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Abstract

We present pipeComp (https://github.com/plger/pipeComp), a flexible R framework for

pipeline comparison handling interactions between analysis steps and relying on

multi-level evaluation metrics. We apply it to the benchmark of single-cell

RNA-sequencing analysis pipelines using simulated and real datasets with known cell

identities, covering common methods of filtering, doublet detection, normalization,

feature selection, denoising, dimensionality reduction, and clustering. pipeComp can

easily integrate any other step, tool, or evaluation metric, allowing extensible

benchmarks and easy applications to other fields, as we demonstrate through a study

of the impact of removal of unwanted variation on differential expression analysis.

Keywords: Single-cell RNA sequencing (scRNAseq), Pipeline, Clustering,

Normalization, Filtering, Benchmark

Background

Single-cell RNA-sequencing (scRNAseq) and the set of attached analysis methods are

evolving fast, with more than 560 software tools available to the community [1], roughly

half of which are dedicated to tasks related to data processing such as clustering, order-

ing, dimension reduction, or normalization. This increase in the number of available

tools follows the development of new sequencing technologies and the growing number

of reported cells, genes, and cell populations [2]. As data processing is a critical step in

any scRNAseq analysis, affecting downstream analysis and interpretation, it is critical to

evaluate the available tools.

A number of good comparison and benchmark studies have already been performed

on various steps related to scRNAseq processing and analysis and can guide the choice

of methodology [3–21]. However, these recommendations need constant updating and
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often leave open many details of an analysis. Another missing aspect of current bench-

marking studies is their limitation to capture all aspects of a scRNAseq processing

workflow. Although previous benchmarks already brought valuable recommendations for

data processing, some only focused on one aspect of data processing (e.g., [14]), did not

evaluate how the tool selection affects downstream analysis (e.g., [17]) or did not tackle

all aspects of data processing, such as doublet identification or cell filtering (e.g., [18]). A

thorough evaluation of the tools covering all major processing steps is however urgently

needed as previous benchmarking studies highlighted that a combination of tools can

have a drastic impact on downstream analysis, such as differential expression analysis and

cell-type deconvolution[3, 18]. It is then critical to evaluate not only the single effect of

a preprocessing method but also its positive or negative interaction with all parts of a

workflow.

Here, we develop a flexible R framework for pipeline comparison and apply it to the

evaluation of the various steps of analysis leading from an initial count matrix to a clus-

ter assignment, which are critical in a wide range of applications. We collected real

datasets of known cell composition (Table 1) and used a variety of evaluation metrics

to investigate in a multilevel fashion the impact of various parameters and variations

around a core scRNAseq pipeline. Although we use some datasets based on other

protocols, our focus is especially on droplet-based datasets that do not include exoge-

nous control RNA (i.e., spike-ins); see Table 1 and Additional File 1: Figure S1 for

more details. In addition to previously used benchmark datasets with true cell labels

[6, 15], we simulated two datasets with a hierarchical subpopulation structure based on

real 10x human and mouse data using muscat [22]. Since graph-based clustering [23]

was previously shown to consistently perform well across several datasets [6, 15], we

used the Seurat pipeline as the starting point to perform an integrated investigation of

(1) doublet identification, (2) cell filtering, (3) normalization, (4) feature selection, (5)

dimension reduction, and (6) clustering. We compared competing approaches and also

explored more fine-grained parameters and variations on common methods. Impor-

tantly, the success of methods at a certain analytical step might be dependent on choices

at other steps. Therefore, instead of evaluating each step in isolation, we developed a

general framework for evaluating nested variations on a pipeline and suggest a multi-

level panel of metrics. Finally, we evaluate several recent methods and provide practical

recommendations.

Table 1 Overview of the benchmark datasets

Dataset # features # cells Protocol Description

Koh 33922 531 SMARTer 9 FACS purified differentiation stages

Kumar 41930 246 SMARTer Mouse ESC cultured in 3 different conditions

Zhengmix4eq 10434 3994 10x Mixtures of FACS purified PBMCs

Zhengmix4uneq 11369 6498 10x Mixtures of FACS purified PBMCs

Zhengmix8eq 10600 3994 10x Mixtures of FACS purified PBMCs

mixology10x3cl 16208 902 10x Mixture of 3 cancer cell lines from CellBench

mixology10x5cl 11786 3918 10x Mixture of 5 cancer cell lines from CellBench

simMix1 3696 2500 10x-based Simulation of 10 human cell subpopulations

simMix2 8893 3000 10x-based Simulation of 9 mouse cell subpopulations

# features indicates the number of features detected in at least 10 cells
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Results

A flexible framework for pipeline evaluation

The pipeComp package defines a pipeline as, minimally, a list of functions executed con-

secutively on the output of the previous one (Fig. 1a; see also Additional File 2). In

addition, optional benchmark functions can be set for each step to provide standard-

ized, multi-layered evaluation metrics. Given such a PipelineDefinition object, a

set of alternative parameters (which might include different subroutines calling different

methods) and benchmark datasets, the runPipeline function then proceeds through

Fig. 1 Overview of the pipeComp framework and its application to a scRNAseq clustering pipeline. a The

package is built around a PipelineDefinition class which defines a set of functions to be executed

consecutively, as well as optional evaluation functions for each step. Each step can accept a number of

parameters whose alternative values are provided as a list. All (or subsets of) combinations of parameters can

then be simultaneously ran and evaluated using the runPipeline function (see Additional File 2 for more

details). b Scheme representing the application of pipeComp to evaluate a range of methods that are

commonly used in scRNAseq studies and some of the metrics monitored at various steps
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all combinations of arguments (or a desired subset), avoiding recomputing the same step

twice without the need to save all alternative intermediates, and compiling evaluations

(including run time) on the fly (see Additional File 2 formore details). Variations in a given

parameter can be evaluated using all metrics from this point downward in the pipeline.

This is especially important because end-point metrics, such as the adjusted Rand index

(ARI) [24] for clustering, are not perfect. For example, although the meaning of an ARI

score is independent of the number of true subpopulations [25], the number of clusters

called is by far the most important determinant of the score: the farther it is from the

actual number of subpopulations, the worse the ARI (Additional File 1: Figure S2–3). In

this context, one strategy has been to cluster across various resolutions and only consider

the results that have the right number of clusters [6]. While this has the virtue of making

the results comparable, in practice, the number of subpopulations is typically unknown

and tools that operate well in this optimal context might not necessarily be best overall.

Clustering results are also very sensitive and might not always capture improvements in

earlier steps of the pipeline. In addition, we wanted to assess whether the effect of a given

parameter alteration is robust to changes in the rest of the pipeline. We therefore moni-

tored several complementary metrics across multiple steps of the process. We proceeded

in a step-wise fashion, first testing a large variety of parameters at the early steps of the

pipeline along with only a set of mainstream options downstream, then selecting main

alternatives and proceeding to a more detailed benchmark of the next step (Fig. 1b).

Filtering

Doublet detection

Doublets, defined as two cells sequenced under the same cellular barcode (e.g., being

captured in the same droplet), are fairly frequent in scRNAseq datasets, with estimates

ranging from 1 to 10% depending on the platform and cell concentration used [26, 27].

