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ABSTRACT

This thesis examines three topics related to current and potential policies to reduce
greenhouse gases emission (GHG) emissions in Brazil.

The first chapter, entitled “Distributional Welfare and Emission Effects of Energy Tax
Policies in Brazil” calculates carbon intensity of 128 products consumed by Brazilian
households and utilizes a rich household dataset to investigate the short-run impacts
of energy policies in Brazil in the 2000s. Results indicate that 11% of total additional
energy emissions between 2010 and 2018 (or 6.5 MtCO2e) could have been avoided in
the absence of government tax reductions on diesel, electricity and residential appliances
and increments on gasoline taxes. Findings also suggest that taxes on gasoline pump
prices are progressive and have a negative impact on total household energy emissions
due to substitution effects. Changes in electricity prices are regressive and have large
effects on household emissions. More environmentally friendly policies, such as subsidy
on ethanol, are the most cost-effective to reduce emissions, despite its small effect on the
emissions of the economy. Understanding who benefits from energy taxes and subsidies
is key to gaining public support for a greener energy mix, as pledged by the country in
its NDC.

The second chapter, entitled “Winners and Losers: The Distributional Impacts of a
Carbon Tax in Brazil” continues to investigate how economy-wide policy alternative
instruments, such as a carbon tax, influence the emissions and welfare of Brazilians and
the opportunities to implement such instruments in a tax reform context. Estimates
suggest that it is possible to observe the first dividend in the Brazilian context, as it could
reduce annual GHG emissions by up to 4.2%. However, since low-income households
are less price-responsive for the majority of carbon intensive categories, they suffer a
larger relative welfare loss due to the carbon tax (0.10% of their total expenditures,
vis-à-vis 0.06% for richest households). They are also more likely to suffer from a larger
relative indirect effect of “food and beverages” and “housing-related” consumption,
which accounts for a greater budget share of these households. Significant changes in
total GHG would require a higher tax rate, which would reinforce the regressiveness of
the policy. These results indicate that compensation strategies, such a direct lump-sum
transfer, need to be considered by the government to reduce the burden imposed on
these households. Given the significant complexities in the Brazilian tax system, the
generation of a second dividend effect could be observed only if the country implements
carbon pricing mechanism as part of a broader structural tax reform.



The third chapter, entitled “Does Decentralized and Voluntary Commitment Reduce
Deforestation? The Effects of Programa Municípios Verdes” utilizes regression dis-
continuity and high-resolution spatial dataset (1,781,122 pixels covering 162,242 km2)
to examine the effect of a Brazilian state-level programme implemented in 2011 on
deforestation rates. The programme was implemented in one of the country’s state
that present the highest deforestation rates. Evidence suggest avoidance of roughly 8.0
MtCO2/year released to the atmosphere, and the extrapolation of estimates to the total
area that could be legally deforested in Pará indicates that 41% of deforestation in the
Amazon region between 2015 and 2018 could have been prevented using this voluntary
initiative. Since Brazil has committed through its NDC to eliminate deforestation in the
Amazon by 2030, decentralized programmers with focus on indirect benefits appear to
be effective in the long-run, serving as a “bonus” to support those regions with higher
levels of forest cover.

Key-words: Censored QUAIDS, Regression Discontinuity Design, Carbon taxation,
CO2e emissions, Censored QUAIDS, Policy Evaluation, Deforestation, Emissions, De-
centralization



RESUMO

Esta tese explora as recentes mudanças nos padrões de emissão de gases de efeito
estufa (GEE) no Brasil para fornecer evidências sobre possíveis trocas, nas políticas de
impostos sobre a energia e na eficácia de iniciativas de combate ao desmatamento.

O primeiro capítulo avalia o bem-estar e as emissões e os efeitos nos diferentes níveis de
renda das famílias das políticas de imposto sobre energia implementadas recentemente
no Brasil. As conclusões sugerem que os impostos sobre os preços das bombas de
gasolina são progressivos e têm um impacto negativo nas emissões totais de energia
das famílias devido à substituição e aos efeitos. Apesar de regressivas, as mudanças
nos preços da eletricidade têm grandes efeitos sobre as emissões domésticas devido
às características do suprimento de energia elétrica no Brasil. Os resultados mostram
que 11% do total aditional de emissões de energia entre 2010 e 2018 (ou 6,5 MtCO2e)
poderia ter sido evitado na ausência de subsídios governamentais ao diesel, eletricidade e
eletrodomésticos e impostos sobre a gasolina. Políticas mais amigáveis ao meio ambiente,
como subsídio ao etanol, podem ter um efeito pequeno, mas positivo, na economia e
tendem a reduzir as emissões domésticas. No entanto, grandes substituições e efeitos -
devido ao aumento da demanda por produtos intensivos em CO2e, como serviços de
transporte e deslocamento - ao taxar a gasolina não definem ou reduzem a emissão
causada por um preço mais baixo do etanol. Portanto, entender quem se beneficia dos
impostos e subsídios à energia é fundamental para obter apoio público para um mix de
energia mais verde, conforme prometido pelo país em seu NDC.

O segundo capítulo investiga os efeitos distributivos de um imposto sobre o carbono em
toda a economia. As estimativas sugerem que é possível observar o primeiro dividendo
no contexto brasileiro, pois isso pode reduzir as emissões anuais de GEE em até 4,2 %.
No entanto, como as famílias de baixa renda são menos responsivas aos preços para a
maioria das categorias intensivas em carbono, elas sofrem uma maior perda de bem-estar
relativa devido ao imposto sobre o carbono (0,10 % em relação às despesas totais, em
relação a 0,06 % para as famílias mais ricas). Eles também são mais propensos a sofrer
um efeito indireto relativo maior de “alimentos e bebidas e consumo “relacionado à
habitação, o que representa uma maior parcela do orçamento dessas famílias. Mudanças
significativas no total de GEE exigiriam uma taxa de imposto mais alta, o que reforçaria
a regressividade da política. Esses resultados indicam que as estratégias de compensação,



como uma transferência direta e total, precisam ser consideradas pelo governo para
reduzir o ônus imposto a essas famílias. Dadas as complexidades significativas no
sistema tributário brasileiro, a geração de um segundo efeito de dividendo só poderia
ser observada se o país implementasse o mecanismo de precificação de carbono como
parte de uma reforma tributária estrutural mais ampla.

O terceiro artigo tira proveito de um programa estadual e voluntário brasileiro imple-
mentado em 2011 para avaliar sua eficácia na redução de uma das maiores taxas de
desmatamento do país. Evidências sugerem evitar aproximadamente 8,0 MtCO2 / ano
liberados na atmosfera, e a extrapolação de estimativas para a área total que pode ser
desmatada legalmente no Pará indica que 41 % do desmatamento na região amazônica
entre 2015 e 2018 poderia ter sido evitado usando esta iniciativa voluntária. Como o
Brasil se comprometeu, através de seu NDC, a eliminar o desmatamento na Amazônia
até 2030, programadores descentralizados com foco em benefícios indiretos parecem ser
eficazes a longo prazo, servindo como um “bônus para apoiar as regiões com níveis mais
altos de cobertura florestal .

Palavras-chaves: QUAIDS Censurado, Taxação de Carbono, Emissões de CO2, Avali-
ação de Politicas, Desmatamento, Descentralização
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Chapter 1
DISTRIBUTIONAL WELFARE AND EMISSION EFFECTS OF
ENERGY TAX POLICIES IN BRAZIL

1.1

1.1 Introduction

Energy-related GHG emissions have increased sharply in Brazil, from 290 million
tonnes of carbon dioxide equivalent (MtCO2e) in 2000 to 407.4 MtCO2e in 20181.2.
Against international commitments to reduce emissions1.3, Brazilian policies artificially
reduced end consumer prices for fossil fuels and electricity to curb inflation resulting in
total subsidies of USD 4.9 billion in 20151.4. Artificial relative prices have equity effects
as they affect household purchasing power and shift expenditure across goods and
services (Pizer and Sexton, 2017). The literature still lacks empirical evidence regarding
the cost-effectiveness of such policies, especially with regard to the distributional effects
(effects across different incomes) considering potential substitution and complementarity
among goods.

To shed light on the discussion of distributional effects and cost-effectiveness of
energy tax policies, we assess their short-term impacts on GHG emission and welfare
for different household income levels in Brazil. We use rich household budget microdata
and match them with energy requirement data to calculate the carbon footprint for
all products. We use both de facto tax cuts and increases in tax rates implemented on

1.1We are grateful to the participants of the European Association of Environmental and Resource
Economists and the European Economic Association congresses for their valuable comments.

1.2Brazilian energy emissions increased 2% per year, while total emissions decreased 1% per year
in the period, to 21.4% of Brazilian emissions in 2018 (data from the Greenhouse Gas Emissions
Estimation System (SEEG) of the Climate Observatory Initiative). See Appendix Figure 1.1.

1.3In Brazil, the Nationally Determined Contribution Towards Achieving the Objective of the United
Nations Framework Convention on Climate Change (NDC-Br 2015), in which Brazil pledged by 2030
to: i) increase the share of sustainable biofuels in the energy mix to approximately 18%; ii) achieve
45% of renewables in the energy mix; iii) expand the use of renewables other than hydropower in the
total energy mix to between 28% to 33%; iv) increase the share of renewables other than hydropower
in electricity supply to at least 23% and v) achieve 10% efficiency gains in the electricity sector.

1.4Brazil’s subsidies to fossil fuels cover mostly oil and gas production and supply, and include
research and development investments, drilling and fuel transport, as well as power generation (Bast
et al., 2015).
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different energy goods (transport fuels, electricity and gas, and residential appliances).
We also simulate alternative and more environmentally friendly tax policies which, in
theory, tend to reduce GHG emissions. The essential idea behind the distributional
effects that we calculate is that taxing a good that is used mainly by the rich is
progressive, while taxing a good used predominantly by the poor is regressive (Sterner,
2012).

The period we analyze is the late 2000s. During this period, the Brazilian
government granted tax exemptions on fossil fuels to reduce the rate of inflation due to
the rising price of oil, a result of the 2008 economic crisis. The reduction in fossil fuel
prices encouraged individuals to choose the fossil fuel option over ethanol (enabled by
flex-fuel vehicles1.5), which had serious consequences for the ethanol industry. Later on,
in an attempt to boost economic growth, the Brazilian government prioritized policies
aimed at increasing electricity consumption. Furthermore, changes in the weather
reduced the amount of electricity generated by hydropower and increased the share
of thermal power fueled by natural gas, biomass and coal in the Brazilian electricity
matrix.

To analyze the institutional setting, our estimation strategy comprises three steps.
First, we calculate the direct and indirect carbon dioxide equivalent (CO2e) emission
coefficient from the burning of fossil fuels (carbon footprint) for 128 household products.
To do this, we use energy requirement data and the national input-output matrix to
generate the carbon footprint by product. Second, we estimate the price and expenditure
elasticities derived from a censored demand system for the total household consumption
basket. We apply price corrections and use instrumental variables to estimate demand
elasticities. We also estimate different elasticities by income group (poor households
are below percentile 20 of total income and rich households are above percentile 80 of
total income). Finally, using the estimated carbon footprint and price elasticities, we
calculate the effects of end consumer price changes on household consumption, emissions
and welfare across income-level groups. The price changes assessed are not only de
facto tax and subsidy rates implemented on end consumer prices in the 2000s, but also
alternative and more environmentally friendly tax policies.

Our findings suggest that the short-term emission and welfare effects at the
household level can be substantial, depending on the policy. Tax and subsidies on
gasoline are progressive and have negative impacts on total household energy emissions

1.5In Brazil, flex-fuel vehicles are ethanol- and gasoline-powered cars that are produced by the auto
industry in Brazil since 2003. See more details in Section 1.2.
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due to substitution effects. Despite being regressive, changes in electricity prices have
considerable effects on household emissions due to the characteristics of the electricity
supply in Brazil. We estimate that at least 11% of total additional energy emissions
between 2010 and 2018 (or 6.5 MtCO2e) could have been avoided with the absence
of these tax increases. Alternative policies that subsidize ethanol have a small but
positive effect on the economy and tend to reduce household emissions. However, when
combining subsidies for ethanol and additional taxes on gasoline and diesel, we observe
large substitution effects due to an increase in the demand for other CO2e-intensive
goods. These include commuting and transportation services, which are more than
sufficient to offset emissions reduction caused by a lower ethanol price. Policies that
promote more efficient use of electricity tend to be regressive and also increase household
carbon footprints. Overall, we find that subsidies on ethanol are 34 times more cost-
effective than subsidies on electricity and gas, but they have a lower capacity to reduce
emissions than the latter.

Our contribution to the literature is threefold. First, we contribute to the
empirical literature that explores general distributional effects of energy (transportation
fuels and electricity) tax policies for developing countries. For transport fuel taxes,
many papers indicate that, while there may be slight regressivity in some high-income
countries, fuel taxation (either direct or as a carbon tax) is progressive particularly in
low- and middle-income countries, where it can be considered a ‘luxury tax’1.6 (Granado
et al., 2012; Nikodinoska and Schröder, 2016; Feng et al., 2018; Pizer and Sexton, 2017).
Evidence suggests that fuel subsidies might be a costly approach to protecting the
poor due to substantial benefit leakage to higher income groups (Sterner, 2012) 1.7.
Nonetheless, a transport fuel price increase/tax could lead to greater emission reductions,
driven by relatively large budget shares and high carbon intensity (Renner et al., 2018;
Renner et al., 2017).

With regard to the impact of changes in electricity prices, evidence suggests
that in developing countries, where electrification rates are relatively low, or where

1.6‘Luxury tax’ are ad valorem taxes or progressive taxes charged on high-priced goods deemed
non-essential.

1.7These differences appear to be due to differences in car usage by income groups and availability
of public transport: in developing countries, poorer households may be less likely to own a car or use
taxis and personal driving services, and therefore spend a very small share of their money on fuel for
transport. In India, for example, transport fuel expenditure amounts to less than 2% of total income
for the lowest income decile and 8% of total income for the wealthiest income decile (Morris and
Sterner, 2013). However, lack of public transport may lead to regressive effects of taxes on transport
fuels (Flues and Thomas, 2015; Wang et al., 2016).
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energy-consuming durable goods are beyond the reach of poor households, electricity
taxes tend to be progressive (Flues and Thomas, 2015; Pizer and Sexton, 2017; Cottrell
and Falcão, 2018). However, as income grows, and households become more connected to
the grid, electricity taxes are likely to have a higher impact on middle- and low-income
households (Flues and Thomas, 2015; Feng et al., 2018; Pizer and Sexton, 2017)1.8.

Second, we also contribute to the literature as we analyze the cost-effectiveness
of different policies in terms of both welfare costs and CO2e emissions in Brazil. Most
studies have assessed only one channel of the effects of energy taxes and subsidies,
in monetary terms, by measuring the changes of expenditures as tax burdens and
variations in welfare (Flues and Thomas, 2015; Pizer and Sexton, 2017; Renner et al.,
2017).

Third, we contribute to the energy demand literature by using a censored energy
consumer demand system, that creates unbiased elasticity estimates when there is
lack of consumption of certain goods reported in household expenditure surveys. This
method has been widely applied in food-demand contexts (Yen et al., 2002) however,
it is still incipient in energy demand analysis. This paper also adds to the literature
that quantifies direct and indirect household carbon footprints (Druckman et al., 2011a;
Chitnis and Sorrell, 2015; Azevedo, 2014; Cohen et al., 2005; Perobelli et al., 2015;
Freitas et al., 2016).

In the following section we present an overview of the recent energy tax policies
implemented in Brazil (Section 1.2), then we examine the estimation strategy and data
sources (Section 1.3) before moving to a discussion of the results (Section 1.4) and
finally presentation of our conclusions (Section 1.5).

1.2 Background: energy taxation on consumption

From large-scale pioneering initiatives to promote biofuels to heavy petroleum
subsidies, the strategies adopted by the Brazilian government in recent decades have

1.8These households may be cash- and credit constrained, so it is more difficult for them to replace
old appliances with newer ones even though that could save them money over time. When buying
new appliances, the same constraints prevent them from investing heavily in energy efficiency. This
regressivity may be exacerbated if poorer households live in older, less efficient housing and use less
efficient household appliances. Emission reductions from electricity price changes could also be large,
depending on the electricity generation characteristics, own and cross price elasticities and budget
shares (Renner et al., 2018; Renner et al., 2017).
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strongly influenced the current design of the country’s energy consumption and emissions
profile. Figure 1.2 summarizes the main landmarks discussed in this section.

Since Brazil was not an oil-rich country, domestic oil needs had to be met mainly
by imports up to the 1970s1.9. The first oil shock in 1973 hit Brazil when barely 17% of
its oil were met by domestic production. After the second oil shock in 1979-80, the oil bill
amounted to the financial equivalent of more than half of Brazilian exports (Rovere and
Simões, 2008). As a result, an ambitious programme was launched by the government
to substitute imported oil for alternative domestic energy sources. The National Alcohol
Programme (PROALCOOL) encouraged the production and consumption of ethanol as
a substitute for gasoline in automobiles1.10. The government also provided incentives
for automobile manufacturers to develop vehicles capable of running on ethanol. In
parallel, Petrobras, a state-controlled oil company, was also required to establish an oil
price stabilization fund1.11 in its accounting practices1.12.

During the 1980s, the government no longer had the capacity to support the
subsidies of PROALCOOL due to high foreign debt and inflation rates. Falling oil prices
combined with rising sugar prices and the removal of government subsidies decreased
incentive for consumers to buy ethanol-powered cars, as well as the interest of the auto
industry to produce them (Rovere and Simões, 2008). Consequently, the PROALCOOL
ended in 1991.

Other energy subsidies were also phased out due to privatization of the energy
sector in the 1990s (Basso, 2019). Despite the reforms (Oliveira and Laan, 2010)1.13, oil
incumbents did not erode Petrobras’ dominant position in the oil exploration, refining
and transport business as it became the preferred partner of the new companies in the
search for oil on the Brazilian continental shelf. Likewise, incumbents of the electricity
sector argued that Brazil was a hydropower country and a hydro-dominated electricity
system was less efficient under full competition. Therefore, the influence of state-owned

1.9At that time, the country had a system of levies and cross-subsidies for the energy sector, as
diesel was considered essential for industrialization, liquefied petroleum gas (LPG) was widely used for
cooking and electricity prices were uneven across regions(Oliveira and Laan, 2010).

1.10The ethanol subsidies had social, regional and macroeconomic objectives, as it was produced from
sugarcane, which employed a large number of unskilled laborers in rural areas, and it was promised to
reduce Brazil’s expenditure of hard currency for petroleum imports (Oliveira and Laan, 2010)

1.11Fundo Especial de reajuste de Estrutura de Preços dos Combustíveis e Lubrificantes (Decree-law
no 1785/80).

1.12Domestic oil was priced below or above the imported oil price to keep the oil costs for Petrobras
refineries set at a price determined by the government. Any deficit in the oil fund had to be reimbursed
by the government (Oliveira and Laan, 2010).

1.13Law No. 9.478/1997, the Petroleum Law.
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hydropower actors remained even after partial privatization of the electric sector (Basso,
2019)1.14.

In the early 2000s, in response to the criticism about the liberalization of the
sector by nationalists, the government introduced a new levy Contribuição de Intervenção
no Domínio Econômico (CIDE)1.15 on the importation and sale of petroleum products
(Oliveira and Laan, 2010)1.16. Significant changes in the Brazilian hydrological cycle
drastically reduced the share of electricity generated by hydropower. It forced power
generation companies to compensate the supply with costlier thermal power fueled by
natural gas, biomass and coal, which increased the generation price. Despite incentives
to use alternative electric sources (e.g. wind and biomass) through the creation of
Conta de Desenvolvimento Energético (CDE) 1.17, governmental planning and auctions
prioritized large-scale hydropower and thermoelectric plants, as they were believed
to provide supply security (Basso, 2019). At the same time, bioethanol production in
Brazil started to grow at unprecedented rates, prompted by the introduction of flex-fuel
vehicles (running on either ethanol, gasoline, or any combination of the two) and the
government’s strategic decision to incentivize ethanol exports, since the demand was
growing in Europe and the US.

The escalation of international oil prices after 2007/08 economic crisis and the
identification of large domestic offshore oil reserves (pre-salt) radically changed the
government perception of the Brazilian oil situation. Tax exemptions were granted for
petroleum products to minimize the effect of the rising price of oil and the economic
slowdown, which led to significant losses for Petrobras and the ethanol industry, led flex-
fuel vehicle owners to choose the fossil option over ethanol (Oliveira and Laan, 2010)1.18.
According to the National Petroleum, Natural Gas and Biofuels Agency (ANP), gasoline
and diesel prices for the end consumer presented accumulated variations of 10% and
1% , respectively, between 2009 and 2013, while ethanol prices increased by 33% (ANP

1.14It is difficult to quantify the subsidy and tax levels provided to producers and consumers in the
1970-1990 period due to the lack of official figures and high inflation rates.

1.15The PIS/COFINS tax rate remained around 9.25% in the period 2002-12. ICMS tax rates for
transportation fuels differ from state to state, within the limits set by federal legislation.

1.16The levy raised revenues that were then used to fund: i) subsidies for ethanol producers; ii) the
transportation costs of hydrocarbons and LPG used by low-income families; iii) projects oriented to
environmental protection; and iv) the construction of roads.

1.17The Conta de Desenvolvimento Energético (CDE), created by Law 10.438/02, is a sectorial fund
whose objective is to finance several public policies in the Brazilian electric sector, including the
development and consumption of renewable energy sources. CDE resources are collected mainly from
the annual dues paid by all agents that sell electricity to final consumers, through a tariff charge
included in the tariffs for the use of energy distribution and transmission systems.

1.18As an example, the CIDE rate was reduced to zero between 2012 and 2014.
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Agência Nacional do Petróleo, 2020).

Between 2010 and 2014, after the recovery of the electricity supply capacity,
new regulations were introduced aiming to expand and diversify its capacity, and
boost competitiveness and economic growth. Electricity prices were reduced by 18%
for domestic consumers and 32% for industrial ones1.19 as a result of the reduction in
the CDE rate. Tariff flags, a system of colors to indicate generation costs, were also
implemented to inform consumers about increases and decreases in electricity prices. In
an attempt to improve a largely neglected topic - energy efficiency and conservation
-, the federal government offered a social levy on electricity1.20 and tax exemptions
of value-added tax on manufactured goods (IPI), such as residential appliances1.21.
Tax rates ranged between 0% and 20% according to the type of good1.22. As a result,
there was a sharp increase in the purchase of home appliances and equipment such as
computers, mobile phones, refrigerators, TVs and air-conditioners, which tended to be
more energy-efficient than the older appliances they often replaced.

The political and economic crises that have held sway since 2015 have forced the
government to review some energy tax and subsidy policies. For an example, CIDE was
reestablished1.23 on gasoline and diesel. Electricity prices also increased considerably
as a consequence of several droughts in the Southeast region, which increased the
dependency on thermal power plants. However, there is still some uncertainty about the
government’s final positioning on current energy taxes and subsidies. After announcing
an end to diesel tax cuts and subsidies in 2018, Brazilian truckers staged a 10-day strike
causing shortages of basic goods and a shortage of fuels across the country. In response,
the government agreed to lower the pump price of diesel by 10%.

1.19Law No 12.783/2013.
1.20Law 12.212/2010 - For those with per capita family income less than half the Brazilian minimum

wage (approximately USD 140/month).
1.21Decrees No 7.878/2012 and No 8.035/2013.
1.22For stoves, the reduction was 4%; for washing machines, refrigerators and semi-automatic washing

tanks it was 10%.
1.23As a R$ 0.10 per liter tax on gasoline, and R$ 0.05 per liter tax on diesel.
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1.3 Empirical Strategy and Data

1.3.1 CO2e emission coefficients

The hybrid input-output (HIO) method is the most widely used way to link
energy sources and economic production and consumption (Druckman et al., 2011b;
Thomas and Azevedo, 2013; Chitnis et al., 2014). It requires the construction of the
Eexn matrix, which represents the consumption of e sources of energy from n economic
sectors (e < n) and it is expressed in physical units (tons of oil equivalent, toe). The
matrix E substitutes intermediate input flows in the energy sectors (matrix Z∗), the
total production vector (x∗) and the final demand vector (y∗):

A∗ = Z∗(X̂∗)−1 (1.1)

where X∗ is a matrix with the elements of x∗ in the diagonal and zeros elsewhere
and A∗ is the technical coefficient matrix, in hybrid units.

Energy requirements are converted into CO2, CH4 and N2O1.24 and then to
CO2e based on energy conversion coefficients for fossil fuels1.25 available at the Second
Brazilian Inventory of Greenhouse Gas Emissions, which follows the IPCC Guidelines
for National Greenhouse Gas Inventories (IPCC, 2007) and global warming potential
(GWP) conversion factors 1.26.

We calculate matrix Ap based on the proportion of each good i used in the total
production of a specific sector j (B), and the proportion of a sector j in the national
production of each good i (D). Its coefficients can be interpreted as the quantity of
CO2e that good i uses to produce one unit of good j (expressed in tons of CO2e/USD
million). Direct CO2e emission is equivalent to the sum the k rows of Ap that measure

1.24CO2, CH4 and N2O are the three main long-term drivers of climate change.
1.25The following fuels were considered: natural gas, steam coal, metallurgical coal, diesel oil, fuel

oil,gasoline, LPG, kerosene, gas coke, coal coke, other oil byproducts, and coal tar.
1.26The “global warming potential” (or “GWP”) of a GHG indicates the amount of warming a gas

causes over a given period of time (normally 100 years). GWP is an index, with CO2 having the index
value of 1, and the GWP for all other GHGs is the number of times more warming they cause compared
to CO2. E.g. 1 kg of methane causes 25 times more warming over a 100 year period compared to
1kg of CO2, and so methane has a GWP of 25. These conversion coefficients take into account the
characteristics of the chemical process and technology applied to each greenhouse gas.
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emissions:

ci,CO2eq =
∑
k

apkj (1.2)

in which k ≤ i. Total emissions are equivalent to direct plus indirect emissions:

cTi,CO2e = (I −Ap)−1 ∗ Y ∗ ci,CO2e (1.3)

where Y is the vector of final demand. Therefore, the emission coefficient of
the goods corresponds to the CO2e content embedded in one monetary unit of the
respective good.

The HIO model assumes no price substitution effect on consumption or produc-
tion processes and it considers that all interactions among components of the economy
occur at the same time. However, the premise of strict prices is adjusted by the estima-
tion of a censored demand system, as detailed in Section 1.3.2. Therefore, emissions
reductions are exclusively due to consumption changes. Our emission coefficient es-
timates include exports but exclude imports, as it is not possible to calculate their
respective energy requirements.

1.3.1.1 Data

We use energy requirement data from the Brazilian Energy Balance (BEN),
from the Ministry of Mines and Energy (MME), which provides 24 energy sources1.27

consumed by 21 economic sectors. The national input–output matrix for 2010 is built
based on Supply-Use Tables (SUTs) provided by the Brazilian Institute of Geography and
Statistics (IBGE) (Guilhoto et al., 2010). The SUTs contain information on production
and intermediate consumption, in monetary units, of 128 goods and 68 economic
sectors. We follow Montoya et al. (2014) by reconciling the economic sectors from these
databases and the energy sources from BEN which are compatible with the goods in
SUTs (Table 1.1, Appendix).

1.27Energy generated by self-producers is not added since the majority of this energy is consumed by
the same companies, and therefore, does not generate added value. Imported energy (which corresponded
to approximately 7% of total energy supply in 2010) is also not included in our calculations since it is
not possible to identify its respective sources.
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1.3.2 Household elasticities: Censored QUAIDS

To estimate the distributional impacts of energy taxation, we need to understand
how consumers responds to price changes. We estimate price and expenditure elasticities
for the household consumption basket, which are then used to compute changes in
consumption following the energy taxation policies.

The advantage of estimating a system of demand equations instead of individual
equations relies on the joint estimation and empirical tests concerning the validity of
the theoretical restrictions implied by the consumer theory. We choose the Quadratic
Almost Ideal Demand System (QUAIDS) (Deaton and Muellbauer, 1980a), which
considers the non-linearity of income. It is preferred to other demand systems because
it gathers many of their respective properties without making strong assumptions on
preferences which could create a specification bias in the estimation. QUAIDS considers
the consumption of n different categories of goods and the share of each good in total
household expenditures:

wi = αi +
n∑
j=1

γijln(pj) + βiln[ m

a(p) ] + λi
b(p) [ln( m

a(p))]2 (1.4)

where i and j represent goods and wi the share of expenditure of good i in
total expenditures m, pj is the price index, and a(p) and b(p) are two distinct price
indexes. We also account for household heterogeneity by including demographic and
socioeconomic shifters in αi (Pollak and Wales, 1981) (Table 1.3, Appendix).

We follow Druckman et al. (2011a) and Schmitz and Madlener (2017) by estimat-
ing the demand system for nine (n=9) groups of goods, which allows the understanding
of the consumption dynamics between direct and indirect energy use goods: (i) food
and beverages, (ii) recreation, culture and education, (iii) clothing and footwear, (iv)
commuting and transportation, (v) health and hygiene, (vi) energy (electricity and
gas 1.28, gasoline, ethanol, diesel and charcoal), (vii) housing (residential appliances),
(viii) other goods and (ix) other services. Table 1.2 (Appendix) provides a detailed
description of these categories.

Our use of household expenditure survey data to estimate the demand system,
it can create biased results due to the lack of consumption of certain goods during the
recall period (See Section 1.3.2.1 and Table 1.5, Appendix). We account for the problem

1.28We are not able to split electricity from gas as these products are aggregated in the SUTs.
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of censored dependent variables using the procedures suggested by Shonkwiler and Yen
(1999)1.29, in which the consumption of each good can be characterized as a two-stage
decision: the first step corresponds to a probit model with the same variables as the
QUAIDS model, in which its cumulative distribution (Φ̂) and the probability density
function (φ̂) are used in the second step to augment the QUAIDS estimation:

w∗
i = Φ̂iwi + φ̂i (1.5)

The expenditure (Eq. 1.6) and price elasticities (compensated, Eq. 1.7 and
uncompensated, Eq. 1.8) formulas for the nonlinear QUAIDS can be expressed as:

ηi = 1 + Φi/wi[βi + ( 2λi
b(p))ln( m

a(p))] (1.6)

εij = −δij+Φi/wi[γij−(βi+( 2λi
b(p))ln( m

a(p)))(αj+
∑
k

γjk−lnpk)−
λiβi
b(p)(ln( m

a(p)))2 (1.7)

where δij is the Kronecker delta (equal to one only for own price elasticities, and
zero otherwise).

