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Privacy-preserving distributed 
learning of radiomics to predict 
overall survival and HPV status in 
head and neck cancer
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A major challenge in radiomics is assembling data from multiple centers. Sharing data between 
hospitals is restricted by legal and ethical regulations. Distributed learning is a technique, enabling 
training models on multicenter data without data leaving the hospitals (“privacy-preserving” 

distributed learning). This study tested feasibility of distributed learning of radiomics data for prediction 
of two year overall survival and HPV status in head and neck cancer (HNC) patients. Pretreatment 
CT images were collected from 1174 HNC patients in 6 different cohorts. 981 radiomic features were 
extracted using Z-Rad software implementation. Hierarchical clustering was performed to preselect 
features. Classification was done using logistic regression. In the validation dataset, the receiver 
operating characteristics (ROC) were compared between the models trained in the centralized 

and distributed manner. No difference in ROC was observed with respect to feature selection. The 
logistic regression coefficients were identical between the methods (absolute difference <10−7). In 
comparison of the full workflow (feature selection and classification), no significant difference in ROC 
was found between centralized and distributed models for both studied endpoints (DeLong p > 0.05). In 
conclusion, both feature selection and classification are feasible in a distributed manner using radiomics 
data, which opens new possibility for training more reliable radiomics models.
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In recent years radiomics has shown to be a promising tool in disease classification and prognostic modeling1–4. 
One of the major challenges in radiomics is assembling a large cohort, which is essential for reliable model train-
ing. Training models on small cohorts without validation can result in model overfitting and lack of generaliza-
tion5,6. It is difficult to collect a sufficiently large amount of data in a single institution setting. Single institution 
data may also not represent variations in patient populations across the world. Moreover, single institution data 
may not be a good representation of global variations in image acquisition protocols, which further influence 
quantitative image analysis7. On the other hand, sharing data between hospitals is restricted by legal and ethical 
regulations8,9. Patients signing an informed consent should have two options: participating in the study in a full 
extent or participating in a study without external data sharing10. Additionally, central collection of imaging data 
requires large storage infrastructure.

Distributed learning in radiotherapy, introduced in 2013 and pioneered in the euroCAT network, is a promis-
ing technique to address these challenges11. This methodology allows for training a model on data, which do not 
leave a local repository, for example a hospital. Instead, the model parameters are sent between members of the 
network and the central server. These models parameters are aggregate values and cannot be reversed or linked 
back to individual data points. Hence, this approach has also been referred to as “privacy-preserving” distributed 
learning12. Results from different members are compared in the central server and the updated results are sent 
back to the members. This procedure is continued until an agreement is reached. The feasibility of distributed 
learning for training prognostic models in healthcare was already shown for prediction of both normal tissue 
complications and overall survival following radiotherapy12–14. The prognostic power of the models trained in the 
distributed fashion was equally good as the models trained in the centralized manner.

In previously published works, the sole process of model fitting and data privacy issues were investigated. 
However, training a radiomics-based model requires two additional steps: feature normalization and feature 
selection. Feature normalization can be done with the assumption of selecting random samples (single hospital 
data) from a normal distribution (overall population). Radiomic features are known to exhibit a high degree of 
correlation and thus dimensionality reduction is a crucial step of the radiomics workflow. Distributed feature 
selection algorithms for horizontal data partitioning have been investigated15,16. In horizontal partitioning, the 
database is split based on rows, where each smaller database has the same structure. This type of feature selection 
was not tested on radiomics data. Therefore, this work aims at developing and testing a distributed learning work-
flow for model training on radiomics data. We hypothesize that distributed algorithms can be used to efficiently 
train robust radiomics models, achieving quality comparable with models trained in a centralized manner. We 
have used data from six different head and neck cancer (HNC) cohorts (more than 1000 patients) to compare 
results from centralized and distributed workflows. The workflows were evaluated on two, clinically-relevant 
binary endpoints, tumor human papillomavirus (HPV) status and 2 year overall survival.

Material and methods
Analyzed cohorts. This retrospective analysis was based on 6 cohorts of patients, with a total enrollment 
of 1174 patients. The analysis was approved by local ethical commissions and was conducted according to their 
guidelines, for some cohorts the need for informed consent was waived (see details in the Supplement). The 
survival data were available for 1064 patients from 5 different cohorts. Similarly, HPV status was determined in 
biopsy analysis in 834 patients from 5 cohorts. Details on the studied cohorts can be found in Table 1 and imaging 
protocols are described in the Table 1S. The HPV status was confirmed by immunohistochemical p16 staining 
in biopsy specimens. All patients were treated with definitive chemoradiotherapy, except the VUmc and PMH 
cohort, where definitive radiotherapy alone was allowed. The patients underwent contrast-enhanced CT imaging 
for the purpose of treatment planning, according to the local protocols.