While doublets of the same cell type are relatively innocuous for most downstream appli-

cations due to their conservation of the relative expression between genes, doublets

formed from different cell types or states are likely to be misclassified and could poten-

tially distort downstream analysis. In some cases, doublets can be identified through their

unusually high number of reads and detected features, but this is not always the case

(Additional File 1: Figure S4). A number of methods were developed to identify doublets,

in most cases by comparing each cell to artificially created doublets [28–30].We first eval-

uated the capacity of these methods to detect doublets using the two 10x datasets with

cells of different genetic identity [15], using SNP genotypes as the ground truth. For the

sole purpose of this section, we included an additional dataset with SNP information but

lacking true cell labels [27]. Of note, SNP-based analyses also call doublets created by cells

of the same cell type (but from different individuals) and which are generally described

as homotypic (as opposed to neotypic or heterotypic doublets, i.e., doublets from dif-

ferent cell types). These homotypic doublets might not be identifiable from the mere

gene counts, and their identification is not generally the primary aim of doublet callers

since they are often considered innocuous and, when across individuals, can be identi-

fied through other means (e.g., SNPs). We therefore do not expect a perfect accuracy in

datasets involving cells of the same type across individuals (as in the demuxlet dataset).

We testedDoubletFinder [28] and scran’s doubletCells [29], both of which use sim-

ilarity to artificial doublets, and scds [30], which relies on a combination of co-expression
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and binary classification. DoubletFinder integrates a thresholding based on the propor-

tion of expected doublets, while scran and scds return scores that must be manually

thresholded. In these cases, we ensured that the right number of cells would be called dou-

blets. In addition to these methods, we reasoned that an approach such as DoubletFinder

could be simplified by being applied directly on counts and by using a pre-clustering

to create neotypic/heterotypic doublets more efficiently. We therefore also evaluated a

simple and fast Bioconductor package implementing this method for doublet detection,

scDblFinder, with the added advantage of accounting for uncertainty in the expected dou-

blet rate and using meta-cells from the clusters to even include triplets (see the “Methods”

section).

While most methods accurately identified the doublets in the 3 cell lines dataset (mixol-

ogy10x3cl), the other two datasets proved more difficult (Fig. 2a). scDblFinder achieved

comparable or better accuracy than top alternatives while being the fastest method

(Fig. 2b). Across datasets, cells called as doublets tended to be classified in the wrong clus-

ter more often than other cells (Fig. 2c). We also found that scDblFinder clearly improved

the accuracy of the clustering across datasets that are expected to have heterotypic dou-

blets (mixology datasets) and even in a simulation (simMix1) that should not contain

any (Fig. 3). Across the datasets that, being FACS-sorted, should not contain such dou-

blets, doublet removal tended not to robustly impact clustering accuracy. However, in few

Fig. 2 Identification of doublet cells. a Receiver operating characteristic (ROC) curves of the tested doublet

detection methods for three datasets with SNP-identified doublets. Dots indicate threshold determined by

the true number of doublets. b Running time of the different methods (DoubletFinder failed on one of the

datasets). c Rate of misclassification of the cells identified by scDblFinder as doublets (DBL) or singlets (SNG),

across a large range of clustering analysis. Even in datasets which should not have neotypic doublets, the

cells identified as such tend to be misclassified
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Fig. 3 Effect of filtering on cell subpopulation structure and clustering. a Filtering on the basis of distance to

the whole distribution can lead to strong bias against certain subpopulations. The dashed line indicates a

threshold of 2.5 median absolute deviations (MADs) from the median of the overall population. b

Relationship between the maximum subpopulation exclusion rate and the average clustering accuracy per

subpopulation across various filtering strategies.The datasets for which the presence of doublets could be

confirmed with SNP genotypes are labeled in bold. Of note, doublet removal appears to have a neutral or

positive impact even when, due to the design, there are no heterotypic doublets in the data. The PCA

methods refer to multivariate outlier detected as implemented in scater (see the “Methods” section for details)

datasets (ZhengMix4eq and Zhengmix4uneq, and simMix2 with a very small difference),

doublet removal performed worse when combined with lenient or no filtering.

Excludingmore cells is not necessarily better

Beyond doublets, a dataset might include low-quality cells whose elimination would

reduce noise. This has for instance been demonstrated for droplets containing a high

content of mitochondrial reads, often as a result of cell degradation and resulting loss of

cytoplasmic mRNAs [31]. A common practice is to exclude cells that differ considerably

from most other cells on the basis of such properties. This can for instance be performed

through the isOutlier function from scater that measures, for a given control prop-

erty, the number of median absolute deviations (MADs) of each cell from the median of

all cells. Additional File 1: Figure S5 shows the distributions of some of the typical cell
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properties commonly used. Of note, these properties tend to be correlated, with some

exceptions. For example, while a high proportion of mitochondrial reads is often corre-

lated with a high proportion of the counts in the top features, there can also be other

reasons for an over-representation of highly expressed features (Additional File 1: Figure

S6), such as an over-amplification in non-UMI datasets. In our experience, 10X datasets

also exhibit a very strong correlation between the total counts and the total features even

across very different cell types (Additional File 1: Figure S7). We therefore also measure

the ratio between the two and treat cells strongly departing from this trend with suspicion.

Reasoning that the cells we wish to exclude are the cells that would be misclassified, we

measured the rate of misclassification of each cell in each dataset across a variety of clus-

tering pipelines, correcting for the median misclassification rate of the subpopulation and

then evaluated what properties could be predictive of misclassification (Additional File 1:

Figure S8–10). We could not identify any property or simple combination thereof that

would be consistently predictive of misclassification; the only feature that stood out across

more than one dataset (the Zheng datasets) was that cells with very high read counts have

a higher chance of being misclassified, although such a pattern was not observed in the

other datasets.

We next investigated the impact of several filtering methods (see the “Methods” section

for more details): four methods based on deviations to MADs with increasing levels of

stringency (named lenient, default, stringent, veryStringent) and two methods based on

scater’s runPCA using all (pca.all) or selected covariates (pca.sel). An important risk

of excluding cells on the basis of their distance from the whole distribution of cells on

some properties (e.g., library size) is that these properties tend to have different distribu-

tions across subpopulations. As a result, thresholds in terms of number of MADs from

the whole distribution can lead to strong biases against certain subpopulations (Fig. 3a).

We therefore examined the tradeoff between the increased accuracy of filtering and the

maximum proportion of cells excluded per subpopulation (Fig. 3b and Additional File 1:

Figure S11). Since filtering changes the relative abundance of the different subpopulations,

global clustering accuracy metrics such as ARI are not appropriate here. We therefore

calculated the per-subpopulation precision and recall using the Hungarian algorithm [32]

and monitored the mean F1 score across subpopulations. A first observation was that,

although more stringent filtering tended to be associated with an increase in accuracy,

it tended to plateau and could also become deleterious. Most of the benefits could be

achieved without very stringent filtering and minimizing subpopulation bias (Fig. 3b).

Applying the same filtering criteria on individual clusters of cells (identified through

scran’s quickClustermethod) rather than on whole dataset resulted in nearly no cells

being filtered out (Additional File 1: Figure S12A). This suggests that stringent filtering on

the global population tends to discard cells of subpopulations with more extreme proper-

ties (e.g., high library size), rather than low-quality cells. In contrast, too lenient filtering

(or lack thereof) can lead tomisclassified cells, as was the case for the Zhengmix4 datasets

(Fig. 3b). We found that a relatively mild filtering (default—see the “Methods” section)

provided a good trade-off, often leading to high clustering performance (e.g., simMix

and Zhengmix4 datasets) while retaining most of the cells in each subpopulation (e.g.,

Koh and Zhengmix8eq). PCA-based selection did not appear superior to feature-wise

filters. We found very little overlap between the cells excluded by doublet removal and

those excluded by MAD-based filtering (Additional File 1: Figure S12B). Of note, doublet
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removal in conjunction with filtering tended to improve accuracy not only in datasets that

do include heterotypic doublets (mixology datasets), but also some others in which such

doublets are unlikely given the experimental design (e.g., FACS-sorted datasets). Indeed,

the datasets where doublet removal did not have a clear positive impact (e.g., Koh, Kumar,

and the simulations) are those in which heterotypic doublets are not expected. Overall,

we therefore recommend the use of doublet removal followed by our default filtering (see

the “Methods” section) or a similar approach.

