. First, we wanted to gain 

additional insights into the structure of the chromocenter taking advantage of 

modern state-of-art methods. The proteomic composition of the chromocenter 

in Drosophila has so far only been described by conventional IP-mass 

spectrometry (IP-MS) (Alekseyenko et al., 2014; Barth et al., 2014; Swenson et 

al., 2016; Thomae et al., 2013), and APEX2 proximity labeling, which was 

shown to be efficient in capturing proteomes of different organelles (see 

Chapter 2.2), could gain new insights into the biology of this intranuclear 

compartment. Apart from this, chromocenter has only been studied by low-

resolution microscopy, and our STED findings together with (Anselm et al., 

2018) show the intricate structure of the domain, unknown before. 

 Second, one of the centromeric factors investigated in this work, HMR, 

has a role in separating D. melanogaster and D. simulans species. Despite its 

well-known role in speciation, the function of HMR and the molecular links to 

the phenotypes in hybrids and pure species remained enigmatic. We aimed to 

use proximity labeling to gain insights into HMR biology, which could potentially 

point to its exact molecular function in speciation. 

 Together, the findings of this thesis should be of interest both for 

scientists interested in the chromocenter architecture and for scientists 

interested in the formation of species.  
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2 Results. 

2.1 Confocal and STED microscopy reveal the complex 

architecture of the chromocenter.  

As mentioned before, HMR is a speciation protein in crosses between 

close species of Drosophila. D. melanogaster Hmr mutants can be crossed to 

D. simulans and these crosses, otherwise producing lethal/unfertile progeny, 

result in a viable and fertile offspring (Brideau et al., 2006). HMR was reported 

to colocalize in cells and imaginal discs with the centromere-specific histone 

variant dCenpA (Thomae et al., 2013), with telomeres on polytene 

chromosomes (Thomae et al., 2013) and with heterochromatin in larval brains 

(Blum et al., 2017). To confirm HMR localization in cell culture, we used an 

HMR-FLAG CRISPR cell line (Gerland et al., 2017), which we costained with 

anti-FLAG, anti-HMR and anti-dCenpA antibodies.  

 
 

Consistent with what was observed before, we detected FLAG and HMR 

centromere staining (Fig. 2.1 A) Interestingly, among 122 centromeres 

quantified, HMR domains colocalized or partially colocalized only with a subset 

Fig. 2.1. A - Mouse anti-FLAG M2, rat anti-HMR 2C10 and rabbit anti-dCenpA (Actif Motif) 
staining of FLAG-CRISPRed HMR cell line (Gerland et al., 2017). B - Quantification of fractions 
of centromeres that overlap or do not overlap with HMR. For quantification dCenpA-GFP cell 
line (Heun et al., 2006), stained against HMR, was used. The data was acquired by Grusha 
Primal Mathias.	
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of centromeres (71,3%) (Fig. 2.1 B). This suggests that either HMR localization 

to centromere is cell cycle regulated, or HMR specifically localizes to a subset 

of chromosomes.  

In Drosophila, the area of the chromosome, which includes centromeres 

and nearby pericentric heterochromatin, is defined as the chromocenter. 

Several proteins, known to play a role in the chromocenter architecture, such 

as NLP and D1, upon depletion demonstrate the phenotypes of deregulation of 

transposable elements, defects in mitosis, and formation of macronuclei 

(Jagannathan et al., 2018; Padeken et al., 2013). Mutation or knockdowns of 

HMR show similar phenotypes, suggesting that HMR might play a role in the 

architecture of the chromocenter. To investigate the structure of the 

chromocenter and HMR’s role in it, we performed high-resolution STED 

microscopy using anti-HMR, anti-dCenpA and anti-dCenpC antibodies.  

According to previous observations (Thomae et al., 2013), HMR 

colocalized with dCenpA on the images taken using confocal microscopy (Fig. 

2.2 A). However, STED microscopy revealed interdigitating domains of dCenpA 

Fig. 2.2. A - Confocal and STED high-resolution microscopy of dCenpA and HMR. Scale bars 
represent 3 uM and 0.8 uM for zooms. B - High-resolution STED microscopy co-stainings of 
dCenpA/HMR, dCenpC/HMR and dCenpA/dCenpC. The antibodies used are rat anti-HMR 
2C10, rabbit anti-dCenpC, rabbit anti-dCenpA (Actif Motif) and rat anti-dCenpA 7A2. Scale 
bars represent 0.8 uM. The intensity profiles were built in ImageJ and normalized to one of 
the maximum peaks. Data from panel B was partially produced and recorded by Dr. Andreas 
W. Thomae. All stainings were recorded by Dr. Andreas W. Thomae.	
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and HMR, separated only in their highest intensities (Fig. 2.2 A and B). The 

same interdigitation was observed for dCenpA/dCenpC and dCenpC/HMR 

protein pairs (Fig. 2.2 B). Furthermore, we plotted the distributions of Spearman 

correlations, each correlation between two channels on the same image. Those 

distributions revealed that dCenpC/dCenpA correlate more, than HMR/dCenpA 

and HMR/dCenpC (Fig. 2.3).   

These experiments revealed that a chromocenter is a much more 

complex structure than thought before. We suggest that the chromocentric 

chromatin consists of a meshwork of interdigitating HMR, dCenpA and dCenpC 

domains. HMR domains are separated from dCenpA and dCenpC in their 

highest intensities, while dCenpA and dCenpC show some co-localization.  

Fig. 2.3. Distributions of Spearman 
correlations between pairwisely recorded 
images of mentioned proteins (from 2 
independent experiments). Wilcoxon 
rank sum test was used for statistical 
analysis. N.s. – non-significant, *** - p-
value<0.001.	



	 29 

 

 

Consistent with what was reported before, the 

centromeric region is embedded in HP1a 

chromatin (Fig. 2.4). The wide distribution of 

Spearman correlations between HMR and HP1a 

suggests little overlap of those regions (Fig. 2.5). 

Interestingly, using confocal microscopy of HP1a, 

as well as high-resolution microscopy of dCenpA 

and HMR, we observed that HMR chromatin 

often borders dCenpA chromatin from HP1a 

chromatin (Fig. 2.6).  

 
 

 

 

 

 

 

Fig. 2.4. Confocal microscopy of dCenpA, HMR and HP1a. The antibodies used are rat anti-
HMR 2C10, mouse anti-HP1a C1A9 and rabbit anti-dCenpA (Actif Motif). The intensity profile 
was built in ImageJ and normalized to one of the maximum peaks. Data were recorded by Dr. 
Andreas W. Thomae.	

Fig. 2.5. Distribution of 
Spearman correlations 
between confocal 
images (from 2 
independent 
experiments).	
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2.2 Establishing cell lines for proximity labeling. 

 To further investigate the structure of the chromocenter, we fused 

dCenpA, HMR and HP1a to the ascorbate peroxidase from soybean (APEX2 

(Lam et al., 2015; Rhee et al., 2013)) (Fig. 2.7) and expressed proteins under 

inducible metallothionine promoter. As a control, we fused APEX2 to two 

nuclear localization signals (NLS).  

 

 

Fig. 2.6. A screenshot from 
the movie, which combines 
3D models of HMR and 
dCenpA staining (STED 
microscopy) and HP1a 
staining (confocal 
microscopy). Data were 
recorded and the movie 
was processed by Dr. 
Andreas W. Thomae. 

Fig. 2.7. Schemes of the cloned constructs. The list of primers for cloning is available in Table 
2. 



	 31 

Upon half an hour treatment with 

0.5 mM biotin-phenol and subsequent 1-2 

minutes treatment with hydrogen 

peroxide, APEX2 produces biotin-

phenoxyl radicals, which fuse to tyrosines 

and other electron rich aminoacids on the 

surfaces of the nearby proteins in a radius 

which has been estimated to be less than 

20 nm (reviewed in (Bendayan, 2001)). 

Both APEX and APEX2 have been 

successfully used for different proximity 

labeling approaches in the last years, 

including capturing the proteomes of 

mitochondria (Hung et al., 2014; Rhee et 

al., 2013), stress granules (Markmiller et al., 2018), lipid droplets (Bersuker et 

al., 2018), cilia (Mick et al., 2015), ribosomal proteins (Zuzow et al., 2018), 

proteins involved in DNA damage response (Gupta et al., 2018), as well as 

separate chromatin loci including centromeres and telomeres in human cells, 

using APEX2 fused to nuclease deficient Cas9 (Gao et al., 2018; Schmidtmann 

et al., 2016). To confirm the correct expression of the fusions, we did Western 

blotting of whole cell extracts as well as the immunostaining of the stable cell 

lines. We raised an anti-APEX antibody against the recombinant GST-APEX 

protein (Fig. 2.8). Antibody generation was performed by injection of 

recombinant proteins into Wistar rats, and fusing their splenic B-cells with 

myeloma cell line. More than 50 antibody clones were generated, and clone 

20H10 was chosen as the one exhibiting highest sensitivity. 

As seen from western blotting (Fig. 2.9), induced HP1aAP, uninduced 

HMRAP and uninduced dCenpAAP, which we chose for the subsequent 

biotinylation, are expressed approximately at the levels of the endogenous 

proteins or lower. Moreover, uninduced HMRAP and dCenpAAP localize mostly 

to centromeres, while induced proteins localize to other parts of the nucleus 

and only optionally to the centromeres (Fig. 2.10). Induced HP1aAP occupies a 

domain in the nucleus, which co-stains with endogenous HP1a. APEXNLS 

localizes to the nucleus, defined by the DAPI staining (Fig. 2.11). We decided 

Fig. 2.8. The coomassie staining of the 

purified recombinant GST-APEX 
protein. 
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to induce APEXNLS for the stronger biotinylation and therefore the stronger 

stringency of the control.   

 

Importantly, dCenpAAP, HP1aAP (Fig. 2.10) and HMRAP (Fig. 2.12) at 

chosen biotinylation conditions exhibit a staining pattern similar to endogenous 

proteins. This suggests that centromeric and heterochromatic domains retain 

their structures even with increased dosages of respective proteins. 

 

 

 

 

 

Fig. 2.9. Western blotting of whole cell lysates of respective stable cell lines. The antibodies 
used are rat anti-HMR 2C10, mouse anti-HP1a C1A9, rabbit anti-dCenpA (Actif Motif) and rat 

anti-APEX 20H10. 
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Fig. 2.10. Immunofluorescence of uninduced and induced dCenpAAP and HMRAP cell lines 

used for the work. The antibodies used are rabbit anti-dCenpA (Actif Motif) and rat anti-APEX 

20H10. A chosen cell (marked by an asterisk) is displayed in the inlet with approximately 2.3-
fold zoom. Scale bars represent 5 µm.  
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Fig. 2.11. Immunofluorescence of uninduced and induced HP1aAP and APEXNLS cell lines used 

for the work. The antibodies used are mouse anti-HP1a C1A9 and rat anti-APEX 20H10. The 

exposure is indicated in white. Scale bars represent 5 µm.  



	 35 

 

It is noteworthy to mention, that dCenpAAP and HP1aAP cell lines, which 

were initially established, were diluted to a density of 103 cells/ml in 20% 

conditioned medium, and colonies originating from several cells were selected, 

grown separately and further screened for the proper localization of the APEX 

fusion by immunofluorescence. Colonies, which showed the lowest fractions of 

hugely overexpressing cells (colony 8 for dCenpAAP and colony 29 for HP1aAP), 

were chosen. 

 

 

 

Fig. 2.12. Immunofluorescence of the uninduced and induced HMRAP cell line used for the 

work. Rabbit anti-dCenpA (Actif Motif) and rat anti-HMR 2C10 antibodies were used for 
staining. A chosen cell (marked by an asterisk) is displayed in the inlet with approximately 2.3-

fold zoom. Scale bars represent 5 µm. 
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2.3 Establishing the conditions for proximity labeling. 

2.3.1 1-minute biotinylation reveals focused biotin signal upon different biotin-

phenol concentrations for different proteins. 

 The default conditions used in the first proximity labeling experiments 

included half an hour incubation with 0.5 mM biotin-phenol and treatment with 

1 mM hydrogen peroxide for 1 minute (Rhee et al., 2013) (Fig. 2.13). Using 

these default conditions, we observed a focused biotin signal after in situ 

reaction for HP1aAP (at heterochromatin) and APEXNLS (in the nucleus) (Fig. 

2.14). HMRAP biotinylation at centromeres was however very weak. dCenpAAP 

biotinylation at centromeres was not detectable. We thus used 5 mM biotin-

phenol treatment for HMRAP  and dCenpAAP (Fig. 2.15). 

 

 

 

2.3.2 Adjusting biotinylation time for different proteins. 

We next decided to prolong the labeling to 25 minutes to a) maximize 

the biotinylation efficiency, b) for the simplicity of the experimental setup, since  

 

Fig. 2.13. The scheme of the biotinylation experiment with subsequent application to 

microscopy or proteomics. 
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Drosophila cells are not very adherent but could be spun down at large volumes 

during 20 minutes. Upon 25 minutes’ labeling, the centromeric signal in HMRAP 

and dCenpAAP cells was still focused, while HP1aAP cells showed less 

constrained signal all over the nucleus (Fig. 2.16, Fig. 2.17). We thus did a time 

course of HP1aAP labeling and found out that the biotin signal at 

heterochromatin is focused until 5 minutes of biotinylation but becomes diffuse 

at longer labeling times (Fig. 2.18). During this time course 1 minute and 5 

minutes biotinylation was performed on coverslips, while 10 and more minutes 

biotinylation was performed in solution.  

 

Fig. 2.14. In situ biotinylation reaction for HP1aAP and APEXNLS (with 0.5 mM biotin-phenol). 

The antibodies used for staining are rat anti-APEX 20H10 and Streptavidin-Alexa-555 

(Thermo Fisher Scientific). Scale bars represent 5 µm. The experiment was done in parallel 

with experiment in Fig. 2.15. 
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Fig. 2.15. In situ biotinylation reaction for HMRAP and dCenpAAP (with 5 mM biotin-phenol). 
The antibodies used for staining are rat anti-APEX 20H10 and Streptavidin-Alexa-555 

(Thermo Fisher Scientific). A chosen cell (marked by an asterisk) is displayed in the inlet with 

approximately 2.3-fold zoom. Scale bars represent 5 µm. The experiment was done in parallel 

with experiment in Fig. 2.14. 
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Fig. 2.16. 25 minutes biotinylation reaction for HMRAP , dCenpAAP, HP1aAP and APEXNLS. The 

antibodies used for staining are rat anti-APEX 20H10 and Streptavidin-Alexa-555 (Thermo 

Fisher Scientific). In cells with the centromeric staining a chosen cell (marked by an asterisk) 

is displayed in the inlet with approximately 2.3-fold zoom. For APEX and biotin the exposure 
is indicated in white. Scale bars represent 5 µm. The experiment was done in parallel with 

experiment in Fig. 2.17.  
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For further proteomic experiments we decided to apply: 1) 25 minutes 

biotinylation for HMRAP and dCenpAAP; 2) 1.5, 5 and 25 minutes biotinylation 

for HP1aAP, as well as 3) 1.5, 5 and 25 minutes biotinylation for APEXNLS as a 

control.  

Fig. 2.17. Controls for 25 minutes biotinylation reaction. The antibodies used for staining are 

rat anti-APEX 20H10 and Streptavidin-Alexa-555 (Thermo Fisher Scientific). A chosen cell 

(marked by an asterisk) is displayed in the inlet with approximately 2.3-fold zoom. For APEX 

and biotin the exposure is indicated in white. Scale bars represent 5 µm. The experiment was 

done in parallel with experiment in Fig. 2.16.  
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Fig. 2.18. Time course biotinylation reaction for HP1aAP. The antibodies used for staining are 

rat anti-APEX 20H10 and Streptavidin-Alexa-555 (Thermo Fisher Scientific). Scale bars 

represent 5 µM. 
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2.4 Proximity labeling coupled to proteomics confirms the 

intricate structure of the chromocenter. 

2.4.1 Biotinylation and purification of biotinylated proteins. 

 We aimed to establish a strategy, with which proximity labeling could be 

easily applied to Drosophila L2-4 different transgenic cell lines. Since 

Drosophila cells are not adherent and since large amounts of cells are needed 

for nuclear extraction, we grew cells in roller bottles to the density of 

approximately 5*106/milliliter. Next, cells were counted, and 1 billion cells was 

used for biotinylation in solution, when cells were first incubated with biotin-

phenol, and then hydrogen peroxide was added and cells were spun down 

during biotinylation procedure. Alternatively, for shorter biotinylation cells 

couldn’t be spun down. Thus, 2 bottles of cells (further used per 1 sample) were 

adhered on 20 15-cm plates usually used for mammalian cells, and the 

treatment was performed as described previously for mammalian cells (Rhee 

et al., 2013), with the difference that cells were washed only once in quenching 

solution and scraped off. 