Radiomics analysis. Radiomic features were extracted from the primary tumor region. The treatment 
defined gross tumor volume (GTV) was visually assessed for the presence of artifacts and slices with artifacts 
were manually removed from the contour. Images were resampled to 3.3 mm cubic voxels using linear interpola-
tion. The Hounsfield unit range was set to (−20, 180) to limit the analysis to soft tissue. In total, 981 features were 
extracted with the Z-Rad radiomics software implementation17:

•	 shape (n = 18).
•	 intensity distribution (n = 17).
•	 texture (n = 90): the Gray Level Co-occurrence Matrix (n = 26), the Neighborhood Gray Tone Difference 

Matrix (n = 4), the Gray Level Run Length Matrix (n = 14), the Gray Level Size Zone Matrix (n = 14), the 
Gray Level Distance Zone Matrix (n = 16) and the Neighboring Gray Level Dependence Matrix (n = 16).

•	 wavelet transform (n = 856).

Distributed learning platform. The Oncoradiomics distributed learning solution DistriM was used. This 
software consists of a master script and a site script. The site script is executed at each medical institution, where 
the data is located, and waits for a learning call from the master script. The master script is run by the researcher 
and initiates the distributed learning procedure. This script also mediates the transmission of the model coeffi-
cients to and from the sites. When model learning is complete, the master script outputs the model coefficients 
of the learned model. In this experimental setting, all data was centralized and artificially distributed across 
laptops on a per-center basis. The site script was executed on each laptop. The laptops were located at Maastricht 
University.
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Feature selection. First, data quality check was performed. Missing values were assessed and features with 
more than 20% missing values were excluded. Similarly, to avoid outliers, features with skewed distribution 
(skewness > 5) were excluded. The exclusion criteria were evaluated in the entire dataset for the centralized learn-
ing and per cohort for distributed learning. In the distributed learning, the union of features excluded per cohort 
was considered as the excluded subset.

Next, inter-features correlations were assessed (Fig. 1). Features were scaled with the z-score. In distributed 
learning, the global mean and standard deviation per feature were obtained by sharing local statistics on mean, 
dispersion from mean and number of patients in the cohort. The global correlations were estimated as weighted 
average of fisher transformed local correlation coefficients. The average linkage hierarchical clustering (Python 
SciPy library v. 1.3.0) was performed on the set of inter-features correlation coefficients with a 0.6 cutoff, sepa-
rately for the centralized and distributed learning.

Finally, to select a feature representative per cluster a univariate logistic regression was performed on the 
entire dataset (centralized learning) as well as the separate cohorts (distributed learning). In the centralized learn-
ing, per cluster, the feature with the highest area under the receiver operator characteristic curve (AUC) was 
chosen if the false discovery rate <0.05. In the distributed learning, per cohort and per cluster, the feature with 
the highest AUC was chosen to represent each cluster. In the central sever the cohort-specific sets were compared 

Center BD2Decide Design
MD 
Anderson PMH VUmc USZ

number of 
patients 206 141 110 441 100 176

2 years OS

dead
55
64%

36
66%

0
0%

96
72%

31
55%

40
71%

alive
151
36%

105
34%

0
0%

345
28%

69
45%

136
29%

unknown
0
0%

0
0%

110
100%

0
0%

0
0%

0
0%

HPV

positive
33
16%

0
0%

98
89%

274
62%

23
23%

58
33%

negative
61
30%

141
100%

12
11%

116
26%

77
77%

82
47%

unknown
112
54%

0
0%

0
0%

51
12%

0
0%

36
20%

Head 
and neck 
tumor site

oropharynx
128
62%

63
45%

110
100%

441
100%

100
100%

113
64%

hypopharynx
13
6%

47
33%

0
0%

0
0%

0
0%

37
21%

larynx
20
10%

31
22%

0
0%

0
0%

0
0%

16
9%

oral cavity
45
22%

0
0%

0
0%

0
0%

0
0%

10
6%

Table 1. Characteristic of studied cohorts.