εHij = εij + ( βi
wi

+ 1)wj (1.8)

These elasticities should be interpreted as short-term impacts or upper bounds on
long-term impacts since averting behavior and substitutions among goods might change
demand responses in the long-run (Pizer and Sexton, 2017). Elasticities are calculated
for the overall sample and for the 20% richest and 20% poorest households in the
dataset to capture the heterogeneous effects of the energy tax policies. All models were
estimated by feasible generalized non-linear least squares (FGNLS), and standard errors
are computed by nonparametric bootstrap with 1000 repetitions. Since α0 is difficult to
estimate (Deaton and Muellbauer, 1980b), we follow Boysen et al. (2012) and adopt an
arbitrary and low value of 5. Other values do not change the resulting elasticities but
cause the procedure to require many more iterations to converge. Robustness checks
are also conducted using an uncensored QUAIDS and AIDS models with neighboring
prices and disposable income as instruments, following Poi et al. (2012).

1.29Based on the seminal work of Heien and Wesseils (1990).
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1.3.2.1 Data

The empirical estimation of a demand system requires household expenditure
data. We use the Brazilian Household Budget Survey (POF), carried out by the
IBGE from May, 2008 up to May, 2009. The survey is cross-sectional and nationally
representative, with 55,970 households, and it is built based on a two-stage cluster
sample: first, previously grouped census sectors are selected to obtain a stratum of
households with a high level of geographic, social, and economic homogeneity; and
second, households are selected by simple random sampling without replacement, from
each of the selected sectors.

Households are evaluated throughout the 12 months of the survey and data
collection includes all household monetary and non-monetary expenses1.30, which are
annualized and subject to deflation. Recording periods are also different according to
the good/service: food and beverage expenses are collected for a 7-day period; building
materials expenses, rent and taxes are compiled for a 12-month period; expenses related
to the consumption of energy goods (electricity and gas and transport fuels) are collected
for a 90-day period, while individual expenses with transportation, education, meals
outside the home, medicines, hygiene, health, furniture and vehicle acquisition vary
according to the good/service; and income data corresponded to a 12 month period.
The level of detailed information of monetary and non-monetary expenses and income
from POF allows minimizing of the under-declaration problem (Hoffmann, 2010).

In the POF, the IBGE provides information for almost 14,000 products, while
the most recent and disaggregated data from SUTs present only 128 products. To
reconcile both datasets, we use the IBGE official translator to match POF products
according to their similarity with the products available from the SUTs1.31.

1.3.2.2 Construction of price aggregates

The main theoretical variables for household demand system are, basically, total
expenditures (proxy for income)1.32 and prices, calculated as unit values (pi = UVi).

1.30Monetary expenses includes all means of payment, on demand or over a period of time, in cash or
by check or credit card. Non-monetary expenses correspond to acquisitions by means of donations,
taken from the business, own production, fishing, hunting or gathering.

1.31Available at: <https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/
9052-sistema-de-contas-nacionais-brasil.html?edicao=25916&t=notas-tecnicas.>

1.32Since household income is self-reported, this information might be associated with negative
reporting bias. To overcome this issue, the literature usually adopts household total expenditure as a

https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9052-sistema-de-contas-nacionais-brasil.html?edicao=25916&t=notas-tecnicas.
https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9052-sistema-de-contas-nacionais-brasil.html?edicao=25916&t=notas-tecnicas.
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Particularly for the products from group 1 (food and beverages), there are two main
problems related to the price we calculate from the household expenditure surveys:
potential measurement error, and differences in quality and packaging (Boysen et al.,
2012). We use a price correction method based on Cox and Wohlgenant (1986)1.33,
detailed in Appendix B.

As not all households have positive consumption of all items, the missing
observations are approximated by the average of p̂i coefficients over the neighboring
region - first, the state and, if it is still missing, the census sector. After the price
corrections for each item belonging to each of the nine groups, we compute the Stone
price index (Deaton and Muellbauer, 1980a), whose heterogeneity provides suffient
variability to cross-sectional datasets:

lnpn =
∑
iεIn

wilnpi (1.9)

in which In is the set of items included in aggregate item group n, pi is the price
and wi is the budget share for item i of each household. Because expenditures and
prices are endogenous in this demand system, we use household disposable income as
an instrument for expenditures, and nearest neighbors price indexes as instrument for
household price indexes(Lecocq and Robin, 2015), controlling for diversity in household
preferences such as composition, age, location and energy use inventory.

In the POF, there is a limitation related to the lack of specification of the
quantity consumed of several goods and services particularly consumed: in a 12-month
period (e.g. rent, taxes, construction and remodeling) and on an individual basis (e.g.,
education, commuting and transportation), mainly aggregated into groups 2, 4, 5, 7
and 9. To overcome this issue, we assume that the quantity consumed is equal to
1 for the households with positive consumption of the respective good/service. This
approach tends to overestimate the unit value for some products and services, thus
underestimating the respective price-elasticities.

proxy for household income.
1.33Deaton (1990) also proposes a procedure to correct unit values, assuming that there are no

price variations within a geographic area near the households. The variations observed in unit values
for household in a given area are due to quality differentials and measurement errors of the goods
previously acquired. That is, for households physically close to each other, the reported price should
be the same in a similar period of time. Besides its difficulty of implementation - due to a large matrix
multiplication -, the main disadvantage of Deaton’s method is that the covariance of the residuals -
which is used to estimate corrected price elasticities - can be influenced by many unexplained factors
and not just price variation.
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Based on these limitations, Table 1.4 presents the aggregated prices, in which
values expressed in reais of 2009 are converted to 2019 using the average exchange
rate from the Central Bank of Brazil for the latter year. The price indexes should be
interpreted as a relative price index: for example, richer households expend 34%, 78%
and 67% more on food and beverages, commuting and transportation services and
energy goods, respectively, than the poorest households. The small standard deviation
values are associated with the lack of information related to quantity consumed of
several expenditure items.

The expenditure share of energy goods by different income levels is presented in
Table 1.6. Energy consumption in Brazilian households includes electricity and gas and
transportation (ethanol, diesel and gasoline). On average, the majority of household
expenditures refer to electricity and gasoline consumption. Richer households present
a smaller expenditure share for electricity compared to poorer households. However,
expenditure shares for fuel are smaller for poorer households.

1.3.3 Policy simulation

1.3.3.1 Scenarios

We simulate de facto changes in ad valorem tax rates on final consumer prices
of household energy goods implemented by the Brazilian government in recent decades
as discussed in Section 1.2. Since tax and subsidy rates applied to gasoline, ethanol and
diesel varied considerably over time, we use a 10% tariff rate as reference. Similarly,
since tariff rate reduction also varied among residential appliances, we also adopt a
10% tariff rate in our calculations. For electricity, we use the rates announced by the
Brazilian government in 2013 - reduction of approximately 20%. As shown in Table 1.7
(Appendix), scenarios 1-4 include subsidy on diesel, subsidy on electricity, tax on gasoline
and subsidy on residential appliances.

We compare the results of the de facto policies with results of more environ-
mentally friendly simulated policies. Scenarios 5-9 include hypothetical policies that
promote the use of cleaner alternative transport fuels - tax on diesel, subsidy on ethanol,
combined tax on transportation fuels (gasoline and diesel) and subsidy on ethanol - and
improvements in household energy efficiency - subsidy on residential appliances and tax
on electricity.
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1.3.3.2 Welfare effects

Focusing only on the costs associated with the tax imposition and assuming that
prices are fully transferred to consumers (Flues and Thomas, 2015; Boyce, 2016), we use
the concept of compensating variation (CV) to assess the short-term effects of energy
taxes on welfare. The CV, expressed in monetary terms, indicates the adjustment in
income a household would need to re-establish its initial utility after a tariff-induced
change in prices. CV can be decomposed into two components: (i) the tax burden (TB),
that is, the variation in the price multiplied by the quantity consumed after the price
change, and (ii) the excess tax burden (EB), which is the efficiency cost or deadweight
loss.

The effective tax rate τn is calculated based on the overall changes in the group
price index: electricity and gas and transport fuel prices impact the price index for the
energy group, and changes in residential appliances prices affect the overall price index
for housing, such as:

τn =
∑
iεIn

w0
i lnp

1
i −

∑
iεIn

w0
i lnp

0
i (1.10)

Considering τn and the compensated elasticities obtained from Equation 1.7,
changes in quantities can be calculated as:

∆qi
q̄i

=
n∑
j=1

ε̂Hij τi (1.11)

As to the approximation suggested by Harberger (1971)1.34:

EBCV i = (p1
i − p0

i )
(qi(p1

i , p−i,m)− hi(p1
i , p−i, U0))

2 (1.12)

1.34Traditional Harberger-triangle formulas assume that the market demand curve comes from utility
maximization and that either taxes are small or demand functions are linear. Therefore, the use of this
approximation is good for small policy changes, but can be inaccurate for large ones. Despite assuming
linearity of the supply and demand curves, the benefit of this method is that it can be used for any
type of model if the prices and quantities before and after a policy change are available.
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and

∆TBi = τi
1 + τi

p1
i × qi(p1

i , p−i,m) (1.13)

A key issue to examine the distributional effects of carbon taxes is how to measure
the magnitude of tax burdens between poor and rich households. Many households in
the lower income deciles either dis-save on previous earnings or may borrow against
future earnings. Their level of expenditure reflects better what they are able to afford
than their levels of income (Flues and Thomas, 2015). Since current consumption
measures the current standard of living better than current income, we present CV, EB
and TB estimates relative to the total household expenditures.

1.3.3.3 Emission effects

Based on total emission coefficient for each good and service i, we create a
weighted emission coefficient for each of the 9 groups for the overall sample and the
20% poorest and 20% richest households. The difference between total GHG emissions
before and after the tariff rate changes indicate the changes in total household carbon
footprints due to a specific energy tax policy, as follows:

∆CO2e =
∑
n

(p1
i ∗ q1

i ) ∗ cTi,CO2e −
∑
n

(p0
i ∗ q0

i ) ∗ cTi,CO2e (1.14)

1.4 Results

In this section we present the CO2e emission coefficients from the burning of
fossil fuels and the elasticities estimates. At the end, we show calculations of the welfare
and emissions effects of several price change scenarios, followed by a cost-effectiveness
calculation to compare alternative policies.

1.4.1 CO2e emission coefficients

Based on the HIO method, the CO2e emission coefficients for each good in the
economy are shown in Table 1.9. The intermediate consumption coefficient represents
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only direct emissions, which counts the CO2e required to produce USD 1 million of output
of each good/service, in 2019 values. The final demand coefficient, in turn, includes
direct and indirect emissions, indicating how much CO2e is generated throughout the
production chain (final demand).

Our estimates show that services under group 4 (commuting and transportation),
composed of ground transportation of cargo and passengers, as well as air and water
transportation, are the most carbon intensive services in the Brazilian economy. Goods
included in groups 7 (housing) and 8 (other goods), which encompass products such
as wood and paper products, cement, glass, metal and electrical machinery, such as
residential appliances, also present high emission coefficients. Foods and beverages have
high CO2e levels mainly due to indirect effects from transportation. Since freight and
passenger transportation is heavily based on road and buses and trucks that use diesel
as the main fuel, indirect emissions account for the largest part of overall emissions.

These results are aligned with previous studies conducted specifically involving
Brazilian households. Cohen et al. (2005) found that utilities, mobility (transportation)
and housing accounted for the majority of energy consumption in 19951.35. An interesting
point raised by the authors was that, in general, energy intensities varied considerably
across the income classes, except for mobility (because of the shift from public to
individual transport) and housing (due to differences among rents and residential
appliances between classes). Perobelli et al. (2015) found that most CO2e emitted by
Brazilian households in 2003 and 2009 came from transportation services, electricity,
gas and water supply, as well as food products. Unlike other sectors, the share of CO2e
emissions from transportation services increases with income level.

This pattern can also be observed in other empirical studies. Using an environmentally-
extended input–output model, Thomas and Azevedo (2013) showed that gasoline and
electricity accounted for the largest share of the average U.S. household footprint in
2002. Findings from Kerkhof et al. (2009) indicated that Dutch households used gas
for home heating and cooking, with a high contribution to CO2e emissions. Therefore,
high emission intensity mainly originates from the use of gas and electricity (which are
included in the housing group in their study), followed by food products due to indirect
emissions. Based on an input–output model for carbon emissions, housing is the main
source of CO2e emitted by Chinese households, followed by food, transportation and
electricity (Fan et al., 2012; Golley and Meng, 2012).

1.35The energy intensity was defined as the total primary energy requirement of the product basket of
a category divided by the total consumer price of that product and is expressed in MJ/US$ 1996 PPP.
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Considering the total expenditures from POF, and the estimated CO2e emission
coefficients, Table 1.8 presents the total CO2e emission by income level. For energy goods,
richer households emit almost 10 times more than poorer households; for commuting
and transportation services, this proportion is significantly higher (80 times more). For
housing and food and beverages, richer households tend to emit 5 and 15 times more when
compared to poorer households, respectively. According World Bank estimates (Bank,
2014), the average emission per household in Brazil was approximately 10 tCO2e in 2014,
roughly in line with the average of 10.5 tCO2e resulting from our approach. Furthermore,
taking 2014 World Bank statistics as a benchmark, we find that the average emissions
per household in Brazil is significantly lower than the global average. Indeed, the average
CO2e emissions of the richest quintile in Brazil is below the average emission considering
only CO2 in China (30 tCO2/household), Germany (35 tCO2/household) and the United
States (66 tCO2/household). Likewise, the average CO2e emissions of the poorest quintile
is much lower than the average CO2 emission in India (7 tCO2/household).

1.4.2 Price and expenditure elasticities

Table 1.12 presents short-term expenditure, own and cross price elasticities
for the entire household consumption according to different income levels. Likewise,
Table 1.13 shows the same estimates disaggregated for energy goods and residential
appliances.

The expenditure elasticities for domestic energy goods are relatively high (1.8),
indicating they are luxury goods for all levels of income - especially for the poorest
households (1.9). We find a stronger positive relationship between income levels and
ethanol and diesel consumption, while electricity, gas and gasoline are mainly considered
essential goods. In contrast, expenditure elasticities for housing are relatively low (0.5) -
particularly for high-income groups (0.2). However, residential appliances, in particular,
are considered luxury goods for all households. Interestingly, for richer households,
commuting and transportation services are considered essential goods (0.9), while for
poorer households they can be classified as superior goods (1.9). Similar results were
found for developing countries by Renner et al. (2017) (Mexico), Renner et al. (2018)
(Indonesia), and Perobelli et al. (2015) (Brazil), as well as for developed countries by
Schmitz and Madlener (2017) (Germany) and Brännlund et al. (2007) (Sweden). In
general, there is an increasing propensity to consume fuel for mobility as income (and
therefore expenditures) grows; therefore, the public transport expenditure share tends
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to decline over the expenditure distribution.

All uncompensated own-price elasticities show the expected negative signs and
reflect a relatively inelastic household response to energy price changes, particularly for
electricity and gas, ethanol and gasoline. For these transport fuels, given the fact that car
and motorcycle ownership are strongly correlated with household income, and the great
majority of Brazil’s vehicles are flex-fuel, richer households present relatively higher
price-elasticity. They also tend to be more responsive to diesel price changes compared to
poorer households. Compared to other countries, Brazil presents a consistently greater
price elasticity for light transport fuels, which can be mainly explained by the country’s
automobile fleet characteristics (Dahl, 2012; Labandeira et al., 2017). This elasticity is
closer to international long-term elasticity estimates (Sterner, 2012). Commuting and
transportation services, as well as housing, present a lower price elasticity - especially for
poorer households. Significant differences in own-price elasticities are observed according
to household income level for food and beverages, housing, clothing and footwear and
other goods and services.

Compensated-price elasticities, used in the calculation of welfare effects, differ
from uncompensated elasticities since expenditure elasticities are mainly higher than or
close to 1. For energy goods, the discrepancy between the compensated (Table 1.15)
and uncompensated (Table 1.14) elasticities and the high expenditure elasticity suggest
that own-price response is primarily driven by expenditure effects. These effects are
less evident for commuting and transportation services, as well as housing and food
and beverages. In particular, the differences between compensated and uncompensated
price elasticities for diesel and gasoline between income-levels indicate that low-income
households might be more responsive to taxes or subsidies on these transport fuels
(Levinson and O’Brien, 2015), despite their relatively small expenditure share of these
goods.

Cross price elasticites (Tables 1.12, 1.14 and 1.15) indicate that, in general, the
groups with high CO2e emission coefficients are substitutes for energy goods, that is, food
and beverages, housing, and especially, commuting and transportation services. Food and
beverages are also substitutes for housing and commuting and transportation services,
and the latter are also a substitute for housing. However, housing is a complementary
good for commuting and transportation services. Likewise, energy goods appear to be
complementary for housing.

In general, the findings suggest that the expenditure effects for energy goods
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outweigh the substitution effects, and changes in their price will have an impact on the
demand for high CO2e intensity goods. Changes in the quantity demanded of other
groups (such as housing) appear to have much smaller impact on the consumption of
other goods and overall CO2e emissions.

1.4.3 Tax simulations: Welfare and emissions effects

The impacts of different energy tax policies are presented in Table 1.16. As a
result of the small share in household expenditures, a 10% subsidy on diesel prices - as
recently announced by the Brazilian government - tends to generate a lower tax burden
and relatively small economic inefficiencies. On the environmental side, since diesel is
the main fuel used for cargo and passenger transportation, subsidies applied to this
good increase CO2e emissions by 4% per year, which would be equivalent to 0.6% of
total energy emissions in 2018 (407 MtCO2e) (BRASIL, 2020).

Since electricity and gas account for more than 60% of total household expendi-
ture, changes in their price tends to generate more substantial compensating variation,
economic inefficiencies and reductions of tax burden. However, since the tax burden is
almost double for the poorest households, an increase in electricity prices can be consid-
ered a regressive policy. The 20% subsidy on electricity and gas prices, implemented in
2013, could have decreased CO2e emissions by almost 17%, as hydropower supplies more
than 3/4 of Brazil’s electricity. The reduction in the overall emissions comes mainly
from richer households: despite the increase in the consumption of energy goods, there is
a reduction in the consumption of high intensity CO2e services such as commuting and
transportation, which explains the overall reduction of CO2e emissions. The effect of
changes in the price of electricity is also enhanced due to the large electricity coverage:
in 2009, 97% of Brazilian households had access to reliable electricity (see Table 1.3).

Tax on gasoline appears to affect mainly richer households, so it can be un-
derstood as progressive. On the environmental side, a 10% increase in gasoline prices
generates an equivalent 6.3% increase in total CO2e emission per year, which amounted
to 1.0% of the country’s total energy emissions in 2018. Despite the decrease in total
gasoline consumption, and consequently total consumption of energy goods, there is an
increase in the demand for CO2e-intensive goods (such as food and beverages) as well
as commuting and transportation services. However, this is the case mainly for richer
households, as total emissions from the poorest remain at pre-tax levels.
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Tax cuts on residential appliances, similar to the VAT (IPI) tax exemptions im-
plemented in 2013, appear to benefit richer households more, as shown by the differences
in the tax burden. Annual CO2e emissions could have increased by approximately 3%
due to this policy, as a result of the increase in total emissions from richer households.
The environmental impact represents 0.5% of current energy emission levels. However,
poorer households present no reduction in total emissions. In particular, these results
are aligned with Gertler et al. (2016), Caron and Fally (2018) and Levinson and O’Brien
(2015), who showed that household credit constraints make them much more likely
to purchase energy-using assets with additional income once their income passes a
threshold level.

Considering that almost 59 MtCO2e were additionally released by the energy
sector between 2010 and 2018 (BRASIL, 2020), our estimates suggest that 11% (or
6.5 MtCO2e) of these emissions could have been averted in the absence of combined tax
cuts/subsidy on residential appliances, diesel and electricity, and tax increases on gasoline
prices. This overall result is mainly driven by the large and positive environmental
effects from a subsidy on end consumer electricity prices. When excluding this policy, the
results are more expressive: 2.1% of current emissions from the energy sector could have
been avoided annually, which amounts to 8.5 MtCO2e/year or 116% of the difference
between 2010 and 2018 GHG emission levels.

Interestingly, a hypothetical increase in the price of diesel presents an asymmetric
effect when compared to the subsidy: the former has a lower effect on households’ total
expenditure, economic efficiency and emissions. As several studies point out, price
reactions in energy demand can be asymmetric (Gately and Huntington, 2002; Frondel
and Vance, 2013).

Tax policies that promote a more sustainable and renewable energy mix seem
to be progressive. However, except for an ethanol subsidy, they do not generate fewer
economic distortions or substantial reductions in total CO2e emissions, mainly due to
the consumption behavior of richer households (Perobelli et al., 2015; Cohen et al.,
2005). In this sense, our simulation of a subsidy on end consumer price of ethanol do
not consider the negative effects on the overall environment, such as on land use, soil
erosion, fertilizer use, and wildlife habitat (Malcolm et al., 2009), as well as on human
health (Jacobson, 2007).

These tax policies directly affect the government’s budget. By considering the
average tax burden on households, and taking into account the estimate of total
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permanent households from the 2010 Population Census (57.2 mi households), it is
possible to calculate the impact of each scenario on state revenue. A large impact
would be observed with subsidies on electricity as the federal budget would decrease by
USD 10.1 bi, followed by tax cuts on residential appliances (USD 3.5 bi), the combined
tax policy aiming at improving energy efficiency (USD 1.8 bi) and the subsidy on
diesel (USD 0.5 bi). Nonetheless, tax increases on gasoline would potentially provide
a USD 5.1 bi increase in federal revenue. This would policies to promote the use of
ethanol and reduce transportation fossil fuels (diesel and gasoline), as central government
budget could increase USD 4.7 bi and USD 5.0 bi under scenarios 7 and 8, respectively.
These increases are considerable, as revenue from CIDE (levy on the imports and sale
of petroleum products) accounted for USD 6.9 bi in 2019. All of this suggests that
these revenue streams could be used by the government as an option to reduce the
regressiveness of specific tax policies, such as increases in electricity prices.

Our results suggest that energy efficiency policies, such as promoting the purchase
of more energy efficient goods by subsidizing new residential appliances and taxing
electricity and gas, overburden the most vulnerable households and generate an overall
increase of total CO2e emissions. Taking into account cross-price elasticities and the
differences in expenditure shares between income levels, our results suggest that energy
tax policies might not be as efficient as they seem at reducing GHG emissions. Similar
to the findings of Freitas et al. (2016) and Grottera et al. (2017), we expect that an
economy-wide CO2e tax could worsen economic disparities by imposing a relatively
heavier burden on low-income households.

Finally, when we calculate a cost-effectiveness measure of the policies – by
dividing the EB (cost of policy) by the CO2e reduction 1.36–, we note that the subsidy
on ethanol is 34 times more effective in reducing emissions. While for the full (rich)
sample the cost of reducing emissions by 1 ton of CO2e is USD 1/year (USD 2.7/year)
for the subsidy on ethanol, the subsidy on electricity and gas generates a cost of
USD 34.31/year (USD 31.6/year) for the same reduction in emissions. Both cost-
effectiveness measures are still lower than the current values of the social cost of carbon
(SCC) of 62 USD per tCO2e.1.37 However, considering the only policy that reduces
emissions for the poorest (20% subsidy on electricity and gas), the cost to reduce each
ton of CO2 emissions is USD 183 per year.

1.36We calculate this measure only for policies that have reduced CO2e emissions.
1.37The SCC is the incremental monetized global damages from an additional unit of CO2 emitted to

the atmosphere. We use US government estimates for global SSC considering a long-term discount
rate of 2.5% per year.
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Our findings are aligned and support the international literature on distributional
patterns of energy taxes and subsidies. These indicate that price changes in transport
fuels seem to be less regressive than changes in prices of other energy goods, such as
electricity and residential appliances. Tax policies on gasoline and diesel have been
shown to be strongly progressive in African and large Asian countries, as well as in
Turkey, Chile, Mexico, Costa Rica and Brazil (Pizer and Sexton, 2017; Williams et
al., 2014; Lozada and Sterner, 2012; Sterner, 2012; Renner et al., 2018). However, the
results of taxes and subsidies applied on electricity vary among countries, mainly due
to electricity coverage. Many poor households in developing countries do not benefit
from lower electricity tariffs because many do not have access to it and many with
larger family sizes (driven by the number of children) consume at levels above “lifeline
thresholds” (Coady et al., 2015).

1.5 Conclusions

The recent trend in Brazilian GHG emissions indicates that a larger share of
CO2e emissions is being generated by the energy sector. At the same time, energy tax
policies have been used by the Brazilian government as a lever for policy targets without
necessarily considering the environmental effects. Understanding who benefited from
these policies and their environmental impacts are keys to gaining public support for a
greener energy mix, as pledged by the country in its NDC.

In this paper, we estimated short-term emissions and distributional effects of
energy price changes in a partial equilibrium framework. The recent taxes introduced on
gasoline prices appear to be progressive and have a negative impact on total household
emissions due to substitution effects. The same was observed for policies that reduce
the end consumer price of residential appliances. Despite being regressive, changes in
electricity and gas prices have a considerable effect on household emissions due to the
particularities of the Brazilian electric supply and coverage. Similarly, taxes applied on
diesel can also be regressive, but they do not impact the current CO2e emission levels.
We estimate that 11% of total energy emissions between 2010 and 2018 (6.5 MtCO2e)
could have been avoided in the absence of combined tax cuts/subsidy on residential
appliances, diesel and electricity, and tax increases on gasoline prices.

By simulating hypothetical price change scenarios for tax policies considered more
environmentally friendly, the evidence shows there are significant tradeoffs between
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welfare and emissions. Alternative policies that subsidize ethanol have a small but
positive effect on the economy and tend to reduce household emissions in a more
cost-effective way. However, large substitution effects when also taxing gasoline do not
offset the reduction in emissions caused by a lower ethanol price. Policies that promote
a more efficient use of electricity are regressive and could increase household carbon
footprints.

We show that distributional effects on welfare are a crucial factor to be taken
into account when designing policies to reduce GHG emissions. Aligned with the
international empirical evidence, our evidences show that a very large share of the
benefits from energy price subsidies might be appropriated by high-income households,
aggravating existing income inequalities. Our findings emphasize the need to consider
compensating schemes aiming at lowering the burden on the poorest households when
energy taxes are designed and implemented.

The regressivity and progressivity of energy taxes are likely to change over
time. Further analysis is required to understand the long-term consumption patterns
and the potential emission effects associated with energy tax policies. More in-depth
studies should also analyze to what extent the effects of non-price instruments (such as
feed-in-tariffs or energy efficiency standards) or an economy-wide carbon1.38 tax would
differ from the findings presented in this study.

Our results are influenced by the adopted methodological approach, and some
aspects of this should be emphasized. First, tax burdens and economic welfare are
measured against expenditures, which compared to disposable income, can make taxes
and subsidies appear less regressive (Rausch et al., 2011; Poterba, 1991). Second, since
we focus on short term impacts, we do not take into account that households may adjust
consumption patterns in response to tax changes (Pizer and Sexton, 2017; Morris and
Sterner, 2013). Third, we assume that the taxes and subsidies are fully passed on to
consumers. Energy pricing may change real wages and returns to capital, which can
influence the optimal input production (and hence emissions) of various sectors (Boyce,
2016; Flues and Thomas, 2015). Fourth, our analysis focuses on the distributional costs
of tax policies. If low income households obtain more gains from the co-benefits of the
energy tax, the ‘net’ incidence of the policy may actually be progressive. Likewise, if
wealthier households have comparatively more benefits, the ‘net’ incidence may be even

1.38For Brazil, a deeper assessment of an economy-wide carbon tax would require the quantification
of emission coefficients from other important sources such as land use and agriculture, together with
discussions on tax and discount rates, revenue recycling options and tax base.
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more regressive (Wang et al., 2016). Fifth, our hypothetical scenario of subsidies on
ethanol prices does not consider its negative effects on both the environment and human
health, which could be covered in future studies. Sixth, because we do not observe prices
and quantities for all products included in the Brazilian household expenditure survey,
our short-term elasticity estimates might be underestimated for several consumption
groups. A suggestion for the next POF for IBGE to disclose the prices of the products
used in the calculation of the consumer price index for the period in which the survey is
carried out. This would improve the accuracy of future studies investigating consumer
behavior patterns.
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APPENDIX

A Tables and Figures

Figure 1.1 – Evolution of GHG (MtCO2e) emission from energy sector (2000-2018), Brazil

Note: This graph presents the evolution of CO2e from energy sector according to economic activity.
Data from SEEG include emissions and GHG removal, and consider CO2, CH4, N2O and HFCs
converted into CO2e using GWP and GTP.
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Figure 1.2 – Overview: Energy taxation policies on consumption from 1970 to 2018

Note: This figure summarizes the main landmarks of energy taxation policies on consumption in Brazil
over the past 50 years.

