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SUMMARY

CSF-1R haploinsufficiency causes adult-onset leukoencephalopathy with axonal spheroids and 

pigmented glia (ALSP). Previous studies in the Csf1r+/− mouse model of ALSP hypothesized a 

central role of elevated cerebral Csf2 expression. Here, we show that monoallelic deletion of Csf2 
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rescues most behavioral deficits and histopathological changes in Csf1r+/− mice by preventing 

microgliosis and eliminating most microglial transcriptomic alterations, including those indicative 

of oxidative stress and demyelination. We also show elevation of Csf2 transcripts and of several 

CSF-2 downstream targets in the brains of ALSP patients, demonstrating that the mechanisms 

identified in the mouse model are functional in humans. Our data provide insights into the 

mechanisms underlying ALSP. Because increased CSF2 levels and decreased microglial Csf1r 

expression have also been reported in Alzheimer’s disease and multiple sclerosis, we suggest that 

the unbalanced CSF-1R/CSF-2 signaling we describe in the present study may contribute to the 

pathogenesis of other neurodegenerative conditions.

In Brief

ALSP is a dementia caused by dominantly inherited inactivating mutations in the CSF1R. Chitu et 

al. report that CSF2 expression is increased in ALSP patients. Targeting Csf2 in ALSP mice 

prevents behavioral deficits and callosal atrophy and reduces demyelination by normalizing 

microglial function, identifying CSF-2 as a potential therapeutic target in ALSP.

Graphical Abstract

INTRODUCTION

The colony-stimulating factor-1 receptor (CSF-1R) is regulated by two cognate ligands, 

CSF-1 and interleukin-34; is expressed on microglia; and is required for their development 
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and maintenance (reviewed in Chitu et al., 2016). Recent studies show that microglia play 

important roles in the regulation of neuronal development, learning-dependent synaptic 

pruning, and oligodendrogenesis (Chitu et al., 2016; Hagemeyer et al., 2017). Thus, the 

microglial CSF-1R may non-cell-autonomously regulate neural lineage cells.

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), also 

known as hereditary diffuse leukoencephalopathy with axonal spheroids and pigmented glia 

or pigmented orthochromatic leukodystrophy, is an autosomal-dominant, neurodegenerative 

disorder caused by mutations of the CSF1R gene (reviewed in Konno et al., 2018). ALSP is 

characterized by dementia with neuropsychiatric and motor deficits and has an average 

disease duration of 6.8 years. The discovery of an ALSP patient with a CSF1R frameshift 

mutation that abolished CSF-1R protein expression proved that CSF1R haploinsufficiency is 

sufficient to cause ALSP (Konno et al., 2014).

Similar to ALSP patients, Csf1r+/− mice exhibit behavioral, radiological, histopathological, 

and ultrastructural alterations associated with microgliosis and demyelination (Chitu et al., 

2015). Microgliosis occurred in the absence of a compensatory increase in the expression of 

CSF-1R ligands. However, in both presymptomatic and diseased mice, microgliosis was 

associated with an increase in expression of mRNA of the proinflammatory microglial 

mitogen colony-stimulating factor-2 (CSF-2), also known as granulocyte macrophage CSF 

(GM-CSF) (Chitu et al., 2015). In the present study, we show that CSF2 expression is also 

increased in the brains of ALSP patients, and we examine the effect of removal of a single 

Csf2 allele on development of ALSP in Csf1r+/− mice.

RESULTS

Monoallelic Targeting of Csf2 Prevents White Matter Microgliosis in Young Csf1r+/− Mice

Because CSF-2 is a microglial mitogen (Lee et al., 1994), and Csf1r+/− mice exhibit early-

onset microgliosis (Chitu et al., 2015), we initially examined the effect of genetic targeting 

of Csf2 on Iba-1+ microglia density in young Csf1r+/− mice. Mono-allelic targeting was 

sufficient to normalize Csf2 mRNA expression and to lower the microglial density in Csf1r
+/− mice to wild-type levels (Figures 1A–1C). Csf2 homozygous deletion showed no 

additional effects over Csf2 heterozygosity. Consistent with the low abundance of Csf2 

transcripts in wild-type brains (Figure 1C), Iba-1+ cell densities in Csf2+/− and Csf2−/− mice 

were not different from those of wild-type mice (Figures 1A and 1B).

To investigate whether CSF-2 drives microgliosis in ALSP mice directly by stimulating its 

receptor in microglia, we used the Cx3Cr1Cre/+ gene targeting system (Yona et al., 2013; 

Goldmann et al., 2013) to delete a Csf2rb allele (Croxford et al., 2015) in myeloid cells and 

microglia. The mice were examined at 3 months of age, when there is no evidence of 

demyelination or other pathological changes (Figure S1) that could confound interpretation 

of the results. Similar to Csf2 heterozygosity, conditional deletion of a single Csf2rb allele 

was sufficient to prevent white matter microgliosis in young Csf1r+/− mice without altering 

microglial densities in the wild-type background (Figures 1D and 1E). These data indicate 

that CSF-2 causes microgliosis in the ALSP model via direct stimulation of microglia.
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Increased Expression of CSF2 in the Brains of ALSP Patients

To investigate whether CSF2 was elevated in the human disease, we examined the 

expression of CSF2 in the periventricular white matter and adjacent gray matter of 5 ALSP 

patients and 5 matched controls (Table S1). Consistent with the results obtained in mice, the 

levels of CSF2 transcripts were almost undetectable in control patients, whereas CSF2 

expression was increased in the gray matter of ALSP patients (Figure 1F).

Monoallelic Csf2 Inactivation Prevents Loss of Spatial Memory in ALSP Mice

The normalization of microglial density in young mice prompted us to determine the effect 

of monoallelic Csf2 inactivation on the development of behavioral deficits in older Csf1r+/− 

mice. Regardless of genotype, the body weight of males and females increased with age 

without significant genotype-associated differences (Figure S2), and there were no 

significant differences in survival up to 18 months of age. To test the effect of Csf2 

heterozygosity on short-term spatial memory, we used object recognition, object placement, 

and Y-maze paradigms. In the object recognition test, deficits observed in Csf1r 

haploinsufficient mice at 7 months of age were prevented by Csf2 heterozygosity (double 

heterozygous [Dhet]) (Figure 2A). In the Y-maze (Figure 2B) and object placement (Figure 

2C) tests, deficits apparent at 13–15 months in Csf1r haploinsufficient mice were also 

prevented by Csf2 heterozygosity. Interestingly, in the latter two tests, deficits were also 

present in Csf2 heterozygous mice. Similar results were obtained at 16.5 months of age in a 

test of long-term memory (object recognition with a 24-h retention interval; Figure 2D). 

Again, in these older mice, a deficit became apparent in Csf2 heterozygous mice. These 

results demonstrate prevention of short- and long- term spatial memory deficits of Csf1r+/− 

ALSP mice by Csf2 heterozygosity. However, they also show that Csf2 heterozygosity on a 

wild-type (WT) background results in spatial memory deficits with aging.

Csf2 Heterozygosity Prevents Depression-like Behavior in Male ALSP Mice

Previous studies demonstrated male-specific, depression-like behavior in Csf1r+/− mice 

(Chitu et al., 2015). This phenotype was reproduced with males in the current cohort and 

prevented by Csf2 heterozygosity (Figure 2E).

Monoallelic Csf2 Inactivation Prevents Olfactory Dysfunction in ALSP Mice

Because Csf1r+/− mice exhibit olfactory deficits (Chitu et al., 2015), we explored the 

contribution of CSF-2 to this phenotype in an odor discrimination test (Figure 3A). Mice of 

all genotypes exhibited lower exploration of the repulsive odorant and trigeminal stimulant, 

lime, compared with the attractive pure odorant, vanilla. However, in response to vanilla, 

WT mice increased their exploration with time, whereas Csf1r+/− mice failed to do so. This 

phenotype of Csf1r+/− mice was corrected by Csf2 heterozygosity. To further explore the 

olfactory response of Csf1r+/− mice to pure odorants, we subjected the mice to an odor 

threshold assay (Witt et al., 2009) using 2-phenylethanol (Doty et al., 1978; Figure 3B). 

Although WT control mice were able to detect 2-phenylethanol at a dilution of 10−1, Csf1r
+/− mice failed to detect the odorant at any concentration. Csf2 heterozygosity restored 

detection to Csf1r+/− mice at a threshold of 10−2. These results indicate that the response of 

Csf1r+/− mice to pure odorants is impaired and that monoallelic Csf2 inactivation alleviates 
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this phenotype. Csf2 heterozygous mice were unable to detect 2-phenylethanol but 

responded normally to vanilla. The basis of this selective impairment is unclear.