Filtering features by type

Mitochondrial reads have been associated with cell degradation and there is evidence

that ribosomal genes can influence the clustering output, hiding other biological struc-

ture in the analysis [7]. We therefore investigated whether excluding one category of

features or the other, or using only protein-coding genes, had an impact on the ability to

distinguish subpopulations (Additional File 1: Figure S13). Removal of ribosomal genes

robustly reduced the quality of the clustering, suggesting that they represent real biolog-

ical differences between subpopulations. Removing mitochondrial genes and restricting

to protein-coding genes had a very mild impact.

Normalization and scaling

We next investigated the impact of different normalization strategies. Besides the stan-

dard log-normalization included in Seurat, we tested scran’s pooling-based normalization

[33], sctransform’s variance-stabilizing transformation [34], normalization based on stable

genes [35, 36], and SCnorm [37] (scVI-based normalization [38] was included separately,

as it was not meant for this purpose and follows a slightly different flow). In addition

to log-normalization, the standard Seurat clustering pipeline performs per-feature unit-

variance scaling so that the PCA is not too strongly dominated by highly expressed

features. We therefore included versions of the different normalization procedures,

with or without a subsequent scaling (sctransform’s variance-stabilizing transformation

involves an approach analogous to scaling). Seurat’s scaling function (and sctransform)

also includes the option to regress out the effect of certain covariates. We tested its per-

formance by using the proportion of mitochondrial counts and the number of detected

features as covariates. Finally, it has been proposed that the use of stable genes, in par-

ticular cytosolic ribosomal genes, can be used to normalize scRNAseq [36]. We therefore

evaluated a simple linear normalization based on the sum of these genes, as well as nuclear

genes.

An important motivation for the development of sctransform was the observation that,

even after normalization, the first principal components of various datasets tended to cor-

relate with library size, suggesting an inadequate normalization [34]. However, as library

size tends to vary across subpopulations, part of this effect can simply reflect biologi-

cal differences. We therefore assessed to what extent the first principal component still

retained a correlation with the library size and the number of detected features, remov-

ing the confounding covariation with the subpopulations (Fig. 4a and Additional File 1:

Figure S14). Scaling tended to remove much of the correlation with these features, and

while most methods were able to remove most of the effect, the correlation was lowest

with sctransform. Surprisingly, however, regressing out the covariates tended to increase

the association with it.
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Fig. 4 Evaluation of normalization procedures. a Variance in PC1 explained by library size (left) and detection

rate (right) after accounting for subpopulation differences. b Average silhouette width per true

subpopulation, where higher silhouette width means a higher separability. c Clustering accuracy (Seurat

clustering), measured by mutual information (MI), Adjusted Rand Index (ARI), and ARI at the true number of

cluster. Gray squares indicate that the true number of clusters could not be reached with the corresponding

method, dataset, and parameter set. “feat_regress,” “mt_regress,” and “feat_mt_regress” respectively stand for

the regressing out of the number of features, the proportion of mitochondrial reads, or both during scaling.

Throughout this paper, silhouette plots (b) square root transform values for color mapping. Other evaluation

metric heatmaps (e.g., c here) map colors to the signed square root of the number of (matrix-wise) median

absolute deviations from the (column-wise) median. Using this mapping, differences in color have the same

meaning across datasets, and the color scale is not primarily capturing outliers or baseline differences

between datasets. The numbers printed in the cells represent the raw (i.e., unscaled) metric values and are

printed in white or black depending on whether they are above or below the median

We further evaluated normalization methods by investigating their impact on the sep-

arability of the subpopulations. Since clustering accuracy metrics such as the ARI are

very strongly influenced by the number of clusters, we complemented it with silhouette

width [39] and mutual information (MI, Fig. 4b, c). We found most methods (including

no normalization at all) to perform fairly well in most of the subpopulations and that

some datasets (e.g., Zhengmix8eq and simMix1) and subpopulations were consistently

more challenging across all methods. An exception was scVI-based normalization, which

performed similarly to other methods on some datasets (Kumar, simMix2, Zhengmix4eq,

Zhengmix4uneq), but very poorly on others, in terms of both the subpopulation silhou-

ette and clustering accuracy (Additional File 1: Figure S13; of note, these values were not

meant to be used for clustering, and the usage of the scVI latent space will be discussed

below along with dimensionality reductions). Scaling (e.g., “seurat (no scale)” vs “seurat”)

tended to reduce the average silhouette width of some subpopulations and to increase
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that of some less distinguishable ones and was generally, but not always, beneficial on

the accuracy of the final clustering. Regressing out covariates systematically gave equal or

poorer performance onMI, ARI, and ARI at true number of clusters, with a strongest neg-

ative impact among the Smart-seq datasets (Koh and Kumar). Regressing out covariates

using sctransform instead tended to have a much milder effect, possibly owing to its regu-

larization. In general, sctransform systematically outperformed other methods and, even

though it was developed to be applied to data with unique molecular identifiers (UMI), it

also performed fairly well with the Smart-seq protocol (Koh and Kumar datasets).

Finally, we monitored whether, under the same downstream clustering analysis, differ-

ent normalization methods tended to lead to an over- or under-estimation of the number

of clusters. Although some methods had a tendency to lead to a higher (e.g., sctransform)

or lower (e.g., stable genes) number of clusters, the effect was very mild and not entirely

systematic (Additional File 1: Figure S16). We also confirmed that, especially in the UMI-

based datasets, sctransform did in fact successfully stabilize variance across mean counts

(Additional File 1: Figure S17), at little apparent cost on computation time (Additional

File 1: Figure S18).

Feature selection

A standard clustering pipeline typically involves a step of highly variable genes selec-

tion, which is complicated by the digital nature and the mean-variance relationship of

(sc)RNAseq. Seurat’s earlier approaches involved the use of dispersion estimates stan-

dardized for the mean expression levels, while more recent versions (≥ 3.0) rely on a

different measure of variance, again standardized. While adjusting for the mean-variance

relationship removes much of the bias towards highly expressed genes, it is plausible that

this relationship may in fact sometimes reflects biological relevance and would be help-

ful in classifying cell types. Another common practice in feature selection is to use those

with the highest mean expression. Recently, it was instead suggested to use deviance [40],

while sctransform provides its own ordering of genes based on transformed variance.

Reasoning that a selection method should ideally select genes whose variability is

higher between subpopulations than within, we first assessed to what extent each method

selected genes with a high proportion of variance or deviance explained by the (real)

subpopulations. As the proportion of variability in a gene attributable to subpopula-

tions can be measured in various ways, we first compared three approaches: ANOVA on

log-normalized count, ANOVA on sctransform normalization, and deviance explained.

