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Abstract

The use of postmortem computed tomography in forensic medicine, in addition to conventional autopsy, is now a standard
procedure in several countries. However, the large number of cases, the large amount of data, and the lack of postmortem
radiology experts have pushed researchers to develop solutions that are able to automate diagnosis by applying deep learning
techniques to postmortem computed tomography images. While deep learning techniques require a good understanding of image
analysis and mathematical optimization, the goal of this review was to provide to the community of postmortem radiology
experts the key concepts needed to assess the potential of such techniques and how they could impact their work.
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Introduction

Postmortem computed tomography (PMCT) has been shown
to be a valuable tool in forensic medicine. For instance, a
meta-analysis by Ampanozi et al. concluded that PMCT is
reliable in detecting skeletal fractures [1]. Furthermore,
PMCT angiography helps to add soft tissue contrast to these
images and is highly sensitive to soft tissue and organ find-
ings. It is, therefore, well suited for the detection of hemor-
rhages. Depending on the jurisdiction, PMCT and postmortem
computed tomography angiography (PMCTA) are being used
as triage tools and/or as additional investigation methods to
complement autopsy [1].

PMCT scans can consist of well over 10,000 single images.
Although in practice only forensically relevant findings need
to be analyzed, this can amount to a substantial workload on
forensic pathologists. In clinical radiology, similar issues re-
garding workload exist [2], and machine learning approaches
are being developed to address this issue [3, 4]. For these
reasons, automated analysis of PMCT images was one of the
research focuses identified by the first postmortem radiology
and imaging research summit, which was organized by the
International Society of Forensic Radiology and Imaging,
the International Association of Forensic Radiographers, the
National Institute of Justice of the United States of America,
and the Netherlands Forensic Institute [5]. The aim of this
article is to present the technical background and underlying
concepts of deep learning and to highlight its potential use for
analyzing PMCT in postmortem radiology based on experi-
ences from clinical radiology.

Image analysis for postmortem computed tomography
(PMCT) differs significantly from image analysis in clinical
radiology. The clinical radiologist often has a defined focus
for an examination, and only a limited area is scanned to
minimize the radiation dose and scanning time for the patient.
In postmortem radiology, the entire body is captured at high
resolution to ensure that every pathology, anatomical anomaly
and foreign body is documented. Furthermore, the image
quality has to be sufficient for identification, visualization
and complex reconstructions [6]. As the radiation dose does
not need to be considered, the scan protocol is optimized for
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image quality, which leads to more detailed images and there-
fore larger datasets. In clinical radiology, the primary aim is to
exclude or diagnose a pathology or injury correctly to choose
the appropriate treatment. In postmortem radiology, determin-
ing the cause and manner of death is the primary focus of
attention. In addition, PMCT data can be used in the recon-
struction of the sequence of events, such as traffic accidents or
homicides [7, 8]. In unknown persons, PMCT data are used
for identification via comparison with images obtained before
death (for example dental radiographs [9]).

Additionally, exclusion of findings can be equally impor-
tant. This has an impact on how the PMCT images are obtain-
ed and analyzed. The scan protocols usually document the
entire body, with additional higher resolution scans for the
thorax, abdomen, head and teeth, which can add up to
10,000 single images or more [10]. It is common practice in
many countries that the same extensive protocol is used, in-
dependent of the expected findings. This means that the post-
mortem radiology expert always has to assess the entire CT
dataset for forensically relevant pathologies, injuries and the
presence of foreign bodies [11]. In some cases, segmentation
is also required to estimate volumes and weights or as a basis
for advanced visualizations or 3D prints to be presented in a
court. Due to the number of images available and depending
on the complexity of the case, reading can take hours. Organ
segmentation (the act of isolating relevant structures) can be
equally time-consuming. A lack of trained postmortem radi-
ology experts, in conjunction with the costs of a long reading
process, may sometimes limit the use of radiology in death
investigations. To increase the quality of the image analysis
and decrease the costs, new tools tailored to the specific needs
of postmortem radiology experts are required. This includes
but is not limited to automatic organ segmentation and weight
estimation and injury and fracture detection, as well as foreign
body detection and identification.

As image data are inherently digital in nature, computer
methods are an obvious source for tool creation. Using con-
ventional image processing methods, the developer of an al-
gorithm has to identify relevant structures, choose the right set
of image processing techniques and fine-tune the algorithm
until the selected feature is detected correctly. The problems
with this approach are that developing and fine-tuning such an
algorithm is time consuming and requires expert knowledge
with respect to the structure to be identified as well as to which
image processing techniques are available. Algorithms based
on conventional image processing can have low robustness
for images that have great variance or contrast gradients, such
as in magnetic resonance imaging (MRI) images or noisy CT
scans. One way to overcome these issues is the use of special-
ized techniques from artificial intelligence (AI), so-called deep
learning techniques [12]. In this article, we aim to give re-
searchers in the field of postmortem radiology a starting point
to implement deep learning techniques themselves. We

present the technical background and underlying concepts of
deep learning and highlight its potential use in postmortem
radiology for analyzing PMCT data based on experiences
from clinical radiology.