Inactivation of a Single Csf2 Allele Partially Improves the Motor Coordination Deficits of 

Female Csf1r+/− Mice

Balance beam studies have shown that older Csf1r+/− mice possess motor deficits (Chitu et 

al., 2015). This phenotype was reproduced with female Csf1r+/− mice. In contrast, Dhet 

mice were indistinguishable from the WT (p = 0.99) (Figure 3C). Similar to their behavior in 

the balance beam test, female but not male Csf1r+/− mice had increased ataxia scores 

(Guyenet et al., 2010; Figure 3D) that were not attenuated by Csf2 heterozygosity. 

Furthermore, Csf2 heterozygosity alone produced an ataxic phenotype. Overall, these results 

show that Csf1r+/− mice have a female-specific motor deficit and that targeting Csf2 

improves motor coordination on the balance beam but fails to improve ataxic behavior.

Csf2 Heterozygosity Prevents Cerebral but Not Cerebellar Microgliosis of Csf1r+/− Mice

Examination of the effects of inactivation of a single Csf2 allele in 18-month-old 

symptomatic Csf1r+/− mice revealed that Csf2 heterozygosity prevented the increase in 

Iba-1+ cells in all gray and white matter tracts examined, with the exception of the 

cerebellum (Figures 4A and 4B). A remarkable feature was the presence of periventricular 

patches of high microglial density in the callosal white matter (Figures S3A and S3B). 

Examination of multiple sagittal sections revealed that microglial patches were more 

frequently encountered in Csf1r+/− mice than in WT mice and that their frequency was 

normalized in Csf1r+/−; Csf2+/− Dhet mice (Figure S3B). Morphometric analysis showed 

that microglia in the white matter patches of Csf1r+/− mice had fewer ramified processes 

than those of WT mice (Figures 4C and 4D), suggestive of an activated state. The ramified 

morphology was restored in Dhet mice. In contrast, cortical microglia showed no significant 

difference in ramification compared with the WT (Figures 4C and 4E).

Absence of Leukocytic Infiltration in the Brains of Csf1r+/− Mice

Overexpression of Csf2 in peripheral helper T cells has been reported to promote monocytic 

infiltration in the brain (Spath et al., 2017), which could contribute to expansion of Iba1+ 

cells (Greter et al., 2015). To address the contribution of peripheral monocytes, we 

performed an unbiased flow cytometry analysis of all CD45+ cells in the brains of 15-

month-old mice (Figure 4F; Figure S4). This revealed that, in WT and Csf1r+/− mice, most 

Ly6G– CD45+ cells were CD11b+ CD45low P2ry12high, a profile that identifies brain-

resident microglia (Greter et al., 2015; Butovsky et al., 2014). Consistent with this, nearly 

100% of Iba1+ cells expressed P2ry12 in all brain regions tested (Figures 4G and 4H). 

Analysis of the leukocyte populations revealed that Csf1r+/− mice did not exhibit increased 

CD45high CD11b+ P2ry12− Ly6- Clow macrophages/dendritic cells or evidence of increased 

infiltration of P2ry12− Ly6G+ granulocytes, CD45high CD11b+ P2ry12− Ly6Chi monocytes, 

or various lymphocyte populations compared with WT mice (Figure 4F). The presence of an 

unusual population of Ly6G+ P2ry12high cells that presumably represent an activated state of 

microglia (G+μG; Figure 4F; Figure S4) was also detected in aged mice of both genotypes (p 

= 0.73 versus the WT). Furthermore, in Cx3Cr1GFP/+; Ccr2RFP/+ mononuclear phagocyte 

reporter mice (Mizutani et al., 2012), regardless of genotype or region, the majority of brain 
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mononuclear phagocytes were green fluorescent protein (GFP) single-positive and identified 

as resident microglia (Figures 4I and 4J). The proportions of red fluorescent protein (RFP) 

(Ccr2) single-positive monocytes and of cells expressing both monocytic (Ccr2) and 

microglial (P2ry12) markers in Csf1r+/− mice were comparable with the WT (Figures 4I and 

4J). These data indicate that there is no increase in leukocytic infiltration in Csf1r+/− mice. 

Together with the data shown in Figures 1D and 1E, these results indicate that expansion of 

Iba1+ cells occurs by direct stimulation of resident microglial proliferation by CSF-2.

Gene Expression Changes in Csf1r+/− Microglia Suggest a Maladaptive Phenotype

To determine how reductions in Csf1r or Csf2 expression, alone or in combination, affect 

microglial function in aged (21-month-old) mice, we analyzed the changes in the 

transcriptome of cerebral Tmem119+ microglia compared to WT controls. Csf1r 

heterozygosity led to differential expression of 496 genes, comprising 237 upregulated genes 

(URGs) and 259 downregulated genes (DRGs) (Table S2; Figure 5A). Functional 

enrichment analysis revealed that a significant proportion of the Csf1r+/− URGs encoded 

membrane (57), extracellular (39), and mitochondrial (16) proteins (Table S3). In contrast, 

the innate immunity cluster contained only four URGs (Tgtp1, Ly86, and the complement 

proteins C1qb and C1qc). Among the URGs encoding extracellular proteins were transcripts 

for the secreted inducer of senescence Augurin (Ecrg4) (Kujuro et al., 2010), the 

neuropeptide Tac2 (Andero et al., 2016), and the CSF-2-induced proinflammatory 

chemokine Ccl17 (Achuthan et al., 2016; Figure 5B). Other upregulated transcripts included 

those encoding several mitotoxic (Apoo, Mrps6, Nr2f2, and Coq7) (Turkieh et al., 2014; 

Sultan et al., 2007; Wu et al., 2015; Lapointe and Hekimi, 2008) and neurodegeneration-

related (Syngr1, Cst7, Trem2, Spp1, and Ch25h) (Hegyi, 2017; Ma et al., 2011; Krasemann 

et al., 2017; Shin et al., 2011) protein products (Figures 5B, 5F, and 5H). Interestingly, Csf1r 

heterozygosity did not reduce the expression of known neurotrophic factors by microglia; 

rather, it enhanced the expression of genes encoding neurturin, neudesin, midkine, IGF2, and 

vascular endothelial growth factor B (VEGFB) (Figure 5B; Table S4), suggesting that 

microglial neurotrophic functions were not impaired.

Analysis of the DRGs showed that approximately 50% (132 of 259) of these encode 

membrane proteins (Table S3), including proteins with anti-inflammatory activity, such as 

Thbd, Dpep2, Pirb, Cd244, Il4ra, and Il10ra (Wolter et al., 2016; Habib et al., 2003; Zhang 

et al., 2005; Georgoudaki et al., 2015; Mori et al., 2016; Lobo-Silva et al., 2016; Figures 5B 

and 5F). Consistent with downregulation of interleukin-10 (IL-10) receptor signaling in 

Csf1r+/− microglia, its downstream signaling mediator Stat3 and several IL-10 

transcriptional targets (Ddit4, Nfil3, and Tsc22d3) (Ip et al., 2017; Lang et al., 2002; Berrebi 

et al., 2003; Hoppstädter et al., 2015) were also downregulated (Figures 5B and 5F).

Other potentially relevant downregulated genes encode transcripts associated with 

Alzheimer’s disease (Sorl1) (Nicolas et al., 2016), leukodystrophy (Abcd1 and its 

downstream mediator of pathology, Ch25h) (Gong et al., 2017; Jang et al., 2016), and the 

CSF-2 target gene Pkch, encoding protein kinase Cη, a regulator of lipid metabolism and 

suppressor of nitrous oxide (NO) production by macrophages (Torisu et al., 2016; Ozawa et 

al., 2016; Figure 5B).
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Pathway analysis revealed that the transcriptomic changes associated with Csf1r 

heterozygosity are consistent with activation of the Rho GDP-dissociation inhibitor 

(RhoGDI) signaling and liver X receptor/retinoid X receptor (LXR/RXR) pathways (Figure 

5E; Table S5). The LXR/RXR pathway has been reported to increase cholesterol efflux and 

repress Toll-like receptor 4 (TLR4)-induced genes (Hiebl et al., 2018) but also promote 

inflammasome activation in microglia (Jang et al., 2016). However, inhibition of classical 

pro-inflammatory pathways, such as the acute phase response and nuclear factor κB (NF-

κB) signaling, as well as of TREM1 signaling, which sustains inflammation (Owens et al., 

2017), was also predicted (Figure 5E; Table S5), suggesting that Csf1r+/− microglia are not 

pro-inflammatory. Analysis of the biological processes affected by Csf1r heterozygosity 

predicted active neurodegeneration, increased cellular protrusions and microtubule 

dynamics, as well as elevated paired-pulse facilitation of synapses (Figure 5F; Table S6).)