Figure 1. Scheme of the distributed model training. Model training was divided into two parts: feature 
selection and model fitting. In both parts local statistics were computed at the local repositories and sent to the 
central server. In the central server the global statistics were estimated and sent back to the local repositories. 
Finally, the model was tested in a validation cohort.
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and weighted by the number of patients in the cohort. The final distributed feature selection comprised features 
with at least 80% selection rate, based on cohort sizes as weights.

Classification. A multivariate logistic regression model was trained for both outcomes, HPV and 2 year 
overall survival (2yOS). In the centralized learning, the model was fitted with a GLM (generalized linear models) 
function in R (version 3.2.3). In the distributed learning, the grid binary logistic regression (GLORE) method was 
used to fit the coefficients18. It is based on the intermediate agglomeration of the Newton-Raphson solutions. It 
has been previously shown to estimate the coefficients well in the horizontally partitioned datasets18.

Comparison of the models. Five models were created to predict HPV status and another five to predict 
2yOS. For each of the models, four cohorts were used for training and one was left out for external validation 
(patients with unknown status were excluded from modeling of the respective outcome). The prognostic power 
of a model was evaluated in the validation cohort. Models were trained in a distributed and centralized manner 
for comparison.

The comparison was divided in three parts. First, the feature selection was evaluated. The overlap in class 
assignments in hierarchical clustering was computed. Features were divided into subgroups based on the central-
ized clustering and next, on the cluster by cluster basis, the largest distributed subcluster was reported. Sum of 
features in the distributed subclusters divided by total number of features was defined as cluster overlap. To quan-
tify the impact of feature selection on the prognostic power of the model, the glm function was used to fit the 
model based on centralized and distributed feature selection. The area under receiver operating characteristics 
(AUC) from the following models were compared with a DeLong test (p-value < 0.05). Additionally, overlap 
between the selected features was reported. In the second step, model fitting was compared. The models based on 
distributed feature selection were created with glm and GLORE. The quality of fit (loglikelihood) was reported. 
The performance of models was evaluated with DeLong test. Finally, the full process (feature selection and classi-
fication) was compared. ROC curves were evaluated and model calibration in the validation cohort was checked. 
Calibration was estimated by fitting a logistic regression model in the validation cohort with one variable - pre-
dictions based on the model from the training cohort. The model was considered well-calibrated, if the obtained 
coefficient was not significantly different from 1. The calibration on a feature-basis was not analyzed. The patients 
were split into two groups (HPV+/−, and OS risk groups) based on the median prediction in the training cohort 
and group assignments between centralized and distributed models were compared =(classification discrepancy  

number of patients assigned to different classes/total number of patients in the validation cohrot). Additionally, 
for the 2yOS model, the Kaplan-Meier curves were plotted, using a median split to divide patients into risk 
groups.

Results
Centralized vs distributed feature selection. Close to 20% of radiomic features were excluded in the 
data cleaning process due to missing values or highly skewed distribution (details presented in Supplementary 
Table S7 and S8), irrespective of modeling endpoint and centralized or distributed cleaning. The remaining fea-
tures were independently clustered using centralized and distributed correlation coefficients. Here we present the 
respective values as a range, depending on the results from different training/validation cohorts. The centralized 
clustering resulted in a slightly higher number of clusters 97–103 vs 90–95 for HPV and 105–113 vs 94–98 for 
2yOS. Depending on the studied cohorts combination 94–97% of the features were clustered in the same groups 
in the centralized and distributed clustering.

For tumor HPV status prediction, 26–30 and 12–28 features were selected in the centralized and distributed 
way, respectively. The overlap of selected features between the methods was around 50%. Less variability in the 
number of selected features was observed in the case of 2yOS endpoint, with 10–21 and 7–23 features in the 
centralized and distributed selection, respectively. However, the overlap was lower, on average 40%. Detailed 
comparison is presented in Supplement Fig. 1S and Tables 2.1S–3.5S.

Figure 2 presents the summary of performance (AUC) of models trained on the feature subsets selected in 
the centralized and distributed workflows, for both HPV (a) and 2yOS (b). The model coefficients were trained 
with glm in both cases. No significant difference in AUC was observed (DeLong p-value> 0.05), indicating that a 
lower number of radiomic features in the distributed selection does not decrease model performance.

The 2yOS model validation failed in the DESIGN cohort. However, this is the only cohort with solely HPV 
negative patients. To further check the influence of HPV on our 2yOS models, we validated the 2yOS models in 
the oropharyngeal carcinoma cohorts for subgroups of HPV+ and HPV−. They showed good prognostic value 
in both subgroups, with AUC in a range of 0.61 to 1 (Supplementary Table 4S).