Understanding deep learning techniques

AI is a subcategory of computer science that tries to mimic
human intelligence to solve complex problems. Examples of
classical AI systems are early chess computers and handwrit-
ing recognition. While many AI techniques are purely algo-
rithmic, a subset of AI called machine learning (ML) ad-
dresses a more data-driven approach. With ML, algorithms
analyze sample data to adjust their behavior, thus learning
from the data rather than just following a predefined proce-
dure. An example of ML is spam filtering in email programs,
which performs statistical analyses of emails that are marked
as spam to categorize incoming emails. Finally, deep learning
(DL), which is a type of machine learning, uses artificial neu-
ral networks (ANNs) to analyze the data. ANNs mimic, in a
simplifiedmanner, how nerve cells function and communicate
with each other to express complex behavior from relatively
simple building blocks. The basic building block of an ANN
is the aptly named artificial neuron. Such a neuron consists of
multiple weighted inputs that are summed to produce an out-
put that is then analyzed. A timeline of major milestones in AI
can be seen in Fig. 1 [13–22].

The idea of artificial neurons can be traced back to 1943,
whenWarrenMcCulloch andWalter Pitts proposed modeling
the nervous system as a network of logical units able to inte-
grate over several inputs by summing them up and producing
an output. Frank Rosenblatt developed this idea further in his
concept of the perceptron [23, 24]. Interconnected systems of
perceptrons evolved into what we now call artificial neural
networks (ANNs) or simply neural networks (NNs): a class
of algorithms with the goal of classifying a set of data into
categories. The architecture of NNs is similar to that of a
biological neuron. Dendrites represent separate input channels
with their specific weights. The overall input signal is integrat-
ed into the cell body. If the accumulated signal exceeds a
certain threshold, an output signal is produced. Figure 2 pro-
poses a simple illustration of how the concept of NNs evolved
from the nervous system.

Mathematically, NNs are constructed using interconnected
nodes arranged in layers. Each node of a layer receives inputs
from nodes of the previous layer. The combination of layers is
called a topology and consists of a fully connected network.
Hence, depending on the amount of input signal, some nodes
will propagate the signal while others will stop it.
Interconnected layers are divided into three groups: the input
layer, the output layer and the hidden layers. The input layer is
directly connected to the data set, while the output layer can be
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seen as a real-valued vector. Intermediate layers are called
hidden because their values are not directly used for classifi-
cation. A proper classification relies on the optimal value for
each individual weight in the network. Fixing the weights by
exploring all possible combinations is unrealistic for large
networks. The backpropagation algorithm uses an objective
function (cost function) that is constructed with the values of
the output layer and the target values. Taking the first deriva-
tive of the objective function tells us the direction of its gra-
dient, which is then multiplied by a constant parameter. This
discrepancy constitutes the error that we want to minimize.
This error is backpropagated to the input layer to adjust the
weights. A similar process is used to backpropagate the error

for all hidden layers by multiplying the error between each
hidden layer together. Finally, a softmax function is used to
normalize the value of the output layer to create a probability
density function that tells the likelihood associated with each
category represented in the output layer. Figure 3 depicts the
full cycle of how NNs are trained to obtain a model to be used
to classify the input data. The complexity of an NN grows
with the complexity of the data. For instance, an image of
512 × 512 pixels (the typical size of a single slice of a
PMCT dataset) would need an input layer with 262,144
nodes, one for each pixel in the image, as well as numerous
hidden layers for processing them. Optimizing the weights for
such NNs was unrealistic with computers in the 1980s. The

Fig. 1 Timeline of deep learning
milestones
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question was how to reduce the complexity to make it feasible
for a computer to classify images. Convolutional neural net-
works (CNNs) are a solution proposed to reduce network
complexity. A graphical depiction of this process can
be seen in Fig. 4.