The ANOVAs performed on a standard Seurat normalization and on sctransform data

were highly correlated (Pearson correlation > 0.9, Additional File 1: Figure S19A). These

estimates were also in good agreement with the deviance explained, although lowly

expressed genes could have a high deviance explained without having much of their

variance explained by subpopulation (Additional File 1: Figure S19B–D). We therefore

compared the proportion of the cumulative variance/deviance explained by the top X

genes that could be retrieved by each gene ranking method (Additional File 1: Figure

S20-21). We first focused on the first 1000 genes to highlight the differences between

methods, although a higher number of selected genes decreased the differences between

methods (Additional File 1: Figure S20-22). The standardized measures of variability were

systematically worse than their non-standardized counterparts in selecting genes with

a high proportion of variance explained by subpopulation. Regarding the percentage of
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deviance explained, however, the standardized measures were often superior (Fig. 5a and

Additional File 1: Figure S20-21). Deviance proved the method of choice to prioritize

genes with a high variance explained by subpopulations (with mere expression level prov-

ing surprisingly performant) but did not perform so well to select genes with a high

deviance explained.

We next evaluated how the use of different feature selection methods affected the

clustering accuracy (Fig. 5b). To validate the previous assay on the proportion of vari-

ance/deviance explained by real populations, we included genes that maximized these

two latter measures. Interestingly, while these selections were on average the top-ranking

methods, they were not systematically best for all datasets (Fig. 5b). Non-standardized

measures of variability, including mere expression level, tended to outperformmore com-

plex metrics. In general, we found deviance and unstandardized estimates of variance

to provide the best results across datasets and normalization methods. Increasing the

number of features selected also tended to lead to an increase in the accuracy of the

clustering, typically plateauing after 4000 features (Additional File 1: Figure S22).

Dimensionality reduction

Since the various PCA approaches and implementations were recently benchmarked in

a similar context [17], we focused on widely used approaches that had not yet been

Fig. 5 Evaluation of feature selection methods. a Ability of different feature ranking methods to capture

genes with a high proportion of variance (left) or deviance (right) explained by real subpopulations. The

asterisk denotes the default Seurat method. b Accuracy of clusterings (at the true number of clusters) when

selecting 1000 genes using the given methods. Based on standard Seurat normalization (left) or sctransform

(right). The vst.varExp and devianceExplainedmethods correspond to the estimates used in a to evaluate the

selection methods and were included here only for validation purpose
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compared: Seurat’s PCA, scran’s denoisePCA, and GLM-PCA [40]. When relevant, we

combined them with sctransform normalization. Given that Seurat’s default PCA weights

the cell embeddings by the variance of each component, we also evaluated the impact of

this weighting with each method.

The impact of the dimensionality reduction methods tested was far greater than that of

normalization or feature selection (Additional File 1: Figure S23). Overall, weighting the

components by their explained variance tended to increase silhouette width (Additional

File 1: Figure S23A) and, in most datasets, clustering accuracy (Additional File 1: Figure

S23B). GLM-PCA tended to increase the average silhouette width of already well-defined

subpopulations, but Seurat’s PCA procedure however proved superior on all metrics. Like

GLM-PCA, scVI ’s Linearly Decoded (LD) data [41] and latent space do not explicitly rely

on normalized counts. Their performance was however worse than Seurat’s PCA in view

of the silhouette width (Additional File 1: Figure S15). In terms of clustering accuracy,

scVI ’s latent space performed better that its LD but was nevertheless less accurate than

PCA-based alternatives on the datasets with a very low amount of cells (Koh and Kumar)

and harboring many subpopulations (simMix1 and Zhengmix8eq).

Estimating the number of dimensions

A common step following dimension reduction is the selection of an appropriate number

of dimensions to use for downstream analysis. Since Euclidean distance decreases as the

number of non-discriminating dimensions increases, there is usually a trade-off between

selecting enough dimensions to keep most information and excluding smaller dimen-

sions that may represent technical noise or other unwanted sources of variation. Overall,

increasing the number of dimensions robustly led to a decrease in the number of clusters

(Additional File 1: Figure S16 and 24). This tended to affect the accuracy of the cluster-

ing (Additional File 1: Figure S25), although in both cases (number of clusters and ARI),

Seurat’s resolution parameter had a much stronger impact.

Different approaches have been proposed to select the appropriate number of dimen-

sions, from the visual identification of an inflexion point in the curve of the variance

explained by each component (“elbow” method), to more complex algorithms. We

evaluated the performance of dimensionality estimators implemented in the intrinsicDi-

mension package [42], as well as common procedures such as the “elbow‘’ method,

some scRNAseq-specific methods such as the JackStraw procedure [43] or scran’s

denoisePCA [29], and the recent application of Fisher Separability analysis [44]. We

also included a variation of the molecular cross-validation (MCVR, modified to be

applied on normalized data—see the “Methods” section) approach originally developed

to select an calibrate denoising methods [45], but which has also been applied to estimate

dimensionality [46].

We compared the various estimates in their ability to retrieve the intrinsic number of

dimensions in a dataset, based on Seurat’s weighted PCA space. As a first approximation

of the true dimensionality, we computed the variance in each principal component (based

on Seurat’s weighted PCA space) that was explained by the subpopulations, which sharply

decreased after the first few components in most datasets (Fig. 6a). These truth-based

estimates were then compared to those of the above dimensionality estimation methods

(Fig. 6b). Of note, the methods differ widely in compute time (Fig. 6b) and we saw no

relationship between the accuracy of the estimates and the complexity of the method.
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Reasoning that over-estimating the number of dimensions is less problematic than under-

estimating it, we kept the former methods for a full analysis of their impact on clustering

(Fig. 6c-d), when combined with sctransform or standard Seurat normalization.

MCVR and the global maximum likelihood based on translated Poisson mixture model

(maxLikGlobal) tended to produce clusterings with smaller deviations to the true number

of subpopulations (Additional File 1: Figure S26). Although most methods performed

well on the various clustering measures,maxLikGlobal (using 10 or 20 nearest neighbors,

although estimates were relatively stable across various values of k—see Additional File 1:

Figure S27) provided the dimensionality estimate that best separated challenging subpop-

ulations (Fig. 6c) and tended to result in the best clustering accuracy (Fig. 6d). MCVR

did not perform well for the datasets without UMIs (Koh and Kumar), which violates the

Fig. 6 Estimating dimensionality. a Estimated dimensionality using the proportion of variance in each

component explained by the true subpopulations. b Difference between “real” dimensionality (from a) and

dimensionality estimation methods, along with computing time. c Average silhouette width per

subpopulation across a selection of methods, combined with sctransform or standard Seurat normalization. d

Clustering accuracy across the normalization/dimensionality estimation methods. The color-mapping

scheme is the same as in Fig. 4c
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assumptions of the method, and while it did increase the separability of some subpop-

ulations (Fig. 6c), it was detrimental to the classification of some others. We observed

a strong negative correlation (r = − 0.995, p 1.6e−8) between the number of dimen-

sions called byMCVR and the log10 average library size of a dataset, which explained the

former considerably better than the number of subpopulations.

Of note, the optimal method in our evaluation (maxLikGlobal) systematically selected

many more components than were associated with the subpopulations in Fig. 6a, sug-

gesting that although these additional components appear individually uninformative, in

combination, they nevertheless contribute to classification. An important implication is

that the commonly used elbow method most likely underestimates dimensionality.

Clustering

The last step evaluated in our pipeline was clustering. Given previous work on the topic

[6, 7] and the success of graph-based clustering methods for scRNAseq, we restricted our

evaluation to Seurat’s method and variations of scran’s graph-based clustering using ran-

dom walks (walktrap method) or the optimization of the modularity score (fast_greedy)

on various underlying graphs. Specifically, we compared rank-based graphs (scran’s

default) with graphs using the components’ values directly, SNN vs KNN graphs, and the

exact nearest neighbors to the Annoy approximation. Again, the tested methods were

combined with Seurat’s standard normalization and sctransform, otherwise using the

parameters found optimal in the previous steps.