Table 1.1 – Compatibilization - SUTs and BEN

Code SUTs BEN

05801 Mineral coal
Steam coal
Coal Coke
Tar

06801 Oil, natural gas and support services Natural gas
Other primary source

19912 Gasohol Gasoline
19913 Naphtha for petrochemicals Naphtha
19914 Fuel oil Fuel oil
19915 Diesel - biodiesel Diesel oil

19916 Other oil refining products GLP
Other secondary oil

19921 Ethanol and other biofuels Sugarcane products
Anhydrous and hydrated ethyl alcohol

02801 Forestry and forestry products Firewood
19911 Aviation fuels Kerosene
20913 Organic chemicals Charcoal

35001 Electricity, gas and other utilities
City and coconut gas
Electricity

Note: This table presents the compatibilization between 2009 economic sectors/goods from
SUTs and energy sources from BEN, based on Montoya et al. (2014).
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Table 1.2 – Description of expenditure groups

Group Items

1 Food and beverages Food, beverages, catering
2 Recreation, culture and education Privateeducation, arts, books, hotels
3 Clothing and footwear Clothes, shoes, fabrics, textiles
4 Commuting and transportation Air, water and ground transportation
5 Health and hygiene Pharmaceutical products, private health
6 Energy Electricity, gas, ethanol, diesel, charcoal
7 Housing Residential appliances, rent, water, sewage
8 Other goods Plastic, ceramic, wood and paper articles
9 Other services Public and other administrative services

Note: This table presents the 9 consumption groups used in the demand system estima-
tion, and it covers the total household consumption basket. Residential appliances
include equipment such as stoves, washing machines, refrigerators, televisions, vac-
uum cleaners, electric ovens, electric irons, TV, air conditioners, fans, computers,
microwave ovens and clothes dryers. We are not able to split electricity from gas
since these products are aggregated on the SUTs.
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Table 1.3 – Summary statistics: socioeconomic characteristics (mean/(sd))

Variables All
sample

20%
richiest

20%
poorest

Education - household head (years) 7.4 10.6 5.9
(0.03) (0.07) (0.03)

Age - household head (years) 47.6 49.1 42.6
(0.15) (0.24) (0.21)

Female headed households (%) 31.5 25.9 36.9
(46.4) (43.8) (48.2)

Bathrooms (Number) 1.3 2.8 1.1
(0.01) (0.02) (0.01)

Rooms (Number) 3.3 7.5 3.1
(0.00) (0.02) (0.00)

People in the household (Number) 3.4 3.5 3.1
(1.73) (1.50) (1.80)

Home ownership (%) 69.5 73.0 65.7
(45.9 ) (44.3) (47.4 )

Total earnings(USD 2019/per capita/year) 15,304 46,492 3,335
(14,275) (41,419) (1,117)

Dis. income (USD 2019/per capita/year) 6,185 15,887 1,468
(3,909) ( 9,702) (553)

Car ownership (%) 27.7 76.3 5.3
(44.7) (42.5) (22.3)

Moto ownership (%) 16.2 20.9 10.0
(36.8) (40.6) (30.0)

Electricity (%) 97.0 99.5 93.4
(17.0) (6.9) (24.8)

Residential appliances (Number) 8.0 13.0 5.0
(4.0) (6.0) (2.0)

Note: This table presents the descriptive statistics for control variables according to
income-level of socioeconomic variables used in the demand system. Residential
appliances include stoves, freezers, refrigerators, vacuum cleaners, electric ovens,
electric irons, washing machines, color TVs, black and white TVs, sound systems,
radios, air conditioners, fans, computers, microwaves, DVD player, clothes dryers
and washing machines. Income deciles are constructed based on total household
monetary and non-monetary income reported by POF. Monetary values were
converted to USD 2019 using the average exchange rate for that year from the
Central Bank of Brazil. Disp. income = disposable income.
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Table 1.4 – Price indices by group and income level (in USD 2019
values) (mean/(sd))

Groups All sample 20% richest 20% poorest

Food/Bev. (USD/Kg) 9.48 11.22 8.39
(0.06) (0.23) (0.06)

Rec./Educ (USD/service) 250.46 428.40 163.14
(1.99) (6.80) (1.54)

Cloth./Foot (USD/item) 31.39 38.27 27.47
(0.12) (0.39) (0.15)

Com./Transp. (USD/service) 512.05 694.08 390.82
(3.58) (11.13) (3.61)

Health/Hyg. (USD/service) 9.94 14.22 7.48
(0.09) (0.37) (0.04)

Energy (USD/KWh,L) 15.93 20.55 12.89
(0.09) (0.31) (0.11)

Housing (USD/service) 172.41 242.35 134.76
(1.32) (4.57) (1.22)

Oth.goods (USD/item) 55.10 83.96 38.23
(0.63) (2.03) (0.53)

Oth.services (USD/service) 117.10 191.42 72.60
(0.92) (2.94) (0.98)

Note: This table presents price indixes by group and income level, converted to
USD 2019 using the average exchange rate for that year from the Central
Bank of Brazil. They should be interpreted as relative price indexes.
Income deciles are constructed based on total household monetary and
non-monetary income reported by POF. Other goods contain rubber,
plastic, ceramic goods, non-metallic minerals, inorganic chemicals. Other
services include development of systems and other information services,
private and public administrative services.
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Table 1.5 – Positive consumption and expenditure shares by group/ income
level (%) (mean/(sd))

Groups
% of positive consumption Budget share

All
sample

20%
richiest

20%
poorest

All
sample

20%
richiest

20%
poorest

Food/Bev. 89% 80% 94% 25.8% 15.7% 37.0%
(23.0%) (15.1%) (26.7%)

Rec./Educ. 20% 40% 11% 4.1% 10.5% 1.0%
(2.4%) (8.5%) (0.9%)

Cloth./Foot. 77% 79% 63% 3.8% 3.2% 3.1%
(3.7%) (1.8%) (2.4%)

Com./Transp. 37% 38% 21% 7.3% 12.9% 3.7%
(6.4%) (12.1%) (3.4%)

Health/Hyg. 18% 46% 17% 9.5% 7.6% 11.8%
(9.4%) (5.9%) (10.0%)

Energy 65% 78% 41% 14.4% 21.7% 9.3%
(9.1%) (19.5%) (6.8%)

Housing 85% 91% 79% 14.8% 16.3% 12.8%
(14.2%) (13.0%) (5.8%)

Oth.goods 76% 47% 84% 12.3% 6.0% 18.0%
(11.7%) (3.0%) (15.0%)

Oth.services 30% 42% 19% 3.2% 6.1% 1.3%
(2.9%) (5.9%) (0.6%)

Note: This table shows the descriptive statistics of budget shares (in 2019 USD), positive
consumption for each of the nine groups and income levels. Income deciles are
constructed based on total household monetary and non-monetary income reported
by POF. Other goods contain rubber, plastic, ceramic goods, non-metallic minerals,
inorganic chemicals. Other services include development of systems and other
information services, private and public administrative services.

Table 1.6 – Expenditure share of energy goods by income level (mean/(sd)

All sample 20% richest 20% pooresthline

Charcoal 0.1% 0.3% 0.2%
(0.1%) (0.9%) (0.2%)

Diesel 2.8% 4.1% 1.1%
(2.1%) (0.0%) (0.0%)

Electricity and Gas 61.9% 40.5% 73.4%
(20.2%) (20.5%) (11.2%)

Ethanol 3.7% 5.2% 1.7%
(10.4%) (3.2%) (0.9%)

Gasoline 32.7% 50.8% 23.2%
(30.7%) (18.1%) (9.6%)

Note: This table shows the expenditure share, in %, of goods included in group 6 according
to income-level. Income deciles are constructed based on total household monetary
and non-monetary income reported by POF. We are not able to split electricity
from gas since these products are aggregated in the SUTs.
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Table 1.7 – Description of policy scenarios

Scenarios Description

Implemented
1 10% subsidy on diesel
2 20% subsidy on electricity and gas
3 10% tax on gasoline
4 10% subsidy on residential appliances

Simulations
5 10% tax on diesel
6 10% subsidy on ethanol
7 10% tax on gasoline + 10% subsidy on ethanol
8 10% tax on gasoline and diesel + 10% subsidy on ethanol
9 10% subsidy on res. appliances + 10% tax on electricity and gas

Note: This table describes and welfare across income-level groups. As a reference, we use
de facto tax and subsidy rates implemented on different household energy goods
(transport fuels, electricity and residential appliances), as well as alternative and
more environmentally-friendly tax policies.

Table 1.8 – Total CO2e Emission (tCO2e/hh/year, in 2019 values)

Groups Average 20% richest 20% poorest

Food/beverages 3.3 6.0 0.4
Recreation/education 1.6 3.1 0.0
Clothing/footwear 0.3 0.8 0.1
Commuting/transportation 2.0 8.0 0.1
Health/hygiene 0.6 1.8 0.2
Energy 1.2 3.0 0.3
Housing 0.6 1.3 0.3
Other goods 0.6 2.0 0.3
Other services 0.2 0.1 0.0

Total 10.5 26.1 1.7
Note: Note: This Table presents total CO2e emissions by income level, obtained by

multiplying the emission coefficients from Table 1.11 with expenditures from
Table 1.5. Income deciles are constructed based on total household monetary and
non-monetary income reported by POF. Monetary values were converted to USD
2019 using the average exchange rate for that year from the Central Bank of Brazil.
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Table 1.9 – CO2e emission coefficients (tCO2e/USD million, 2019) from inter-
mediate consumption and final demand for each good/service in
the economy (2010)

Group Good/service (IO) Int. Cons. Final Demand

4 Cargo transportation 3,778 8,044
4 Passenger transportation 3,672 7,821
4 Air transportation 2,011 3,821
4 Water transportation 1,760 3,813
8 Wood products, except furniture 1,097 3,072
8 Paper, paperboard and paper articles 1,093 3,066
7 Printing services 1,020 2,880
8 Cement, plaster 646 2,067
8 Glass, ceramics and others 618 2,001
8 Metal products, excl. machinery and equipment 397 1,897
1 Pork 46 1,254
1 Processed fish 45 1,253
2 Tabacco products 47 1,253
7 Animal feed 46 1,251
1 Other dairy Products 54 1,249
1 Coffee (processed) 48 1,247
1 Beef and other meat products 46 1,247
1 Drinks 46 1,247
1 Canned fruits, vegetables and fruit juices 46 1,246
8 Non-metallic Minerals 346 1,230
6 coal 334 1,201
1 Sugar 58 1,200
1 Products derived from wheat, manioc and corn 69 1,199
5 Perfumery, soaps and cleaning products 176 1,196
1 Sterilized and pasteurized milk 42 1,190
1 Processed rice and products 65 1,188
7 Advertising and other technical services 419 1,184
1 Poultry 41 1,176
1 Oils and fats, vegetable and animal 43 1,176
5 Other products 158 1,164
8 Inorganic chemicals 161 1,149
8 Paints, varnishes, enamels and lacquers 154 1,142
8 Plastic articles 149 1,132
8 Detergents and household cleaning products 140 1,118

Note: This table presents the CO22e coefficient estimates, in 2019 values, based on data from
SUTs (2010) and the Brazilian Energy Mix (2010). Monetary values were converted
to USD 2019 using the average exchange rate for that year from the Central Bank of
Brazil.
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Table 1.10 – CO2e emission coefficients (tCO2e/USD million, 2019) from in-
termediate consumption and final demand for each good/service
in the economy (2010) (cont.)

Group Good/service (IO) Int. Cons. Final Demand

8 Rubber articles 138 1,109
8 Detergents and household cleaning products 140 1,118
8 Rubber articles 138 1,109
1 Other food products 41 1,107
8 Forestry 353 1,080
5 Pharmaceutical products 131 1,063
1 Sugarcane 343 1,058
1 Fisheries 343 1,058
1 Soybeans 343 1,058
1 Poultry and eggs 343 1,058
1 Citrus fruits 343 1,058
1 Swine products 343 1,058
1 Milk (cows and other animals) 342 1,058
1 Bovine animals 342 1,058
1 Other (permanent) agriculture 342 1,056
1 Other (temporary) 341 1,054
1 Corn 340 1,050
1 Rice 335 1,038
6 Ethanol and other biofuels 103 1,009
8 Goods of other enterprises 61 867
9 Other machines and mechanical equipment 53 858
6 Electricity, gas and other utilities 140 824
6 Gasohol 141 823
6 Diesel - biodiesel 141 823
8 Other refined petroleum products 136 808
4 Aircraft, boats and other transport equipment 33 806
7 Electrical machinery and equipment 31 803
4 Trucks and buses 30 799
9 Equip. for measurement, testing 31 799
7 Home appliances 32 798
7 Furniture 32 795
7 Electronic material and communications equip. 28 795
4 Automobiles, trucks and commercial vehicles 27 793
9 Office machines and equipment 29 790

Note: This table presents the CO22e coefficient estimates, in 2019 values, build based on
data from SUTs (2010) and the Brazilian Energy Mix (2010). Monetary values were
converted to USD 2019 using the average exchange rate for that year from the Central
Bank of Brazil.
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Table 1.11 – CO2e emission coefficients (tCO2e/USD million, 2019) from in-
termediate consumption and final demand for each good/service
in the economy (2010) (cont.)

Group Good/service (IO) Int. Cons. Final Demand

3 Yarn and textile fibers 62 692
3 Textiles for household use and others 41 679
3 Textiles and leather Products 37 666
3 Footwear and leather goods 36 661
3 Clothing articles and accessories 34 651
7 Rent and real estate services 89 588
4 Warehousing and others 95 531
7 Wholesale trade and sale, except motor vehicles 9 376
7 Maintenance of computers, telephones 5 363
9 Other administrative services 9 361
7 Intellectual Property Assets 6 360
4 Trade and repair of vehicles 5 359
2 Accommodation services in hotels and similar 7 354
7 Courier and other delivery services 5 353
7 Employer organizations, trade and union 5 353
7 Condominium and building management 5 353
7 Surveillance, security and investigation services 5 353
7 Domestic services 5 353
7 Personal services 5 353
7 Telecommunications and others 5 353
2 Film, music, radio 5 353
7 Financial services, insurance 5 353
2 Food services 5 353
9 Systems dev. and IT services 5 352
2 Books, newspapers and magazines 5 352
2 Arts, culture and recreation services 5 350
7 Architectural and engineering services 5 350
5 Private health 5 349
7 Legal services, accounting 5 348
2 Private education 5 347
9 Public administration 12 192
7 Water, sewage 12 192

Note: This table presents the CO22e coefficient estimates, in 2019 values, based on data from
SUTs (2010) and the Brazilian Energy Mix (2010). Monetary values were converted
to USD 2019 using the average exchange rate for that year from the Central Bank of
Brazil.



57
Ta

bl
e
1.
12

–
Ex

pe
nd

itu
re

an
d
pr
ice

ela
st
ici

tie
se

st
im

at
ed

us
in
g
Ce

ns
or
ed

Q
U
A
ID

S
m
od

el
(b
et
a/

se
):
fu
ll
sa
m
pl
e,

20
%

po
or
es
t,
an

d
20
%

ric
he
st
.

G
ro
up

s
Fu

ll
Sa

m
pl
e

20
%

ric
he

st
20
%

po
or
es
t

η i
ε i

i
εH ii

η i
ε i

i
εH ii

η i
ε i

i
εH ii

Fo
od

/b
ev
.

0.
84
1
**
*

-0
.8
75

**
*

-0
.6
58

**
*

0.
76
3
**
*

-1
.0
51

**
*

-0
.9
14

**
*

0.
49
0
**
*

-0
.8
29

**
*

-0
.4
63

**
*

(0
.0
00
)

(0
.0
29
)

(0
.0
58
)

(0
.1
10
)

(0
.0
82
)

(0
.0
83
)

(0
.1
10
)

(0
.1
43
)

(0
.1
32
)

R
ec
r./

ed
uc

.
1.
64
1
**
*

-1
.2
37

**
*

-1
.1
71

**
*

0.
65
6
**
*

-0
.6
15

**
*

-0
.4
72

**
*

3.
92
7
**
*

-1
.4
38

**
*

-1
.4
29

**
*

(0
.0
17
)

(0
.0
19
)

(0
.0
36
)

(0
.0
73
)

(0
.0
73
)

(0
.0
73
)

(0
.0
71
)

(0
.1
08
)

(0
.1
06
)

C
lo
th
./
fo
ot
.

2.
50
2
**
*

-1
.3
37

**
*

-1
.2
42

**
*

1.
25
5
**
*

-1
.1
73

**
*

-1
.0
11

**
*

2.
03
6
**
*

-1
.5
00

**
*

-1
.4
61

**
*

(0
.0
05
)

(0
.0
28
)

0.
05
5

(0
.0
71
)

(0
.1
10
)

(0
.1
08
)

(0
.0
88
)

(0
.1
27
)

(0
.1
23
)

C
om

m
u.
/T

ra
ns
p.

0.
83
6
**
*

-0
.5
76

**
*

-0
.5
81

**
*

0.
97
6
**
*

-1
.1
19

**
*

-1
.0
93

**
*

1.
98
1
**
*

-0
.4
21

**
*

-0
.3
85

**
*

(0
.0
13
)

(0
.0
49
)

0.
09
7

(0
.0
55
)

(0
.0
78
)

(0
.0
80
)

(0
.0
68
)

(0
.1
64
)

(0
.1
53
)

H
ea
lth

/H
yg

ie
ne

1.
20
8
**
*

-1
.2
95

**
*

-1
.1
80

**
*

0.
30
4
**
*

-0
.8
26

**
*

-0
.7
71

**
*

1.
95
4
**
*

-1
.6
11

**
*

-1
.4
94

**
*

(0
.0
18
)

(0
.0
32
)

0.
06
3

(0
.0
70
)

(0
.0
51
)

(0
.0
49
)

(0
.0
81
)

(0
.0
81
)

(0
.0
78
)

En
er
gy

1.
82
6
**
*

-0
.9
31

**
*

-0
.7
61

**
*

1.
79
2
**
*

1.
08
1
**
*

1.
14
5
**
*

1.
94
2
**
*

-0
.8
33

**
*

-0
.7
47

**
*

(0
.0
05
)

(0
.0
26
)

0.
05
0

(0
.0
64
)

(0
.0
45
)

(0
.0
45
)

(0
.0
76
)

(0
.0
61
)

(0
.0
61
)

H
ou

sin
g

0.
50
9
**
*

-0
.4
80

**
*

-0
.3
15

**
*

0.
25
8
**

*
-1
.1
43

**
*

-0
.9
17

**
*

0.
57
2
**
*

-0
.8
08

**
*

-0
.6
57

**
*

(0
.0
11
)

(0
.0
22
)

0.
04
3

(0
.0
88
)

(0
.0
51
)

(0
.0
54
)

(0
.0
89
)

(0
.0
68
)

(0
.0
69
)

O
th
er

go
od

s
0.
73
4
**
*

-0
.7
41

**
*

-0
.6
50

**
*

0.
25
2
**
*

-1
.0
81

**
*

-0
.9
98

**
*

1.
02
7
**
*

-0
.3
36

**
*

-0
.1
52

**
*

(0
.0
12
)

(0
.0
20
)

0.
03
9

(0
.0
93
)

(0
.0
75
)

(0
.0
71
)

(0
.1
34
)

(0
.1
74
)

(0
.1
69
)

O
th
er

se
rv
ic
es

1.
48
2
**
*

-1
.3
05

**
*

-1
.2
57

**
*

0.
96
7
**
*

-0
.7
83

**
*

-0
.7
15

**
*

3.
85
5
**
*

-1
.3
52

**
*

-1
.3
41

**
*

(0
.1
14
)

(0
.0
34
)

(0
.0
67
)

(0
.0
63
)

(0
.0
73
)

(0
.0
73
)

(0
.0
76
)

(0
.0
65
)

(0
.0
65
)

N
ot
e:

T
hi
s
ta
bl
e
pr
es
en
ts

ex
pe

nd
itu

re
(η

i)
an

d
un

co
m
pe

ns
at
ed

(ε
ii
)
an

d
co
m
pe

ns
at
ed

(ε
H ii
)
pr
ic
e
el
as
tic

ity
fo
r
gr
ou

p
es
tim

at
es
,

ca
lc
ul
at
ed

at
th
e
sa
m
pl
e
m
ea
n
us
in
g
ce
ns
or
ed

Q
U
A
ID

S.
N
ei
gh

bo
rin

g
pr
ic
es

an
d
di
sp
os
ab

le
in
co
m
e
ar
e
us
ed

as
in
st
ru
m
en
ts

to
ca
lc
ul
at
e
fin

al
ho

us
eh

ol
d’

pr
ic
e
in
de

xe
s
an

d
ex
pe

nd
itu

re
s.

St
an

da
rd

er
ro
rs

in
pa

re
nt
he

se
s.

In
co
m
e
de

ci
le
s
ar
e
co
ns
tr
uc

te
d

ba
se
d
on

to
ta
lh

ou
se
ho

ld
m
on

et
ar
y
an

d
no

n-
m
on

et
ar
y
in
co
m
e
re
po

rt
ed

by
PO

F.
M
on

et
ar
y
va
lu
es

w
er
e
co
nv

er
te
d
to

U
SD

20
19

us
in
g
th
e
av
er
ag

e
ex
ch
an

ge
ra
te

fo
r
th
at

ye
ar

fro
m

th
e
C
en
tr
al

B
an

k
of

B
ra
zi
l.
∗
p-
va
lu
e<

0.
10

,∗
∗
p-
va
lu
e
<

0.
05

,∗
∗
∗

p-
va
lu
e<

0.
01
.D

ia
go
na

ls
re
pr
es
en
t
th
e
ow

n-
pr
ic
e
el
as
tic

ity
.



58
Ta

bl
e
1.
13

–
Ex

pe
nd

itu
re

an
d
pr
ic
e
el
as
tic

iti
es

fo
r
en

er
gy

go
od

s
es
tim

at
ed

us
in
g
C
en

so
re
d
Q
U
A
ID

S
m
od

el
(b
et
a/

se
):

fu
ll
sa
m
pl
e,

20
%

po
or
es
t,

an
d
20
%

ric
he
st
.

G
ro
up

s
Fu

ll
Sa

m
pl
e

20
%

ric
he
st

20
%

po
or
es
t

η i
ε i

i
εH ii

η i
ε i

i
εH ii

η i
ε i

i
εH ii

C
ha

rc
oa
l

1.
40
1

-1
.5
76

-0
.1
46

1.
71
0

-0
.4
36

-0
.1
94

1.
30
5*
*

-2
.5
47

-0
.2
84
9

(0
.8
42
)

(1
.0
27
)

(1
.4
27
)

(6
.3
39
)

(0
.9
00
)

(0
.8
50
)

(0
.4
85
)

(1
.9
23
)

(0
.2
84
)

D
ie
se
l

2.
44
6*
**

-1
.1
12
**
*

-1
.0
95
**
*

2.
56
7*
**

-0
.8
63
**
*

-0
.8
41
**
*

1.
61
8*
**

-1
.2
69
**
*

-1
.2
54
**
*

(0
.1
27
)

(0
.0
34
)

(0
.0
34
)

(0
.2
84
)

(0
.0
76
)

(0
.0
76
)

(0
.1
04
)

(0
.0
70
)

(0
.0
70
)

El
ec
tr
ic
ity

an
d
ga
s

1.
06
6*
**

-0
.8
86
**
*

-0
.5
79
**
*

1.
27
7*
**

-1
.0
52
**
*

-0
.9
77
**
*

1.
02
4*
**

-0
.7
53
**
*

-0
.4
09
**
*

(0
.0
04
)

(0
.0
05
)

(0
.0
05
)

(0
.0
08
)

(0
.0
35
)

(0
.0
35
)

(0
.0
22
)

(0
.0
15
)

(0
.0
13
)

Et
ha

no
l

2.
08
5*
**

-0
.7
60
**
*

-0
.7
38

**
*

1.
44
9*
**

-0
.9
32
**
*

-0
.8
89
**
*

2.
14
5*
**

-0
.7
93
**

-0
.7
87
**
*

(0
.0
85
)

(0
.0
35
)

(0
.0
35
)

(0
.0
51
)

(0
.0
37
)

(0
.0
37
)

(0
.3
11
)

(0
.1
69
)

(0
.1
69
)

G
as
ol
in
e

0.
94
2*
**

-0
.8
99
**
*

-0
.2
44
**
*

0.
96
8*
**

-0
.9
88
**
*

-0
.1
28
**
*

0.
88
3*
**

-0
.8
38
**
*

-0
.2
04
**
*

(0
.0
02
)

(0
.0
03
)

(0
.0
03
)

(0
.0
02
)

(0
.0
03
)

(0
.0
04
)

(0
.0
04
)

(0
.0
08
)

(0
.0
07
)

R
es
id
en
tia

lA
pp

lia
nc

es
1.
23
3*
**

-1
.1
24
**
*

-0
.3
88
**
*

1.
21
5*
**

-1
.0
31
**
*

-0
.3
53
**
*

1.
30
9*
**

-1
.1
16
**
*

-0
.3
41
**
*

(0
.0
02
)

(0
.0
02
)

(0
.0
03
)

(0
.0
03
)

(0
.0
02
)

(0
.0
04
)

(0
.0
14
)

(0
.0
12
)

(0
.0
40
)

N
ot
e:

T
hi
s
Ta

bl
e
pr
es
en
ts

ex
pe

nd
itu

re
(η

i)
an

d
un

co
m
pe

ns
at
ed

(ε
ii
)
an

d
co
m
pe

ns
at
ed

(ε
H ii
)
pr
ic
e
el
as
tic

iti
es

fo
r
en
er
gy

go
od

s
es
tim

at
es
,

ca
lc
ul
at
ed

at
th
e
sa
m
pl
e
m
ea
n
us
in
g
ce
ns
or
ed

Q
U
A
ID

S.
N
ei
gh

bo
ur
in
g
pr
ic
es

an
d
di
sp
os
ab

le
in
co
m
e
ar
e
us
ed

as
in
st
ru
m
en
ts

to
ca
lc
ul
at
e
fin

al
ho

us
eh

ol
d
pr
ic
es
’i
nd

ex
es

an
d
ex
pe

nd
itu

re
s.

St
an

da
rd

er
ro
rs

in
pa

re
nt
he
se
s.

In
co
m
e
de

ci
le
s
ar
e
co
ns
tr
uc

te
d
ba

se
d

on
to
ta
lh

ou
se
ho

ld
m
on

et
ar
y
an

d
no

n-
m
on

et
ar
y
in
co
m
e
re
po

rt
ed

by
P
O
F.

M
on

et
ar
y
va
lu
es

w
er
e
co
nv

er
te
d
to

U
SD

20
19

us
in
g

th
e
av
er
ag
e
ex
ch
an

ge
ra
te

fo
r
th
at

ye
ar

fr
om

th
e
C
en
tr
al

B
an

k
of

B
ra
zi
l.
∗
p-
va
lu
e<

0.
10
,∗
∗
p-
va
lu
e
<

0.
05
,∗
∗
∗
p-
va
lu
e<

0.
01
.

D
ia
go
na

ls
re
pr
es
en
t
th
e
ow

n-
pr
ic
e
el
as
tic

iti
es
.



59
Ta

bl
e
1.
14

–
M
ar
sh
al
lia

n
(ε
ij
)
pr
ic
e
el
as
tic

iti
es

us
in
g
C
en
so
re
d
Q
U
A
ID

S,
fu
ll
sa
m
pl
e
(m

ea
n/

(s
d)
)

M
ar
sh
al
lia

n
1

2
3

4
5

6
7

8
9

1
Fo

od
/b

ev
er
ag
es

-0
.8
75

**
*

-0
.4
66

**
*

-0
.2
13

**
*

1.
75
3
**
*

-0
.4
44

**
*

-0
.1
18

**
*

-0
.0
66

**
0.
22
1
**
*

-0
.5
34

**
*

(0
.0
29
)

(0
.0
30
)

(0
.0
19
)

(0
.0
87
)

(0
.0
75
)

(0
.0
31
)

(0
.0
30
)

(0
.0
36
)

(0
.0
50

)
2
R
ec
re
at
io
n/

ed
uc

at
io
n

0.
14
6
**
*

-1
.2
37

**
*

-0
.0
32

**
*

0.
92
8
**
*

-0
.2
95

**
*

-0
.1
96

**
*

-0
.0
73

**
*

0.
29
1
**
*

-0
.2
95

**
*

(0
.0
15
)

(0
.0
19
)

(0
.0
05
)

(0
.0
51
)

(0
.0
32
)

(0
.0
17
)

(0
.0
15
)

(0
.0
21
)

(0
.0
28

)
3
C
lo
th
in
g/
fo
ot
w
ea
r

0.
19
2
**
*

-0
.2
50

**
*

-1
.3
37

**
*

1.
12
2
**
*

-0
.0
17

**
*

-0
.0
17

-0
.1
88

**
*

0.
68
3
**
*

-0
.4
72

**
*

(0
.0
30
)

(0
.0
26
)

(0
.0
28
)

(0
.0
86
)

(0
.0
66
)

(0
.0
27
)

(0
.0
31
)

(0
.0
31
)

(0
.0
42

)
4
C
om

m
ut
in
g/
Tr

an
sp
.

0.
18
7
**
*

-0
.2
15

**
*

0.
09
2
**
*

-0
.5
76

0.
01
0
**
*

-0
.1
48

**
*

-0
.1
43

**
*

0.
20
8
**
*

-0
.2
96

**
*

(0
.0
11
)

(0
.0
12
)

(0
.0
10
)

(0
.0
49
)

(0
.0
23
)

(0
.0
11
)

(0
.0
09
)

(0
.0
12
)

(0
.0
16

)
5
H
ea
lth

/H
yg

ie
ne

0.
18
3
**
*

-0
.2
37

**
*

-0
.1
14

**
*

1.
23
3
**
*

-1
.2
95

**
*

-0
.1
75

**
*

-0
.0
67

**
*

0.
29
1
**
*

-0
.3
13

**
*

(0
.0
18
)

(0
.0
19
)

(0
.0
11
)

(0
.0
69
)

(0
.0
32
)

(0
.0
20
)

(0
.0
17
)

(0
.0
21
)

(0
.0
32

)
6
En

er
gy

0.
13
2
**
*

-0
.4
36

**
*

0.
11
0
**
*

0.
70
2
**
*

-0
.5
32

**
*

-0
.9
31

**
*

-0
.3
95

**
*

0.
11
5
**
*

-0
.1
48

**
*

(0
.0
21
)

(0
.0
19
)

(0
.0
19
)

(0
.0
81
)

(0
.0
54
)

(0
.0
26
)

(0
.0
21
)

(0
.0
21
)

(0
.0
29

)
7
H
ou

sin
g

0.
29
2
**
*

-0
.2
11

**
*

0.
03
0

0.
24
3
**
*

0.
02
9

-0
.3
82

**
*

-0
.4
80

**
*

-0
.0
34

-0
.1
00

**
(0
.0
16
)

(0
.0
15
)

(0
.0
20
)

(0
.0
62
)

(0
.0
41
)

(0
.0
15
)

(0
.0
22
)

(0
.0
15
)

(0
.0
21

)
8
O
th
er

go
od

s
0.
14
0
**
*

-0
.2
44

**
*

0.
08
8
**
*

1.
05
4
**
*

-0
.4
76

**
*

-0
.1
94

**
*

-0
.3
73

**
*

-0
.7
41

**
*

-0
.1
99

**
*

(0
.0
16
)

(0
.0
17
)

(0
.0
08
)

(0
.0
65
)

(0
.0
33
)

(0
.0
18
)

(0
.0
15
)

(0
.0
20
)

(0
.0
28

)
9
O
th
er

se
rv
ic
es

0.
12
5
**
*

-0
.3
07

**
*

-0
.0
95

**
*

1.
00
9
**
*

-0
.3
45

**
*

-0
.1
10

**
*

-0
.0
48

**
*

0.
28
9
**

-1
.3
05

*
(0
.0
17
)

(0
.0
19
)

(0
.0
06
)

(0
.0
54
)

(0
.0
37
)

(0
.0
18
)

(0
.0
17
)

(0
.0
23
)

(0
.0
34

)
N
ot
e:

T
hi
s
ta
bl
e
pr
es
en
ts

th
e
M
ar
sh
al
lia

n
(u
nc

om
pe

ns
at
ed

)
pr
ic
e
el
as
tic

ity
es
tim

at
es
,c

al
cu

la
te
d
at

th
e
sa
m
pl
e
m
ea
n
us
in
g
ce
ns
or
ed

Q
U
A
ID

S.
N
ei
gh

bo
rin

g
pr
ic
es

an
d
di
sp
os
ab

le
in
co
m
e
ar
e
us
ed

as
in
st
ru
m
en
ts

to
ca
lc
ul
at
e
fin

al
ho

us
eh

ol
d’

pr
ic
e
in
de

xe
s
an

d
ex
pe

nd
itu

re
s.

St
an

da
rd

er
ro
rs

in
pa

re
nt
he

se
s.