 For nuclear extraction, the nuclei were separated from the cytoplasm, 

and nuclear architecture was disrupted using 3 methods: MNase/benzonase 

digestion with large amounts of enzymes to disrupt biotinylated chromatin, 

douncing using tight-fitting pestle and addition of large amounts of salt and 

detergents for chromatin extraction. The final salt concentration used (600 mM) 

was reported to be enough to get 90% of nucleosomes into solution (Henikoff 

et al., 2009). Detergents were applied since protein-protein interactions did not 

need to be preserved, and since detergents were reported to be efficient in 

solubilizing large protein complexes (Henikoff et al., 2009). 

 Since biotin-streptavidin interaction is very strong (the dissociation 

constant was reported to be approximately 10−14 mol/L (reviewed in (Green, 

1975))), after anti-biotin immunoprecipitation (IP) the beads were washed not 

only with IP buffer, but also 3 times with 4M urea, so that protein-protein 

interactions, but not biotin-streptavidin interactions, would be disrupted and  

only biotinylated proteins, but not their interactors, would remain on 

streptavidin-coated beads (Freire et al., 2013; Kurzban et al., 1991). The 



	 43 

washes were followed by on beads digestion, and the samples were measured 

in minimum 2 technical replicates on the Q-Exactive mass spectrometer 

(Thermo Fisher Scientific). The raw data as well as the MaxQuant output .txt 

files were deposited on ProteomeXchange 

(http://proteomecentral.proteomexchange.org/dataset/PXD012551). 

  

2.4.2 GO-term analysis of proximities of HMRAP and HP1aAP reveals known 

categories. 

We performed a 25 minute dCenpAAP, HMRAP, HP1aAP and APEXNLS 

biotinylation, and defined proteins enriched in all four pulldowns compared to 

pulldowns from DMSO treated controls (Fig. 2.19). 325, 314, 259 and 273 

proteins were biotinylated respectively in dCenpAAP, HMRAP, HP1aAP and 

APEXNLS samples. When defining an overlap between three proximity 

proteomes with APEXNLS proximity proteome, we found dCenpAAP and HMRAP 

proteomes to be more specific (only 49.9% and 36.6% overlap with APEXNLS 

proximity proteome), than HP1aAP proximity proteome (72.2% overlap) (Fig. 

2.20). This might be the consequence of proteins’ biology, since HP1a was 

reported to be very mobile (reviewed in (Straub, 2003)) and its fusion with APEX 

could potentially biotinylate a larger fraction of the nucleus. Because 25 

minutes’ HP1aAP biotinylation was delocalized, we also preformed HP1aAP 

biotinylation for 1.5 and 5 minutes. 

We further defined the proteins enriched in dCenpAAP, HMRAP and 

HP1aAP, but not or to a lesser degree in APEXNLS (Fig. 2.21). From these 

proteins we filtered only nuclear ones, using a Gene Consortium tool 

(http://www.geneontology.org). With the same tool we further performed the 

GO-term analysis of all three proximity proteomes, and filtered only specific 

GO-terms found for each of three pulldowns. For all times points of HP1aAP 

pulldowns we found such GO-terms as “chromatin organization” and “RNA 

and/or DNA metabolic processes”, which is consistent with previously reported 

HP1a functions and known aspects of heterochromatin biology. For dCenpAAP 

pulldowns we found such GO-terms as “mitotic sister chromatid segregation” 
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and also terms connected to transcription by RNA-polymerase II. This is 

consistent with known dCenpA function in centromeric biology, as well as with 

the findings of transcription at the centromeres (Bobkov et al., 2018; Rosic et 

al., 2014). For HMRAP pulldowns we found GO-terms “cell cycle checkpoint”, 

“mitotic sister chromatid segregation” and both negative and positive regulation 

of transcription by RNA polymerase II. This is consistent with previously 

reported phenotypes upon HMR knockdown/knockout in cells/flies (Blum et al., 

2017; Bolkan et al., 2007; Satyaki et al., 2014; Thomae et al., 2013).   

 

 

Fig. 2.19. Volcano plots 
of pulldowns from 

biotinylated cells vs 

pulldowns of DMSO-

treated cells. 
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Interestingly, specifically for HMRAP pulldowns we found both GO-terms 

“regulation of histone methylation” and “histone acetylation”. Moreover, in 

proximity to HMRAP we found both previously reported HP1a-interacting and 

dCenpA-interacting proteins. This strengthens the hypotheses that HMR often 

borders dCenpA-containing domains from HP1a-containing. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.20. Venn 
diagrams of proximity 

proteomes of HMRAP, 

dCenpAAP and 

APEXNLS, or HP1aAP 

and APEXNLS. 

 

 

Fig. 2.21. Volcano plots 

of proteins enriched 

from biotinylated 

pulldowns vs APEXNLS 

pulldowns. 
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2.4.3 dCenpAAP and HMRAP proteomes reveal overlapping as well as different 

clusters. 

For further analysis we decided to display three nuclear proximity 

proteomes as network graphs. Analysis of specific HP1aAP proteome using the 

STRING database did not reveal many defined protein clusters, which might be 

due to a low number of proteins enriched in specifically HP1aAP pulldowns. 

However, these clusters were visible in the STRING network graphs of 

dCenpAAP and HMRAP proteomes, which were built in Cytoscape using both 

STRING and manual Flybase connections (dotted lines) (Fig. 2.22).  

Interestingly, we found that some clusters in the STRING networks were 

similar for dCenpAAP and HMRAP, while some were different. In particular, in 

both networks there were protein clusters corresponding to proteins involved in 

transcription, replication, components of the centromere, nucleolus and nuclear 

pore complex. Nucleosome remodelers, boundary factors, Polycomb complex 

and cohesin/condensin complex were found exclusively in HMRAP pulldowns. 

Since HMR not always localizes to centromeres, it is expectable, that HMRAP 

proximity network has several additional clusters compared to the dCenpAAP 

network. 
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Fig. 2.22. STRING networks of dCenpAAP (A) and HMRAP (B) proximity proteomes. Ungrouped 
proteins are depicted in white. The size of each node depicts the enrichment in the pulldowns. 
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2.4.4 HP1aAP proximity proteome upon different conditions. 

 We performed HP1aAP biotinylation for 1.5 and 5 minutes on plates as 

well as for 25 minutes in solution. As a control we did not treat cells with biotin-

phenol and hydrogen peroxide, but with DMSO. In addition, we performed 1.5, 

5 and 25 minutes’ labeling for APEXNLS. We built a volcano plot of proteins 

enriched in HP1aAP pulldowns compared to APEXNLS pulldowns and highlighted 

the proteins which previously were reported to interact with HP1a (Alekseyenko 

et al., 2014; Swenson et al., 2016) (Fig. 2.23). We found, that HP1aAP pulldowns 

after 1.5 minutes of biotinylation had more previously reported HP1a 

interactors, suggesting that 1.5 minutes’ biotinylation is most specific. 

 
 

 

 

	

 

 

 

 

Fig. 2.23. Volcano plots of proteins enriched in HP1aAP but not APEXNLS pulldowns with 

highlighted HP1a interactors. 
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2.4.5 Proximity proteome reveals only minor overlap with affinity proteome. 

 We further compared the results of APEX proteomic technique with 

previously reported affinity pulldowns for dCenpA (Barth et al., 2014), HMR 

(Thomae et al., 2013) and HP1a (Alekseyenko et al., 2014; Swenson et al., 

2016). Consistent with previous reports for BirA biotin ligase (Lambert et al., 

2015), we detected only minor overlap between affinity purification and 

proximity labeling approaches (Fig. 2.24). 

 However, if we consider only those proteins, which were shown to 

localize to centromeres in Drosophila (Anselm et al., 2018; Barth et al., 2014; 

Chen et al., 2015; Erhardt et al., 2008; Heun et al., 2006; Jankovics et al., 2018; 

Padeken et al., 2013; Swenson et al., 2016; Thomae et al., 2013; Török et al., 

1997), the overlap between proximity and IP of HMR and dCenpA is solid (Fig. 

2.25). We thus hypothesize, that APEX centromeric labeling gives a strong 

biotinylation burst at centromeres and less efficient biotinylation at other parts 

of the nucleus.  

 HP1a liquid droplet domain might be difficult to purify using conventional 

IP-MS. This is supported by the fact that IP lists from different labs show minor 

overlap (Fig. 2.24). Thus, proximity labeling might be a method of choice to 

describe the composition of the fragile HP1a domain. 
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Fig. 2.24 Venn diagrams of proteins enriched in bait vs APEXNLS pulldowns and in bait affinity 

pulldowns. 
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2.4.6 All known speciation proteins are found in proximity to HMR. 

 As mentioned before, hybrid offspring from crosses between D. 

melanogaster females and D. simulans males is either lethal or sterile. 

However, a knockout of Hmr gene in D. melanogaster, or Lhr or gfzf in D. 

simulans saves the hybrids. Interestingly, we find both GFZF and LHR proteins 

in proximity to HMR (Fig 2.26). Possibly, new undiscovered speciation proteins 

were also found in our proximity pulldowns. It will thus be interesting to establish 

and perform LHRAP and GFZFAP proximity biotinylation to determine the overlap 

of proximities of all known three speciation proteins and test the corresponding 

genes for their role in speciation. 

 

 

 
   
 

 

 

 

Fig. 2.25. Venn diagrams of proteins, enriched in bait vs APEXNLS pulldowns and in bait affinity 

pulldowns, which were shown to localize to centromere in Drosophila. 
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2.5 Validation of proximity labeling. 

 We decided to validate the usability of proximity labeling approach with 

two alternative methods: immunofluorescence and analysis based on ChIP-

sequencing profiles. 

 We chose 11 proteins found in proximity to the baits, antibodies/tagged 

proteins’ cell lines of which we had in the laboratory and performed 

immunofluorescent staining. We confirmed previously reported 

heterochromatic proteins HP5 and ADD1 to localize to heterochromatin (Fig. 

2.27, 2.28). We also discovered two new HMR-colocalizing proteins: XNP and 

CG8108 (Fig. 2.27). Interestingly, we found both proteins in proximity to 

HMRAP, but not dCenpAAP, and according to our finding the staining pattern of 

those proteins correlated more with HMR than with dCenpA (Fig. 2.28). 

Fig. 2.26. Western blot of HMRAP and APEXNLS 

pulldowns against HMR, LHR and GFZF. Rat 

anti-HMR 2C10, rat anti-LHR 12F4 and rabbit 

anti-GFZF antibodies were used. 
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Fig. 2.27. Staining of stable cells lines with rat anti-HA 3F10, rabbit anti-dCenpA (Actif Motif), 

mouse anti-HP1a C1A9 (upper panel) and mouse anti-HA 12CA5, rabbit anti-dCenpA (Actif 

Motif), rat anti-HMR 2C10 (lower panel) antibodies. dCenpA/HP1a (upper panel) and 

dCenpA/HA (lower panel) channels were recorded simultaneously. The percentage of Flag-
HA-CG8108 cells among all cells with moderate levels of Flag-HA-CG8108 overexpression 

which look similar to the panel is 15-30% (calculated from single stack). Scale bars represent 

5 uM.  
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	 We also validated the utility of proximity labeling using high-quality ChIP-

sequencing profiles of HMR, HP1a (Gerland et al., 2017), proteins in proximity 

to those baits and proteins, anti-enriched in the bait pulldowns. For each protein 

in proximity (anti-proximity) to the bait, we calculated the median distance from 

the HMR/HP1a peak to the nearest protein peak and compared the distributions 

of median distances (Fig. 2.29). A statistical comparison of those distributions 

revealed that the median distance to the nearest peak is 2.5-4 kb for the 

proteins in proximity to HMR, and 10-12.5 kb for proteins anti-enriched in 

HMRAP pulldowns. This is statistically significant for all 3 available HMR ChIP-

sequencing profiles tested (Cooper et al., 2019; Gerland et al., 2017). For HP1a 

we compared median distances from the HP1a peak to the nearest peaks of 

proteins, enriched in 2 out of 3 HP1a biotinylation time points, and proteins anti-

enriched in 2 out of 3 HP1a biotinylation time points with enrichment cutoff -0.3. 

This yielded median distances of 2.8 kb for proteins in proximity to HP1a and 

126 kb for proteins anti-enriched in HP1aAP pulldowns. Statistical comparison 

revealed a trend with p-value=0.067 (Fig. 2.29).  

 

Fig. 2.28. Distributions of Spearman correlations between pairwise stainings of different 

proteins. 10 cells from 2-3 independent experiments were counted. Wilcoxon signed rank test 

was used for statistical analysis. ** - p-value<0.01. 
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2.6 Spindle assembly checkpoint protein Mad1 is in proximity 

to HMRAP. 

 We were interested by the identification of spindle assembly checkpoint 

(SAC) protein Mad1 in proximity to HMR.  

 Spindle assembly checkpoint is a mechanism that prevents the transition 

from metaphase to anaphase onset until all the microtubules are properly 

attached to kinetochores. This prevents from unequal distribution of 

chromosomes between the daughter cells and further aneuploidy (reviewed in 

(Musacchio, 2015)). The SAC proteins are recruited to kinetochore in 

prometaphase. Some of them (Mad1, Mad2, BubR1, Bub3 and Cdc20) form 

sequential complexes which eventually inhibit the activity of the anaphase 

Fig. 2.29. A) Distributions of median distances from the HMR peak to the nearest protein peak. 

Wilcoxon rank sum test was used for statistical analysis. * - p-value<0.05, ** - p-value<0.01. 

Examples of distances’ distributions for selected proteins are given on the right. B) 

Distributions of median distances from the HP1a peak to the nearest protein peak. Wilcoxon 
rank sum test was used for statistical analysis. Examples of distances’ distributions for 

selected proteins are given on the right.   
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promoting complex (APC), also called the cyclosome, which in turn prevents 

the degradation of Cyclin B and Securin (reviewed in (Conde et al., 2013)). 

 The striking logical discrepancy in our results is that SAC components 

persist at centromeres in mitosis, while HMR is removed from mitotic 

centromeres (Thomae et al., 2013). We hypothesized, however, that HMR 

already in interphase creates a certain chromatin state that might favor or 

disfavor the recruitment of SAC components in mitosis.  

	

2.6.1 Co expression of HMR and LHR in interphase slightly increases BubR1 

amounts in prometaphase/metaphase. 

 Before actually accessing HMR role in SAC, we tried to stain the cells 

with antibodies against several SAC components, and of this BubR1 antibody 

showed a localized centromere staining in mitosis (Fig. 2.30, 2.31). We thus 

decided to decipher the influence of HMR levels on BubR1 levels using confocal 

microscopy. 

  

 

 

 

 

 

 

 

 

 

Cells were treated with colchicine, and HMR was either knocked down or 

overexpressed (for this, induced cell line with Flag-HA-HMR + Myc-LHR under 

copper inducible promoter (Thomae et al., 2013) was used). The 0.025 mM 

colchicine treatment lasted for 16 hours (Godinho and Tavares, 2008) to 

depolymerize microtubules, arrest cells in prometaphase (so that enough 

Fig. 2.30. Staining of cells with rabbit anti-BubR1 antibody upon colchicine treatment. Scale 

bars represent 5 uM.   
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prometaphase cells could be collected for microscopy experiment) and induce 

accumulation of SAC proteins on prometaphase/metaphase chromosomes (to 

obtain enough bright signal at the centromeres for quantification) (Fig. 2.31). 

The cells were stained with DAPI, as well as with anti-HMR and anti-BubR1 

antibodies. The BubR1 signal was scanned through Z-stacks, and sum 

intensities’ projections were obtained in ImageJ. The signal was manually 

quantified in ImageJ for 5 random cells in each technical replicate, and 2 

technical replicates were taken for each condition in each biological replicate. 

At least 5 biological replicates of the experiment were performed.  