To further explore how these transcriptomic changes are relevant to the neuropathology, we 

intersected our gene list with publicly available datasets showing changes in the microglial 

transcriptome in other mouse models of neurodegenerative disease, including models of 

Alzheimer’s disease (presenilin/amyloid precursor protein [PS-APP], AD 5xFAD, APPswe/

PS1dE9), tauopathy (Tau_P301S), amyotrophic lateral sclerosis (ALS), rapid 

neurodegeneration (CK-p25), and spinocerebellar ataxia (Mfp2−/−) (Friedman et al., 2018; 

Keren-Shaul et al., 2017; Mathys et al., 2017; Figure 5H). A list showing genes similarly 

regulated and their functions is provided in Table S7. The comparison shows that 29% of the 

Csf1r+/− DEGs were similarly regulated in at least one other neurodegenerative disease, with 

the most extensive overlap occurring with the APPswe/PS1dE9 Alzheimer’s disease model, 

followed by changes related to early neurodegeneration (CK-p25 early cluster 7) and ALS. 

Consistent with this overlap, Csf1r expression was downregulated in microglia isolated from 

mouse models of Alzheimer’s disease and ALS (Figure 5H). Changes occurring under most 

neurodegenerative conditions were high expression of a group of transcripts encoding the 

lysososmal cathepsin inhibitor Cystatin F (Cst7) (Ma et al., 2011); osteopontin (Spp1), an 

opsonin for cell debris (Shin et al., 2011); and cholesterol 25-hydroxylase (Ch25h), which, 

through its product 25-hydroxycholesterol, activates the LXR pathway and promotes 

reactive oxygen species (ROS) production and inflammation (Jang et al., 2016). 

Underexpression of neuroprotective (Clec4a1 and Il16; Flytzani et al., 2013; Shrestha et al., 

2014) and anti-inflammatory (Klf2, Gramd4, Ddit4, Pirb, and Tsc22d3; Roberts et al., 2017; 

Ip et al., 2017; Kimura et al., 2015; Zhang et al., 2005; Berrebi et al., 2003) transcripts was 

observed in ALSP and at least three other conditions (Figure 5H).

Together, our data suggest that Csf1r heterozygosity does not produce a neurotrophic defect 

or overt inflammatory activation of microglia. Rather, the transcriptional profile predicts a 

maladaptive microglial phenotype (Figure 6A). A summary of the pathways that could 

contribute to disease pathology is presented in Figure 6B.

Csf2 Heterozygosity Upregulates Antioxidant and Anti-inflammatory Signaling in Microglia

As described above, Csf2 insufficiency alone also impaired cognition (Figure 2) and 

partially affected olfaction and motor coordination (Figure 3). However, these phenotypes 

were not accompanied by microgliosis in Csf2+/− mice. Thus, we examined the effect of 
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Csf2 heterozygosity on microglia. Compared with WT controls, Csf2 heterozygosity 

dysregulated the expression of 1,168 genes (372 URGs and 796 DRGs; Figure 5A; Table 

S1). Most of the top differentially expressed transcripts encode products still uncharacterized 

or pseudogene transcripts (Figure S5A). Among the top upregulated transcripts were those 

encoding the proinflammatory cytokine CCL3 and the matrix metalloproteinase MMP11. 

The myelin-degrading MMP12 (Hansmann et al., 2012) was also upregulated (Figure S5D). 

Like Csf1r+/− microglia, Csf2+/− microglia downregulated the expression of several anti-

inflammatory genes (Figures S5A and S5D). Remarkably, Csf2+/− microglia reduced the 

expression of Il4ra but not of Il10ra (Figure S5D; Tables S2 and S8).

Analysis of pathways uniquely affected by Csf2 heterozygosity showed activation of the 

antioxidant vitamin C pathway; of peroxisome proliferator-activated receptor (PPAR) 

signaling, which regulates lipid metabolism and is anti-inflammatory (Wahli and Michalik, 

2012); and of the complement system, which has a well-established role in synapse loss in 

neurodegenerative disease (Hajishengallis et al., 2017; Stephan et al., 2012). Among the top 

predictions for inhibited pathways, we found dendritic cell maturation, neuroinflammation, 

lipopolysaccharide (LPS), and induced nitric oxide synthase (iNOS) signaling (Figure S5B). 

Analysis of biological processes selectively affected by Csf2 heterozygosity predicted 

increased inflammation and encephalitis, which were paradoxically associated with 

decreased leukocyte infiltration as well as decreased activation of neuroglia and microglia 

(Figure S5C). These data suggest that the neuropathology in Csf2+/− mice is not associated 

with classically defined inflammatory activation (i.e., increased proinflammatory cytokine 

and iNOS expression). CSF-2 insufficiency increases activation of the complement system 

and expression of matrix metalloproteinases (MMPs), both of which could affect neuronal 

network structure and function. However, it also causes activation of antioxidant (vitamin C 

antioxidant pathway, upregulation of Prdx4) and lipid metabolic (PPAR signaling) pathways 

that are expected to reduce oxidative stress and inflammation.

Targeting Csf2 in ALSP Mice Attenuates Microglial Dysfunction and Oxidative Stress

Investigation of the effect of reduction of CSF-2 availability revealed a large decrease in 

microglial transcriptomic changes of Csf1r+/−;Csf2+/− microglia (254 DEGs, 54 URGs, and 

200 DRGs) compared with Csf1r+/− microglia (Figure 5A). Indeed, hierarchical clustering 

of samples based on DEGs grouped Csf1r+/− and Csf2+/− apart from the Dhet samples, 

which were more related to WT samples (Figure 5G). Consistent with this, pathway analysis 

predicted restoration of RhoGDI and LXR/RXR signaling and attenuation of the 

neurodegenerative phenotype (Figures 5E and 5F). Furthermore, 86% of the transcriptional 

changes common to ALSP and other neurodegenerative conditions were eliminated in Csf1r
+/−;Csf2+/− microglia (Figure 5H), including the expression of gene products that suppress 

mitochondrial fitness and enhance oxidative stress (e.g., Ch25h, Ddit4, Il10ra, Apoo, and 

Coq7). Consistent with this, monoallelic inactivation of Csf2 in Csf1+/− mice reduced poly 

ADP-ribosylation, a marker of oxidative stress, in periventricular white matter microglial 

patches (Figures 6C and 6D).

The Cst7-encoded protein Cystatin F is a microglial marker of ongoing demyelination with 

concurrent remyelination (Ma et al., 2011). As predicted by the changes in Cst7 transcript 
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abundance, Cystatin F protein was readily detected in the callosal microglial patches present 

in Csf1r+/− brains, but its staining in Dhet brains was not significantly different from WT 

staining (Figure 5D). Thus, targeting CSF-2 improves microglial homeostatic functions.

Increased Expression of CSF-2 Target Genes Potentially Relevant to Pathology in the 

White Matter of ALSP Patients

To determine whether similar gene expression changes occur in ALSP patients, we isolated 

RNA from the callosal white matter of ALSP patients and control (Table S1) brains and 

performed real-time qPCR. Several transcripts potentially relevant to neurodegeneration, 

demyelination, and oxidative stress were also upregulated in the white matter of ALSP 

patients (Figure 6E). These results identify putative common contributors to the pathology of 

ALSP and of other demyelinating and neurodegenerative diseases.

Monoallelic Csf2 Inactivation on the ALSP Background Improves Callosal Myelination

Reduction of expression of the demyelination marker Cystatin F by targeting Csf2 prompted 

us to examine the ultrastructure of the corpora callosa of all genotypes by transmission 

electron microscopy. Examination of cross-sections showed that Csf1r+/− fibers have higher 

G-ratios than WT fibers, indicative of demyelination followed by remyelination (Figures 

7A–7C). Higher G-ratios were also observed in Csf2+/− samples (Figures 7A, 7B, and 7E). 