In
co
m
e
de

ci
le
s
ar
e
co
ns
tr
uc

te
d
ba

se
d
on

to
ta
lh

ou
se
ho

ld
m
on

et
ar
y
an

d
no

n-
m
on

et
ar
y

in
co
m
e
re
po

rt
ed

by
P
O
F.

M
on

et
ar
y
va
lu
es

w
er
e
co
nv

er
te
d
to

U
SD

20
19

us
in
g
th
e
av
er
ag
e
ex
ch
an

ge
ra
te

fo
r
th
at

ye
ar

fr
om

th
e

C
en
tr
al

B
an

k
of

B
ra
zi
l.
∗
p-
va
lu
e<

0.
10
,∗
∗
p-
va
lu
e
<

0.
05
,∗
∗
∗
p-
va
lu
e<

0.
01
.D

ia
go
na

ls
re
pr
es
en
t
th
e
ow

n-
pr
ic
e
el
as
tic

iti
es
.



60

Ta
bl
e
1.
15

–
H
ick

sia
n
(ε
H ij
)
pr
ic
e
el
as
tic

iti
es

us
in
g
C
en
so
re
d
Q
U
A
ID

S,
fu
ll
sa
m
pl
e
(m

ea
n/

(s
d)
)

H
ic
ks
ia
n

1
2

3
4

5
6

7
8

9

1
Fo

od
/b

ev
er
ag
es

-0
.6
58

*
-0
.0
43

**
*

0.
43
1
**
*

1.
73
4
**
*

-0
.1
33

**
*

0.
18
7
**
*

0.
22
2
**

0.
41
0
**
*

-0
.1
52

**
(0
.0
22
)

(0
.0
03
)

-
(0
.0
39
)

(0
.0
86
)

(0
.0
22
)

(0
.0
16
)

(0
.0
54
)

(0
.0
67
)

(0
.0
14

)

2
R
ec
re
at
io
n/

ed
uc

at
io
n

0.
18
0
**
*

-1
.1
71

**
*

0.
06
9
**
*

0.
92
5
**
*

-0
.2
46

**
*

-0
.1
48

**
*

-0
.0
28

**
*

0.
32
1
**
*

-0
.2
35

**
(0
.0
19
)

(0
.0
18
)

(0
.0
05
)

(0
.0
51
)

(0
.0
27
)

(0
.0
13
)

(0
.0
06
)

(0
.0
23
)

(0
.0
22

)
3
C
lo
th
in
g/
fo
ot
w
ea
r

0.
22
4
*

-0
.1
88

**
*

-1
.2
42

**
*

-1
.2
42

**
*

-0
.3
92

**
0.
02
8

-0
.1
45

**
*

0.
71
1
**
*

-0
.4
16

**
*

(0
.0
35
)

(0
.0
13
)

(0
.0
26
)

-
(0
.0
95
)

(1
.5
19
)

(0
.4
22
)

(0
.0
16
)

(0
.0
32
)

(0
.0
37

)

4
C
om

m
ut
in
g/
Tr

an
sp
.

0.
24
9
**
*

-0
.0
95

**
*

0.
27
4
**
*

-0
.5
81

0.
09
8

-0
.0
62

-0
.0
62

**
*

0.
26
2
**
*

-0
.1
88

**
*

(0
.0
14
)

(0
.0
05
)

(0
.0
29
)

(0
.0
50
)

(0
.2
36
)

(0
.3
03
)

(0
.0
04
)

(0
.0
16
)

(0
.0
10

)
5
H
ea
lth

/
H
yg

ie
ne

0.
26
3
**
*

-0
.0
81

0.
12
3
**
*

1.
22
6
**
*

-1
.1
80

**
*

-0
.0
63

**
*

0.
03
9
**
*

0.
36
1
**
*

-0
.1
72

**
*

(0
.0
26
)

(0
.1
15
)

-
(0
.0
12
)

(0
.1
69
)

(0
.0
29
)

(0
.0
07
)

-
(0
.0
10
)

(0
.0
26
)

(0
.0
18

)

6
En

er
gy

0.
25
3
**
*

-0
.2
00

**
*

0.
47
1
**
*

0.
69
2
**
*

-0
.3
58

-0
.7
61

**
*

-0
.2
34

**
*

0.
22
0

0.
06
5

**
*

(0
.0
40
)

(0
.0
09
)

(0
.0
81
)

(0
.0
80
)

(0
.0
37
)

(0
.0
21
)

(0
.0
12
)

(0
.2
43
)

(0
.0
27

)
7
H
ou

sin
g

0.
41
6
**
*

0.
03
2
**
*

0.
40
0

0.
23
2
**
*

0.
20
8

-0
.2
07

**
*

-0
.3
15

**
*

0.
07
4

0.
11
9

**
(0
.0
22
)

-
(0
.0
02
)

(0
.2
77
)

(0
.0
59
)

(0
.2
92
)

(0
.0
08
)

(0
.0
14
)

(0
.0
16
)

(0
.0
13

)

8
O
th
er

go
od

s
0.
24
4
**
*

-0
.0
42

**
*

0.
39
5
**
*

1.
04
5
**
*

-0
.3
27

-0
.0
49

**
*

-0
.2
35

**
*

-0
.6
50

**
*

-0
.0
16

**
*

(0
.0
28
)

(0
.0
03
)

(0
.0
36
)

(0
.0
64
)

(0
.0
23
)

(0
.0
04
)

(0
.0
10
)

(0
.0
17
)

(0
.0
02

)
9
O
th
er

se
rv
ic
es

0.
15
2
**
*

-0
.2
54

**
*

-0
.0
14

**
*

1.
00
7
**
*

-0
.3
06

-0
.0
71

**
*

-0
.0
12

**
*

0.
31
3
**

-1
.2
57

**
*

(0
.0
20
)

(0
.0
15
)

(0
.0
01
)

(0
.0
54
)

(0
.0
32
)

(0
.0
12
)

(0
.0
04
)

(0
.0
25
)

(0
.0
33

)
N
ot
e:

T
hi
s
ta
bl
e
pr
es
en
ts

th
e
H
ic
ks
ia
n
(c
om

pe
ns
at
ed

)
pr
ic
e
el
as
tic

ity
es
tim

at
es
,c

al
cu

la
te
d
at

th
e
sa
m
pl
e
m
ea
n
us
in
g
ce
ns
or
ed

Q
U
A
ID

S.
N
ei
gh

bo
rin

g
pr
ic
es

an
d
di
sp
os
ab

le
in
co
m
e
ar
e
us
ed

as
in
st
ru
m
en
ts

to
ca
lc
ul
at
e
fin

al
ho

us
eh

ol
d’

pr
ic
e
in
de

xe
s
an

d
ex
pe

nd
itu

re
s.

St
an

da
rd

er
ro
rs

in
pa

re
nt
he

se
s.

In
co
m
e
de

ci
le
s
ar
e
co
ns
tr
uc

te
d
ba

se
d
on

to
ta
lh

ou
se
ho

ld
m
on

et
ar
y
an

d
no

n-
m
on

et
ar
y
in
co
m
e

re
po

rt
ed

by
P
O
F.

M
on

et
ar
y
va
lu
es

w
er
e
co
nv

er
te
d
to

U
SD

20
19

us
in
g
th
e
av
er
ag

e
ex
ch
an

ge
ra
te

fo
r
th
at

ye
ar

fr
om

th
e
C
en
tr
al

B
an

k
of

B
ra
zi
l.
∗
p-
va
lu
e<

0.
10
,∗
∗
p-
va
lu
e
<

0.
05
,∗
∗
∗
p-
va
lu
e<

0.
01
.D

ia
go
na

ls
re
pr
es
en
t
th
e
ow

n-
pr
ic
e
el
as
tic

iti
es
.



61
Ta

bl
e
1.
16

–
Si
m
ul
at
io
n
re
su
lts

fo
r
fu
ll
sa
m
pl
e,

20
%

po
or
es
t,
an

d
20
%

ric
he
st
.

Sc
en

ar
io

Fu
ll
sa
m
pl
e

20
%

ric
he

st
20
%

po
or
es
t

C
V

T
B

EB
tC

O
2e

∆
tC

O
2e

C
V

T
B

EB
tC

O
2e

C
V

T
B

EB
tC

O
2e

Implemented10
%

su
bs
id
y
on

di
es
el

-5
.7
7

-0
.0
2%

-0
.0
9

0.
04

4.
00
%

-2
5.
03

0.
00
%

-0
.1
6

0.
42

-0
.7
1

0.
00
%

-0
.0
2

0.
00

20
%

su
bs
id
y
on

el
ec
tr
ic
ity

an
d

ga
s

-2
43
.2
0

-1
.0
0%

-8
.7
4

-0
.1
8

-1
6.
74
%

-4
09
.4
9

-0
.7
6%

-1
9.
58

-0
.4
3

-1
05
.2
3

-1
.0
1%

-5
.4
9

-0
.0
3

10
%

ta
x
on

ga
so
lin

e
90
.6
4

0.
35
%

-1
.3
5

0.
07

6.
33
%

36
2.
48

0.
72
%

-1
1.
03

0.
31

15
.3
5

0.
14
%

-0
.1
4

0.
00

10
%

su
bs
id
y
on

re
sid

en
tia

l
ap

pl
ia
nc

es
-6
1.
21

-0
.2
4%

-0
.2
8

0.
03

3.
06
%

-2
10
.3
9

-0
.4
0%

-4
.9
3

0.
45

-1
7.
68

-0
.1
6%

0.
01

0.
00

Simulations10
%

ta
x
on

di
es
el

6.
02

0.
02
%

-0
.0
1

0.
00

0.
42
%

4.
40

0.
04
%

0.
05

-0
.0
2

0.
21

0.
01
%

0.
00

0.
00

10
%

su
bs
id
y
on

et
ha

no
l

-0
.8
4

0.
03
%

-0
.0
1

-0
.0
1

-0
.5
5%

-0
.3
0

-0
.0
6%

-0
.0
8

-0
.0
3

-1
.1
6

0.
00
%

0.
00

0.
00

10
%

ta
x
on

ga
so
lin

e
+

10
%

su
bs
id
y

82
.8
7

0.
32
%

-1
.2
3

0.
07

6.
14
%

36
2.
18

0.
66
%

-1
1.
11

0.
32

14
.1
9

0.
13
%

-0
.1
3

0.
00

10
%

ta
x
on

ga
so
lin

e
an

d
di
es
el

+
10
%

su
bs
id
y
on

et
ha

no
l

88
.8
1

0.
35
%

-1
.3
2

0.
07

6.
29
%

35
5.
92

0.
71
%

-1
0.
83

0.
31

14
.9
5

0.
13
%

-0
.1
3

0.
00

10
%

su
bs
id
y
on

re
sid

en
tia

l
ap

pl
ia
nc

es
+

10
%

ta
x
on

el
ec
tr
ic
ity

-3
0.
79

-0
.1
3%

-1
.2
2

0.
05

4.
46
%

-1
75
.9
4

-0
.4
8%

-9
.3
2

0.
36

-2
9.
26

-0
.4
1%

-0
.4
0

0.
01

N
ot
e:

Sc
in
di
ca
te
s
al
lp

ol
ic
y
sc
en

ar
io
s
im

pl
em

en
te
d
an

d
sim

ul
at
ed

,C
V

in
di
ca
te
s
co
m
pe

ns
at
in
g
va
ria

tio
n,

T
B

in
di
ca
te
s
ta
x
bu

rd
en

,E
B

is
th
e
ex
ce
ss

bu
rd
en

,t
C
O
2
is

th
e
em

iss
io
n
va
ria

tio
n
of

tC
O
2e
/h

h,
an

d
∆

is
th
e
va
ria

tio
n
of

tC
O
2e
.C

V
,t
ax

bu
rd
en

an
d
E
B

in
U
SD

/y
ea
r
(2
01

9
va
lu
es
)
an

d
to
ta
le

m
iss

io
ns

in
tC

O
2e
/h

h.
El
as
tic

iti
es

ar
e
ca
lc
ul
at
ed

at
th
e
sa
m
pl
e
m
ea
n.

In
co
m
e
de

ci
le
s
ar
e
co
ns
tr
uc

te
d
ba

se
d
on

to
ta
lh

ou
se
ho

ld
m
on

et
ar
y
an

d
no

n-
m
on

et
ar
y
in
co
m
e
re
po

rt
ed

by
P
O
F.

M
on

et
ar
y
va
lu
es

w
er
e
co
nv

er
te
d
to

U
SD

20
19

us
in
g
th
e
av
er
ag
e
ex
ch
an

ge
ra
te

fo
r
th
at

ye
ar

fr
om

th
e

C
en
tr
al

B
an

k
of

B
ra
zi
l.
D
es
cr
ip
tio

n
of

th
e
sc
en

ar
io
s:
1
-1
0%

su
bs
id
y
on

di
es
el
,2

-2
0%

su
bs
id
y
on

el
ec
tr
ic
ity

an
d
ga

s,
3-

10
%

ta
x
on

ga
so
lin

e,
4-

10
%

su
bs
id
y
on

re
sid

en
tia

la
pp

lia
nc

es
,5

-1
0%

ta
x
on

di
es
el
,6

-1
0%

su
bs
id
y
on

et
ha

no
l,
7-

10
%

ta
x
on

ga
so
lin

e
+

10
%

su
bs
id
y
on

et
ha

no
l,
8-

10
%

ta
x
on

ga
so
lin

e
an

d
di
es
el

+
10
%

su
bs
id
y
on

et
ha

no
l,
9-

10
%

su
bs
id
y
on

re
sid

en
tia

la
pp

lia
nc

es
+

10
%

ta
x
on

el
ec
tr
ic
ity

an
d
ga
s.



62

B Appendix B - Price correction of censored QUAIDS
To account for differences in quality and packaging, Cox and Wohlgenant (1986)

considered that quality effects are expressed as deviations of unit values from regional
or seasonal means. Thus, they regressed the mean-deviated unit values on household
characteristics to exclude the quality effects from unit values. In order to adjust this
method to the assumption of common market prices1.39, as well as to overcome the
error measurement issue, we follow Lazaridis (2003) and extend the controls used by
Cox and Wohlgenant (1986):

UVi − ¯UVn =
L∑
l

βilZl +
C∑
c

ωicDic +
M∑
m

θimVim +
S∑
s

M∑
m

δismUisVim + εi (1.15)

in which UVi is the unit value (total expenditure divided by consumed quantity) of
good i, ¯UVn represents its corresponding cluster mean, Z is a vector of household
characteristics, Dic is a dummy for cluster, Vim represent a dummy variable for group
m and L, C and M are the sets of household characteristics, cluster and group indexes,
respectively.

The quality-adjusted prices for each item of the group food and beverages, pi,
are generated by adding the mean unit value to the residual derived from Equation 1.15:

pi = ¯UVn + ε̂i (1.16)

1.39See footnote 1.33.
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Chapter 2
WINNERS AND LOSERS: THE DISTRIBUTIONAL IMPACTS
OF A CARBON TAX IN BRAZIL

2.1 Introduction

Since 2005, reductions in land-use and forestry emissions have contributed to the
expressive decrease of the overall GHG emissions in Brazil. However, the steadily decline
of the country’s share of renewable sources in the energy mix boosted energy-related
emissions: currently, the sector emits 30% more compared to 2005 levels (BRASIL, 2020).
Energy emissions are projected to rise given the recent oil discoveries in the offshore
fields and the near exhaustion of the country’s environmentally feasible hydropower
potential.

Environmental economists have been advocating for carbon taxes as the fastest
and most efficient instrument to curb emissions from fossil fuels2.1. The idea is to
transfer the environmental costs paid by third parties (society) to those that are
responsible for them (polluters) 2.2. Carbon tax might also have the potential to
generate dividends (Nordhaus, 1993; Pearce, 1991; Goulder, 1995; Fullerton and Metcalf,
1997): the reduction of the environmental damage (“first dividend”) and the potential
to use its revenue to reduce other distortionary taxes (“second dividend”), such as taxes
on labor and capital2.3, or to support funding investments on cleaner power generation,
smart vehicles, and improvements in energy efficiency, keeping the government budgetary
position and the overall tax burden unchanged (also know as “revenue neutrality”)2.4.

2.1Compared to other carbon pricing mechanisms, carbon taxes are also considered a relatively
simple instrument to impose on emitters, particularly in settings with a large number of small emission
sources - such as transportation - as it lowers transaction costs (Carattini et al., 2018).

2.2In 2019, 57 carbon pricing schemes, such as carbon taxes or cap-and-trade systems, had been
established or planned, covering 20 % of the global GHG emissions (Ramstein et al., 2019).

2.3Goulder (1995) defined the two types of double dividends: i) weak - which states that recycling
environmental tax revenues through lowering distortionary taxes leads to cost savings compared to
the case where revenues are returned via lump-sum transfers and ii) strong - where a revenue-neutral
substitution of a green tax for typical or representative distortionary taxes produces zero or negative
welfare gross cost.

2.4Globally, an estimated 4% of carbon tax revenues have been used to lower other taxes, 28% for
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Since it first implementation in the 1990s2.5, few underdeveloped and developing
countries have implemented carbon taxation. Despite stating in Brazil’s National Policy
on Climate Change (PNMC)2.6 the possibility of adopting fiscal and tax measures to
reduce anthropogenic GHG emissions, the country has used very little taxation (and
sometimes subsidies) to penalize activities with negative environmental externalities:
in 2017, 94% of the country’s emissions came from non-taxed polluting activities, the
largest percentage in the world (OECD and Development, 2018)2.7,2.8.Benefits to oil and
gas producers include special tax incentives for infrastructure development in various
regions, as well as a special tax regime for equipment used in the exploration and
development of hydrocarbons, and exemptions for coal used in electricity generation.
This incipient uptake and acceptability of carbon taxes as a potential policy in developing
settings can be linked to concerns about equity effects: critics of the double dividend
existence (Fullerton and Metcalf, 1997; Babiker et al., 2003) state that, under certain
circumstances, a shift to environmental taxes may increase the burden of the tax system.
Therefore, distributional burdens of a carbon tax among different classes of households
or production factors in a particular country needs to be assessed, not assumed (Bowen,
2015; Fullerton, 2011; Fullerton and Muehlegger, 2019).

Since a comprehensive tax system reform is a top-priority of the current Brazilian

general funds, and 15% for environmental mitigation spending (IMF, 2019).
2.5Carbon taxation was first implemented in Finland, Poland, Sweden, Norway, Denmark, Latvia

and Slovenia in the 1990s. Other countries/provinces have been recently adopted this instrument,
such as Estonia (2000), Switzerland (2008), British Columbia (2008), Ireland (2010), Iceland (2010),
Japan (2012), France (2014), Mexico (2014), Portugal (2015), Argentina and Chile (2018), Canada
(Federal Carbon Price) (2019) and South Africa (2019), with a wide range of tax rates, coverages,
exemptions and revenue recycling schemes. For a complete description of current price schemes, see
Ramstein et al. (2019).

2.6The PNMC is the regulatory framework that guides the government under the climate change
institutional arrangement since 2009, being promulgated through Law 12,187 of 29 December 2009.

2.7The Brazilian government offers a range of tax and budgetary subsidies for fossil fuel production,
which amounted to R$ 11.6 billion (USD 4.9 billion) in 2015 (Nuaimy-Barker, 2015).

2.8At the federal level, the only Brazilian tax that seems to have an environmental purpose is
CIDE-Fuels, implemented in 2011. However, CIDE-Fuels is far from being a carbon tax because
i) it applies only on gasoline and diesel, and ii) its revenue has been managed to stabilize fuel
prices or to subsidize fossil fuels and finance transportation infrastructure programs, rather than
discouraging fossil fuel consumption. According to the government estimates, the current rate of
R$ 100.00/m3 and R$ 50.00/m3 levied on gasoline and diesel are equivalent to an implicit carbon
tax of USD 13.70/tCO2e and USD 5.90/tCO2e, respectively, rates considerably below the range of
USD 40/tCO2e to USD 80/tCO2e needed to be consistent with the Paris Agreement. Nonetheless, better
examples are found at the state and municipal levels, such as the Ecological Sales Tax (ICMS Ecológico
or ICMS-E). It aims to reduce the economic gains from deforestation and encourage environmental
preservation by distributing the revenues obtained from the sales of goods and services according to
the reduction in deforestation and percentage of area occupied by protected areas, indigenous lands
and quilombolas - traditional communities composed of the descendants of runaway slaves.
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government and that a concrete proposal is still not defined, it is critical to shed light on
potential distributional effects of an economy-wide carbon tax given the the country’s
historical tax burden and complex taxation structure. In this paper, we address this
point by focusing on welfare and emissions outcomes of a hypothetical carbon tax on
goods and services consumed by Brazilian households. To analyze the carbon tax effects,
we use a top–down approach linking macro and micro models: first, direct and indirect
GHG emissions coefficients from fossil energy-related fuels burned are calculated to all
household basket’ goods using a hybrid input-output model (I-O); second, household
consumption patterns across different income-levels are identified using a system of
demand equations, circumventing the zero-expenditure and under-declaration problems
through a censored model with instruments for expenditures and prices; and third,
the distributional impact is examined by looking at the tax burden relative to annual
expenditures and changes in GHG emissions for richest and poorest households, using
tax rates consistent with the Paris Agreement (USD 40/tCO2e and USD 80/tCO2e).
Taking into account the complexities of the Brazilian tax-system and the double dividend
hypothesis, we analyze a revenue-neutral carbon tax considering a lump-sum rebate, in
order to prevent an increase of the tax burden. Sensitivity analysis is also conducted
with narrower tax bases depending on the carbon content of goods/products.

Our results indicate the first-dividend could be observed if an economy-wide
carbon tax is implemented, as it is effective in reducing emissions by up to 4.2%. However,
this instrument imposes higher welfare losses on low-income households (0.06% and
0.10% in relation to total expenditures for richest and poorest house-holds, respectively).
Narrowing the tax base only on products and services with high carbon emissions
might reduce the regressiveness of the carbon tax. Therefore, our findings suggest that
compensation mechanisms are critical and need to be considered when designing a
carbon tax, specially in the context of a highly complex tax-system2.9.

2.9The empirical literature on the distributional impacts of carbon taxation indicates ambiguous
results. Many studies have found an overall tendency for regressive impacts, especially in developed
countries such as Denmark (Wier et al., 2005), Sweden (Brännlund and Nordström, 2004), Netherlands
(Kerkhof et al., 2008), France (Bureau, 2011), United States (Grainger and Kolstad, 2010; Fullerton,
2011) and United Kingdom (Feng et al., 2010). However, developing countries have shown an inconsistent
picture, with a tendency towards proportional or progressive impacts (Wang et al., 2016; Ohlendorf et
al., 2018). In this sense, these studies also show that recycling the carbon tax revenue either through a
lump sum or direct transfers/subsidies could help alleviate the potential regressivity of a carbon tax or
even convert it to a progressive carbon tax. Nevertheless, progressive impacts have also been found in
developed settings such as Italy (Tiezzi, 2005) and British Columbia (Beck et al., 2015). Specifically
for Brazil, findings are also mixed: Magalhães et al. (2013), Freitas et al. (2016) found that, despite
being efficient in terms of emission reduction, the taxation is regressive. Estimates from Grottera et al.
(2017), however, suggested progressive effects.
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We contribute to the empirical literature by using a more flexible approach that
allows an in-depth understanding of substitution patterns between carbon intensive
and non-intensive goods and services, extending the studies from Grottera et al. (2017),
Magalhães et al. (2013), Freitas et al. (2016), as this is one of the few assessments of
carbon tax incidence considering the total household consumption basket. In addition,
our findings could subsidize the current political debate around the consequences of
carbon pricing instruments in the country. Beyond the tax reform discussions, Brazil’s
Nationally Determined Contribution (NDC) is expected to be revised this year 2.10

and, unlike other countries2.11, it did not present in the document any prospect of
participation in an international carbon market or carbon tax as mechanisms to achieve
its mitigation targets 2.12, despite having its regulatory framework allowing for it.
Therefore, the government might consider the implementation of market instruments to
meet the country’s mitigation targets and reduce overall mitigation costs.

The paper is organized as follows: first, we present the literature review of
the distributional effects of a carbon tax in Section 2.2; the empirical strategy and
description of the data sources used in this study are presented in Section 2.3; in
Section 2.4 we discuss our empirical results; and in Section 2.5 we summarize our
conclusions and policy implications.

2.2 Literature Review

There are winners and losers when a carbon tax is introduced in an economy
(Fullerton, 2011; Fullerton and Muehlegger, 2019; Bowen, 2015; Wang et al., 2016;
Cronin et al., 2019). The overall distributional effect of this instrument is complex and
influenced by many factors - such as the household consumption patterns, production
structures and firm competition, distribution of co-benefits from improved environment
quality 2.13 and the carbon tax design. The latter, in particular, includes a number

2.10Brazil pledged to reduce its overall GHG emissions by 37% and 43% below 2005 levels in 2025
and 2030, respectively.

2.11190 parties submitted climate strategies for the 2015 Paris Agreement. Most strategies include
objectives for both mitigation (reducing emissions) and adaptation (building resilience to climate
change)(IMF, 2019).

2.12As stated in the NDC document, “Brazil reserves its position regarding the possibility of using
any market mechanisms that may be established under the Paris Agreement” (BRASIL, 2015a).

2.13Carbon pricing can produce significant environmental co-benefits, for example, reduced air
pollution from coal combustion and externalities like reduced congestion from motor vehicles, at least
until these other externalities are fully priced through other policies. Co-benefit estimates can be quite
large, averaging USD 57.5 per tonne of CO2 across the top-twenty emitters, though with substantial
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of important factors, each of which has implications in terms of effectiveness and
distribution: who should pay the tax, what should be taxed, how much is the tax rate
and the use of tax revenue (also called preferential policy design).

Wang et al. (2016) and Ohlendorf et al. (2018) provided a very comprehensive
literature review on distributional impacts of carbon taxes, particularly on different
income groups of households. In general, existing studies focus mainly on the cost
distribution and observe regressive impacts of an economy-wide carbon tax in higher-
income countries, even when considering both direct and indirect impacts - that is,
accounting for emissions related to fossil fuel use and production of goods and services
for final consumption, as well as substitution and income effects at the household
level. This overview is consistent with the Intergovernmental Panel on Climate Change
(IPCC) (Edenhofer, 2015), which indicates that the impacts of national carbon taxes
on consumers would likely be somewhat regressive in high-income countries.

For example, using an I-O model and applying a direct and indirect average
tax of 81 euro/year and 35 euro/year in Denmark, Wier et al. (2005) found that
low-income families paid carbon taxes constituting around 0.8% of disposable income,
while high-income families paid approximately 0.3% of disposable income. In Sweden,
Brännlund and Nordström (2004), based on a household demand model (Quadratic
Almost Ideal Demand System (QUAIDS)), observed that poorest and richest households
experience a welfare loss of 0.52% and 0.33% of their disposable income, respectively,
for a 100% increase of the CO2 price, which was based on USD 46/tCO2. The regressive
nature of CO2 taxes in both studies can be explained by two factors: i) CO2 intensities
vary strongly between consumption goods, with food and transport being very CO2

intensive, and services and financial transfers being at the other end of the scale; and
ii) low-income cohorts mainly consume carbon-intensive necessities, while high-income
cohorts spend a large part of their income on “luxury” items that have a higher service
component. Since carbon taxes in Denmark and Sweden were introduced in 1992 and
1991, respectively, the findings from these studies correspond to de facto effects.

Using an I-O model combined with consumer expenditure survey for the U.S.,
Grainger and Kolstad (2010) observed that, for a tax of USD 15/tCO2, the poorest
quintile’s burden (as a share of annual income) is 3.2 times that of the wealthiest
quintile. Similar results were also found by Hassett et al. (2007), where the additional
cost of a carbon tax was approximately 3.7% for the lowest decile, which is over four

cross-country variation (e.g., due to sharp differences in population exposure to pollution) (Parry et
al., 2015).
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times the added burden of the highest decile. These studies suggest that the regressivity
of the policy is driven largely by direct energy consumption.

However, progressive effects were found in empirical studies for Italy and British
Columbia. Tiezzi (2005), through estimation of an Almost Ideal Demand System (AIDS)
model and using household data from 1985 to 1996, verified that the welfare losses as
a percentage of expenditure were 0.4% and 0.8%, respectively for Italian households
in the lowest and highest expenditure levels. This might be due to the fact that the
taxation mainly fell on transport fuels, whereas heating’ fuel prices increased relatively
less. The tax burden also seems to affect mainly households with one and two adults and
decreases for larger families, which could be explained by the fact that the tax burden
due to car ownership, for instance, is more distributed as the number of household
members increases, because the number of car owned does not increase linearly with
the number of household members. Beck et al. (2015), using a static CGE model of the
Canadian economy, estimated that a carbon tax of USD 30/t applied on all combustion
GHGs would cause welfare losses of 0.2% and 0.6% for poorest and richest households,
respectively. The progressive character of the tax would be enhanced by the introduction
of revenue recycling measures - the poorest households would present an increase of
0.8% in welfare while richest households would have their welfare levels reduced by
0.2%.

In the limited number of studies focusing on developing economies, the results are
more diverse. Combining emission information estimated via an I-O model, together with
micro data from the Mexican National Survey of Household Incomes and Expenditure,
Renner (2018) found that, in the case of the highest simulated tax rate of USD 50/tCO2e
and including CH4 and N2O in the taxation, the relative welfare losses would be 4.2%
and 3.4% of total expenditures for the poorest and richest households respectively, while
in the case of a carbon tax rate of USD 20/tCO2 exclusively taxing CO2 from energy
use, welfare losses would be progressive and account for around 1% of total expenditures
for all households.

In contrast, based on an econometric model, Brenner et al. (2007) observed that
with a charge set at 300 yuan/tCO2

2.14, and with equal redistribution of the revenues,
the effect of the carbon charge would be progressive in China: the lowest decile would
pay 2.1% of total expenditures to satisfy the levy, and the highest decile would pay 3.2%.
Using a general-equilibrium (CGE) model for South Africa, Devarajan et al. (2011)

2.14The rate was comparable to existing carbon charges in other countries in 1999.
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indicated that, compared to other instruments, a direct tax on carbon emissions imposes
the lowest distortion, where household welfare declines by roughly 0.3% in order to
reduce emissions by 15%. On the other hand, an indirect tax on pollution-intensive
commodities imposes a higher cost - by as much as 10 times that of a carbon tax. When
assessing the results of a USD 30/tCO2 tax for different income groups in 87 low- and
middle-income countries (countries with per capita incomes below USD 15,000 per
year (at PPP-adjusted 2011 USD)) and using a multi-regional I-O table, Dorband et
al. (2019) found that carbon pricing has, on average, progressive distributional effects.
Due to an inverse U-shape relationship between energy expenditure and income, the
authors noted that USD 15,000 (PPP-adjusted) is actually the turning point at which
carbon pricing is likely to be progressive (and regressive above this threshold).