 
 

 

 

Fig. 2.31. Representative immunofluorescence images of BubR1 and HMR stainings upon 
HMR RNAi and HMR+LHR overexpression. Antibodies used for staining are rat anti-HMR 

2C10 and rabbit anti-BubR1. Scale bars represent 5 uM.   
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We found, that upon HMR knockdown BubR1 intensity was not 

significantly affected, however, upon HMR and LHR overexpression we 

detected a slight increase in BubR1 intensity (Fig. 2.32). Thus, HMR+LHR 

overexpression slightly affects the SAC, and it would be tempting to speculate 

that SAC is slightly affected in hybrids from D. melanogaster mothers and D. 

simulans fathers, where HMR and LHR are known to be overexpressed. 

	

2.7 dCenpC RNAi brings centromeres and HMR domains 

together. 

2.7.1 dCenpC RNAi results in centromere and HMR, but not pericentric 

heterochromatin declustering. 

 dCenpC was previously reported to be dCenpA and HMR interactor 

(Barth et al., 2014; Erhardt et al., 2008; Thomae et al., 2013). Interestingly, we 

found dCenpC in proximity to both dCenpA and HMR, but not HP1a. The role 

of dCenpC in dCenpA incorporation has been investigated (Erhardt et al., 

Fig. 2.32. Quantification of BuBR1 intensity upon HMR knockdown and HMR+LHR 

overexpression. Paired t-test was used for statistical analysis. 
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2008), however, its role in centromere and pericentric chromatin architecture 

has been less described. We thus wondered how dCenpC deletion would 

influence the chromocenter architecture. We removed dCenpC by RNAi, 

confirmed the knockdown by western blotting and stained the cells against 

HP1a, dCenpA and HMR. We observed that upon dCenpC RNAi HMR was no 

more localized to centromeres, but co-stained with HP1a (Fig. 2.33 A). 

Interestingly, ChIP-sequencing revealed that upon dCenpC RNAi HMR-binding 

sites did not change much (Fig. 2.34 A and B). Also, HMR levels were not 

changed (Fig. 2.33 B). We therefore conclude that HMR-binding sites decluster 

from near-centromeric border and diffuse into heterochromatin.  
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 By quantifying the number of dCenpA foci upon GST and dCenpC RNAi, 

we concluded that centromeres also declustered (Fig. 2.35 A). In contrast, 

pericentric heterochromatin, as judged by HP1a staining (Fig. 2.33 A) and 

Fig. 2.33. dCenpC RNAi results in HMR mislocalization from centromere. Pioneer experiment 
was performed by Dr. Andreas W. Thomae. A) Right panel: representative immunofluorescent 

images upon GST and dCenpC knockdown. Cells were stained with mouse anti-HP1a C1A9, 

rat anti-HMR 2C10 and rabbit anti-dCenpA (Actif Motif). Scale bars represent 5 uM. Left panel: 

quantification of centromeric and only heterochromatic localization of HMR. Localization was 

considered heterochromatic if less than 20% of centromeres in a cell colocalized with HMR. 

Error bars represent standard deviation. 2 independent experiments were performed, 50 cells 

quantified in each. B) Western blotting against dCenpC, HMR and Lamin upon GST and 
dCenpC RNAi. Rabbit anti-dCenpC, rat anti-HMR 2C10 and mouse anti-Lamin antibodies 

were used. 

  

 

Fig. 2.34. A) ChIP enrichment of HMR upon GST and dCenpC RNAi. B) ChIP enrichment 

(fold) of HMR upon GST and dCenpC RNAi in different replicates. Paired t-test was used for 

statistical analysis. Rat anti-HMR 2C10 antibody was used for ChIP-sequencing. 
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number of D1 protein domains, which are located specifically at 

pericentromeres (Blattes et al., 2006) (Fig. 2.35 B), did not exhibit declustering.  

 

 

 

 

2.7.2 dCenpC N-terminus is not necessary for HMR and centromere clustering. 

 In order to rescue the phenotype of HMR and dCenpA declustering, we 

generated a construct of Flag-HA-tagged dCenpC, resistant to 2 dsRNAs. We 

were unable to clone the construct without mutations because of bacterial anti-

selection, so for our study we chose a plasmid with 2 mutations in RNAi-

resistant dCenpC (Fig. 2.36 A). We also generated 2 mutant deletion 

constructs, one lacking C-terminus, the other – N-terminus. All full-length and 

Fig. 2.35. A) Distributions of numbers of centromeric foci upon GST and dCenpC RNAi. * - p-

value<0.05. Rat anti-dCenpA 7A2 antibody was used for staining. Since dCenpA staining is 

reduced upon dCenpC RNAi, different exposures were used for recording images upon GST 

and dCenpC RNAi. B) Left panel: distributions of D1 foci number upon GST and dCenpC 

RNAi. N.s. – non-significant. Right panel: representative images of D1 staining. Rabbit anti- 

D. simulans D1 antibody was used. Scale bars represent 5 uM. For statistical analysis in A 
and B a common linear model including means of foci number for each replicate was fitted 

(formula: Value=Replicate+Condition*Domain).  2 independent experiments were performed, 

30-50 cells quantified in each. 
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deletion constructs showed correct expression pattern on western blotting upon 

dCenpC RNAi and transient transfection (Fig. 2.36 B). As described previously 

(Heeger et al., 2005), N-terminal deletion mutant localized to centromeres, 

whereas C-terminal deletion mutant not (Fig. 2.37). 

 
Fig. 2.36. A) Upper panel: scheme of dCenpC (was taken from (Heeger et al., 2005)) and RNAi-

resistant dCenpC constructs used for rescue experiments. R – arginine-rich domain; DH – a 

conserved Drosophila dCenpC region, AT1/2 – predicted AT-hooks; NLS – nuclear localization 

signal; C – CenpC motif; C-term – metazoan-like C-terminus. Bottom panel: Scheme of the 

rescue experiment. B) Western blotting against dCenpC, HMR and Lamin upon GST and 

dCenpC RNAi, as well as transient transfection of RNAi-resistant dCenpC proteins. Rabbit anti-
dCenpC, rat anti-HMR 2C10 and mouse anti-Lamin antibodies were used. 

 

 Upon dCenpC RNAi and transient transfection, full-length and N-

terminal deletion mutant rescued HMR centromeric localization and partially 

rescued centromere declustering, whereas C-terminal deletion mutant did not 

(Fig. 2.37, 2.38 A and B).  



	 63 

 

 

Fig. 2.37. Representative immunofluorescence images upon GST and dCenpC RNAi, as well 

as transient transfection of different RNAi-resistant dCenpC constructs. Mouse anti-HA 

12CA5, rabbit anti-dCenpA (Actif Motif) and rat anti-HMR 2C10 antibodies were used for 

staining. 
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Fig. 2.38. A) Quantification of centromeric and non-centromeric localization of HMR. 

Localization was considered non-centromeric if less than 20% of centromeres in the cell 

colocalized with HMR. Linear model on centromeric fractions for each replicate with formula 

Value=Condition+Replicate was fit for statistical analysis. Error bars represent standard 

deviation. 2 independent experiments were performed, 40-50 cells quantified in each. B) 

Distributions of numbers of centromeric foci upon GST and dCenpC RNAi, as well as transient 

transfection of different RNAi-resistant dCenpC constructs. Rat anti-dCenpA 7A2 antibody 
was used for staining. Since dCenpA staining is reduced upon dCenpC RNAi, different 

exposures were used for recording images upon GST and dCenpC RNAi. Linear model on 

mean values for each replicate with formula Value=Condition+Replicate was fit for statistical 

analysis. 2 independent experiments were performed, around 40 cells quantified in each. N.s. 

– non-significant, * - p-value<0.05, ** - p-value<0.01, *** - p-value<0.001. 
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2.8 Condensins and cohesins reside in proximity to HMR and 

CAP-H2 binding to chromatin is reduced upon HMR+LHR 

overexpression. 

 Interestingly, among protein networks identified in HMRAP vs APEXNLS 

pulldowns, we found condensin and cohesin complexes. This is particularly 

interesting because Hmr mutant larvae were shown to have mitotic defects in 

brain cells similar to cohesin knockouts, and hybrids between D. melanogaster 

and D. simulans, where HMR is known to be overexpressed, exhibit brain cells’ 

phenotypes (under certain conditions) reminiscent of problems with 

chromosome condensation (Blum et al., 2017; Bolkan et al., 2007). Our 

proximity labeling results suggested that there is a direct molecular link 

between HMR and condensins/cohesins. 

 

2.8.1 HMR peaks overlap with Rad21 and CAP-H2 peaks.  

We took advantage of the ChIP-sequencing data of cohesin subunit 

Rad21 (vtd) and condensin subunit CAP-H2 in Kc167 cells (Van Bortle et al., 

2014), as well as HMR in S2DGRC cells (Gerland et al., 2017), and compared 

these ChIP-sequencing profiles. Interestingly, HMR peaks overlapped well with 

Rad21 peaks (51%), and to a lesser degree with CAP-H2 peaks (20%) (Fig. 

2.39 A). We also took advantage of the HMR ChIP-sequencing data upon HMR 

and LHR overexpression (HMROVER) (Cooper et al., 2019), and determined the 

peak overlap of HMROVER with Rad21 and CAP-H2 (Fig. 2.39 A). We found out, 

that approximately 57% of HMROVER-binding sites overlapped with Rad21 and 

33% with CAP-H2 binding sites. Strikingly, upon overexpression HMROVER 

occupies nearly one-third (28.4%) of all genome-wide condensin binding sites.  
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We next plotted the distribution of HMR/Rad21/CAP-H2 binding sites 

across different genomic features and chromatin colors using the 5-state model 

(Filion et al., 2010). We found out, that HMR/Rad21 and HMR/CAP-H2 sites 

were mainly localized at promoters, and HMR/CAP-H2 sites were mainly 

localized at active and HP1a chromatin types (Fig. 2.39 B). 

 

2.8.2 CAP-H2 resides at class I HMR binding sites but resides at other class 

upon HMR overexpression.  

Previously, HMR binding sites were classified into two groups: class I 

borders HP1a at promoters of actively transcribed genes, and class II 

colocalizes with gypsy insulators, defined by the presence of insulator proteins 

Su(Hw), Cp190 and mod(mdg4). Notably, when we aligned the ChIP-

Fig. 2.39. A) overlap of HMR or HMROVER peaks with Rad21 and CAPH2 peaks. B) Distribution 

of  HMR, HMR/Rad21 and HMR/CAPH2 peaks across different genomic features and different 

chromatin colors.  
  

 



	 67 

sequencing signals in the form of a heatmap, we found that CAP-H2 

predominantly localizes to class I binding sites, and Rad21 does not display a  

preference for either class I or class II sites. However, if we compare Rad21 

and CAP-H2 binding profiles upon HMR native conditions with the one of 

HMROVER, CAP-H2 goes to the HMROVER binding sites which do not belong to 

class I (Fig. 2.40).  

 
Fig. 2.40. Heatmaps of HMR, HMROVER, HP1a, Rad21 and CAPH2 binding profiles and TAD 

separation score. Peaks are sorted by HP1a signal.   
  
 



	 68 

 

2.8.3 HMR colocalizes with TAD boundaries. 

 Cohesins and condensins, known to play a role in nuclear organization, 

were shown to cluster at TAD boundaries (Van Bortle et al., 2014). We thus 

wondered, whether HMR also resides there. We aligned HMR ChIP-

sequencing signal with the TAD separation score (Ramirez et al., 2018). The 

minima in the score (blue on the heatmap) represents a TAD boundary, while 

the maxima in the score (red on the heatmap) represents a “TAD peak”. 

Interestingly, HMR binding sites often colocalized with minima in TAD 

separation score (Fig. 2.40, 2.41). Moreover, upon HMR overexpression more 

HMR peaks colocalized with TAD boundaries. Thus, HMR resides at the 

genome sites, which are important for 3D organization of the nucleus. 

 

2.8.4. HMR+LHR overexpression results in reduced CAP-H2 binding to 

chromatin. 

HMR resides in proximity to condensins. HMR peaks overlap with CAP-

H2 peaks. Hybrids, where HMR and LHR are overexpressed, exhibit possible 

problems with chromosome condensation. We thus wondered about the effect 

of HMR+LHR overexpression on CAP-H2 binding sites. We induced expression 

Fig. 2.41. Composite plot of HMROVER, Rad21 

and CAPH2 ChIP-sequencing profiles, as 

well as TAD separation score.  
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of proteins in stable cell line expressing Flag-HA-HMR+Myc-Lhr (Thomae et al., 

2013), as well as induced control untransfected cells, and measured genome-

wide binding of CAP-H2 by ChIP-sequencing. We found, that CAP-H2 signal 

was reduced upon HMR+LHR overexpression (Fig. 2.42, 2.43 A). This was 

prominent both at HMR-bound and HMR-unbound sites, as judged by the 

pooled HMR ChIP-seq profile (Fig. 2.43 B). 

In agreement with previous data, our CAP-H2 ChIP-seq showed CAP-

H2 localization to TAD boundaries (Fig. 2.44 A). Fig. 2.44 B shows log2 Hi-C 

counts, as well as log2 ratio of observed versus expected Hi-C counts at sites, 

bound by CAPH2 and HMR, as well as by CAPH2 alone. As seen by the high 

observed versus expected Hi-C counts ratio at cross-projections of both types 

of sites, CAPH2-HMR bound sites on average likely contact CAPH2-only bound 

sites. This happens at TAD boundaries (Fig. 44 B). Thus, we hypothesize a 

direct effect of HMR on CAP-H2.  

 

 
 

Fig. 2.42. Genomic tracks of CAP-H2 ChIP 

showing a region of right arm of chromosome 3.  

 



	 70 

 
	

	
	
	
	
	
	
	
	
	
	
	

Fig. 2.43. Upper panel: ChIP enrichment of CAP-H2 in control and HMR+LHR overexpression.  

Lower panel: ChIP enrichment of CAP-H2 in control and HMR+LHR overexpression in 

different replicates. Paired t-test was used for statistical analysis. Rabbit anti-CAP-H2 antibody 

was used for ChIP-sequencing. 
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Fig. 2.44. A) averaged Hi-C maps at CAP-H2, HMR and randomly shifted CAP-H2 (as a 
control) peak centers. B) Averaged Hi-C maps at pairs of sites. Observed (Obs): Hi-C contact 

frequency, expected (Exp): average contact frequency as a function of genomic distance. Hi-

C data were taken from (Ramirez et al., 2015). 
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2.9 Condensins and cohesins are not required for HMR´s 

localization to heterochromatin. 

 Since we found and confirmed that HMR localizes in proximity to 

condensins and cohesins, as well as showed HMR+LHR overexpression effect 

on CAP-H2, we wondered whether cohesin and condensin proteins 

analogously to dCenpC might contribute to centromeric residence of HMR. We 

performed RNAi of cohesin subunits Rad21 and SMC1 and condensin subunits 

CAP-H2 and SMC2 and measured HMR localization to centromere. It was not 

affected, suggesting that cohesins and condensins do not dramatically 

contribute to the centromere architecture (Fig. 2.45, 2.46 A and B). 

 

Fig. 2.45. Condensin and cohesin RNAi does not result in HMR mislocalization from the 

centromere. Representative immunofluorescent images upon GST, cohesin subunits Rad21 

and SMC1 and condensin subunits CAPH2 and SMC2 knockdown. Cells were stained with 

mouse anti-HP1a C1A9, rat anti-HMR 2C10 and rabbit anti-dCenpA (Actif Motif) antibodies. 

Different exposures for dCenpA and HP1a might have been recorded. 
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Fig. 2.46. Condensin and cohesin RNAi does not result in HMR mislocalization from the 

centromere. A) quantification of centromeric and only heterochromatic localization of HMR. 

Localization was considered only heterochromatic if less than 20% of centromeres in the cell 

colocalized with HMR. Error bars represent standard deviation. B) verification of cohesins and 

condensins knockdown by RT-qPCR. Error bars represent standard deviation. Primers are 

available in Table 4. 
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3 Discussion. 

3.1 The structure of the chromocenter is more complex than 

thought before. 

 In this thesis my collaborators and I revealed a much more complex 

structure of the chromocenter than was described before. Previously it was 

considered that centromere is a round structure of dCenpA-containing 

chromatin. We together with (Anselm et al., 2018) showed the interdigitation 

between domains of different proteins.  

 

 Using the CRISPR cell line, where HMR is tagged with FLAG at C-

terminus (Gerland et al., 2017), we confirmed HMR localization to the 

centromeres. Interestingly, HMR was associated not with all centromeres 

(Thomae et al., 2013) but only with a subset. It might reflect the cell-cycle 

regulation as well as specific localization of HMR to a subset of chromosomes 

(similar, for example, to the POF protein which associates with 4th chromosome 

only (Larsson et al., 2001)). 