The G-ratios of callosal fibers in Dhet mice were not significantly different from those of 

WT fibers (Figures 7A, 7B, and 7D). Consistent with this, staining for myelin basic protein 

(MBP) was reduced in the corpus callosum of Csf1r+/− mice and the reduction was 

prevented by targeting Csf2 (Figure 7F). Other white matter tracts (fimbria and cerebellar 

white matter), although trending similarly, were not significantly affected (Figure 7F). 

Changes in myelination did not result from decreased availability of platelet derived growth 

factor receptor-α+ (PDGFRα+) early oligodendrocyte precursors or of mature CC1+ 

oligodendrocytes, which were paradoxically increased (Figure 7G). Examination of age-

related changes in myelin compaction revealed significantly increased myelin degeneration 

in Csf1r+/− mice that was not rescued by Csf2 heterozygosity (Figure 7H). In terms of 

axonal pathology, the data reflect a lack of protective effects of Csf2 targeting on 

neurodegeneration (Figure 7I). Consistent with the overall lack of protection against 

neurodegeneration, Csf2 heterozygosity did not attenuate the loss of neuronal nuclei+ (NeuN
+) mature neurons in cortical layer V (Figures 7J and 7K). Together, these data indicate that 

Csf2 heterozygosity rescues myelination but is not sufficient to prevent neurodegeneration 

and exacerbation of age-related myelin degeneration in ALSP mice.

Csf2 Heterozygosity Normalizes the Callosal Volume in Csf1r +/− Mice

Because Csf2 heterozygosity in the ALSP background normalized the G-ratios, we 

examined whether this resulted in attenuation of white matter loss using MRI. Compared 

with the WT, callosal volumes were lower in Csf1r+/− mice, and Csf2 heterozygosity 

prevented callosal atrophy (Figure 7L). In contrast, Csf2 heterozygosity did not cause a 

reduction in callosal volume.

Chitu et al. Page 9

Cell Rep. Author manuscript; available in PMC 2020 July 20.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



DISCUSSION

In a previous study (Chitu et al., 2015), we showed that microglial densities were elevated in 

several brain regions of young and old Csf1r+/− ALSP mice and associated with increased 

expression of Csf2, encoding the microglial mitogen CSF-2. Aside from its mitogenic 

activity, CSF-2 primes neurotoxic (Fischer et al., 1993) and demyelinating (Smith, 1993) 

responses in microglia. Because CSF2 expression is also elevated in post-mortem ALSP 

brains (Figure 1F), we reasoned that CSF-2 plays an important role in ALSP pathogenesis. 

Indeed, we show that Csf2 heterozygosity rescues the olfactory, cognitive, and depression-

like phenotypes of Csf1r+/− mice and ameliorates the motor coordination deficits (Figures 2 

and 3). Csf2 targeting also reduces microgliosis (Figures 1A, 1B, 4A, and 4B) and a 

hallmark feature of ALSP, demyelination (Figures 7A–7D and 7F). Although, in the CNS, 

the CSF-2 receptor is expressed on neural lineage cells (Reed et al., 2005; Baldwin et al., 

1993) and microglia, several lines of evidence suggest that Csf2 deletion ameliorates 

neuropathology by acting on microglia rather than on neural lineage cells. First, the reported 

neuroprotective (Schäbitz et al., 2008) and oligodendrogenic (Baldwin et al., 1993) activities 

of CSF-2 suggest that its targeting in ALSP should be detrimental rather than protective. 

However, we found that Csf2 heterozygosity did not exacerbate loss of layer V neurons, 

indicating that its neuroprotective actions are negligible in the context of ALSP. 

Furthermore, in the ALSP mouse, demyelination is paradoxically associated with an 

expansion of oligodendrocyte precursors and APC+ oligodendrocytes (Figure 7G). Targeting 

of Csf2 prevents the increase in oligodendrocytes and oligodendrocyte precursors in ALSP 

mice (Figure 7G), but this finding cannot explain how it attenuates the loss of myelin. One 

conceivable explanation is that Csf2 heterozygosity prevents microgliosis (Lee et al., 1994) 

and priming of demyelinating (Smith, 1993) and neurotoxic (Fischer et al., 1993) responses 

in microglia. A direct investigation of the contribution of CSF-2 signaling in different cell 

types to pathology requires conditional targeting of its receptor, Csf2ra, which is presently 

not possible because of the absence of a specific genetic model. An acceptable 

approximation is conditional targeting of Csf2rb, which encodes the common subunit of 

CSF-2, IL-3, and IL-5 receptors (Croxford et al., 2015), using lineage-specific Cre drivers. 

Using this approach, we showed that attenuation of CSF-2 signaling in CX3CR1-expressing 

cells (i.e., mononuclear phagocytes and microglia) was sufficient to prevent white matter 

microgliosis in young mice (Figures 1D and 1E). Based on this observation and on the 

finding that monocyte-derived cells do not significantly contribute to the widespread 

microgliosis in aged Csf1r+/− mice (Figures 4F–4J), we conclude that CSF-2 triggers 

microgliosis via direct signaling in CNS-resident microglia. Thus, although a contribution of 

CSF-2 signaling in other cell types cannot be formally excluded, current data suggest that 

the CSF-2-mediated dysregulation of microglial function plays a central role in the 

pathology of ALSP mice. Consistent with this, transcriptomic analysis revealed that Csf2 

heterozygosity suppressed a high proportion of the transcriptomic changes occurring in 

Csf1r+/− microglia, including the expression markers of oxidative stress and demyelination 

(Figures 5 and 6 and a more detailed discussion below).

Transcriptomics analysis suggests that clearance of apoptotic cells and myelin debris 

triggers maladaptive responses in Csf1r+/− microglia. Relevant changes include 
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overexpression of TREM2, an innate immune receptor expressed on microglia that promotes 

clearance of apoptotic neurons and myelin debris (Poliani et al., 2015). Recent work 

indicates that, following uptake of apoptotic neurons or neuronal debris, TREM2 increases 

the expression of oxidative stress markers and complement components and suppresses the 

homeostatic function of microglia (Linnartz-Gerlach et al., 2019; Krasemann et al., 2017). 

The molecular mechanism could involve suppression of mitophagy either directly (Ulland et 

al., 2017; Wang et al., 2019) or as an indirect consequence of overloading of the degradative 

pathway by the ingested myelin (Safaiyan et al., 2016). Furthermore, as observed in the 

mouse model (Figure 5C), overexpression of TREM2 also occurs in the white matter of 

ALSP patients (Figure 6E), where others have documented the presence of lipid-laden 

macrophages (Tada et al., 2016; Lin et al., 2010). Thus, decreased autophagy may contribute 

to ALSP pathology, and the benefits of stimulation of autophagy should be further explored.

Dysregulation of lipid metabolism may also contribute to ALSP. One of the genes 

downregulated in Csf1r+/− microglia encodes the very-long-chain fatty acid transporter 

ABCD1. Mutations in ABCD1 cause X-linked adrenoleukodystrophy, a demyelinating 

disease associated with microglial dysfunction mediated by overexpression of Ch25h 

encoding cholesterol 25 hydroxylase (Gong et al., 2017; Jang et al., 2016). The product of 

cholesterol 25 hydroxylase (CH25H), 25-hydroxycholesterol (25-HC), is an activating 

ligand of LXR, providing an explanation for activation of the LXR/RXR pathway in Csf1r
+/− microglia (Figure 5E). In vivo, 25-HC has been reported to promote oligodendrocyte 

death, and in vitro, 25-HC stimulates IL-1β secretion by microglia in a mitochondrial ROS- 

and LXR/RXR-dependent manner (Jang et al., 2016). Expression of CH25H was also 

elevated in the white matter of ALSP patients (Figure 6E), suggesting that dysregulation of 

cholesterol metabolism in microglia may contribute to the pathology of ALSP.

Double Csf1r and Csf2 heterozygosity eliminates the changes in most canonical pathways 

and biological processes produced by either Csf1r or Csf2 heterozygosity alone (Figures 5E 

and 5F; Figures S5B and S5C), including activation of the LXR/RXR pathway (Figure 5E). 