Results of previous studies for Brazil are also diverse. Grottera et al. (2017),
considering a R$ 50/t tax on carbon dioxide (CO2), methane (CH4) and nitrous oxide
(N2O) emissions and using an input-output model for 2005, found that despite the
markedly recessive effect when the revenue is not reinserted into the economy, the
measure is progressive since income inequality decreases, especially if direct transfer
to households is considered. However, when the revenue is used to reduce taxes on
the labor factor, the carbon tax contributes to increase income inequality. Based on
the same method and tax rate, Freitas et al. (2016) estimated welfare losses measured
by compensatory variation of 3.1% and 1.2% for lower and higher income deciles,
respectively. Similarly, considering the same tax applied on GHG emissions and using
a computable general equilibrium (CGE) model, Magalhães et al. (2013) found that
the poorest and richest households would reduce their total consumption by 2.2% and
1.8%, respectively, in a scenario without any revenue recycling, but when considering
recycling to households of that part of the revenues from the carbon tax, the reductions
were 1.2% and 0.9%, respectively.

As observed, the tax rate simulated and implemented varies considerably among
the countries. Wang et al. (2016) indicated that these rates can be either based on
what is perceived as politically feasible, or based on the marginal abatement cost of
carbon, or simply on budget requirements. In the last report prepared by the High-Level
Commission on Carbon Prices (Stiglitz et al., 2017), it was concluded that carbon
prices of USD 40–80/tCO2 and USD 50–100/tCO2 would be necessary in all countries
to achieve the targets of the Paris Agreement by 2020 and 2030, respectively. However,
about three-quarters of emissions covered by existing carbon pricing schemes are priced
at less than USD 10/tCO2e (Timilsina, 2018), suggesting that these tax rates are
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relatively low compared to what actually is needed to achieve internationally agreed
climate targets in the long-run (Boyce, 2016; Pindyck, 2013).

In general, the literature shows that the selection of income or expenditure to
measure the relative cost may also affect the results. The studies which focus on the
general effects of carbon taxes on well-being are more likely to adopt measures of expen-
diture rather than income due to three reasons, according to Flues and Thomas (2015):
i) current consumption measures the current standard of living better than current
income, based on the premise that households derive utility from the consumption of
goods and not from income (Ravallion, 1992); ii) expenditure is likely to be a better
(though still imperfect) proxy for lifetime well-being than income and iii) adopting an
expenditure base provides a more reliable picture of the lifetime distributional effects of
a consumption tax because it removes the influence of borrowing and saving from the
analysis. Therefore, measures of regressivity are often diminished when evaluated ac-
cording to lifetime income or permanent income, or a proxy such as annual expenditures
(Cronin et al., 2019).

Overall, the empirical assessments indicate that the revenue generated through
the tax could also be used to counteract potential negative distributional impacts and
potentially generate double dividends (Goulder, 1995; Fullerton and Metcalf, 1997).
Some of the options for using the revenue earned from carbon taxes include ex-ante
measures, such as public transport subsidies (Brännlund and Nordström, 2004), as well
as ex-post measures, such as lump-sum transfers to households (Sajeewani et al., 2015;
Brenner et al., 2007), and relief of existing and naturally distorting taxes on labour,
income or revenues (Callan et al., 2009; Pereda et al., 2019). The studies suggest that
low income households would benefit more when carbon tax revenue is recycled as a
lump-sum rebate than used to cut existing taxes. If the carbon tax revenue is used to
cut existing taxes, higher income households will benefit the most (i.e., their welfare
loss due to the carbon tax decreases) (Timilsina, 2018).

In theory, for efficiency and fairness purposes, the tax should be applied as
broadly as feasible to all greenhouse gas emissions, regardless the source. In light of
the practical experience of countries that have introduced a carbon tax, along with
studies proposing and modeling a hypothetical carbon tax, Wang et al. (2016) stated
that the tax generally is levied on fossil fuels from both primary (e.g., oil, coal, biomass)
and secondary (e.g., electricity, fuel oil) energy sources. Broader coverage tends to be
more cost-effective to reduce emissions, since the same marginal incentive for reductions
is observed across a broad range of sources. They also have higher revenue potential
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and are considered simpler and fairer . Narrow coverage, on the other hand, is easier
to measure and to enforce (particularly for downstream taxation, which is harder to
monitor and enforce) and could exempt vulnerable/politically powerful sectors.

In addition, the positioning of regulation is also an important element in the
design of a carbon tax. There often exist “upstream” or “downstream” choices in the
energy chain to impose the tax, to minimize collection and monitoring costs and to
ensure maximum coverage. In an upstream approach, refineries and importers would pay
a tax based on the carbon content of their gasoline, diesel fuel, or heating oil; coal mine
operators would pay a tax reflecting the carbon content of extracted coal; and natural
gas companies would pay a tax reflecting the carbon content of their produced and
imported gas. A downstream point of regulation or taxation would assign compliance
responsibilities to the final emitters. Alternatively, a hybrid upstream-downstream
approach could address a broad base, such as in a system that covers power plants’
direct emissions and transportation’s embedded emissions, with refineries serving as
the point of compliance for petroleum fuels (Aidy, 2017). In the absence of the hybrid
approach, Metcalf and Weisbach (2009) pointed out that imposing the tax upstream
could cover a broader base (i.e., a larger fraction of an economy’s emissions) and more
economies of scale could be obtained in tax administration as there are fewer upstream
producers than downstream consumers and the cost will be lower per unit of tax. Also,
an advantage of an upstream system is that it treats all fossil carbon equally, regardless
of where it is burned. Arguments for downstream (e.g., households or energy-using
industries) imposition of the tax tend to be based on a claim that a downstream tax is
more visible and, therefore will have a greater effect.

Much of the research on the distributional impact of a carbon tax relies on I-O
models in combination with household expenditure surveys. The I-O model is used to
analyze the direct and indirect consumer price changes caused by higher fossil fuel prices.
Subsequently, these prices are combined with data from consumer expenditure surveys
to estimate incidence of the carbon tax. However, this modeling approach misses some
important elements that can have significant impacts on the incidence of the policy: it
does not allow industries or households to change their behavior in response to increases
in the price of carbon intensive commodities, and assumes an inherent homogeneity
in the sector-by-sector technology. Additionally, possible constraints to the supply of
production factors - such as labor and capital - are not taken into account, and generally
the models assume full pass-through of price increases from producers to consumers in
the form of higher prices. Since it is a static analysis, these models present stocks at a
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given period of time. As a result, these models highlight the short run distributional
outcomes rather than the dynamic effects of a carbon tax on production techniques
and consumption bundles (Mathur and Morris, 2014).

A wide range of empirical studies on the distributional aspects of environmental
policies also have used computable general equilibrium (CGE) models. In particular,
studies which take into account recycling schemes for carbon pricing tend to use this
approach. These models provide a higher degree of flexibility in choosing functional forms
to represent agents’ behavior and also allow substitutions between factors and inputs, as
well as passing the burden of a tax forward to consumer prices or backward to factors.
Despite that, studies using CGE models have found that consumption taxes are entirely
passed forward to consumers (Metcalf and Weisbach, 2009), as expected under perfect
competition. Boyce (2016) relaxed this assumption by allowing some of the cost to fall
on producers and, ultimately, stock owners, which makes a carbon tax less regressive. In
addition, econometric models have also been used to assess the distributional impacts
of a carbon tax, through the estimation of a consumer demand system, generally in
combination with the I-O approach. By assessing behavioral response, these models
tend to be more flexible, allowing complementarities and substitution relationships
among the goods, which can improve the identification of the distributional effects.
Commonly used econometric models are almost ideal demand systems (AIDS) (Tiezzi,
2005), their more flexible quadratic specification (QAIDS) (Brännlund and Nordström,
2004; Nikodinoska and Schröder, 2016) or more recently the exact affine Stone index
(EASI) demand system (Reaños and Wölfing, 2018).

2.3 Empirical Strategy and Data

An analysis of the distributional emission and welfare consequences of a carbon
tax requires detailed data on households’ carbon footprints and a clear understanding
of their consumption behavior. First, we calculate GHG emission coefficients for several
products and services consumed by Brazilian households using a hybrid input-output
(HIO) approach. Then, for a nationally representative sample of Brazilian households,
we calculate expenditure and price elasticities for these goods and services using a
censored demand system. Finally, we combine these estimates in order to measure the
welfare and emission effects of a carbon tax.
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2.3.1 Emission coefficients: input-output model

We use the national input–output matrix for 2010, built according to Guilhoto
et al. (2010). This matrix is constructed based on the 2010 Supply-Use Tables (SUTs)
provided by the Brazilian Institute of Geography and Statistics (IBGE) and contains
information on production and intermediate consumption, in monetary units, of 128
products and 68 economic sectors. To obtain the carbon footprint of goods and services,
we develop a hybrid matrix (Eexn) containing the amount of energy consumed - expressed
in physical units (tonnes of oil equivalent, toe) of e sources of energy in n economic
sectors (e < n) - by each sector, based on information from the Brazilian Energy Balance
(BEN). The matrix Eexn provides energy requirements (in toe) for 21 economic sectors
from 24 energy sources2.15.

We follow Montoya et al. (2014) and Grainger and Kolstad (2010) to reconcile
the energy sources from BEN with the products from SUTs. Then, in the matrix Z,
which represents the inter-industrial transactions -, we substitute the monetary flow
by the energy intermediate input flows, creating the hybrid matrix Z∗. We repeat the
same procedure for the total production vector (X∗) and the final demand vector (Y ∗).
The technical coefficient matrix in hybrid units (A∗) can be calculated by:

A∗ = Z∗(X̂∗)−1 (2.1)

The energy consumption in toe is then converted into the three main long-term
drivers of climate change, CO2, CH4 and N2O and later to CO2e based on the energy
conversion coefficient for fossil fuels 2.16 available from the Second Brazilian Inventory of
Greenhouse Gas Emissions, which follows the IPCC Guidelines for National Greenhouse
Gas Inventories (IPCC, 2007) and the global warming potential (GWP) conversion
factors 2.17.

2.15Energy generated by self-producers was not added since the majority of this energy is consumed by
the same companies and therefore does not generate added value. Imported energy (which corresponded
to approximately 7% of total energy supply in 2010) was also not included in our calculations since it
was not possible to identify its respective sources.

2.16These conversion coefficients that take into account the characteristics of the chemical process and
technology applied to each greenhouse gas. The following fuels were considered: natural gas, steam coal,
metallurgical coal, diesel oil, fuel oil,gasoline, LPG, kerosene, gas coke, coal coke, other oil byproducts,
and coal tar.

2.17The “global warming potential” (or GWP) of a GHG indicates the amount of warming a gas
causes over a given period of time (normally 100 years). GWP is an index, with CO2 having the index
value of 1, and the GWP for all other GHG is the number of times more warming they cause compared
to CO2. E.g. 1 kg of methane causes 25 times more warming over a 100 year period compared to 1 kg



74

Assuming that CO2e emissions by energy use are linearly related to the respective
energy requirements, it is possible to estimate both direct emissions as well as total
emissions for each good and economic activity. The matrix of technical coefficients of
national inputs Ap, is obtained by the product of B∗ and D. The matrix B∗ contains,
in hybrid units, the proportion of each domestic input used in the total production of a
specific sector:

bij =
u∗
ij∑
i rij

(2.2)

where u∗
ij is the element ij of the hybrid ’use’ matrix, denoting the amount of

domestic input i used in the production of sector j, and ∑
i rij is the total production

of sector j. Likewise, we calculate the share of product i produced by sector j (dij) as
follows:

dij = rij∑
j rij

(2.3)

The coefficients of matrix Ap can be interpreted as the quantity of CO2e that
product i uses to produce one unit of product j (expressed in tonnes CO2e/USD mi, in
2009 values2.18. Direct CO2e emission is equivalent to the sum of the k rows of the Ap

that measure emissions:

ci,CO2e =
∑
k

apkj (2.4)

in which k ≤ i. We follow Minx et al. (2009) to calculate total emissions,
equivalent to direct plus indirect emissions:

cTi,CO2e = (I −Ap)−1 ∗ Y ∗ ci,CO2e (2.5)

where Y is the vector of final demand. Therefore, the emission coefficient of
the products corresponds to the CO2e content embedded in one monetary unit of the
respective product.

of CO2, and so methane has a GWP of 25.
2.18To reconcile with the Budgetary Household Survey, we converted 2010 values into 2009 values.
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Based on the premise of constant technological coefficients and returns to scale,
the hybrid I-O model assumes no price substitution effect on consumption or production
processes. It also considers that all interactions among components of the economy
occur at the same time, instead of in a dynamic way.

However, the premise of strict prices is adjusted by the estimation of a censored
demand system, as detailed in Section 2.3.2. Therefore, emissions reductions are ex-
clusively due to consumption changes. In addition, our emission coefficient estimates
include exports but exclude imports and do not take into account carbon leakages2.19.

Figure 2.1 (Appendix) presents the estimates for the direct and indirect emission
coefficient for the goods and services consumed by Brazilian households, presented in
decreasing order of relative CO2e emissions. We note very high coefficients for water and
air transportation, as well as ground transportation of cargo and passengers, followed
by wood products, cement, glass/ceramics, and food items such as dairy products, meat,
beverages and canned foods. Total emissions tend to arise mainly from indirect emissions
for most activities, which indicates there is higher energy consumption from the trade
flows to meet the final demand for these respective goods/services. However, particularly
for all types of transportation, wood products, paper and printing services, as well as
selected agricultural and livestock products (such as rice, milk, cattle, poultry, eggs and
fish), direct emissions might represent up to 90% of overall emissions. Therefore, these
products/services exert significant influence on total GHG emissions in Brazil.

2.3.2 Households’ responses to prices: censored QUAIDS

Carbon taxation mainly affects household expenditures on energy-related prod-
ucts and services like fuel and transportation, as these goods become more expensive.
However, since carbon taxation also affects expenditures on non-energy related products
by shifting the share of the household budget that is spent on each type of product,
there is a need to understand the whole consumer behavior change caused by price
modifications.

Consumer behavior theory says that individuals choose what and how much to
consume to maximize their well-being, subject to a budget constraint. If the consumer’s

2.19Carbon leakage refers to the phenomenon where overseas emissions (especially from those in
countries with less strict environmental regulations) increase because of emissions restrictions in a
given country.
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set of choices is consistent2.20, the study of consumer behavior can be performed as a
classic optimization problem2.21, allowing the estimation of price and income elasticities.

However, consumer theory does not specify the functional forms for the demand
equations. The advantage of estimating a system of demand equations instead of
individual equations is based on the joint estimation and empirical tests concerning the
validity of the theoretical restrictions implied in the consumer theory. We choose the
Quadratic Almost Ideal Demand System (QUAIDS), which considers the nonlinearity
of income, as presented below:

wi = αi +
n∑
j=1

γijln(pj) + βiln( m

a(p)) + λi
b(p) [ln( m

a(p))]2 (2.6)

where wi is the expenditure for good i, pj is the price of good n, m is the total
expenditure per capita and ln α(p) is the transcendental price index, such that:

ln[a(p)] = α0 +
n∑
i

αiln(pi) + 1/2
∑
i

∑
j

γijln(pi)ln(pi) (2.7)

and b(p) is the Cobb-Douglas price aggregator, described as:

b(p) =
n∏
i=1

pβi
i (2.8)

and

λ(p) =
∑
i

λilnpi (2.9)

The theoretical constraints on the model’s parameters are:

N∑
i=1

αi = 1;
N∑
i=1

βi = 0;
N∑
i=1

λi = 0;
N∑
i=1

γij = 0,∀j ∈ I (2.10)

2.20The consistency of preferences implies acceptance of the axioms of reflexivity, completeness,
transitivity, continuity, no local satiety and strict convexity (Deaton and Muellbauer, 1980b).

2.21Due to consistency of consumer preferences, the system of demand equations has the properties
of additivity, homogeneity, symmetry and negativity.
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N∑
j=1

γij = 0,∀i ∈ I (2.11)

γij = γji, ∀i 6= j (2.12)

Following the demographic translation approach by Pollak and Wales (1981),
we introduce sociodemographic shifters (zj) by substituting Eq. 2.13 into Eq. 2.6 and
Eq. 2.7. Demographic shifters are used to allow for household heterogeneity:

α∗
i = αi +

n∑
j=1

δijzj, (2.13)

This procedure requires one additional constraint to the system of equations
(∑n

j=1 δij = 0,∀i ∈ 1, ..., n).

The empirical estimation of a demand system requires household expenditure
data. We use data from the 2008-09 Brazilian Household Expenditure Survey, a nationally
representative cross-sectional survey that contains data on all monetary and non-
monetary household and individual expenses2.22 during a given period, presented in
different booklets. Food and beverage expenses are collected for a 7-day period; building
material expenses, rent and taxes are compiled for a 12-month period; expenses related
to the consumption of energy goods (electricity and fuels) are collected for a 90-day
period; while individual expenses for transportation, education, meals outside the home,
medicines, clothing and footwear, hygiene, health, furniture and vehicle acquisitions vary
according to the good/service. The sample is based on a two-stage clustered sampling
procedure, with a probabilistic selection of 550 household census sectors. Households
within each sector are selected by simple random sampling without replacement and
the interviews were carried out uniformly throughout the survey’s four quarters to
reproduce the seasonal variation in income and purchases in each stratum. For the
purpose of this study, we use the household as the unit of analysis.

We use the IBGE official translator2.23 to reconcile almost 14,000 products
available in the Household Expenditure Survey (POF) according to their similarity

2.22The level of detailed information on monetary and non-monetary expenses and income from POF
allows minimization of the under-declaration problem (Hoffmann, 2010).

2.23Available at:<https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/
9052-sistema-de-contas-nacionais-brasil.html?edicao=25916&t=notas-tecnicas>

https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9052-sistema-de-contas-nacionais-brasil.html?edicao=25916&t=notas-tecnicas
https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9052-sistema-de-contas-nacionais-brasil.html?edicao=25916&t=notas-tecnicas
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with the 98 products consumed by households in SUTs 2.24. After this aggregation, we
follow Ghalwash (2007) and Dorband et al. (2019) to group the combined categories
of products into similar 9 main groups, which allows the understanding of the total
household consumption: i) food and beverages, ii) recreation, culture and education,
iii) clothing and footwear, iv) commuting and transportation, v) health and hygiene,
vi) energy, vii) housing, viii) other goods and ix) other services. Table 2.1 provides a
description of the items included in each of these main categories.

The use of household expenditure survey data for demand system estimation
often creates a problem due to the lack of consumption of certain goods during the
recall period. This causes censored dependent variables and leads to biased results when
not accounted for. Following Shonkwiler and Yen (1999), the consumption of each good
can be characterized as a two-stage decision: the first step corresponds to a probit model
with the same variables as the QUAIDS model, in which its cumulative distribution (Φ̂)
and the probability density function (φ̂) are used in the second step to augment the
QUAIDS estimation2.25:

w∗
i = Φ̂iwi + φ̂i (2.14)

The expenditure (Eq. 2.15) and price elasticities (compensated, Eq. 2.16 and
uncompensated, Eq. 2.17) formulas for the non-linear QUAIDS can be expressed as:

ηi = 1 + Φi/wi[βi + ( 2λi
b(p))ln( m

a(p))] (2.15)

εij = −δij + Φi/wi[γij − (βi + ( 2λi
b(p))ln( m

a(p)))(αj +
∑
k

γjk − lnpk)−
λiβi
b(p)(ln( m

a(p)))2

(2.16)

where δij is the Kronecker delta (equal to one only for own price elasticities, and

2.24Some products available on SUTs are not consumed by households (e.g. pig iron and ferro-alloys).
2.25In the censored QUAIDS, the deterministic components on the right-hand side of Equation 2.14

do not add up to unity across all equations of the system in general, and so the error terms in the
estimation form do not add to zero. Thus, the usual procedure of imposing the adding-up restriction
(Eq. 2.10) on the system and dropping one arbitrary equation is not valid. Therefore, with censoring,
the second step of the system (Eq. 2.14) is estimated correctly when using the entire set of equations
(Yen et al., 2002).
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zero otherwise):

εhij = εij + ( βi
wi

+ 1)wj (2.17)

To capture the heterogeneous effects of the energy tax policies, elasticities are
calculated for the overall sample and among the 20% richest and 20% poorest households
in the dataset. We use the information of total earnings as stated in the POF, which
contains wage, transfers, rental income, non-cash and other incomes to disaggregate the
groups per different income levels.

All models are estimated by feasible generalized non-linear Least squares
(FGNLS), and standard errors are computed by nonparametric bootstrap with 1,000
repetitions. Since α0 is difficult to estimate (Deaton and Muellbauer, 1980b), we follow
Boysen et al. (2012) and adopt an arbitrary and low value of 5. Other values did
not change the resulting elasticities but caused the procedure to require many more
iterations to converge. Robustness checks are also conducted using uncensored QUAIDS
and AIDS models with the STATA procedure suggested by Poi et al. (2012) with the
same specification.

This partial equilibrium framework assumes that the carbon tax burden is fully
transferred to consumers. This is a reasonable assumption to be used in an assessment
of the immediate impact given the structural stability in the short-term, in which
the reallocation of factor input is unlikely(Grainger and Kolstad, 2010; Metcalf and
Weisbach, 2009). In addition, the impact of a carbon tax on consumption in a demand
system approach excludes the behavioral changes and possible welfare benefit received
from reduced emissions. Due to these limitations, the estimates can be interpreted as
the carbon tax policy’s upper bound effect.

Table 2.2 (Appendix) shows the descriptive statistics for positive consumption
and budget shares for each group and income level. For instance, the household budget
share allocated to food and beverage and energy consumption among the 20% poorest is
more than double the proportion of spending on these products among the 20% richest
households. For commuting and transportation services, as well as for recreation and
education, this proportion is even higher. However, the richest and poorest households
tend to spend similar shares on clothing and footwear and housing. Furthermore, on
average, censoring is higher for health and hygiene items, as well as for culture and
private education, mainly because poorer households have lower consumption of goods
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from these groups. Clothing and footwear expenses are presented in different booklets,
which explains the high percentage of positive consumption for all income levels. Overall,
these figures justify the use of the censored approach when using data from household
expenditure surveys.

The descriptive statistics of socioeconomic variables is presented in Table 2.3
(Appendix), to help explain the differences in preferences of households for the products
analyzed. Heads of the 20% richest households have almost 5 more years of education
compared to the heads of the 20% poorest households. In addition, the richest group has
more than twice as many rooms and bathrooms in their houses (good proxy for wealth)
compared to the poorest group, on average. Total per capita earnings of high-income
households are 15 times higher than for low-income households.

2.3.2.1 Construction of prices

The main theoretical variables for household demand system are, basically, total
expenditures (proxy for income)2.26 and prices, calculated as unit values (pi = UVi).
Particularly for the products from group 1 (food and beverages), there are two main
problems related to the price we calculate from the household expenditure surveys:
potential measurement error, and differences in quality and packaging (Boysen et al.,
2012). In this sense, we use a price correction method from Cox and Wohlgenant (1986)
and Lazaridis (2003) for these specific products.

As not all household have positive consumption of all items, the missing obser-
vations are approximated by the average of p̂i coefficients over the neighboring region -
first, the stratum and if it is still missing, the state. Then we compute the weighted
price indexes2.27 (Stone price index) for all groups (Deaton and Muellbauer, 1980a):

lnpg =
∑
iεIg

wilnpi (2.18)

in which Ig is the set of items included in aggregate item group g, pi is the price
and wi is the budget share of item i in each household. Because expenditures and prices
are endogenous in this demand system, we use households’ disposable income as an

2.26Since household income is self-reported, this information might be associated with negative
reporting bias. To overcome this issue, the literature usually adopts household total expenditure as a
proxy for household income.

2.27For items of group 1, this procedure is implemented after the price correction.
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instrument for expenditures, and nearest neighbors’ price indexes as instruments for
household price indexes (Lecocq and Robin, 2015), controlling for diversity in household
preferences such as their composition, age and geographical location.

In the POF, there is a limitation related to the lack of specification of the quantity
consumed of several products and services: in a 12-month period (e.g., rent, taxes,
construction and remodeling) and on an individual basis (e.g., education, commuting
and transportation). This affects items aggregated into groups 2, 3, 4, 5, 7 and 9. We
assume that the quantity consumed was equal to 1 for the households with positive
consumption of the respective product or service. This approach tends to overestimate
the unit value of some products and services, thus underestimating the respective price
elasticities.

Based on these limitations, Table 2.4 (Appendix) presents the aggregated prices,
in which values expressed in Brazilian reais of 2009 are converted to 2019 using the
average exchange rate from the Central Bank of Brazil for that year. The price indexes
should be interpreted as a relative price index: for example, richer households expend
34%, 78% and 67% more on food and beverages, commuting and transportation services
and energy goods, respectively, compared to poorer households. The small standard
deviation values are associated with the lack of information related to quantity consumed
of several expenditure items.

2.3.3 Calculation of effects

Welfare and emissions effects, as well as the rationale behind revenue neutrality,
are explained below. These effects are calculated for the average-income of Brazilian
households as well as for the 20% richest and 20% poorest households, and the esti-
mations are multiplied by the number of Brazilian households from the 2010 Brazil
Demographic Census (approximately 57 million inhabitants) to calculate these effects
for the country as a whole. Since the impacts calculated in this study are mainly valid
for the short-run, they should be interpreted as upper bounds for long-term impacts.

2.3.3.1 Welfare effects

Assuming that prices are fully transferred to consumers and focusing only on
the costs associated with the tax imposition, we use the concept of equivalent variation
(EV) to assess the short-term effects of a carbon tax on welfare. The EV, expressed in
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monetary terms, indicates the maximum amount the consumer would be willing to pay
to avoid a price change caused by the introduction of a tax:

EV = e(p1, u1)− e(p0, u1) (2.19)

where e is the expenditure function considering the ex-post utility (u1) at pre-tax
and post-tax prices, respectively. Likewise, in a situation in which the taxpayer cannot
take any action to influence the amount of taxes paid (tax evasion), the dollar magnitude
of the welfare loss as measured by the EV will exceed the total tax revenue collected
from the taxpayer – and the difference is defined as the deadweight loss of the tax or the
excess tax burden. Therefore, the deadweight loss (DWL) (corresponding to the EV)
represents the efficiency loss arising from the tax - that is, utility that is lost beyond
the revenue transferred to the government (Mohring, 1971):

DWL(u1) = EV − (p1 − po)h(p1, u1) (2.20)

where h(.) is the compensated demand function. One virtue of an equivalent
variation measure of excess burden lies in the fact that in comparing tax policies that
raise equal revenue, the tax policy with the lowest excess burden as measured by
equivalent variation also produces the highest level of consumer welfare (Kay, 1980).

A key issue to examine the distributional effects of carbon taxes is how to measure
the magnitude of tax burdens between poor and rich households. Many households in
the lower income deciles either dis-save on previous earnings or may borrow against
future earnings. Their level of expenditure reflects better what they are able to afford
than their level of income (Cronin et al., 2019; Flues and Thomas, 2015). Since current
consumption measures the current standard of living better than current income, we
present both EV and DWL estimates relative to the total household expenditures.

2.3.3.2 Emissions effects

The difference between total GHG emissions before and after the tariff rate
changes indicates the changes in total household carbon footprints due to the carbon
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tax policy, as follows:

∆CO2e =
∑
g

(p1
g ∗ q1

g) ∗ cTg,CO2e −
∑
g

(p0
g ∗ q0

g) ∗ cTg,CO2e (2.21)

2.3.3.3 Neutral revenue

We estimate the additional tax revenue collected by the government considering
the tax rate, the total household expenditure and the carbon intensity of each group
consumed. As per the “polluter pays” principle and the double-dividend rationale, we
consider that the government revenue obtained from the carbon tax is fully redistributed
to the households as a lump-sum transfer.

2.3.4 Scenarios and sensitivity analysis

Since tax rates implemented vary significantly worldwide, we simulate two
scenarios considering USD 40/tCO2e and USD 80/tCO2e. According to the High-
Level Commission on Carbon Prices - a group of leading economists working with the
Carbon Pricing Leadership Coalition -, the explicit carbon-price level consistent with
achieving the Paris temperature target is at least USD 40–80/tCO2 by 2020 and USD
50–100/tCO2 by 2030. These estimates are also aligned with the prices calculated by the
US Interagency Working Group on the Social Cost of Carbon of USD 50/tCO2 in 2020.
The International Monetary Fund (IMF, 2019) also estimates that prices from USD
50/tCO2 to USD 100/tCO2 or more by 2030 are needed to meet their commitments to
reduce carbon emissions.

The rate is applied to CO2, CH4 and N2O emissions from fossil fuels to Brazil’s
2009 productive structure and USD values for 2019. We also conduct sensitivity analysis
by narrowing the tax base according to the groups of products and services that present
the highest carbon content - food and beverages and commuting and transportation
services, respectively.
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2.4 Results and Discussions

2.4.1 CO2e emission coefficients

Table 2.5 (Apppendix) presents the estimates for total CO2e emissions per
household - or carbon footprint -, obtained by multiplying total expenditures (at 2019
values) and the emission coefficient for each group of products. Food and beverages
and commuting and transportation have the highest averages of CO2e emissions per
household (3.3 tCO2e/hh/year and 2.0 tCO2e/hh/year, respectively). Commuting and
transportation mainly refers to cargo transportation, which is predominantly done over
highway networks using diesel as fuel, and individual transportation, with prevalence of
flex-fuel cars (ethanol and/or gasoline in any combination). It also accounts for public
passenger transportation, largely by buses. Therefore, the high levels of CO2e emissions
from the food and beverages group is a reflection of the country’s characteristics of cargo
transportation and the large expenditure share devoted to this group. The relatively
low levels of CO2e emissions from the domestic energy group is explained by the fact
that, on average, the majority of household expenditures refer to electricity and gasoline
consumption. Despite an increasing share of production coming from natural gas and
coal, electricity is still primarily generated by hydropower sources.

Other studies have found that carbon emissions embedded in transportation
and commuting services, as well as food items, generally form a substantial portion of a
household’s carbon footprint, in particular when analyzed in terms of greenhouse gas
emissions instead of carbon dioxide only. Differently from what we observe for Brazil,
empirical studies of Australia (Dey et al., 2007), Netherlands (Nijdam et al., 2005) and
UK (Druckman and Jackson, 2009) also point out that an important share of GHG
emissions also arise from expenses related to heating, electricity and house maintenance,
normally aggregated in the housing group.

Regarding the distribution of emissions among income levels, we note much
higher figures for the richest 20% of Brazilian households, given that the total annual
emissions in this category reach nearly 26 tCO2e per household, far above the total
calculated for the 20% poorest (1.7 tCO2e).