 We investigated the structure of the chromocenter with high-resolution 

STED microscopy using antibodies directed against HMR, dCenpA and 

dCenpC. Strikingly, the experiments revealed that centromere is not a blob of 

dCenpA containing chromatin, but a very complex structure consisting of 

interdigitating domains containing individual proteins. Our experiments 

revealed a substantial, but not complete, colocalization between dCenpA and 

dCenpC, and less colocalization between HMR/dCenpA and HMR/dCenpC. 

 It was unexpected that dCenpA and dCenpC domains do not overlap 

completely. dCenpA incorporation drastically depends on dCenpC (Erhardt et 

al., 2008), the only known protein of CCAN in Drosophila except dCenpA (Barth 

et al., 2014). Possibly, dCenpC contributes to dCenpA incorporation indirectly, 

for example by maintaining a proper structure of the centromeric chromatin. 

Alternatively, dCenpA incorporation might start at sites of its colocalization with 

dCenpC and might then spread to adjacent sites already independent of 

dCenpC. One more possibility is that individual centromeric domains are very 

dynamic and only partially overlap at a particular time point. 
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 Lack of mutual colocalization of HMR and dCenpA is in agreement with 

previous results that HMR does not influence dCenpA incorporation (Thomae 

et al., 2013) and is not found in dCenpA affinity pulldowns (Barth et al., 2014). 

 In agreement with numerous previous reports, we find centromeres to 

be embedded in HP1a-containing chromatin. Strikingly, upon confocal 

microscopy of HP1a and STED microscopy of HMR and dCenpA, we find that 

HMR domains are often bordering dCenpA domains from HP1a. 

  

3.2 Exact molecular function of HMR remains unknown. 

Previously, HMR loss in cells and flies has been associated with defects 

in mitosis (Blum et al., 2017; Thomae et al., 2013), upregulation of transposable 

elements (Satyaki et al., 2014; Thomae et al., 2013), as well as with influence 

on gene expression (Gerland et al., 2017; Thomae et al., 2013) and telomere 

length (Satyaki et al., 2014). 

In more detail, the mitotic defects in HMR-deficient larval brains – broken 

chromosomes - resemble problems with chromosome cohesion (Blum et al., 

2017). In the brains of hybrid larvae, where HMR together with its partner 

protein LHR is known to be overexpressed (Thomae et al., 2013), 

chromosomes were reported to be uncondensed and fuzzy (Orr et al., 1997). 

This was proposed to be an artifact, since larval brains treated not with 

physiological salt solution but with Schneider medium retained condensed 

chromosomes (Bolkan et al., 2007). However, one might argue that this is not 

an artifact, but just an enhancement of problems with chromosomal 

condensation which have started before but appear well in physiological salt 

solution. 

 Despite well described phenotypes and distribution in the cell both by 

immunofluorescence and ChIP-sequencing, the exact molecular mechanism 

by which HMR influences these phenotypes remains unknown. Simulating the 

hybrid situation of HMR+LHR overexpression, we have shown reduced 

condensin binding to chromatin upon these conditions, however the details of 

how HMR influences it remain to be investigated.  
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3.3 HMR might be bordering dCenpA chromatin from HP1a 

chromatin. 

 Previous ChIP-sequencing experiments revealed a substantial 

colocalization of HMR peaks with boundary factors (insulator proteins). At a 

subset of these sites HMR was found to border HP1a-containing chromatin at 

promoters of actively transcribed genes. It thus posed the question, whether 

HMR might serve a boundary function between two types of chromatin. The 

question was addressed by performing HP1a ChIP-sequencing upon HMR 

knockdown. The experiment did not reveal detectable HP1a spreading, 

however, importantly, HMR RNAi did not remove all the protein from its binding 

sites (Gerland et al., 2017). Thus, it will be of future interest to address the 

question in HMR knockout cells or flies. 

 Our experiments suggest that HMR domain, visible on 

immunofluorescent staining, might border centromeric chromatin, defined by 

dCenpA, from pericentric chromatin, defined by HP1a (Fig. 3.1). The 

suggestion comes from two sources of evidence: high-resolution microscopy 

and APEX2 ascorbate peroxidase proximity labeling.   

 
Fig. 3.1. HMR border inside the chromocenter (red, right panel), separating dCenpA from HP1a, 

is the novelty in our chromocenter model. In the old model dCenpA was thought to be directly 

embedded in HP1a chromatin (left panel). The concept of the chromocenter is taken from 

(Jagannathan et al., 2018). 
 Besides STED microscopy, HMRAP proximity proteome turned out to 

include both heterochromatic proteins and centromeric proteins, the latter 

forming a cluster on the HMRAP proximity STRING network (Fig. 2.13). In the 

network we also found proteins, which indirectly point to centromeric chromatin, 

such as factors involved in basal and active transcription (Fig. 2.13). 
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Accordingly, centromeres were reported to be transcribed both during 

interphase and mitosis (Bobkov et al., 2018; Rosic et al., 2014). Moreover, in 

GO-term analysis of HMRAP proximity proteome we find proteins associated 

with both “active” and “inactive” histone modifications. 

 This evidence in support of HMR localizing to the border between 

dCenpA and HP1a chromatins is interesting, since such a boundary between 

centromeric and pericentromeric chromatins was previously reported in fission 

yeast (Scott et al., 2006), but not in higher eukaryotes (to our knowledge). The 

existence of such a boundary in Drosophila was proposed by Olszak et al. 

(Olszak et al., 2011), and localization of HMR to it was suggested by Gerland 

et al. (Gerland et al., 2017). Given such HMR localization, it is tempting to 

speculate about its possible boundary function both at genome-binding sites 

and between centromeric and pericentric chromatins. The latter still remains to 

be tested in future experiments. 

 

3.4 dCenpAAP and HMRAP proximity proteomes form STRING 

networks. 

 We tried to identify clusters, using the STRING tool, in collections of 

nuclear proteins enriched in dCenpAAP, HMRAP and HP1aAP, but not APEXNLS 

pulldowns. HP1aAP pulldowns  from all three time points did not reveal many 

proteins enriched against APEXNLS, and gave very few distinguishable STRING 

clusters. 

 dCenpAAP and HMRAP pulldowns, in contrast to HP1aAP, formed 

STRING networks with distinguishable clusters. Interestingly, some of the 

dCenpAAP and HMRAP clusters belonged to the same group of proteins. For 

example, proteins related to transcription, nucleolus, replication, centromere 

and nuclear pore.  

The finding of proteins involved in transcription in both STRING networks 

is in agreement with previous investigations, since transcription was reported 

at centromeres (Bobkov et al., 2018; Erhardt et al., 2008) and HMR was 

reported to bind at promoters of actively transcribed genes. 
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Although we found centromeric proteins in proximity to both dCenpAAP 

and HMRAP, these are different centromeric proteins except dCenpC, prod and 

LHR. This suggests that different centromeric proteins are accessible for 

biotinylation by different baits, and possibly, belong to different sub-centromeric 

structures. 

Interestingly, some of the clusters were found only in dCenpAAP or in 

HMRAP network. Proteins involved in RNAi were only enriched in dCenpAAP 

network. RNAi was shown to be important for heterochromatin formation in 

Drosophila and yeast (Dawe, 2003; Riddle and Elgin, 2008; Yang et al., 2018), 

and heterochromatin was shown to be important for the centromere formation 

in yeast. However, RNAi components were not previously (to our knowledge) 

found at dCenpA chromatin, and our results point to such possibility. 

Alternatively, RNAi components in heterochromatin were biotinylated because 

of being close to dCenpA chromatin. 

HMRAP, but not dCenpAAP pulldowns, included Polycomb proteins, 

boundary factors (which is consistent with previous report about HMR 

colocalization with insulator proteins (Gerland et al., 2017)), nucleosome 

remodelers and cohesin/condensin complex. It is expectable that HMRAP 

network turned out to be broader than dCenpAAP network, since HMR localizes 

not only to centromeres, but also to other nuclear structures. 

 

3.5 dCenpC clusters HMR and centromeres. 

 dCenpC was shown to be a bona fide interactor of both dCenpA (Barth 

et al., 2014; Erhardt et al., 2008) and HMR (Thomae et al., 2013). Interestingly, 

we also found dCenpC in proximity to both proteins.  

Anti-HMR antibody gives a strong centromeric and very weak 

heterochromatic staining. We showed that dCenpC RNAi results in only 

heterochromatic localization of HMR. Thus, dCenpC is required for the 

architecture of the chromocenter not only by being necessary for dCenpA 

incorporation, but also by maintaining proper localization of HMR. Since HMR 

is dispersed on many binding sites in the genome and at the same time gives 

a strong centromeric staining on immunofluorescence, we hypothesized that 
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dCenpC clusters HMR binding sites at the centromeres. To test it, we 

performed ChIP-sequencing of HMR upon dCenpC RNAi, and did not detect 

prominent change of HMR binding sites. Thus, dCenpC clusters HMR near the 

centromeric region.  

We also detected declustering of centromeres, but not pericentric 

chromatin upon dCenpC RNAi. This suggests that centromeres’ architecture 

has a limited effect on the architecture of pericentric heterochromatin.  

Interestingly, by performing rescue experiments with full length RNAi-

resistant dCenpC and protein deletion mutants, we found out that full length 1-

1411 and C-terminal 558-1411 proteins rescued HMR and partially rescued 

centromere clustering, while N-terminal 1-1038 2xNLS protein did not show 

rescue. Since C-terminal mutant localizes to centromeres and N-terminal not, 

this suggests that centromeric localization of dCenpC is necessary for both 

clustering the centromeres and the near-centromeric HMR border (Fig.3.2). 

 

 
Fig. 3.2. dCenpC RNAi results in dCenpA declustering and diffusion of HMR border into HP1a 

chromatin. Full length and C-terminal RNAi-resistant (RR) constructs rescue HMR localization 

and – partially – centromere clustering. N-terminal RR construct does not rescue. The concept 

of the chromocenter is taken from (Jagannathan et al., 2018). 
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3.6 HMR association with condensins and cohesins might 

point to its function in pure species as well as hybrids. 

 It was striking to find both cohesin and condensin complexes in the 

STRING network of HMRAP proximity proteome, since phenotypes of HMR 

knockouts and overexpression were reminiscent of those observed upon 

perturbation of cohesin and condensin levels (Blum et al., 2017). 

 To further unravel molecular details of HMR colocalization with cohesins 

and condensins, we compared the available ChIP-sequencing profiles of 

cohesin subunit Rad21, condensin subunit CAP-H2 and HMR (Gerland et al., 

2017; Van Bortle et al., 2014). Interestingly, we found HMR colocalization both 

with condensin and cohesin. Furthermore, this colocalization enhanced upon 

HMR and LHR overexpression (as determined by analysis of HMR ChIP-

sequencing at these conditions (Cooper et al., 2019)).  

 Interestingly, bioinformatic analysis showed that CAP-H2/HMR binding 

sites are enriched at promoters and active or HP1a types of chromatin. This is 

in agreement with the fact, that when HMR is not overexpressed, condensin 

subunit CAP-H2 localizes predominantly to HMR class I binding sites, where 

HMR is bordering HP1a at promoters of actively transcribed genes. Notably, 

upon HMR overexpression CAP-H2 colocalizes also with other class of HMR 

binding sites. Rad21 binding, in contrast, does not discriminate between native 

HMR class I and class II binding sites, the latter of which represent gypsy 

insulators defined by the presence of Cp190, Su(Hw) and mod(mdg4) 

(reviewed in (Gerland et al., 2017)).  

 Recently, HMR upon its overexpression with LHR was shown to localize 

to the binding sites of another speciation protein, GFZF. More than 20% of 

overexpressed HMR-binding sites are also bound by GFZF (Cooper et al., 

2019). It is thus tempting to speculate, that when HMR is overexpressed, 

HMR/GFZF and HMR/condensin / HMR/cohesin binding sites colocalize, and 

combination of HMR, GFZF and condensins/cohesins leads to hybrid lethality. 

However, this hypothesis remains to be tested both by bioinformatic analysis 

and cytological/mutational studies in flies. 
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3.7 HMR association with TAD boundaries might point 

towards its role in nuclear organization. 

 Being architectural proteins, condensins and cohesins were shown to 

cluster at TAD boundaries (Van Bortle et al., 2014). We thus hypothesized that 

HMR also resides there, and built a heat map of ChIP-sequencing signals and 

TAD separation score (Ramirez et al., 2018). We found that HMR indeed often 

colocalizes with TAD boundaries. Similar to colocalization with cohesins and 

condensins, this colocalization enhances when HMR is overexpressed.  

 It is noteworthy to mention, that there is an obvious discrepancy between 

hundreds of HMR-binding sites all over the genome and very focused 

immunofluorescent staining near the centromere. This discrepancy might be 

explained by two scenarios. In the first, HMR sites detected in ChIP-sequencing 

are distributed all over the nucleus and not detected by immunofluorescence 

since they are not focused together. Sites bound near the centromere, in turn, 

might be difficult to map in ChIP-sequencing experiments since they might be 

repetitive. In the second scenario, some of genome-wide binding sites of HMR 

at boundary elements, including TAD boundaries, cluster together in 3D to form 

a border between dCenpA and HP1a chromatin (Fig. 3.3). 

 
Fig. 3.3. Two models of HMR-occupied TAD boundaries positioning. Left panel: They are 

distributed all over the nucleus and not detected by immunofluorescence. HMR sites at the 

chromocenter are repetitive elements not mapped in ChIP-seq experiments. Right panel: TAD 

boundaries occupied by HMR are clustered at the chromocenter.  
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  Quite some results already point to the role of cohesins in the formation 

of TADs, which is most probably happening by loop extrusion (reviewed in 

(Fudenberg et al., 2018)). It might be tempting to speculate that HMR, important 

for chromosome cohesion, might also contribute to the formation of TADs and 

3D structure of the nucleus. In fission yeast, localization of tRNA border genes 

near the centromere is dependent on condensin (Iwasaki et al., 2010). It thus 

was logical to investigate, whether condensins/cohesins were important for 

HMR domain formation between dCenpA and HP1a domains, as well as 

chromocenter architecture and centromere clustering. However, cohesin and 

condensin knockdown did not affect HMR localization to centromere and did 

not have a dramatic effect on clustering of centromeres. 

 

3.8 HMR+LHR overexpression reduces condensin binding to 

chromatin. 

 Native HMR ChIP signal and CAP-H2 signal seemed to be mutually 

exclusive at class II binding sites. Moreover, there are possible chromosome 

condensation defects in hybrid flies, where HMR+LHR were shown to be 

overexpressed. We thus wondered what happens to condensin binding sites 

upon HMR+LHR overexpression. 

 We addressed the question by ChIP-sequencing of CAP-H2 upon these 

conditions and found that HMR+LHR overexpression reduced condensin 

binding to chromatin. Interestingly, this happened at both HMR-bound and –

unbound sites, but the unbound ones at TAD boundaries on average contacted 

the bound ones. This suggests, that HMR effect on CAP-H2 might be direct. 

For example, HMR could destabilize condensin at certain high concentrations 

of HMR molecules. It is also possible that HMR and condensin are mutually 

exclusive at particular context, e.g. class II binding sites. It is unlikely that these 

proteins are completely mutually exclusive, because in this scenario we would 

not have found condensin in proximity to HMRAP.   

 Since condensin was shown to be important for the structure of mitotic 

chromosomes (reviewed in (Skibbens, 2019)), it is logical that HMR+LHR 

overexpression was shown to lead to mitotic defects (Thomae et al., 2013). 



	 83 

 It is tempting to speculate, that the same reduction of condensin binding 

happens in hybrids, where HMR and LHR are overexpressed. This, in turn, 

might lead to observed chromosome condensation defects and hybrid lethality. 

3.9 Implication of proximity labeling results to understanding 

of speciation. 

 Apart from cohesin and condensin, we found several proteins in 

proximity to HMR, which were reported to play a role in speciation or which 

could potentially do it. 

 Speciation proteins LHR and GFZF reside in proximity to HMR, and it 

would be interesting to perform proximity biotinylation with LHR and GFZF 

APEX2 fusions. An overlap between proximities of three speciation proteins 

could potentially contain other so far unknown speciation factors. 