Centralized vs distributed logistic regression. The logistic regression fits were compared based on 
the subset of features selected in the distributed manner. The glm and GLORE algorithms reached identical 
log-likelihood for all training cohorts combinations and both endpoints (Supplementary Tables 5S and 6S). The 
sum of absolute differences in the coefficients between the centralized and distributed solution was less than 10−7. 
Figure 3 presents an example of nomograms obtained using the centralized and distributed logistic regression for 
HPV prediction.

Centralized vs distributed models. In the final comparison, results from both centralized and distributed 
workflows were evaluated in the validation cohorts. The HPV prediction models performed equally good in terms 
of discriminatory power in the centralized and distributed learning (Fig. 4, Table 5S). However, 18–28% classi-
fication discrepancy was observed between the centralized and distributed models, when median prediction in 
training dataset was used as threshold. Also, no significant difference in the discriminatory power was observed 
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for models predicting 2yOS. Additionally, both centralized and distributed risk-group split thresholds were sig-
nificant for all validation cohorts, except DESIGN cohort (Figs. 5 and 2S, Table 6S). The resulting Kaplan-Meier 
curves followed the same trend. Similarly, to the HPV models, classification discrepancy of 13–21% was observed 
between centralized and distributed model. In total, 12 out of 20 models (HPV and OS) would have required 
recalibration in the validation cohort (logistic regression coefficient significantly different from 1), however it was 
not dependent on the training workflow (Table 6S). Recalibration was not performed as part of this study and the 
results of split into risk groups for 2yOS model were based on the original predictions.

Discussion
This study aimed at designing and testing of a distributed learning workflow using radiomics data. CT images 
from more than 1000 HNC patients were analyzed with HPV status and 2 year overall survival prediction as end-
points. Combination of hierarchical clustering and univariate logistic regression was used for feature selection, 
and multivariate logistic regression was used for final classification. The resulting models obtained with distrib-
uted learning were compared to the centrally trained models. Models for both endpoints showed comparable 
results in the centralized and distributed training, on the level of feature selection, model fitting as well as the full 
workflow comparison.

Other studies have investigated horizontal data partitioning and distributed feature selection mostly with a 
focus on higher computational efficiency15,16,19. Here we present a simple algorithm based on the assumption 
that the distribution of radiomic feature values is similar in all studied cohorts. Although this assumption may 
not always be correct due to different image acquisition protocols7,20,21, we observed a good agreement between 
centralized and distributed clustering. Of note, the selection of features using majority voting among the cohorts 
may decrease the risk of selecting cohort-specific or scanner-specific biomarkers. The overlap between the final 
feature selection (distributed vs centralized) was not high but this could be caused by strong inter-features cor-
relations or redundancy of the selected features as no stepwise feature selection was included in the multivariate 
model training. No difference in model performance was observed depending on the feature selection manner.

Several previous studies have investigated distributed classification algorithms in the healthcare data, pre-
senting satisfactory results in terms of model accuracy12–14. The GLORE algorithm used in this study provided 
excellent results with a fast convergence (less than 10 iterations). In the comparison of the entire workflows, the 

Figure 2. Comparison of feature selection methods based on the area under receiver operating characteristics 
(AUC). The bars present results from both centralized (light gray and light blue) and distributed (dark grey and 
dark blue) feature selection together with 95% confidence intervals. No statistically significant difference was 
observed between the selection methods (DeLong p-value> 0.05).

https://doi.org/10.1038/s41598-020-61297-4
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difference in the AUCs between the centralized and distributed models was smaller than the AUCs dispersion 
resulting from different combination of training data. In the HPV models the largest difference between central-
ized and distributed learning was 0.07, whereas the observed range of AUCs depending on the training data was 
0.69–0.82. We observed 18–28% classification discrepancy between our centralized and distributed models. The 
median threshold was used to classify patients, other splits should be evaluated in the future.