In the context of ALSP, Csf2 heterozygosity virtually restores microglial function, resulting 

in attenuation of oxidative stress, improvement of callosal myelin thickness, and restoration 

of callosal volume (Figures 5, 6, and 7). Together with normalization of most behavioral 

phenotypes of Csf1r+/− mice by monoallelic targeting of Csf2, these studies clearly identify 

CSF-2 as a therapeutic target in ALSP. In addition, this work demonstrates that reduction of 

either CSF-1R or CSF-2 signaling impairs microglia function and homeostasis of the aging 

CNS and that rebalancing the signals is beneficial. Increased CSF2 levels and decreased 

microglial Csf1r expression have been reported in Alzheimer’s disease (Figure 5; Tarkowski 

et al., 2001) and multiple sclerosis (Kostic et al., 2018; Werner et al., 2002). Thus, apart 

from ALSP, the unbalanced CSF-1R/CSF-2 signaling described here may contribute to the 

pathogenesis of other neurodegenerative conditions.
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STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Dr. E. Richard Stanley (richard.stanley@einsteinmed.org). The study did not 

generate new unique reagents.

EXPERMENTAL MODEL AND SUBJECT DETAILS

In vivo animal studies

Mouse Strains, Breeding and Maintenance: All in vivo experiments were conducted in 

accordance with the National Institutes of Health regulations on the care and use of 

experimental animals and approved by the Albert Einstein College of Medicine Institutional 

Animal Care and Use Committee. The generation, maintenance and genotyping of Csf1+/− 

mice was described previously (Dai et al., 2002). Csf2+/− mice (Dranoff et al., 1994) were a 

gift from Dr. Glenn Dranoff and were genotyped using a PCR procedure developed by the 

Dranoff laboratory that utilizes the primers listed in the Key Resources table. Both lines 

were backcrossed for more than 10 generations onto the C57BL6/J background. Cohorts 

were developed from the progeny of matings of Csf1r+/− to Csf2+/− mice, randomized with 

respect to the litter of origin. At 3 months of age, they were transferred from a breeder diet 

(PicoLab Rodent Diet 20 5058) to a lower fat maintenance diet (PicoLab Rodent Diet 20 

5053). This prevented the increase in body weight in Csf1r+/− mice compared with wild-

type mice observed in our earlier study (Chitu et al., 2015) and was also associated with 

delayed onset of spatial memory deficits (from 7 to 14 months of age) and absence of motor 

impairment in male Csf1r+/− mice. Csf2rbfl/fl mice (Croxford et al., 2015) were provided by 

Dr. Burkhard Becher, via Dr. William R Drobyski, Medical College of Wisconsin, 

Cx3Cr1GFP/+; Ccr2RFP/+ mononuclear phagocyte reporter mice (Saederup et al., 2010) were 

a gift from Dr. Susanna Rosi, Kavli Institute for Fundamental Neuroscience, University of 

California, San Francisco and Cx3Cr1Cre/+ mice (Yona et al., 2013) were a gift from Dr. 

Marco Prinz, Institute of Neuropathology, Freiburg University Medical Centre, Freiburg, 

Germany. The age and sex of animals used in each experiment is indicated in Table S9.

Human studies—Frozen brain tissue blocks containing periventricular white matter were 

obtained from the Mayo Clinic Brain Bank. Consent for autopsy was obtained from the legal 

next-of-kin. Studies involving autopsy tissue are exempt from human subjects research 

(Health and Human Services Regulation 45 CFR Part 46). Information on the ALSP patients 

harboring CSF1R mutations and control cases included in this study is summarized in Table 

S1. Upon removal from the skull according to standard autopsy pathology practices, the 

brain was divided in the mid-sagittal plane. Half was fixed in 10% neutral buffered formalin, 

and half was frozen in a −80°C freezer, face down to avoid distortion. The frozen brain was 

shipped on dry ice to the Neuropathology Laboratory at Mayo Clinic where it was stored in 

−80°C freezer. Frozen tissue was partially thawed before dissection and slabbed in a coronal 

plane at about 1-cm thickness. Regions of interest were dissected from the frozen slabs and 

placed in microcentrifuge tubes before being shipped to the research laboratory on dry ice. 

At all steps, the fresh and frozen tissue was handled with Universal Precautions.
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METHOD DETAILS

Cognitive Assessment—Behavioral studies were carried out by blinded operators. 

Recognition memory was assessed as time exploring a familiar and a novel object, using the 

novel object recognition test (Ennaceur and Delacour, 1988). The experimental groups were 

first tested at 7 months of age for short-term memory (1h-retention interval), then at the age 

of 16 months for long-term memory (24h-retention interval). Mice explored two identical 

objects (familiarization) for 4 min (1h-retention) or for 10 min (24h-retention) during the 

training stage. Mice were then exposed to one of the familiar objects and to a novel object 

for 3 min (1h-retention) or 5 min (24h-retention) during the testing stage. Each mouse was 

placed in the center of a 40 cm x 40 cm open field box and allowed to explore the objects 

freely during each stage. Two different pairs of non-toxic objects were used for each 

experiment. The novelty of the objects (i.e., novel versus familiar) was counter-balanced 

within each genotype and the objects were previously validated for equivalent exploratory 

valence.

Spatial recognition memory was measured at 13.5 months of age in the two-trial test version 

of the Y-maze (Biundo et al., 2016). Briefly, during the training trial, one of the arms of the 

maze was closed, and mice were placed into one of the two remaining arms of the maze 

(start arm) and allowed to explore the open two arms for 10 min. After a 1h inter-trial 

interval, the blocked arm was opened (novel arm), and mice were placed in the start arm and 

allowed to explore freely all three arms of the maze for 5 min (test trial).

Spatial recognition memory was also tested at 14.5 months of age in the object placement 

test (Ennaceur and Delacour, 1988). Each mouse was exposed for 7 min to two identical 

objects placed in a 40 cm x 40 cm open field box. Four different visual cues were hung on 

the walls of the box to permit each mouse to orient within the arena. During the training 

stage, the objects were placed at a distance of 10 cm from one another. After an interval of 

25 minutes, one of the objects was displaced into a novel position (15 cm distance, 90 

degree angle) and each mouse was returned to the same box to explore the objects for 5 min 

(testing).

Olfactory Assessment—Olfactory discrimination was tested at 8 months of age. Each 

mouse was exposed to two non-social odors, a pure odorant attractant (vanilla extract) and 

an aversive odorant (lime extract), and to water as control. Each odorant was adsorbed in a 

filter paper placed in a 30-mm Petri dish (5 ul of lime extract, 30 ul of vanilla extract, or 30 

ul of water per filter). During the test, a single mouse was placed in the center of a 40 cm x 

40 cm box in which the dishes containing odorant filters were placed in two opposite corners 

of the box, while two dishes containing water-adsorbed-filters were placed in the remaining 

opposite corners. All the dishes were covered until each mouse was placed in the box. Mice 

were allowed to explore for 10 minutes. Time exploring each odorant and water was 

recorded during two 5-minute consecutive bins.

The ability of mice to explore a pure odorant was further assessed in 10-month-old mice 

using the olfactory threshold test in which exploration of the pure odorant, 2-phenylethanol, 

or mineral oil carrier, applied to a cotton tip, is assessed (Doty et al., 1978; Witt et al., 2009). 

All experiments were carried in a plexiglas box placed in a odor-free ventilated hood. Before 
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testing, each mouse was habituated to the cotton tip by being exposed five times to mineral 

oil. During the testing trials, the experimental groups were exposed to 5 ten-fold serial 

dilutions (from 10−4 to 10°) of the odorant. Between each dilution of odorant mice were 

exposed to mineral oil. In each condition, the cumulative time spent exploring the odorant or 

mineral oil over a 1 minute period was recorded.

Depression-like Behavior—Depression-like behavior was assessed as immobility, using 

the Porsolt Forced Swim Test (Porsolt et al., 1977a; Porsolt et al., 1977b). Briefly, each 

mouse was placed into a 4-l beaker filled with warm water (24°C) for 10 minutes and the 

duration of immobility during three, 3-minute, consecutive bins was recorded.

Motor Coordination and Ataxic Behavior—Motor coordination was assessed as the 

number of slips made while crossing a round, wooden balance beam (Gulinello et al., 2008). 

Briefly, each mouse was allowed to walk along a 1.6 cm diameter, 1 m long beam placed 

between two holders 1 m off the ground. Palatable food was placed at the end of the beam as 

an incentive to cross. The ataxia phenotype was evaluated as the sum of scores in the ledge, 

the hindlimb clasping and the gait tests, as previously described (Guyenet et al., 2010).

Gene Expression Studies in ALSP Patients—RNA was isolated from either the 

periventricular white matter or the adjacent gray matter of 5 ALSP patients and 5 control 

patients (see Table S1) using Trizol and cDNA was prepared using a Super Script III First 

Strand Synthesis kit (Invitrogen, Carlsbad, CA). Real time PCR was performed using SYBR 

Green in an Eppendorf Realplex II thermocycler. The primers used are listed in Table S10. 