 It was also interesting to find prod in proximity to HMRAP. Since prod 

binds to D. melanogaster specific repeat {AATAACATAG}n and plays a role in 

chromocenter formation (Jagannathan et al., 2019), it might be that its binding 

in D. melanogaster/D. simulans hybrids is compromised, which might in turn 

result in problems with hybrid chromocenter formation. 

 Finally, it would be worth to mention, that Hmr2 mutant, which saves 

hybrids, has an impaired centromeric localization (Aruna et al., 2009; Thomae 

et al., 2013). It is tempting to speculate, that centromeric localization of HMR in 

hybrids leads to their infertility and lethality.  

Interestingly, some nuclear membraneless organelles, for example 

heterochromatin, have been shown to form by phase separation (Larson et al., 

2017; Strom et al., 2017). It would be tempting to speculate, that parts of 

centromere, as membraneless organelles, also form by phase separation. 

Proximity labeling might be an important tool in studying membraneless 

organelles, since it captures not only interactions, but also the proximity of the 

bait. It would be tempting to suggest, that problems in D. menanogaster/D. 

simulans hybrids result from impaired formation of centromeric HMR phase-

separated domain. Investigating the proximity of HMR therefore might help in 

understanding the biology of HMR phase-separated organelle. It would be of 
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future interest to test the hypothesis about liquid droplets’ formation impairment 

in fly hybrids. 

 

3.10 Proximity labeling requires individual conditions’ 

adaptation for every protein. 

 APEX2 proximity labeling technology has for the first time, to our 

knowledge, been applied to chromatin proteins in Drosophila tissue culture 

cells. It is noteworthy to mention, that different proteins in the nucleus have 

different expression levels and different biophysical characteristics. Thus, 

respective APEX2 fusions might require different conditions of biotinylation.  

 This indeed turned out to be true, since we had to apply different biotin-

phenol concentrations for different protein fusions (5 mM for HMRAP and 

dCenpAAP in contrast to 0.5 mM for HP1aAP and APEXNLS), as well as carefully 

titrate the labeling time (for HP1aAP). This points to the fact, that the technique 

might not always be suitable for the high-throughput studies, and requires 

careful “calibration” for every potential protein. 

 

3.11 Validation and specificity of proximity labeling. 

 We validated the usability of proximity labeling technique. Firstly, we 

performed immunofluorescence of 4 factors found in proximity to HP1aAP and 

HMRAP. Secondly, we measured distributions of median distances from 

HMR/HP1a peaks to peaks of proteins found in proximity and anti-proximity of 

HMRAP and HP1aAP.  Proteins in proximity to HMRAP and HP1aAP turned out to 

locate closer to HMR and HP1a than proteins in anti-proximity. An important 

part of validation was unraveling the functional link between HMR+LHR 

overexpression and reduced CAP-H2 binding to chromatin. Condensin is found 

only in proximity to HMR, but not in HMR IP. Thus, APEX2 labeling technique 

can point to functional links not captured by conventional IP-MS. 

The APEX2 labeling technique demonstrated, that specificity, and thus, 

the quality of labeling might depend on individual protein fusions, in particular 

on their biology. HMR protein has several DNA-binding domains, and thus most 
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probably tightly associates with chromatin. HP1a, in contrast, has not only 

chromatin-bound, but also highly mobile fraction floating around the nucleus 

(reviewed in (Straub, 2003)). It thus seems logical, that dCenpAAP and HMRAP 

proteomes turned out to be rather specific in contrast to a lot of background in 

HP1aAP labeling.  

 One more reason why HP1aAP proteome after 25 minutes of labeling 

turned out to be less specific is mislocalization of HP1aAP fusion. This 

mislocalization is not due to the effect of H2O2 on heterochromatin integrity, 

since in unlabeled cells HP1aAP still forms a focused domain. 

	 	

To summarize, in this thesis my collaborators and I significantly improved our 

understanding of the structure of the chromocenter, using STED microscopy 

and APEX2 proximity labeling. We validated our proteomic approach and 

performed follow-up studies on dCenpC and condensin, found in proximity to 

HMR/dCenpA and HMR respectively. We defined the role of dCenpC as an 

architectural protein of the chromocenter. Moreover, we pointed to the 

molecular mechanisms by which HMR might cause problems with chromosome 

condensation in hybrids.  
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4 Materials and Methods. 

4.1 Materials. 

4.1.1 Constructs.  

Construct Comment Source 

Flag-HA-APEX-2xNLS/pMT Hygro cloned this study 

Myc-HMR-APEX/pMT Hygro cloned this study 

Myc-dCenpA-APEX/pMT Hygro cloned this study 

Flag-HA-HP1a-APEX/pMT Hygro cloned this study 

GST-APEX/pGEX-6P-1 cloned this study 

Flag-HA-His-SUMO/pMT Hygro vector used 

for cloning 

unpublished construct from 

Imhof lab 

Myc-Dmel HMR/pMT Hygro vector used 

for cloning 

Thomae et al, 2013 

GST-HMR2-233/pGEX-6P-1 vector used 

for cloning 

unpublished construct from 

Imhof lab 

Flag-HA-HP5/pMT Hygro cloned this study, by Dr. Andreas W. 

Thomae 

Flag-HA-ADD1/pMT Hygro cloned this study, by Dr. Andreas W. 

Thomae 

Flag-HA-XNP/pMT Hygro cloned this study, by Dr. Andreas W. 

Thomae 

Flag-HA-CG8108/pMT Hygro cloned this study, by Dr. Andreas W. 

Thomae 

Flag-HA RR dCenpC41H979E/pMT Hygro cloned this study 

Flag-HA RR dCenpC 1-1038 2xNLS/pMT Hygro cloned this study 

Flag-HA RR dCenpC 558-end/pMT Hygro cloned this study 

 
Table 1. Constructs used for cloning and cloned in this study. 
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4.1.2 Primers. 

Primer Sequence Contruct 

NotI_APEX_forw2 TACGCCGGCGGCCGCAAGGGAAAGTCTTAC Flag-HA-APEX-NLS/pMT 

Hygro 

APEX-2xNLSrev3.1 tcttcttcggtccaccgccgaccttccgcttcttcttcggGGCAT

CAGCAAACCC 

Flag-HA-APEX-NLS/pMT 

Hygro 

APEX-2xNLSrev3.2 GGATCCTCTAGATCAgaccttccgcttcttcttcggtcca Flag-HA-APEX-NLS/pMT 

Hygro 

MycNotI_Hmr_fw AGGATCTGGGCGGCCGCGAGGAGGAGCCT

GTTGC 

Myc-HMR-APEX/pMT Hygro 

endHmr_APEX_fw AATCCGCCACCGCCTAAGGGAAAGTCTTAC Myc-HMR-APEX/pMT Hygro 

stop-APEXnew CACCGGATCCTCTAGATCAGGCATCAGC Myc-HMR-APEX/pMT Hygro; 

Flag-HA-HP1a-APEX/pMT 

Hygro; Myc-dCenpA-

APEX/pMT Hygro 

MycNotI_CID_fw AGGATCTGGGCGGCCGCCCACGACACAGC

AGA 

Myc-dCenpA-APEX/pMT 

Hygro 

endCID-APEX_fw CGGGGTCGGCAATTTAAGGGAAAGTCTTAC Myc-dCenpA-APEX/pMT 

Hygro 

HP1-APEX-fw TCTGATAATGAAGATGACTACAAGGATGAC Flag-HA-HP1a-APEX/pMT 

Hygro 

APEX-HP1rv-new TCTGATAATGAAGATAAGGGAAAGTCTTAC Flag-HA-HP1a-APEX/pMT 

Hygro 

Not-HP1-fw ATTACGCCGGCGGCCGCGGCAAGAAAATC Flag-HA-HP1a-APEX/pMT 

Hygro 

EcoR1.APEX.fw.ne

w 

GATCCCCGGAATTCAAGGGAAAGTCTTACC

CAACTGTGAG 

GST-APEX/pGEX-6P-1 

Not1.APEX.rev.new TCACGATGCGGCCGCTTAGGCATCAGCAAA

C    

GST-APEX/pGEX-6P-1 

NotI_CenpC_fw2 TACGCCGGCGGCCGCATGTCGAAGCCCC RNAi-resistant Flag-HA-

CenpC/pMT Hygro; RNAi-



	 88 

resistant Flag-HA-CenpC 1-

1038 2xNLS/pMT Hygro 

CenpC fr1_rev2 GCGCATCATAAAGGC RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC fr1-

overh_fr2_fw2 

GCCTTTATGATGCGCAAACTGGCTGAGAAC  RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC fr2_rev2 CTTTTCGGTACAGGG RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC fr2-

overh_fr3_fw2 

CCCTGTACCGAAAAGCAAAAAGAGGAAGTT

GC 

RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC fr3_rev TTCGGAATGCGG RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC fr3-

overh_fr4_fw2  

TACCGCATTCCGAAAGCCTGGGATTGAG RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC fr4_rev  CTTGGCCTGCTTC RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC fr4-

overh_fr5_fw2  

GAAGCAGGCCAAGGTCCATCCACTTAAAC RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

XbaI_CenpC_rev2  GGATCCTCTAGACTAACTGCGTATACAC  RNAi-resistant Flag-HA-

CenpC/pMT Hygro; RNAi-

resistant Flag-HA-CenpC 

558-end/pMT Hygro 

CenpC_DM_fw  GCGCGGCCGCCCCAAAAAAGCCGTGGGCG

G 

RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

CenpC_DM_rev  CCGCCCACGGCTTTTTTGGGGCGGCCGCG

C 

RNAi-resistant Flag-HA-

CenpC/pMT Hygro 

NLS_RRCenpC_10

38rev    

tcttcttcggtccaccgccgaccttccgcttcttcttcggACGCT

GCAAAAACTC 

RNAi-resistant Flag-HA-

CenpC 1-1038 2xNLS/pMT 

Hygro 

NotI_RRCenpC_55

8_fw  

TACGCCGGCGGCCGCATGCTACGTAGAAAT

CTAATG 

RNAi-resistant Flag-HA-

CenpC 558-end/pMT Hygro 

 
Table 2. Primers used for cloning in this study. 
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Primer name dsRNA Source Primer sequence  5'->3' 
Cenp-C_1_fw Cenp-C_1 This study TTAATACGACTCACTATAGGGAGACAAGCTTGCC

GAAAATAAGCCGG 

Cenp-C_1_rev Cenp-C_1 This study TTAATACGACTCACTATAGGGAGATTTCTCTGTGC

AAGGTGTGCTGCTTATTTC 

Cenp-C_2_fw Cenp-C_2 This study TTAATACGACTCACTATAGGGAGAATCCCTTGGC

CTGAGTACCTTGACGTG 

Cenp-C_2_rev Cenp-C_2 This study TTAATACGACTCACTATAGGGAGATTCGCTTGTTT

CATGCTACGTTTTTGGTATG 

GST_fw GST Thomae et al, 

2013 

TTAATACGACTCACTATAGGGAGAAGTTTGAATTG

GGTTTGGAGTTTCC 

GST_rev GST Thomae et al, 

2013 

TTAATACGACTCACTATAGGGAGAGGATGGTCGC

CACCACCAAACGTGG  

vtd.RNAi.fw vtd DRSC20839 TTAATACGACTCACTATAGGGAGATGGAAAGAAA

CTGGAGGTGTC 

vtd.RNAi.rev vtd DRSC20839 TTAATACGACTCACTATAGGGAGATCGTCACCCA

TTTCATGATT 

CAP-H2.RNAi.fw CAP-H2 DRSC14908 TTAATACGACTCACTATAGGGAGAGAGCACATGA

CCACAAAGGA 

CAP-H2.RNAi.rev CAP-H2 DRSC14908 TTAATACGACTCACTATAGGGAGATGCATTTGAAT

ATCGGAAAGC 

SMC1.RNAi.fw SMC1 DRSC16846 TTAATACGACTCACTATAGGGAGAAGCAAATGCT

GGAAGTGGAA 

SMC1.RNAi.rev SMC1 DRSC16846 TTAATACGACTCACTATAGGGAGAGACTCCAAAT

CGACCATACT 

SMC2.RNAi.fw SMC2 DRSC07544 TTAATACGACTCACTATAGGGAGATCCTTAATCGC

CTGTTCGAG 

SMC2.RNAi.rev SMC2 DRSC07544 TTAATACGACTCACTATAGGGAGATCGCGTTCAA

CAAAATGAAG  
 
Table 3. Primers used for dsRNA generation in this study. 
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Target mRNA Primer name Primer sequence 5'->3' Source 
vtd vtd_fw1  GGAAATATTGGCGAGATGGA This study 

vtd vtd_rev1 CCTTTTTGAAACGCCATTGT This study 

CAP-H2 CAP-H2_fw1  GCGGCAAGATCTATGGAGAC This study 

CAP-H2 CAP-H2_rev1  CTAGGGGTCTCCTTCTGCAA  This study 

SMC1 SMC1_fw1  GTCCTACCGCGGTCACATAG This study 

SMC1 SMC1_rev1  TCACGAAACTGATGGCATCC This study 

SMC2 SMC2_fw3 TCAAAACAAAGTGGGCGCC This study 

SMC2 SMC2_rev3 ACTTCATGACAGGCTCGTAA This study 

RpL32 ONTG233 RPL32 RT F GTTCGATCCGTAACCGATGT This study, 

thesis T. 

Gerland, 2017 

RpL32 ONTG234 RPL32 RT B CCAGTCGGATCGATATGCTAA This study, 

thesis T. 

Gerland, 2017 

Hmr ON223 Hmr RT fw 160 AATCGCTTGCGAAGAACACT This study, 

thesis T. 

Gerland, 2017 

Hmr ON224 Hmr RT rev 160 ACTGGCCGTGGACAAGTTAC This study, 

thesis T. 

Gerland, 2017 
 

Table 4. Primers used for RT-qPCR in this study. All primers were designed with Primer3. 

 

4.1.3 Cell lines. 

Cell line Selection 
Myc-dCenpA-APEX/pMT Hygro 100 ug/ml Hygromycin 

Myc-dCenpA-APEX/pMT Hygro clone 8 100 ug/ml Hygromycin 

Myc-Hmr-APEX/pMT Hygro 100 ug/ml Hygromycin 

Flag-HA-HP1a-APEX/pMT Hygro 100 ug/ml Hygromycin 

Flag-HA-HP1a-APEX/pMT Hygro clone 29 100 ug/ml Hygromycin 
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Flag-HA-APEX-2xNLS/pMT Hygro 100 ug/ml Hygromycin 

Flag-HA-HP5/pMT Hygro 100 ug/ml Hygromycin 

Flag-HA-ADD1-PA/pMT Hygro 100 ug/ml Hygromycin 

Flag-HA-XNP/pMT Hygro 100 ug/ml Hygromycin 

Flag-HA-CG8108/pMT Hygro 100 ug/ml Hygromycin 

 
Table 5. Cell lines, generated and used in this study. 

 

4.1.4 Antibodies. 

Primary antibody Source and (optionally) comments Dilution 
rat anti-HMR 2C10 Helmgoltz Zentrum, Thomae et al, 

2013 

WB, IF 1:25, STED 1:5, 

ChIP 1 ml/IP 

rat anti-APEX 20H10 Helmgoltz Zentrum, raised in this study WB, IF 1:50 

rat anti-dCenpA 7A2 Helmgoltz Zentrum IF 1:100, STED 1:50 

rabbit anti-dCenpA Actif Motif IF 1:500, STED 1:250 

mouse anti-HP1a 1:100 kind gift from Sarah Elgin WB, IF 1:100 

rabbit anti-dCenpC kind gift from Christian Lehner IF 1:5000, STED 1:1000 

mouse anti-FLAG Sigma M2, 1mg/ml IF 1:100 

rabbit anti-BubR1 kind gift from Claudio Sunkel IF 1:1000 

Streptavidin Alexa 555 Thermo Scientific IF 1:400 

rabbit anti-D1 kind gift from Harmit Malik IF 1:500 

rabbit anti-CAP-H2 kind gift from Giovanni Bosco ChIP 6 ul/IP 

mouse anti-HA 12CA5 Helmgoltz Zentrum IF 1:1000 

rat anti-HA 3F10 Helmgoltz Zentrum IF 1:100 

rabbit anti-GFZF kind gift from uNitin Phadnis WB 1:500 

Anti-rat bridging antibody  Dianova ChIP 6 ul/IP 

Secondary antibody Source and (optionally) 
concentration  

Dilution 

sheep anti-mouse IgG 

HRP Linked Whole Ab 

GE Healthcare WB 1:10000 
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donkey anti-rabbit IgG 

HRP Linked Whole Ab 

GE Helthcare WB 1:10000 

goat anti-rat IgG HRP 

Linked Whole Ab 

GE Helthcare WB 1:10000 

donkey anti-rabbit Alexa 

488 

Jackson ImmunoResearch IF 1:500 

donkey anti-rabbit Alexa 

647 

Jackson ImmunoResearch, 0,75 mg/ml 

in 50% glycerol, preabsorbed 

IF 1:300 

donkey anti-rat Alexa 488 Jackson ImmunoResearch IF 1:300 

donkey anti-mouse Alexa 

488 

Jackson ImmunoResearch, very highly 

preabsorbed 

IF 1:300 

donkey anti-rat Cy3 Jackson ImmunoResearch, 

preabsorbed 

IF 1:800 

donkey anti-rat Alexa 594 Thermo Scientific STED 1:300 

goat anti-rabbit Abberior 

STAR 635P  

Sigma STED 1:300 

 

Table 6. Antibodies, used in this study. 
 