CNNs have existed since the late 1980s [25] and were
initially developed for handwritten digit classification.
Through convolution, the size of an image is typically reduced
to a few thousand pixels. The new image constitutes a feature
map of the original image; visually, these two images are
different. The convolution applies a square filter that typically
has few pixels equivalent in size to the pixels of the original

image. In other words, the convolution is a mathematical pro-
cedure that uses the pixels in the direct neighborhood of a
focal pixel to reinforce the information content. Local features
of an object can be reinforced by this means or blurred out.
The next step consists of selecting only the pixel with the
maximum intensity in a local area and eliminating any nega-
tive values. This step is called maximum pooling while the
pooled values are passed through a linear rectifier called rec-
tified linear unit (ReLU). Through the pooling action, the im-
age size is reduced. The whole process of filtering, rectifying
and pooling the pixels of an original image is repeated several
times and with several sets of filters. All the feature maps are

Fig. 2 Basic concepts of neural
networks. The building block of a
neural network is the perceptron:
a mathematical abstraction
simulating the main function of a
neuron. The signal received from
other dendrites (inputs) is further
propagated through the axon
(output) if the overall stimulus
that arrives at the cell body
(perceptron) is large enough to
trigger an action potential
(step function/sigmoid). Each
input value is modulated by a
weight, and the action potential is
the weighted sum of the inputs. In
a neural network, each perceptron
is called a node, and nodes are
organized into layers. Each node
in a layer can be connected to all
other nodes in the subsequent
layer. This architecture is repeated
until the output layer contains the
various classes of interest
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combined together into a single array to form the input layer of
the NN.

Medical image analysis

Medical image analysis can be traced back to as early as the
1970s using various mathematical modeling and ruled-based
algorithms. In the 1990s, supervised techniques, such as shape
models and atlas-based segmentation methods, were used to
identify organs and extract features for statistical classification

in computer-aided diagnosis. An important revolution in im-
age analysis and image manipulation appeared with the devel-
opment of graphics processing units (GPUs), dedicated elec-
tronic circuits separated from the main processor (CPU) that
were intended to specifically accelerate the manipulation of
graphic contents. Since Steinkraus and his colleagues [26]
have shown the value of GPUs for ML, following the recent
development in GPU hardware over multicore CPUs, CNNs
have become a popular approach for image processing [27].
Dedicated hardware is now commercially available to perform
calculations on large datasets.

Fig. 3 Training a neural network.
Through backpropagation, the
weights between the nodes can be
adjusted. This process uses a
stochastic gradient descent by
which the output of the neural
network is compared to the
ground truth. When the difference
is smaller than a user-defined
threshold, the model is retained.
In a new round of comparison, the
model is further validated with a
new dataset to fine-tune the
weights. This process can be
repeated multiple times.
However, if repeated too often, it
can result in overfitting
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CNNs started to gain popularity when the winning team of
the 2012 ImageNet challenge used them for their model [28].
ImageNet is a public repository of human-annotated Internet
images organized by concept [ref: http://image-net.org]. The
ImageNet challenge was created by the ImageNet community
to foster innovation in image classification. Since then,
numerous studies have been published showing how CNNs,
together with other ML techniques, are used to improve
medical image analysis, such as that for CT, MRI, positron
emission tomography (PET) and radiographics. State-of-the-
art results were achieved in mammographic mass classifica-
tion [29, 30], segmentation of lesions in the brain [31], leak
detection in airway tree segmentation [32], lung pattern clas-
sification [33], prostate segmentation [34, 35], nodule classi-
fication [36, 37], breast cancer metastasis detection in lymph

nodes [38, 39], human expert performance in skin lesion clas-
sification [40], and bone suppression in radiographics [41].
Most CNN approaches are based on processing 2D images.
Medical (CT) data add a level of complexity, as they are 3D in
nature and require 3D volumetric segmentation and analysis
[42, 43]. Therefore, there is a need to develop CNNs for 3D
volumetric data.

Possible applications of deep learning
techniques in PMCT

Previous work done on segmentation of radiological data for
abdominal organs has been performed using multi-atlas [44],
patch-based [45] and probabilistic atlas methods [46]. More

Fig. 4 Graphical depiction of convolutional neural networks (CNNs). A
real object is reduced to a series of images (2D slices or projections,
depending on the region of interest). The images are then presented to
the convolutional neural network. First, features, such as edges, ridges, or
blobs, are detected using a series of mathematical filters (convolution).
Each resulting image is stored in a smaller format (pixel pooling). In
addition, a linear rectifier unit (ReLU) is applied to remove all negative
pixel values between two convolution operations. The new image,
containing an abstract description of the original image, is called a
feature map. This process is repeated several times, and the final feature

maps are converted into a one-dimensional array (vector) to form the
input layer of the fully connected neural network (FCN). This operation
is often called flattening. While it is common to have multiple hidden
layers between the input and the output layers of the fully connected
neural network, the output layer is directly connected to an activation
function that gives the likelihood that each category of objects is
present in the original image. Once the model has been trained to
recognize a specific type of object, e.g., a heart on a CT section scan,
the model will give a probabilistic answer to the question: does this image
contain a heart?