Average values from two different blocks of tissue per patient, were used to construct the 

figures.

Analysis of Microglia and Leukocytes—Microglia and brain leukocytes were 

analyzed using and adaptation of the protocol described by Legroux et al. (2015). Briefly, 

mice were perfused with ice-cold PBS containing 10 U/ml heparin. Brains were dissected, 

minced and digested in 5 mL digestion buffer (2mg/ml Collagenase D, 14 μg/ml DNase I in 

Hanks’ Balanced Salt solution (HBSS)) for 20’at 37°C. Myelin was removed by 

centrifugation in 37% Percoll in HBSS for 10 minutes at 500 × g, without brakes. The cell 

pellet was washed twice with FACS buffer (2% FCS in PBS), and the Fc receptors were 

blocked by incubation in FACS buffer containing rat anti-mouse CD16/CD32 (Fc block) for 

15 minutes on ice. The cells were stained using the antibodies diluted 1:200 in FACS buffer 

and incubated overnight at 4°C in the dark. Cells were subsequently washed twice with 

FACS buffer, resuspended in 1ml FACS buffer containing 2.5 μg/ml DNase I and analyzed in 

a MoFlo Astrios EQ (Beckman Coulter, IN). The antibodies used for staining are listed in 

the Key Resources Table and the gating strategy utilized to identify each cell type is shown 

in Figure S3. Data were analyzed using FlowJo version 10.6.1.

Microglia Isolation and RNA-Seq Analysis—Microglia were isolated by FACS 

(Bennett et al., 2016). The RNA was extracted using a QIAGEN RNeasy Plus Micro kit and 

stored at −80°C prior to analysis. We obtained 150 bp paired-end RNA-Seq reads from an 

Illumina NextSeq 500 instrument. For 3 biological replicates of wild-type, Csf1r+/−, Csf2+/−, 

and 2 biological replicates for Csf1r+/−;Csf2+/− samples, an average of ~46 million pairs of 
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reads per sample was obtained. The computational pipeline for identifying differentially 

expressed genes (DEGs) has been described previously (Wang et al., 2017). Briefly, adapters 

and low quality bases in reads were trimmed by trim_galore: (http://

www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The Kallisto (v0.43.1) software 

(Bray et al., 2016) was employed to determine the read count and transcripts per kilobase 

million (TPM) for each gene that was annotated in the GENCODE database (vM15) (Mudge 

and Harrow, 2015). Then we summed the read counts and TPM of all alternative spliced 

transcripts of a gene to obtain gene expression levels. To identify DEGs, 14,739 expressed 

genes with an average TPM > 1 were selected in any of the wild-type, Csf1r+/−, Csf2+/− and 

Csf1r+/−;Csf2+/− samples, using the software DESeq2 (Love et al., 2014) and false discovery 

rate (FDR) < 0.05. For selected genes changes in expression were validated by qPCR, 

utilizing the primers listed in Table S10. Ingenuity pathway analysis (IPA) (https://

digitalinsights.qiagen.com/) was used for canonical pathway analysis.

Comparison of DEGs With Other Datasets—The DEG lists from Csf1r+/− or Csf2+/− 

samples were compared to the DEG lists generated from other studies of microglia 

transcriptome changes associated with neurodegeneration (Mathys et al., 2017; Keren-Shaul 

et al., 2017). In Keren-Shaul et al. (2017) and Friedman et al. (2018), DEGs were defined as 

FDR < 0.05, as described in the original papers, while in Mathys et al. (2017) DEGs were 

defined by |z| > 2. The log2(fold-change) of those DEGs were used to generate heatmaps.

MRI Imaging—Mice were imaged on an Agilent Direct Drive 9.4 T MRI system (Agilent 

Technologies, Santa Clara, CA) as previously described (Chitu et al., 2015). Mice were 

anesthetized with 1.5% isoflurane in room air, and respiratory rate and oxygenation 

saturation were monitored and maintained within normal ranges, while body temperature 

was maintained at 39°C, using a warm air circulator (SA instruments, Bayshore, NY). A 

1.8mm actively decoupled surface coil (Doty Scientific, Columbia, SC) was used for 

acquisition, and a 60 mm ID birdcage volume coil (M2M Imaging, Cleveland, OH) was used 

for radio frequency transmission. Callosal volumes were measured using MIPAV 7.1.1 

freeware (https://mipav.cit.nih.gov/).

Ultrastructural Studies—Callosal sections were obtained as described (Chitu et al., 

2015). Briefly, mice were perfused with 30 mL of cold phosphate buffered saline (PBS) 

containing 10 U heparin/ml followed by 30 mL of 2% paraformaldehyde (PFA) in PBS. The 

dissected brains were cut into 2 mm thick slices and placed in cacodylate fixation buffer (2% 

PFA, 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4) for 40 min at room 

temperature. Corpus callosum was dissected, incubated overnight at 4°C in cacodylate 

fixation buffer, embedded, sectioned, stained and examined by transmission electron 

microscopy using a FEI Technai 20 transmission electron microscope. The ratio between the 

diameter of an axon and the mean diameter of the myelinated fiber (G-ratio) was determined 

on 200 randomly chosen fibers (3–6 animals/ genotype) using ImageJ software (imagej.net). 

Age-related ultrastructural changes were identified according to the description provided by 

Peters and Sethares (Alan Peters and Claire Folger Sethares, The fine structure of the aging 

brain (http://www.bu.edu/agingbrain)) and quantified in 15 different microscopic fields /

mouse (3–6 animals/genotype; average neurons/genotype 1118; range 929–1498).
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Immunofluorescence Staining of Brain Sections—Brain sections (30 μm thick) 

were obtained as described (Chitu et al., 2015) and stained using antibodies to ionized 

calcium binding adaptor molecule 1 (Iba1) (rabbit IgG; Wako Chemicals, Richmond, VA or 

goat IgG; AbCam, Cambridge, MA), cystatin F (rabbit IgG; Fisher, Pittsburgh, PA), 

poly(ADP-ribose) (mouse monoclonal, Millipore, Billerica, MA), myelin basic protein 

(mouse monoclonal, BioLegend, Dedham, MA), PDGFRa (goat polyclonal, Minneapolis, 

MN), CC1 (a mouse antibody to APC reacting with Quaking 7, Millipore, Danvers, MA) 

and NeuN (mouse monoclonal, Millipore, Danvers, MA). Rat anti-P2ry12 was a gift from 

Dr. Oleg Butovsky (Harvard Medical School). Secondary antibodies, conjugated to either 

Alexa 488, Alexa 594 or Alexa 647, were from Life Technologies (Grand Island, NY). 

Images were captured using an Nikon Eclipse TE300 fluorescence microscope with 

NISElements D4.10.01 software. Quantification of cell numbers was performed manually. 

Quantification of fluorescent areas was performed using ImageJ. Images were cropped and 

adjusted for brightness, contrast and color balance using Adobe Photoshop CS4.

Microglia morphometry—Brain sections (30 μm thick) were obtained and stained with 

Iba1 as described in the previous section. Z series stacks were acquired using a Leica SP5 

Confocal microscope at 40x magnification with a 2 μm interval between images. 

Morphometric analysis of microglia was carried out in FIJI on maxiumum intensity 

projections of tissue sections from 3 mice/genotype using the protocol described by Young 

and Morrison (2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses—Statistical analysis was performed using the GraphPad Prism 7 

software (GraphPad, La Jolla, CA, USA). Data were screened for the presence of outliers 

using the ROUT method, assessed for Gaussian distribution by D’Agostino-Pearson 

omnibus normality test and analyzed using Student’s t test, one-way ANOVA, the Kruskal-

Wallis test or two-way ANOVA, as appropriate. Pairwise differences were identified using 

post hoc multiple comparison tests. The level of significance was set at p < 0.05. Data within 

each group are presented as averages ± standard error of the mean (SEM). Only those 

differences that have reached statistical significance are indicated on the figures. Sample 

sizes for each experiment are indicated in the figure legends and more information can be 

found in Table S9.

DATA AND CODE AVAILABILITY

Data Availability—All data are available in the main text or the supplemental materials. 