Indeed, many studies have shown that the relationship between income and
household carbon footprint is strong (Wier et al., 2005; Dey et al., 2007; Perobelli et
al., 2015). Our estimates suggest that almost 25% of total emissions from low-income
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households arise from food and beverage consumption, while 30% of GHG emissions from
high-income households come from commuting and transportation services. Therefore,
since expenditures on commuting and transportation increases with income, and this
group has one of the highest emission intensity coefficients, these two coupled components
play an important role in terms of reducing emissions. Likewise, households with lower
income level tend to have a structure of spending that more intensively mobilizes the
inputs related to the food production chain - such as transportation.

Our carbon footprint results also show adherence to the metrics disclosed by
the World Bank2.28 for the Brazilian economy. According to its estimates, the average
emission per household in Brazil was approximately 9.9 tCO2 in 2014, roughly in line
with the average of 10.5 tCO2 resulting from our approach. Furthermore, taking 2014
World Bank statistics as a benchmark, we find that the average emission per household
in Brazil is significantly lower than the global average. Indeed, the average CO2e emission
of the richest quintile in Brazilian population is below the average emission considering
only CO2 in China (30 tCO2/household), Germany (35.6 tCO2/household) and United
States (66 tCO2/household). Likewise, the average CO2e emission of the poorest quintile
is much lower than the average CO2 emission in India (6.8 tCO2/household).

2.4.2 Expenditure, own- and cross- price elasticities

Table 2.6 (Appendix) presents the expenditure, own and cross-price elasticities
of household groups, obtained through the demand system estimation. These elasticities
measure the effectiveness of a pricing policy, such as a carbon tax, and determine the
vulnerability of households in reducing their energy consumption when energy prices
increase as a result of a carbon tax.

Expenditure elasticities for food items are low (0.8), especially for the 20%
poorest households (0.5). This suggests that, compared to other groups, food demand is
much less responsive to changes in income. On average, the expenditure elasticities for

2.28Data for carbon dioxide emissions include gases from the burning of fossil fuels and cement
manufacture, but exclude emissions from land use such as deforestation. The U.S. Department of
Energy’s Carbon Dioxide Information Analysis Center (CDIAC) calculates annual anthropogenic
emissions from data on fossil fuel consumption (from the United Nations Statistics Division’s World
Energy Data Set) and world cement manufacturing (from the U.S. Department of Interior’s Geological
Survey, USGS 2011). Estimates exclude fuels supplied to ships and aircraft in international transport
because of the difficulty of apportioning the fuels among benefiting countries. Although estimates of
global carbon dioxide emissions are probably accurate within 10 % (as calculated from global average
fuel chemistry and use), country estimates may have larger error bounds. Each year the CDIAC
recalculates the entire time series since 1949, incorporating recent findings and corrections.
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domestic energy goods are relatively high (1.8), indicating that they are luxury goods for
all levels of income - especially for low-income households (1.9). In contrast, expenditure
elasticities for housing (which contains rent, as well as residential appliances) are
relatively low (0.5) - particularly for high-income groups (0.2). Interestingly, for richer
households, commuting and transportation services are considered necessity goods (0.9),
while for poorer households they can be classified as superior goods (1.9). The demand
for recreation and cultural activities from high-income households is less responsive to
changes in income (0.6) compared to poorer households (3.9), being characterized as
necessity goods and luxury goods for richer and poorer households, respectively.

One interpretation of these empirical results is that, in general, food, housing
and other goods are seen as urgent needs, and thus as budgets increase, these services
tend to be prioritized. Most goods and services are luxuries relative to food, housing and
other goods - as income rise, the willingness to spend more on these goods and services
increase more than proportionally. Saturation effects2.29 are also observed for energy,
commuting and transportation, recreation and education as well as other services,
meaning that richer households demand proportionally less goods and services from
these groups but more of other goods and services. This suggests that consumption of
and expenditure on many items previously considered to be luxury goods and services
would grow less than income.

Studies estimating elasticities of several household expenditure groups using
similar demand system approach have found income elasticities for food items ranging
from 0.4 for Germany (Nikodinoska and Schröder, 2016) up to 0.7 for Italy (Tiezzi, 2005)
and 0.80 for Sweden (Brännlund and Nordström, 2004). Our estimations related to
commuting and transportation are similar to the ones found for Italy (Tiezzi, 2005) and
Spain (Labandeira et al., 2006) for public transport (approximately 1.3). For Sweden,
Ghalwash (2007) identified total expenditure elasticities of ranging from 0.2 to 0.4 for
food and beverages, 2.1 for recreation, 1.1 for clothing, 0.5 for transports, 0.9 for health
care and from 0.3 to 1.2 for energy goods. Also for Germany, Reaños and Wölfing (2018)
found that expenditure elasticities for energy goods are typically smaller in absolute
value among more affluent households.

Uncompensated (Marshallian) and compensated (Hicksian) own-price elasticities
show the expected negative signs. On average, household demand is inelastic with

2.29Saturation effects imply that beyond a certain level of consumption, there is a declining share of
the budget allocated to certain goods and services as incomes rise – and thus income elasticities for
those good and services also fall.
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respect to the consumption groups with high embodied carbon content. Low-income
households are less price-responsive for the majority of carbon-intensive categories (food
and beverages (-0.8), commuting and transportation (-0.4), energy (-0.8), housing (-0.8)
and other goods (-0.3)). For these categories, richer households presents elasticities of
-1.0 (Food and Beverages), -1.1 (commuting and transportation, energy, housing and
other goods). Therefore, poorer households can be expected to reduce their consumption
less than rich households due to tax-induced price increases in these categories, while
the reduction in health and hygiene (-1.6), recreation and education (-1.4), clothing
and footwear (-1.5) and other services (-1.3) is relatively higher. Considering responses
in demand, the real expenditure loss would, therefore, be higher for poorer households,
which would make distributional effects more regressive.

Our findings are aligned with Labandeira et al. (2017), Ghalwash (2007) and
Dorband et al. (2019). In particular, Dorband et al. (2019) assessed the expected
incidence of moderate carbon price increases for different income groups in 87 mostly
low- and middle-income countries and found own-price elasticities ranging from -0.4
to -0.7 for food, beverages and tobacco, -0.7 for clothing and footwear and -0.7 for
education.

The compensated own-price elasticities (used in the calculation of welfare effects)
indicate similar patterns but in lower absolute terms since only the substitution effect is
included and expenditure elasticities are all positive. Cross-price elasticites (Tables 2.7
and 2.8, Appendix) suggest that, in general, the groups with the highest CO2e emis-
sion coefficient (commuting and transportation and other goods) are substitutes for
food items. Food and beverages are also substitutes for housing and commuting and
transportation services. Commuting/transportation is also a substitute for housing and
energy. However, energy goods appear to be complementary for housing.

In general, the findings suggest larger behavioral adjustments for rich households
when facing changes in prices of carbon-intensive goods and services - such as food,
commuting and transportation and recreation - while low-income households are already
required to focus on their basic needs. Thus, high-income households should generate
more emissions and a small variation in the consumption could have a significant impact
on emissions. In addition, changes in the quantity demanded of food items appear
to have a significant impact on the consumption of other carbon-intensive goods and
services, and therefore influence the overall CO2e emissions.
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2.4.3 Welfare and emissions effects

Table 2.9 (Apppendix) presents our analysis of the distributional implications
of an economy-wide carbon tax of USD 40/tCO2e and USD 80/tCO2e on welfare and
emissions, in absolute terms and as a percentage of total household expenditure. The
results indicate that the first-dividend effect is observed and the taxation policy is
capable of achieving its main goal: to reduce emissions.

On average, a carbon tax of USD 40/tCO2e would be able to reduce overall
household emission by 2.0% per year (equivalent to a reduction of 12.5 MtCO2e),
reaching approximately 4.2% (25.2 MtCO2e) considering a tax of USD 80/tCO2e. High-
income households are mainly responsible for the largest part of the reduction of total
emissions, accounting for decreases of 7.6 MtCO2e (-2.5%) and 14.6 MtCO2e (-4.9%) per
year, respectively. This pattern of emission reduction has been largely observed in many
other empirical studies of developed countries (Grainger and Kolstad, 2010; Fremstad
and Paul, 2019) as well as of other developing countries (Renner, 2018; Brenner et al.,
2007), including Brazil (Magalhães et al., 2013; Freitas et al., 2016).

Regarding the welfare impact associated with the carbon tax (measured as
equivalent variation in monetary equivalent of the change in utility), we observe aggregate
welfare losses of USD 237 mi and USD 244 mi for a carbon tax of 40/tCO2e and 80/tCO2e
respectively, approximately 0.02% of total household expenditure, respectively. The
taxes raise the price of more carbon-intensive products and reduce CO2e emissions
by their negative impact on consumption, thus lowering welfare in all cases (since the
social, economic and environmental benefits of reducing CO2e emissions are not taken
into account in this analysis).

We also identify the disproportionality of the welfare losses induced by the carbon
tax across different types of households. The higher share of EV as a percentage of
expenditure for poorest households (0.10%) vis-a-vis richer households (0.06%) suggests
that the policy is regressive. Results also indicate that even at the higher tax rate
considered (of USD 80/tCO2e), the carbon tax has very little incremental impact on
the behavior of households. Using similar tax rates, welfare losses of higher magnitude
were found for low-income households in Sweden (0.52%; Brännlund and Nordström
(2004)), Denmark (0.8%; Wier et al. (2005)), U.S. (3.7%; Grainger and Kolstad (2010),
Hassett et al. (2007)), Mexico (4.2%; Renner (2018)), Italy (0.4%; Tiezzi (2005)) and
Brazil - (3.1%; Freitas et al. (2016)) and 2.2%; Magalhães et al. (2013)).
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However, due to the consumption patterns, the deadweight loss estimates caused
by the carbon tax show that richer households would have an additional tax burden of
0.04% over the total expenditure per year (USD 205 million and USD 209 million for
a USD 40/tCO2e and USD 80/tCO2e tax, respectively), compared to 0.02% faced by
poorer households.

The results also indicate that with a tax rates of USD 40/tCO2e and USD 80/tCO2e,
and a relatively broad tax base - levied across all goods and services in the Brazilian
economy based on its carbon content -, the government could increase its revenues by
USD 616 million and USD 630 million per year, respectively, which would be equivalent
to approximately 0.05% of total federal tax revenue. As a comparison, the total federal
revenue obtained in 2018 from CIDE-fuels was USD 16.7 billion, which corresponds to
0.23% of total federal tax revenue.

To avoid an increase of the burden on taxpayers, if every dollar is returned to
Brazilian households in a lump-sum transfer, high-income households would receive
USD 103 million - approximately 0.02% of their total expenditure-, while low-income
households would receive USD 64 million - equivalent to 0.07% of their total expenditure,
respectively. Therefore, due to the regressive effects of the policy, a carbon tax scheme
should be followed by a compensation policy, such as a direct transfer, which could
offset the negative impacts of the tax on poorer households. Given the complexity of
the Brazilian tax system - with over 80 different taxes and other fiscal levies at the
federal, state and municipal levels -, together with the high tax burden - 33% of gross
domestic product (GDP), the second dividend effect could occur in a context in which
the carbon tax is implemented under a broader tax reform.

2.4.4 Sensitivity analysis

If a carbon tax is implemented as a discretionary policy, levied only on groups
of products with high carbon footprint - such as commuting and transportation and
food and beverages -, the environmental impact would be positive, but much smaller in
magnitude, as presented in Table 2.10 and Table 2.11 (Appendix).

Following this design, total carbon emissions are expected to decline by 0.4%
and 0.9% with a carbon tax of USD 40/tCO2e, and 0.9% and 1.7% for USD 80/tCO2e
tax if it is levied on commuting and transportation and on food and beverage goods
and services, respectively. Despite representing a small change of the share of total
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household expenditures, the economic inefficiencies, as well as welfare losses, would
be relatively higher in magnitude in the scenario in which only food and beverages
are taxed based on their carbon content, especially for poorer households. In order
to preserve revenue-neutrality, the government should transfer approximately USD 63
million and USD 1.8 million to high and low income households, respectively, if a
hypothetical carbon tax is levied only on commuting and transportation services, and
USD 70 million and USD 63.3 million for a carbon tax applied to food and beverages,
respectively. These results suggest that implementing a carbon tax for targeted products,
based on their carbon content, is less regressive than an economy-wide carbon tax.

2.5 Conclusions and Policy Implications

As part of the Paris Agreement, Brazil assumed, through its NDC, a commitment
to reduce GHG emissions by 37% below 2005 levels in 2025 and subsequently by 43%
below 2005 levels in 2030. We analyze the effectiveness of implementing an economy-
wide carbon tax as an option among carbon pricing mechanisms, given that a tax
system reform is a top-priority for the current Brazilian government and Brazil’s NDC
should be revised in 2020, document that is not clear about which instruments might
be adopted by the country to reach its 2030 goals.

Notwithstanding the attractiveness of a carbon tax policy to sustain mid-term
environmental targets, potential distributional issues are relevant from the normative
perspective since they can affect the acceptability of the policy and put a question mark
on its overall effectiveness. Within a partial equilibrium framework, our analysis offers
a detailed assessment of the distributional short-term welfare and emission effects of a
hypothetical carbon tax in Brazil.

Our findings suggest that the first dividend could be observed in the Brazilian
context: at the benchmark levels of USD 40/tCO2e and USD 80/tCO2e, a carbon tax
can be efficient in providing an improvement in the environmental conditions, as it
reduces overall GHG emissions by 2.1% and 4.2%, respectively. However, evidence
indicates that a carbon tax tends to be regressive by causing welfare losses of 0.06% and
0.10% in relation to total expenditures for richest and poorest households, respectively.
Low-income households are less price-responsive for the majority of carbon intensive
categories, so they suffer a larger relative welfare loss due to the carbon tax. They are
also more likely to suffer from a larger relative indirect effect of food and beverages
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and housing-related consumption, which accounts for a greater budget share of these
households. Significant changes in total GHG emissions would require a higher tax rate,
which would reinforce the regressiveness of the policy.

The sensitivity analysis also shows that implementing a discretionary carbon
tax policy by narrowing the tax base and focusing only on products with high carbon
content (commuting and transportation and food and beverages) could reduce the
regressiveness of the carbon tax. Despite that, the reductions in overall emissions would
be equivalent to 22% and 41%, respectively, of the total reduction in GHG emissions
with an economy-wide carbon tax.

The findings indicate that compensation strategies, such a direct lump-sum
transfer, need to be considered by the government to reduce the burden imposed on
these households. Brazil already has one of the heaviest tax burden among developing
countries (around 33% of the GDP), which is close to the average of the countries
comprising the Organisation for Economic Cooperation and Development (OECD).
Unlike developed economies, however, the Brazilian burden is more concentrated in
indirect and regressive taxes, as opposed to direct and progressive ones. Implementing a
carbon tax within the current regulatory framework, which already generates distortions,
would worsen the overall regressivity of the Brazilian tax system. In this sense, the
generation of the second dividend effect could be observed only if the country implements
this carbon pricing mechanism as part of a broader structural tax reform, following
examples such as Argentina, Mexico and Colombia.

A few caveats deserve attention, which could be explored by future studies.
First, we assume that the changes in energy prices from a carbon tax are fully passed
through to consumers. Carbon pricing may change real wages and returns to capital,
which can influence the optimal input production (and hence emissions) for various
sectors. Second, our analysis focuses only on the cost of the policy; and direct burden
is only one channel through which a climate policy has distributional effects. If low-
income households obtain more gains from co-benefits of the carbon tax, the ‘net’
incidence of the policy may actually be progressive. Likewise, if wealthier households
have comparatively more benefits, the ‘net’ incidence may be even more regressive.
Third, despite considering an economy-wide carbon tax, one which takes into account
all emissions, actual carbon pricing mechanisms often have exemptions for emissions
from some industries due to political considerations or high monitoring costs. Fourth,
because we do not observe prices and quantities for all products included in the
Brazilian household expenditure survey, our short-term elasticity estimates might be
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underestimated for several consumption groups. A suggestion for the next POF for
IBGE to disclose the prices of the products used in the calculation of the consumer
price index for the period in which the survey is carried out. This would improve the
accuracy of future studies investigating consumer behavior patterns.
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APPENDIX

A Tables and Figures

Figure 2.1 – CO2e Emission Coefficient (tCO2e/USD million 2019)

Note: This figure presents the estimates for the direct and indirect emission coefficients for the
goods and services consumed by Brazilian households, presented in decreasing order of
relative CO2e emissions.
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Table 2.1 – Description of expenditure groups

Groups Items

1 Food and beverages Food, beverages, catering
2 Recreation, culture/education Private education, arts, books, hotels
3 Clothing/footwear Clothes, shoes, fabrics, textiles
4 Commuting/transportation Air, water and ground transportation
5 Health/hygiene Pharmaceutical products, private health
6 Energy Electricity, gas, gasoline, ethanol, diesel, charcoal
7 Housing Residential appliances, rent, water and sewage
8 Other goods Plastic, ceramic, wood and paper articles
9 Other services Public and other administrative services

Note: This table presents the 9 consumption groups used in the demand system estimation,
and it covers the total household consumption basket. Residential appliances include
equipment such as stoves, washing machines, refrigerators, televisions, vacuum clean-
ers, electric ovens, electric irons, TVs, air conditioners, fans, computers, microwave
ovens and clothes dryer. We are not able to split electricity from gas since these
products are aggregated on the SUTs.
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Table 2.2 – Positive consumption and budget shares by group/ income level (%)
(mean/sd)

Groups
% of positive consumption Budget share

All
sample

20%
richiest

20%
poorest

All
sample

20%
richiest

20%
poorest

Food/Bev. 89% 80% 94% 25.8% 15.7% 37.0%
(23.0%) (15.1%) (26.7%)

Rec./Educ. 20% 40% 11% 4.1% 10.5% 1.0%
(2.4%) (8.5%) (0.9%)

Cloth./Foot. 77% 79% 63% 3.8% 3.2% 3.1%
(3.7%) (1.8%) (2.4%)

Com./Transp. 37% 38% 21% 7.3% 12.9% 3.7%
(6.4%) (12.1%) (3.4%)

Health/Hyg. 18% 46% 17% 9.5% 7.6% 11.8%
(9.4%) (5.9%) (10.0%)

Energy 65% 78% 41% 14.4% 21.7% 9.3%
(9.1%) (19.5%) (6.8%)

Housing 85% 91% 79% 14.8% 16.3% 12.8%
(14.2%) (13.0%) (5.8%)

Oth.goods 76% 47% 84% 12.3% 6.0% 18.0%
(11.7%) (3.0%) (15.0%)

Oth.services 30% 42% 19% 3.2% 6.1% 1.3%
(2.9%) (5.9%) (0.6%)

Note: This table shows the descriptive statistics of budget shares (in 2019 USD), positive
consumption for each of the nine groups and income levels. Income deciles are constructed
based on total household monetary and non-monetary income reported by POF. Other
goods contain rubber, plastic, ceramic goods, non-metallic minerals, inorganic chemicals.
Other services include development of systems and other information services, private
and public administrative services.
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Table 2.3 – Summary statistics: socioeconomic characteristics (mean/(sd))

Variables All
sample

20%
richiest

20%
poorest

Education - household head (years) 7.4 10.6 5.9
(0.03) (0.07) (0.03)

Age - household head (years) 47.6 49.1 42.6
(0.15) (0.24) (0.21)

Female headed households (%) 31.5 25.9 36.9
(46.4) (43.8) (48.2)

Bathrooms (Number) 1.3 2.8 1.1
(0.01) (0.02) (0.01)

Rooms (Number) 3.3 7.5 3.1
(0.00) (0.02) (0.00)

People in the household (Number) 3.4 3.5 3.1
(1.73) (1.50) (1.80)

Home ownership (%) 69.5 73.0 65.7
(45.9 ) (44.3) (47.4 )

Total earnings(USD 2019/per capita/year) 15,304 46,492 3,335
(14,275) (41,419) (1,117)

Dis. income (USD 2019/per capita/year) 6,185 15,887 1,468
(3,909) ( 9,702) (553)

Car ownership (%) 27.7 76.3 5.3
(44.7) (42.5) (22.3)

Moto ownership (%) 16.2 20.9 10.0
(36.8) (40.6) (30.0)

Electricity (%) 97.0 99.5 93.4
(17.0) (6.9) (24.8)

Residential appliances (Number) 8.0 13.0 5.0
(4.0) (6.0) (2.0)

Note: This table presents the descriptive statistics for control variables according to
income-level of socioeconomic variables used in the demand system. Residential
appliances include stoves, freezers, refrigerators, vacuum cleaners, electric ovens,
electric irons, washing machines, color TVs, black and white TVs, sound systems,
radios, air conditioners, fans, computers, microwaves, DVD player, clothes dryers
and washing machines. Income deciles are constructed based on total household
monetary and non-monetary income reported by POF. Monetary values were
converted to USD 2019 using the average exchange rate for that year from the
Central Bank of Brazil. Disp. income = disposable income.
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Table 2.4 – Price Indices by group and income level (in USD 2019 values)
(Mean/(sd))

Variables All
sample

20%
richiest

20%
poorest

Food/Bev. (USD/Kg) 9.48 11.22 8.39
(0.06) (0.23) (0.06)

Rec./Educ (USD/service) 250.46 428.40 163.14
(1.99) (6.80) (1.54)

Cloth./Foot (USD/item) 31.39 38.27 27.47
(0.12) (0.39) (0.15)

Com./Transp. (USD/service) 512.05 694.08 390.82
(3.58) (11.13) (3.61)

Health/Hyg. (USD/service) 9.94 14.22 7.48
(0.09) (0.37) (0.04)

Energy (USD/KWh,L) 15.93 20.55 12.89
(0.09) (0.31) (0.11)

Housing (USD/service) 172.41 242.35 134.76
(1.32) (4.57) (1.22)

Oth. goods (USD/item) 55.10 83.96 38.23
(0.63) (2.03) (0.53)

Oth. services (USD/service) 117.10 191.42 72.60
(0.92) (2.94) (0.98)

Note: This table presents price indices by group and income level, converted to USD
2019 using the average exchange rate for that year from the Central Bank of
Brazil. They should be interpreted as relative price indexes. Income deciles are
constructed based on total household monetary and non-monetary income reported
by POF. Other goods contain rubber, plastic, ceramic goods, non-metallic minerals,
inorganic chemicals. Other services include development of systems and other
information services, private and public administrative services.

Table 2.5 – Total CO2e emission (tCO2e/hh/year, in 2019 values)

Groups All
sample

20%
richiest

20%
poorest

Food/Beverages 3.3 6.0 0.4
Recreation/education 1.6 3.1 0.0
Clothing/footwear 0.3 0.8 0.1
Commuting/Transportation 2.0 8.0 0.1
Health/Hygiene 0.6 1.8 0.2
Energy 1.2 3.0 0.3
Housing 0.6 1.3 0.3
Other goods 0.6 2.0 0.3
Other services 0.2 0.1 0.0

Total 10.5 26.1 1.7
Note: Note: This table presents the CO22e coefficient estimates, in 2019 values,

based on data from SUTs (2010) and the Brazilian Energy Mix (2010).
Monetary values were converted to USD 2019 using the average exchange
rate for that year from the Central Bank of Brazil.
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Chapter 3
DOES DECENTRALIZED AND VOLUNTARY COMMITMENT
REDUCE DEFORESTATION? THE EFFECTS OF PROGRAMA
MUNICÍPIOS VERDES

3.1 Introduction

Tropical deforestation is the third largest source of greenhouse gas (GHG)
emissions and contributed to 10% (approximately 4.8 gigatonnes of CO2) of annual
global emissions in 2017 (Wolosin and Harris, 2018). Slowing or stopping deforestation
and forest degradation activities in the tropics is of crucial importance to achieve the
targets under the Paris Agreements, since in all Nationally Determined Contributions
(NDC) forests represent a quarter of all planned emission reductions by 2030 (Zarin et
al., 2016).

Brazil, together with Indonesia, accounts for less than half of global carbon
emissions from gross tropical deforestation (Hansen et al., 2013), and approximately
one-third of its total CO2 emissions between 2005 and 2018 took place in the Amazon
region (SEEG, 2019), which comprises 49% of Brazil’s territory. This corresponds to
approximately 646 million tons of CO2 released due to an average deforestation rate of
8,772 km2/year(SEEG, 2019; INPE, 2019). Beyond the benefits to global biodiversity
(Barlow et al., 2007), water cycling (Nobre et al., 2016), aboveground carbon storage
and climate regulation (Baccini et al., 2017), the conservation of the Amazon forest
could provide up to USD 5 trillion of economic benefits (Pindyck, 2019).

Protection of the rainforest has become a central concern in many federal and
state level initiatives over the past decades. The Action Plan for the Prevention and
Control of Deforestation in the Legal Amazon (PPCDAm), launched in 2004, comprised
hundreds of actions organized in the areas of land titling, monitoring and control, and
supporting sustainable production. This top-down effort enjoyed significant success in
curbing illegal deforestation, but rising prices for agricultural commodities increased
the incentive for farmers to clear forests for production. At the end of 2007, the federal
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government tried a new strategy that aimed to fix the problem at the local level
by pressuring municipalities to enforce national priorities. Enabled by a presidential
decree3.1, the Ministry of the Environment (MMA) placed 43 municipalities on a list
for special enforcement efforts due to historically high deforestation rates - 13 of them
in Pará (Assunção et al., 2015), the state in Brazil with the highest rates of forest loss
during the 2000s.

As a consequence of the blacklist, the Brazilian environmental enforcement agency
(IBAMA), together with the Federal Police and the Army implemented Operation Arc
of Fire (Operação Arco de Fogo)3.2 in these municipalities, forcing the closure of illegal
logging camps, interdiction of private properties and municipal access restrictions to
credit.

The severe economic consequences of the operation was essential to motivate
local governments to react. Pará was the only state in the Amazon to promote a
decentralized strategy to support the delisting of municipalities 3.3, the Green Munic-
ipalities Programme (PMV) in 2011, whose foundations mainly involve local pacts
and partnerships. Municipalities adhere voluntarily to the programme and receive
advantages such as legal certainty - as compliance with environmental laws reduces the
possibility of sanctions such as fines or economic embargoes-, priority access to credit
and rural technical assistance. In contrast, municipal governments have to convince the
owners of 80% of privately held land to register their property, map property boundaries
and declare the extent of deforestation in order to maintain the annual deforestation
rate below 40km2. These requirements are translated into an administrative consent
decree called Conduct Adjustment Agreement (TAC), which is signed by the municipal
government and the Federal Prosecution Service (MPF).

Therefore, the PMV can be understood as a territorial policy which greatly
impacts on the legalization of land, as it relaxes laws combating land grabbing, facili-
tating land use regularization on the grounds of solving environmental problems. It is
also a command, control and regulatory land policy, which is carried out through an
agreement established between stakeholders at the three levels of power: federal, state

3.1Decree 6.321/07.
3.2This operation was considered a major effort to combat deforestation. It aimed at the illegal

connections of several formally legal businesses, with the intent to disrupt supply chains that linked
legal and illegal parts. Businesses were closed, lumber was seized, managers and owners were arrested,
and charcoal furnaces were destroyed. Although the operation was not something new, it was very
broad and sent an unprecedentedly strong signal of more fierce enforcement (Abranches, 2014).

3.3Between 2005 and 2009, Pará had the worse economic performance of the North region: 2.9%
annual growth rate compared to 4.5% of other northern Brazilian states.
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and municipal (Whately and Campanili, 2013).

This paper aims to assess the PMV’s effectiveness in reducing municipalities’
deforestation levels. We use a high-resolution spatial dataset (1 km2 grid cells) containing
information on forest cover for 1,781,122 pixels, equivalent to an area of 162,242 km23.4

and a nonparametric spatial regression discontinuity (RD), allowing us to compare
forest cover rates within and outside the state. We expect that advantages provided
by the programme - such as higher legal security and access to credit-, contribute to
reducing deforestation and, therefore maintain higher levels of forest cover. Then, we
use the RD estimates to calculate the avoided carbon emissions from not deforesting,
and the monetary benefits of protecting the forest.

Our findings indicate that PMV municipalities managed to reduce deforestation
only in the latest stages of the programme, with estimated coefficients oscillating be-
tween 0.8 and 1.2 ha/year within the optimal bandwidth. However, this effect comes
mainly from municipalities with lower deforestation pressure. These estimates are robust
to different specifications and bandwidth selections. Placebo regression and robustness
checks controlling for unobservable heterogeneity confirm that these effects are concen-
trated around the areas which are less vulnerable to deforestation. Evidence suggest
avoidance of roughly 8.0 MtCO2/year released to the atmosphere. The extrapolation of
our estimates to the total area that could be legally deforested in Pará indicates the
PMV could have prevented 41% of deforestation in the Amazon region between 2015
and 2018.

This paper relates to the empirical literature that uses national and sub-national
borders to evaluate the effects of environmental policy across space3.5 and studies that
investigate the impacts of decentralized forest management initiatives on deforestation

3.4Equivalent to the combined area of Portugal and Ireland.
3.5For the Brazilian Amazon, Burgess et al. (2019) assess the role played by national policies as a

determinant of deforestation in the Amazon region and show that, compared to neighbouring countries,
Brazilian policies were effective in reducing deforestation levels. Anderson et al. (2016) focus on the
implementation of conservation zones, providing evidence that zones cannot explain the large reduction
in deforestation rates, as they were typically placed in areas where deforestation most likely would be
unprofitable also in the absence of a zone. Bonilla-Mejía and Higuera-Mendieta (2019) analyse the
implementation of protected areas in the Colombian Amazon, finding that deforestation has decreased
significantly in these areas, with larger effects for collective lands than strict-use protected areas. Using
tree cover loss data for 14 contiguous countries in Africa, Asia and Latin America, Cuaresma and
Heger (2019) identify the existence of an environmental Kuznets curve for forest cover, with high
rates of forest cover loss as low income countries develop economically, no significant forest cover
changes as middle income countries develop economically, and also no significant changes as high
income economies keep on growing.
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in low- and middle-income countries3.6. To the best of our knowledge, this is the first
study that uses high-resolution spatial data to assess the impact of a decentralized and
voluntary environmental programme, focusing on the heterogeneity of effects through
time. The PMV has been previously investigated by Santos et al. (2016), who found that
municipalities were not effective in reducing deforestation compared to non-participants.
However, the authors focused on municipal-level data for the 2010-2013 period, and
therefore, did not account for spatial and long-term effects.

The remainder of this paper is organized as follows. Section 3.2 presents an
overview of the PMV background and evolution. Section 3.3 details our empirical
strategy, dataset and main variables. Section 3.4 discusses the results and 3.5 describes
robustness checks. Section 3.6 presents conclusions and policy implications.

3.2 The Green Municipalities Program (PMV)

The state of Pará is located in northern Brazil and crossed by the lower Amazon
River. It borders the states of Amapá, Maranhão, Tocantins, Mato Grosso, Amazonas
and Roraima. To the northwest are the borders with Guyana and Suriname, and to
the northeast is the Atlantic Ocean (See Figure 3.1, Appendix). It covers a total area
of 1,247,954 km2 - the equivalent of the combined area of Portugal, Spain and France
-, out of which 888,400 km2 was forests in 2008 (Almeida et al., 2016). The state is
divided into 144 municipalities, with an average size of approximately 8,666 km2.