4.1.5 Reagents. 

Reagent Company 
1 kb DNA ladder NEB 

100 bp DNA ladder NEB 

2-iodoacetamide Merck 

Acetonitrile, HPLC grade J.T. Baker® 

Agarose Universal Bio&SELL 

Ampicillin Roth 

Aprotinin Genaxxon bioscience 

Benzonase Merck  

beta-Mercaptoethanol Sigma 

Biotin-phenol Iris Biotech 

Bromophenol Blue Sigma 
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CaCl2 Calbiochem 

Clarity™ Western ECL Substrate Biorad 

Colchicine ≥95% (HPLC) Sigma 

CpG2006 TIB MOLBIOL 

DAPI Life Technologies 

Deoxynucleotide (dNTP) Solution Mix NEB 

Dimethylsulfoxide Sigma  

DNase I recombinant, RNase-free Roche 

DTT Roth 

EcoRI-HF NEB 

EcoRV-HF NEB 

EDTA AppliChem 

EGTA Roth 

Ethanol Sigma 

Ethidium bromide Merck 

Fetal Bovine Serum Low in Endotoxin A. H Sigma  

Formaldehyde, 37% (w/v) solution Sigma 

Formic acid, 98-100% Merck 

Gel Loading Dye, Purple (6X) NEB 

Glycerol AppliChem 

Glycin Merck 

H2O2 30% Sigma 

HCl VWR 

HEPES Serva 

HindIII-HF NEB 

Hygromycin B in PBS 50mg/ml Invitrogen 

Image-iT FX signal enhancer Invitrogen 

KCl AppliChem 

KH2PO4 Merck 

LB-Agar-Pulver Diagonal 

LB-Medium Pulver Diagonal 

Leupeptin Genaxxon bioscience 
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Lysyl Endopeptidase®, Mass Spectrometry Grade Wako 

Methanol VWR 

Methanol, HPLC grade Roth 

MG132 Enzo Life Sciences 

MgCl2 VWR 

Micrococcal Nuclease Sigma 

Midori Green Direct NIPPON Genetics 

Na2HPO4 Merck 

NaCl neoFroxx 

NaOH neoFroxx 

NH4Ac Sigma 

Non-fat dry milk Heirler 

Normal Goat Serum Dianova 

NotI-HF NEB 

NP-40 Fluka 

Penicillin-Streptomycin  Sigma 

Pepstatin Genaxxon bioscience 

Phusion High-Fidelity DNA Polymerase NEB 

PMSF Sigma 

Ponceau S solution Sigma 

PowerUp™ SYBR™ Green Master Mix Applied Biosystems™ 

ProLong™ Diamond Antifade  Thermo Scientific 

Protein Marker V Serva 

Proteinase K Roche 

RNAse A Sigma  

Schneider Drosophila medium Life Technologies 

SDS Serva 

Sequencing Grade Modified Trypsin, Lyophilized Promega  

Sodium ascorbate Sigma 

Sodium azide Merck 

Sodium Deoxycholate Sigma 

Taq DNA Polymerase with ThermoPol® Buffer NEB 
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TBE 5x VWR 

Trifluoroacetic acid, LC-MS grade Thermo Scientific 

Tris neoFroxx 

Triton-X-100 Sigma  

Trolox Sigma 

Tween 20 Sigma  

Urea Roth 

Vectaschield  Vector Labs 

Water, HPLC grade VWR 

X-tremeGENE™ HP DNA Transfection Reagent Roche 

XbaI NEB 

 
Table 7. Reagents, used in this study. 

 

4.1.6 Kits. 

Kit Company 
In-Fusion® HD Cloning Kit Clontech 

QIAprep Spin Miniprep Kit QUIAGEN 

NucleoSpin Plasmid EasyPure Macherey Nagel 

MEGAscript RNA kit  Invitrogen 

SuperScript™ III First-Strand Synthesis System Invitrogen 

RNAeasy mini kit QUIAGEN 

NucleoSpin Gel and PCR Clean-up Macherey Nagel 

QIAquick PCR Purification Kit QUIAGEN 

MicroPlex Library Preparation Kit 12 indexes Diagenode 
 
Table 8. Kits, used in this study. 
 

4.1.7 Consumables and devices 

Consumable/device Company 
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1.5 ml eppendorfs Greiner, Sarstedt 

18 mm 3.5 kD MWCO dialysis membrane Spectra/Por 

2.0 ml tubes Sarstedt 

384 Well Lightcycler Plate Sarstedt 

384 Well Lightcycler Plate Sealing Tape, optically clear Sarstedt 

6 well cell culture plate Sarstedt 

96 well cell culture plate Sarstedt 

Adaptors for C18 and HILIC columns Glygen 

AFA Tubes (Tubes for Covaris S220 instrument) Covaris S-Series Tube & Cap 12 x 24 

mm 

AMPure XP beads Beckman Coulter 

Braun S Pestle 5 ml B. Braun 

C18 solid phase extraction disk Empore  

CELLSTAR® Cell Culture Dishes 15 cm Greiner 

Column 120 x 0.075 mm, in house packed with Reprosil-

C18, 2.4 µm 

Dr. Maisch GmbH 

Corning® 250mL polypropylene (PP) centrifuge tubes Corning 

Coverslips 12mm in diameter Sigma 

Dialysis clamps Spectra/Por 

Disposable cell scrapers Sarstedt 

Falcon tubes 15 ml Sarstedt 

Falcon Tubes 50 ml Sarstedt 

Filter papers Whatman 

Forceps Dumont 110mm K342.1  Roth 

Inoculation loops Sarstedt 

Microscope Slides Roth 

Nail polish Essence 

Nitrocellulose membrane Amersham 

Parafilm Brand PARAFILM 

PCR tubes Greiner 

Pierce Streptavidin Magnetic Beads Thermo Scientific 

Pipette boy RF3000 Heathrow Scientific 
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Pipettes Gilson 

Precast gels Serva 

Protein LowBind Tubes 1.5 ml Eppendorf 

Roller bottles Greiner 

Sepharose Protein A beads GE Healthcare 

Sepharose Proteins G beads GE Healthcare 

Small petridishes Sarstedt 

T175 flasks Greiner 

T25 flasks Greiner 

T75 flasks Greiner 

TopTip PolyHydroxyethyl A (HILIC) 1-10 ul Glygen 

Tubes 1.5 mL, DNase-, Rnase free Biozym 

Western blotting chambers Li-Cor 
 

Table 9. Consumables and devices, used in this study. 
 

4.1.8 Technical devices 

Technical device Company and model 
-20 °C freezer Miele, Liebherr 

-80 °C freezer GFL 

26 °C incubator LMS 

26 °C roller bottles incubator Bellco-Tecnomara 

4 °C refrigerator Liebherr 

Big centrifuge Thermo Scientific, Heraeus 

Multifuge X3R 

BlueLight Table Serva 

Cell counter OMNI Life Science, CASY 

ChemiDoc™ Imaging System BioRad 

Concocal microscope Leica, TCS SP5 

Confocal and STED microscope Leica, SP8X WLL  

DNA electrophoresis chambers University workshop 

Electrophoresis power supply PQ Lab, EV243 
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Epifluorescence microscope Zeiss, Axiovert 200 

Ice machine Ziegra 

Incubator shaker Innova, 42 

Laminar flow hood BERNER FlowSafe 

Liquid nitrogen tank for cells Thermo Scientific, 7403 

Magnetic stirrers Bachofer Ika-Combimag Reo 

Mass spectrometer Thermo Scientific, Q-Exactive 

Microwave SEVERIN 

PCR machine Applied Biosystems, 2720 thermal 

cycler 

pH-meter inoLab, pH 720 

Protein electrophoresis chambers Serva,  bv 104 

Quantitative Real-Time PCR 

instrument 

Roche LightCycler 480 II 

Rotators NeoLab 

Scales Sartorius, TE 153S 

Scales KERN, ABJ-NM/ABS-N 

Scales KERN, PCB 

Shaker NeoLab, DOT10L 

Shaker and thermomixer Eppendorf, comfort 

Sonicator  Covaris S220 Focused-
ultrasonicator  

Table top centrifuge Eppendorf, 5424 

Table top centrifuge Eppendorf, MiniSpin 

Table top centrifuge  Eppendorf, 5430R 

Table top centrifuge  Eppendorf, 5804R 

Thermomixer Eppendorf, MTP 

Tissue culture centrifuge Hettich, Rotanta 460 

Vacuum centrifuge ScanVac, Scan Speed 40 

Water bath B. Braun Thermomix 1420 

Western blotting chambers with 

accessories 

Biorad 

 

Table 10. Technical devices, used in this study. 
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4.1.9 Software 

Application Software 
Creating STRING networks STRING database (https://string-db.org) 

Creating STRING networks Cytoscape 

Genome-wide data analysis R studio 

Genome-wide data analysis bowtie2 (version 2.2.9) 

Genome-wide data analysis samtools (version 1.3.1) 

Genome-wide data analysis Homer (version 4.9) 

GO-term analysis GO consortium (geneontology.org/) 

Hi-C data analysis HiC-Pro (version 2.9.0) 

Image analysis Adobe Illustrator 

Image analysis Adobe affinity designer 

Image analysis Adobe Photoshop  

Image analysis Bio-Rad Image Lab 

Microscopic image analysis ImageJ 

Microscopic image analysis Huygens 17.10 p2 

Microscopic image analysis Leica Application Suite X 

Office tools Microsoft Word 

Office tools Microsoft PowerPoint 

Office tools Microsoft Excel 

Primer design Primer3 (Rozen and Skaletsky, 2000) 

Raw proteomics data 

processing 

MaxQuant version 1.5.3.12 

RT-qPCR Roche LightCycler 480 SW 1.5 

Working with sequences Softonic Serial Cloner 2-6-1 
 

Table 11. Software, used in this study. 
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4.1.10 GSE of data used for ChIP distance to peak analysis. 

GEO Name Proximity Comparison 
GSE101554 Ez proximal HMR 

GSE101554 M1BP proximal HMR 

GSE102339 Psc_WT proximal HMR 

GSE105009 GFZF proximal HMR 

GSE109384 Wapl_BG3 proximal HMR 

GSE116806 Upf1 proximal HMR 

GSE118699 CLAMP proximal HMR 

GSE23537 Trl_Kc proximal HMR 

GSE23537 Ttk_Kc proximal HMR 

GSE27078 LID proximal HMR 

GSE29206 l3mbt proximal HMR 

GSE30820 Ash1C proximal HMR 

GSE33546 jarid2 proximal HMR 

GSE37864 MOF proximal HMR 

GSE37864 MSL1 proximal HMR 

GSE41440 Lpt proximal HMR 

GSE47250 Suvar37 proximal HMR 

GSE47263 Chro proximal HMR 

GSE47298 MBDR2 proximal HMR 

GSE47330 KDM4A proximal HMR 

GSE49102 row proximal HMR 

GSE51989 Smc3 proximal HMR 

GSE54529 Rad21 proximal HMR 

GSE56101 HIPP1 proximal HMR 

GSE66183 Scm proximal HMR 

GSE76997 Pita proximal HMR 

GSE80700 Ibf2 proximal HMR 
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GSE85741 Taf2 proximal HMR 

GSE93828 EPc proximal HMR 

GSE100613 TFIIB control HMR 

GSE102043 Rbf control HMR 

GSE114092 pnt control HMR 

GSE118484 MED30 control HMR 

GSE19025 HSF control HMR 

GSE28065 MCM control HMR 

GSE33546 Suz12 control HMR 

GSE39393 Dp1 control HMR 

GSE40797 Shep control HMR 

GSE41950 Rrp40 control HMR 

GSE47294 HP1b control HMR 

GSE60428 DSP1 control HMR 

GSE83959 Lark control HMR 

GSE87022 MLF control HMR 

GSE92383 Mago control HMR 

ENCSR637GDK Suvar_2_10 Proximal HP1a 

GSE56101 ADD1 Proximal HP1a 

GSE56101 HIPP1 Proximal HP1a 

GSE50364 CG8478 Control HP1a 

GSE19025 HSF Control HP1a 

GSE37864 MLE Control HP1a 

GSE39393 Dp1 Control HP1a 

GSE66639 Rrp6 Control HP1a 

GSE83959 Lark Control HP1a 

GSE89459 Trr Control HP1a 

 
Table 12. List of GSE numbers, used for ChIP distance to peak analysis. 
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4.2 Methods. 

Many methods used were published in (Kochanova et al., 2018). 

Methods cited from the preprint are indicated in italic. 

 

4.2.1 Cloning of APEX containing constructs. 

dCenpA, HP1a, Hmr and APEX2 genes were amplified with PCR in a 

way, that all bait genes had overhangs overlapping with pMT vector on 5’ and 

with APEX2 on 3’, and APEX2 gene had an overhang overlapping with pMT 

vector on 3’. Vectors were linearized with XbaI and NotI-HF restriction, and the 

new constructs were assembled with In-Fusion kit from required vector and 

required fragments of bait and APEX2. The product of In-Fusion reaction was 

transformed into competent bacteria, and colonies from the plate were 

expanded the next day into separate 5 ml of LB medium. Plasmids from grown 

bacteria were purified with Miniprep kit and checked by HindIII-HF restriction. 

Plasmids that gave a needed restriction pattern were sequenced with Eurofins.     

GST-APEX2 construct in pGEX-6P-1 vector was cloned the same way, 

with the difference that the vector was cut with EcoRI and NotI, and the control 

restriction was performed with EcoRI-HF and EcoRV-HF. 

RNAi-resistant dCenpC construct was cloned the same way, being 

assembled from 5 fragments, 2 of which were designed to be RNAi-resistant 

with Dr. Tamas Schauer SeqMixer App 

(https://tschauer.shinyapps.io/SeqMixer/) and were synthesized by Eurofins. 

Deletion Mutants were amplified by PCR from full length construct PCR product 

and cloned as described above. 

The details of cloning of Flag-HA- HP5, ADD1-PA, XNP and CG8108 

are available upon request. 

 

4.2.1.1 PCR and agarose gel electrophoresis. 

For amplification of fragments used for cloning, PCR reactions 

containing 1 ul 10 pmol each primer, 1 ul 100 ng template, 1 ul 10 mM dNTPs, 

10 ul 5x Phusion Polymerase buffer, 0.5 ul Phusion Polymerase and 35.5 ul of 
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water, were incubated in a PCR thermocycler according to Phusion polymerase 

protocol. PCR products were separated on an 1.5% agarose gel, made by 

dissolving agarose in TBE (90 mM Tris, 90 mM Boric acid, 2 mM EDTA) in a 

microwave. Electrophoresis was performed at 90V until all samples entered the 

gel, and then at 110V. Bands of expected size were excised with scalpel, and 

DNA was purified from gel with QIAquick PCR Purification Kit (QIAGEN) or 

NucleoSpin Gel and PCR Clean-up (Macherey Nagel). 

 

4.2.2 Cell culture and generation of stable cell lines. 

Drosophila L2-4 cells and L2-4 stable cell lines were grown in Schneider 

medium, supplemented with ampicillin/streptomycin and 10% fetal calf serum, 

at 26oC.    

For generation of stable cell lines, cell were transfected with plasmids 

mixed with X-tremeGENE™ HP DNA Transfection Reagent according to 

manufacture’s instructions. All transfected plasmids contained hygromycin B 

resistance gene, and cell lines were selected with 100 ug/ml hygromycin B. 