The source data for Figure 4F are available in the Mendeley Database: https://

data.mendeley.com/datasets/7m928vkpht/draft?a=19e92205–6537-4f8b-9278-

f2399d5a55ba. RNA Seq data are available in the Gene Expression Omnibus (GEO) 

database: GSE143823.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ALSP is a CSF1R-deficiency dementia associated with increased CSF2 

expression

• In Csf1r+/−ALSP mice, CSF-2 promotes microgliosis by direct signaling in 

microglia

• Targeting Csf2 improves cognition and myelination and normalizes microglial 

function

• CSF-2 is a therapeutic target in ALSP
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Figure 1. Involvement of CSF-2 in the Pathology of ALSP

(A) Microglial densities in the corpus callosum of 4- to 5-month-old mice.

(B) Quantification of microglial densities. Two-way ANOVA followed by Dunnett’s post 

hoc test.

(C) Restoration of normal Csf2 expression in 3- to 4-month-old Csf1r+/− mice by monallelic 

targeting of Csf2. One-way ANOVA followed by Tukey’s multiple comparisons test.

(D and E) Evidence of direct regulation of the increase of Iba1+ cell density by Csf2. 

Microglial densities (D) and quantification (E). Data ± SEM, 3-month-old mice, one-way 

ANOVA followed by Tukey’s multiple comparisons test.

(F) Expression of CSF2 in the periventricular white matter and adjacent gray matter of 

ALSP patients and healthy controls, determined by real-time qPCR and normalized to 

RPL13. n = 5 control or ALSP specimens; *p < 0.05, one- tailed Student’s t test.

Scale bars, 100 μm, applies to all panels in the corresponding composite image. Data are 

presented as means ± SEM, and only the significantly different changes are marked by 

asterisks. See also Figure S1 and Tables S1 and S9.
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Figure 2. Deletion of a Single Csf2 Allele Prevents the Cognitive Deficit and Depression in ALSP 
(Csf1r+/−) Mice

(A–D) Cognitive assessment. The test performed, age of the mice, and retention interval (RI) 

are indicated in each panel. The number of mice per genotype in each experiment is shown 

in the bars in the left panel.

(A) Left (training): preference for the left side by Csf1r+/− mice exploring two familiar 

identical objects. Right (testing): Csf1r+/− mice spent less time exploring the novel object 

(left side).
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(B) Left: similar exploration of the arms of the Y-maze in all experimental groups. Right: 

lower discrimination for the novel arm by Csf1r+/− mice is corrected in Csf1r+/−; Csf2+/− 

(Dhet) mice.

(C) Left: all experimental groups exhibited similar times of exploration of either object. 

Right: lower preference for the displaced object by Csf1r+/− mice is corrected in Dhet mice.

(D) Left (training): all experimental groups exhibited similar times of exploration of two 

familiar identical objects. Right (testing): reduced long-term memory for the novel object by 

Csf1r+/− mice was corrected in Dhet mice.

(E) Increased depression-like behavior in male Csf1r+/− mice is corrected in Dhet mice.

Data were analyzed using two-way ANOVA followed by Bonferroni’s (A–C); Holm-Sidak’s 

(D); or Benjamini, Krieger, and Yekutieli’s (E) post hoc tests. The left panel in (B) was 

analyzed by one-way ANOVA (not significant). Data are presented as means ± SEM.

See also Figure S2 and Table S9.
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Figure 3. Attenuation of the Olfactory and Motor Coordination Deficits of Csf1r+/− Mice by Csf2 
Heterozygosity

(A) Odor discrimination at 7 months of age. Csf1r+/− mice showed no significant increase in 

exploring the pure odorant vanilla.

(B) Odor threshold to the pure odorant 2-phenylethanol by 11.5-month-old mice. Absence of 

a significant threshold in Csf1r+/− mice is corrected in Dhet mice.

(C) Locomotor coordination in mice, assessed as number of slips in the balance beam test.

(D) Ataxia score in mice, assessed as sum of the ledge, hindlimb, and gait scores.
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Data were analyzed using two-way ANOVA followed by Bonferroni’s (A) and Dunnett’s 

(B) post hoc tests or by Kruskal-Wallis test followed by Dunn’s post hoc tests (C and D). 

Data are presented as means ± SEM.

See also Figure S2 and Table S9.
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Figure 4. Csf2 Heterozygosity Prevents Cerebral Microgliosis in Aged ALSP Mice

(A) Iba1+ cell densities (green) in different areas of brains of 18-month-old mice. Cb, 

cerebellum; CC, corpus callosum; Cb WM, cerebellar white matter; Cx, primary motor 

cortex; DCN, deep cerebellar nuclei; Hp, hippocampus; OB, olfactory bulb.

(B) Quantification of Iba1+ cell densities.

(C) Morphology of Iba1+ cells. The dotted line indicates the border between the CC and the 

adjacent gray matter.
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(D and E) Quantification of microglia ramification in the white (D) and gray (E) matter 

regions shown in (C).

(F) Quantification of microglia and infiltrating leukocytes by flow cytometry. μG, microglia; 

AμG, activated microglia; BLΦ, B lymphocytes; G+μG, Ly6G+ P2ry12high microglia; Gr, 

Ly6G+P2ry12− granulocytes; MΦ/DC, Ly6C− macrophages/dendritic cells; Mo, Ly6C+ 

infiltrated monocytes; NK, natural killer cells; TCD4 and TCD8, CD4 and CD8+ T 

lymphocytes; Tγδ, γδ T cells. Data were obtained from 16-month-old WT (n = 4) and Csf1r
+/− (n = 5) mice.

(G) Colocalization of P2ry12 (red) with Iba1+ cells (green).

(H) Quantification of P2ry12 expression in Iba1+ cells in WT and Csf1r+/− mice; 5 mice/

genotype.

(I) Expression of Cx3Cr1 (GFP, green) and Ccr2 (RFP, red) reporters in 11-month-old 

Cx3Cr1GFP/+;Ccr2RFP/+;Csf1r+/+ (+/+) and Cx3Cr1GFP/+;Ccr2RFP/+;Csf1r+/− (+/−) mice.

(J) Quantification of mononuclear phagocytes in Cx3Cr1GFP/+;Ccr2RFP/+ reporter mice (5 

mice/genotype). Significance was analyzed using two-way ANOVA (B, F, H, and J) or one-

way ANOVA (D and E), followed by Benjamini Krieger and Yekutieli post hoc analyses.

Data are presented as means ± SEM. Scale bars, 100 μm, apply to all panels in the 

corresponding composite image. Minor irregularities in (A) images Csf2+/− Cx and Csf1r+/− 

CC, (G) images Csf1r+/− Hp and WT Cb, and (I) WT and Csf1r+/− Cb images arise from 

automated image stitching in Photoshop.

See also Figures S3 and S4 and Table S9.
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Figure 5. Csf2 Heterozygosity Restores the Csf1r+/− Microglial Transcriptomics Profile

(A) Differences in gene expression profile in Csf1r+/−, Csf2+/−, and Dhet microglia 

compared with WT controls.

(B) Volcano plot highlighting DEGs of interest in Csf1r+/− microglia.

(C) Validation of changes in expression of selected upregulated (top panel) and 

downregulated (lower panel) genes in microglia isolated from 4 WT, 5 Csf1r+/−, 5 Dhet, and 

4 Csf2+/− mice. Two-way ANOVA followed by Dunnett’s post hoc test.
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(D) Expression of Cystatin F in the CC of WT, single heterozygous, and Dhet mice. Scale 

bar, 100 μm, applies to all panels. N = 5 mice/genotype, one-way ANOVA followed by 

Tukey’s post hoc test; n.s., not significant (p = 0.33).

(E and F) Ingenuity Pathway Analysis (IPA)-generated list of pathways (E) and biological 

processes (F) affected by Csf1r heterozygosity and their predicted activation status in 

Csf2+/− and Dhet microglia. Dots indicate no significant difference.

(G) Heatmap showing the expression of Csf1r+/− DEGs across individual samples.

(H) Illustration of the overlap of Csf1r+/− DEGs with genes differentially expressed in other 

mouse models of neurodegenerative disease. Note decreased Csf1r expression in a model of 

Alzheimer’s disease (AD) (APPswe/PS1dEp) and in disease-associated microglia (DAMs-

AD, DAMs-ALS). The Csf1r targeting strategy (Dai et al., 2002) does not affect 

transcription, precluding confident detection of decreased Csf1r expression in Csf1r+/− 

microglia using RNA sequencing (RNA-seq) (log2FC = −1.15, p = 0.01, adjusted p = 0.1).

Data are presented as means ± SEM.