Since ARI is dominated by differences in the number of clusters (Additional File 1:

Figure S2–3) and no single metric is perfect, we diversified them (Fig. 7). MI has the

virtue of not decreasing when a true subpopulation is split into two clusters, which is

arguably less problematic (and might well reflect unknown biological subgroups), but as

a consequence, it can be biased towards methods producing higher resolution clustering

(Additional File 1: Figure S3). Similarly, precision per true subpopulation is considerably

more robust to differences in the number of clusters, and we also tracked the ARI at the

true number of clusters.

The MI score, which is largely independent of the estimated number of clusters, was

overall higher for the walktrap method (Fig. 7a, left) over Seurat and the fast-greedy

method. Depending on what network it was used with, however, it sometimes yielded

a lower ARI or minimum precision. The ARI score at the true number of clusters,

when available, showed similar performances, especially when using sctransform Because

Seurat’s resolution parameter had a large impact on the number of clusters identified

(Additional File 1: Figure S2 and 24), Seurat could always be coerced into producing the

right number of clusters. Instead, the number of clusters found by scran was consider-

ably less influenced by the available parameters (number of nearest neighbors or steps in

the random walk—see Additional File 1: Figure S28), and as a result, scran-based clus-

tering sometimes never produced a partitioning with the right number of clusters. This

observation, along with scran’s higher MI score, suggest that scran sometimes simply

divides a real subpopulation into two clusters (possibly tracking some unknown biolog-

ical differences) rather than committing misclassification errors. Overall, the walktrap

method appeared superior to the fast greedy algorithm and was generally comparable

to Seurat clustering, although the latter offered more control over the resolution. A

major difference between walktrap-based clustering and Seurat is the computing time
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Fig. 7 Evaluation of clustering methods. Clustering accuracy (a) and run time (b) of scran- and Seurat-based

clustering tools in combination with sctransform and standard Seurat’s normalization. The color-mapping

scheme in a and the left of b is the same as in Fig. 4c

(Fig. 7b). We found that using the Annoy approximation to the nearest neighbors some-

what reduced computing time at no apparent cost to accuracy. It nevertheless remained

considerably slower than Seurat. For all methods, some poorly distinguishable subpop-

ulations from both the Zhengmix8eq and simMix1 datasets remained very inaccurately

classified in regard to all metrics.

Overview of interactions between steps

We selected the most important alternatives for each parameter (see the “Methods”

section) in order to explore their interactions. Unsupervised clustering on the evalua-

tion metrics reveals general patterns in the results as well as the relative importance of

the parameters (Additional File 1: Figure S29), with the clustering method having the

most important impact on the results. This is however chiefly due to number of clusters

called: an ANOVA on all analyses after accounting, in the model, for baseline differences

between datasets and the impact of Seurat’s resolution parameter, attributed relatively

little importance to the clustering method, and instead attributed the largest proportion

of variance in the main cluster metrics to the normalization method and the number of

dimensions used (Fig. 8). Part of the impact of the estimated dimensionality depended on

its effect on the number of clusters detected, and it indeed explained less variance in ARI

at the true number of clusters (Fig. 8). Nevertheless, the choice of dimensionality (as well

as feature selection) came closely behind normalization, suggesting that more attention

should be paid to this relatively neglected step.

The greater importance of normalization, dimensionality, and feature selection over

filtering steps is also visible in the clustering (Additional File 1: Figure S29). The top

methods (bottom of Additional File 1: Figure S29) confirm the results of the previ-

ous sections, highlighting especially sctransform, deviance-based feature selection, and

maxLikGlobal dimensionality estimates as top methods. Interestingly, while the com-

bination of sctransform with Seurat clustering was particularly performant for most
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Fig. 8 Variance in clustering metrics explained by the parameters. Proportion of variance explained by the

parameters of the main analysis steps. The proportions are calculated from an ANOVA using the model

metric ∼ dataset*resolution+doubletmethod+filt+norm+clustmethod+dims and

substracting the variance attributable to differences due to datasets, resolutions, and their interactions

datasets, for the simulated “simMix1” dataset, standard Seurat normalization combined

with scran-based clustering proved superior.

We next investigated whether the benefits of some methods were conditional on the

choices at other steps. Although analysis of variance identified some significant interac-

tions (Additional File 1: Figure S30), we found that the benefits brought by performant

methods were robust to differences in other parts of the pipeline (e.g., Additional File 1:

Figure S31). For instance, we confirmed that doublet removal and sctransform normal-

ization were beneficial independently of other steps and that deviance-based feature

selection outcompeted Seurat’s default selection method independently of changes at

other steps (Additional File 1: Figure S31). ANOVA did reveal some significant (negative)

interactions (Additional File 1: Figure S30): the top two-way interaction was between

scran normalization and the elbow method for selection the number of dimensions, and

indeed that combination was involved in all of the 30 lowest-ranking pipelines. Fur-

thermore, all significant interactions involved the elbow method, suggesting that some

methods were less robust to underestimated dimensionality.

Further extensions to the pipeline: imputation/denoising

The basic pipeline presented here can be extended with additional analysis steps

while keeping the same evaluation metrics. To demonstrate this, we evaluated various
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imputation or denoising techniques based on their impact on classification. Since

preliminary analysis showed that all methods performed equally well or better on nor-

malized data, we applied them after filtering and normalization, but before scaling

and reduction. Although some of the methods (e.g., DRImpute_process and alra_norm)

did improve the separability of some more elusive subpopulations, no method had a

systematically positive impact on the average silhouette width across all subpopula-

tions (Additional File 1: Figure S32A). When restricting ourselves to clustering analyses

that yielded the “right” number of clusters, all tested methods improved classifica-

tion compared to a scenario with no imputation step (“none” label, Additional File 1:

Figure S32B). However, the situation was not so straightforward with alternative met-

rics, where some methods (e.g., ENHANCE) consistently underperformed. 10X datasets,

which are typically characterized by a lower per-cell coverage and feature detection

rate, benefited more from imputation and, in this context, DrImpute and DCA tended

to show the best performance. On the contrary, imputing on normalized counts orig-

inating from Smart-seq technology was instead rather deleterious to the clustering

accuracy.

Application of pipeComp to a different context

To illustrate the applicability of pipeComp to a completely different problem, we bench-

marked the impact of surrogate variable analysis (SVA)-based methods on bulk RNAseq

differential expression analysis (DEA). The rationale behind such approaches is that the

identification of factors determining genome-wide variation (i.e., surrogate variables) and

their inclusion in the DEA’s generalized linear model might improve DEA, especially in

the presence of sources of variation unrelated to the experimental variables. sva [47, 48]

and RUVseq [49] are two popular packages each implementing different methods to infer

these variables.We therefore created a PipelineDefinitionwith three steps: (1) fea-

ture filtering, (2) removal of unwanted variation (i.e., SVA), and (3) DEA using the most

established methods [50]. The package’s “pipeComp_dea” vignette details the creation

process. We developed 3 benchmark datasets: (1) the ipsc data is a random selection of