Historically, Pará tops the list of the Brazilian states with the highest deforesta-
tion rates - being responsible for approximately 40% of total Amazon deforestation (see
Figure 3.2, Appendix). One of the major causes of the persistence of deforestation is
the territorial and economic model of occupation that predominates in the state, based
on timber harvesting, agriculture and ranching, which leads to a “boom-bust” economy:

3.6Andersson and Gibson (2007) assess the effect of forestry policy decentralization on deforestation
between 1993 and 2000 in 30 Bolivian municipalities. The authors use two-stage least square regressions,
without any counterfactual analysis to determine the impact on deforestation from decentralization.
They find that municipal-level institutions are effective to contain illegal deforestation: forest cover
improved 0.8% over what the rate would be in the absence of the programme in areas where cutting is
not permitted. Baland et al. (2010) use outcome data from an on-the-ground survey administered in 83
Indian villages and fixed effects model, and find that forest degradation (proxied by logging) improved
0.4% over what would be the case otherwise in community-managed areas. This suggests that the
effects of decentralized management may take a long time to materialize themselves, and can exhibit
considerable heterogeneity across regions. Miteva et al. (2012) summarize evidence of the effectiveness
of decentralization of conservation policies, and point that they need time to show effects.
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this means that in the first years of economic activity there is rapid and ephemeral
growth (boom), followed by a severe decline in income, employment and tax collection
as the natural resources are exhausted (bust) (Veríssimo and Jr., 2006). By 2012, 21%
of its territory had been altered due to deforestation (INPE, 2013).

To better target the efforts to surpress deforestation in the Amazon region, the
MMA blacklisted 36 municipalities (out of 547 municipalities that transect the biome)
in December 2007 as part of PPCDAm, which were responsible for 45% of the total
deforestation in the region (Assunção et al., 2015). While a municipality remained on
the list, its residents faced increased law enforcement scrutiny, restrictions on credit3.7,
and difficulty in selling what they produced3.8, which led to significant economic losses:
from 2007 to 2008, the gross domestic product (GDP) of Pará state presented real
growth of 4.9%, while the blacklisted municipalities’ GDP increased only 0.2% (IBGE,
2010). By passing responsibility for environmental issues and enforcement to municipal
government, the blacklist created strong incentives to curb local deforestation3.9. Being
removed from this list would imply loan guarantees and more open markets, as well
as the possibility of carbon finance for reducing emissions from deforestation and
degradation of forests (REDD+).

To reverse the situation, one of the 13 blacklisted municipalities in Pará, Paragom-
inas, launched the “Green Municipality" project in 2008. By engaging different types of
stakeholders, it aimed to achieve a “zero deforestation” rate, to enable full environmental
registration of agricultural property3.10 as well as monitoring and traceability of cattle
herds. In April 2010, Paragominas became the first municipality to be removed from
the list for reducing local deforestation and forest degradation rates by more than 90%
(Whately and Campanili, 2013)3.11.

3.7Resolution 3.545/2008 of the National Monetary Council, which has made funding for rural
properties located in the Amazon Biome subject to the environmental regularisation of the property.

3.8Major Brazilian retail chains (such as Wal-Mart, Carrefour and Pão-de-Açúcar) stopped buying
products obtained through illegal deforestation, and some meat packers (such as JBS and Marfrig)
committed themselves to buying only from suppliers that are environmentally compliant.

3.9From 2009 to 2011, the PPCDAm executed 649 joint inspection operations, applied more than 7
billion reais (USD 3.1 billion) in fines, seized more than 800.000 m3 of logs and imposed embargoes on
more than 600.000 hectares in the total Amazon region.

3.10Which entails georeferencing of the property, location and measurement of forest cover and riparian
vegetation.

3.11It also earned access to loans and markets for its soy and beef, and opened a factory that made
furniture from sustainably-harvested timber - a critical step, because it provided jobs for unemployed
loggers. By mapping territory, farmers were able to identify underutilized degraded lands and increase
production of soy, while cattle ranchers were able to ratchet up production by incorporating silage to
feed their animals.
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The successful experience of Paragominas inspired the government of Pará to
draft a state programme to support its other municipalities. The PMV was launched
in March 2011, aiming to create a “sustainable development pact” between municipal
and state governments, the Federal Prosecution Service, local business associations,
non-governmental organizations 3.12 and universities 3.13. The overall goal is to reduce
the state deforestation by 80% by 2020 compared to the annual average of 6,255 km2

(1996-2005), achieving zero net deforestation this year. It also aims at increasing by
50% the number of rural property registrations in the Rural Environmental Registry
(CAR) and removing all Pará municipalities from the MMA list.

Since the PMV is a voluntary programme, the municipal government needs first
to sign the TAC with the Federal Prosecution Service, to provide legal and political
stability for the program. It is an extrajudicial instrument3.14 and indicates that the
municipality is committed to a set of goals: (i) to sign a local pact against deforestation;
(ii) to carry out field verification of deforestation points and report them to the PMV;
(iii) to maintain an annual deforestation rate below 40 km2 based on the data from the
Satellite Monitoring System of the Brazilian Amazon Forest (PRODES); (iv) to register
at least 80% of its total area (excluding indigenous and conservation units) in the CAR;
(v) to not be part of the MMA’s deforestation list; and (vi) to promote environmental
education in local schools (Neves et al., 2016).

At the time of the PMV’s launch, deforestation rates in Pará had already
been reduced by approximately 50% compared to 2005 levels, as shown in Figure 3.2
(Appendix), which suggests that the main goal of the programme was not ambitious.
However, the challenge rested mainly in convincing farmers to conduct self-declared
registrations and achieve a larger area in the CAR, as well as to keep deforestation
rates below 40 km2 in each municipality.

Adherence to the PMV is encouraged by the potential benefits of participating
in the programme and the consequent reduction in deforestation - such as legal security

3.12Instituto do Homem e do Meio Ambiente da Amazônia (Imazon) and The Natural Conservancy
(TNC).

3.13The PMV governance structure is mainly composed of government institutions (such as the
Federal Prosecution Service, IBAMA and the Pará State Public Prosecution Service), private sector,
non-governmental organizations and rural producers (mainly from the agribusiness sector). Up to
2017, there were three to four meetings a year, which were attended by official participants (who were
allowed to vote) as well as an extended audience, which in some cases reached almost 300 people.

3.14By signing the TAC, the municipalities pledge to take actions to prevent or stop deforestation. In
case of noncompliance, the MPF may trigger the Courts to enforce the TAC. Some authorities and
entities legitimized by the current set of laws may file public civil actions and/or suits.



111

(ensuring that producers would not suffer from fines and economic embargoes), increased
market value of agricultural products (such as certification guaranteeing avoided de-
forestation and ethical working conditions) and more investments due to greater legal
security (Neves et al., 2016; Santos et al., 2016). Municipalities with high engagement in
controlling deforestation and implementing environmental management can also receive
higher tax revenues from the Green Tax Fund (ICMS Verde). In 2015, R$ 82 millions
reais (USD 21 million) was transferred from the Amazon Fund to municipalities to
support CAR registration as part of the programme..

The CAR plays an important role in the PMV’s effectiveness through some
mechanisms. First, since CAR registration is mandatory for farmers to access to rural
credit, they need to report critical information about their properties’ vegetation
cover. Per se, this enforces care for their farms’ existing original vegetation and
avoidance of new deforestation. Second, small farmers would tend not to register with
the CAR since the costs of completing the process are very high. This problem was
mitigated by the formation of a partnership with the Norwegian government and by the
action of non-governmental organizations (Whately and Campanili, 2013). Third, the
detailed information given by farmers to authorities allows the identification of potential
deforestation areas and take rapid measures to prevent it. By making CAR registration
one of the main requirements for property regularisation3.15, the public authority has
thus assumed the position that the origin of the property is not important, and as a
result, has become the guarantor of illegally appropriated lands.

When joining the PMV, municipalities are classified into five categories accord-
ing to their “pressure for deforestation”3.16. Municipalities can be moved to different
categories as their situation improves or deteriorates. After being certified as a “green
municipality”, failure to continue complying with the programmes’goals causes a mu-

3.15Including dispensing the need to submit a valid title chain as proof of the legal acquisition of the
land.

3.16The five categories are: i) Embargoed: municipalities which are on MMA’s priority list; ii) Under
pressure: municipalities with a high deforestation rate or located near major infrastructure projects
that increase the risk of deforestation; iii) Consolidated: municipalities with less than 60% of vegetation
cover in 2010, but lower levels of deforestation (in this category, the main goal is to improve the share
of registered rural properties on the CAR and regularise environmental liabilities of farmers); iv) Forest
base: municipalities with more than 60% of vegetation cover in 2010 and a low risk of deforestation,
even though it still exists (since municipalities in this category have large conservation units, the
main policy is to strengthen the forest economy) and v) Monitored or under control (also known as
“Green Municipality"): municipalities that were removed from MMA’s list and meet the requirements
of Resolution 01/2012. The most notable example is Paragominas (Whately and Campanili, 2013). In
principle, by adhering to the programme and meeting its goals, all municipalities would be listed in
this category.
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nicipality to be downgraded.

At the time of the PMV’s launch, 92 municipalities had signed the TAC (see
embargoed municipalities in Table 3.1, Appendix), out of which 16 were part of the
MMA’s list.All told, these 92 municipalities represented almost 90% and 92% of total
state and forest areas, respectively, while blacklisted municipalities represented 34% and
33% of the total state and forest areas, respectively (Figure 3.4, Appendix). In 2018,
the programme reached 130 municipalities, covering 95% of the total state forest area.
In this sense, there is an important difference between early and late participants in the
programme: early-stage adherents - that is, municipalities which joined the PMV up to
2013 - were obliged to sign TACs with the MPF, while later participants - municipalities
that joined the PMV in the last 5 years - just signed an agreement with the PMV
coordination3.17. This aspect suggests that municipalities may have different levels of
enforcement.

Technical reports suggest that municipalities took a long time to implement the
PMV’s commitments: in 2012, only 20 out of the 92 municipalities had fulfilled some
of the PMV goals. At the same time, 4 out of the 16 municipalities 3.18 were taken off
MMA’s list and were released from economic sanctions and political pressures; and two
new municipalities entered the list 3.19, totalling 14 municipalities embargoed in the
state at the end of 2012. In this respect, Santos et al. (2016) analysed the programme’s
impacts in its early stages (2010 and 2013) using difference-in-differences and propensity
score matching approaches based on municipal-level data, finding that participants had
not been effective in reducing deforestation compared to non-participants. However,
land registration goals were achieved, as about half of the state’s registrable area was
placed in the CAR in 2012, corresponding to 31.3 million hectares distributed in 62,750
thousand properties. In 2020, the 130 participating municipalities have an average of
70% of their registrable area in the CAR, which is equivalent to 40.6 million hectares
(Sicar, 2020).

3.17Exceptions are the municipalities of Abaetuba, Muaná and São João do Araguaia, which signed
TACs with the MPF in 2012, 2015 and 2019, respectively. However, Abaetuba and Muaná had previous
agreements with PMV coordination.

3.18Santana do Araguaia, Ulianópolis, Dom Eliseu and Paragominas.
3.19Anapu and Senador Jose Porfirio.
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3.3 Empirical methods and data

3.3.1 Empirical strategy

As the PMV is a state programme, it creates a quasi-experimental opportunity
to assess one of its main goals - reduction of deforestation rates - by comparing the
evolution of forest cover rates of treated areas (Pará municipalities which are part of
the PMV) and control areas (municipalities from the neighbouring states of Amapa,
Roraima, Mato Grosso, Tocantins and Maranhao). The border of Pará can be used
as a clear spatial cutoff point that separates regions that are eligible to be part of the
programme from those that are not. As treatment and control groups are spatially
located with close proximity, they are assumed to be similar in all important aspects
except for the participation in the programme (Cuaresma and Heger, 2019; Anderson
et al., 2016).

Our empirical analysis uses high spatial resolution grid cells of 1 km2. We define
the running variable as the minimum distance to the Pará border, and “treated” grid
cells as those located within Pará and are in municipalities that belong to the PMV
(positive distances), while “control” cells are located outside Pará (negative distances),
within a 50 km range3.20. Since conservation units and indigenous lands are not part
of the scope of the programme, we excluded the grid cells that belong to such areas.
Grid cells that are close to the international (northwest Pará borders with Guyana and
Suriname)3.21, coastline (northeast border with the Atlantic Ocean) and Cerrado Biome
borders (southeast of Pará) were also discarded. Figure 3.3 D (Appendix) presents the
area analysed in this study.

Our main outcome variable, remaining forest cover in grid cell i and year t, in
% or hectares, can be defined as:

Yit = FCit −
∑t
t=2008 DAit

FCi,2008
(3.1)

in which FCit indicates the forest cover in grid cell i in year t, ∑t
t=2008 DAit

represents the grid cell cumulative deforestation from 2008 onwards, and FCi,2008 is
3.20The buffer definition is per se an empirical question. We conduct robustness checks to analyse

the sensitivity of the results (See section 3.5).
3.21In addition to potential institutional differences, there are no comparable deforestation data for

these countries.
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grid cell forest cover for the baseline year, 2008.

Following Burgess et al. (2019), Cuaresma and Heger (2019) and Anderson et al.
(2016), the sharp RD treatment effect can be estimated using the following equation:

Yit = αit + δParáit + f(DistBorderi) + γXit + εit (3.2)

Where Yit is remaining forest cover in grid cell i and year t, Paráit is a
dummy equal to one if grid cell i is inside Pará and part of the programme in year t.
f(DistBorderi) is a polynomial of distance to Pará border, allowed to have a separate
effect on each side of the border3.22 and Xit is a vector of geographical (slope, soil
type and distance to streams) and structural controls (distance to roads, distance to
municipalities and distance to IBAMA offices). These control variables come from
the literature on deforestation patterns in the Amazon region (Burgess et al., 2019;
Assunção et al., 2015; Anderson et al., 2016). We consider that the municipalities joined
the programme in the year in which the municipal government signed the TAC, and
in the absence of this information, the year in which it signed the agreement with the
PMV coordination. Therefore, as there are time differences in the adherence to the
programme, the above equation is estimated separately for each year in the 2010-2018
period to explore the dynamics of the effects. In addition, we also estimate Equation
(1) for the 2008 - 2010 period to use as falsification tests.

The difference in the forest cover of a grid cell i in year t on the Pará side relative
to outside its border is measured by the coefficient δ, expressed in % or in hectares. For
2008, it indicates the difference in the share of forest cover in a specific grid cell; for the
period 2009-2018, it refers to the difference in the share of remaining forest cover. δ
can also be understood as the local average treatment effect: as the RD restricts the
treatment and control groups only to a certain bandwidth around the cutoff to ensure
that they are similar on average, the treatment effect cannot be generalized to the entire
population. We are, therefore, only able to estimate the local average treatment effect
(LATE) (Thomas et al., 2019).

We use separate linear regression models on each side of the border 3.23. Based
on Cattaneo et al. (2019) and Imbens and Kalyanaraman (2012), for each year t, we

3.22For grid cells located exactly on the border (DistBorder=0), we matched the grid cell to the
respective municipality according to the largest share of the grid cell.

3.23According to Cattaneo et al. (2019), linear models provide a good trade off between simplicity,
precision and stability in nonparametric settings.
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estimate the local linear RD effect using triangular kernel weights and common mean
squared error (MSE) optimal bandwidths. In our preferred specification, we also use
robust bias correction to construct confidence intervals and clustered standard errors in
blocks of 25 km3.24 using a nearest neighbour variance estimator to allow for geographic
spatial error correlation (Conley, 1999; Burgess et al., 2019). Validation tests for absence
of discontinuities for control variables and potential manipulation around the cutoff are
presented in Section B (Appendix). Robustness checks to account for unobservable and
confounding factors, as well as placebo test, are presented in Section 3.5.

3.3.2 Spatial data construction

3.3.2.1 Spatial data

All the spatial data were gathered from open-source repositories and official
government databases. Forest cover and deforestation rates are provided by PRODES,
from the National Institute for Space Research (INPE) (INPE, 2019). This system uses
a combination of computer and human analysis3.25 to calculate and delimit annual forest
cover and annual deforestation among the seasonal year, which starts on August 1st and
goes to July 31st3.26. For the Amazon region, PRODES only maps the loss of “primary
forest” cover in areas with vegetation classified as “forest” by the RADAMBRASIL
project, and also clearings larger than 6.25 hectares3.27. Because of that, forest degrada-
tion and smaller clearings are not detected, and also the deforestation in the secondary
forest is ignored by the definition of the programme. PRODES data are also used by
the PMV for monitoring purposes.

Spatial data for geographic – soil type, biomes, streams – and structural controls
– urban agglomerations (cities, villages, capitals, urban and rural localities) and roads
(official paved and unpaved) – were collected from IBGE at a scale of 1:250,000. Auxiliary
data, such as conservation units, indigenous land, municipalities and states, also are
provided by IBGE’s continuous cartographic base. We use complementary spatial data

3.24We find almost identical results for different cluster sizes (10, 15, 30, 50 and 100km).
3.25This supervised forest classification adds more precision to the identification of forest grid cells

compared to other methods - such as the one described by Hansen et al. (2013), who used an enhanced
vegetation index to define forest areas.

3.26This time period allows for better image collection, since July-August is the middle of the dry
season, when the forest is less likely to be covered by clouds, and is more aligned with typical clearing
cycles in the region.

3.27Approximately 8 soccer fields.
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such as: urban agglomerations and unofficial roads provided by OpenStreetMap’s API,
local administrative offices of IBAMA, and slope (in degrees) derived from the digital
elevation data gathered by the Shuttle Radar Topography Mission (SRTM), from
the National Aeronautics and Space Administration (NASA). Summary statistics are
presented in Table 3.2 (Appendix).

3.3.2.2 Dataset generation

To create a grid cell dataset, first we delimit a 50km buffer zone inside and
outside Pará’s borders, which corresponds to an area of 561,585 km2. We then convert
this zone into grid cells of 1 km2, identified by a unique number, and their centroids are
later linked to the respective municipalities. Based on this information, we construct
a raster dataset with Euclidean distances (in meters) from the Pará border and we
calculate the minimum distance of each grid cells to the border. This dataset is later
combined with annual data on the percentage of forest cover and deforestation rate,
together with conservation units, indigenous lands and data on all control variables
presented previously. We associate conservation units, indigenous lands, soil type and
biomes domain data for each grid cell as the feature with maximum percentage in the
cell.

In particular, forest cover data for 2018 are used to eliminate overlapping features
and geometry errors. Then, we update the 2018 forest cover with 2008-2018 deforestation
rates with the corrected geometric and topological data. Finally, we obtain a spatial
dataset of annual forest cover, annual deforestation rate and remaining annual forest
cover , which are merged with the grid cell database.

A spatial filter is also applied to exclude grid cells with no information related
to forest cover or deforestation rates. These areas are mainly related to international
borders, coastlines, as well as areas in the Cerrado biome (391,346 km2). As conservation
unit and indigenous lands are not part of the PMV scope, these respective grid cells are
also excluded from the final dataset. The map corresponding to our restricted grid cell
dataset - 100 km buffer zone containing 1,781,122 observations and corresponding to an
area of 162,242 km2 - is presented in Figure 3.3 (Appendix). Within Pará’s 50km buffer
zone, we have detailed information for 38 out of the 130 participanting municipalities,
covering an area of 56,700 km2 and representing 15.9% of total forest area that can be
potentially deforested in Pará and 16.7% of the total forest area under the PMV. In
addition, out of these 38 municipalities, 9 have higher deforestation pressures (being
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classified as “under pressure” or part of the MMA’s list), comprising an area of 29,100
km2, while 29 municipalities with deforestation levels under control cover 27,600 km2.

3.3.3 Conversion of biomass into CO2

To compute the emissions from the avoided deforestation, we use the equation
and coefficients provided by the Brazilian Ministry of Science, Technology, Innovation
and Communication (MCTIC) in the Third National Inventory3.28 (BRASIL, 2015b),
considering that the emissions caused by deforestation occur in the same year, and
biomass loss is counted only above ground:

E =
2018∑
t=2010

At · (C − AvAp) ∗ 3.67 (3.3)

where E refers to the total avoided carbon emission (in tonnes of carbon dioxide)
associated to the local RD effect in each year of the programme (2010-2018), At is
the RD estimator (in hectares) for each year t, C is the average carbon stock in the
Amazon Forest (tC/hectare, equal to 162.2)3.29, AvAp is the average carbon stock in
pasture areas in the Amazon Biome (tC/ha), calculated by the Intergovernmental Panel
on Climate Change (IPCC) and equivalent to 7.57. Finally, to convert carbon (C) to
carbon dioxide (CO2), we multiply the final estimate by a factor of 3.67.

3.4 Results and discussion

3.4.1 Deforestation

We begin our analysis by assessing the evolution of forest cover along Pará’s
borders between 2008 and 2018, in different Brazilian states. Considering the year of
2008 as baseline, Figure 3.6 (Appendix) shows higher decrease in forest cover rates
for grid cells in Maranhão, Tocantins, Mato Grosso and Pará. This region, located
on the southern and eastern margins of the “Legal Amazon”3.30, is also known as the
“Arc of Deforestation”, where cattle grazing and soybean farming areas are constantly

3.28Equation 2.3.4.4, p. 41.
3.29We calculate the average of the 13 types of vegetation observed in the Amazon Biome, presented

on p. 96 of the Third National Inventory (BRASIL, 2015b).
3.30The “Legal Amazon” contains all nine states in the Amazon basin.
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expanding. Meanwhile, grid cells from Amazonas, Amapá and Roraima have significantly
lower deforestation rates.

We then graphically present our data by plotting annual forest cover rates (y-axis)
against the running variable - distance to Pará borders (x-axis). Figure 3.7 divides the
running variable into quantile-spaced bins up to 10 km (optimal bandwidths) on each
side of the cutoff, and the average forest cover rate within each bin is plotted against
its midpoint and fitted into a linear regression model. Positive distances indicate grid
cells within Pará, while negative distances show forest cover rate for the neighbouring
states. For the years prior to the programme’s launch (2008 - 2010), we do not observe
any systematic difference in forest cover rate around the cutoff. Grid cells belonging to
Pará start to revert the deforestation trends in the first biennium of the programme,
presenting positive differences in forest cover rates. For the 2013-2018 period, we verify
a sharp increasing discontinuity between treatment and control grid cells along the
borders.

Table 3.3 (Appendix) presents our bias-corrected RD estimates for all years. We
use clustered standard errors by 25 km bins for different model specifications: (I) without
controls, (II) with geographic controls (slope, land type and distance to streams) and
(III) with geographic and structural controls (distance to roads, urban agglomerations
and IBAMA offices). For each model, we also show optimal bandwidths (in km), 95
percent confidence intervals and the effective number of observations.

The δ estimates, which are defined as the difference in average forest cover when
crossing Pará’s border, are not significant for 2008 - 2010. As these years correspond
to the pre-treatment period, we do not expect significant estimates. During the early
stages of the PMV, the results indicate that there might have been a reversal of the
trends of forest cover across the state border, as we find positive but non-significant
estimates compared to the 2008-2010 period. However, up to 2014, as the confidence
interval for some of the model specifications includes the zero point, it is not evident
that the effect on forest cover might indeed be different from zero.

From 2015 onwards, point estimates are positive and statistically significant
at 5% and 1% levels, in all specifications, showing that grid cells within Pará have
higher average percentage of forest cover. This local difference - which is equivalent to
approximately 0.4% (or 0.4 ha) at the beginning of the programme - increases to 0.8%
(0.8 ha) in 2015 and continues to increase consistently, in particular after 2016, reaching
1.2% (1.2 ha) in 2018. The use of control variables leads to slightly smaller estimates
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as well as shorter confidence intervals for the RD treatment effect, which increases the
precision of statistical inference.

The lag between the programme’s lauch and the observed effects on deforestation
can be explained by two main factors. First, since the main foundations of the programme
design are local pacts and partnerships among different types of stakeholders, the
identification and engagement of the associated industry, community leaders and other
groups can take time. Delayed responses to Brazilian forest policies were also identified
by Burgess et al. (2019)3.31 and Cisneros et al. (2015)3.32.

Second, local elections were held out throughout the country in 2012. In these
elections, mayors are elected to four-year term3.33, being allowed to serve two consecutive
terms and then run for office again after a one-term hiatus. Despite the legal enforcement
provided by TAC, the overall programme implementation might have been affected by
turnover of mayors3.34 due to 2012’s elections.

As our unit of analysis is a 1 km2 grid cell, by multiplying the significant
estimated coefficient for 2015-2018 period and the corresponding grid cell area, we find
that the PMV prevented 1.1 ha/year of deforestation, on average. Considering that an
area of 2,400 km2 can be legally deforested within the optimal bandwidth3.35, PMV’s
contribution to avoided deforestation might reach 140 km2/year, or 561 km2 in the
2015-2018 period. Since these results are valid only for a 10 km bandwith, it should be
interpreted as the lower bound of the overall effect of the programme.

By combining this estimate with total forest that can be deforested in Pará
(357,131 km2), we find that the PMV could have avoided an accumulated deforestation
of 16,267 km2 (or 1,626,733 ha) in the 2015-2018 period, which corresponds to 4,067
km2/year (or 406,683 ha/year). Given that nearly 39,486 km2 was cleared in the
Brazilian Amazon over the same period3.36, our estimates suggest that the programme
reduced deforestation in the region by 41%.

3.31Burgess et al. (2019) while estimating the effect of the PPCDAm, which strengthened the legal
penalties associated with illegal deforestation and was launched in 2004, show that the discontinuity in
deforestation rates disappears in Brazil in 2006, two years after the official launch.

3.32When quantifying the impact of MMA’s blacklisting on deforestation, the authors find that its
effects materialized only slowly, which may be attributed to the gradual rollout of external support
measures.

3.33Local elections are held in staggered four-year cycles with state and federal elections and take
place in October of the election year, with the winner taking office in January of the following year.

3.3434% of PMV’s municipalities which signed a TAC before 2012 experienced change in mayors in
the 2012 elections.

3.35Excluding indigenous lands, conservation units and urban areas.
3.36Based on PRODES data.
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Table 3.4 (Appendix) presents the RD effect excluding 7 out of the 13 munic-
ipalities from Pará and 5 out of 9 municipalities from other states (See Figure 3.4),
which were part of the 2007 MMA’s priority list. In theory, these municipalities could
have received more benefits from reducing deforestation, as they were suffering from
economic sanctions and political pressures. Controlling for geographic and structural
variables, our bias-corrected estimates show that forest cover differences become positive
and significant between state borders after 2013. This suggests that the effects of
the programme came mainly from the municipalities that already had deforestation
rates below the PMV’s target - that is, 40 km2 per municipality. Therefore, it seems
that these participants were able to sustain their deforestation levels and might have
been able to earn the additional indirect benefits that the PVM offers. However, the
PMV’s incentives might not be sufficient for municipalities with urgent needs to reduce
deforestation pressures.

As the PMV’s working agenda focuses on supporting environmental regularisation
through CAR registration, our findings suggest that in settings where deforestation
pressures are high, there is a need to question: (i) how the CAR may affect deforestation
behaviour and (ii) to what extent the given information is complete and accurate since it
is self-declared system. In the Amazon context, there is evidence that non- registration
has little impact on deforestation behaviour except for small properties in the size
range of 100–300 ha. Motivations for registration and reducing deforestation are more
tied to incentives from a parallel land policy (land titling process) as opposed to the
incentives offered directly by the CAR (Rasmussen et al., 2017; L’Roe et al., 2016). In
addition, currently, over 120% of Pará is registered under the CAR system, indicating
areas registered more than once ruralsicar.

Our general findings are aligned with the previous study about the PMV, and the
international evidence about the effectiveness of decentralization measures to prevent
forest clearing in developing countries. Particularly for the PMV, Santos et al. (2016)
find no evidence that PMV municipalities were reducing their levels of deforestation.
When considering only participant municipalities with better environmental indicators,
classified as “consolidated” and “monitored and under control”, the evidence suggests
they managed to maintain their deforestation levels. The differences observed in the
timing of the deforestation effects might have been caused by the difference in data
granularity, as the authors use municipal-level data and do not take into account
spatial effects. Andersson and Gibson (2007), Baland et al. (2010) and Miteva et al.
(2012) suggest that decentralized schemes to support forest conservation might present
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significant effects mainly in the long run, which also might be heterogeneous across
different regions.

3.4.2 Avoided CO2 emissions

Figure 3.8 (Appendix) shows our result of avoided CO2 emissions due to the
reduction on forest clearing, per year. These carbon estimates are conservative since we
did not include below ground biomass values. Since the point estimates are not different
than zero up to 2015, we calculate that the programme might have avoided emissions
of approximately 8.0 MtCO2/year between 2015 and 2018. As Brazilian emissions
from land use change were, on average, 866 MtCO2/year in the same period (SEEG,
2019), our results indicate that the PMV might have avoided 0.9% of land use-related
emissions.

Considering an average price of US$ 5/tCO2 commonly used in current appli-
cations, the PMV would be able to store CO2 valued at US$ 40 million/year. Our
figures also represent approximately 7.4% of the annual avoided deforestation from the
PPCDAm estimated by Assunção et al. (2015), which amounts to 2.7 billion tonnes of
CO2 for the 2004-2008 period. Taking the average social cost of carbon of US$ 80/tCO2

as suggested by Pindyck (2019), we estimate that the PMV’s preserved forest area is
valued at more than US$ 636 million/year.

3.5 Robustness tests

In this section, we evaluate the robustness of our findings vis-à-vis alternative
bandwidth sizes. We also run tests accounting for unobservable heterogeneity at the year
and municipal levels and excluding areas potentially affected by confounding factors. A
placebo test is also conducted to increase confidence in our estimated RD treatment
effects.

3.5.1 Sensitivity to bandwidth choice

As the estimation of the RDD treatment effect is sensitive to the bandwidth
selection, we also investigate the potential results employing local polynomial methods
with different non-optimal bandwidth choices. Figure 3.9 (Appendix) plots the RD
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point estimates and the associated 95% confidence intervals, as a function of optimal, 20
km and 30 km bandwidths. Coefficients are consistently positive and significant for the
2013-2018 period, suggesting they are not critically dependent on a particular bandwidth
choice. The effects on years prior to the programme are statistically insignificant in all
cases.

3.5.2 Sensitivity to other programmes - Bolsa Verde

Payments for ecosystem services and income support schemes have been widely
used to compensate poor households in rural and forest communities for environmental
conservation. One of these programmes is Bolsa Verde, a federal programme managed
by the MMA and also launched in 2011. It focuses on poor rural people residing in
sustainable use protected areas and rural settlements in all Brazilian regions. To be
eligible for benefits, families must be already participating in Bolsa Família3.37 and meet
environmental requirements (to live in an area that meets the requirements established
by the Brazilian Forest Code in relation to native vegetation remnants, which must also
possess a management plan or similar documents). The benefit corresponds to R$ 300
per quarter.