Cells were optionally induced with 250 µM CuSO4 12-24 hours before the 

experiment.  

dCenpAP and HP1aAP cell lines were diluted in 20% conditioned medium 

(Böttcher et al., 2014), and clones originating from several cells were grown 

separately. Clones were checked by immunofluorescence and those, which 

contained less hugely overexpressing cells, were selected for further work 

(clone 8 for dCenpAP and clone 29 for HP1aAP). 

For long-term storage, 40 million cells/vial were resuspended in a 

solution containing 50% FCS, 40% medium with antibiotics and FCS, and 10% 

DMSO. Vials were put into isopropanol box overnight for slow freezing, at -

80oC. Next day cells were transferred into liquid nitrogen tank and kept there 

for storage. For defreezing, one vial of cells was resuspended in 13 ml medium 

and put in a medium flask. After cells adhered, the medium was changed. 

Hygromycin B was added on the 2nd-3rd day of defreezing, if necessary.   
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 4.2.3 Proximity labeling coupled to proteomics. 

4.2.3.1 Proximity labeling. 

 Cells were grown in roller bottles up to 5 million cells/ml density. For 

biotinylation in solution cells were counted, and 109 cells were spun down 250g 

20 minutes and resuspended in 200 ml DMSO or biotin-phenol in PBS. After 

0,5 hours incubation, H2O2 was added to the concentration of 1mM, and cells 

were spun down 250g 20 minutes. Solution was aspirated, and cells were 

resuspended in quenching solution (5 mM Trolox, 10 mM sodium azide, 10 mM 

sodium ascorbate). Cells were washed two more times in quenching solution, 

and the last washing step was performed in 15 ml falcons. After washes the 

cells were subjected to nuclear extraction. 

 For biotinylation on plates 2 bottles (400 ml) of 5 million cells/ml were 

adhered on 40 15-cm plates for mammalian cells for 40 minutes. Then the 

medium was removed and 15 ml of biotin-phenol/PBS or DMSO/PBS per plate 

was added. In half an hour H2O2 was added to biotin-phenol/PBS to the 

concentration of 1mM for 1.5 or 5 minutes. The solution was aspirated and 15 

ml of quenching solution per plate was added. Cells were scraped off in 

quenching solution, spun down 20 min 250g in 250 ml conic tubes, and washed 

once more in 10 ml of quenching solution.   

 

4.2.3.2 Nuclear extraction. 

 Nuclear extraction was performed as in (Barth et al., 2014) with 

modifications. Protease inhibitors were added to all buffers. Cells were 

resuspended in 3 packed cell volumes (PCV) (for example, 2.1 ml) of hypotonic 

buffer (10 mM NaCl, 10 mM Tris pH 7.6, 1.5 mM MgCl2, 0.1 mM EDTA) and left 

on ice for 30 minutes. Swelled cells were centrifuged 250g 10 minutes at 4oC, 

and supernatant was aspirated. Cells were resuspended in 3 PCV hypotonic 

buffer with 0.2% NP-40. Cells were rotated at 4oC for 10 minutes for the lysis 

of plasma membrane, and nuclei were centrifuged at 4oC 10 minutes 1000g. 

Nuclei were further resuspended in 2 ml of quenching solution, and spun down 
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at 4oC 10 min 1500 g. Supernatant was aspirated, and nuclei were snap-frozen 

in liquid nitrogen.  

Next day nuclei were resuspended in Tris-Ex100 buffer (100 mM NaCl, 

10 mM Tris pH 7.6, 1.5 mM MgCl2, 0.5 mM EGTA and 10% v/v glycerol), in 3 

ml per 0.7 ml PCV. 1500 units Mnase, 1500 units Benzonase and 2mM CaCl2 

were added and nucleic acids were digested 20 min at 26oC. Reaction was 

stopped by addition of EDTA and EGTA on ice to 10 mM each. Nuclei were 

disrupted by douncing 10 times in tight-fitting Braun pestle. To solubilize and 

extract chromatin, NaCl was added to 600 mM final concentration (f.c.), Triton-

X-100 to 1%, sodiumdeoxycholate (SOD) to 0.5% and SDS to 0.1%. Chromatin 

was rotated for 1 hour at 4oC, and then nuclear extracts were centrifuged at 

4oC 20 minutes 10000g to get rid of insoluble material. Gained nuclear extracts 

were dialyzed 4 hours at 4°C through 3.5 MWCO Millipore membranes against 

Tris-Ex100 buffer without glycerol and with detergents, supplemented with 0.2 

mM PMSF and 1 mM DTT. Dialyzed extracts were snap-frozen. 

 

4.2.3.3 Immunoprecipitation. 

 For immunoprecipitation at room temperature (RT) protease inhibitors 

were added freshly to defrozen nuclear extracts. 500 ul per sample of 

streptavidin beads (Pierce) were washed twice in 500 ul Tris-Ex100 + 

detergents, and washed beads were mixed with input material. 200 ul aliquot 

of nuclear extract was kept for further Western blotting.  

 Immunoprecipitation lasted 1.5 hours at RT on a rotating wheel. 

Afterwards beads were washed 2 times with 500 ul Tris-Ex100 + detergents 

with protease inhibitors, one time in 1 ml 10 mM Tris 2M urea, and two more 

times with 500 ul Tris-Ex100 + detergents with protease inhibitors. After the last 

washing step 50 ul of beads were stored for further Western blotting, and 

remaining 450 ul beads were further processed for mass spectrometry. 
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4.2.3.4 Mass spectrometry. 

 Before on-beads digestion, beads were washed 3 times in 500 ul of 50 

mM Tris pH 7.5, 4M urea. Proteins on beads were reduced in 500 µl of 20 mM 

DTT in 50 mM Tris, 2M urea pH 7.5 with Lys C 450 ng/sample at 27°C for 1h. 

Next, 50 mM iodoacetamide fc was added and proteins were alkylated for 1 h 

25°C shaking 900 rpm in the dark. The reaction was stopped by addition of DTT 

to 10 mM fc. The samples were shaken 900 rpm at 25oC for two more hours for 

better LysC digestion. After that urea concentration was reduced to 1.5M by 

addition of 300 ul water. 1.5 ug of trypsin and 2 mM fc CaCl2 were added for 

digestion overnight at 25oC shaking 900 rpm. In the morning another 1.5 ug of 

trypsin were added, and the digestion was performed for 4 more hours. After 

digestion the supernatant was collected, and beads were washed with 100 µl 

of 20 mM Tris 50 mM NaCl 25% ACN 2 times for elution of loosely-bound 

peptides from the beads. Washes were combined with the supernatant, and 

evaporated at less than 28oC. Next day samples were resuspended in 100 ul 

0.1% formic acid (FA) and desalted. The second elution from the beads was 

performed in 300 µl 0.05% SDS, 0.1% FA at 80°C for 10 min. The elution was 

dried and subjected to HILIC chromatography. 

 Desalting was performed the following way: C18 Stage tips (3 white 

discs, use one stage tip per sample) were placed in Eppendorf vials using the 

adaptors and washed with 2x 50 µl MeOH and 3x 70 µl 0.1% trifluoroacetic acid 

(TFA) using an Eppendorf 5804R centrifuge. Centrifugation was performed at 

1500-2500 rpm at 20-25oC for each step until the liquid passed the C18 filters. 

Sample, redissolved in 0.1% FA, was applied on the top of the stage tip and 

centrifuged at 800-1500 rpm until it completely passed the C18 tips.	The filter 

was washed 2x with 0.1% FA and dried by centrifugation (1500-2500 rpm). The 

stage tips were placed in the fresh 1.5 ml Eppendorf vials and 2x 100 ul elution 

solvent (70% ACN, 0.1% FA) was added on top of the stage tips and 

centrifuged at 800-1500 rpm.    

 For HILIC purification second elution was redissolved in 100 ul  85% 

ACN 15 mM NH4Ac, loaded on the HILIC column and centrifuged using the 

adaptors 800 rpm using a Eppendorf 5804R centrifuge. The columns were 

washed 2x with 60 ul loading solvent (85% ACN, 15 mM NH4Ac), and eluted 
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with 2x60 ul Elution II (55% ACN 15 mM NH4Ac pH 3.5) and 3x60ul Elution V 

(10% ACN 15 mM NH4Ac pH 3.5).  

HILIC elutions were combined with C18 elutions, vacuum-dried and 

redissolved in 45 ul 0.1% FA. Samples were centrifuged at 4oC 30 min 20000 

g, and 40 ul of supernatant was taken for mass spectrometry analysis. Desalted 

peptide mixtures from tryptic digestion were subjected to  

nano-reversed phase liquid chromatography (nRP-LC) separation coupled to  

online tandem mass spectrometry (MS/MS) analysis on an Ultimate 3000  

nano chromatography system coupled to a QExactive HF mass spectrometer  

(both Thermo Fisher Scientific). Of each sample 2-4 technical replicates  

were acquired. For direct injection onto the separation column (Picotip  

emitter tips, 120 x 0.075 mm, in house packed with ReprosilAQ-C18, Dr.  

Maisch GmbH, 2.4 µm), samples were loaded at a flow rate of 0.3 µl/min. The 

peptides were separated by a linear gradient generated over 50 min from 3% 

ACN to 40% ACN. For online detection of peptides, the outlet of the column 

served as electrospray ionization emitter to transfer the peptide ions directly 

into the mass  spectrometer. The QExactive mass spectrometer was operated 

in a data-dependent duty cycle to detect intact peptide ion in positive ion  

mode in the initial survey scan and perform peptide fragmentation  

experiments for up to 10 precursors per cycle. Mass spectra were  

recalibrated using the signals of ambient siloxanes. The survey scan was  

acquired at a resolution of 60,000 and an AGC target of 3 e9 ions. In  

order to select suitable precursor ions, the charge state was defined  

from the previous full scan. Ions with charge states between 2+ and 5+  

and minimal abundance of 67,000 ions were isolated in a 2 Da window and  

subjected to higher-energy collisional fragmentation in the HCD-Trap.  

MS/MS spectra were generated from 1.5 e5 ions and were acquired at a  

resolution of 15,000. For peptide fragmentation, normalized collision  

energy of 27 was applied. Precursors were excluded from repeated  

fragmentation for 20 seconds to avoid acquisition of redundant MS/MS  

data from highly abundant peptide species. For each technical repeat,  

one raw data file was generated which included all survey and fragment  

ion data. 
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4.2.4 Microscopy. 

1 million cells were adhered on the 12 mm glass coverslips for 30 

minutes at RT. Cells were washed in PBS for 5 minutes and fixed in 3.7% 

formaldehyde 0.3% Triton-X-100/PBS for 12 minutes (or just in 3.7% 

formaldehyde/PBS for 10 minutes for BubR1 intensity quantification staining, 

as well as stainings after RNAi). Cells were immediately rinsed with PBS after 

fixation and washed in PBS for 5 minutes. Next cells were permeabilized on ice 

with 0.25% Triton-X-100/PBS for 6 minutes. After this cells were immediately 

rinsed 2 times with PBS and washed with PBS 2 more times 5 minutes each. 

Blocking was performed for 45 minutes with Image-iT FX signal enhancer in a 

humidified chamber. After rinse in PBS, primary antibody, diluted in 5% NGS, 

was incubated on coverslips for 1 hour at RT (or overnight at 4oC for STED 

microscopy and after RNAi experiments). After 6 minutes’ wash in 0.1% Triton-

X-100/PBS and following 5 minutes’ wash in PBS, secondary antibody, diluted 

in 5% NGS, was incubated on coverslips. Cells were next washed for 6 minutes 

with 0.1% Triton-X-100/PBS, rinsed 2 times and washed for 5 minutes with 

PBS, stained with DAPI/PBS (200 ng/mL or 50 ng/mL for STED microscopy), 

washed 2 more times 5 minutes with PBS, and mounted in VECTASHIELD 

(usually) or ProLong™ Diamond Antifade (only for STED microscopy). 

For in situ biotinylation on coverslips followed by immunofluorescence, 

cells were adhered as described previously. Next, cells were incubated with 

biotin-phenol/PBS or DMSO/PBS, followed by addition of H2O2 to 1 mM f.c. for 

a defined time. The biotinylation reaction was stopped by aspirating the solution 

and addition of quenching solution, after which cells were processed for 

immunofluorescence as described previously. Biotinylation in solution was 

performed with 106 cells in 200 ul volume. Cells were spun down during the 

biotinylation procedure for 10 minutes 250 g, resuspended in 200 ul quenching 

solution, and adhered on coverslips for 15 minutes, followed by the standard 

immunofluorescence procedure. 

Images were acquired on a Zeiss Axiovert 200 epifluorescence 

microscope with a CCD Camera (AxioCam MR, Zeiss). For confocal 

microscopy Leica TCS SP5 microscope or Leica SP8X WLL microscope, 

equipped with 405 nm laser, WLL2 laser (470 - 670 nm) and acousto-optical 
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beam splitter, were used. The microscopes reside at Core Facility Bioimaging 

of Biomedical Center. Acquisition of STED images was performed with a 

100x1.4 objective, 24-25 nm pixel size and following settings: DAPI (excitation 

405 nm; emission 415-470 nm), Alexa Fluor 594 (590 nm; 600-625) and 

Abberior STAR 635P (635; 645-720). Sequential recording was performed not 

to allow channel misalignment or channel crosstalk. For recordings with hybrid 

photo detectors were used in a counting mode. For STED and some confocal 

images deconvolution was performed with Huygens 17.10 p2. For image 

processing ImageJ was used. 

 

4.2.5 Antibody generation. 

Wistar rats were immunized subcutaneously (s.c.) and intraperitonially 

(i.p.) with 50 µg of GST-APEX fusion protein dissolved in 500µl PBS, 5 nmol 

CpG2006 (TIB MOLBIOL) an equal volume of incomplete Freund’s adjuvant. 6 

weeks after immunization a 50 µg boost injection was applied i.p. and s.c. three 

days before fusion. Fusion of the splenic B cells and the myeloma cell line 

P3X63Ag8.653 was performed using polyethylene glycol 1500 according to 

standard protocols (Kohler and Milstein, 1975). Hybridoma supernatants were 

tested by solid-phase enzyme-linked immunoassay (ELISA) using the 

recombinant GST-fusion protein and verified by Western blotting of whole cell 

extracts from APEX2 fusions-expressing cell lines (Fig. 2B). Hybridoma cell line 

from specifically reacting supernatants were cloned twice by limiting dilution. 

Experiments in this study were performed with clone 20H10 (rat IgG2a/κ). 

 

4.2.6 Data analysis. 

4.2.6.1 Protein MaxQuant search. 

 MaxQuant search was done with MaxQuant version 1.5.3.12 against 

dmel-all-translation-r6.08.fasta database from Flybase. Technical replicates 

were assigned to one experiment (to one biological replicate). The search 

parameters were left default except choosing iBAQ and LFQ quantitations and 
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setting “Match between runs”. The files corresponding to different baits and 

different time points of biotinylation were run separately. 

 

4.2.6.2 Data sources. 

Genomic coordinates were converted from the dm3 to dm6 release 

using the liftover tool from UCSC. ChIP-seq datasets were taken from GEO 

with the following numbers: GSE86106 (HMR native and HP1a), GSE118291 

(HMR overexpressed), GSE54529 (Rad21 and CAPH2). List of GSE numbers 

for distance to peak analysis is available in Table 12. The chromatin colors 5-

state model was taken from (Filion et al., 2010), and “red” and “yellow” 

chromatin states were fused in “active”. Types of genomic fragments (introns, 

promoters, etc.) were taken from Flybase (version r6.17). TAD separation score 

was used from http://chorogenome.ie-freiburg.mpg.de/data_sources.html. Hi-C 

data from S2 cells was taken from GSE58821. 

 

4.2.6.3 Proteomics data analysis. 

 LFQ values were log2-transformed and missing values were imputed 

using impute.MinProb function (imputeLCMD R package v2.0) using q = 0.05. 

The values were median normalized after imputation. Statistical tests were 

performed using the lmFit and eBayes functions from the limma R package 

(version 3.34.9). Volcano plots were built using Dr. Tamas Schauer 

LabeledPlots App (https://tschauer.shinyapps.io/LabledPlots/). Code is 

available upon request. GO-term analysis was performed using the Gene 

Ontology consortium tool (http://geneontology.org). Only lowest-hierarchy 

terms were considered. The protein-protein interaction network was built using 

STRING database (Szklarczyk et al., 2017), and interactions were taken from 

experiments, gene fusion, databases, co-expression and co-occurrence. The 

minimum required interaction score was 0.7. The STRING network was further 

imputed into Cytoscape and additional interactions were added from Flybase 

as dotted lines. 
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4.2.6.4 ChIP-sequencing and Hi-C data analysis. 