10 vs 10 samples from [51], which are very heterogeneous, and foldchanges were manu-

ally added to 300 genes; (2) the seqc dataset contains 5 vs 5 samples of two mixtures of

the SEQC consortium with different ERCC spike-in mixes [52], and includes a partially

correlated batch effect; (3) a simulation of 8 vs 8 samples with two technical vectors

of variation (see the “Methods” section for more details). As previously reported [52], we

found that more stringent filtering improved DEA (Additional File 1: Figure S33A–B) and

that the different DEA methods had similar performances, especially after using SVA-

based methods (Additional File 1: Figure S33B). Including a SVA-based step increased

sensitivity across all datasets (Fig. 9a and Additional File 1: Figure S33B), particularly in

datasets with technical vectors of variation (seqc and simulation), and benefited all DEA

methods in a similar fashion (Fig. 9c and Additional File 1: Figure S33C–34A). With the

exception of the RUVr method, which led to a high false discovery rate (FDR), all other

methods showed comparable gains in sensitivity while maintaining a decent error control

(if a little above the nominal FDR), even when increasing the number of surrogate vari-

ables used (Fig. 9b–c). While the FDR did increase in the ipsc dataset, we suspect that

much of the effect could be due to spurious differences [53] between the groups which we

wrongly assume to be false positives. Nevertheless, the FDR remained acceptable with up
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Fig. 9 Evaluation of the impact of surrogate variable analysis (SVA) on (bulk) RNAseq differential expression

analysis using pipeComp. RUVr and RUVs refer to the two RUVSeq functions by the same name; svaseq refers to

the function of the same name in sva, while vstsva refers to the original svamethod applied no variance-

stabilized data. a True positive rates (TPR) and false discovery rates (FDR) of the SVA-based methods (using a

single surrogate variable), averaged across DEA methods. b TPR and FDR of the different SVA-based methods

(averaged across the different DEA methods) using increasing numbers of variables. In a, b, the x-axis is

square root transformed to improve readability, and three dots for each combination of methods refer to the

nominal FDR thresholds of 0.01, 0.05, and 0.1. c Correlation of estimated logFC with expected ones, as well as

TPR and FDR (at nominal FDR threshold of 0.05) of the different methods with increasing numbers of

variables. As in Fig. 4c, the color mapping tracks the number of (matrix-wise) median absolute deviations

from the (column-wise) median, while the printed numbers represent the raw metric values. be and leek refer

to the two methods implemented in the sva package for estimating the number of surrogate variables

to three variables. These results therefore suggest that these methods are robust and can

be widely applied.

Discussion

Practical recommendations

On the basis of our findings, we can make a number of practical analysis recommenda-

tions, also summarized in Additional File 1: Figure S35:

1 Filtering

• Doublet detection and removal is advised and can be performed at little

computing cost with software such as scDblFinder or scds.

• Distribution-based cell filtering fails to capture doublets and should use

relatively lenient cutoffs (e.g., 5 MADs, or 3 MADs in at least 2

distributions—see for instance our default filters in the the “Methods” section)

to exclude poor-quality cells while avoiding bias against some subpopulations.

• Features filtering based on feature type did not appear beneficial.

2 Normalization and scaling

• Most normalization methods tested yielded a fair performance, especially

when combined with scaling, which tended to have a positive impact on

clustering.
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• sctransform offered the best overall performance in terms of the separability

of the subpopulations, as well as removing the effect of library size and

detection rate.

• The common practice of regressing out cell covariates, such as the detection

rate or proportion of mitochondrial reads nearly always had a negative impact,

leading to increased correlation with covariates and decreased clustering

accuracy. We therefore advise against this practice.

3 Feature selection

• Deviance [40] offered the best ranking of genes for feature selection.

• Increasing the number of features included tended to lead to better

classifications, plateauing from 4000 features in our datasets.

4 Denoising/imputation

• Denoising appeared beneficial to the identification of some subpopulations in

10x datasets, but not in Smart-seq datasets.

• We found especially ALRA (with prior normalization), DrImpute (with prior

processing), and DCA to offer the best performances, although none of these

methods was beneficial over all subpopulations.

5 PCA

• Similarly to previous reports [14], we recommend the irlba-based PCA using

weighting of the components, as implemented in Seurat.

• We advise against the commonly used elbow method (because it is too

conservative) and the jackstraw method (low performance at great

computational costs) for deciding on the components to include and

recommend a method like the global maximum likelihood based on translated

Poisson mixture model method (e.g., implemented in the

maxLikGlobalDimEst function of intrinsicDimension, in our case

using the 10 or 20 nearest neighbors).

6 Clustering

• In cases where prior knowledge can guide the choice of a resolution, Seurat

can be useful in affording manual control of it while, in the absence of such

knowledge, scran-based walktrap clustering provided reasonable estimates,

although at greater computational costs.

Limitations and open questions

In this study, we evaluated tools commonly used for the processing of scRNAseq with a

focus on droplet-based datasets, namely from the 10x technology. Although this platform

has been used in almost half of the scRNAseq studies in 2019 [2], other popular tech-

nologies such as Drop-seq, InDrops, or Smart-seq2/3 were not represented in the present

benchmarking. Differences between such protocols, even among droplet-based technolo-

gies, can have a very large impact on cell capture efficiency, cell numbers, and clustering

[54–56]. Although most top-ranking methods in our comparison performed well on both

Smart-seq and 10x datasets that we tested, future benchmarking efforts should strive
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to include less represented technologies. In addition, we did not compare any of the

alignment and/or quantification methods used to obtain the count matrix, which was for

instance discussed in [18]. Some steps, such as the implementation of the PCA, were also

not explored in detail here as they have already been the object of recent and thorough

study elsewhere [14, 17]. We also considered only methods relying on Euclidean distance,

while correlation was recently reported to be superior [57] and would require further

investigation.

Among all tested pipelines, performance varied greatly across datasets. The Zheng-

Mix8eq and simMix1 datasets were themost challenging datasets across all preprocessing

steps that we tested. The average silhouette width of half of their subpopulations was

systematically lower than the other subpopulations/datasets and the ARI score at true

number of clusters, if ever achieved, was always poor. It is likely that these two datasets

are challenging due to their combined sparsity and complexity (see Additional File 1:

Figure S1). The challenge of distinguishing subpopulations of T-cells in the Zhengmix8eq

dataset was previously discussed [6]. In contrast, while the Koh dataset harbors as many

populations, they originate from more distinct groups (from hESC in different differen-

tiation stages), while the Kumar and mixology datasets harbor a very low subpopulation

complexity and most methods applied on them performed well.

Our recommendations are in line with the results of several other benchmarking

studies. For instance, Seurat and scran methods were already shown to yield good clus-

tering performance [7] and DrImpute to improve the quality of downstream analyses

[21]. A previous systematic comparison [18] instead found that the use of SAVERX

for denoising data and scran for clustering yielded better performance on the ability

to recover differentially expressed genes, whereas we focused on the ability to recover

cell populations. Another disagreement with the present recommendations come from

the study of Hou et al. [10] that recommends SAVERX and discourage the use of DCA

for better clustering, whereas our study found opposite results for these tools. Several

differences in the design of our study could explain this contrast, such as the use of

different metrics (ARI at true number of clusters, mean precision/ recall), of different

datasets (Koh, Kumar, simMix simulations) and the use of different filtering and normal-

ization strategies. ALRA however yielded good results in both studies and may be the

most conservative option. The study from Hou et al. also highlighted the usefulness of

ALRA when followed by differential and trajectory analysis both in UMI and Fluidigm

technologies.

The performance of scVI in our evaluation was lower than in the original publication

presenting the method [38]. Our results are however in line with other studies comparing

silhouette score [58] and clustering accuracy [10] of scVI ’s latent space. These studies, like

ours, used datasets with relatively few cells (i.e., fewer than genes), for which scVI was

reported by its authors to be less adapted. We think that further work will be required to

assess its performance on larger datasets.