Between 2011 and 2013, 78.339 households located in 343 rural settlements in
Pará received 62.9% of total programme expenditures (approximately R$ 43.5 million),
followed by 24.230 households from 71 rural settlements in Amazonas (R$ 6.3 million
or 9.1%) (Viana, 2014). Given the importance of this region to the programme, we
test the sensitivity of our regression results by excluding from our dataset all grid cells
located in rural settlements, as the incentives to curb deforestation might be higher in
these areas.

Table 3.5 (Appendix) presents the RD estimates after removing 19% of our grid
cells located in 544 rural settlements (234 and 310 within and outside Pará, respectively)
- which corresponds to an area of 63,581 km2 and 332,017 observations, of which 51% (or
32,523 km2) belong to Pará. Overall, we do not find substantial differences compared to
our preferred specification. However, point estimates are positive (0.7%) and significant

3.37 Bolsa Família is a conditional cash transfer programme introduced in Brazil in 2003, in which
families received financial support on the condition of sending their children to school and ensuring
proper vaccination. Low-income families (with per capita monthly income up to R$ 70) are entitled
to a fixed household transfer of R$ 70 plus an additional amount of R$ 32 for each child up to 15
years of age, to a maximum of five, and an additional amount of R$ 38 for each youth aged 16-17, to a
maximum of two. The maximum benefit amount for households in extreme poverty is R$ 242.
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one year after the programmes’ launch (2012), suggesting that forest cover rates in
these areas might be lower than in areas eligible for legal deforestation.

3.5.3 Placebo test: full protection conservation units

The National System of Conservation Units (SNUC) groups conservation units
into two main groups, according to their management objectives and use: (i) Full
Protection and (ii) Sustainable Use. The main objective of Full Protection Units is to
preserve nature, with allowance only of indirect use of natural resources, that is, use
that does not involve consumption, collection or damage to natural resources - such as
ecological tourism. Sustainable Use Units, in turn, aim to make nature conservation
compatible with the sustainable use of resources, reconciling human presence in protected
areas. In this group, activities that involve the collection and use of natural resources
are allowed, as long as they are practiced in a way that keeps renewable environmental
resources and ecological processes constant.

In our 100 km buffer zone, we identify 11 full protection units which comprises
national parks (PARNA), biological reserves (REBIO) and biological stations (ESEC),
as presented in Table 3.6 (Appendix). Except for the Alto Maués Ecological Station
and Acari National Park, they were all created before 2008. We use forest cover data of
grid cells located in these eleven units to conduct our placebo test, using all geographic
and structural controls. Robust and bias-corrected estimates are presented in Table
3.7 (Appendix), suggesting there are no significant differences in forest cover and
deforestation rates in these areas.

3.5.4 Accounting for unobservable heterogeneity

To account for observable heterogeneity in the rollout of the PMV across space
and time, we calculate the average treatment effect in individual years using difference-
in-differences (DID) estimator with leads and lags. Since municipalities adhered to PMV
in different years, this approach enables us to verify how the PMV’s effects on forest
cover evolved over time, making a direct comparison with our results obtained from
Equation 3.2.

The fundamental assumption of DID estimation that leads to unbiased estimates
is that grid cells belonging to Pará municipalities would have the same deforestation
trend as the grid cells in other neighbouring states, once relative tendency deviations
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between these grid cells are assigned to the PMV. Based on the year each municipality
signed the TAC with the MPF or the agreement with the PMV coordination, we create
dummy variables for 10 years before and 8 years after the PMV adherence. If the effects
on forest cover are not driven by confounding trends in unobservable factors, we should
not expect ex ante significant differences in trends; likewise, if our results obtained
from Equation 3.2 are not biased, we should only observe delayed changes in tendencies
after the PMV’s launch. Formally, we estimate the following equation:

Yit = αi + αm +
k=t+8∑
k=t−10

δk1Pará + γXit + εit (3.4)

where αm and αt are municipality and year fixed effects that control for differences
in time-invariant unobservables across areas and year-specific unobservables affecting
deforestation in all grid cells. 1 is the product of the time and treatment dummy
indicator for years t− 10 and t+ 8. We use 25 km clustered standard errors to control
for arbitrary spatial and serial correlation.

Table 3.8 presents the point estimates for forest cover rate relative to the
PMV’ launch year and the respective 95% confidence interval for two specifications: (1)
excluding grid cells from rural settlements as they might be eligible for Bolsa Verde
and (2) excluding additional grid cells belonging to priority municipalities. δ estimates
should be interpreted as the differences in forest cover rate with reference to year t = 0.

We find no statistically significant difference in forest cover patterns before and
after the PMV launch, suggesting that the deforestation pattern follows parallel trends
within and outside Pará. Despite being not significant, point estimates become positive
for grid cells located within Pará after the first year of the programme. δ estimates are
positive and significant after PMV’s third year, and these differences remain until the
final year analysed, when it reaches more than 1%. Comparing the results obtained
from Equation 3.2 (Table 3.4, Appendix), cumulative avoided deforestation between
2015 and 2018 amounts to 9,689 km2 and 12,476 km2 for specifications (1) and (2),
respectively, an area approximately the size of Cyprus.
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3.6 Conclusions and policy implications

The PMV, a decentralized and voluntary programme implemented in Pará state,
aimed to mitigate one of the highest deforestation rates in the Amazon Biome (2,700
km2/year) by empowering municipalities to improve their natural resource management
through multi-sector partnerships. This paper aims to assess the PMV’s effectiveness
in reducing deforestation levels, and we address the selection bias problem by using
a high-resolution panel dataset and a nonparametric spatial RD, which allow us to
compare forest cover rates within and outside the state.

Our main finding is that the effect on forest cover is positive but observed at
the later stages of the programme, as differences in forest cover rates between grid
cells from Pará and non-Pará municipalies become consistently significant only after
2015. On average, PMV might have prevented 1.1 ha/year of deforestation, which is
equivalent to 140 km2/year and 8.0 MtCO2/year of avoided deforestation and emissions,
respectively, within the 10-km optimal bandwidth. Considering the total area that could
be legally deforested in Pará, the extrapolation of our estimates indicates that the
PMV might have prevented 41% of deforestation in the Amazon region. However, since
these effects come mainly from areas with traditionally low deforestation pressures, the
advantages provided by the programme - such as higher legal security, better access to
credit and tax incentives- seem to be insufficient for areas more vulnerable to illegal
forest clearance.

These results have practical implications for environmental policy. In its NDC,
Brazil has committed to eliminate deforestation in the Amazon by 2030, which currently
amounts to 7,200 km2/year. Decentralized programmes with focus on indirect benefits
appear to be effective mainly in the long run, serving as a “bonus" to support those
regions with higher levels of forest cover. However, future policies with similar design
should consider different strategies and plans according to types of deforestation. In
this sense, further studies could better assess the mechanisms behind the PMV and the
effectiveness of other decentralized and voluntary policies against illegal deforestation.
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APPENDIX

A Tables and Figures

Figure 3.1 – Location of the study area: Pará’s borders

Note: This figure identifies the 50 km buffer zone (white line) constructed from our cutoff, Pará’s borders
(black line). This area is equivalent to 457,854 km2. Gray shaded areas correspond to Pará’s
borders with Guyana and Suriname.
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Table 3.1 – List of Pará municipalities that are part of the PMV

Mun Categ. PMV TAC Spec. Agreement Mun Categ. PMV TAC Spec. Agreement

Abaetetuba C 04/06/2012 22/10/2012 Moju E 30/03/2011 -
Abel Figueiredo C 31/01/2011 - Mojuí dos Campos UP - 17/06/2013
Acará C - 04/09/2017 Monte Alegre UP 30/11/2010 -
Água Azul do Norte C 30/11/2010 - Muaná F 29/07/2015 04/11/2014
Alenquer F 28/01/2011 - Nova Esperança do Piriá C - 07/06/2018
Almeirim UP 30/11/2010 - Nova Ipixuna C 31/01/2011
Altamira E 31/01/2011 - Novo Progresso E 26/01/2011 15/03/2013
Ananindeua C 30/11/2010 - Novo Repartimento E 30/11/2010 -
Anapú E 10/08/2010 20/03/2013 Óbidos GM 30/11/2010 -
Augusto Corrêa C - 28/03/2014 Oeiras do Pará F - 31/01/2017
Aurora do Pará C 22/02/2011 - Oriximiná F 31/01/2011 -
Aveiro UP 31/01/2011 - Ourém C - 27/04/2013
Baião C - 27/06/2017 Ourilândia do Norte C 30/11/2010 -
Bannach C 22/02/2011 12/06/2017 Pacajá E 30/11/2010 -
Barcarena C - 02/10/2013 Palestina do Pará C 16/03/2011 -
Belém C - - Paragominas GM 30/11/2010 -
Belterra GM 22/02/2011 - Parauapebas C 29/03/2011 -
Benevides C - 29/06/2017 Pau d’arco C 22/02/2011 -
Bom Jesus do Tocantins C 31/01/2011 - Peixe boi C 31/01/2011 -
Bonito C - 07/06/2016 Piçarra C 01/03/2011 -
Bragança C - 21/10/2013 Placas E 27/01/2011 -
Brasil Novo GM 10/08/2010 - Ponta de Pedras F 20/12/2010 -
Brejo Grande do Araguaia C 30/11/2010 - Porto de Moz C 16/08/2010 -
Breu Branco C 28/01/2011 - Prainha UP 30/11/2010 -
Breves F - 08/08/2019 Primavera C - 05/07/2017
Bujaru C - 24/04/2018 Quatipuru C - -
Cachoeira do Arari F - 23/08/2013 Redenção GM 15/12/2010 25/03/2015
Cachoeira do Piriá C 22/02/2011 - Rio Maria C 01/07/2010 -
Canãa dos Carajás GM 30/11/2010 - Rondon do Pará E 31/01/2011 -
Capanema C - 30/03/2017 Rurópolis UP 26/01/2011 -
Capitão Poço C - 02/10/2013 Salinópolis F 22/02/2011 -
Castanhal C - 16/03/2017 Salvaterra F 31/01/2011 -
Chaves F 30/11/2010 - Santa Barbara do Pará C - 27/06/2017
Conceição do Araguaia C 01/03/2011 - Santa Izabel do Pará C 03/05/2011 -
Concórdia do Pará C - 09/05/2014 Santa Luzia do Pará C 22/02/2011 -
Cumarú do Norte GM 30/11/2010 20/03/2015 Santa Maria das Barreiras GM 30/11/2010 -
Curionopolis C 18/04/2011 - Santa Maria do Pará C 30/11/2010 -
Curralinho F - 28/06/2017 Santana do Araguaia GM 30/11/2010 -
Curuá F - 25/03/2015 Santarém GM 21/03/2011 05/03/2013
Curuça C - 18/08/2017 São Caetano de Odivelas C 22/02/2011 -
Dom Eliseu GM 24/02/2011 - São Domingos do Araguaia C 01/03/2011 -
Eldorado dos Carajás C 10/08/2010 - São Domingos do Capim C 28/02/2011 -
Faro F 31/01/2011 - São Félix do Xingu E 09/12/2010 -
Floresta do Araguaia C 10/02/2011 - São Francisco do Pará C - 24/04/2018
Garrafão do Norte C - 26/07/2018 São Geraldo do Araguaia C 30/11/2010 -
Goianésia do Pará C 03/02/2011 - São João de Pirabas C 22/02/2011 18/06/2017
Gurupá UP 10/08/2010 - São João do Araguaia C 28/05/2019 -
Igarapé-açu C 10/02/2011 20/08/2017 São Miguel do Guamá C 22/02/2011 -
Igarapé-miri C 30/11/2010 - São Sebastião da Boa Vista F - 07/06/2013
Inhangapi C - 21/08/2018 Sapucaia C 22/02/2011 -
Ipixuna do Pará C 31/01/2011 - Senador José Porfirio E 28/01/2011 -
Irituia C 30/11/2010 - Soure C 22/02/2011 -
Itaituba UP 31/01/2011 - Tailândia GM 31/01/2011 -
Itupiranga E 10/02/2011 - Terra Alta C 30/11/2010 10/06/2013
Jacareacanga F 31/01/2011 - Terra Santa F 08/06/2011 -
Jacundá C 31/01/2011 - Tome-açu C 11/03/2011 -
Juruti GM 17/01/2011 - Tracuateua C - 20/06/2017
Limoeiro do Ajuru F - 13/07/2018 Trairão UP 26/01/2011 -
Mãe do Rio C 28/01/2011 - Tucumã GM 14/12/2010 -
Magalhães Barata C - 28/07/2017 Tucuruí C 28/02/2011 -
Marabá E 30/11/2010 - Ulianópolis GM 30/11/2010 -
Maracanã C - 13/04/2015 Uruará E 10/08/2010 -
Marapanim C - 21/08/2018 Vigia C - 24/04/2018
Marituba C - 28/08/2017 Viseu C 26/01/2011 -
Medicilândia UP 10/08/2010 08/08/2013 Vitória do Xingu C 10/08/2010 -
Melgaço F - 03/09/2012 Xinguara GM 30/11/2010 -

Note: This table lists the municipalities that are part of the PMV, their Note: E=Embargoed (MMA
priority list), UP= Under Pressure, C= Consolidated, F= Forest Base; GM= Green Municipality.
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Figure 3.2 – Annual deforestation in the Brazilian Amazon

Note: This figure shows the total annual deforestation in the Brazilian Amazon (in blue), and annual
deforestation in Pará (in red), in km2, based on data from PRODES. The dotted black line
indicates the PMV’s launch.



130

Figure 3.3 – Location of study area: grid cells within 100 km buffer zone

Note: This figure shows the process to obtain the final grid cells (D). Figure (A) maps the Amazon
biome, and Figure (B) shows the forest area (in green) and the deforested area (in red). Figure
(C) shows the location of state and federal indigenous lands and conservation areas in Pará and
the surrounding states, identified based on data from IBGE. Figure (D) shows the grid cells that
were used (in red) and discarded (in yellow) within the 50 km buffer zone (white line) from Pará’s
borders (cutoff). Discarded grid cells corresponds to areas closer to the Cerrado biome, Atlantic
Ocean, international borders or that belong to indigenous lands and conservation areas, identified
based on data from PRODES and IBGE - which are equivalent to 103,731 km2. Total grid cell
area in red is equivalent to 162,242 km2.
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Figure 3.4 – PMV: municipalities according to year of adherence

Note: This figure presents the location and number (graph below) of municipalities according to the
year of adherence to the programme, and the red asterisk indicates the municipalities from 2007
MMA’s list.
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Figure 3.5 – Maps of control variables

Note: These maps shows the details of our geographic ((C) streams; (E) soil type and (F) slope) and
structural covariates ((A) municipalities (incl. villages); (B) IBAMA offices; (D) official and
unofficial roads).
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Figure 3.6 – Average annual forest cover at Pará Borders in different Brazilian states
(excluding conservation units and indigenous lands)

Note: This figure presents the average annual forest cover between 2008 and 2010 in different states
along Pará’s borders, based on PRODES data. Evolution of forest cover is calculated considering
2008 as the base year.
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Figure 3.7 – RD Effects - % of forest cover
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Note: This figure shows the average annual forest cover between 2008 and 2018 by quantile-sized bins
of distances from the Pará border, within the optimal bandwidth (up to 1000 meters away from
Pará’s border). Positive distance represents forest cover within Pará, while negative distance
represents other states. The red lines show the linear function of distance weighted by the

number of observations in each bin.
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Table 3.3 – RD estimator effect on % of forest cover (δ)

Year Controls Opt. Band δ Sd CI # obs.

2008
I 8.9 -0.396 0.235 -0.954 0.131 14189 16849
II 9.1 -0.374 0.232 -0.942 0.133 14189 16849
III 9.0 -0.374 0.232 -0.923 0.154 14189 16849

2009
I 7.4 -0.165 0.289 -0.912 0.357 11642 13743
II 11.1 -0.155 0.245 -0.800 0.313 17179 20687
III 11.3 -0.181 0.242 -0.775 0.336 17292 20845

2010
I 8.7 0.480 0.371 -0.452 1.233 13843 8369
II 10.1 0.523 0.348 -0.372 1.232 15674 9614
III 10.0 -0.006 0.349 -0.838 0.768 15674 9614

2011
I 10.2 0.410 0.346 -0.434 1.161 15968 18377
II 12.0 0.400 0.310 -0.347 1.116 18692 21730
III 10.6 0.273 0.335 -0.460 1.073 16617 19110

2012
I 10.4 0.532 0.354 -0.281 1.360 15968 18377
II 11.4 0.466 0.337 -0.300 1.240 17447 20228
III 9.9 0.406 0.355 -0.342 1.271 15674 17990

2013
I 10.8 0.864** 0.366 0.023 1.719 17010 19641
II 12.2 0.813** 0.344 0.021 1.596 18777 21854
III 10.3 0.722* 0.368 -0.059 1.618 15967 18377

2014
I 10.3 0.981** 0.393 0.032 1.850 15968 18377
II 12.7 0.950** 0.350 0.087 1.720 19517 22712
III 10.5 0.830* 0.382 -0.010 1.730 16617 19110

2015
I 10.5 1.017** 0.403 0.091 1.962 16618 19110
II 12.5 0.959** 0.369 0.076 1.772 19427 22601
III 10.0 0.860** 0.404 0.018 1.844 15674 17990

2016
I 12.2 1.312** 0.414 0.396 2.320 18778 21854
II 14.2 1.276*** 0.380 0.433 2.164 21505 25282
III 11.1 1.136** 0.424 0.285 2.186 17179 19861

2017
I 11.7 1.518*** 0.430 0.490 2.518 18225 21108
II 11.5 1.513*** 0.379 0.686 2.403 22944 27155
III 11.5 1.316*** 0.428 0.466 2.364 18130 20993

2018
I 12.6 1.475*** 0.429 0.459 2.456 19428 22601
II 13.6 1.428*** 0.408 0.414 2.307 20873 24423
III 11.0 1.243*** 0.445 0.243 2.290 17179 19861

Note: This table presents the regression estimates of the Pará dummy, δ (in %), on
forest cover between 2008 and 2018, calculated using linear polynomials. We
provide three different specifications (column ‘Controls’): (I) without controls;
(II) with geographic controls and (III) with geographic and structural controls.
Column ‘Opt.Band’ refers to the average optimal and bias-correction bandwidth
(Cattaneo et al., 2019) of our dependent variable in kilometres, ‘Sd’ and ‘CI’
indicate the respective standard errors, clustered using 25km bins, and the 95
percent confidence intervals. Number of clusters varies according to year and
model specification. Units of observations are 1 km2 pixel within the 50 km
from Pará’s border. Significance levels: *10%, **5%, ***1%.
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Table 3.4 – RD estimator effect on % of forest cover (δ) excluding
MMA’s priority list municipalities

Year Opt. Band δ
Robust Inference

# of obs.Sd CI

2008 9.2 -0.287 0.240 -0.867 0.238 14189 13093
2009 8.4 -0.178 0.280 -0.911 0.354 13033 12003
2010 7.8 0.854 0.395 -0.168 1.594 12424 5962
2011 10.4 0.605 0.350 -0.193 1.427 15968 14895
2012 10.5 0.686 0.358 -0.098 1.553 16618 15466
2013 10.7 1.006** 0.376 0.188 1.918 16808 15675
2014 10.5 1.178** 0.397 0.286 2.121 15968 14895
2015 10.0 1.226*** 0.421 0.337 2.273 15675 14557
2016 11.7 1.347*** 0.436 0.412 2.429 18225 17113
2017 11.7 1.480*** 0.450 0.442 2.540 18225 17113
2018 12.4 1.386** 0.448 0.332 2.418 19066 18070

Note: This table shows the regression estimates of the Pará dummy, δ (in %
or hectares), on forest cover between 2008 and 2018, excluding the 13
municipalities on the 2007 MMA’s list and using linear polynomials.
Column ‘Opt.Band’ refers to the average optimal and bias-correction
bandwidth (Cattaneo et al., 2019) of our dependent variable in kilo-
metres, ‘Sd’ and ‘CI’ indicate the respective standard errors, clustered
using 25 km bins, and the 95 percent confidence intervals. Number of
clusters varies according to year. Units of observations are 1 km2 pixel
within the 50 km from Pará’s border, and number of observations are
separated by left and right side of the state borders within the optimal
bandwidth. Significance levels: *10%, **5%, ***1%.
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Figure 3.8 – Avoided CO2 emissions (MtCO2)

Note: This figure presents our point estimates and the corresponding 95% confidence interval for avoided
CO2 released to the atmosphere due tothe PMV. Values are estimates based on aboveground
biomass and the respective coefficients from BRASIL (2015b).
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Figure 3.9 – Sensitivity to bandwidth choice (optimal, 20 km and 30 km)

Note: This figure shows the robust bias-corrected and optimal-bandwidth point estimates in relation to
other bandwidths (20 km and 30 km). Standard errors are clustered using 25km bins.
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Table 3.5 – RD estimator effect (% of forest cover) excluding rural
settlements

Year Opt. Band δ
Robust Inference

# of obs.Sd CI

2008 9.2 -0.122 0.238 -0.648 0.449 12103 14222
2009 11.1 -0.205 0.231 -0.696 0.361 14445 17019
2010 11.1 -0.157 0.229 -0.667 0.384 14755 17306
2011 8.9 0.419 0.345 -0.228 1.316 11789 13753
2012 7.9 0.711** 0.380 0.037 1.705 10610 12394
2013 8.5 1.060*** 0.393 0.362 2.092 10823 12672
2014 9.0 1.077*** 0.390 0.353 2.111 11789 13753
2015 9.3 0.942** 0.409 0.194 2.009 12071 14092
2016 10.7 1.108*** 0.435 0.320 2.252 14034 16390
2017 10.1 1.459*** 0.461 0.599 2.660 13076 15243
2018 11.4 1.028** 0.440 0.173 2.161 14569 17089

Note: This table shows our RD estimates (% of forest cover) when excluding
rural settlements, as these areas are eligible for other federal conser-
vation programmes. We use linear regression with control variables.
Standard errors are clustered using 25 km bins; total of 1,449,105
observations. Significance levels: *10%, **5%, ***1%.

Table 3.6 – List of Full Protection Conservation Units

Name Year

Estação Ecológica do Jari 1982
Reserva Biológica do Rio Trombetas 1979
Parque Nacional do Araguaia 1959
Parque Nacional da Amazônia 1974
Reserva Biológica Gurupi 1988
Reserva Biológica Uatumã 1990
PARNA Montanhas do Tumucumaque 2002
REBIO Nascentes da Serra do Cachimbo 2005
PARNA Juruena 2006
Estação Ecológica Alto Maués 2014
Parna Acari 2016

Note: This table presents the list of protected areas used in our placebo test.
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Figure 3.10 – Location of rural settlements

Note: This figure shows the location of rural settlements, areas eligible for other federal conservation
programmes. It corresponds to a total area of 63,581 km2 (332,017 observations).
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Table 3.7 – Placebo outcomes - RD estimator effect (% of
forest cover) on Full Protection Units

Year Opt. B.
(in Km)

RD Est.
(in %)

Robust Inference
# of obs.

p value CI

2008 7.1 0.010 0.167 -0.005 0.031 4361 2970
2009 5.2 0.010 0.744 -0.018 0.025 3308 2522
2010 4.9 0.010 0.944 -0.021 0.023 2935 2410
2011 5.3 0.030 0.302 -0.017 0.053 3312 2529
2012 6.4 0.030 0.230 -0.018 0.074 3964 2753
2013 6.5 0.010 0.503 -0.032 0.064 4071 2856
2014 6.6 0.020 0.421 -0.029 0.070 4078 2856
2015 6.6 0.020 0.555 -0.034 0.064 4078 2856
2016 6.7 0.010 0.825 -0.047 0.060 4150 2857
2017 7.0 0.000 0.811 -0.071 0.056 4295 2964
2018 7.8 -0.040 0.459 -0.105 0.047 4822 3185

Note: This table shows the estimates for our placebo test, using forest
cover data of grid cells located in protected areas as outcome
variables. We use linear regression with control variables. Stan-
dard errors are clustered using 25 km bins; total of 474,507
observations. Significance levels: *10%, **5%, ***1%.
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Table 3.8 – Treatment effect (% of forest cover) accounting for unobservable heterogeneity

Year
(1) (2)

δ CI δ CI

t-10 -3.123 -5.732 -0.514 -2.858 -5.305 -0.411
(1.331) (1.248)

t-9 -1.357 -3.979 1.266 -1.109 -3.568 1.349
(1.338) (1.254)

t-8 -0.916 -3.537 1.706 -0.674 -3.131 1.784
(1.338) (1.254)

t-7 -0.763 -3.386 1.859 -0.535 -2.994 1.923
(1.338) (1.254)

t-6 -0.505 -3.108 2.098 -0.283 -2.724 2.157
(1.328) (1.245)

t-5 -0.252 -2.786 2.282 -0.063 -2.439 2.313
(1.293) 1.212

t-4 -0.257 -2.791 2.277 -0.098 -2.474 2.278
(1.293) (1.212)

t-3 -0.157 -0.574 1.022 1.244 1.001 1.487
(0.993) (0.124)

t-2 -0.103 -0.069 0.275 -0.118 -0.063 0.299
(0.879) (0.924)

t-1 -0.016 -0.172 0.141 -0.115 -0.280 0.051
(0.080) (0.084)

t+1 0.054 -0.103 0.210 0.067 -0.098 0.232
(0.080) (0.084)

t+2 0.005 -0.192 0.148 0.110 -0.069 0.289
(0.088) (0.091)

t+3 0.797*** 0.168 0.177 0.199** 0.018 0.381
(0.114) (0.093)

t+4 0.177** 0.004 0.350 0.337*** 0.156 0.519
(0.088) (0.093)

t+5 0.329*** 0.156 0.503 0.471*** 0.289 0.653
(0.088) (0.093)

t+6 0.546*** 0.373 0.720 0.662*** 0.481 0.845
(0.089) (0.093)

t+7 0.740*** 0.565 0.915 0.881*** 0.699 1.065
(0.089) (0.093)

t+8 1.098*** 0.887 1.309 1.504*** 1.289 1.721
(0.108) (0.110)

Obs 1,446,388 1,169,612
Controls Yes Yes

Municipality FE Yes Yes
Year FE Yes Yes

Priority Municipality Yes No
Adj. R2 0.1025 0.109

Note: This table presents the the average treatment effect (δ, % of forest cover) in individual years using
a difference-in-differences (DID) estimator with leads and lags. Specification (1) excludes grid cells
from rural settlements as they might be eligible for Bolsa Verde and (2) additionally excludes
grid cells belonging to priority municipalities. δ estimates should be interpreted as the differences
in forest cover rate with reference to year t = 0. Significance levels: *10%, **5%, ***1%.
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B Validation tests

B.1 Predetermined controls

To obtain internal validation and causal interpretation of our empirical results,
certain conditions must be met. Factors that might influence deforestation should not
present discontinuities - meaning a jump or drop in the levels - at the Pará border.
Following Cattaneo et al. (2019), we plot each control variable - soil, slope, distance
to roads, streams, urban agglomerations and IBAMA offices - inside their respective
MSE-optimal bandwidth and also for the full sample (bandwidth of 50 km), using a
polynomial of order one and a triangular kernel function to weight the observations. As
per our main specification, we also use clustered standard errors in 25 km bins. Table
3.9 presents the robust bias-corrected RD estimates, and the results suggest that these
variables are evenly distributed around the Pará border. Validation checks are also
conducted separately for all years.

Table 3.9 – Validation test - predetermined controls

Variable Opt. B. δ
Robust Inference

# of obs.p value CI

Soil (log) 5.4 -0.007 0.969 -.0336 .0323 8939 11984
Slope 6.6 -0.010 0.210 -.0292 .0064 10743 14068
Dist. streams 3.9 -19.95 0.131 -34.38 4.45 6253 8814
Dist. roads (log) 10.4 0.039 0.415 -.0706 .1711 16603 21512
Dist. commun. (log) 5.6 -0.009 0.503 -.0999 .0490 9075 11063
Dist. IBAMA (log) 8.1 0.005 0.908 -.0338 .0300 13216 17128

Note: This table presents the regression estimates of the Pará dummy, δ, on ge-
ographic (soil type, slope and distance to streams) and structural controls
(distance to roads, municipalities, and IBAMA offices), using linear polyno-
mials. Column ‘Opt.Band’ refers to the average optimal and bias-correction
bandwidth in kilometres. Column ‘Robust Inference’ presents the p value and
the confidence intervals. Standard errors are clustered using 25 km bins. Units
of observations are 1 km2 pixel within the 50 km from Pará’s border, and
number of observations are separated by left and right side of the state borders
within the optimal bandwidth. Significance levels: *10%, **5%, ***1%.

B.2 Manipulation around the cutoff

We analyse the density of the running variable to verify any possible manipulation
or sorting around the Pará border, which should be the same on each side. As presented
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in Figure 3.11 , no major differences in the distribution of the running variable.

We also follow Cattaneo et al. (2019), who constructed a manipulation tests
based on density discontinuity (McCrary, 2008) using the results for the local polynomial
distribution estimator. We do not find evidence of manipulation as we do not reject the
null hypothesis of this test (no discontinuity of the density at the cutoff) 3.38.

The current geographic limits of Pará are defined by rivers such as Rio Jari, Rio
Nhamundá, Rio São Manuel, Rio Araguaia and Rio Gurupi, and the Atlantic Ocean.
The exceptions are two straight lines: in the west, bordering Amazonas and Roraima
states, and in the south, bordering Mato Grosso state. Historically, the occupation of
Pará followed its rivers, especially the Amazon River, so the limits between current
states of Pará and Amazonas were not completely unexplored when these were defined
(Gadelha, 2002). However, the straight-line borders correspond to areas that were
sparsely occupied areas in the late 19th century when they were defined. They can be
understood as being more less arbitrary and not related to any previous natural or
institutional border (Burgess et al., 2019).

By and large, the deforestation differences that we find are driven by substantial
changes in forest cover, which are driven by conversion of forests to grasslands for animal
grazing or conversion to croplands. These major land use changes require permanent
factor reallocation from one side of the border to the other. Selective logging of valuable
timber 3.39, may indeed present cross-border mobility, in spite of being illicit. However,
we do not think such sorting behaviour threatens our identification, as our measure of
deforestation is not responsive to such minor changes.

3.38p value of 0.61, t stat of -0.50.
3.39Practice where a single valuable tree, such as for example mahogany in the tropics, is harvested

due to its relatively high market value.
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Figure 3.11 – Test for manipulation around the cutoff: density of the running variable

Note: This histogram presents the density of grid cells observed in 2-km spaced bins. Distance to Pará
borders in meters.
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