See also Figure S5 and Tables S2, S3, and S4–S10.
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Figure 6. Pathways Dysregulated in Csf1r+/− Mice and ALSP Patients

(A and B) Predicted maladaptive functions (A) and hypothetical pathways (B) dysregulated 

in Csf1r+/− mouse microglia.

(C) Evidence of oxidative stress: colocalization of the poly (ADP-ribose) signal with callosal 

microglial patches in periventricular white matter. Scale bar, 100 μm, applies to all panels.

(D) Quantification of the callosal area positive for poly (ADP-Ribose) in 2–3 sections/

mouse, 5–9 mice/genotype. One-way ANOVA followed by Kruskal-Wallis test.
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(E) Transcriptomics changes potentially critical for pathology also occur in the 

periventricular white matter of ALSP patients (n = 5); *p < 0.05, one- tailed Student’s t test.

Data are presented as means ± SEM.

See also Tables S9 and S10.
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Figure 7. Csf2 Heterozygosity in ALSP Mice Prevents Callosal Atrophy and Improves 
Myelination

(A) Myelin and axonal ultrastructure in callosal cross-sections from 9- to 11-month-old 

mice. Arrows point to examples of changes in myelin thickness in axons of small and 

medium diameters.

(B–E) Changes in G-ratio in Csf1r+/− (B and C) and Csf2+/− (B and E) mice are attenuated 

by double heterozygosity (B and D). (B) shows average values per mouse (2–6 mice/

genotype); values in the bars indicate the total numbers of fibers examined in each fiber 

diameter range. (C)–(E) show individual G-ratio values.

(F) Quantification of MBP staining in white matter tracts, including CC, fimbria (Fb), and 

Cb. n = 3–7 mice/genotype.

(G) Changes in myelination are not accompanied by a decrease in early oligodendrocyte 

precursors (PDGFRα+) or oligodendrocytes (CC1+).

(H) Quantification of age-induced myelin pathology in WT and mutant mice (2–7 mice/

genotype, >900 neurons/genotype). The top panels show representative examples of 

structural abnormalities.

(I) Quantification of age-induced axonal pathology in WT and mutant mice (data from 3–6 

mice/genotype, >900 neurons/genotype). The top panels show representative examples of 

structural abnormalities.

(J) Neuronal loss in cortical layer V at 18 months of age. Scale bar, 100 μm.

(K) Average NeuN-positive cells per layer. n = 4 mice/genotype.

(L) Csf2 heterozygosity prevents callosal atrophy in 19-month-old Csf1r+/− mice.
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Significance was analyzed using two-way ANOVA followed by Holm-Sidak’s (B, F, and K) 

or Benjamini, Krieger, and Yekutieli’s (H and I) post hoc tests and one-way ANOVA 

followed by Tukey’s post hoc test (H and L). Scale bars, 1 μm (A), 50 μm (F), 100 μm (G 

and J), and 500 nm (H and I); apply to all images in the corresponding panels. Data are 

presented as means ± SEM.

See also Table S9.

Chitu et al. Page 36

Cell Rep. Author manuscript; available in PMC 2020 July 20.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Chitu et al. Page 37

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD16/CD32 (Mouse BD Fc Block) BD Cat#533142; RRID: AB_394657

Anti-mouse CD45 APC-Cy7 (clone 30-F11) BD Cat#557659; RRID: AB_396774

Anti-mouse Ly6G BV605 (clone 1A8) BioLegend Cat# 127639, RRID:AB_2565880

Anti-mouse /human CD11b BV510 (clone M1/70) BioLegend Cat#101263; RRID: AB_2629529

Anti-mouse P2RY12 PE (clone S16007) BioLegend Cat#848004, RRID:AB_2721645

Anti-mouse CD11c APC (clone N418) BioLegend Cat# 117309, RRID:AB_313778

Anti-mouse Ly-6C BV711 (clone HK1.4) BioLegend Cat# 128037, RRID:AB_2562630

Anti-mouse CD19 Alexa 700 (clone 6D5) BioLegend Cat# 115527, RRID:AB_493734

Anti-mouse NK-1.1 BV785 (clone PK136) BioLegend Cat# 108749, RRID:AB_2564304

Anti-mouse CD3 PE/Cy7 (clone 17A2) BioLegend Cat# 100219, RRID:AB_1732068

Anti-mouse TCRγδ BV421 (clone GL3) BioLegend Cat# 118119, RRID:AB_10896753

Anti-mouse CD4 PerCP-eFluor 710 (clone GK1.5) Invitrogen Cat# 44-0041-82; RRID:AB_11150050

Anti-mouse CD8a FITC (clone 53-6.7) BioLegend Cat# 100705, RRID:AB_312744

Anti-Iba1, Rabbit Wako Cat# 019-19741, RRID:AB_839504

Anti-Iba1, Goat AbCam Cat# ab107159, RRID:AB_10972670

Anti-P2RY12, Rat Dr. O. Butovsky Gift

Anti-MBP (Smi99), Mouse BioLegend Cat# 808401, RRID:AB_2564741

Anti-APC (CC1), Mouse Millipore Cat# OP80, RRID:AB_2057371

Anti-PDGFRα, Goat R and D Systems Cat# AF1062, RRID:AB_2236897

Anti-CST7, Rabbit Bioss Cat# bs-6039R, RRID:AB_11073757

Anti-Poly ADP-ribose (Clone H10), Mouse Millipore Cat# MABC547, RRID:N/A

Anti-NeuN, Mouse BioLegend Cat# MAB377X, RRID:AB_2149209

Biological Samples

Human brain tissue samples Mayo Clinic, FL N/A

Experimental Models: Organisms/Strains

C57/BL6 CSF-1R knockout mouse Dai et al., 2002 N/A

C57/BL6 Csf2+/− mice Dranoff et al., 1994 N/A

C57/BL6 Csf2rbfl/fl mice Croxford et al., 2015 N/A

C57/BL6 Cx3Cr1Cre/+ mice Yona et al., 2013 N/A

C57/BL6 Cx3Cr1GFP; Ccr2RFP reporter mouse Saederup et al., 2010 N/A

Chemicals, Peptides, and Recombinant Proteins

Fluoromyelin Invitrogen Cat# F34652

DAPI Biolegend Cat# 422801

Triton X-100 EMS Cat# 22140

Tween 20 Sigma Cat# P9416

Percoll VWR Cat# 17-0891-01
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REAGENT or RESOURCE SOURCE IDENTIFIER

Myelin Removal Beads II Milteny Biotec Cat# 130-096-733

RNAsin Promega Cat# N2615

DNaseI, RNase-free Thermo Scientific Cat#EN0525

TRIzol Thermo Fisher Cat# 15596018

FCS Atlanta Biologicals Cat# S12450H

Donkey serum Millipore Cat# 566-460

Collagenase D Roche Diagnostic Cat# 11088866001

DNase I Roche Diagnostic Cat# 11284932001

Critical Commercial Assays

Live/Dead Fixable Far Red Dead Cell Stain Kit Invitrogen Cat# L34973

RNEasy Plus Micro RNA Extraction Kit QIAGEN Cat# 74034

ProLong Gold Antifade with DAPI Invitrogen Cat# P36935

Mouse GM-CSF Quantikine ELISA R&D Systems Cat# MGM00

Oligonucleotides

Human CSF2 PrimePCR Assay BIO-RAD Cat# 10025636 qHsaCED0002766

Csf2+/− mice genotyping forward wt: 
TCGTCTCTAACGAGTTCTCCTTCA

Dranoff et al., 1994 N/A

Csf2+/− mice genotyping reverse wt: TGCTCGAATATCTTCAGG Dranoff et al., 1994 N/A

Csf2+/− mice genotyping reverse Csf2 KO: 
GGCCACTTGTGTAGCGCCAAGT

Dranoff et al., 1994 N/A

Primers for qPCR See Table S10 N/A

Software and Algorithms

ImageJ Schindelin et al., 2012 http://fiji.sc/

Microglia morphometry algorithm Young and Morrison, 
2018

http://www.jove.com/video/57648/
quantifying-microglia-morphology-
from-photomicrographs

Other

Collection of electron micrographs illustrating the effects of aging in the 
brain

(Peters and Folger 
Sethares)

http://www.bu.edu/agingbrain

Deposited Data

Raw FACS data for Figure 4H Mendeley Data https://doi.org/10.17632/7m928vkpht.1

RNA Seq data GEO Accesion number GSE143823
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