676 Forensic Sci Med Pathol (2020) 16:671–679

http://imageet.org


recently, a fully convolutional network (FCN) has been devel-
oped for medical image segmentation. The flowchart of the
network visually follows a U-shape and has been labeled U-
Net [47]. The U-Net architecture was subsequently extended by
Çiçek et al. [48]. Larsson, Zhang and Kahl proposed a two-step
method, where first the organ is registered using its center of
gravity, and then voxelwise binary classification is applied
using a CNN [49]. The method has the apparent advantage of
delivering more reliable results for organs with high anatomical
variability. There is no reference in the literature on automated
segmentation of organs using 3D PMCT images. Automated
segmentation of organs based on PMCT images could be used,
for instance, to estimate organ weight and detect anomalies
such as hemorrhagic pericardial effusion [50, 51]. Knowing
the exact position of an organ can also help in planning proce-
dures such as CT-guided needle placement [52].

Age estimation based on facial recognition can be traced
back to the work of Kwon and Lobo [53]. Since then, several
techniques using either geometric ratios of anthropomorphic
features or support vector machines on key landmarks have
been applied. Works that specifically use DL to extract fea-
tures were introduced in other studies [54–56].

In mass disaster events, PMCT can help speed up the pro-
cess of identifying victims [57]. PMCT also allows for sex,
age, ethnicity and stature estimation in the investigation of
unknown remains [58]. Age estimation techniques utilize a
variety of features, such as sternal rib ends, sacroiliac joint
morphology, the pubic symphysis and cranial sutures.
Additionally, dentition staging and development are highly
useful in age assessment of juveniles [59]. Some techniques,
such as statistical shape modeling, require 3D models extract-
ed from PMCT data, and these models could be automatically
extracted using automated segmentation [60].

In a postmortem examination, the time of death is estimated
using several parameters, such as lividity, body stiffness, body
temperature [61], presence of insects, environmental factors, and
others.With PMCT, additional postmortem changes, such as gas
formation inside the body of the deceased, can be assessed [62].

Fracture detection using DL produces reliable results in
conventional radiographs obtained at the hospital; Kim and
Mac Kinnon combined the Inception (version 3) pretrained
model to identify fractures from lateral wrist radiographs [63].

CT scans of the head are not only able to show plain pa-
thologies, such as hemorrhage, tumors and fractures, but also
make it possible to derive the sequence of complex fractures
and the direction of an inflicted gunshot [64–66]. The use of
deep learning for CT scans has been investigated in several
studies. For instance, in Chilamkurthy et al., the authors use
natural language processing to detect key findings in intracra-
nial hemorrhage [67]. A similar study was performed by
Arbabshirani et al., in which the authors used a CNN approach
instead [68]. To date, no studies have been published on the
use of machine learning for gunshot injuries.

For future research, we propose the following three-step
plan of action. Because machine learning requires a large
amount of structured data, the first step is to set up appropriate
databases, if possible, in a collaborative effort to increase the
volume of data. For clinical radiology, similar databases have
been developed. The second step is to adapt existing methods
from clinical radiology. Because PMCT data can be different
from clinical CT data (i.e. due to inner livores or putrefaction),
it is required that existing network topologies be retrained with
postmortem data. This approach will help research groups in
the field of forensic imaging build up their own expertise in
machine learning. Finally, new network topologies can be
developed that target image processing problems specific to
postmortem imaging.

Conclusion

The use of deep learning techniques to automate CT
image analysis can be found in various fields of medi-
cine. Studies reporting successful implementation of ma-
chine learning techniques to classify CT images in-
volved applications ranging from fracture detection to
the detection of pathologies, such as cancer and skin
anomalies. Convolutional neural networks constitute the
dominant choice in regard to choosing a deep learning
algorithm for medical diagnosis. This can be partly ex-
plained by the large number of existing frameworks,
such as TensorFlow, Keras or PyTorch. With little
knowledge of programming and few lines of code, these
frameworks enable researchers to build complex CNNs.
Therefore, most of the work relies on collecting enough
data to train a model and preprocessing the data to
make them compatible with these frameworks.
Additional work is also necessary to develop appropri-
ate network architectures and topologies.

Although there is alreadymuch literature on the use of deep
learning techniques in clinical CT image analysis, there is little
on the application of DL in forensic medicine and PMCT to
date.Many possible applications in this specific area remain to
be investigated.

Key points

1. Deep learning techniques could help to compensate for
the lack of postmortem radiology experts.

2. Numerous studies show how convolutional neural net-
works improve 2D medical image analysis.

3. 3D volumetric data add another level of complexity for
deep learning techniques.

4. Little research on applying deep learning techniques in
forensic medicine can be found.
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