Here, we chose to concentrate on what could be learned from datasets with known

cell labels (as opposed to labels inferred from the data, as in [54]). In contrast to Tian

et al. [15], who used RNA mixtures of known proportions, we chose to rely chiefly on

real cells and their representative form of variability. Given the limited availability of

such well-described datasets, however, several aspects of single-cell analysis could not

be compared, such as batch effect correction or multi-dataset integration. For these
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aspects of scRNAseq processing that are critical in some experimental designs, we refer

the reader to previous evaluations [16, 59]. In addition, a focus on the identification of

the subpopulations might fail to reveal methods that are instead best performing for

tasks other than clustering, such as differential expression analysis or trajectory inference.

Several informative benchmarks have already been performed on some of these topics

[5, 11, 13, 19, 22, 60]. Yet, such evaluations could benefit from considering meth-

ods not in isolation, but as parts of a connected workflow, as we have done here.

We believe that the pipeComp framework is modular and flexible enough to inte-

grate new steps in the pipeline, as shown by an example with imputation/denoising

methods.

We developed pipeComp to address the need of a framework that can simultaneously

evaluate the interaction of multiple tools. The work of Vieth and colleagues[18] already

offered an important precedent in this respect, evaluating the interaction of various steps

in the context of scRNAseq differential expression analysis, but did not offer a platform

for doing so. Instead, the CellBench package was recently proposed to address a similar

need [61], offering an elegant piping syntax to combine alternative methods at successive

steps. A key additional feature of pipeComp is its ability to perform evaluation in parallel

to the pipeline and offering on-the-fly evaluation at multiple steps. This avoids the need

to store potentially large intermediate data for all possible permutations and thus allowing

a combinatorial benchmark. This, along with the set-up simplicity (demonstrated here by

our separate SVA-DEA benchmark), also distinguishes pipeComp from general workflow

frameworks such as drake [62]; indeed, we estimate that the benchmarks discussed here

would have taken approximately 16TB of storage had all non-redundant intermediates

been saved (see the Additional File 2 for more detailed explanations of the framework

and comparison to CellBench and drake). In addition, the fact that benchmark func-

tions are stored in the PipelineDefinition makes the benchmark more smoothly

portable, making it easy to modify, extend with further methods, or apply to other

datasets.

With respect to the methods themselves, we believe there is still space for improvement

in some of the steps. Concerning cell filtering, we noticed that the current approach based

on whole-population characteristic (e.g., MAD cut-off ) can be biased against certain sub-

populations, suggesting that more refined methods expecting multimodal distributions

should be used rather than relying on whole-population characteristics. In addition, most

common filtering approaches do not harness the relationship between cell QC proper-

ties. Finally, imputation had a varied impact on the clustering analysis and seemed to

be linked to the technology that was used to generate the data. Also, the good perfor-

mance of DrImpute is in line with a previous study focused on the preservation of data

structure in trajectory inference from scRNAseq [21] (ALRA was however not included

in this previous benchmark). Our results also align with the hypothesis of this study

on the respective strengths of linear and non-linear models and their use to different

types of data, such as the highest performance of non-linear methods in developmental

studies.

Conclusions

pipeComp is a flexible R framework for evaluating methods and parameter combi-

nations in a complex pipeline, computing on-the-fly multilevel evaluation metrics.
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Applying this framework to scRNAseq clustering enabled us to make clear recommen-

dations on the steps of filtering, normalization, feature selection, denoising, dimen-

sionality reduction, and clustering (Additional File 1: Figure S35). We demonstrate

how a diversity of multilevel metrics can be more robust, more sensitive, and more

nuanced than simply evaluating the final clustering performance. We further showed

that the pipeComp framework can be applied to extend the current field of benchmark-

ing, as well as to investigate pipelines other domains with multi-step computational

analyses.

Methods

Simulated datasets

The simMix1 dataset was based on the human PBMC CITE-seq data deposited under

accession code GSE100866 of the Gene Expression Omnibus (GEO) website. Both RNA

and ADT count data were downloaded from GEO and processed independently using

Seurat. We then considered cells that were in the same cluster both in the RNA-based

and ADT-based analyses to be real subpopulations and focused on the 4 most abundant

ones. We then performed 3 sampling-based simulations with various degrees of sepa-

ration using muscat [22] and merged the three simulations. The simMix2 dataset was

generated from the mouse brain data published in [22] in a similar fashion. The specific

code is available on https://github.com/markrobinsonuzh/scRNA_pipelines_paper.

Default pipeline parameters

Where unspecified, the following default parameters or parameter sets were used:

• scDblFinder was used for doublet identification

• The default filter sets (see below) were applied

• Standard Seurat normalization was employed

• Seurat (≥3.0) variable feature selection was employed, selecting 2000 genes

• Standard Seurat scaling and PCA were employed

• To study the impact of upstream steps on clustering, various Seurat clustering

analyses were performed, selecting different numbers of dimensions (5, 10, 15, 20, 30,

and 50) and using various resolution parameters (0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2,

0.3, 0.4, 0.5, 0.8, 1, 1.2, 1.5, 2, 4). The range of resolution parameters was selected to

ensure that the right number of clusters could be obtained in all datasets.

Denoising/imputation

Most imputation/denoising methods were run with the default parameters with the

following exceptions;DrImpute documentation advises to process the data prior to impu-

tation by removing lowly expressed genes and cells expressing less than 2 genes. As it is

not clear if this step is a hard requirement for the method to perform well, DrImpute was

runwith andwithout prior processing (DrImpute_process andDrImpute_noprocess labels,

respectively). The DCA method only accepts integers counts, while two of the datasets

had non-integer quantification of expected counts. For these datasets, we rounded up

the counts prior to imputation. ALRA is designed for normalized data but as we are

evaluating normalization downstream to imputation, we used the method on both non-

normalized (alra label) and normalized counts (alra_norm label). scImpute requires an

estimation of the expected number of clusters with the input data. As the estimation of

https://github.com/markrobinsonuzh/scRNA_pipelines_paper
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the true number of cluster may not be known by the user, we evaluated the tool using the

true number of clusters (scImpute label) and using an over/under-estimation of this num-

ber (scImpute_plus5 and scImpute_min5 labels, respectively). ENHANCE uses a k-nearest

neighbor aggregation method and automatically estimates the number of neighbors to

merge prior to the imputation. With the smallest datasets, this parameters was estimated

to be 1, which lead to an early stop of the function. In such cases, we manually set this

parameter to 2 for the method to work.

Dimensionality estimates

For the methods that produce local dimensionality estimates, we used the maximum.

For the elbow method, we implemented an automatic procedure by taking the farthest

point from a line drawn between the variance explained by the first and last (i.e., 50th)

components calculated. For the JackStraw method, since the Seurat documentation

advises not to use a p value threshold (which would typically yield a very large number

of dimensions) but rather look for a drop in significance, we applied the same farthest

point algorithm on the log10(p values), which in our hands reproduced manual threshold

selection.

For the molecular cross-validation approach, we relied on a R implementation by

Matthew Young (https://github.com/constantAmateur/MCVR), with minor modifica-

tions (see wrapper in the pipeComp package). Briefly, since there is no a priori relationship

between the dimensionality of the count data and that of the PCA based on the normal-

ized data, MCVR does not use the original approach based Poisson loss, but the mean

squared error of the normalized data, and uses balanced 50-50 splits. Because of the 50%

split, dimensionality may be underestimated, and titration did suggest that was the case

for some of our datasets.