CT radiomics has previously been evaluated for prediction of overall survival and HPV status22–25. The per-
formance of the distributed HPV models (AUC 0.73–0.80) is comparable with previously published results (AUC 
0.70–0.80). In this study, the HPV prediction was performed for all patient with available data and was not lim-
ited to the oropharyngeal cancer, which would be more relevant in the clinical practice. In the context of overall 
survival, Parmar et al. reported an AUC of 0.61–0.67 depending on the used classifier25. This study was able to 
achieve similar model performance in distributed learning even using a fixed classification method (AUC 0.64–
0.77). One exception was observed for the model trained on a mixed cohort of head and neck cancer patients and 
validated on the HPV- cohort (DESIGN cohort), for both centralized and distributed learning. Recent literature 
provides extensive evidence on superior survival rates of HPV positive oropharyngeal cancer patients26–28. We 
have shown in other combinations of training data that our overall survival models were prognostic in both 
HPV+ and HPV− oropharyngeal cancer (Table 4S). This would indicate that the models were not driven by HPV 
status and radiomics can be used as biomarker for both disease subtypes. However to fully exploit potential of 
radiomics, matched data should be used for model training, i.e. only HPV− patients. The access to large databases 
does not replace careful data curation.

Currently, implementation of distributed learning into healthcare is still at an early stage. There is a need 
to build trust between hospitals, IT departments and ethical committees to allow for integration of distributed 
learning network into the clinical picture archiving and communication systems and reporting systems. From 
the technological perspective, integration of distributed learning is feasible, two commercial solution supporting 
distributed learning infrastructure are available DistriM from Oncoradiomics and Varian Learning Portal from 
Varian as well as open source solutions29. In the DistriM solution, which is compatible with the algorithms devel-
oped for this study, data are secured by storing them on computer systems within the firewalls of the hospital. 
Only model coefficients are transmitted, from which individual patient characteristics cannot be derived.

Figure 3. Comparison of nomograms for models obtained using centralized and distributed logistic regression. 
The coefficients of the models are identical. Example for the model prediction HPV, trained on the cohorts: 
bd2decide, md anderson, vumc, usz.
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Our study is the first attempt to combine radiomics data and distributed learning. For the comparison pur-
pose, all data were collected at the same location and data quality assurance as well as radiomic features were 
extracted by one person. This experiment was a proof of concept that radiomics-based models can be trained in 
the distributed fashion. However, all the algorithms developed in this work are compatible with DistriM frame-
work. Due to the experiment design we were not able to evaluate important aspects of real-life distributed learn-
ing scenario, such as speed, security and network issues. Moreover, in the multicenter setting, simple data quality 
checks should be implemented, for example reporting of maximum and minimum intensity in the region of 
interest to avoid major contour shifts. The standardization of radiomic features extraction is currently ongoing. 
If future studies will decide to use mixed software implementations (separate implementation in each of the 
learning sites), an ontology for radiomics has to be defined and the implementations have to be benchmarked, for 
example in the Imaging Biomarker Standardization Initiative30–33. Additionally, multicenter data analysis requires 
efforts in establishing post-processing steps for data standardization, as for example contrast-enhancement 

Figure 4. The receiver operating characteristics of radiomics-based models for HPV prediction. The AUCs are 
given with 95% confidence interval. No significant difference in ROC was observed between models trained in 
the centralized and distributed workflow.
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normalization34 or robustness studies on contouring variability7,17,20,33,35. Our models showed good discrimina-
tion, but in 12/20 cases would require recalibration. This is a challenge in the transfer of the trained models into a 
new institution or scanner. For the quality assurance, such model should be first validated on sample of data in the 
new institution/scanner (if needed recalibrated) and only then used in prospective setting. Despite feature prese-
lection, the final models consisted of 7–28 features, which might have resulted in inclusion of redundant features 
into the multivariate model. The next step in the development of distributed radiomics workflow could be inte-
gration of stepwise regression. Additionally, in the future easy access to radiomics data via distributed learning 
will allow for regular updates (e.g. yearly) of the studied signatures to further prove that they are not study time 
dependent or whether they are applicable for new treatment modalities36. Finally, we would like to apply distrib-
uted learning to various clinically relevant outcomes, such as treatment failure, early death and hypoxia status37–39 
and compare distributed learning radiomics to results from distributed deep learning40.

In conclusion, this study describes the first workflow for radiomics analysis in a distributed setting. 
Centralized and distributed learning results for prediction of HPV status and 2 year overall survival in HNSCC 

Figure 5. Comparison of Kaplan-Meier curves for the risk-group split based on the 2 years overall survival 
models trained centrally and distributed. Both models performed equally well on all validation cohorts. The 
G-rho test p-values and odds ratio (OR) are shown for comparison.
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patients treated with radical chemoradiotherapy or radiotherapy were similar. This methodology will allow for 
easier access to radiomics data from large cohorts and thus development of more robust and reliable models. This 
approach will also facilitate regular updates of radiomics signatures when new treatment or imaging modalities 
are implemented.
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