 Sequencing reads were mapped to the Drosophila genome (version 

dm6) using bowtie2 (version 2.2.9) and filtered by quality using samtools 

(version 1.3.1). ChIP-seq tracks were generated by Homer (version 4.9) and 

normalized to sequencing depth and to input. Peaks were identified by Homer 

with parameters -style factor -F 2 -size 200 (except for Rad21 -F 4). The number 

of overlapping peaks was visualized as Venn diagrams with the Vennerable R 

package (version 3.1.0.9). HMR peaks were classified by the overlap with 

Rad21 or CAPH2 peaks. Such peak groups were further characterized by 

genomic regions (i.e. promoters, exons, introns or intergenic) and epigenetic 

domains (i.e. active, inactive, polycomb or HP1-type). ChIP-seq tracks were 

visualized as heatmaps or average plots centered at the pool of native and 

overexpressed HMR peaks.  Heatmaps were sorted by HMR native ChIP 

enrichment and clustered by HP1a ChIP enrichment.  

ChIP-seq profiles for distance comparison (see Table 12 for GSE 

numbers) were processed using Homer as described above with optimized -F 

peak finding parameters. Peak coordinates were imported to R and distances 

between peak centers were calculated using the distanceToNearest function 

(GenomicRanges package version 1.36.1). 

CAP-H2 and HMR ChIP-seq data (for knockdown / overexpression 

experiments) were processed using Homer as described above with -F 4 peak 

finding parameter. Peak finding was carried out on the pool of the reads from 

replicates. ChIP-seq tracks were visualized as average plots centered at the 

pool of HMR peaks or CAP-H2 peaks in a 2 kb window. Statistical analysis was 

performed on the mean ChIP signal at the center of the peak for each replicate. 

Paired t-test was performed on the mean values. The ChIP-seq data was 

deposited at GSE137194. 

Hi-C raw data were processed using HiC-Pro software (version 2.9.0) 

with ICE normalization. The Hi-C contact matrix was imported to R using HiTC 

package (version 1.28.0). For average Hi-C signal surrounding HMR or CAPH2 

sites, the Hi-C matrix was centered in 400 kb windows and averaged across 

sites. For average Hi-C signal at pairs of sites, the Hi-C matrix was subset for 

each site pair and interpolated to the same scale using interp.surface.grid 
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function (fields package version 9.8-6) and averaged across sites. For both 

analyses, expected matrix was calculated as the average contact frequency as 

a function of genomic distance. 

Figures were plotted by R graphics.  

 

4.2.7 Western blotting of extracts from whole cells. 

15 (or 1.5) million cells were collected, washed twice in PBS and frozen. 

Next day the cells were resuspended on ice in 80 (or 20) ul of RIPA buffer (10 

mM Tris pH 7.6, 140 mM NaCl, 1 mM EDTA, 1% Triton-X-100, 0.1% SOD, 0.1% 

SDS) with protease inhibitors. 30 units of benzonase were added and nucleic 

acids were digested on ice for 30 minutes. After this 20 (or 5) ul of 5x Laemmli 

buffer (250 mM Tris pH 6.8, 10% SDS, 500 mM DTT, 0.5% Bromophenol blue, 

25% Glycerol) were added and lysates were boiled 10 minutes 96oC. 10 ul of 

boiled lysates were loaded together with marker on the Serva gel in a chamber 

with running buffer (25 mM Tris, 192 mM glycine, 0,1% SDS) and separated by 

electrophoretic mobility. Electrophoresis was performed at 90V until all samples 

entered the gel, and then at 135V. After the run gels were put in a sandwich 

with a membrane between two Whatman papers between two sponges (all 

materials soaked in transfer buffer), and proteins were transferred to the 

membrane at 4oC in Western blotting chambers containing a pack of ice and 

filled with Western blotting buffer (20 mM Tris, 192 mM glycine, 20% methanol, 

0.02% SDS). Transfer was performed for 2.5 hours at 200V and 400mA. 

Membranes were blocked in 5% milk for 1 hour at RT, and incubated with 

primary antibody in 1% milk overnight at 4oC or for 2 hours at RT. After two 

washes in 0.1% Tween 20/PBS (PBST) for 5 minutes, the membranes were 

incubated with secondary antibody, washed with PBST two more times and 

developed using Bio-Rad Clarity™ Western ECL Substrate in ChemiDoc™ 

Imaging System.   
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4.2.8 RNAi. 

Double stranded RNAs (dsRNAs) were synthesized according to the 

manufacture’s instructions with MEGAscript RNA kit. Primers are available in 

Table 3. RNAi was performed similarly to (Thomae et al., 2013). 1 million cells 

per well were seeded in a 6-well plate and grown overnight. The next day the 

medium was removed, and 10 ug dsRNA (or 5 ug of each dsRNA for Cenp-C 

RNAi) were added in 1 ml of serum free medium. Cells were gently shaken on 

a platform at RT for 10 minutes, which was followed by 50 minutes incubation 

at 26oC. After that 2 ml of medium with serum was added. Cells were optionally 

split on day 4 (for experiments with BubR1 quantification upon HMR RNAi) and 

were collected on day 6-7. In the case of BubR1 quantification upon HMR RNAi 

cells were treated with 0.025 mM colchicine 16 hours before harvesting 

(Godinho and Tavares, 2008). In case of rescue experiments after dCenpC 

RNAi, transient transfection was performed on day 4 after RNAi and cells were 

collected on day 7. 

 

4.2.9 cDNA synthesis and RT-qPCR. 

4 million cells were harvested and frozen. RNA was extracted with 

RNAeasy mini kit according to the manufacture’s instructions. SuperScript™ III 

First-Strand Synthesis System kit was used for cDNA synthesis from 1 ug of 

RNA, treated with Dnase for 1 hour. cDNA was treated with RNAse H at 37oC 

for 20 minutes, was diluted 1:20 and qPCR was performed in 96 well plate 

sealed with a foil, in Roche LightCycler 480 II. In every well reaction mix, 

consisting of 1 ul 3 mM each primer, 2 ul template, 1 ul water and 5 ul 

PowerUp™ SYBR™ Green Master Mix, was used. Triplicates were performed 

for all reactions. 

Primer design was performed with primer3. Primers against cohesin and 

condensin subunits’ cDNA were designed with default parameters, except 

setting product size to 80-120 base pairs (bp) and annealing temperature (Tm) 

49-61oC. Primers against RpL32 were designed with default parameters except 

product size: min: 90, opt: 120, max: 140; primer Tm: min: 58, opt: 60, max: 61; 

max Tm difference: 1.0; primer GC%: min: 50, max: 60; max poly-X: 3; CG 



	 114 

Clamp: 1. All primers (Table 4) were titrated, melting and fluorescence curves 

were analyzed and primer efficiencies were calculated. Calculation was 

performed using Roche LightCycler 480 II software. 

During RT-qPCR reaction Ct values were calculated by the machine. Ct 

is the number of PCR cycle when fluorescence intensity of the product becomes 

above the background. Using the Ct values it is possible to determine the 

change in the transcript level relative to the normalizer (e.g. GST RNAi) and 

reference housekeeping gene (e.g. RpL32). The difference was calculated the 

following way: ΔCt = Ct(gene)-Ct(reference gene). ΔΔCt= ΔCt(RNAi condition)-

ΔCt(GST RNAi). Expression fold change = (primer efficiency)ΔΔCt. 

 

4.2.10 ChIP-sequencing. 

ChIP-sequencing was performed as described in (Gerland et al., 2017). 

Cells were washed with PBS and crosslinked in 1% formaldehyde for 5 minutes 

at room temperature. The crosslinking was quenched by addition of 12% f.c. 

glycine. The crosslinked material was washed 2 times with PBS and 

resuspended in ChIP buffer A (10 mM HEPES pH 7.6, 10 mM EDTA pH 8.0, 

0.5 mM EGTA pH 8.0, 0.25% Triton-X-100), supplemented with protease 

inhibitors and MG132. Cells were lysed 10 minutes on rotation wheel in the cold 

room, after which the chromatin was pelleted and resuspended in ChIP buffer 

B  (10 mM HEPES pH 7.6, 100 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA 

pH 8.0, 0.01% Triton-X-100), supplemented with protease inhibitors and 

MG132. Chromatin was rotated 10 minutes on rotation wheel in the cold room, 

after which was aliquoted, pelleted and frozen with material from 50 million 

cells/tube.  

1 day before the IP protein A/G beads were mixed in 1:1 ratio and 30 ul 

beads/IP were precoupled to the antibodies overnight. In the case of HMR 

ChIP, HMR antibodies were precoupled via an anti-rat bridging antibody (of 

which 6 ul was incubated in RIPA buffer with the beads 1 hour at room 

temperature). 

At the day of IP 1 vial of chromatin per sample was thawed by 

resuspending in 1 ml of TE buffer (10 mM Tris pH 7.5, 1 mM EDTA pH 8.0), 
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supplemented with protease inhibitors and MG132. Chromatin was pelleted 

and resuspended in 1 ml TE buffer with protease inhibitors and MG132+0.1% 

SDS. The solution was transferred to Covaris tube and sheared in the Covaris 

machine with the following settings: 10 min, 140W, 5% duty, 200 cycles per 

burst. The sheared chromatin was transferred to 1.5 ml tubes, the buffer was 

adjusted to RIPA, and protease inhibitors PMSF and MG132 were refreshed. 

In case of HMR ChIP replicate 1, SDS concentration was adjusted to 0.11% 

instead of 0.1%. Chromatin was precleared 2 times by centrifugation and 

further by incubating with 30 ul mix of protein A/protein G beads for 1 hour in 

the coldroom. Afterwards precleared chromatin was centrifuged 2 times again, 

1/10 of sample was taken as an input (100 ul) and stored overnight in the fridge, 

and the rest of the sample was mixed with beads precoupled to the antibodies. 

IP was performed overnight.  

Next day the supernatant was trashed and beads were washed 5 times 

with RIPA buffer supplemented with protease inhibitors and MG132. 200 ul TE 

buffer was added to the beads, and 100 ul TE buffer was added to 100 ul input. 

4 ul 10 mg/ml RNAse A was added, and samples were incubated at 37oC for 

30 minutes shaking. 0.5% f.c. SDS and 20 ul 10 mg/ml Proteinase K were 

added, and samples were incubated shaking at 56oC for 2 hours and at 65oC 

overnight for protein digestion and reverse crosslinking respectively. Next day 

DNA was purified using AMPure beads. 

Libraries were prepared from 1 ng DNA with MicroPlex Diagenode Kit 

according to manufacture’s instructions, without size selection, by Angelika 

Zabel. Sequencing was performed at LAFUGA facility, by Dr. Stefan Krebs.     
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5 Abbreviations. 

	
ACN    acetonitrile 

ADD1    ADD domain-containing protein 1 

APC    anaphase-promoting complex 

APEX    ascorbate peroxidase 

APEXNLS ascorbate peroxidase fused to nuclear localization 

signal 

BirA    bifunctional ligase/repressor birA 

Bub3    budding uninhibited by benzimidazoles 3 

BubR1   budding uninhibited by benzimidazole-related 1 

C. elegans   Caenorhabditis elegans 

Cal1    chromosome alignment defect 1 

CAP-H2   chromosome-associated protein H2 

CCAN    constitutive centromere-associated network 

Cdc20    cell division cycle protein 20 

Cenp-A   centromere protein A 

Cenp-C   centromere protein C 

CenH3   centromere specific histone H3 

ChIP-sequencing  chromatin immunoprecipitation-sequencing 

CID    centromere identifier 

Cp190    centrosomal protein 190 kDa 

CPC    chromosomal passenger complex 

CRISPR clustered regularly interspaced short palindromic 

repeats 

Ct    cycle threshold 

CTCF    CCCTC-binding factor 

D. melanogaster  Drosophila melanogaster 

D. simulans   Drosophila simulans 

DAPI    4′,6-diamidino-2-phenylindole 

dCas9    nuclease-deficient CRISPR-associated protein 9 

dCenpA   Drosophila Cenp-A 

dCenpAAP   Drosophila Cenp-A fused to APEX 
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dCenpC   Drosophila Cenp-C 

DNA    deoxyribonucleic acid 

dNTPs   deoxynucleotides 

DMSO   dimethyl sulfoxide 

DFG    Deutsche Forschungsgemeinschaft 

dsRNA   double-stranded RNA 

FISH    fluorescence in situ hybridization 

FCS    fetal calf serum 

f.c.    final concentration 

GEO    Gene Expression Omnibus 

GFZF    GST-containing FLYWCH zinc-finger protein 

GFZFAP GST-containing FLYWCH zinc-finger protein fused 

to APEX 

GFP    green fluorescent protein 

GST    glutathione S-transferase 

GO    gene ontology 

H2A    histone 2A 

H2AZ    histone 2AZ 

H2B    histone 2B 

H3    histone 3 

H3K4me1/2    histone 3 lysine 4 mono/dimethylation 

H3K9me1/2/3  histone 3 lysine 9 mono/di/trimethylation 

H3K27me1/2/3  histone 3 lysine 27 mono/di/trimethylation 

H3K36me2/3   histone 3 lysine 36 di/trimethylation 

H3K64me3   histone 3 lysine 64 trimethylation 

H4    histone 4 

H4K5Ac   histone 4 lysine 5 acetylation 

H4K12Ac   histone 4 lysine 12 acetylation 

H4K20me1/2/3  histone 4 lysine 20 mono/di/trimethylation 

HBO1    histone acetyltransferase bound to ORC 1 

HCP-3   histone H3-like centromeric protein 

HILIC    hydrophilic interaction liquid chromatography 

HJURP   holiday junction recognition protein 

HMR    hybrid male rescue 
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HMRAP   HMR fused to APEX 

HP1a    heterochromatic protein 1a 

HP1aAP   HP1a fused to APEX 

HP1β    heterochromatic protein 1β 

HP3    heterochromatic protein 3 

HP4    heterochromatic protein 4 

HP5    heterochromatic protein 5 

HP6    heterochromatic protein 6 

HPLC    high performance liquid chromatography 

Hygro    Hygromycin 

i.p.     intraperitonially 

iBAQ    intensity-based absolute quantification 

Incenp   inner centromere protein 

IP    immunoprecipitation 

IP-MS    immunoprecipitation – mass spectrometry  

kb    kilobase 

KAT7    lysine acetyltransferase 7 

LFQ    label free quantitation 

LHR    lethal hybrid rescue 

LHRAP    LHR fused to APEX 

Mad1    mitotic arrest deficiency 1 

Mad2    mitotic arrest deficiency 2 

MNase   micrococcal nuclease 

mod(mdg4)   modifier of mdg4 

mRNA    messenger RNA 

MS/MS   tandem mass spectrometry 

MWCO   molecular weight cut-off 

MYST2   MYST domain containing lysine acetyltransferase 

NLP    nucleoplasmin-like protein 

NLS    nuclear localization. signal 

nRP-LC   nano-reversed phase liquid chromatography 

n.s.    non-significant 

NP-40    nonyl phenoxypolyethoxylethanol 

OdsH    Ods-site homeobox 
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PCR    polymerase chain reaction 

PCV    packed cell volume 

pMT    metallothionein promoter 

PolII    RNA polymerase II 

prod    proliferation disruptor   

Rad21    radiation 21 

RIPA buffer   radioimmunoprecipitation assay buffer 

RNA    ribonucleic acid 

RNAi    RNA interference 

RpL32    ribosomal protein L32 

RT    room temperature 

RT-qPCR   real time quantitative reverse transcription PCR 

SAC    spindle assembly checkpoint 

s.c.    subcutaneously 

SDS    sodium dodecyl sulfate 

SMC1    structural maintenance of chromosomes 1 

SMC2    structural maintenance of chromosomes 2 

snRNP   small nuclear ribonucleoproteins 

SOD    sodium deoxycholate 

STED    stimulated emission depletion microscopy 

STRING Search Tool for the Retrieval of Interacting 

Genes/Proteins 

Su(Hw)   suppressor of hairy wings 

Su(var)3-9   suppressor of variegation 3-9 

TAD    topologically associated domain 

QBM Graduate School of Quantitative Biosciences 

Munich 

USCS    University of California Santa Cruz 

Vtd    verthandi 

WLL    white light laser 

Zhr    zygotic hybrid rescue 
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