Filter sets

The default set of filters excludes cells that are outliers according to at least two of the

following thresholds: log10_total_counts >2.5 MADs or <5 MADs, log10_total_features

>2.5MADs or<5MADs, pct_counts_in_top_20_features> or<5MADs, featcount_dist

(distance to expected ratio of log10 counts and features) > or <5 MADs, pct_counts_Mt

>2.5 MADs and >0.08.

The stringent set of filters uses the same thresholds, but excludes a cell if it is an out-

lier on any single distribution. The veryStringent set of filters excludes any cell that is an

outlier by at least 2 MADs (lower or higher) on any of the following: log10_total_counts,

log10_total_features, pct_counts_Mt, or pct_counts_in_top_20_features. The lenient set

of filters excludes cells that are outliers on at least two distributions by at least 5 MADs,

except for pct_counts_Mt where the threshold is >3 MADs and >0.08.

For cluster-wise filters, clusters were first identified with scran::quickCluster and the

filters were then applied separately for each cluster.

The “pca.all” and “pca.sel” clusters refer to the multivariate outlier detection

methods implemented in scater, running runPCA with use_coldata=TRUE,

detect_outliers=TRUE. “pca.all” uses all covariates, while “pca.sel” uses only the

log10(counts), log10(features), proportion mitochondrial, and proportion in the top 50

features.

https://github.com/constantAmateur/MCVR
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Variance and deviance explained

Unless specified otherwise, the variance in gene expression explained by subpopulations

was calculated on the data normalized and transformed through sctransform. For each

gene, we fitted a linear model using the subpopulation as only independent variable (∼

subpopulation) and used the R-squared as a measure of the variance explained. The same

method was used for principal components.

The deviance explained by subpopulations was calculated directly on counts using the

getDevianceExplained function of pipeComp. The function uses edgeR to fit two

models, a full (∼ librarySize + population) and a reduced one (∼ librarySize). For each

gene, the deviance explained is then the difference between the deviance of each models,

divided by the deviance of the reduced model. In the rare cases where this resulted in a

negative deviance explained, it was set to zero.

To estimate the correlation between the principal components and covariates such

as library size, we first fitted a linear model on the subpopulations and correlated the

residuals of this model with the covariate of interest.

scVI normalization and LD

The evaluation of scVI algorithm was performed separate to the other pipeline com-

binations since the model training on our reference datasets was especially resource-

consuming and follows a different workflow from the other pipelines. In particular,

for datasets with fewer cells than genes, scVI requires a feature selection to be per-

formed prior to the normalization step; furthermore, its dimensional reduction steps

rely directly on raw counts. We therefore evaluated it separately and compared it to

a representative subset of pipelines using sctransform normalization and Seurat’s PCA

dimension reductionmethod. The resulting evaluation is available in the Additional File 1:

Figure S13.

Using scVI, we considered as normalized values the normalized mean of the nega-

tive binomial distribution modeling the counts (accessed through the get_sample_scale

method). Following scVI ’s online documentation, we used the VAE model, using a train

size of 1, a training on 400 epochs, and a learning rate of 0.001. As a major limitation of

scVI is the training on dataset with low gene to cell ratio, the features were subsampled

to 2000 using the subsample_genes function, which resembles the Seurat V3 VST gene

selection method. All other parameters were left unmodified.

Two models of the scVI package computing a dimension reduction on the data were

tested. First, we evaluated the mean of the posterior distribution for the latent space, still

based on the VAEmodel (accessed through the get_latent function). All other parameters

were set as described above or left as default. The secondmodel that we evaluated was the

linearly decoded VAE of scVI (LDVAE model). It was trained on 250 epochs, a learning

rate of 0.001 and computed 50 dimensions. For some smaller datasets, the training phase

aborted. In such cases, we followed the recommendations of the package and reduced the

learning rate by a factor 10 until the model could properly converge. Given that the other

methods that we evaluated returned PCs ordered by their variance explained, we applied

to the same reordering to the latent space returned by scVI. For both models. we relied on

the feature selections results from the pipeline and not on the subsample_genes function.

All other parameters were left unmodified.
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Overall run for interactions across steps

The set of alternatives found for the overall run (Fig. 8 and Additional File 1: Figure S29-

31) can be found in the paper’s repository. The analysis of variance was performed with

the following model:

metric∼ dataset*resolution+doubletmethod+filt+norm+

clustmethod+dims

SVA-DEA benchmark

The full process of creating the SVA-DEA PipelineDefinition is described step by

step in the pipeComp_dea vignette.

The three benchmark datasets are available in https://github.com/markrobinsonuzh/

scRNA_pipelines_paper/blob/master/svadea/datasets/, along with all code used to gen-

erate and prepare them. Briefly:

• For the ipsc dataset, we took the quantification of the GSE79636 dataset (fairly

heterogeneous) from the iPSCpower package [53] and selected two random sets of 10

samples. No further variation was added, and log-foldchanges ranging from 0.25 to

1.25 were added to the counts of 300 random genes. All other genes were assumed to

be negatives.

• For the seqc dataset, we used data from the seqc package [52]. For both groups

(mixtures C and D, which also contain two different spike-in mixes), we selected

samples from the ILM_refseq_gene_AGR and ILM_refseq_gene_CNL

batches, which have clear technical differences; we selected 5 samples per group with

a weak correlation with the batch (3:2 vs 2:3). Since the true differences between

mixtures are not entirely known, the analysis was performed on all genes but only the

spike-ins were considered for benchmarking.

• For the simulation, we simulated counts using the polyester package [63] and the

means/dispersions from the GSE79636 dataset (restricted to a single batch and

biological group), with 500 DEGs (log-foldchanges ranging from 0.5 to 2) and two

batch effects: (1) a technical batch partially correlated with the group (6:2) and

affecting 1/3 of the genes and (2) a linear vector of variation uncorrelated with the

groups and affecting 1/3 of the genes.

Filtering was performed with edgeR’s filterByExpr function, changing the

min.count argument. For vstsva, we first applied the variance-stabilizing transfor-

mation from DESeq2 [64] before applying sva::sva. edgeR.QLF refers to the quasi-

likelihood version [65] of edgeR’s fit. The exact wrappers used can be found in the package

at https://github.com/plger/pipeComp/blob/master/inst/extdata/dea_wrappers.R.

Software and package versions

Analyses were performed in R 3.6.0 (Bioconductor 3.9) and the following packages

were installed from GitHub repositories: Seurat (version 3.0.0), sctransform (0.2.0), Dou-

bletFinder (2.0.1), scDblFinder (1.1.4), scds (1.0.0), SAVERX (1.0.0), scImpute (0.0.9),

ALRA (commit 7636de8), DCA (0.2.2), DrImpute (1.2), ENHANCE (R version, commit

1571696), and SAVERX (1.0.0). The glmPCA was performed using the glmpca pack-

age, while the code for deviance calculation was obtained from https://github.com/

willtownes/scrna2019 (commit 1ddcc30ebb95d083a685f12fe81d35dd1b0cb1b2).

https://github.com/markrobinsonuzh/scRNA_pipelines_paper/blob/master/data/overall_run.Rmd
https://github.com/plger/pipeComp/blob/master/vignettes/pipeComp_dea.Rmd
https://github.com/markrobinsonuzh/scRNA_pipelines_paper/blob/master/svadea/datasets/
https://github.com/markrobinsonuzh/scRNA_pipelines_paper/blob/master/svadea/datasets/
https://github.com/plger/pipeComp/blob/master/inst/extdata/dea_wrappers.R
https://github.com/willtownes/scrna2019
https://github.com/willtownes/scrna2019
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